A New Finite Volume Scheme for a Linear Schrödinger Evolution Equation

Abdallah Bradji

Abstract We consider the linear Schrödinger evolution equation with a time dependent potential in several space dimension. We provide a new implicit time finite volume scheme, using the general nonconforming meshes of [2] as discretization in space. We prove that the convergence order is $h_{\mathscr{D}} + k$, where $h_{\mathscr{D}}$ (resp. k) is the mesh size of the spatial (resp. time) discretization, in discrete norms $\mathbb{L}^{\infty}(0, T; H_0^1(\Omega))$ and $\mathscr{W}^{1,\infty}(0, T; L^2(\Omega))$. These error estimates are useful because they allow to obtain approximations to the exact solution and its first derivatives of order $h_{\mathscr{D}} + k$.

1 Motivation and Aim of This Paper

Let us consider the following linear time dependent Schrödinger problem. We seek a complex valued function u defined on $\Omega \times [0, T]$ satisfying

$$i u_t(x,t) + \Delta u(x,t) - V(x,t)u(x,t) = f(x,t), \ (x,t) \in \Omega \times (0,T),$$
(1)

where Ω is an open bounded polyhedral subset in \mathbb{R}^d , with $d \in \mathbb{N} \setminus \{0\}$, T > 0, $i \in \mathbb{C}$ (the set of complex numbers) is the imaginary unit, V is a time dependent potential and f is a given function.

An initial condition is given by:

$$u(x,0) = u^0(x), \ x \in \Omega, \tag{2}$$

A. Bradji(⊠)

Department of Mathematics, Faculty of Sciences, University of Badji Mokhtar-Annaba, Annaba, Algeria

e-mail: abdallah-bradji@univ-annaba.org, bradji@cmi.univ-mrs.fr

with homogeneous Dirichlet boundary conditions, that is

$$u(x,t) = 0, \ (x,t) \in \partial \Omega \times (0,T), \tag{3}$$

The form (1)–(3) of Schrödinger equation occurs, for example, when d = 1 in underwater acoustics, cf. [1]. The model (1)–(3) is studied for instance in [1] when a Galerkin finite element method is used as discretization in space. The stationary case of Schrödinger equation is also considered using finite volume methods in [3] where there are some interesting numerical tests. In this work we analyze a new finite volume scheme for the Schrödinger evolution problem (1)–(3).

2 Definition of the Scheme and Statement of the Main Result

The discretization of Ω is performed using the mesh $\mathcal{D} = (\mathcal{M}, \mathcal{E}, \mathcal{P})$ described in [2, Definition 2.1] which we recall here for the sake of completeness.

Definition 1 (Definition of the spatial mesh) Let Ω be a polyhedral open bounded subset of \mathbb{R}^d , where $d \in \mathbb{N} \setminus \{0\}$, and $\partial \Omega = \overline{\Omega} \setminus \Omega$ its boundary. A discretisation of Ω , denoted by \mathcal{D} , is defined as the triplet $\mathcal{D} = (\mathcal{M}, \mathcal{E}, \mathcal{P})$, where:

- 1. \mathcal{M} is a finite family of non empty connected open disjoint subsets of Ω (the "control volumes") such that $\overline{\Omega} = \bigcup_{K \in \mathcal{M}} \overline{K}$. For any $K \in \mathcal{M}$, let $\partial K = \overline{K} \setminus K$ be the boundary of K; let m (K) > 0 denote the measure of K and h_K denote the diameter of K.
- 2. \mathscr{E} is a finite family of disjoint subsets of $\overline{\Omega}$ (the "edges" of the mesh), such that, for all $\sigma \in \mathscr{E}$, σ is a non empty open subset of a hyperplane of \mathbb{R}^d , whose (d-1)-dimensional measure is strictly positive. We also assume that, for all $K \in \mathscr{M}$, there exists a subset \mathscr{E}_K of \mathscr{E} such that $\partial K = \bigcup_{\sigma \in \mathscr{E}_K} \overline{\sigma}$. For any $\sigma \in \mathscr{E}$, we denote by $\mathscr{M}_{\sigma} = \{K; \sigma \in \mathscr{E}_K\}$. We then assume that, for any $\sigma \in \mathscr{E}$, either \mathscr{M}_{σ} has exactly one element and then $\sigma \subset \partial \Omega$ (the set of these interfaces, called boundary interfaces, denoted by \mathscr{E}_{ext}) or \mathscr{M}_{σ} has exactly two elements (the set of these interfaces, called interior interfaces, denoted by \mathscr{E}_{int}). For all $\sigma \in \mathscr{E}$, we denote by x_{σ} the barycentre of σ . For all $K \in \mathscr{M}$ and $\sigma \in \mathscr{E}$, we denote by $\mathbf{n}_{K,\sigma}$ the unit vector normal to σ outward to K.
- 3. \mathscr{P} is a family of points of Ω indexed by \mathscr{M} , denoted by $\mathscr{P} = (x_K)_{K \in \mathscr{M}}$, such that for all $K \in \mathscr{M}$, $x_K \in K$ and K is assumed to be x_K -star-shaped, which means that for all $x \in K$, the property $[x_K, x] \subset K$ holds. Denoting by $d_{K,\sigma}$ the Euclidean distance between x_K and the hyperplane including σ , one assumes that $d_{K,\sigma} > 0$. We then denote by $\mathscr{D}_{K,\sigma}$ the cone with vertex x_K and basis σ .

