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Abstract We consider the linear Schrödinger evolution equation with a time
dependent potential in several space dimension.We provide a new implicittime finite
volume scheme, using the general nonconforming meshes of [2] as discretization in
space. We prove that the convergence order is hD +k, where hD (resp. k) is the mesh
size of the spatial (resp. time) discretization, in discrete norms L∞(0, T ; H1

0 (Ω))

and W 1,∞(0, T ; L2(Ω)). These error estimates are useful because they allow to
obtain approximations to the exact solution and its first derivatives of order hD + k.

1 Motivation and Aim of This Paper

Let us consider the following linear time dependent Schrödinger problem. We seek
a complex valued function u defined on Ω × [0, T ] satisfying

i ut (x, t) + Δu(x, t) − V (x, t)u(x, t) = f (x, t), (x, t) ∈ Ω × (0, T ), (1)

where Ω is an open bounded polyhedral subset in IRd , with d ∈ IN \ {0}, T > 0,
i ∈ C (the set of complex numbers) is the imaginary unit, V is a time dependent
potential and f is a given function.

An initial condition is given by:

u(x, 0) = u0(x), x ∈ Ω, (2)
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with homogeneous Dirichlet boundary conditions, that is

u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ), (3)

The form (1)–(3) of Schrödinger equation occurs, for example, when d = 1 in
underwater acoustics, cf. [1]. The model (1)–(3) is studied for instance in [1] when
a Galerkin finite element method is used as discretization in space. The stationary
case of Schrödinger equation is also considered using finite volume methods in [3]
where there are some interesting numerical tests. In this work we analyze a new finite
volume scheme for the Schrödinger evolution problem (1)–(3).

2 Definition of the Scheme and Statement of the Main Result

The discretization of Ω is performed using the mesh D = (M ,E ,P) described in
[2, Definition 2.1] which we recall here for the sake of completeness.

Definition 1 (Definition of the spatial mesh) Let Ω be a polyhedral open bounded
subset of IRd , where d ∈ IN \ {0}, and ∂Ω = Ω \ Ω its boundary. A discretisation
of Ω , denoted by D , is defined as the triplet D = (M ,E ,P), where:

1. M is a finite family of non empty connected open disjoint subsets of Ω (the
“control volumes”) such that Ω = ∪K∈M K . For any K ∈ M , let ∂K = K \ K
be the boundary of K ; let m (K ) > 0 denote the measure of K and hK denote
the diameter of K .

2. E is a finite family of disjoint subsets of Ω (the “edges” of the mesh), such
that, for all σ ∈ E , σ is a non empty open subset of a hyperplane of IRd , whose
(d − 1)–dimensional measure is strictly positive. We also assume that, for all
K ∈ M , there exists a subset EK of E such that ∂ K = ∪σ∈EK σ . For any σ ∈ E ,
we denote byMσ = {K ; σ ∈ EK }. We then assume that, for any σ ∈ E , either
Mσ has exactly one element and then σ ⊂ ∂ Ω (the set of these interfaces, called
boundary interfaces, denoted by Eext) or Mσ has exactly two elements (the set
of these interfaces, called interior interfaces, denoted by Eint). For all σ ∈ E ,
we denote by xσ the barycentre of σ . For all K ∈ M and σ ∈ E , we denote by
nK ,σ the unit vector normal to σ outward to K .

3. P is a family of points of Ω indexed byM , denoted byP = (xK )K∈M , such
that for all K ∈ M , xK ∈ K and K is assumed to be xK –star-shaped, which
means that for all x ∈ K , the property [xK , x] ⊂ K holds. Denoting by dK ,σ the
Euclidean distance between xK and the hyperplane including σ , one assumes
that dK ,σ > 0. We then denote by DK ,σ the cone with vertex xK and basis σ .

