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Abstract In the last decades affine algebraic varieties and Stein manifolds with big
(infinite-dimensional) automorphism groups have been intensively studied. Several
notions expressing that the automorphisms group is big have been proposed. All of
them imply that the manifold in question is an Oka–Forstnerič manifold. This
important notion has also recently merged from the intensive studies around the
homotopy principle in Complex Analysis. This homotopy principle, which goes
back to the 1930s, has had an enormous impact on the development of the area
of Several Complex Variables and the number of its applications is constantly
growing. In this overview chapter we present three classes of properties: (1) density
property, (2) flexibility, and (3) Oka–Forstnerič. For each class we give the relevant
definitions, its most significant features and explain the known implications between
all these properties. Many difficult mathematical problems could be solved by
applying the developed theory, we indicate some of the most spectacular ones.
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1 Introduction

This is a survey of recent developments in Complex Analysis and Affine Algebraic
Geometry which emphasize on objects described as elliptic, in the opposite to
hyperbolic in the sense of Kobayashi or more general in the sense of Eisenman
(all Eisenman measures on these objects vanish identically.)

Here is the scheme of properties we are going to discuss, together with the known
implications between them. Although the properties do not require the manifolds to
be Stein or affine algebraic, some of the implications do. We therefore assume the
manifold to be Stein in the upper row and to be a smooth affine algebraic variety in
the lower row.

density property (DP) H) holomorphic flexible H) Oka–Forstneric
* *

algebraic density property (ADP) algebraic flexible
(1)

In each of the following three sections we present one class of properties together
with main features. We hope that researchers from the algebraic and from the
holomorphic side can join their efforts to enlarge the class of examples and to find
out which of the reverse implications between these properties hold.

In the last section we briefly recall that in the presence of a volume form there is
a similar property to (algebraic) density property, called (algebraic) volume density
property, which if replacing DP and ADP in Scheme .1/ by these properties (AVDP,
VDP) gives another scheme with the same implications true. Also we elaborate on
the reverse implications in our Scheme .1/.

We sincerely thank the referee for very carefully reading the chapter and making
many valuable comments. He helped a lot to improve the presentation. Many thanks
to Finnur Lárusson for careful reading and catching an inaccuracy in a previous
version of the text.

2 Density Property

2.1 Definition and Main Features

Considering a question promoted by Walter Rudin, Andersén and Lempert in 1989
[1, 3] proved a remarkable fact about the affine n-space n � 2, namely that the
group generated by shears (maps of the form .z1; : : : ; zn/ 7! .z1; : : : ; zn�1; zn C
f .z1; : : : ; zn�1// where f 2 O.Cn�1/ is a holomorphic function and any linear
conjugate of such a map) and overshears (maps of the form .z1; : : : ; zn/ 7!
.z1; : : : ; zn�1; zng.z1; : : : ; zn�1// where g 2 O�.Cn�1/ is a nowhere vanishing
holomorphic function and any linear conjugate of such a map) are dense in
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holomorphic automorphism group of Cn, endowed with compact-open topology.
The main importance of their work was not the mentioned result but the proof
itself which implies, as observed by Forstnerič and Rosay in [17] for X D Cn,
the remarkable Andersén–Lempert theorem, see below. The natural generalization
from Cn to arbitrary manifolds X was made by Varolin [40] who introduced the
following important property of a complex manifold:

Definition 1. A complex manifold X has the density property if in the compact-
open topology the Lie algebra generated by completely integrable holomorphic
vector fields on X is dense in the Lie algebra of all holomorphic vector fields on X .

Here a holomorphic vector field‚ on a complex manifoldX is called completely
integrable if the ODE

d

dt
'.x; t/ D ‚.'.x; t//

'.x; 0/ D x

has a solution '.x; t/ defined for all complex times t 2 C and all starting
points x 2 X . It gives a complex one-parameter subgroup in the holomorphic
automorphism group Authol.X/.

The density property is a precise way of saying that the automorphism group of
a manifold is big, in particular for a Stein manifold this is underlined by the main
result of the theory (see [17] for Cn, [40], a detailed proof can be found in the
Appendix of [36] or in [14]).

Theorem 2 (Andersén–Lempert Theorem). Let X be a Stein manifold with the
density property and let� be an open subset ofX . Suppose thatˆ W Œ0; 1��� ! X

is a C1-smooth map such that

(1) ˆt W � ! X is holomorphic and injective for every t 2 Œ0; 1�,
(2) ˆ0 W � ! X is the natural embedding of � into X , and
(3) ˆt.�/ is a Runge subset1 of X for every t 2 Œ0; 1�.
Then for each � > 0 and every compact subset K � � there is a continuous family,
˛ W Œ0; 1� ! Authol.X/ of holomorphic automorphisms of X such that

˛0 D id and j˛t �ˆt jK < � for every t 2 Œ0; 1�

Philosophically one can think of the density property as a tool for realizing
local movements by global maps (automorphisms). In some sense it is a substitute

1Recall that an open subset U of X is Runge if any holomorphic function on U can be
approximated by global holomorphic functions on X in the compact-open topology. Actually, for
X Stein by Cartan’s Theorem A this definition implies more: for any coherent sheaf on X its
section over U can be approximated by global sections.
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for cutoff functions which in the differentiable category are used for globalizing
local movements. In the holomorphic category we of course lose control on
automorphism outside the compact set K . This makes constructions more com-
plicate but still constructing sequences of automorphisms by iterated use of the
Andersén–Lempert theorem has led to remarkable constructions.

