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Abstract Low Mach number equation sets approximate the equations of motion
of a compressible fluid by filtering out the sound waves, which allows the system
to evolve on the advective rather than the acoustic time scale. Depending on the
degree of approximation, low Mach number models retain some subset of possible
compressible effects. In this paperwe give an overview of lowMach numbermethods
for modeling stratified flows arising in astrophysics and atmospheric science as well
as lowMachnumber reactingflows.Wediscuss howelements from thedifferent fields
are combined to form MAESTRO, a code for modeling low Mach number stratified
flows with general equations of state, reactions and time-varying stratification.

1 Introduction

Physical phenomena encompassing a wide range of length and time scales occur in
a large number of fluid dynamical areas. In the atmosphere, for example, we want
to understand flows on the scale of local regions, continents, or the entire globe. In
astrophysics wewant to understand not only how the nuclear energy release from thin
flame fronts may unbind a star, resulting in a dramatic supernova, but also how the
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large-scale convective flows that precede the explosion lead to ignition. In laboratory-
scale turbulent combustion, we need to understand not only the detailed chemistry
of how the flame burns, but also how it influences and responds to the turbulent
flow around it. In principle these scenarios can all be modeled using the equations of
motion that govern compressible reacting fluids. Even with today’s (and tomorrow’s)
supercomputers, however, in each of these areas there are phenomena for which
simulating all the fluid dynamical scales of these problems over the time periods of
interest is beyond our reach. For many of these problems, our understanding of the
flow does not require tracking the acoustic waves that carry relatively little energy
and travel much faster than the fluid itself.

We are interested in numerical methods that can accurately model the phenomena
of interest but are not limited by needing to resolve the acoustic time scale. One
approach is to advance the acoustic signal in time with an implicit time discretization
or to treat the acoustic signal explicitly yet separately from the rest of the flow, for
example as used in cloud modeling in [41] and [22], respectively. Another approach
is to modify the governing equations so that acoustic waves are no longer supported
by the equations. In this paper we explore the latter approach for low Mach number
flows, i.e. flows for which we can exploit the separation of scales that occurs when
the Mach number, M (the ratio of the fluid velocity to the sound speed), is much less
than unity. Physically, one can think of the solution to a low Mach number model
as supporting infinitely fast acoustic equilibration rather than finite-velocity acoustic
wave propagation. Mathematically, this is manifest in the addition of a constraint
on the velocity field to the system of otherwise hyperbolic evolution equations.
This velocity constraint can be translated into an elliptic equation for pressure that
expresses the equilibration process. Because the time step in explicit discretization
schemes for a lowMach number system is limited by the fluid velocity and not by the
sound speed, these methods often gain several orders of magnitude in computational
efficiency over traditional compressible approaches.

Fundamental to the traditional lowMach number approach is that we can decom-
pose the pressure as

p(x, t) = p0 + p′(x, t)

where p0 is the ambient thermodynamic (or “reference” or “background”) pressure,
and p′ is the perturbational pressure, where p′/p0 ∼ O

(
M2

)
. For small-scale

reacting flows in an open environment, p0 reduces to a constant in space and time;
in a closed combustion chamber, p0 = p0(t). For reacting, stratified flow on a larger
scale, p0 is a function of both the radius (distance from the center of the star for
stellar applications, or elevation in the atmospheric case) and time, when large-scale
net heating/cooling is present.
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2 Background

The simplest low Mach number model is expressed by the incompressible Navier-
Stokes equations for a constant density fluid. This can be generalized to variable den-
sity incompressible flow, in which the density varies spatially across the domain but
the density of an individual fluid element does not change over time. LowMach num-
ber models for chemical combustion [10, 31, 40] and nuclear burning [6] incorporate
large compressibility effects due to chemical/nuclear reactions and thermal processes
with a spatially constant background pressure. The Boussinesq approximation [8]
includes a heating-induced buoyancy term in the momentum equation but requires
that the flow itself be incompressible. The anelastic equations (see, e.g., [4, 5, 14,
20, 27–29, 37, 44] for atmospheric flows, and [18, 19, 26] for astrophysical flows;
see also the references in [9]), capture volumetric expansion due to motion relative
to a stratified background in addition to buoyancy due to deviation of the local state
from the background state, and have been widely used in modeling of atmospheric
and astrophysical flows. The pseudo-incompressible (PI) approximation, introduced
by [12, 13] and rigorously derived using lowMach number asymptotics by [7], gen-
eralizes anelastic models by allowing larger variations in density and temperature in
response to localized heat release, but is restricted to an ideal gas equation of state.
A low Mach number model for astrophysical flows [1–3, 35, 46], implemented in
a code named MAESTRO, has generalized the pseudo-incompressible approxima-
tion to more general equations of state for use in astrophysical modeling, and has
extended its applicability by allowing time variation of the background stratification
to accommodate an expanding stellar atmosphere. Recently, a modification of the
momentum equation to improve the accuracy of the buoyancy term in the low Mach
number equation set was proposed, in a general form by [21], and then by [43] using
an alternate derivation based on Lagrangian analysis.