The time discretization is performed with a constant time step k = T
N+1 , where

N ∈ IN�, and we shall denote tn = nk, for n ∈ [[ 0, N + 1]]. Throughout this paper,
the letter C stands for a positive constant independent of the parameters of the space
and time discretizations and its values may be different in different appearance.
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Sincewedealwith a complexvalued solution, onehas to seek for an approximation
in discrete spaces over the field of complex numbers C. Some slight modifications
should be made on the discrete spaces used in [2]. In particular, we define the space
XD as the set of all

(
(vK )K∈M , (vσ )σ∈E

)
, where vK , vσ ∈ C for all K ∈ M and for

all σ ∈ E , andXD ,0 ⊂ XD is the set of all v ∈ XD such that vσ = 0 for all σ ∈ Eext.
Let HM (Ω,C) be the space of functions from Ω to C which are constant over each
control volume of the mesh. For all v ∈ XD , we denote by ΠM v ∈ HM (Ω,C) the
function defined by ΠM v(x) = vK , for a.e. x ∈ K , for all K ∈ M .

For all ϕ ∈ C (Ω,C), we define PDϕ = (
(ϕ(xK ))K∈M , (ϕ(xσ ))σ∈E

) ∈ XD .
We denote by PM ϕ ∈ HM (Ω,C) the function defined by PM ϕ(x) = ϕ(xK ),
for a.e. x ∈ K , for all K ∈ M . We will use the norm ‖ · ‖1,2,M given by [2, (4.5),
p. 1026].

In order to analyze the convergence, we need to consider the size of the discretiza-
tionD defined by hD = sup{diam(K), K ∈ M } and the regularity of themesh given

by θD = max

(
max

σ∈Eint,K ,L∈M
dK ,σ

dL ,σ

, max
K∈M ,σ∈EK

hK

dK ,σ

)
.

The scheme we want to consider in this note is based on the use of the discrete
gradient given in [2]. For u ∈ XD , we define, for all K ∈ M

∇D u(x) = ∇K ,σ u, a. e. x ∈ DK ,σ , (4)

where DK ,σ is the cone with vertex xK and basis σ and

∇K ,σ u = ∇K u +
( √

d

dK ,σ

(uσ − uK − ∇K u · (xσ − xK ))

)

nK ,σ , (5)

where ∇K u = 1

m(K )

∑

σ∈EK

m(σ ) ( uσ − uK ) nK ,σ and d is the space dimension.

We define the finite volume approximation for (1)–(3) as
(

un
D

)N+1
n=0 ∈ X N+2

D ,0
with un

D = ( (
un

K

)
K∈M ,

(
un

σ

)
σ∈E

)
, for all n ∈ {0, . . . , N + 1} and

1. discretization of the initial conditions (2): for all v ∈ XD ,0

〈 u0
D , v〉F +

(
V (0)ΠM u0

D ,ΠM v
)

L2(Ω)
=

(
−Δ u0 + V (0)u0,ΠM v

)

L2(Ω)
,

(6)

2. discretization of Eq. (1): for any n ∈ {1, . . . , N }, for all v ∈ XD ,0

i
(

∂1 ΠM un+1
D ,ΠM v

)

L2(Ω)
− 〈 un+1

D , v〉F −
(

V (tn+1)ΠM un+1
D ,ΠM v

)

L2(Ω)

=
(
1

k

∫ tn+1

tn
f (t)dt,ΠM v

)

L2(Ω)

, (7)



130 A. Bradji

where 〈 u, v〉F =
∫

Ω

∇D u(x) · ∇D v̄(x)dx , ∂1 vn = vn − vn−1

k
, and ( ·, ·)L2(Ω)

denotes the L2-inner product of the space L2(Ω,C).
The main result of the present contribution is the following theorem.

Theorem 1 (Error estimates for the finite volume scheme (6)– (7)) Let Ω be a
polyhedral open bounded subset of IRd , where d ∈ IN \ {0}, and ∂Ω = Ω \ Ω its
boundary. Assume that the solution of the Schrödinger evolution problem of (1)–(3)
satisfies u ∈ C 2([0, T ]; C 2(Ω,C)) and the time dependent potential V is satisfying
V ∈ C ([0, T ]; L

∞(Ω,R)) and V (t)(x) ≥ 0 for all t ∈ [0, T ] and for a.e. x ∈ Ω .
Let k = T

N+1 , with N ∈ IN�, and denote by tn = nk, for n ∈ {0, . . . , N + 1}. Let
D = (M ,E ,P) be a discretization in the sense of [2, Definition 2.1]. Assume that
θD satisfies θ ≥ θD .