The time discretization is performed with a constant time step $k = \frac{T}{N+1}$, where $N \in \mathbb{N}^*$, and we shall denote $t_n = nk$, for $n \in [[0, N + 1]]$. Throughout this paper, the letter *C* stands for a positive constant independent of the parameters of the space and time discretizations and its values may be different in different appearance.

Since we deal with a complex valued solution, one has to seek for an approximation in discrete spaces over the field of complex numbers \mathbb{C} . Some slight modifications should be made on the discrete spaces used in [2]. In particular, we define the space $\mathscr{X}_{\mathscr{D}}$ as the set of all $((v_K)_{K \in \mathscr{M}}, (v_{\sigma})_{\sigma \in \mathscr{C}})$, where $v_K, v_{\sigma} \in \mathbb{C}$ for all $K \in \mathscr{M}$ and for all $\sigma \in \mathscr{E}$, and $\mathscr{X}_{\mathscr{D},0} \subset \mathscr{X}_{\mathscr{D}}$ is the set of all $v \in \mathscr{X}_{\mathscr{D}}$ such that $v_{\sigma} = 0$ for all $\sigma \in \mathscr{E}_{\text{ext}}$. Let $H_{\mathscr{M}}(\Omega, \mathbb{C})$ be the space of functions from Ω to \mathbb{C} which are constant over each control volume of the mesh. For all $v \in \mathscr{X}_{\mathscr{Q}}$, we denote by $\Pi_{\mathscr{M}} v \in H_{\mathscr{M}}(\Omega, \mathbb{C})$ the function defined by $\Pi_{\mathscr{M}} v(x) = v_K$, for a.e. $x \in K$, for all $K \in \mathscr{M}$.

For all $\varphi \in \mathscr{C}(\Omega, \mathbb{C})$, we define $\mathscr{P}_{\mathscr{D}}\varphi = \left((\varphi(x_K))_{K \in \mathscr{M}}, (\varphi(x_\sigma))_{\sigma \in \mathscr{E}} \right) \in \mathscr{X}_{\mathscr{D}}.$ We denote by $\mathscr{P}_{\mathscr{M}}\varphi \in H_{\mathscr{M}}(\Omega, \mathbb{C})$ the function defined by $\mathscr{P}_{\mathscr{M}}\varphi(x) = \varphi(x_K)$, for a.e. $x \in K$, for all $K \in \mathcal{M}$. We will use the norm $\|\cdot\|_{1,2,\mathcal{M}}$ given by [2, (4.5), p. 1026].

In order to analyze the convergence, we need to consider the size of the discretization \mathcal{D} defined by $h_{\mathcal{D}} = \sup\{\text{diam}(\mathbf{K}), K \in \mathcal{M}\}\$ and the regularity of the mesh given by $\theta_{\mathscr{D}} = \max\left(\max_{\sigma \in \mathscr{E}_{int}, K, L \in \mathscr{M}} \frac{d_{K,\sigma}}{d_{L,\sigma}}, \max_{K \in \mathscr{M}, \sigma \in \mathscr{E}_K} \frac{h_K}{d_{K,\sigma}}\right)$. The scheme we want to consider in this note is based on the use of the discrete

gradient given in [2]. For $u \in \mathscr{X}_{\mathscr{D}}$, we define, for all $K \in \mathscr{M}$

$$\nabla_{\mathscr{D}} u(x) = \nabla_{K,\sigma} u, \quad \text{a. e. } x \in \mathscr{D}_{K,\sigma}, \tag{4}$$

where $\mathscr{D}_{K,\sigma}$ is the cone with vertex x_K and basis σ and

$$\nabla_{K,\sigma} u = \nabla_K u + \left(\frac{\sqrt{d}}{d_{K,\sigma}} \left(u_\sigma - u_K - \nabla_K u \cdot (x_\sigma - x_K)\right)\right) \mathbf{n}_{K,\sigma}, \qquad (5)$$

where $\nabla_K u = \frac{1}{\mathbf{m}(K)} \sum_{\sigma \in \mathscr{E}_v} \mathbf{m}(\sigma) (u_{\sigma} - u_K) \mathbf{n}_{K,\sigma}$ and *d* is the space dimension.

We define the finite volume approximation for (1)–(3) as $(u^n_{\mathscr{D}})_{n=0}^{N+1} \in \mathscr{X}_{\mathscr{D},0}^{N+2}$ with $u_{\mathscr{D}}^n = ((u_K^n)_{K \in \mathscr{M}}, (u_{\sigma}^n)_{\sigma \in \mathscr{E}})$, for all $n \in \{0, \dots, N+1\}$ and

1. discretization of the initial conditions (2): for all $v \in \mathscr{X}_{\mathscr{D},0}$

$$\langle u_{\mathscr{D}}^{0}, v \rangle_{F} + \left(V(0) \Pi_{\mathscr{M}} u_{\mathscr{D}}^{0}, \Pi_{\mathscr{M}} v \right)_{\mathbb{L}^{2}(\Omega)} = \left(-\Delta u^{0} + V(0) u^{0}, \Pi_{\mathscr{M}} v \right)_{\mathbb{L}^{2}(\Omega)},$$
(6)

2. discretization of Eq. (1): for any $n \in \{1, ..., N\}$, for all $v \in \mathscr{X}_{\mathscr{D},0}$

$$i\left(\partial^{1}\Pi_{\mathscr{M}}u_{\mathscr{D}}^{n+1},\Pi_{\mathscr{M}}v\right)_{\mathbb{L}^{2}(\Omega)}-\langle u_{\mathscr{D}}^{n+1},v\rangle_{F}-\left(V(t_{n+1})\Pi_{\mathscr{M}}u_{\mathscr{D}}^{n+1},\Pi_{\mathscr{M}}v\right)_{\mathbb{L}^{2}(\Omega)}$$
$$=\left(\frac{1}{k}\int_{t_{n}}^{t_{n+1}}f(t)dt,\Pi_{\mathscr{M}}v\right)_{\mathbb{L}^{2}(\Omega)},$$
(7)

where $\langle u, v \rangle_F = \int_{\Omega} \nabla_{\mathcal{D}} u(x) \cdot \nabla_{\mathcal{D}} \bar{v}(x) dx$, $\partial^1 v^n = \frac{v^n - v^{n-1}}{k}$, and $(\cdot, \cdot)_{\mathbb{L}^2(\Omega)}$ denotes the \mathbb{L}^2 -inner product of the space $\mathbb{L}^2(\Omega, \mathbb{C})$.

