
Conservative Finite Differences
as an Alternative to Finite
Volume for Compressible
Flows

Jens Brouwer, Julius Reiss and Jörn Sesterhenn

Abstract Finite Volume schemes are the natural choice when simulating flows with
shocks, since conservation is essential in the physics and as such in the simulation
of this phenomenon. But finite difference schemes can be conservative as well. Con-
servation requires in such schemes a high internal consistency of the spatial and
the temporal discretization. We present a skew-symmetric finite difference scheme,
which is fully conservative due to its consistency, still easy to implement and numer-
ically efficient. A variety of different flow configurations containing shocks and
turbulence are presented.

1 Introduction

Finite volume (FV) schemes and conservative schemes are so strongly connected,
that often these two terms are used synonymously. Indeed all FV schemes conserve
the quantities of the underlying discretized flux-equations. The inverse statement
however is not true: A set of discrete equation can be conservative, even if a form
other than the flux form is the starting point of the scheme. This extra freedom
can be beneficial to fulfill additional requirements. In the case presented here this
requirement is a low dissipation of the scheme. This allows the direct numerical
simulation (DNS) of turbulence and acoustics. Further, a high discretization order in
space and time is important to keep the computational cost of simulations of large
physical systems as low as possible.
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We use a skew-symmetric finite difference scheme which meets the afore men-
tioned properties, which builds on similar concepts as [4, 12]. As computational
variables for the equations of compressible flow the quantities (

√
ρ,

√
ρuα, p) are

used. The conserved quantities of mass,
∑√

ρ2, momentum,
∑ √

ρ(
√

ρuα), and
total energy,

∑
p/(γ − 1) + (

√
ρuα)2/2, are a consequence of the consistency of

the discrete equations and a proper time stepping. They are not enforced by formu-
lating the balance of these terms as in FV methods. Arbitrary order in space and
time can be achieved. The scheme is computationally efficient in space as it builds
on (non-upwind) finite-differences and point-wise multiplication. However, for full
conservation an implicit time stepping scheme is needed. The resulting nonlinear
system is solved by fix point iterations which is found to converge satisfactory well
for time steps similar to those of an explicit scheme.

We present resolved calculations of a turbulent and transonic boundary layers, as
well as a Richtmyer-Meshkov instability and one-dimensional shock problems.

2 Numerical Scheme

Here we provide a short overview of the skew-symmetric finite-difference scheme.
A detailed derivation and discussion is out of scope of this paper but can be found
in [10] for the spatial discretisation and [2] for the time stepping procedure.

Compressible flow is described by the Navier-Stokes equations which state the
evolution of mass, momentum and energy:

∂tρ + ∂xβ ρuβ = 0 (1)

∂tρuα + ∂xβ (ρuβuα) + ∂xα p = ∂xβ ταβ (2)

∂t

(
ρ

[
e + uαuα

2

])
+ ∂xβ

(

ρuβ

[

e + uαuα

2
+ p

ρ

])

= ∂xα uβταβ + ∂xαφα. (3)

The ρ is the density, uα is the αth = 1, 2, 3 velocity component. Pressure is p and
ταβ = μ(∂xα uβ +∂xβ uα)+(μd −μ2/3)δαβ∂xγ uγ is the Newtonian friction. The heat
flux is given by φα = λ∂xα T with the heat conductivity λ. Ideal gas with the internal
energy e = (p/ρ)/(γ − 1) and adiabatic exponent γ is assumed in the following.
Summing convention is assumed.

A pure rewriting of the momentum equations leads to the equations in skew-
symmetric form

∂tρ + ∂xβ ρuβ = 0 (4)

1

2
(∂tρ · +ρ∂t ·) uα + 1

2

(
∂xβ uβρ · +uβρ∂xβ ·) uα + ∂xα p = ∂xβ ταβ (5)

1

γ − 1
∂t p + γ

γ − 1
∂xβ

(
uβ p

) − uα∂xα p (6)

= −uα∂xβ ταβ∂xβ uαταβ + ∂xαφα
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It is understood that the space and time derivatives in the first two terms of (5) act
also on u right of the parentheses, which is marked by a „·”. Themomentum equation
is called skew-symmetric, because the resulting spatial and temporal differentiation
operators are skew-symmetric. The skew-symmetry of these operators leads to the
analytical conservation of mass, momentum and energy. The kinetic energy was
split from the total energy equation to arrive at an equation for the internal energy.
To preserve the skew-symmetry in the discretization, skew symmetric derivative
matrices DT = −D are used.