Then there exists a unique solution
(

un
D

)N+1
n=0 ∈ X N+2

D ,0 for problem (6)–(7).

Assume in addition that V ∈ C j ([0, T ]; L
∞(Ω,R)) for all j ∈ {1, 2}. Then, the

following error estimates hold:

• Discrete L
∞(0, T ; H1

0 (Ω))–estimate: for all n ∈ {0, . . . , N + 1}

‖PM u(tn) − ΠM un
D‖1,2,M ≤ C(k + hD )‖ u‖C 2([0,T ]; C 2(Ω)). (8)

• Discrete W 1,∞(0, T ;L2(Ω))–estimate: for all n ∈ {1, . . . , N + 1}

‖ ∂1 (PM u(tn) − ΠM un
D )‖L2(Ω) ≤ C(k + hD )‖ u‖C 2([0,T ]; C 2(Ω)). (9)

• Error estimate in the gradient approximation: for all n ∈ {0, . . . , N + 1}

‖∇D un
D − ∇ u(tn)‖L2(Ω) ≤ C(k + hD )‖ u‖C 2([0,T ]; C 2(Ω)). (10)

The following lemma will help us to prove Theorem 1:

Lemma 1 (A new a priori estimate) We consider the same discretizations as in

Theorem 1. Assume that θD satisfies θ ≥ θD and that there exists
(
ηn
D

)N+1
n=0 ∈ X N+2

D ,0

such that η0D = 0 and for any n ∈ {0, . . . , N }, for all v ∈ XD ,0

i
(

ΠM ∂1 ηn+1
D ,ΠM v

)

L2(Ω)
− 〈 ηn+1

D , v〉F −
(

V (tn+1)ΠM ηn+1
D ,ΠM v

)

L2(Ω)

= (
S n,ΠM v

)
L2(Ω)

, (11)

where S n ∈ L
2(Ω,C), for all n ∈ {0, . . . , N } and V ∈ C ([0, T ]; L

∞(Ω,R))

satisfying V (t)(x) ≥ 0 for all t ∈ [0, T ] and for a.e. x ∈ Ω . Assume in addition that
V ∈ C j ([0, T ]; L

∞(Ω,R)) for all j ∈ {1, 2}. Then the following estimate holds,
for all j ∈ {0, . . . , N }
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‖ΠM ∂1 η
j+1
D ‖L2(Ω) + ‖ΠM η

j+1
D ‖1,2,M + ‖∇D η

j+1
D ‖

(L2(Ω))
d

≤ C(S + S1), (12)

where S = maxN
n=0 ‖S n‖L2(Ω) and S1 = maxN

n=1 ‖ ∂1S n‖L2(Ω).

Proof 1. Estimate on ‖ΠM ∂1 η
j+1
D ‖L2(Ω). Acting the discrete operator ∂1 on both

sides of (11) and using the formula ∂1(rnsn) = sn∂1rn + rn−1∂1sn yields

i
(

ΠM ∂2 ηn+1
D , ΠM v

)

L2(Ω)
− 〈 ∂1ηn+1

D , v〉F −
(

V (tn+1)∂
1ΠM ηn+1

D , ΠM v
)

L2(Ω)

=
(

∂1S n, ΠM v
)

L2(Ω)
+

(
∂1V (tn+1)ΠM ηn

D , ΠM v
)

L2(Ω)
. (13)

Choosing v = ∂1ηn+1
D in (13) and taking the imaginary part of the result, we get

Re
(

ΠM ∂2 ηn+1
D ,ΠM v

)

L2(Ω)

= Im

((
∂1S n,ΠM v

)

L2(Ω)
+

(
∂1V (tn+1)ΠM ηn

D ,ΠM v
)

L2(Ω)

)
. (14)