3 Fully Compressible Equations for Stratified Flow

The fully compressible (FC) equations for a reactingmulticomponent gas in the pres-
ence of gravity, neglecting Coriolis terms, viscosity, thermal and species diffusion,
and weak nuclear interactions, can be written in conservation form as

∂ρ

∂t
+ ∇ · (ρU ) = 0, (1)

∂(ρh)

∂t
+ ∇ · (ρUh) = Dp

Dt
− ρ

∑

k

qkω̇k, (2)

∂(ρU )

∂t
+ ∇ · (ρUU ) + ∇ p = −ρger, (3)

∂(ρXk)

∂t
+ ∇ · (ρU Xk) = ρω̇k, (4)
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where ρ, U , p and h are the density, velocity, pressure and enthalpy (per unit mass),
respectively, and g is the gravitational acceleration in the direction of er , the unit
vector in the radial direction. The species are represented by their mass fractions,
Xk , along with their associated production rates, ω̇k , and specific binding energies,
qk . The equation of state can be written in a general form as p = p̂ (ρ, T, Xk) or
ρ = ρ̂ (p, T, Xk) where T is the temperature.

Still allowing the fluid to be fully compressible, we can define a hydrostatic
base state pressure, p0(r, t), and corresponding base state density, ρ0(r, t) such that
∇ p0 ≡ −ρ0ger . We define the deviation from the reference value, p′ = p − p0, but
make no assumptions about the size of the deviation. Then, with no approximation,
Eq. (3) can be written instead as

∂(ρU )

∂t
+ ∇ · (ρUU ) + ∇ p′ = −ρ′ger, (5)

where ρ′ ≡ ρ − ρ0. Even though we have decomposed the variables into refer-
ence state values and perturbational values, no assumptions about the magnitude
of the perturbations have been made at this point, and the perturbational form is
algebraically equivalent to the non-perturbational form.

4 Low Mach Number Approach

The methodology developed for lowMach number modeling of astrophysical flows,
and implemented in a code named MAESTRO [1–3, 35, 46], represents the syn-
thesis of ideas from three separate fields into a new algorithmic approach. First, the
anelastic and pseudo-incompressible approximations, first derived in the context of
atmospheric science, suggest how to filter sound waves for environments in which
the background stratification due to gravity plays a significant role in the dynamics.
These approximations differ from those in incompressible and low Mach number
combustion modeling in that the background pressure and density are in hydrostatic
equilibrium rather than spatially constant. Second, methods developed for lowMach
number combustion inform how to incorporate local expansion effects due to reac-
tions and thermal diffusion in a lowMach number setting. Finally, formulation of the
equation of state, reaction networks, and other thermodynamical characterizations of
stellar material require detailed astrophysical expertise. Contributions from all three
fields were used to devise a method that

• captures the same large-scale motions as the fully compressible equations
• allows for local expansion due to reactions, thermal diffusion, and compositional
mixing

• allows for local expansion due to movement relative to background stratification
• allows the background state to evolve in time in response to large-scale heating
and/or mixing
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• does not require an ideal gas equation of state
• removes acoustic wave propagation.

LowMach number equations in all settings are typically derived by first expanding
all of the variables asymptotically in the Mach number, M, which is assumed to be
small. Using standard asymptotic techniques, one can show that in the momentum
equations we retain the zeroth order terms of velocity and density, but the zeroth
order term of the pressure gradient must be either zero or, in the case of stratified
flows, balanced by the hydrostatic gravitational forcing. The dynamic component
of the pressure gradient must be O(M2); this is typically translated into writing
the pressure, p, as p = p0 + p′, where p0 is the background pressure, p′ is the
dynamic pressure, and p′/p0 ∼ O(M2). Standard techniques would also dictate
that the density variation from ambient must be small at all times or the buoyancy
term would lead to too strong an acceleration. A slightly more general approach,
outlined in [2], replaces the restriction on the magnitude of the buoyancy term itself
by a restriction on the effect of the buoyancy term, namely the magnitude of the
velocity itself.