The main result of the present contribution is the following theorem.

Theorem 1 (Error estimates for the finite volume scheme (6)– (7)) Let Ω be a polyhedral open bounded subset of \mathbb{R}^d , where $d \in \mathbb{N} \setminus \{0\}$, and $\partial \Omega = \overline{\Omega} \setminus \Omega$ its boundary. Assume that the solution of the Schrödinger evolution problem of (1)–(3) satisfies $u \in \mathscr{C}^2([0, T]; \mathscr{C}^2(\overline{\Omega}, \mathbb{C}))$ and the time dependent potential V is satisfying $V \in \mathscr{C}([0, T]; \mathbb{L}^{\infty}(\Omega, \mathbb{R}))$ and $V(t)(x) \geq 0$ for all $t \in [0, T]$ and for a.e. $x \in \Omega$. Let $k = \frac{T}{N+1}$, with $N \in \mathbb{N}^*$, and denote by $t_n = nk$, for $n \in \{0, \ldots, N+1\}$. Let $\mathcal{D} = (\mathcal{M}, \mathscr{E}, \mathscr{P})$ be a discretization in the sense of [2, Definition 2.1]. Assume that $\theta_{\mathcal{D}}$ satisfies $\theta \geq \theta_{\mathcal{D}}$.

Then there exists a unique solution $(u_{\mathscr{D}}^n)_{n=0}^{N+1} \in \mathscr{X}_{\mathscr{D},0}^{N+2}$ for problem (6)–(7). Assume in addition that $V \in \mathscr{C}^j([0,T]; \mathbb{L}^{\infty}(\Omega,\mathbb{R}))$ for all $j \in \{1,2\}$. Then, the following error estimates hold:

• Discrete $\mathbb{L}^{\infty}(0, T; H_0^1(\Omega))$ -estimate: for all $n \in \{0, \dots, N+1\}$

$$\|\mathscr{P}_{\mathscr{M}}u(t_n) - \Pi_{\mathscr{M}}u_{\mathscr{D}}^n\|_{1,2,\mathscr{M}} \le C(k+h_{\mathscr{D}})\|u\|_{\mathscr{C}^2([0,T];\ \mathscr{C}^2(\overline{\Omega}))}.$$
(8)

• Discrete $\mathscr{W}^{1,\infty}(0,T; \mathbb{L}^2(\Omega))$ -estimate: for all $n \in \{1, \ldots, N+1\}$

$$\|\partial^{1}\left(\mathscr{P}_{\mathscr{M}}u(t_{n})-\Pi_{\mathscr{M}}u_{\mathscr{D}}^{n}\right)\|_{\mathbb{L}^{2}(\Omega)} \leq C(k+h_{\mathscr{D}})\|u\|_{\mathscr{C}^{2}([0,T]; \mathscr{C}^{2}(\overline{\Omega}))}.$$
 (9)

• *Error estimate in the gradient approximation: for all* $n \in \{0, ..., N + 1\}$

$$\|\nabla_{\mathscr{D}} u_{\mathscr{D}}^{n} - \nabla u(t_{n})\|_{\mathbb{L}^{2}(\Omega)} \leq C(k + h_{\mathscr{D}})\|u\|_{\mathscr{C}^{2}([0,T]; \mathscr{C}^{2}(\overline{\Omega}))}.$$
 (10)

The following lemma will help us to prove Theorem 1:

Lemma 1 (A new a priori estimate) We consider the same discretizations as in Theorem 1. Assume that $\theta_{\mathscr{D}}$ satisfies $\theta \ge \theta_{\mathscr{D}}$ and that there exists $(\eta_{\mathscr{D}}^n)_{n=0}^{N+1} \in \mathscr{X}_{\mathscr{D},0}^{N+2}$ such that $\eta_{\mathscr{D}}^0 = 0$ and for any $n \in \{0, ..., N\}$, for all $v \in \mathscr{X}_{\mathscr{D},0}$

$$i\left(\Pi_{\mathscr{M}}\partial^{1}\eta_{\mathscr{D}}^{n+1},\Pi_{\mathscr{M}}v\right)_{\mathbb{L}^{2}(\Omega)}-\langle\eta_{\mathscr{D}}^{n+1},v\rangle_{F}-\left(V(t_{n+1})\Pi_{\mathscr{M}}\eta_{\mathscr{D}}^{n+1},\Pi_{\mathscr{M}}v\right)_{\mathbb{L}^{2}(\Omega)}$$
$$=\left(\mathscr{S}^{n},\Pi_{\mathscr{M}}v\right)_{\mathbb{L}^{2}(\Omega)},\tag{11}$$

