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Preface

The conference brought together specialists from the birational geometry of pro-
jective varieties, affine algebraic geometry, and complex algebraic geometry. Topics
from these areas include Mori theory, Cremona groups, algebraic group actions, and
automorphisms. The ensuing talks and the discussions have highlighted the close
connections between these areas. The meeting allowed these groups to exchange
knowledge and to learn methods from adjacent fields. For detailed information about
this conference, see http://www.science.unitn.it/cirm/GABAG2012.html.

The chapters in this book cover a wide area of topics from classical algebraic
geometry to birational geometry and affine geometry, with an emphasis on group
actions and automorphism groups.

Among the total of 27 chapters, eight give an overview of an area in one of the
fields. The others contain original contributions, or mix original contributions and
surveys.

In the birational part, there are chapters on Fano and del Pezzo fibrations,
birational rigidity and superrigidity of Fano varieties, birational morphisms between
threefolds, subgroups of the Cremona group, Jordan groups, real Cremona group,
and a real version of the Sarkisov program.

In the part on classical projective geometry, there are chapters devoted to
algebraic groups acting on projective varieties, automorphism groups of moduli
spaces, and the algebraicity problem for analytic compactifications of the affine
plane.

The topics in affine geometry include: different aspects of the automorphism
groups of affine varieties, flexibility properties in affine algebraic and analytic
geometry, automorphisms of affine spaces and Shestakov–Umirbaev theory, affine
geometry in positive characteristic, the automorphism groups of configuration
spaces and other classes of affine varieties and deformations of certain group actions
on affine varieties.

Hopefully these proceedings will be of help for both specialists, who will find
information on the current state of research, and young researchers, who wish to
learn about these fascinating and active areas of mathematics.

v
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Part I
Birational Automorphisms



Singular del Pezzo Fibrations and Birational
Rigidity

Hamid Ahmadinezhad

Abstract A known conjecture of Grinenko in birational geometry asserts that a
Mori fibre space with the structure of del Pezzo fibration of low degree is birationally
rigid if and only if its anticanonical class is an interior point in the cone of mobile
divisors. The conjecture is proved to be true for smooth models (with a generality
assumption for degree 3). It is speculated that the conjecture holds for, at least,
Gorenstein models in degree 1 and 2. In this chapter, I present a (Gorenstein)
counterexample in degree 2 to this conjecture.

2010 Mathematics Subject Classification: 14E05, 14E30 and 14E08

1 Introduction

All varieties in this chapter are projective and defined over the field of complex
numbers. Minimal model program played on a uniruled threefold results in a Mori
fibre space (Mfs for short). Such output for a given variety is not necessarily unique.
The structure of the endpoints is studied via the birational invariant called pliability
of the Mfs, see Definition 2. An Mfs is a Q-factorial variety with at worst terminal
singularities together with a morphism 'WX ! Z, to a variety Z of strictly smaller
dimension, such that �KX , the anti-canonical class of X , is '-ample and

rank Pic.X/ � rank Pic.Z/ D 1:

H. Ahmadinezhad (�)
Radon Institute, Austrian Academy of Sciences, Altenberger Str. 69, 4040 Linz, Austria
e-mail: hamid.ahmadinezhad@oeaw.ac.at

I. Cheltsov et al. (eds.), Automorphisms in Birational and Affine Geometry,
Springer Proceedings in Mathematics & Statistics 79,
DOI 10.1007/978-3-319-05681-4__1,
© Springer International Publishing Switzerland 2014
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4 H. Ahmadinezhad

Definition 1. Let X ! Z and X 0 ! Z0 be Mfs. A birational map fWX ÜX 0 is
square if it fits into a commutative diagram

X
f

X ′

Z
g

Z′

where g is birational and, in addition, the map fLWXL Ü X 0
L induced on generic

fibres is biregular. In this case we say that X=Z and X 0=Z0 are square birational.
We denote this by X=Z � X 0=Z0.

Definition 2 (Corti [10]). The pliability of an Mfs X ! Z is the set

P.X=Z/ D fMfs Y ! T j X is birational to Y g= �

An MfsX!Z is said to be birationally rigid if P.X=Z/ contains a single element.

