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Abstract We analyse numerical dissipation and dispersion of the homogeneous
flux (HF) and complete flux (CF) schemes, finite volume methods introduced in
[4]. To that purpose we derive the modified equation of both schemes. We show
that the HF scheme suffers from numerical diffusion for dominant advection, which
is effectively removed in the CF scheme. The latter scheme, however, is prone to
numerical dispersion. We validate both schemes for a model problem.

1 Introduction

Conservation laws are often of advection-diffusion-reaction type, describing the
interplay between different processes such as, e.g., drift, diffusion and generation/
recombination. They occur in disciplines like combustion theory, plasma physics,
transport in porous media etc. A model equation for these conservation laws is the
advection-diffusion-reaction equation. In [4]we introduced the complete flux scheme
for this equation. For steady problems, the complete flux approximation is based
on the solution of a local BVP for the entire equation, including the source term.
Consequently, the numerical flux consists of a homogeneous component, depending
on the advection-diffusion operator, and an inhomogeneous component, depending
on the source term. In many applications, the homogeneous component is known as
the exponential scheme, however, we refer to it as the homogeneous flux scheme.
The inclusion of the inhomogeneous flux is especially of importance for dominant
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advection, since it it guarantees that the flux approximation remains second order
accurate, even for infinite Péclet number [1].

For time-dependent problems we include the time-derivative in the inhomoge-
neous flux. We will demonstrate that also this term is very important for advection-
dominant problems, since it effectively removes the artificial diffusion introduced
by the homogeneous flux scheme, at least up to second order, albeit at the cost of a
small dispersion error. In order to analyse this, we consider the model equation

∂ϕ

∂t
+ ∂

∂x

(
uϕ − ε

∂ϕ

∂x

)
= s, (1)

where u is the advection velocity, ε ≥ εmin > 0 the diffusion coefficient and s the
source term. Associated with (1) we introduce the the flux f , defined by

f = uϕ − ε
∂ϕ

∂x
. (2)

To analyse the dissipation and dispersion errors of the HF and CF scheme, we derive
the modified equation for both schemes, which is roughly speaking the partial dif-
ferential equation that is exactly solved by the numerical solution. The modified
equation of the HF scheme contains an artificial diffusion term, which suppresses
spurious oscillations, however, it makes the scheme very dissipative for dominant
advection. This artificial diffusion term is eliminated by the time derivative term in the
inhomogeneous flux, making the scheme nondissipative, which is a very benificial
property especially for long time integration. Instead, the modified equation contains
a leading order dispersion term, responsible for possible spurious oscillations.

We have organised our paper as follows. The derivation of the HF and CF schemes
is briefly outlined in Sect. 2. In Sect. 3 we derive the modified equation for both
schemes and interpret these in terms of dissipation and dispersion. The performance
of both schemes is demonstrated in Sect. 4, and finally in Sect. 5, we present a
discussion and conclusions.

2 Numerical Approximation of the Flux

In this section we outline the complete flux scheme for Eq. (1), which is a special
case of the scheme introduced in [4].

Equation (1) can be written as ∂ϕ/∂t + ∂ f/∂x = s with the flux f defined in (2).
Assume this equation is defined on the domain Ω = [0, 1]. In the finite volume
method we cover Ω with a finite number of control volumes (cells) Ω j of size
h. We adopt the vertex-centred approach, i.e., we introduce the grid points x j =
jh ( j = 0, 1, 2, . . . , N ) with Nh = 1, where the variable ϕ has to be approximated,
and choose Ω j = [x j−1/2, x j+1/2] with x j±1/2 = 1

2

(
x j + x j±1

)
. Integrating the

equation over Ω j and applying the midpoint rule for the integrals of s and ∂ϕ/∂t ,
we obtain the semi-discrete equation
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h ϕ̇ j (t) + Fj+1/2(t) − Fj−1/2(t) = h s j (t), (3)

where ϕ̇ j (t) ≈ ∂ϕ/∂t (x j , t) and Fj+1/2(t) is the numerical approximation of the
flux at the interface x = x j+1/2. In the following we will suppress the dependence
of all variables on t .