where $\mathscr{S}^n \in \mathbb{L}^2(\Omega, \mathbb{C})$, for all $n \in \{0, ..., N\}$ and $V \in \mathscr{C}([0, T]; \mathbb{L}^{\infty}(\Omega, \mathbb{R}))$ satisfying $V(t)(x) \ge 0$ for all $t \in [0, T]$ and for a.e. $x \in \Omega$. Assume in addition that $V \in \mathscr{C}^j([0, T]; \mathbb{L}^{\infty}(\Omega, \mathbb{R}))$ for all $j \in \{1, 2\}$. Then the following estimate holds, for all $j \in \{0, ..., N\}$ A New Finite Volume Scheme for a Linear Schrödinger Evolution Equation

$$\|\Pi_{\mathscr{M}} \partial^{1} \eta_{\mathscr{D}}^{j+1}\|_{\mathbb{L}^{2}(\Omega)} + \|\Pi_{\mathscr{M}} \eta_{\mathscr{D}}^{j+1}\|_{1,2,\mathscr{M}} + \|\nabla_{\mathscr{D}} \eta_{\mathscr{D}}^{j+1}\|_{(\mathbb{L}^{2}(\Omega))^{d}}$$

$$\leq C(\mathscr{S} + \mathscr{S}_{1}),$$
 (12)

where $\mathscr{S} = \max_{n=0}^{N} \| \mathscr{S}^{n} \|_{\mathbb{L}^{2}(\Omega)}$ and $\mathscr{S}_{1} = \max_{n=1}^{N} \| \partial^{1} \mathscr{S}^{n} \|_{\mathbb{L}^{2}(\Omega)}$.

Proof **1. Estimate on** $\|\Pi_{\mathscr{M}} \partial^1 \eta_{\mathscr{D}}^{j+1}\|_{\mathbb{L}^2(\Omega)}$. Acting the discrete operator ∂^1 on both sides of (11) and using the formula $\partial^1(r^n s^n) = s^n \partial^1 r^n + r^{n-1} \partial^1 s^n$ yields

$$i\left(\Pi_{\mathscr{M}}\partial^{2}\eta_{\mathscr{D}}^{n+1},\Pi_{\mathscr{M}}\nu\right)_{\mathbb{L}^{2}(\Omega)}-\langle\partial^{1}\eta_{\mathscr{D}}^{n+1},\nu\rangle_{F}-\left(V(t_{n+1})\partial^{1}\Pi_{\mathscr{M}}\eta_{\mathscr{D}}^{n+1},\Pi_{\mathscr{M}}\nu\right)_{\mathbb{L}^{2}(\Omega)}\\=\left(\partial^{1}\mathscr{S}^{n},\Pi_{\mathscr{M}}\nu\right)_{\mathbb{L}^{2}(\Omega)}+\left(\partial^{1}V(t_{n+1})\Pi_{\mathscr{M}}\eta_{\mathscr{D}}^{n},\Pi_{\mathscr{M}}\nu\right)_{\mathbb{L}^{2}(\Omega)}.$$
(13)

Choosing $v = \partial^1 \eta_{\mathscr{D}}^{n+1}$ in (13) and taking the imaginary part of the result, we get

$$\operatorname{Re}\left(\Pi_{\mathscr{M}} \partial^{2} \eta_{\mathscr{D}}^{n+1}, \Pi_{\mathscr{M}} v\right)_{\mathbb{L}^{2}(\Omega)} = \operatorname{Im}\left(\left(\partial^{1} \mathscr{S}^{n}, \Pi_{\mathscr{M}} v\right)_{\mathbb{L}^{2}(\Omega)} + \left(\partial^{1} V(t_{n+1}) \Pi_{\mathscr{M}} \eta_{\mathscr{D}}^{n}, \Pi_{\mathscr{M}} v\right)_{\mathbb{L}^{2}(\Omega)}\right).$$
(14)

Some calculations lead to the expression, for all function $(\omega^n)_{n=0}^{N+1} \in (\mathbb{L}^2(\Omega, \mathbb{C}))^{N+2}$:

$$2k \left(\partial^{1} \omega^{n+1}, \omega^{n+1}\right)_{\mathbb{L}^{2}(\Omega)} = \|\omega^{n+1} - \omega^{n}\|_{\mathbb{L}^{2}(\Omega)}^{2} + \|\omega^{n+1}\|_{\mathbb{L}^{2}(\Omega)}^{2} - \|\omega^{n}\|_{\mathbb{L}^{2}(\Omega)}^{2} + 2i \operatorname{Im} \left(\omega^{n+1}, \omega^{n}\right)_{\mathbb{L}^{2}(\Omega)}$$
(15)

Gathering (14) with (15) when $\omega^{n+1} = \prod_{\mathscr{M}} \partial^1 \eta_{\mathscr{D}}^{n+1}$, using the fact that $V \in \mathscr{C}^1([0, T]; \mathbb{L}^{\infty}(\Omega, \mathbb{R}))$, and the Cauchy Schwarz inequality, we get

$$\| \Pi_{\mathscr{M}} \partial^{1} \eta_{\mathscr{D}}^{n+1} \|_{\mathbb{L}^{2}(\Omega)}^{2} - \| \Pi_{\mathscr{M}} \partial^{1} \eta_{\mathscr{D}}^{n} \|_{\mathbb{L}^{2}(\Omega)}^{2}$$

$$\leq 2k C(\mathscr{S}_{1} + \| \Pi_{\mathscr{M}} \eta_{\mathscr{D}}^{n} \|_{\mathbb{L}^{2}(\Omega)}) \| \Pi_{\mathscr{M}} \partial^{1} \eta_{\mathscr{D}}^{n+1} \|_{\mathbb{L}^{2}(\Omega)}.$$