Somecalculations lead to the expression, for all function (ωn)N+1
n=0 ∈ (L2(Ω,C))N+2:

2k
(

∂1 ωn+1, ωn+1
)

L2(Ω)
=‖ωn+1 − ωn‖2

L2(Ω)

+ ‖ωn+1‖2
L2(Ω)

− ‖ωn‖2
L2(Ω)

+ 2i Im
(

ωn+1, ωn
)

L2(Ω)

(15)

Gathering (14) with (15) when ωn+1 = ΠM ∂1ηn+1
D , using the fact that V ∈

C 1([0, T ]; L
∞(Ω,R)), and the Cauchy Schwarz inequality, we get

‖ΠM ∂1ηn+1
D ‖2

L2(Ω)
− ‖ΠM ∂1ηn

D‖2
L2(Ω)

≤ 2kC(S1 + ‖ΠM ηn
D‖L2(Ω))‖ΠM ∂1ηn+1

D ‖L2(Ω). (16)

Let us prove an L
∞(0, T ; L

2(Ω,C))-estimate. Taking v = ηn+1
D in (11) and

using the fact that V is a real valued function, and taking the imaginary part to get

Re
(

ΠM ∂1 ηn+1
D ,ΠM ηn+1

D

)

L2(Ω)
= Im

(
S n,ΠM v

)
L2(Ω)

. (17)

This with (15) when ωn+1 = ΠM ηn+1
D , and the Cauchy Schwarz inequality yields

‖ΠM ηn+1
D ‖2

L2(Ω)
− ‖ΠM ηn

D‖2
L2(Ω)

≤ 2kS ‖ΠM ηn+1
D ‖L2(Ω). (18)
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Summing (18) over n ∈ {0, . . . , j}, where j ∈ {0, . . . , N }, and using the fact

η0D = 0 yields ‖ΠM η
j+1
D ‖2

L2(Ω)
≤ 2kS

j∑

n=0

‖ΠM ηn+1
D ‖L2(Ω). Applying a

Young’s inequality (as applied in (20) below) and using the discrete Gronwall’s
lemma yields

‖ΠM η
j+1
D ‖L2(Ω) ≤ CS . (19)

Inserting this estimate in (16) and summing the result over n ∈ {1, . . . , j}, where
j ∈ {1, . . . , N } yields

‖ΠM ∂1η
j+1
D ‖2

L2(Ω)
− ‖ΠM ∂1η1D‖2

L2(Ω)

≤ 2kC(S + S1)

j∑

n=1

‖ΠM ∂1ηn+1
D ‖L2(Ω).

This with a Young’s inequality leads to

‖ΠM ∂1η
j+1
D ‖2

L2(Ω)
≤ 2k

T

j∑

n=2

‖ΠM ∂1ηn
D‖2

L2(Ω)
+ 2‖ΠM ∂1η1D‖2

L2(Ω)

+ 8T 2 ( C)2 (S + S1)
2 . (20)

We now estimate ‖ΠM ∂1η1D‖2
L2(Ω,C)

. To this end, we set n = 0 and v = ∂1 η1D in

(11) and we use the fact that ∂1 η1D = η1D

k
(this stems from η0D = 0)

i‖ΠM ∂1 η1D‖2
L2(Ω)

− 1

k
〈 η1D , η1D 〉F − 1

k

(
V (t1)ΠM η1D ,ΠM η1D

)

L2(Ω)

=
(
S 0,ΠM ∂1 η1D

)

L2(Ω)
. (21)

Taking the imaginary part in (21) and using the Cauchy Schwarz inequality implies
‖ΠM ∂1 η1D‖L2(Ω) ≤ S . This with inequality (20) and the discrete version of the
Gronwall’s lemma yields the desired estimate W 1,∞(0, T ; L

2)-estimate in (12).