We determine the numerical flux Fj+1/2 from the following quasi-stationary
boundary value problem

∂ f

∂x
= ∂

∂x

(
uϕ − ε

∂ϕ

∂x

)
= s − ∂ϕ

∂t
, x j < x < x j+1, (4a)

ϕ(x j ) = ϕ j , ϕ(x j+1) = ϕ j+1, (4b)

where we have put the time derivative in the right hand side of Eq. (4a). As a con-
sequence, the numerical flux will depend on the time derivative, and this will turn
out to be of importance for dominant advection. In the derivation that follows we
assume u and ε constant. Moreover, we introduce the following variables

a = u

ε
, P = ah, σ (x) = x − x j

h
. (5)

P is the well-known (grid) Péclet number and σ(x) is the normalized coordinate on
[x j , x j+1] (0 ≤ σ(x) ≤ 1). Integrating equation (4a) from x j+1/2 to x ∈ [x j , x j+1],
we obtain the integral balance

f (x) − f (x j+1/2) =
∫ x

x j+1/2

ŝ(ξ) dξ, ŝ = s − ∂ϕ

∂t
. (6)

Next, substituting the integrating factor formulation

f (x) = −ε eax ∂

∂x

(
e−axϕ

)
(7)

in (6) and integrating the resulting equation form x j to x j+1, we get

ε
(
e−ax j+1ϕ j+1 − e−ax j ϕ j

) + 1
a

(
e−ax j − e−ax j+1

)
f (x j+1/2)

= ∫ x j+1
x j

∫ x
x j+1/2

e−ax ŝ(ξ) dξdx .
(8)

Finally, changing the order of integration in the double integral in the right hand side
of (8), we find the following expressions for the flux
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Fig. 1 Green’s function G(σ ; P) for the flux for P > 0 (left) and P < 0 (right).

f (x j+1/2) = f h(x j+1/2) + f i(x j+1/2), (9a)

f h(x j+1/2) = ε

h

(
B(−P)ϕ j − B(P)ϕ j+1

)
, (9b)

f i(x j+1/2) = h
∫ 1

0
G(σ ; P)ŝ(x(σ )) dσ, (9c)

where B(z) = z/
(
ez − 1

)
and where G(σ ; P) is the so-called Green’s function for

the flux, given by

G(σ ; P) =

⎧
⎪⎪⎨
⎪⎪⎩

1 − e−Pσ

1 − e−P
for 0 ≤ σ ≤ 1

2 ,

−1 − eP(1−σ)

1 − eP
for 1

2 < σ ≤ 1;
(10)

see Fig. 1. From (9) it is evident that the flux is the sum of the homogeneous com-
ponent f h, depending on the advection-diffusion operator, and the inhomogeneous
component f i, depending the modified source ŝ.

Obviously, the numerical flux is the sum of a homogeneous component, Fh
j+1/2,

and an inhomogeneous component, F i
j+1/2. For the homogeneous component we

simply take (9b), i.e., Fh
j+1/2 = f h(x j+1/2). For the inhomogeneous component we

need to evaluate the integral in (9c). Note that for dominant diffusion (|P| � 1) the
integral (average) of G(σ ; P) is small, whereas for dominant advection (|P| � 1)
G(σ ; P) has a clear bias towards the upwind side of the interval. For this reason we
replace ŝ(x(σ )) in (9c) by its upwind value and evalute the resulting integral. This
way we obtain

Fj+1/2 = Fh
j+1/2 + h

( 1
2 − W (P)

)(
su, j+1/2 − ϕ̇u, j+1/2

)
, (11)

where W (z) = (
ez −1−z

)
/
(
z
(
ez −1

))
and where su, j+1/2 denotes the upwind value

of s relative to the interface x j+1/2, i.e., su, j+1/2 = s j if u ≥ 0 and su, j+1/2 = s j+1
if u < 0, and likewise for ϕ̇.

We refer to the flux approximation in (11) as the complete flux (CF) scheme,
as opposed to the homogeneous flux (HF) scheme, where we omit the source term
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and time derivative. Finally, substituting this expression in (3) we obtain the semi-
discretisation

( 1
2 + W (|P|))ϕ̇ j + ( 1

2 − W (|P|))ϕ̇ j (u) + 1
h

(
Fh

j+1/2 − Fh
j−1/2

)
=( 1

2 + W (|P|))s j + ( 1
2 − W (|P|))s j (u),

(12)

where j (u) is the index of the grid point upwind of j , i.e., j (u) = j −1 if u ≥ 0 and
j (u) = j +1 is u < 0. If we set W (|P|) = 1

2 in (12), we get the HF semidisretisation.