$$(16)$$

Let us prove an $\mathbb{L}^{\infty}(0, T; \mathbb{L}^{2}(\Omega, \mathbb{C}))$ -estimate. Taking $v = \eta_{\mathscr{D}}^{n+1}$ in (11) and using the fact that *V* is a real valued function, and taking the imaginary part to get

$$\operatorname{Re}\left(\Pi_{\mathscr{M}}\,\partial^{1}\,\eta_{\mathscr{D}}^{n+1},\,\Pi_{\mathscr{M}}\,\eta_{\mathscr{D}}^{n+1}\right)_{\mathbb{L}^{2}(\Omega)} = \operatorname{Im}\left(\mathscr{S}^{n},\,\Pi_{\mathscr{M}}\,v\right)_{\mathbb{L}^{2}(\Omega)}.$$
(17)

This with (15) when $\omega^{n+1} = \prod_{\mathscr{M}} \eta_{\mathscr{D}}^{n+1}$, and the Cauchy Schwarz inequality yields

$$\|\Pi_{\mathscr{M}}\eta_{\mathscr{D}}^{n+1}\|_{\mathbb{L}^{2}(\Omega)}^{2} - \|\Pi_{\mathscr{M}}\eta_{\mathscr{D}}^{n}\|_{\mathbb{L}^{2}(\Omega)}^{2} \leq 2k\mathscr{S}\|\Pi_{\mathscr{M}}\eta_{\mathscr{D}}^{n+1}\|_{\mathbb{L}^{2}(\Omega)}.$$
 (18)

Summing (18) over $n \in \{0, ..., j\}$, where $j \in \{0, ..., N\}$, and using the fact $\eta_{\mathscr{D}}^0 = 0$ yields $\|\Pi_{\mathscr{M}}\eta_{\mathscr{D}}^{j+1}\|_{\mathbb{L}^2(\Omega)}^2 \leq 2k\mathscr{S}\sum_{n=0}^j \|\Pi_{\mathscr{M}}\eta_{\mathscr{D}}^{n+1}\|_{\mathbb{L}^2(\Omega)}$. Applying a Young's inequality (as applied in (20) below) and using the discrete Gronwall's lemma yields

$$\|\Pi_{\mathscr{M}}\eta_{\mathscr{D}}^{j+1}\|_{\mathbb{L}^{2}(\Omega)} \leq C\mathscr{S}.$$
(19)

Inserting this estimate in (16) and summing the result over $n \in \{1, ..., j\}$, where $j \in \{1, ..., N\}$ yields

$$\| \Pi_{\mathscr{M}} \partial^{1} \eta_{\mathscr{D}}^{j+1} \|_{\mathbb{L}^{2}(\Omega)}^{2} - \| \Pi_{\mathscr{M}} \partial^{1} \eta_{\mathscr{D}}^{1} \|_{\mathbb{L}^{2}(\Omega)}^{2}$$

$$\leq 2kC(\mathscr{S} + \mathscr{S}_{1}) \sum_{n=1}^{j} \| \Pi_{\mathscr{M}} \partial^{1} \eta_{\mathscr{D}}^{n+1} \|_{\mathbb{L}^{2}(\Omega)}.$$

This with a Young's inequality leads to

$$\|\Pi_{\mathscr{M}}\partial^{1}\eta_{\mathscr{D}}^{j+1}\|_{\mathbb{L}^{2}(\Omega)}^{2} \leq \frac{2k}{T}\sum_{n=2}^{j}\|\Pi_{\mathscr{M}}\partial^{1}\eta_{\mathscr{D}}^{n}\|_{\mathbb{L}^{2}(\Omega)}^{2} + 2\|\Pi_{\mathscr{M}}\partial^{1}\eta_{\mathscr{D}}^{1}\|_{\mathbb{L}^{2}(\Omega)}^{2} + 8T^{2}(C)^{2}(\mathscr{S} + \mathscr{S}_{1})^{2}.$$

$$(20)$$

We now estimate $\|\Pi_{\mathscr{M}}\partial^1\eta_{\mathscr{D}}^{1}\|_{\mathbb{L}^{2}(\Omega,\mathbb{C})}^{2}$. To this end, we set n = 0 and $v = \partial^1\eta_{\mathscr{D}}^{1}$ in (11) and we use the fact that $\partial^1\eta_{\mathscr{D}}^{1} = \frac{\eta_{\mathscr{D}}^{1}}{k}$ (this stems from $\eta_{\mathscr{D}}^{0} = 0$)

$$i \| \Pi_{\mathscr{M}} \partial^{1} \eta_{\mathscr{D}}^{1} \|_{\mathbb{L}^{2}(\Omega)}^{2} - \frac{1}{k} \langle \eta_{\mathscr{D}}^{1}, \eta_{\mathscr{D}}^{1} \rangle_{F} - \frac{1}{k} \left(V(t_{1}) \Pi_{\mathscr{M}} \eta_{\mathscr{D}}^{1}, \Pi_{\mathscr{M}} \eta_{\mathscr{D}}^{1} \right)_{\mathbb{L}^{2}(\Omega)}$$
$$= \left(\mathscr{S}^{0}, \Pi_{\mathscr{M}} \partial^{1} \eta_{\mathscr{D}}^{1} \right)_{\mathbb{L}^{2}(\Omega)}.$$
(21)

Taking the imaginary part in (21) and using the Cauchy Schwarz inequality implies $\|\Pi_{\mathscr{M}} \partial^1 \eta_{\mathscr{D}}^1\|_{\mathbb{L}^2(\Omega)} \leq \mathscr{S}$. This with inequality (20) and the discrete version of the Gronwall's lemma yields the desired estimate $\mathscr{W}^{1,\infty}(0,T; \mathbb{L}^2)$ -estimate in (12).