The fundamental approximation made in the the low Mach number equations is
that the compressible pressure can be approximated by the background pressure in
the equation of state. This differs from earlier derivations of similar equations (e.g,
the anelastic approximation) which required that density and temperature variations
from the ambient be small in order to ensure the pressure perturbation be small; here
we require only that the pressure perturbation itself be small. In the lowMach number
system, then, we write the equation of state in a general form as p0 = p̂ (ρ, T, Xk)

or ρ = ρ̂ (p0, T, Xk).
To model a full star, for example, we would start by defining a radial background

state in hydrostatic equilibrium. In practice, this profile would come from a one-
dimensional stellar evolution code, which provides us with a model in hydrostatic
balance. Thus our base state satisfies

∂p0(r, t)

∂r
= −ρ0(r, t)g(r, t), (6)

where g(r, t) can be computed from ρ0(r, t) as

g(r, t) = G Mencl(r, t)

r2
(7)

with the mass enclosed within a radius r defined as

Mencl(r, t) = 4π
∫ r

0
ρ0(r

′, t)r ′2dr ′. (8)

Here G is the gravitational constant. For modeling the earth’s atmosphere, one can
remove the time dependence of ρ0 and p0, and consider g to be spatially and tem-
porally constant.
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Given the base state, standard asymptotic analysis yields the following system of
equations:

∂ρ

∂t
+ ∇·(Uρ) = 0, (9)

∂(ρh)

∂t
+ ∇·(Uρh) = Dp0

Dt
− ρ

∑

k

qkω̇k, (10)

∂U

∂t
+ U ·∇U = − 1

ρ
∇ p′ − ρ′

ρ
ger, (11)

∂(ρXk)

∂t
+ ∇ · (ρU Xk) = ρω̇k. (12)

The first and second equations are unchanged from the fully compressible versions
with the exception that p is replaced by p0 in the enthalpy evolution equation. The
only source terms in the velocity evolution equation (21) are due to the dynamic
pressure and the buoyancy. However, if one asymptotically examines not the differ-
ence between the solution and the base state, but the difference between the solution
to the low Mach number system and the solution to the compressible system, one
finds a correction to the buoyancy term of the form,

(
ρ0

ρ2

∂ρ

∂p0

∣∣∣
∣
s

p′
)

ger, (13)

where the derivative is taken at constant entropy, s, so that the velocity equation now
has the form

∂U

∂t
+ U ·∇U = − 1

ρ
∇ p′ − 1

ρ

(
ρ′ + ρ0

ρ

∂ρ

∂p0

∣∣∣∣
s

p′
)

ger. (14)

This additional term, which can be viewed as modifying the density appearing in the
buoyancy term to have a correction due to the perturbational pressure, was introduced
first in [21] and then in [43]; both demonstrated that the inclusion of this term enables
the system to conserve a low Mach number form of total energy. This modified
system yields a solution that is closer to the solution to the fully compressible system
of equations than the original low Mach number system.

The more fundamental change in the structure of the system of equations results
from replacing the pressure in the equation of state by the background pressure.
Differentiating the equation of state along particle paths then converts the algebraic
equation of state into a constraint on the divergence of the velocity. Differentiating
p0 = p̂(ρ, T, Xk) along particle paths and rearranging terms yields

− ∇ · U = 1

ρ

Dρ

Dt
= 1

ρpρ

(
Dp0
Dt

− pT
DT

Dt
−

∑

k

pXk ω̇k

)

, (15)
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with pρ = ∂p/∂ρ|Xk ,T , pXk = ∂p/∂ Xk |T,ρ,(X j , j �=k), and pT = ∂p/∂T |ρ,Xk
.

Expanding and simplifying this expression as in [1] results in

∇·U + 1

Γ1 p0

(
∂p0
∂t

+ U ·∇ p0

)
= −σ

∑

k

ξkω̇k + 1

ρpρ

∑

k

pXk ω̇k − σ
∑

k

qkω̇k ≡ S,

(16)
where ξk ≡ ∂h/∂ Xk |T,p,(X j , j �=k), Γ1 ≡ d(log p)/d(log ρ)|s . and

σ = pT

ρcp pρ

, (17)

which, for a gamma law gas, reduces to σ = 1/(cpT ).We see that the first two terms
in S capture the effect of compositional changes, while the third represents heat
release from the reactions. If we now allow Γ1 to be replaced by its lateral average,
Γ 1(r, t), then, as shown in [2], ∇ · U + (1/(Γ 1 p0))U · ∇ p0 can be rewritten as
(1/β0)∇ · (β0U ) where

β0(r, t) = β(0, t) exp

(∫ r

0

1

(Γ 1 p0)

∂p0
∂r ′ dr ′

)
. (18)

Thus we can write the constraint as

∇·(β0U ) = β0

(
S − 1

Γ 1 p0

∂p0
∂t

)
, (19)

which allows us to use a variable density projection method analogous to that used
to solve the incompressible Navier-Stokes equations. This constraint on the velocity
field controls the degree to which the fluid can expand, forcing the evolution of the
thermodynamic quantities to be consistentwith the equation of state. It is the presence
of β0 �= 1 that allows the fluid to expand as it rises; the magnitude of S determines
the degree to which the fluid expands due to heat release and compositional changes.