3 Numerical Dissipation and Dispersion

In this section we investigate the semi-discrete system (12) in terms of dissipation
and dispersion. We consider both the HF and CF scheme. In [3] we presented a
detailed analysis based on the evolution of a planar wave solution, here we adopt a
different approach, viz., we derive the modified equation for both schemes.

Roughly speaking, the modified equation of a finite difference scheme is defined
as the partial differential equation that is actually solved by the numerical solution,
apart from rounding errors [5]. Assume ψ to be a sufficiently smooth function coin-
ciding with the numerical solution on the space-time grid. Expanding all differences
in Taylor series, we obtain the original differential equation with an extra local dis-
cretisation error in the right hand side, which is an infinite sequence of derivatives.
If we subsequently eliminate all time derivatives except the first order, we obtain the
so-called modified equation. We will slightly adapt this procedure to our purpose.

We introduce the following difference operators for a generic grid function ν j

δ−
x ν j = 1

h

(
ν j − ν j−1

)
, δxν j = 1

2h

(
ν j+1 − ν j−1

)
,

δxxν j = 1
h2

(
ν j+1 − 2ν j + ν j−1

)
.

(13)

In the following we assume that s = 0 and u > 0. We first consider the HF scheme,
which can be written as

ϕ̇ j + ε

h2

(
B−(

ϕ j − ϕ j−1
) − B+(

ϕ j+1 − ϕ j
)) = 0, (14)

where B± = B(±P). Rearranging terms, we see that the scheme is equivalent to

ϕ̇ j + uδxϕ j − εartδxxϕ j = 0, εart = D
( 1
2 P)ε, (15)

with D(z) = z coth(z), see Fig. 2. The artificial diffusion coefficient εart is the sum
of ε and the numerical diffusion coefficient εnum = P

( 1
2 − W (P)

)
ε. To derive

the modified equation of the semi-discretisation (15), we substitute a (sufficiently
smooth) function ψ , satisfying ψ(x j , t) = ϕ j (t) for all grid points x j , and expand
all spatial differences in Taylor series. Moreover, we discard all O

(
h2

)
-terms. This
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Fig. 2 The functions D
( 1
2 z

)
(left) and E(z) (right)

way we obtain the modified equation

∂ψ

∂t
+ u

∂ψ

∂x
= εart

∂2ψ

∂x2
. (16)

So the HF scheme suffers from numerical diffusion, where the artificial diffusion
coefficient εart increases from ε for P = 0 to 1

2uh for P → ∞ (upwind limit). Unlike
standard central differences, the scheme does not display spurious oscillations since
0 < uh/εart < 2.

Next, we consider the CF scheme, which reads

( 1
2 −W +)

ϕ̇ j−1+( 1
2 +W +)

ϕ̇ j + ε

h2

(
B−(

ϕ j −ϕ j−1
)− B+(

ϕ j+1−ϕ j
)) = 0, (17)

where W + = W (P). Again, rearranging terms we obtain

(
id − αδ−

x

)
ϕ̇ j + uδxϕ j − εartδxxϕ j = 0, α = h

( 1
2 − W +)

, (18)

where id is the identity operator. Note that for α 
= 0 this scheme defines an implicit
ODE-system, which is a result of the quasi-stationary assumption made in (4). To
derive the modified equation we first make the ODE-system explicit by applying the
inverse operator

(
id − αδ−

x

)−1 to (18), for which the following relation holds

(
id − αδ−

x

)−1 = id + αδ−
x + O

(
h2). (19)

Applying the inverse to (18), the advection term gives rise to the antidiffusion term

−αuδ−
x δxϕ j = P

(
W (P) − 1

2

)
εδxxϕ j + O

(
h2),

which exactly cancels the numerical diffusion introduced by the HF scheme up to
O

(
h2

)
, and the diffusion term gives rise to the dispersive term αεartδ

−
x δxxϕ j . Thus

the CF scheme is equivalent to

ϕ̇ j + uδxϕ j = εδxxϕ j + νδ−
x δxxϕ j + O

(
h2), ν = E(P)uh2, (20)
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where E(z) = D
( 1
2 z