2. Estimate on $\|\Pi_{\mathscr{M}}\eta_{\mathscr{D}}^{j+1}\|_{1,2,\mathscr{M}}$. Choosing $v = \partial^1 \eta_{\mathscr{D}}^{n+1}$ in (11) and taking the real part yields

$$\operatorname{Re}\left(\langle\eta_{\mathscr{D}}^{n+1},\partial^{1}\eta_{\mathscr{D}}^{n+1}\rangle_{F}+\left(V(t_{n+1})\Pi_{\mathscr{M}}\eta_{\mathscr{D}}^{n+1},\partial^{1}\Pi_{\mathscr{M}}\eta_{\mathscr{D}}^{n+1}\right)_{\mathbb{L}^{2}(\Omega)}\right)$$
$$=\operatorname{Re}\left(-\mathscr{S}^{n},\Pi_{\mathscr{M}}v\right)_{\mathbb{L}^{2}(\Omega)}.$$
(22)

Writing $\langle \eta_{\mathscr{D}}^{n+1}, \partial^1 \eta_{\mathscr{D}}^{n+1} \rangle_F$ and $\left(V(t_{n+1})\Pi_{\mathscr{M}} \eta_{\mathscr{D}}^{n+1}, \partial^1 \Pi_{\mathscr{M}} \eta_{\mathscr{D}}^{n+1} \right)_{\mathbb{L}^2(\Omega)}$ in a similar manner to that of (15) and gathering this with (22) leads to

$$\langle \eta_{\mathscr{D}}^{n+1}, \eta_{\mathscr{D}}^{n+1} \rangle_{F} - \langle \eta_{\mathscr{D}}^{n}, \eta_{\mathscr{D}}^{n} \rangle_{F} + \left(V(t_{n+1}) \Pi_{\mathscr{M}} \eta_{\mathscr{D}}^{n+1}, \Pi_{\mathscr{M}} \eta_{\mathscr{D}}^{n+1} \right)_{\mathbb{L}^{2}(\Omega)} - \left(V(t_{n+1}) \Pi_{\mathscr{M}} \eta_{\mathscr{D}}^{n}, \Pi_{\mathscr{M}} \eta_{\mathscr{D}}^{n} \right)_{\mathbb{L}^{2}(\Omega)} \leq 2k \operatorname{Re} \left(-\mathscr{S}^{n}, \Pi_{\mathscr{M}} v \right)_{\mathbb{L}^{2}(\Omega)}.$$

$$(23)$$

Summing (23) over $n \in \{0, \ldots, j\}$, where $j \in \{0, \ldots, N\}$, using the Cauchy Schwarz inequality and [2, Lemma 4.2] yields $|\eta_{\mathscr{D}}^{j+1}|_{\mathscr{X}}^2 \leq Ck\mathscr{S}\sum_{n=0}^{j} ||\partial^{1}\Pi_{\mathscr{M}}|_{\mathscr{D}}^{n+1}|_{\mathbb{L}^{2}(\Omega)}$. This with the estimate on $||\Pi_{\mathscr{M}} \partial^{1}\eta_{\mathscr{D}}^{j+1}||_{\mathbb{L}^{2}(\Omega)}$ (it is proved in the previous item) yields

$$|\eta_{\mathscr{D}}^{j+1}|_{\mathscr{X}} \le C(\mathscr{S} + \mathscr{S}_1).$$
⁽²⁴⁾

This with the inequality norm [2, (4.6), p. 1026] implies the desired estimate $\mathbb{L}^{\infty}(0, T; H^{1}(\Omega))$ -estimate in (12).

3. Estimate $\|\nabla_{\mathscr{D}} \eta_{\mathscr{D}}^{j+1}\|_{(\mathbb{I}^{2}(\Omega))^{d}}$. Estimate (24) with [2, Lemma 4.2] implies the estimate concerning $\| \nabla_{\mathscr{D}} \eta_{\mathscr{D}}^{j+1} \|_{(\mathbb{L}^2(\Omega))^d}$ in (12).

Sketch of the proof of Theorem 1: The uniqueness of $(u_{\mathscr{D}}^n)_{n \in \{0,...,N+1\}}$ satisfying (6)–(7) can be deduced using the [2, Lemma 4.2]. As usual, we use this uniqueness to prove the existence. To prove the error estimates (8)-(10), we compare the solution $u_{\mathscr{D}}^{n}$ with the solution: for any $n \in \{0, ..., N+1\}$, find $\hat{u}_{\mathscr{D}}^{n} \in \mathscr{X}_{\mathscr{D},0}$ such that

$$\langle \hat{u}_{\mathscr{D}}^{n}, v \rangle_{F} + (V(t_{n})\Pi_{\mathscr{M}}\hat{u}_{\mathscr{D}}^{n}, \Pi_{\mathscr{M}}v)_{\mathbb{L}^{2}(\Omega)}$$

= $(-\Delta u(t_{n}) + V(t_{n})u(t_{n}), \Pi_{\mathscr{M}}v)_{\mathbb{L}^{2}(\Omega)}, \quad \forall v \in \mathscr{X}_{\mathscr{D},0}.$ (25)