Let us further remark that the implications of the density property for manifolds
which are not Stein have not been explored very much yet. If the manifold is
compact all (holomorphic) vector fields are completely integrable, the density
property trivially hold and thus cannot give any further information on the manifold.

Remark 3. Andersén and Lempert proved that every algebraic vector field on
Cn is a finite sum of algebraic shear fields (fields of form p.z1; : : : zn�1/ @

@zn
for a polynomial p 2 CŒCn�1� and their linear conjugates, i.e., fields who’s
one-parameter subgroups consist of shears) and overshear fields (fields of form
p.z1; : : : zn�1/zn @

@zn
for a polynomial p 2 CŒCn�1� and their linear conjugates, i.e.,

fields whose one-parameter subgroups consist of overshears). Together with the fact
that any holomorphic automorphism of Cn can be joined to the identity by a smooth
pat, this shows how the Andersén–Lempert theorem implies that the group generated
by shears and overshears is dense in the holomorphic automorphism group of Cn

The algebraic density property can be viewed as a tool to prove the density
property, whereas the ways of proving it are purely algebraic work.

Definition 4. An affine algebraic manifold X has the algebraic density property if
the Lie algebra Liealg.X/ generated by completely integrable algebraic vector fields
on it coincides with the Lie algebra VFalg.X/ of all algebraic vector fields on it.

An algebraic vector field is an algebraic section of the tangent bundle, for
example on Cn it can be written as

Pn
iD1 pi .z1; : : : ; zn/ @@zi

with polynomials pi 2
CŒCn�. If it is completely integrable, its flow gives a one-parameter subgroup in the
holomorphic automorphism group not necessarily in the algebraic automorphism
group. For example, a polynomial shear field of the form p.z1; : : : ; zn�1/zn @

@zn
has

the flow map �.t; z/ D .z1; : : : ; zn�1; exp.tp.z1; : : : ; zn�1//zn/. This is the reason
that algebraic density property is in the intersection of affine algebraic geometry
and complex analysis. It is an algebraic notion, proven using algebraic methods but
has implications for the holomorphic automorphism group.

2.2 Applications and Examples

A first application we like to mention is to the notoriously difficult question whether
every open Riemann surface can be properly holomorphically embedded into C2.
This is the only dimension for which the conjecture of Forster [12], saying that
every Stein manifold of dimension n can be properly holomorphically embedded
into CN for N D Œ n

2
� C 1, is still unsolved. The conjectured dimension is sharp
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by examples of Forster [12] and has been proven by Eliashberg, Gromov [10] and
Schürmann [37] for all dimensions n � 2. Their methods of proof fail in dimension
n D 1. But Fornaess Wold invented a clever combination of a use of shears (nice
projection property) and Theorem 2 which led to many new embedding theorems
for open Riemann surfaces. As an example we like to mention the following two
recent results of Forstnerič and Fornaess Wold [18, 19] the first of them being the
most general one for open subsets of the complex line:

Theorem 5. Every domain in the Riemann sphere with at least one and at most
countably many boundary components, none of which are points, admits a proper
holomorphic embedding into C2.

Theorem 6. If N† is a (possibly reducible) compact complex curve in C
2 with

boundary @† of class C r for some r > 1, then the inclusion map i W † D N† n† !
C
2 can be approximated, uniformly on compacts in †, by proper holomorphic

embeddings† ! C
2.

Many versions of embeddings with interpolation are also known and proven
using the same methods invented by Fornaess Wold in [42].

Another application is to construct non-straightenable holomorphic embeddings
of Ck into Cn for all pairs of dimensions 0 < k < n, a fact which is contrary to the
situation in affine algebraic geometry, namely contrary to the famous Abhyankar-
Moh-Suzuki theorem for k D 1; n D 2 and also to work of Kaliman [26] or 2k C
1 < n, whereas straightenability for the other dimension pairs is still unknown in
algebraic geometry. The most recent and quite striking result in this direction says
that there are even holomorphic families of pairwise non-equivalent holomorphic
embeddings (referring to holomorphic automorphisms of the source and target in
the definition below). Here non-straightenable for an embedding Ck into Cn means
to be not equivalent to the standard embedding.

Definition 7. Two embeddings ˆ;‰WX ,! Cn are equivalent if there exist
automorphisms ' 2 Aut.Cn/ and  2 Aut.X/ such that ' ıˆ D ‰ ı  .

Theorem 8. see [33]. Let n; l be natural numbers with n � l C 2. There exist, for
k D n � l � 1, a family of holomorphic embeddings of Cl into Cn parametrized by
Ck , such that for different parameters w1 ¤ w2 2 Ck the embeddings  w1 ;  w2 W
Cl ,! Cn are non-equivalent.

We would like to mention a nice application of Theorem 8 to actions of compact
(or equivalently complex reductive, see [31]) groups on Cn. It was a long-standing
problem, whether all holomorphic actions of such groups on affine space are linear
after a change of variables (see for example the overview article [24]). The first
counterexamples to that (Holomorphic Linearization) problem were constructed
by Derksen and the first author in [9]. The method from [9] is holomorphic in a
parameter and therefore applied to our parametrized situation leads to the following
result ([33])
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Theorem 9. For any n � 5 there is a holomorphic family of C�-actions on Cn

parametrized by Cn�4

C
n�4 � C

� � C
n ! C

n; .w; �; z/ 7! �w.z/

so that for different parameters w1 ¤ w2 2 Cn�4 there is no equivariant
isomorphism between the actions �w1 and �w2 .