2. Estimate on ‖ΠM η
j+1
D ‖1,2,M . Choosing v = ∂1ηn+1

D in (11) and taking the
real part yields

Re

(
〈 ηn+1

D , ∂1ηn+1
D 〉F +

(
V (tn+1)ΠM ηn+1

D , ∂1ΠM ηn+1
D

)

L2(Ω)

)

= Re
(−S n,ΠM v

)
L2(Ω)

. (22)
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Writing 〈 ηn+1
D , ∂1 ηn+1

D 〉F and
(

V (tn+1)ΠM ηn+1
D , ∂1ΠM ηn+1

D

)

L2(Ω)
in a similar

manner to that of (15) and gathering this with (22) leads to

〈 ηn+1
D , ηn+1

D 〉F − 〈 ηn
D , ηn

D 〉F +
(

V (tn+1)ΠM ηn+1
D ,ΠM ηn+1

D

)

L2(Ω)

− (
V (tn+1)ΠM ηn

D ,ΠM ηn
D

)
L2(Ω)

≤ 2k Re
( −S n,ΠM v

)
L2(Ω)

. (23)

Summing (23) over n ∈ {0, . . . , j}, where j ∈ {0, . . . , N }, using the Cauchy
Schwarz inequality and [2, Lemma 4.2] yields | η j+1

D |2X ≤ CkS
∑ j

n=0 ‖ ∂1ΠM

ηn+1
D ‖L2(Ω). This with the estimate on ‖ΠM ∂1 η

j+1
D ‖L2(Ω) (it is proved in in the

previous item) yields
|η j+1

D |X ≤ C(S + S1). (24)

This with the inequality norm [2, (4.6), p. 1026] implies the desired estimate
L

∞(0, T ; H1(Ω))-estimate in (12).

3. Estimate ‖∇D η
j+1
D ‖

(L2(Ω))
d . Estimate (24) with [2, Lemma 4.2] implies the

estimate concerning ‖∇D η
j+1
D ‖

(L2(Ω))
d in (12). �

Sketch of the proof of Theorem 1: The uniqueness of
(

un
D

)
n∈{0,...,N+1} satisfying

(6)–(7) can be deduced using the [2, Lemma 4.2]. As usual, we use this uniqueness to
prove the existence. To prove the error estimates (8)–(10), we compare the solution
un
D with the solution: for any n ∈ {0, . . . , N + 1}, find ûn

D ∈ XD ,0 such that

〈 ûn
D , v〉F + (

V (tn)ΠM ûn
D ,ΠM v

)
L2(Ω)

= (−Δ u(tn) + V (tn)u(tn),ΠM v)L2(Ω) , ∀ v ∈ XD ,0. (25)

Step 1: Comparison between u and ûn
D . Using techniques of the proof of

[2, Theorem 4.8] yields, for all v ∈ XD ,0

〈
PDu(tn) − ûn

D , v
〉
F + (

V (tn)(PM u(tn) − ΠM ûn
D ),ΠM v

)
L2(Ω)

=
∑

K∈M

∑

σ∈EK

RK ,σ ( u(tn)) ( v̄K − v̄σ ) + ( V (tn)r ( u(tn)) ,ΠM v)L2(Ω),

(26)

where the expression ED ( u(tn)) =
⎛

⎝
∑

K∈M

∑

σ∈EK

dK ,σ

m(σ )

∣∣RK ,σ ( u(tn))
∣∣2

⎞

⎠

1
2

is

satisfying the estimate ED ( u(tn)) ≤ ChD‖ u‖C ([0,T ]; C 2(Ω)) and r(u) = PM u −
u. Taking v = PDu(tn) − ûn

D in (26) yields
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〈v, v〉F + (
V (tn)ΠM v, ΠM v

)
L2(Ω)

= ∑

K∈M
∑

σ∈EK

RK ,σ ( u(tn)) ( v̄K − v̄σ )

+ (
V (tn)r ( u(tn)) , ΠM v

)
L2(Ω)

. (27)

This with [2, Lemma 4.2], the Cauchy Schwarz inequality, the Sobolev inequality of
[2, Lemma 5.4], and the inequality norm [2, (4.6), p. 1026] yields that

|PDu(tn) − ûn
D |X ≤ ChD‖ u‖C ([0,T ]; C 2(Ω)). (28)

This with [2, (4.6), p. 1026], [2, Lemma 4.2], and [2, Lemma 4.4] implies the error
estimate:

‖PM u(tn) − ΠM ûn
D‖1,2,M + ‖∇ u(tn) − ∇D ûn‖L2(Ω)

≤ ChD‖ u‖C ([0,T ]; C 2(Ω)). (29)

We will now derive anW 1,∞(0, T ;L2)–estimate. Acting the discrete operator ∂1 on
Eq. (26) to get, for any n ∈ {1, . . . , N + 1}
〈
∂1

(
PDu(tn) − ûn

D

)
, v

〉

F
+

(
V (tn)∂

1 (
(PM u(tn) − ΠM ûn

D )
)
,ΠM v

)

L2(Ω)

=
∑

K∈M

∑

σ∈EK

RK ,σ

(
∂1u(tn)

)
( v̄K − v̄σ ) + (T1 + T2 − T3,ΠM v)L2(Ω) ,

(30)

whereT1 = ∂1 ( V (tn)) (PM u(tn)−u(tn)),T2 = V (tn−1)∂
1 ( (PM u(tn) − u(tn))),

andT3 = ∂1 ( V (tn))
(
PM u(tn−1) − ΠM ûn−1

D

)
. Thanks toTaylor expansions and

L
∞(0, T ; H1

0 (Ω))-estimate in (29) with [2, Lemma 5.4], we have

‖Ti‖L2(Ω) ≤ ChD‖ u‖C 1([0,T ]; C 2(Ω)), ∀ i ∈ {1, 2, 3}. (31)

Taking v = ∂1
(
PDu(tn) − ûn

D

)
in (30), using [2, Lemma 4.2], and gathering this

with the Cauchy Schwarz inequality, [2, Lemma 5.4], [2, (4.6), p. 1026], and (31) to
get

‖ ∂1
(
PM u(tn) − ΠM ûn

D

) ‖L2(Ω) ≤ ChD‖ u‖C 1([0,T ]; C 2(Ω)). (32)

Using the same techniques followed in (30)–(32), we are able to prove

‖ ∂2
(
PM u(tn) − ΠM ûn

D

) ‖L2(Ω) ≤ ChD‖ u‖C 2([0,T ]; C 2(Ω)). (33)

Step 2: Comparison between ûn
D and un

D . Writing (25) in the step n + 1, summing
the result with (7) and using (1) yields, for all n ∈ {0, . . . , N }
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i
(

∂1ΠM ηn+1
D ,ΠM v

)

L2(Ω)
− 〈 ηn+1

D , v〉F −
(

V (tn+1)ΠM ηn+1
D ,ΠM v

)

L2(Ω)

= (
S n,ΠM v

)
L2(Ω)

, (34)

where ηn
D = un

D − ûn
D and S n is given by

S n = i∂1(u(tn+1) − ΠM ûn+1
D ) + 1

k

∫ tn+1

tn
Δ u(t)dt − Δ u(tn+1)

− 1

k

∫ tn+1

tn
V (t)u(t)dt + V (tn+1)u(tn+1). (35)

Thanks to suitable Taylor expansions and (32)–(33), we are able to justify that
S +S1 ≤ C(k + hD )‖ u‖C 2([0,T ]; C 2(Ω)), whereS andS1 are defined in Lemma

1. In addition to this, η0D = 0 (it stems from (2)). One remarks that
(
ηn
D

)N+1
n=0 is

satisfying hypothesis of Lemma 1, one can apply estimate (12) of Lemma 1 to obtain

‖ΠM ∂1 η
j+1
D ‖L2(Ω) + ‖ΠM η

j+1
D ‖1,2,M + ‖∇D η

j+1
D ‖

(L2(Ω))
d

≤ C(k + hD )‖ u‖C 2([0,T ]; C 2(Ω)). (36)

This with estimates (29) and (32) implies estimates of Theorem 1. �

3 Conclusion and a Perspective

We considered the linear Schrödinger evolution equation. A convergence analysis
of a new finite volume scheme is provided. We plan to consider the case when the
spatial spatial domain is not bounded and to use the absorbing boundary conditions.
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