A main goal in the birational geometry of threefolds is to study the geometry
of Mfs, and their pliability. Note that finite pliability, and in particular birational
rigidity, implies non-rationality. There are three types of Mfs in dimension 3,
depending on the dimension ofZ. If dim.Z/ D 1, then the fibres must be del Pezzo
surfaces. When the fibration is over P1, I denote this by dPn=P1, where n D K2

� and
� is the generic fibre.

It is known that a dPn=P1 is not birationally rigid when the total space is smooth
and n � 4. For n > 4 the threefold is rational (see for example [20]), hence non-
rigid, and it was shown in [5] that dP4=P1 are birational to conic bundles.

Understanding conditions under which a dPn=P1, for n � 3, is birationally rigid
is a key step in providing the full picture of MMP, and hence the classification,
in dimension 3. Birational rigidity for the smooth models of degree 1; 2 and 3 is
well studied, see for example [22]. However, as we see later, while the smoothness
assumption for degree 3 is only a generality assumption, considering the smooth
case for n D 1; 2 is not very natural. Hence the necessity of considering singular
cases is apparent.

In this chapter, I focus on a well-known conjecture (Conjecture 1) on this topic
that connects birational rigidity of del Pezzo fibrations of low degree to the structure
of their mobile cone. A counterexample to this conjecture is provided when the
threefold admits certain singularities.

2 Grinenko’s Conjecture

Pukhlikov in [22] proved that a general smooth dP3=P1 is birationally rigid if the
class of 1-cyclesmK2

X �L is not effective for anym 2 Z, where L is the class of a
line in a fibre. This condition is famously known as the K2-condition.
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Definition 3. A del Pezzo fibration is said to satisfyK2-condition if the 1-cycleK2

does not lie in the interior of the Mori cone NE.

The birational rigidity of smooth dPn=P1 for d D 1; 2 was also considered in
[22] and the criteria for rigidity are similar to that for n D 3.

In a sequential work [13–19], Grinenko realised and argued evidently that it is
more natural to considerK-condition instead of the K2-condition.

Definition 4. A del Pezzo fibration is said to satisfy K-condition if the anticanoni-
cal divisor does not lie in the interior of the Mobile cone.

Remark 1. It is a fun, and not difficult, exercise to check that K2-condition implies
K-condition. And the implication does not hold in the opposite direction.

One of the most significant observations of Grinenko was the following theorem.

Theorem 1 ([17,19]). Let X be a smooth threefold Mfs, with del Pezzo surfaces of
degree 1 or 2, or a general degree 3, fibred over P1. Then X is birationally rigid if
it satisfies the K-condition.

He then conjectured that this must hold in general, as formulated in the conjecture
below, with no restriction on the singularities.

Conjecture 1 ([19], Conjecture 1.5 and [13], Conjecture 1.6). LetX be a threefold
Mori fibration of del Pezzo surfaces of degree 1; 2 or 3 over P1. Then X is
birationally rigid if and only if it satisfies the K-condition.

It is generally believed that Grinenko’s conjecture might hold if one only
considers Gorenstein singularities.

Note that, it is not natural to only consider the smooth case for n D 1; 2 as these
varieties very often carry some orbifold singularities inherited from the ambient
space, the non-Gorenstein points. For example a del Pezzo surface of degree 2
is naturally embedded as a quartic hypersurface in the weighted projective space
P.1; 1; 1; 2/. It is natural that a family of these surfaces meets the singular point
1=2.1; 1; 1/. See [1] for construction of models and the study of their birational
structure.

Grinenko also constructed many nontrivial (Gorenstein) examples, which sup-
ported his arguments. The study of quasi-smooth models of dP2=P1 in [1], i.e.
models that typically carry a quotient singularity, also gives evidence that the
relation between birational rigidity and the position of �K in the mobile cone is
not affected by the presence of the non-Gorenstein point. Below in Sect. 3.1 I give
a counterexample to Conjecture 1 for a Gorenstein singular degree 2 del Pezzo
fibration.

