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Abstract We apply a novel upwind stabilization of a mixed hybrid finite element
methodof lowest order to advection–diffusionproblemswith dominant advection and
compare it with a finite element scheme stabilized by finite volume upwinding. Both
schemes are locally mass conservative and employ an upwind-weighting formula
in the discretization of the advective term. Numerical experiments indicate that the
upwind-mixed method is competitive with the finite volume method. It prevents the
appearance of spurious oscillations and produces nonnegative solutions for strongly
advection-dominated problems, while the amount of artificial diffusion is lower than
that of the finite volume method. This makes the method attractive for applications
in which too much numerical diffusion is critical and may lead to false predictions;
e.g., if highly nonlinear reactive processes take place only in thin interaction regions.

1 Introduction

In this article, we consider the linear advection–diffusion equation

∂t u − ∇ · (D∇u − Qu) = 0 in J × Ω (1)

(and semilinear system variants thereof) on a finite time interval J =]0, tend] and
a polygonally bounded convex domain Ω ⊂ R2. Equation (1) serves as a model for
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many natural processes, e.g., heat transfer or mass transport in porous media. The
physical principle underlying this equation is conservation of mass, which should be
reflected by any numerical method that is used for discretization.

The numerical simulation of (1) becomes particularly challenging if the advec-
tive term dominates the diffusive term, i.e., when the Péclet number is large. Then,
sharp fronts in the solution cannot be resolved properly by conventional numerical
schemes, which typically produce solutions that are polluted by spurious oscilla-
tions. To circumvent this, various approacheswith different strengths andweaknesses
were proposed in the literature. One of the most widely used techniques to handle
advection dominance is upwinding, which is easy to implement and which preserves
monotonicity well at the cost of introducing additional diffusion to the problem. It
relies on the simple idea of discretizing the advection term as a function of the flow
direction.

In this work, we compare a novel upwind stabilization of a mixed hybrid finite
element scheme, which was studied numerically in [8] and analytically in [4] with
a linear finite element scheme that uses an upwind finite volume approximation of the
advective term. The latter was used in [5] to incorporate upwinding into an existing
linear finite element code and thus to recover the discrete maximum principle, which
is violated if linear finite elements are applied to advection-dominated transport
problems.

By means of two test scenarios, we demonstrate that the upwind-mixed hybrid
method is competitive with the finite volume upwind method with respect to robust-
ness, monotonicity properties, and the amount of artificial numerical diffusion intro-
duced by the schemes.

The rest of the work is organized as follows. In Sect. 2, the basic notation and
the most important functional spaces are introduced. In Sect. 3, the discretization
of problem {(1), (2)} with the two schemes under consideration is briefly sketched.
Finally, Sect. 4 contains the description and the results of the test scenarios.

2 Notation and Problem Statement

Let the boundary ∂Ω decompose into a Dirichlet part ∂ΩD, a Neumann part ∂ΩN,
and a flux part ∂Ωflux with outward unit normal n. In order to obtain a well-posed
problem, Eq. (1) is supplemented by the following initial and boundary conditions:

u = uD on J × ∂ΩD, (2a)

−D∇u · n = 0 on J × ∂ΩN, (2b)

−D∇u · n + u Q · n = 0 on J × ∂Ωflux, (2c)

u = u0 on {0} × Ω (2d)

with uD and u0 given. All coefficients are assumed to be sufficiently smooth.
Let the time interval J be decomposed into N subintervals of equal length and let

Δt := tend/N denote the time step size. Let Th be a regular family of decomposi-
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tions into closed triangles T of characteristic size h such that Ω = ∪T . We denote
byPk(T ) the spaceof polynomials of degree atmost k ona triangleT ∈ Th anddefine
by RT0(T ) := {v : T → R2 | v(x) = ax + b, a ∈ R, b ∈ R2} the local Raviart–
Thomas space. Moreover, let Pk(Th) := {wh : Ω → R | ∀T ∈ Th, wh |T ∈ Pk(T )}
denote the (discontinuous) global polynomial space on the triangulation Th and
let Pc

1(Th) := C(Ω) ∩ P1(Th). The set of edges of Th is denoted by E and that
of T ∈ Th by E (T ), where we omit the index h here. Finally, let the space H1(Ω)

contain those functions of L2(Ω) which have a weak derivative in L2(Ω), and let
H1
0,D(Ω) denote the subspace of H1(Ω) consisting of functions with vanishing trace

on ∂ΩD.