Morinishi’s rewriting, [7], transforms the time derivative in the momentum equa-
tions (5) to 1

2 (∂tρ · +ρ∂t ·) uα = √
ρ∂t (

√
ρuα). and leads to:

√
ρ∂t (

√
ρuα) + 1

2

(
∂xβ uβρ · +uβρ∂xβ ·) uα + ∂xα p = ∂xβ ταβ. (7)

The convective term 1
2

(
∂xβ uβρ · +uβρ∂xβ ·) becomes a skew symmetric matrix Du,

if discretized appropriately. By multiplying it by uT
α

uT
α

√
ρ∂t (

√
ρuα) + uT

α Duuα + uT
α ∂xα p = uT

α ∂xβ ταβ (8)

the change of kinetic energy is derived. Skew-symmetry implies uT
α Duuα = 0, thus

1

2
∂t (

√
ρuα)2 = −uT

α ∂xα p + uT
α ∂xβ ταβ.

The transport term conserves the kinetic energy; the kinetic energy is changed by
pressurework and friction alone, as in the analytical theory, but in contrast to standard
schemes. Now, also the unusual appearance of

√
ρ instead of ρ in the momentum

equation can be understood. It is the quadratic splitting of the kinetic energy. The
terms uα∂xα p − uα∂xβ ταβ in Eq. (6) balance the change of kinetic energy by an
according change of the internal energy, so that total energy is conserved. This
structure carries over to the discrete case. Momentum conservation can be derived
in a similar manner.

The method can be easily applied to transformed, structured grids, meaning grids
generated by C1 mappings of the unit cube. The conservation properties are strictly
fulfilled as before. The resulting equations are

J2
√

ρ∂t
√

ρ + ∂ξβ ũβρ = 0

J
√

ρ∂t (
√

ρuα)uα + 1

2

(
∂ξβ ũβρ · +ũβρ∂ξβ ·) uα + J∂xα p = ∂ξβ τ̃αβ

J
1

γ − 1
∂t p + γ

γ − 1
∂ξβ

(
ũβ p

) − Juα∂xα p

= −uβ∂ξα τ̃αβ + ∂ξα uβ τ̃αβ + ∂ξα φ̃α.
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The effective velocities are defined to include the metric factors ũγ1 = (eγ2 ×
eγ3)u, γi cyclic. The local basis vectors are defined as eα = ∂ξα r, with r =
(x, y, z)T . The Jacobian is J = (e1 × e2) · e3.

The discretization is done in a straight forward manner with the variables
(
√

ρ,
√

ρuα, p). All derivatives are replaced by skew-symmetric derivative matrices
(i.e. symmetric stencils). At boundaries the summation by parts property is assumed
for which explicit derivatives constructed by Strand are used [11]. Details on the
boundary treatment can be found in [10]. In addition, the use of SBP matrices allows
the implementaion of an effevtive multiblock decomposition of the domain.

Time integration

The conserved quantities are (partly) quadratic forms of the discretization variables.
Quadratic quantities are in general not conserved. Runge-Kutta schemes conserve
quadratic invariants when the coefficients of their Butcher table fulfill the condition

bi ai j + b j a ji = bi b j . (9)

This restrictive requirement is fulfilled by all Gauss-collocation methods, a family of
s-stage implicit RK schemes of order 2s. Time integration is done by the two stage,
fourth order method:

1
2 −

√
3
6

1
4

1
4 −

√
3
6

1
2 +

√
3
6

1
4 +

√
3
6

1
4

1
2

1
2

These methods lead to full conservation, which is discussed in [3]. It is found that a
fix point iterationworks surprisingly well for moderateΔt . It is further observed, that
the conservation converges quicker than one might estimate form the convergence
of the full solution.

3 Numerical Examples

In this section we present four numerical examples to show the applicability of our
method to physical flow situations containing small scale turbulence and shocks.
Therefore we show computations of a classical shock-tube test case, a turbulent
boundary layer, a developing Richtmyer-Meshkov instability and an instationary
shock-wave/boundary-layer interaction (SBLI). All simulations use the previously
described skew-symmetric finite difference scheme. The implementation is in FOR-
TRAN and parallelized usingMPI directives. Spatial discretization is done using 6th
order central differenceswithSBPproperties. Temporal discretizations is achievedby
the implicit 4th order Gauss collocation method with one small exception. Due to the
higher computational effort of the implicit scheme, the SBLI simulation is advanced
in time until initial transients are gone using an explicit Runge-Kutta scheme of



Conservative Finite Differences as an Alternative to Finite Volume 173

−1 0 1
0

0.5

1
ρ

x

Fig. 1 Sod’s test case at t = 0.4 using the Shock filter of Bogey et al. [1]. Good agreement is
found. The Shock speed matches the analytical solution (dotted line)

fourth order. Once a statistically steady regime is reached, integration using the fully
conservative Gauss-collocation scheme is resumed.

Sod’s test case

The first test case is the classical Sod’s shock-tube problem for the Euler equations.
Starting conditions are ql = (1, 0, 1) and ql = (0.125, 0, 0.1) where q = (ρ, u, p).
The problem is discretized using 201 points and Bogeys conservative shockfilter is
applied, see [1] for details. Figure 1 shows a comparison between the numerical and
analytical solution, displaying agreement of propagation speed with the analytical
solution, as expected for a conservative scheme.Only the contact discontinuity shows
slightly higher damping than needed. The filter method is independent of the base
scheme and can be easily modified to improve this.