Step 1: Comparison between u and \hat{u}_{Q}^{n} . Using techniques of the proof of [2, Theorem 4.8] yields, for all $v \in \mathscr{X}_{\mathscr{D},0}$

$$\left\langle \mathscr{P}_{\mathscr{D}} u(t_{n}) - \hat{u}_{\mathscr{D}}^{n}, v \right\rangle_{F} + \left(V(t_{n})(\mathscr{P}_{\mathscr{M}} u(t_{n}) - \Pi_{\mathscr{M}} \hat{u}_{\mathscr{D}}^{n}), \Pi_{\mathscr{M}} v \right)_{\mathbb{L}^{2}(\Omega)}$$

$$= \sum_{K \in \mathscr{M}} \sum_{\sigma \in \mathscr{E}_{K}} \mathscr{R}_{K,\sigma} \left(u(t_{n}) \right) \left(\bar{v}_{K} - \bar{v}_{\sigma} \right) + \left(V(t_{n})r \left(u(t_{n}) \right), \Pi_{\mathscr{M}} v \right)_{\mathbb{L}^{2}(\Omega)},$$

$$(26)$$

where the expression $\mathbb{E}_{\mathscr{D}}(u(t_n)) = \left(\sum_{K \in \mathscr{M}} \sum_{\sigma \in \mathscr{E}_K} \frac{d_{K,\sigma}}{\mathsf{m}(\sigma)} |\mathscr{R}_{K,\sigma}(u(t_n))|^2\right)^{\frac{1}{2}}$ is satisfying the estimate $\mathbb{E}_{\mathscr{D}}(u(t_n)) \leq Ch_{\mathscr{D}} ||u||_{\mathscr{C}([0,T]; \mathscr{C}^2(\overline{\Omega}))}$ and $r(u) = \mathscr{P}_{\mathscr{M}} u -$

u. Taking $v = \mathscr{P}_{\mathscr{D}}u(t_n) - \hat{u}_{\mathscr{D}}^n$ in (26) yields

$$\langle v, v \rangle_F + \left(V(t_n) \Pi_{\mathscr{M}} v, \Pi_{\mathscr{M}} v \right)_{\mathbb{L}^2(\Omega)} = \sum_{K \in \mathscr{M}} \sum_{\sigma \in \mathscr{E}_K} \mathscr{R}_{K,\sigma} \left(u(t_n) \right) \left(\bar{v}_K - \bar{v}_\sigma \right)$$
$$+ \left(V(t_n) r \left(u(t_n) \right), \Pi_{\mathscr{M}} v \right)_{\mathbb{L}^2(\Omega)}.$$
(27)

This with [2, Lemma 4.2], the Cauchy Schwarz inequality, the Sobolev inequality of [2, Lemma 5.4], and the inequality norm [2, (4.6), p. 1026] yields that

$$\|\mathscr{P}_{\mathscr{D}}u(t_n) - \hat{u}_{\mathscr{D}}^n\|_{\mathscr{X}} \le Ch_{\mathscr{D}}\|\,u\|_{\mathscr{C}([0,T];\,\mathscr{C}^2(\overline{\Omega}))}.$$
(28)

This with [2, (4.6), p. 1026], [2, Lemma 4.2], and [2, Lemma 4.4] implies the error estimate:

$$\| \mathscr{P}_{\mathscr{M}} u(t_n) - \Pi_{\mathscr{M}} \hat{u}_{\mathscr{D}}^n \|_{1,2,\mathscr{M}} + \| \nabla u(t_n) - \nabla_{\mathscr{D}} \hat{u}^n \|_{\mathbb{L}^2(\Omega)}$$

$$\leq Ch_{\mathscr{D}} \| u \|_{\mathscr{C}([0,T]; \mathscr{C}^2(\overline{\Omega}))}.$$
(29)

We will now derive an $\mathscr{W}^{1,\infty}(0, T; \mathbb{L}^2)$ -estimate. Acting the discrete operator ∂^1 on Eq. (26) to get, for any $n \in \{1, ..., N+1\}$

$$\left\langle \partial^{1} \left(\mathscr{P}_{\mathscr{D}} u(t_{n}) - \hat{u}_{\mathscr{D}}^{n} \right), v \right\rangle_{F} + \left(V(t_{n}) \partial^{1} \left(\left(\mathscr{P}_{\mathscr{M}} u(t_{n}) - \Pi_{\mathscr{M}} \hat{u}_{\mathscr{D}}^{n} \right) \right), \Pi_{\mathscr{M}} v \right)_{\mathbb{L}^{2}(\Omega)}$$

$$= \sum_{K \in \mathscr{M}} \sum_{\sigma \in \mathscr{E}_{K}} \mathscr{R}_{K,\sigma} \left(\partial^{1} u(t_{n}) \right) \left(\bar{v}_{K} - \bar{v}_{\sigma} \right) + \left(\mathbb{T}_{1} + \mathbb{T}_{2} - \mathbb{T}_{3}, \Pi_{\mathscr{M}} v \right)_{\mathbb{L}^{2}(\Omega)},$$

$$(30)$$

where $\mathbb{T}_1 = \partial^1 (V(t_n)) (\mathscr{P}_{\mathscr{M}} u(t_n) - u(t_n)), \mathbb{T}_2 = V(t_{n-1})\partial^1 ((\mathscr{P}_{\mathscr{M}} u(t_n) - u(t_n))),$ and $\mathbb{T}_3 = \partial^1 (V(t_n)) (\mathscr{P}_{\mathscr{M}} u(t_{n-1}) - \Pi_{\mathscr{M}} \hat{u}_{\mathscr{D}}^{n-1})$. Thanks to Taylor expansions and $\mathbb{L}^{\infty}(0, T; H_0^1(\Omega))$ -estimate in (29) with [2, Lemma 5.4], we have

$$\|\mathbb{T}_{i}\|_{\mathbb{L}^{2}(\Omega)} \leq Ch_{\mathscr{D}}\|u\|_{\mathscr{C}^{1}([0,T]; \ \mathscr{C}^{2}(\overline{\Omega}))}, \ \forall i \in \{1, 2, 3\}.$$
(31)