On the other hand, in [8], Example 4.4.4, it was shown that this conjecture
does not hold in general for the degree 3 case (of course in the singular case) and
suggested that one must consider the semi-stability condition on the threefold X in
order to state an updated conjecture:

Conjecture 2 ([8], Conjecture 2.7). Let X be a dP3=P1 which is semistable in the
sense of Kollár[21]. Then X is birationally rigid if it satisfies the K-condition.
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Although this type of (counter)examples are very difficult to produce, the
expectation is that such example in degree 1 is possible to be produced. On the other
hand, a notion of (semi)stability for del Pezzo fibrations of degree 1 and 2 seems
necessary (as already noted in [9], Problem 5.9.1), in order to state an improved
version of Conjecture 1, and yet there has been no serious attempt in this direction.

3 The Counterexample

The most natural construction of smooth dP2=P1 is the following, due to Grinenko
[19].

Let E D O ˚ O.a/˚ O.b/ be a rank 3 vector bundle over P1 for some positive
integers a; b, and let V D Proj

P1 E . Denote the class of the tautological bundle on
V by M and the class of a fibre by L so that

Pic.V / D ZŒM �C ZŒL�

Assume � WX ! V is a double cover branched over a smooth divisor R �
4M � 2eL, for some integer e. The natural projection pWV ! P1 induces a
morphism �WX ! P1, such that the fibres are del Pezzo surfaces of degree 2
embedded as quartic surfaces in P.1; 1; 1; 2/. This threefold X can also be viewed
as a hypersurface of a rank two toric variety. Let T be a toric fourfold with Cox ring
CŒu; v; x; y; z; t �, that is Z2-graded by

0
@

u v x y z t

1 1 0 �a �b �e
0 0 1 1 1 2

1
A (1)

The threefold X is defined by the vanishing of a general polynomial of degree
.�2e; 4/. It is studied in [19] for which values a; b and e this construction provides
an Mfs, and then he studies their birational properties. This construction can also
be generalised to non-Gorenstein models [1]. As before, let X be defined by the
vanishing of a polynomial of degree .�n; 4/ but change the grading on T to

0
@

u v x y z t

1 1 �a �b �c �d
0 0 1 1 1 2

1
A (2)

where c and d are positive integers. When X is an Mfs, it is easy to check that X is
Gorenstein if and only if e D 2d . See [1] for more details and construction.

The cone of effective divisors modulo numerical equivalence on T is generated
by the toric principal divisors, associate with columns of the matrix above, and we
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have Eff.T / � Q2. This cone decomposes, as a chamber, into a finite union of
subcones

Eff.T / D
[

Nef.Ti /

where Ti are obtained by the variation of geometric invariant theory (VGIT) on the
Cox ring of T . See [11] for an introduction to the GIT construction of toric varieties,
and [7] for a specific treatment of rank two models and connections to Sarkisov
program via VGIT. In [7] it was also shown how the toric 2-ray game on T (over a
point) can, in principle, be realised from the VGIT. I refer to [9] for an explanation
of the general theory of 2-ray game and Sarkisov program. In certain cases, when
the del Pezzo fibration is a Mori dream space, i.e. it has a finitely generated Cox
ring, its 2-ray game is realised by restricting the 2-ray game of the toric ambient
space. In other words, in order to trace the Sarkisov link one runs the 2-ray game on
T , restricts it to X and checks whether the game remains in the Sarkisov category,
in which case a winning game is obtained and a birational map to another Mfs is
constructed. See [1–4, 7, 8] for explicit constructions of these models for del Pezzo
fibrations or blow ups of Fano threefolds. I demonstrate this method in the following
example, which also shows that Conjecture 1 does not hold.