3 Numerical Schemes

The two numerical schemes under consideration are outlined in the following. The
first one is a linear finite element scheme that uses an upwind finite volume approx-
imation of the advective term (LFEMstab) as presented in [5]. The second one is
a mixed hybrid finite element scheme combined with an upwind-weighting formula
based on the Lagrange multipliers (MHFEMstab), which are introduced into the for-
mulation by hybridization; cf. [2, 4]. For ease of presentation, we assume that uD = 0
andwe use full upwinding in the sequel. However, the schemes can be easily extended
to inhomogeneous Dirichlet data and to more sophisticated upwind formulas, e.g.,
partial upwinding [6].

3.1 Scheme: LFEMstab

The discretization of {(1), (2)} with piecewise linear, globally continuous finite
elements in space and with the implicit Euler method in time yields the following
discrete problem.

Let n ∈ {1, . . . , N } and let un−1
h ∈ Pc

1(Th) ∩ H1
0,D(Ω) be given. Find un

h ∈
Pc
1(Th) ∩ H1

0,D(Ω) such that

1

Δt

∫

Ω

(un
h − un−1

h )zh +
∫

Ω

D∇un
h · ∇zh +

∫

Ω

zh∇ · (Qun
h) = 0

for all zh ∈ Pc
1(Th) ∩ H1

0,D(Ω).
Let ϕk be the basis function of Pc

1(Th) that is associated with node ak , i.e.,
ϕk(a j ) = δk j holds. Since ϕk has a local support on the triangles around ak , the
advection term can be approximated by
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Fig. 1 Control volume Ωk
associated with the node ak
according to the Voronoi
diagram of Th . The support
of ϕk ∈ Pc

1(Th) is the union
of all triangles containing the
vertex ak

ak

Ωk

akl

Γkl

∫

Ω

ϕk∇ · (Qun
h) ≈

∫

Ωk

∇ · (Qun
h) =

∫

∂Ωk

un
h Q · n =

∑
j

∫

Γk j

un
h Q · n ,

whereΩk is the Voronoi cell around ak , the boundary of which decomposes into line
segments Γkl , l ∈ {1, 2, . . .}, cf. Fig. 1. The boundary integral on Γkl can now be
treated with a finite volume upwind scheme:

∫

Γkl

un
h Q · n ≈ |Γkl | αkl(u

n
h) Q

(
ak + akl

2

)
· n

with n still denoting the unit normal pointing outward of Ωk and with akl denoting
the reflection of node ak across Γkl . The function α for a full upwind scheme reads

αkl(u
n
h) :=

{
un

h(ak) if Q · n ≥ 0 at (ak + akl)/2 (outflow of Ωk) ,

un
h(akl) otherwise (inflow into Ωk) .

Using Voronoi cells as control volumes, for nonobtuse triangular meshes, LFEM-
stab is equivalent to the classical cell centered finite volume method if diffusion is
cellwise constant, cf. [6]. Therefore, LFEMstab is locally mass conservative and pro-
vides formally first order accurate approximations of the scalar unknown u in L2(Ω).

3.2 Scheme: MHFEMstab

In this section, the discretization of {(1), (2)} using the upwind-stabilized mixed
hybrid finite element scheme of [4] is sketched. It relies on an Euler-implicit time
stepping scheme and lowest order Raviart–Thomas finite elements for the spatial
discretization. In contrast to non-hybrid schemes, the continuity constraints on the
normal fluxes are not incorporated into the function space, but are ensured by intro-
ducing additional variables—the Lagrange multipliers—along with additional equa-
tions. More precisely, the space
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Vh := {v ∈ (L2(Ω))2 | ∀T ∈ Th, v|T ∈ RT0(T )}

is used as the ansatz space for the discrete approximation of the mass flux q :=
−D∇u + Qu . The Lagrange multipliers are taken from the space

Λh := {λ ∈ L2(E ) | ∀E ∈ E, λ|E ∈ P0(E); ∀E ∈ ED, λ|E = 0} ,

where E denotes the set of interior edges and ED the set of Dirichlet edges. Finally,
the scalar unknown is approximated in the space Wh := P0(Th).