The resulting Poisson equation for p′, in the absence of the additional term, (13),
in the velocity evolution equation, can be written

∇ ·
(

β0

ρ
∇ p′

)
= RH S, (20)

where RHS includes the divergence of the advective terms as well as S and the time
derivative of p0. With the substitution of Γ 1 for Γ1, it was shown in [43] that the
velocity evolution equation with the additional term, (13), can be written as

∂U

∂t
+ U ·∇U = −β0

ρ
∇

(
p′

β0

)
− ρ′ger, (21)
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instead of (14). This results in a Poisson equation for the perturbational pressure in
the form

∇ ·
(

β2
0

ρ
∇ p′

β0

)

= RH S. (22)

For simulations of full stars where the background stratification varies with both
radius and time, we must evolve the base state pressure and density in time in
response to large scale heating and convection while retaining hydrostatic equi-
librium. The velocity field used to update the density includes a local component, Ũ ,
which accounts for localized convective and compressibility effects, and a base state
component, w0, which accounts for large-scale equilibration of the atmosphere. We
can calculate w0 by deriving a one-dimensional expression for the divergence of w0,

containing terms representing the average of S, and integrating that expression in
the radial direction. Once we have advanced the density field, we can compute the
new base state density as the average stratification, and compute the new base state
pressure using hydrostatic equilibrium. Details are given in [35].

5 Numerical Approach

Low Mach number formulations replace the compressible flow equations with a
constrained system of partial differential equations similar in structure to the incom-
pressible Navier-Stokes equations. A number of projection-type methods have been
developed to simulate incompressible and other low Mach number flows using a
time step based on the fluid velocity and not the sound speed. Projection methods
are fractional step schemes in which the solution is first advanced using a lagged
approximation to the constraint, then, in a second step, a projection is applied to
enforce the constraint. To solve the low Mach number equations for astrophysics
in the MAESTRO code, we use an explicit second-order upwind discretization for
advection, and Strang splitting to incorporate the contributions of reactions to the
species and enthalpy.Theprojection step solves a second-order, self-adjoint, variable-
coefficient elliptic equation for an update to the perturbational pressure, which is then
used to correct the velocity. To include the base state evolution, in the predictor step
we use an estimate of the expansion term, S, to compute a preliminary solution at the
new time level, and in the corrector step we use the results from the predictor step
to compute a more accurate expansion term, and compute the final solution at the
new time level. The resulting algorithm advances the fluid evolution equations using
a time step constrained by the fluid velocity rather than the acoustic wave speed,
resulting in a significant increase in efficiency over traditional fully compressible
methods.

We have implemented the entire lowMach number algorithm inMAESTRO in an
adaptive mesh refinement (AMR) framework. Our approach to AMR uses a nested
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hierarchy of logically rectangular grids with successively finer grids at higher levels.
The key difference between our method and most block-structured AMR methods
stems from the presence of a one-dimensional base state whose time evolution is
coupled to that of the full solution. The algorithm does not subcycle in time, i.e.,
the solution at all levels is advanced with the same time step. Complete details are
available in [35].