The linearization problem for holomorphic C�-actions on Cn is thus solved to
the positive for n D 2 by Suzuki [39] and still open for n D 3. For n D 4 there are
uncountably many actions (non-linearizable ones among them) [8] and for n � 5

Theorem 9 implies that there are families. Moreover, there are families including a
linear action as a single member of the family;

Theorem 10. For any n � 5 there is a holomorphic family of C�-actions on Cn

parametrized by C

C � C
� � C

n ! C
n .w; �; z/ 7! �w.z/

so that for different parameters w1 ¤ w2 2 C there is no equivariant isomorphism
between the actions �w1 and �w2 . Moreover, the action �0 is linear.

Open Problem: Suppose X is a Stein manifold with density property and Y � X

is a closed submanifold. Is there always another proper holomorphic embedding
' W Y ,! X which is not equivalent to the inclusion i W Y ,! X?

We should remark that an affirmative answer to this question is stated in [41], but
the author apparently had another (weaker) notion of equivalence in mind.

Here comes the essentially complete list of examples of Stein manifolds known
to have the density property:

List of examples of Stein manifolds known to have the density property:

1. X D G=R where G is linear algebraic and R a reductive subgroup has ADP
and thus DP (defined on p. 2), except for X D C and X D .C�/n. (this
includes all examples known from the work of Andersén–Lempert and Varolin
and Varolin–Toth and Kaliman–Kutzschebauch, the final result is proven by
Donzelli–Dvorsky–Kaliman [7]);

2. The manifoldsX given as a submanifold in C
nC2 with coordinates u 2 C, v 2 C,

z 2 C
n by the equation uv D p.z/, where the zero fiber of the polynomial

p 2 CŒCn� is smooth (otherwise X is not smooth), have ADP [28].
3. The only known non-algebraic example with DP are the manifolds X given as

a submanifold in C
nC2 with coordinates u 2 C, v 2 C, z 2 C

n by the equation
uv D f .z/, where the zero fiber of the holomorphic function f 2 O.Cn/ is
smooth (otherwise X is not smooth) [28].

4. Danilov–Gizatullin surfaces have ADP [6].
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A variant of density property for (normal) singular varieties (considering vector
fields vanishing on a subvariety in particular on the singular locus Sing.X/) was
introduced in [34]. A version of Andersén–Lempert theorem holds in this situation
which allows to approximate local movements taking place in the smooth part of X
by automorphisms fixing the singular locus. It is proven in [34] that normal affine
toric varieties have this property. Another version of this generalization considering
holomorphic automorphisms of Cn fixing a codimension two subvariety can be
found in [27]. For more information on the density property we refer to the overview
article [29].

3 Flexibility

3.1 Definition and Main Features

The notion of flexibility is the most recent among the described properties. It was
defined in [4]. First the algebraic version:

Definition 11. Let X be a reduced algebraic variety defined over C (any
algebraically closed field would do). We let SAut.X/ denote the subgroup
of Autalg.X/ generated by all algebraic one-parameter unipotent subgroups of
Autalg.X/, i.e., algebraic subgroups isomorphic to the additive group Ga (usually
denoted CC in complex analysis). The group SAut.X/ is called the special
automorphism group of X ; this is a normal subgroup of Autalg.X/.

Definition 12. We say that a point x 2 Xreg is algebraically flexible if the tangent
space TxX is spanned by the tangent vectors to the orbits H:x of one-parameter
unipotent subgroupsH � Autalg.X/. A variety X is called algebraically flexible if
every point x 2 Xreg is.

Clearly, X is algebraically flexible if one point of Xreg is and the group Autalg.X/

acts transitively on Xreg.
The main feature of algebraic flexibility is the following result from [4] (whose

proof mainly relies on the Rosenlicht theorem);

Theorem 13. For an irreducible affine variety X of dimension � 2, the following
conditions are equivalent.

(1) The group SAut.X/ acts transitively on Xreg.
(2) The group SAut.X/ acts infinitely transitively on Xreg.
(3) X is an algebraically flexible variety.

The paper [4] also contains versions of simultaneous transitivity (where the
space Xreg is stratified by orbits of SAut.X/) and versions with jet-interpolation.
Moreover, it was recently remarked that the theorem holds for quasi-affine varieties,
see Theorem 1.11. in [11].
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The holomorphic version of this notion is much less explored, it is obviously
implied by the algebraic version in case X is an algebraic variety.

Definition 14. We say that a point x 2 Xreg is holomorphically flexible if the
tangent space TxX is spanned by the tangent vectors of completely integrable
holomorphic vector fields, i.e., holomorphic one-parameter subgroups in Authol.X/.
A complex manifoldX is called holomorphically flexible if every point x 2 Xreg is.

Clearly,X is holomorphically flexible if one point ofXreg is and the group Authol.X/

acts transitively on Xreg.
In the holomorphic category it is still open whether an analogue of Theorem 13

holds.

Open Problem: Are the three equivalences from Theorem 13 true for an
irreducible Stein space X? More precisely, if an irreducible Stein space X is
holomorphically flexible, does the holomorphic automorphism group Authol.X/ act
infinitely transitively on Xreg?