Taking $v = \partial^1 \left(\mathscr{P}_{\mathscr{D}} u(t_n) - \hat{u}_{\mathscr{D}}^n \right)$ in (30), using [2, Lemma 4.2], and gathering this with the Cauchy Schwarz inequality, [2, Lemma 5.4], [2, (4.6), p. 1026], and (31) to get

$$\|\partial^{1}\left(\mathscr{P}_{\mathscr{M}}u(t_{n})-\Pi_{\mathscr{M}}\hat{u}_{\mathscr{D}}^{n}\right)\|_{\mathbb{L}^{2}(\Omega)} \leq Ch_{\mathscr{D}}\|u\|_{\mathscr{C}^{1}([0,T]; \mathscr{C}^{2}(\overline{\Omega}))}.$$
(32)

Using the same techniques followed in (30)–(32), we are able to prove

$$\|\partial^{2}\left(\mathscr{P}_{\mathscr{M}}u(t_{n})-\Pi_{\mathscr{M}}\hat{u}_{\mathscr{D}}^{n}\right)\|_{\mathbb{L}^{2}(\Omega)} \leq Ch_{\mathscr{D}}\|u\|_{\mathscr{C}^{2}([0,T]; \ \mathscr{C}^{2}(\overline{\Omega}))}.$$
(33)

Step 2: Comparison between $\hat{u}_{\mathcal{D}}^n$ and $u_{\mathcal{D}}^n$. Writing (25) in the step n + 1, summing the result with (7) and using (1) yields, for all $n \in \{0, ..., N\}$

A New Finite Volume Scheme for a Linear Schrödinger Evolution Equation

$$i\left(\partial^{1}\Pi_{\mathscr{M}}\eta_{\mathscr{D}}^{n+1},\Pi_{\mathscr{M}}\nu\right)_{\mathbb{L}^{2}(\Omega)}-\langle\eta_{\mathscr{D}}^{n+1},\nu\rangle_{F}-\left(V(t_{n+1})\Pi_{\mathscr{M}}\eta_{\mathscr{D}}^{n+1},\Pi_{\mathscr{M}}\nu\right)_{\mathbb{L}^{2}(\Omega)}$$
$$=\left(\mathscr{S}^{n},\Pi_{\mathscr{M}}\nu\right)_{\mathbb{L}^{2}(\Omega)},$$
(34)

where $\eta_{\mathscr{D}}^n = u_{\mathscr{D}}^n - \hat{u}_{\mathscr{D}}^n$ and \mathscr{S}^n is given by

$$\mathcal{S}^{n} = i\partial^{1}(u(t_{n+1}) - \Pi_{\mathscr{M}}\,\hat{u}_{\mathscr{D}}^{n+1}) + \frac{1}{k}\int_{t_{n}}^{t_{n+1}}\Delta u(t)dt - \Delta u(t_{n+1}) - \frac{1}{k}\int_{t_{n}}^{t_{n+1}}V(t)u(t)dt + V(t_{n+1})u(t_{n+1}).$$
(35)

Thanks to suitable Taylor expansions and (32)–(33), we are able to justify that $\mathscr{S} + \mathscr{S}_1 \leq C(k + h_{\mathscr{D}}) || u ||_{\mathscr{C}^2([0,T]; \mathscr{C}^2(\overline{\Omega}))}$, where \mathscr{S} and \mathscr{S}_1 are defined in Lemma 1. In addition to this, $\eta_{\mathscr{D}}^0 = 0$ (it stems from (2)). One remarks that $(\eta_{\mathscr{D}}^n)_{n=0}^{N+1}$ is satisfying hypothesis of Lemma 1, one can apply estimate (12) of Lemma 1 to obtain

$$\|\Pi_{\mathscr{M}} \partial^{1} \eta_{\mathscr{D}}^{j+1}\|_{\mathbb{L}^{2}(\Omega)} + \|\Pi_{\mathscr{M}} \eta_{\mathscr{D}}^{j+1}\|_{1,2,\mathscr{M}} + \|\nabla_{\mathscr{D}} \eta_{\mathscr{D}}^{j+1}\|_{(\mathbb{L}^{2}(\Omega))^{d}}$$

$$\leq C(k+h_{\mathscr{D}})\|u\|_{\mathscr{C}^{2}([0,T]; \mathscr{C}^{2}(\overline{\Omega}))}.$$

$$(36)$$

This with estimates (29) and (32) implies estimates of Theorem 1.

3 Conclusion and a Perspective

We considered the linear Schrödinger evolution equation. A convergence analysis of a new finite volume scheme is provided. We plan to consider the case when the spatial spatial domain is not bounded and to use the absorbing boundary conditions.

References

- 1. Akrivis, G. D., Dougalis, V. A.: On a class of conservative, highly accurate Galerkin methods for the Schrödinger equation. RAIRO Modél. Math. Anal. Numér. **25** /6, 643–670 (1991)
- Eymard, R., Gallouët, T., Herbin, R.: Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. **30**(4), 1009–1043 (2010)
- Koprucki, T., Eymard, R., Fuhrmann, J.: Convergence of a finite volume scheme to the eigenvalues of a Schrödinger operator. WIAS Preprint NO. 1260 (2007)