6 Case Study: Type Ia Supernovae

Type Ia supernovae (SNe Ia) are important distance indicators in cosmology, respon-
sible for the discovery of the acceleration of the expansion of the Universe. They are
also important sites of nucleosynthesis, making half of the iron in our galaxy. Despite
their great importance, there are major uncertainties in the theoretical understanding
of SNe Ia, even as to what progenitor systems give rise to these explosions. One of
the theoretically favored models is the explosion of a carbon/oxygen white dwarf
(a compact star about the volume of Earth weighing roughly 1.4 solar masses, the
Chandrasekhar limit) which accretes mass from a stellar companion. As its mass
grows, the central temperature increases and carbon fusion reactions begin, driving
convection throughout thewhite dwarf interior. This convection, duringwhich heated
parcels of fluid buoyantly rise away from the center and cool as they expand, can last
for centuries [45]. Eventually the reactions proceed so vigorously that the hot parcels
do not cool fast enough and a thermonuclear burning front (flame) is formed. This
burning front propagates through the white dwarf in seconds, converting the majority
of carbon and oxygen into heavy elements [including silicon, iron, and nickel (Ni)],
releasing enough energy to unbind the star. The brightness of the event depends on
how much radioactive 56Ni is produced, and this in turn depends on how complete
the burning is, the composition of the white dwarf, and at what densities it occurs
(see e.g. [23, 42]). While there are great uncertainties in all phases of this picture, a
critical uncertainty is the nature of the convection preceding ignition, and how that
affects ignition of the first flame. Computationally it has been shown that variations
in the location of the ignition lead to great differences in the explosion outcome
[15, 30, 34, 39]. We conducted a computational study of this convective phase pre-
ceding explosion using MAESTRO.

In order to model convection in the (roughly) spherical self-gravitating white
dwarf, the core algorithm in MAESTRO, which solves the low Mach number equa-
tions on a Cartesian grid, was modified to allow the base state to vary in the radial
direction, which is not aligned with any of the coordinate axes [46]. In addition,
we used AMR in order to focus spatial refinement on the regions of most intense
heating where ignition was most likely to occur. This required a novel spatial map-
ping technique between the time-evolving one-dimensional radial base state and the
hierarchical Cartesian mesh [35]. The procedure to expand the base state in response
to large-scale heating is also considerably more complex for a self-gravitating fluid
in a spherical geometry.
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In a series of three papers [36, 46, 48] we presented results from a suite of
simulations of the last few hours of convection preceding ignition. Once a burning
front ignited we ended each simulation. However, by running many simulations and
looking at the spatial and temporal distribution of “failed” hotspots (plumes that
approached the ignition temperature but cooled before actually igniting) we built up
statistics on the likelihood of ignition at a given radius from the center. Our major
findings were:

• A strong jet-like feature dominates the outward-moving convective flow. This is
similar to the dipole feature reported in previous studies [24], but more collimated
and with a rapidly changing direction.

• Ignition most likely occurs at a single location, not multiple distinct locations all
at once.

• Although the strongest heating occurs at the center of the star, ignition itself is
most likely off-center, with a typical radius of 75km from the center.

• The turbulent field in the convective layer follows Kolmogorov scaling with a
smaller turbulent intensity and larger integral scale than assumed in previous
works.

• The turbulent field is likely too weak to affect the initial flame propagation.

Figure 1 shows a snapshot of the convective region in the star. We see that a strong
outflow feature (colored red) dominates the flow, and that the nuclear energy gener-
ation is strongly peaked toward the center of the star.

7 Future Work

MAESTRO in its current form can be used for a variety of astrophysical applications
beyond that of modeling the Chandrasekhar-mass progenitor of SNe Ia. To date,
MAESTRO has been used to study the sub-Chandra progenitor model for SNe Ia (in
which burning begins in an accreted helium layer on the surface of a white dwarf)
[47], core convection in massive stars [16, 17], and X-ray bursts [32]. MAESTRO
simulation results have also provided the initial conditions for fully compressible
simulations of the explosion phase of SNe Ia, as in [33]. Potential future applications
include classical novae, proto-neutron star cooling, and convection in exoplanetary
interiors.

Modeling warm, moist, non-precipitating flows in the earth’s atmosphere with
MAESTRO is easily achieved by assuming constant gravity, neglecting base state
expansion, and including an appropriate equation of state for moist microphysics.
A representation of phase change that is suitably accurate at the larger time steps
of a low Mach number model must be used; see [11] for a discussion of the role of
the time step in the accuracy of moist compressible models. An alternative, pseudo-
incompressible, model for moist flows has been developed by [38].

Future developments of the MAESTRO code include the extension of the base
state to include long-wavelength lateral variation. For future stellarmodeling,we plan
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Fig. 1 Snapshot of the convection region in a white dwarf seconds before a supernova explosion.
The red and blue contours show the radial velocity field (red is outflow, blue is inflow) and the
yellow to green to purple contours show the nuclear energy generation rate. The radius of this region
is ∼1000 km. Figure adopted from [36]

to include rotation of the star, which generates additional terms in the momentum
equation as well as breaking the spherical symmetry of the base state. Finally, fol-
lowing recent studies in [25] of a generalized anelastic model compared to a standard
anelastic model for moist flows, we plan to investigate further issues about the poten-
tial role of the pressure perturbation in the thermodynamics for both astrophysical
and atmospheric applications.
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