It is clear that holomorphic flexibility of X implies that Authol.X/ acts transi-
tively on Xreg, i.e., the implication .3/ ) .1/ is true. Indeed, let �i ; i D 1; 2; : : : ; n

be completely integrable holomorphic vector fields which span the tangent space
TxX at some point x 2 Xreg, where n D dimX . If  i W C � X ! X; .t; x/ 7!
 it .x/ denote the corresponding one-parameter subgroups, then the map C

n !
X; .t1; t2; : : : ; tn/ 7!  ntn ı  n�1

tn�1
ı � � � ı 1t1 .x/ is of full rank at t D 0 and thus by

the Inverse Function Theorem a local biholomorphisms from a neighborhood of 0
to a neighborhood of x. Thus the Authol.X/-orbit through any point of Xreg is open.
If all orbits are open, each orbit is also closed, being the complement of all other
orbits. Since Xreg is connected, this implies that it consists of one orbit.

The inverse implication .1/ ) .3/ is also true. For the proof we appeal to the
Hermann–Nagano Theorem which states that if g is a Lie algebra of holomorphic
vector fields on a manifold X , then the orbit Rg.x/ (which is the union of all
points z over any collection of finitely many fields v1; : : : vN 2 g and over all times
.t1; : : : ; tN / for which the expression z D  NtN ı  N�1

tN�1
ı � � � ı  1t1 .x/ is defined)

is a locally closed submanifold and its tangent space at any point y 2 Rg.x/ is
TyRg.x/ D spanv2gv.y/. We consider the Lie algebra g generated by completely
integrable holomorphic vector fields. Since by the assumption the orbit is Xreg

we conclude that Lie combinations of completely integrable holomorphic vector
fields span the tangent space at each point in Xreg. Now suppose at some point
x0 the completely integrable fields do not generate Tx0Xreg, i.e., there is a proper
linear subspace W of Tx0Xreg, such that v.x0/ 2 W for all completely integrable
holomorphic fields v. Any Lie combination of completely integrable holomorphic
fields is a limit (in the compact open topology) of sums of completely integrable
holomorphic fields due to the formula fv;wg D limt!0

��

t .w/�w
t

for the Lie bracket
(��
t .w/ is a completely integrable field pulled back by an automorphism, thus

completely integrable!). Therefore all Lie combinations of completely integrable
fields evaluated at x0 are contained in W � Tx0Xreg, a contradiction.
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In order to prove the remaining implication .3/ ) .2/ one would like to find
suitable functions f 2 Ker� for a completely integrable holomorphic vector field � ,
vanishing at one point and not vanishing at some other point of X . In general these
functions may not exist, an orbit of � can be dense in X .

At this point it is worth mentioning that for a Stein manifold DP implies all
three conditions from Theorem 13. For flexibility this is lemma 26 below, infinite
transitivity (with jet-interpolation) is proved by Varolin in [41].

Also the generalized form of DP for Stein spaces defined in [34] implies all three
conditions from Theorem 13.

3.2 Examples

Examples of algebraically flexible varieties are homogeneous spaces of semisimple
Lie groups (or extensions of semisimple Lie groups by unipotent radicals), toric
varieties without non-constant invertible regular functions, cones over flag varieties,
and cones over Del Pezzo surfaces of degree at least 4, normal hypersurfaces of the
form uv D p. Nx/ in C

nC2
u;v; Nx . Moreover, algebraic subsets of codimension at least 2 can

be removed as recently shown by Flenner, Kaliman, and Zaidenberg in [11]

Theorem 15. Let X be a smooth quasi-affine variety of dimension � 2 and Y � X

a closed subscheme of codimension � 2. If X is flexible, then so is X n Y .

4 Oka–Forstnerič Manifolds

4.1 Historical Introduction to Oka Theory and Motivational
Examples

The notion of Oka–Forstnerič manifolds is quite new (it was introduced by
Forstnerič in [13], who called them Oka manifolds following a suggestion of
Lárusson who underlined the importance of such a notion already in [35]) but
the development merging into this important notion, called Oka theory, has a long
history. It started with Oka’s theorem from 1939 that the second (multiplicative)
Cousin problem on a domain of holomorphy is solvable with holomorphic functions
if it is solvable with continuous functions. This implies that a holomorphic line
bundle on such a domain is holomorphically trivial if it is topologically trivial.

Let us recall how the generalizations of the classical one variable results of
Mittag–Leffler (construct meromorphic functions with prescribed main parts) and
Weierstrass (construct meromorphic functions with prescribed zeros and poles) are
generalized to several complex variables.
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Let us recall the first (additive) Cousin problem which arises from the
Mittag–Leffler problem, generalizing the famous Mittag–Leffler theorem from
one variable to several variables: Given data f.Ui ;mi/g, where Ui is an open cover
of a complex space X and mi 2 M .Ui / is a meromorphic function on Ui such that
every difference fij D mi jUij � mj jUij is holomorphic on Uij D Ui \ Uj , find a
global meromorphic functionm 2 M .X/ onX such thatmjUi �mi is holomorphic
on Ui for all i .