3.1 Construction of the Example

Suppose T is a toric variety with the Cox ring Cox.T / D CŒu; v; x; t; y; z�, grading
given by the matrix

A D
0
@

u v x t y z
1 1 0 �2 �2 �4
0 0 1 2 1 1

1
A ;

and let the irrelevant ideal I D .u; v/\.x; y; z; t/. In other words T is the geometric
quotient with character  D .�1;�1/. Suppose L is the linear system of divisors
of degree .�4; 4/ in T ; I use the notation L D jOT .�4; 4/j. This linear system is
generated by monomials according to the following table:

deg of u; v coefficient 0 2 4 6 8 10 12

fibre monomials x3z xy3 yzt xyz2 xz3 yz3 z4

t2 ty2 xy2z tz2 y2z2

x2y2 x2yz y4 y3z
xyt xzt x2z2

Let g be a polynomial whose zero set defines a general divisor in L (I use
the notation g 2 L ). Then, for example, x3z is a monomial in g with nonzero
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coefficient, and appearance of y4 in the column indicated by 4 means that a.u; v/y4

is a part of g, for a homogeneous polynomial a of degree 4 in the variables u and v,
so that a.u; v/y4 has bidegree .�4; 4/.

Now consider a sublinear system L 0 � L with the property that ui divides the
coefficient polynomials according to the table

power of u 1 2 3 4 5 6 8 9 12

monomial x2yz xzt yzt x2z2 xyz2 tz2 xz3 yz3 z4

xy2z y3z y2z2

and general coefficients otherwise. And suppose f 2 L 0 is general. For example
u12z4 is a monomial in f and no other monomial that includes z4 can appear in
f . Or, for instance, xyz2 in the column indicated by 5 carries a coefficient u5; in
other words, we can only have monomials of the form ˛u6xyz2 or ˇvu5xyz2 in f ,
for ˛; ˇ 2 C, and no other monomial with xyz2 can appear in f . Denote by X the
hypersurface in T defined by the zero locus of f .

3.2 Argumentation Overview

Note that the threefold X has a fibration over P1 with degree 2 del Pezzo surfaces
as fibres. In the remainder of this section, I check that it is a Mfs and then I
show that the natural 2-ray game on X goes out of the Mori category. This is by
explicit construction of the game. It is verified, from the construction of the game,
that �KX … Int Mob.X/. Hence the conditions of Conjecture 1 are satisfied for
X . In Sect. 4, a new (square) birational model to X is constructed, for which the
anticanonical divisor is interior in the mobile cone. Then I show that it admits a
birational map to a Fano threefold, and hence it is not birationally rigid.

Lemma 1. The hypersurface X � T is singular. In particular Sing.X/ D fpg,
where p D .0 W 1 W 0 W 0 W 0 W 1/. Moreover, the germ at this point is of type cE6, and
X is terminal.

Proof. By Bertini theorem Sing.X/ � Bs.L 0/. Appearance of y4 in L 0 with
general coefficients of degree 4 in u and v implies that this base locus is contained
in the loci .y D 0/ or .u D v D 0/. However, .u D v D 0/ is not permitted as
.u; v/ is a component of the irrelevant ideal. Hence we take .y D 0/. Also t2 2 L 0
implies Bs.L 0/ � .y D t D 0/. The remaining monomials are x3z, u4x2z2; u8xz3

and u12z4, where b is a general quartic. In fact, appearance of the first monomial,
i.e. x3z, implies that x D 0 or z D 0. And u12z4 2 L 0 implies z D 0 or u D 0.
Therefore

Bs.L 0/ D .u D x D y D t D 0/[ .y D t D z D 0/:
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The part .y D t D z D 0/ is the line .u W vI 1 W 0 W 0 W 0/, which is smooth
because of the appearance of the monomial x3z in f . And the rest is exactly the
point p.

Note that near the point p 2 T , I can set v ¤ 0 and z ¤ 0, to realise the local
isomorphism to C4, which is

SpecC

�
u; v; x; y; z; t;

1

v
;
1

z

�C��C
�

D SpecC

�
u

v
;
x

v4z
;
t

v6z2
;
y

v2z

�

I denote the new local coordinates by u; x; y; t . Now looking at f , in this local chart,
we observe that the only quadratic part is t2, and the cubic part is x3. The variable
y appears in degree 4, after some completing squares with t and x and u has higher
order. In particular, after some analytic changes we have

floc � t2 C x3 C y4 C u � .higher order terms/

which is a cE6 singularity.