)( 1
2 − W (z)

)
/z; see Fig. 2. ν is the numerical dispersion coeffi-

cient. Since δ−
x δxxϕ j is a first order approximation of ∂3ϕ/∂x3(x j )we conclude that

the CF scheme is a second order accurate approximation of the modified equation

∂ψ

∂t
+ u

∂ψ

∂x
= ε

∂2ψ

∂x2
+ ν

∂3ψ

∂x3
. (21)

The third order term ν∂3ϕ/∂x3 is reponsible for dispersion, i.e., waves of different
frequencies propagate at different speed.

It is instructive to consider the advection-reaction equation as special case, i.e.,
ε = 0. In this case P → ∞ and ν = 1

4uh2. Substituting the planar wave
ψ(x, t) = ei(κx−ωt) in (21), with κ the wave number and ω the frequency, we obtain
the dispersion relation ω(κ) = uκ + νκ3 from which we infer that the numerical
phase velocity cp(κ) = ω(κ)/κ = u

(
1 + 1

4 (κh)2
)
. Since ν > 0, the numerical

solution propagates (a little) too fast.
To compute the full numerical solution, we have to apply a time integrator to (12).

Since theCFscheme is nondissipative, the trapezoidal rule is anobvious choice.Com-
bined with the CF scheme for the advection equation, the trapezoidal rule reduces
to the box scheme, which is second order and nondissipative indeed. However, the
dispersion error of the combined scheme differs from the dispersion error of the CF
scheme alone, this is due to the trapzoidal rule [2, pp. 379–381].

4 Numerical Example

In this section we apply the HF and CF scheme to a model problem. In [3] we
investigated the order of convergence of the schemes, and we will not repeat this
here. The main conclusions, however, are the following. For dominant diffusion
both the HF and CF scheme exhibit second order convergence. On the other hand,
for dominant advection, the HF scheme reduces to the first order upwind scheme,
whereas the CF scheme remains second order convergent. Thus, inclusion of the
source term and time derivative is important for dominant advection!

Numerical dissipation and dispersion can be conveniently demonstrated for the
advection equation, therefore we choose ε = 0 and s = 0. Furthermore, we choose
the initial and boundary conditions such that the exact solution is given by the wave
packet

ϕ(x, t) = e−λξ2 sin(κξ), ξ = x − x0 − ut. (22)

Numerical approximations of (22) together with its (Gaussian) envelope are shown in
Fig. 3. Clearly, the HF scheme is very dissipative. At t = 5×10−2, the amplitude has
decreased to approximately 0.2 times its initial valuewhile at t = 0.5 the solution has
completely vanished. On the other hand, the CF numerical solution has not dissipated
and is clearly much better than the HF solution. In fact for this choice of h and time
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Fig. 3 HF and CF numerical solutions for the advection equation at t = 0.05 (left) and at t = 0.5
(right). Parameter values are u = 1, λ = 102, κ = 50π , x0 = 0.2 and h = �t = 2.5 × 10−3

step �t , the Courant number c = u�t/h = 1, and the exact solution is recovered.
Other choices of �t give rise to numerical dispersion, which should be attributed to
the time integrator, however.

5 Concluding Remarks and Discussion

We have presented the HF and CF scheme for an advection-diffusion-reaction model
problem. The CF scheme is based on a quasi-stationary boundary value problem,
including the time derivative in the source term. Consequently, the numerical flux
consists of a homogeneous component, depending on the advection-diffusion oper-
ator, and an inhomogeneous component, containing the source and time derivative.
We have derived the modified equation for both schemes and demonstrated that the
HF scheme is prone to numerical diffusion, which is completely removed in the CF
scheme. Instead, the CF scheme suffers from a dispersion error. We have shown
that the CF scheme is much more accurate than the HF scheme when applied to the
advection equation.

Both schemes are applicable to complex applications like plasma systems. In [1]
we have shown that the CF scheme is much more accurate than the HF scheme for
the numerical simulation of a glow discharge. The conservation laws are in this case
nonlinear and coupled, which is no objection since the original HF and CF schemes
developed in [4] only assume coefficients that are functions of space and time.
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