For solving this Mittag–Leffler problem one first solves the associated additive
Cousin problem, defined as follows: The collection fij 2 O.Uij/ defines a 1-cocycle
on the cover Ui with values in the sheaf O of holomorphic functions, meaning that
for each triple i; j; k of indexes we have

fij C fjk C fki D 0 on Uijk D Ui \ Uj \ Uk:
Given such a 1-cocycle ffijg, the Cousin I problem asks for a collection of

holomorphic functions fj 2 O.Uj / (a 0-cochain) such that

fi � fj D fij on Uij:

One expresses this by saying the cocycle splits or it is a 1-coboundary. From the
solution to the additive Cousin problem one obtains by setting mjUi D mi � fi
a well-defined (since mi � mj D fij D fi � fj on Uij) global meromorphic
functionm 2 M .X/ solving the Mittag–Leffler problem.

The vanishing of the first Cech cohomology group H1.X;O/ with coefficients
in the sheaf O means that every 1-cocycle splits on a refinement of the covering.
In other wordsH1.X;O/ D 0 implies that every 1-cocycle becomes a 1-coboundary
on a refinement, so every Mittag–Leffler problem is solvable, in particular by
Cartan’s Theorem B this is true for any Stein manifold.

The second (multiplicative) Cousin Problem arises from the problem of finding
meromorphic functions with prescribed zeros and poles, solved by Weierstrass in
one variable. Given data f.Ui ;mi /g, whereUi is an open cover of a complex spaceX
and mi 2 M �.Ui / is an invertible (i.e., not vanishing identically on any connected
component) meromorphic function on Ui such that for any pair of indexes the
quotient fij WD gig

�1
j is a nowhere vanishing holomorphic function fij 2 O�.Uij/.

Our data defines a divisor D on X and the problem is to find a global meromorphic
functionm 2 M .X/ defining this divisor, meaning, such a function thatmm�1

i is a
nowhere vanishing holomorphic function on Ui for every i . A solution is obtained
by solving the second Cousin problem: Given a collection fij of nowhere vanishing
holomorphic functions fij W Uij ! C� satisfying the 1-cocycle condition

fii D 1 fijfji D 1 fijfjkfki D 1

on Ui , Uij, Uijk respectively, find nowhere vanishing holomorphic functions fj W
Uj ! C� such that

fi D fijfj on Uij:
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If such fi exist then gif
�1
i D gj f

�1
j on Uij which defines a solution,

a meromorphic functionm 2 M .X/ representing our divisor.
The following cohomological formulation and proof of Oka’s Theorem are

standard, see e.g. [14] Theorem 5.2.2..

Theorem 16. If X is a complex space satisfying H1.X;O/ D 0, then the homo-
morphism H1.X;O�/ ! H1.X;C�/ induced by the sheaf inclusion O� ,! C� is
injective. In particular if a multiplicative Cousin problem is solvable by continuous
functions, then it is solvable by holomorphic functions. If in addition we have
H2.X;O/ D 0, then the above map is an isomorphism.

Proof. Consider the exponential sheaf sequence (where �.f / D e2	if ).

0 �� Z ��

id

��

O
�

��

��

O� ��

��

1

0 �� Z �� C
�

�� C� �� 1

Since due to partition of unity H1.X;C/ D H2.X;C/ D 0 the relevant portion
of long exact cohomology sequence is:

H1.X;Z/ �� H1.XO/ ��

��

H1.X;O�/
c1

��

��

H2.X;Z/ �� H2.X;O/

��
0 �� H1.X;C�/

c1
�� H2.X;Z/ �� 0

The map in the bottom row is an isomorphism H1.X;C�/ Š H2.X;Z/.
If H1.X;O/ D 0 the (1-st Chern class) map c1 in the first row is injective

0 ! H1.X;O�/
c1�! H2.X;Z/ Š H1.X;C�/. If in addition H2.X;O/ D 0 this

map is an isomorphism. �

By Oka’s theorem on a complex space with H1.X;O/ D H2.X;O/ D 0

(by Theorem B this holds in particular on a Stein space) the natural map from
equivalence classes of holomorphic line bundles into equivalence classes of contin-
uous (complex) line bundles is an isomorphism. For higher rank vector bundles this
cohomological proof fails due to non-commutativity of the relevant cohomology
groups. Nevertheless, Grauert was able to prove the corresponding statement in
higher dimensions. The following theorem is the holomorphic counterpart of
Quillen’s and Suslin’s result that projective modules over affine space are free.

Theorem 17. For a Stein space X the natural map Vectrhol.X/ ! Vectrtop.X/
of equivalence classes of rank r complex vector bundles is a bijection for every
r 2 N.
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This theorem follows from the following result, named Grauert’s Oka principle
by H. Cartan, obtained by Grauert [20], Grauert and Kerner [21], and Ramspott [36]
(see Theorem 5.3.2. in [14]).

Theorem 18. If X is a Stein space and 	 W Z ! X is a holomorphic fiber bundle
with a complex homogeneous fiber whose structure group is a complex Lie group
acting transitively on the fiber, then the inclusion 
hol.X;Z/ ,! 
cont.X;Z/ of the
space of global holomorphic sections into the space of global continuous sections is
a weak homotopy equivalence. In particular every continuous section is homotopic
to a holomorphic section.