The definition of the upwind-mixed hybrid scheme involves the discrete velocity
field Qn

h := ΠhQn , where Πh denotes the usual Raviart–Thomas projection opera-
tor. We assume that Qn

h has the representation Qn
h = ∑

T ∈Th

∑
E∈E (T ) Qn

T E vT E in
a basis {vT E }T ∈Th ,E∈E (T ) of Vh . Basis functions of Wh and Λh are given by char-
acteristic functions {χT }T ∈Th and {μE }E∈E , respectively. The schemeMHFEMstab
reads as follows.

Let n ∈ {1, . . . , N } and let un−1
h ∈ Wh be given. Find (qn

h, un
h, λn

h) ∈ Vh × Wh

×Λh withqn
h = ∑

T ∈Th

∑
E∈E (T ) qn

T E vT E ,un
h = ∑

T ∈Th
un

T χT ,λn
h = ∑

E∈EΩ
λn

EμE

such that
∫

Ω

D−1 vh · qn
h −

∫

Ω

un
h∇ · vh

−
∑

T ∈Th

∑
E∈E (T )

Qn
T EαT E (un

T , λn
E )

∫

T

D−1 vh · vT E = −
∑

T ∈Th

∫

∂T

λn
h vh · n , (3a)

1

Δt

∫

Ω

(un
h − un−1

h )wh +
∫

Ω

wh ∇ · qn
h = 0 , (3b)

∑
T ∈Th

∫

∂T

μh qn
h · n = 0 (3c)

for all (vh, wh, μh) ∈ Vh × Wh × Λh , where the upwind weights are defined as

αT E (un
T , λn

E ) =
{

un
T if Qn

T E ≥ 0 ,

λn
E otherwise .

(4)

The function αT E takes the flow direction into account: If Qn
T E ≥ 0, i.e., if there is

an outflow across the edge E , the value un
T on the current triangle is used to discretize

the advective term. Otherwise, the Lagrange multiplier λn
E—which represents an

approximation of un on E—is used. Note that the definition (4) of αT E is slightly
different than that in [4, 8], where αT E (un

T , λn
E ) := 2λn

E − un
T was used if Qn

T E
< 0. This is because less numerical diffusion was observed using (4). The proof of
convergence in [4], however, applies to either choice.
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Since the basis functions of Vh can be chosen to have support only on a single
mesh element, static condensation is usually employed in standard cell-centered
mixed hybrid schemes in order to reduce the number of global unknowns by
local elimination. With the specific choice of αT E in the above scheme, Eq. (3a)
remains fully local and static condensation may be applied further on. Therefore, the
upwind-mixed hybrid scheme can be implemented more efficiently than standard
upwind-mixed schemes that use information from neighbor elements to discretize
the advection term, cf. [4].

4 Robustness of the Schemes

In the following, the schemes LFEMstab and MHFEMstab presented in Sect. 3
and their non-stabilized versions LFEM and MHFEM are compared with respect to
numerical attributes that are essential for reliable simulation of advection-dominated
flows, e.g., monotonicity and the amount of artificial diffusion they introduce.

4.1 Scenario: Pulse

We consider a time interval J := ]0, 1] using a time step size of Δt := 5E−3 and
a rectangular domain Ω := ]0, 2[× ]0, 1[ with ∂ΩN = {2} × [0, 1] and ∂Ωflux
= ∂Ω \ ∂ΩN, which is triangulated by an unstructured grid containing 2, 704 tri-
angles. We choose the following data in {(1), (2)}: D := 2E−4, Q := (1, 0)T, and
u0 := 1 on [1/4, 3/4]2 and zero elsewhere.