DNS of a turbulent boundary layer at Re ≈ 5000

To show the validity of the skew-symmetric finite-difference approach to small scale
turbulence a direct numerical simulation of a turbulent boundary layer is shown.
Reynolds number Reδin = 4736 and free-stream Mach number M = 0.8, where
δin is the 99% boundary layer thickness. The computational domain of dimensions
[106δin × 8δin × 9δin] is resolved using roughly 80million grid points. This reso-
lution is chosen so that the grid spacing at the wall satisfies a dimensionless wall
distance of Δy+ < 1. Throughout the domain and the average Δy+ at the boundary
layer edge is not larger than 7. The turbulent inlet conditions are enforced using a
recycling/rescaling method as introduced by Lund [6], andmodified by Pirozzoli [9].
Results are in good agreement with reference computations of Pirozzoli et al. [8].
Figure2 depicts streamwise velocity in a wall-parallel plane where the formation of
characteristic streak structures is visible.

2-Dimensional Richtmyer-Meshkov instability

A Richtmyer-Meshkov instability is an instability mechanism that develops when
an interface between fluids is impulsivly accelerated by a passing shockwave. In
our simulation the fluid-fluid interface is modeled by a discontinous jump in den-
sity. The shock Mach number of the accelerating shockwave is Ms = 1.5. The
two-dimensional domain is discretized with [4096× 2048] gridpoints and the afore
mentioned conservative shock-filter by Bogey et al. is used. Figure3 shows the
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Fig. 2 Contours of instantaneous streamwise velocity in a xz-plane located at y+ ≈ 10

Fig. 3 Contour plot of a 2-dimensional Richtmyer-Meshkov instability; the top half of the domain
depicts density while vorticity is shown in the lower half

mushroom-like growth out of the fluid interface. In the top half of the figure density
contours are plotted while the lower half depicts vorticity. Due to the minimal dissi-
pation of the skew-symmetric scheme, many secondary and even tertiary instabilities
can be observed. The prime examples being the Kelvin-Helmholtz instabilities that
form at the shear-layer between the two fluids. The vorticity plot reveals the complex
turbulent flow field in the vicinity of the large scale structure that drives the creation
of many of the smaller instabilities.

Shock-wave/boundary-layer Interaction

Shock-wave/boundary-layer interactions can occur in many important engineering
applications. A prominent example is transonic flow over an airfoil, as the flow is
accelerated over the airfoil, a super-sonic pocket forms that is terminated by a shock.
The strong pressure gradient leads to the separation of the boundary-layer behind
the shock and a recirculation bubble forms. Under certain conditions the shock can
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Fig. 4 Top: Snapshot of the transonic flow over a bump. Pressure contours and iso-lines of stream-
wise velocity behind the bump are displayed. Bottom: Instantaneous streamwise velocity contours
in wall-parallel plane at y+ ≈ 25. The current location of the recirculation bubble is marked by the
u = 0 iso-line

exhibit large scale movements which has disastrous influence on all aerodynamic
quantities. For a comprehensive review of the different forms of transsonic SBLI see
e.g. [5].

The phenomenon of Shock-wave/boundary-layer interaction was one of the main
motivations for the development of the conservative finite-difference scheme, as the
simulation has to resolve the small turbulent scales in the boundary layer as well
as to handle the shock movements. The simulations shown below are preliminary
studies of SBLI occurring due to transonic flow over a bump. A laminar boundary
layer is impinging on a small bump, a shock forms over the bump and a recirculation
bubble that exhibits small breathing motions forms behind the interaction. Past the
interaction zone the boundary layer begins its transition to turbulence. The size of the
computational domain is [65×20×12]measured in inlet boundary layer thicknesses
δin and is resolved using approximately 20million grid points. The maximum height
of the bump is 1.2δin while its length is 21.9δin . Shown below are snapshots of
the instantaneous velocity and pressure fields. In Fig. 4 the geometry of the case is
visible. The shock is visible both in the pressure fields and the contourlines of the
stream-wise velocity. The recirculation bubble in the snapshot can be seen extending
up to x ≈ 0.2. In the lower panel of the figure the stream-wise velocity in a wall-
parallel plane is shown. Again, the position of the shock at x = 0.05 and the length
of the recirculation bubble can be seen. In addition the transition of the laminar flow
field to turbulence through the interaction zone is visible.



176 J. Brouwer et al.

4 Conclusions

We presented a fully conservative finite-difference scheme for the compressible
Navier-Stokes equations on arbitrarily distorted, structured grids. In addition to its
energy preserving nature the scheme introduces no artificial dissipation. The scheme
is shown to be applicable to physical situations containing shocks and small scale
turbulence while being easy to implement. This makes the skew-symmetric finite dif-
ference discretization a worthy alternative to Finite Volume methods in the context
of large and small scale simulations of compressible flow.
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