An equivariant version of Grauerts Oka principle with respect to an action of a
reductive complex Lie group has been proven by Heinzner and Kutzschebauch [23].
This principle in particular implies that the method of constructing counterexamples
to the linearization problem, found by Schwarz in the algebraic setting [38], does not
work in the holomorphic category. Moreover, the above-mentioned Oka principle
was recently used by Kutzschebauch, Lárusson, and Schwarz [32] to show among
others a strong linearization result: A generic holomorphic action, which is locally
over a common categorical quotient isomorphic to a linear action on C

n, is in fact
globally isomorphic to that linear action.

The next step in Oka theory was made by Gromov in his seminal paper [22],
which marks the beginning of modern Oka theory. He introduced the notion of
dominating spray and ellipticity (see the last section). The great improvement
compared to Grauert’s Oka principle is the fact that not the fiber together with
the transition maps of the bundle, but only certain properties of the fiber totally
independent of transition maps allow to derive the conclusions. In the above-cited
classical works, the structure group was indeed assumed to be a complex Lie
group. However, in modern Oka theory the structure group is completely irrelevant.
Moreover, modern Oka theory allows to consider sections of stratified elliptic
submersions, generalizing the case of locally trivial fiber bundles. The emphasis
shifted from the cohomological to the homotopy theoretic aspect, focusing on those
analytic properties of a complex manifold Y which ensure that every continuous
map from a Stein space X to Y is homotopic to a holomorphic map, with natural
additions concerning approximation and interpolation of maps that are motivated
by the extension and approximation theorems for holomorphic functions on Stein
spaces. The approximation and extension are needed for generalizing from maps
X ! Y (which can be considered as sections of the trivial bundle X � Y ! X

with fiber Y ) to sections of holomorphic submersionsZ ! X with Oka–Forstnerič
fibers and moreover to stratified elliptic submersions.

4.2 Definition and Main Features

Definition 19. A complex manifold Y is an Oka–Forstnerič manifold if every
holomorphic map f W K ! Y from (a neighborhood of) a compact convex set
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K � Cn (any dimension n) can be approximated uniformly on K by entire maps
Cn ! Y .

The property in this definition is also called Convex Approximation Property (CAP),
if the dimension n is fixed we speak of .CAP/n, thus (CAP) means .CAP/n for all n.
By work of Forstnerič (CAP) is equivalent to any of 13 different Oka properties, one
of them is mentioned in the following Theorem which includes all versions of the
classical Oka–Grauert principle discussed in the Introduction. This theorem answers
Gromov’s question whether Runge approximation on a certain class of compact
sets in Euclidean spaces suffices to infer the Oka property. Since all these 13 Oka
properties are equivalent characterizations of the same class of manifolds Forstnerič
called them Oka manifolds. In order to honor his work on the equivalence of all
the Oka properties the author finds the notation Oka–Forstnerič manifolds more
appropriate.

Theorem 20. Let 	 W Z ! X be a holomorphic submersion of a complex space Z
onto a reduced Stein space X . Assume that X is exhausted by a sequence of open
subsets U1 � U2 � � � � [j Uj D X such that each restriction ZjUj ! Uj is a
stratified holomorphic fiber bundle whose fibers are Oka manifolds. Then sections
X ! Z satisfy the following

Parametric Oka property (POP): Given a compact O.X/-convex subset K
of X , a closed complex subvariety A of X, compact sets P0 � P in a Euclidean
space Rm, and a continuous map f W P �X ! Z such that

(a) for every p 2 P , f .p; �/ W X ! Z is a section of Z ! X that is
holomorphic on a neighborhood ofK (independent of p) and such that f (p, �)jA
is holomorphic on A, and

(b) f (p, �) is holomorphic on X for every p 2 P0
there is a homotopy ft W P � X ! Z .t 2 Œ0; 1�/; with f0 D f , such that ft
enjoys properties .a/ and .b/ for all t 2 Œ0; 1�, and also the following hold:

(i) f1.p; �/ is holomorphic on X for all p 2 P
(ii) ft is uniformly close to f on P �K for all t 2 Œ0; 1�

(iii) ft D f on .P0 �X/[ .P � A/ for all t 2 Œ0; 1�
As a general reference for Oka theory we refer to the monograph [14] and the

overview article [15].

4.3 Applications and Examples

The number of applications of the Oka theory is growing, we already indicated
the classical Cousin problems and Grauert’s classification of holomorphic vector
bundles over Stein spaces in the introduction. The only application we would like
to mention is a recent solution to a problem posed by Gromov, called the Vaserstein
problem. It is a natural question about the K1-group of the ring of holomorphic
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functions or in simple terms it is asking whether (and when) in a matrix whose
entries are holomorphic functions (parameters) the Gauss elimination process can
be performed in a way holomorphically depending on the parameter. This is to our
knowledge the only application where a stratified version of an Oka theorem is
needed, i.e., no proof using a non-stratified version is known.

Theorem 21. (see [25]). Let X be a finite dimensional reduced Stein space and
f WX ! SLm.C/ be a holomorphic mapping that is null-homotopic. Then there
exist a natural numberK and holomorphic mappingsG1; : : : ; GK WX ! Cm.m�1/=2
such that f can be written as a product of upper and lower diagonal unipotent
matrices

f .x/ D
�

1 0

G1.x/ 1

� �
1 G2.x/

0 1

�

: : :

�
1 GK.x/

0 1

�

for every x 2 X .