The center of mass of the initial (quadratic) distribution u0 should be transported
to x = (1.5, 0.5)T by advection and be slightly smeared by diffusion. Figure 2 shows
the distribution of uh at tend for the four schemes under investigation. The non-
stabilized schemes LFEM and MHFEM produce oscillations that reach negative
values. Although the MHFEM solution at tend is closer to the expected one, the
oscillations are stronger and lead to non-convergence shortly after tend, which is not
the case with LFEM. Both of the stabilized schemes LFEMstab and MHFEMstab
conserve the nonnegativity of u0, however, MHFEMstab adds less artificial diffusion
to the solution.

4.2 Scenario: Contaminant Biodegradation

As a second example, we consider the simulation of contaminant biodegradation
according to a simplified Monod model. This nonlinear test problem was used by
several authors, cf. [1, 3, 7], to compare different numerical schemes with respect to
the numerical diffusion they introduce. It illustrates that prognoses of methods with
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LFEM uh ∈ [−0.229,1.17] MHFEM uh ∈ [−63.7,58.4] (1.08 at peak)

LFEMstab uh ∈ [0,0.722] MHFEMstab uh ∈ [0,0.889]

Fig. 2 The distribution of uh at tend for the different schemes under investigation. The color scaling
is fixed from zero (blue) to one (red); the global minima and maxima are listed below each plot

large artificial diffusion can be completely wrong. Precisely, a degradation reaction
between an electron donor udon (e.g. a contaminant) and an electron acceptor uacc
(e.g. oxygen) is considered, which is catalyzed by a bio species ubio. As a simplifi-
cation, biomass growth is neglected and the process is modeled by the equations

∂t (θui ) − ∇ · (θ D ∇ui − Qui ) = αi μ , i ∈ {don, acc}

with the Monod reaction rate μ = −ubioudon(Kdon + udon)
−1uacc(Kacc + uacc)

−1.
For the simulation the following data are used: Ω =]0, 0.5[× ]0, 1[ , θ = 0.2,
D = 10E−4, Q = (0,−1)T, αdon = 5, αacc = 0.5, Kdon = 0.1, Kacc = 0.1,
ubio = 1.As initial conditions,u0

don = 0 andu0
acc = 0.1 are chosen inΩ . The electron

donor is injected at the middle part of the upper boundary and transported toward
the lower boundary by advection. The stationary Dirichlet boundary conditions are
given by udon = 1 and uacc = 0 on ]0.225, 0.275 [×{1} and udon = 0 and uacc =
0.1 elsewhere on the upper boundary, respectively. The degradation reaction takes
place only in those parts of the domain where the concentrations of both species
are sufficiently large, which is the case at the interface between the electron donor
and the surrounding area, where still enough electron acceptor is available. Thus,
numerical methods introducing much artificial diffusion lead to an overestimation
of the mixing zone of the two species, and the contaminant is degraded too fast in
this case.

Figure 3 shows the predicted contaminant concentrations using LFEMstab and
MHFEMstab on a locally preadapted unstructured grid with 1, 988 elements at tend,
where a steady state has been reached. For both schemes, Newton’s method was used
for the linearization of the nonlinear reaction terms. We observe that both methods
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Fig. 3 Locally preadapted grid (left) and computed concentration profiles for udon,h using LFEM-
stab (center) and MHFEMstab (right). The values of udon,h are in [0, 1] for both methods

produce nonnegative solutions. On this relatively coarse grid, LFEMstab predicts
a complete degradation of the contaminant within the computational domain, which
is incorrect and may have serious consequences in practice. The contaminant plume
computed byMHFEMstab, however, covers the full length of the domain and reaches
the outflow boundary. This is in accordance with a reference solution we computed
on a grid with 250,000 elements.

5 Conclusion

We conclude that the upwind-mixed hybrid method provides a suitable scheme
for simulating advection-driven transport problems. Compared to the finite volume
method the amount of artificial diffusion appears to be lower, which is important in
applications where the dominating processes take place in small interaction regions.
Moreover, similarly to the classical cell-centered mixed method, it is fully hybridiz-
able, and the incorporation of upwinding does not increase the computational costs
in contrast to standard upwind-mixed methods.
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