Here the assumption null-homotopic means that the map is homotopic through
continuous maps to a constant map (matrix), which since Grauert’s Oka principle,
Theorem 18, is equivalent of being null-homotopic through holomorphic maps.
This is an obvious necessary condition since multiplying all lower/upper diagonal
matrices in the product by t 2 Œ0; 1� yields a homotopy to the (constant) identity
matrix. It is a result of Vaserstein that null-homotopic is also sufficient in order
to factorize the map as a product with continuous entries. Thus we have the Oka
principle. For the existence of a holomorphic factorization there are only topological
obstructions, it exists iff a topological factorization exists.

Now we come to examples of Oka–Forstnerič manifolds:
A Riemann surface is an Oka–Forstnerič manifold iff it is non-hyperbolic, i.e.,

one of P1 C, C�, or a compact torus C=
 .
Oka–Forstnerič manifolds enjoy the following functorial properties, for elliptic

manifolds (see Definition below) these properties are unknown.

• If 	 W E ! B is a holomorphic covering map of complex manifolds then B is
Oka–Forstnerič iff E is ([14] Proposition 5.5.2).

• IfE andX are complex manifolds and 	 W E ! X is a holomorphic fiber bundle
whose fiber is an Oka–Forstnerič manifold, the X is an Oka–Forstnerič manifold
iff E is ([14] Theorem 5.5.4).

• If a complex manifold Y is exhausted by open domains D1 � D2 � � � � �
[1
jD1 D Y such that every Dj is an Oka–Forstnerič manifold, then Y is

an Oka–Forstnerič manifold. In particular every long Cn is an Oka–Forstnerič
manifold. (A manifold is called a long Cn if all Dj are biholomorphic to Cn.
If the inclusion Di � DiC1 is not a Runge pair, on those manifolds the ring of
holomorphic functions may consist of constants only!!)

The main source of examples are the elliptic manifolds (see Definition 22 below),
a notion invented by Gromov. This includes by our scheme (1) of implications
all holomorphic flexible manifolds and all manifolds with the density property,
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in particular complex Lie groups and homogeneous spaces of Lie groups, the
manifolds from the classical theorems of Oka and Grauert. For a Stein manifold
ellipticity is equivalent to being an Oka–Forstnerič manifold. For general manifolds
this is an open question. One possible counterexample is the complement of the ball
in Cn, the set fz 2 Cn W jz1j2 C jz2j2 C : : : C jznj2 > 1g. It was recently shown by
Andrist and Wold [5] that it is not elliptic for n � 3, whereas it has two “nearby”
properties implied by being an Oka–Forstnerič manifold, strongly dominable and
CAPn�1 ([16]).

5 Proof of the Implications from Scheme (1): Ellipticity
in the Sense of Gromov

First remark that the two bottom up arrows in Scheme (1) are obvious from the
definitions. In order to prove the left–right arrows let’s define the notions introduced
by Gromov [22] revolutionizing Oka theory (see also [14, Chap. 5]):

Definition 22. Let Y be a complex manifold.

(1) A holomorphic spray on Y is a triple .E; 	; s/ consisting of a holomorphic
vector bundle 	 W E ! Y (a spray bundle) and a holomorphic map s W E ! Y

(a spray map) such that for each y 2 Y we have s.0y/ D y.
(2) A spray .E; 	; s/ on Y is dominating on a subset U � Y if the differential

d0y s W T0yE ! TyY maps the vertical tangent space Ey of T0yE surjectively
onto TyY for every y 2 U , s is dominating if this holds for all y 2 Y .

(3) A complex manifold Y is elliptic if it admits a dominating holomorphic spray.

The main result of Gromov can now be formulated in the following way.

Theorem 23. An elliptic manifold is an Oka–Forstnerič manifold.

Of course Gromov proved the full Oka principle for elliptic manifolds. This proof
can now be decomposed in two stages. The main (and the only) use of ellipticity
is to prove a homotopy version of Runge (Oka–Weil) theorem, which in particular
gives CAP (= Oka–Forstnerič) and the second stage is CAP implies Oka principle.

Gromov’s theorem proves our implication

holomorphically flexible H) Oka � �Forstneric manifold

using the following example of a spray given by Gromov and Lemma 25;

Example 24. Given completely integrable holomorphic vector fields �1; �2; : : : ; �N
on a complex manifoldX such that at each point x 2 X they span the tangent space,
span.�1.x/; �2.x/; : : : ; �N .x/ D TxX . Let  i W C � X ! X; .t; x/ 7!  it .x/

denote the corresponding one-parameter subgroups; Then the map s W CN �X ! X
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defined by ..t1; t2; : : : ; tn/; x/ 7!  ntn ı n�1
tn�1

ı � � � ı 1t1.x/ is of full rank at t D 0 for
any x. It is therefore a dominating spray map from the trivial bundleX �CN ! X .

Lemma 25. If a Stein manifoldX is holomorphically flexible, then there are finitely
many completely integrable holomorphic fields which span the tangent space TxX
at every point x 2 X
Proof. To prove that there are finitely many completely integrable holomorphic
fields that span each tangent space, let us start with n fields �1; : : : ; �n which span
the tangent space at some point x0 and thus outside a proper analytic subset A. The
set A may have countably many irreducible componentsA1;A2; A3; : : :.

It suffices now to find a holomorphic automorphism ˆ 2 Authol.X/ such that
ˆ.X n A/ \ Ai ¤ ; for every i D 1; 2; 3; : : :. Indeed, for such an automorphism
ˆ the completely integrable holomorphic vector fieldsˆ�.�1/; : : : ; ˆ�.�n/ span the
tangent space at a general point in each Ai , i.e., together with the fields �1; : : : ; �n
they span the tangent space at each point outside an analytic subset B of a smaller
dimension than A. Then the induction by dimension implies the desired conclusion.

In order to construct ˆ consider a monotonically increasing sequence of
compacts K1 � K2 � : : : in X such that

S
i Ki D X and a closed imbedding

� W X ,! Cm. For every continuous map ' W X ! Cm denote by jj'jji the standard
norm of the restriction of ' to Ki . Let d be the metric on the space Authol.X/ of
holomorphic automorphisms of X given by the formula

d.ˆ;‰/ D
1X

iD1
2�i .min.jjˆ�‰jji ; 1/C min.jjˆ�1 �‰�1jji ; 1/ (4.1)

where automorphismsˆ˙1; ‰˙1 2 Authol.X/ are viewed as continuous maps from
X to Cm. This metric makes Authol.X/ a complete metric space.

Set Zi D f‰ 2 Authol.X/ W ‰.Ai / \ .X n A/ ¤ ;g. Note that Zi is open in
Authol.X/ and let us show that it is also everywhere dense.

Since completely integrable holomorphic fields generate the tangent space at
each point of X , we can choose such a field � non-tangent to Ai . Then for every
‰ 2 Authol.X/ its composition with general elements of the flow induced by � is
inZi . That is, a perturbation of‰ belongs toZi which proves thatZi is everywhere
dense in Authol.X/. By the Baire category theorem the set

T1
iD1 Zi is not empty

which yields the existence of the desired automorphism. �

Since the question whether holomorphic maps are approximable by morphisms is
an important issue in algebraic geometry, we would like to remark at this point that
there is an application of Oka-theory to this question. Clearly there is an obvious
notion of algebraic spray, thus algebraic ellipticity. Also the proof of the above
lemma generalizes showing that an algebraically flexible manifold is algebraically
elliptic. These algebraically elliptic manifolds satisfy an algebraic version of CAP.
However, in the algebraic category, simple examples show that algebraic CAP does
not imply the full algebraic Oka principle, but only a weaker statement that being
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approximable by algebraic morphisms is a homotopy invariant property (at least
for maps from affine algebraic manifolds to algebraically elliptic manifolds). For a
precise treatment of this question we refer to [14] chapter 7.10.

The implication DP H) holomorphically flexible is contained in the following
Lemma.

Lemma 26. If a Stein manifold X has the density property, the completely inte-
grable holomorphic vector fields span the tangent space at each point x 2 X .

Proof. It follows from the density property that Lie combinations of completely
integrable holomorphic vector fields span the tangent space TxX at any given point
x 2 X . Observe that every Lie bracket Œ�; � of completely integrable holomorphic
vector fields can be approximated by a linear combination of such fields which
follows immediately from the equality Œ�; � D limt!0

��

t .�/��
t

where �t is the
flow generated by . Thus the completely integrable holomorphic vector fields span
TxX at any x 2 X . �

6 Concluding Remarks and Open Problems

There is also another property which has similar consequences as the density
property for holomorphic automorphisms preserving a volume form.

Definition 27. Let a complex manifoldX be equipped with a holomorphic volume
form ! (i.e., ! is nowhere vanishing section of the canonical bundle). We say that
X has the volume density property (VDP) with respect to ! if in the compact-open
topology the Lie algebra generated by completely integrable holomorphic vector
fields � such that �.!/ D 0 is dense in the Lie algebra of all holomorphic vector
fields that annihilate ! (note that condition �.!/ D 0 is equivalent to the fact that
� is of !-divergence zero). If X is affine algebraic we say that X has the algebraic
volume density property (AVDP) with respect to an algebraic volume form ! if
the Lie algebra generated by completely integrable algebraic vector fields � such
that �.!/ D 0, coincides with the Lie algebra of all algebraic vector fields that
annihilate !.

For Stein manifolds with the volume density property (VDP) an
Andersén–Lempert theorem for volume preserving maps holds. The implication
(AVDP) ) (VDP) holds but its proof is not trivial (see [30]). Also (VDP)
) holomorphic flexibility is true (see [29]). Thus we can have a scheme of
implications like (1) with (DP) replaced by (VDP) and (ADP) replaced by (AVDP).

Volume density property and density property are not implied by each other, if
X has density property it may not even admit a holomorphic volume form, if X
has volume density property with respect to one volume form it may not have it
with respect to another volume form and there is no reason to expect it has density
property. For example, .C�/n for n > 1 has (algebraic) volume density property
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with respect to the Haar form, it does not have algebraic density property [2] and
it is expected not to have density property. It is a potential counterexample to the
reverse of the left horizontal arrow in scheme (1).

Concerning the reverse implications in scheme (1): The variety .C�/n; n > 1 is
an obvious counterexample to the reverse of the right vertical arrow, the others are
more delicate.

Open Problem: Which of the other three implications in scheme (1) are reversible
for a Stein manifold (resp. smooth affine algebraic variety for the vertical arrow)?

The main problem here is that no method is known how to classify (meaning
exclude the existence of any other than the obvious) completely integrable holomor-
phic vector fields on Stein manifolds with any of our flexibility properties. There is
not even a classification of completely integrable holomorphic vector fields on C2

available.
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