In the following lemma, I study the 2-ray game played on X=fptg. This will be
used to figure out the shape of Mob.X/ and the position of �KX against it.

Lemma 2. The 2-ray game of T restricts to a game on X .

Proof. The 2-ray game on T goes as follows

The varieties in this diagram are obtained as follows. The GIT chamber of T is
indicated by the matrix A and it is

The ample cone of the variety T is the interior of the cone

Convexh.1; 0/; .0; 1/i

and T1 corresponds to the interior of the cone

Convexh.0; 1/; .�1; 1/i;
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i.e. this cone is the nef cone of T1. In other words T1 is a toric variety with the same
coordinate ring and grading as T but with irrelevant ideal I1 D .u; v; x/ \ .t; y; z/.
Similarly T2 corresponds to the cone generated by rays .�1; 1/ and .�2; 1/, i.e.
the irrelevant ideal of T2 is I2 D .u; v; x; t/ \ .y; z/. On the other hand, the four
varieties in the second row of the diagram correspond to the one-dimensional rays
in the chamber. The projective line P1 corresponds to the ray generated by .1; 0/;
monomial of degree .n; 0/ form the graded ring CŒu; v�. Similarly T0 correspond to
the ray generated by .0; 1/. In other words, T0 is

Proj
M
n�1

H0.T;OT .0; n// D ProjCŒx; u2t; uvt; v2t; u2y; : : : ; v4z�;

which is embedded in P.19; 23/ via the relations among the monomials above. The
varieties T1 and P0 can also be explicitly computed in this way. In particular, P0 D
P.1; 1; 2; 4; 6/.

For the maps in the diagram we have that

1. ˆWT ! P1 is the natural fibration.
2. f0WT ! T0 is given in coordinate by

.u; v; x; t; y; z/ 2 T 7�! .x; u2; uvt; v2t; u2y; : : : ; v4z/ 2 T0 � P.19; 23/

It is rather easy to check that away from p D .1 W 0 W 	 	 	 W 0/ 2 T0 the map f0 is
one-to-one. The pre-image of this point under f0 is the set .u D v D 0/ [ .t D
y D z D 0/. But .u D v D 0/ corresponds to a component of the irrelevant ideal,
and hence it is empty on T . This implies that the line .t D y D z D 0/ Š P1 �
T is contracted to a point via f0. In particular, T0 is not Q-factorial. Similarly
g0WT1 ! T0 is the contraction of the surface .u D v D 0/, to the same point in
T0. In particular, �0 is an isomorphism in codimension 1.

Let us have a look at the local description of these maps. In T0 consider the
open set given by x ¤ 0, a neighbourhood of p. This affine space is (with an
abuse of notation for local coordinates)

SpecCŒu2t; uvt; v2t; u2y; : : : ; v4z�:

And at the level of T (respectively T1) using fx ¤ 0g I can get rid of the second
grading (corresponding to the second row of the matrix A) and obtain a quasi-
projective variety which is the quotient of C5 � fu D v D 0g (respectively
C5 � ft D y D z D 0g) by an action of C� by

.�I .u; v; t; y; z/ 7! .�u; �v; ��2t; ��2y; ��4z/

I denote this by .1; 1;�2;�2;�4/ anti-flip, following [6, 23]. See these refer-
ences for an explanation of this construction and notation. This all means that
under �0 a copy of P1 is replaces by a copy of P.2; 2; 4/.
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3. Similarly, �1 is an isomorphism in codimension 1. Note that the action of .C�/2
by A is invariant under GL.2;Z/ action on A, so that multiplying it from the
left by

�
1 1

0 1

�

and setting t D 1, as in the previous case, shows that this map is of type
.1; 1; 1;�1;�3/. So f1 contracts a copy of P2 and g1 extracts a copy of P.1; 3/.

4. As noted before, the irrelevant ideal of T2 is I2 D .u; v; x; t/\.y; z/, and� WT2 !
P0 D P.1; 1; 2; 4; 6/ is the contraction of the divisor E D .z D 0/ to a point in
P0. This map, similar to ˆ, is given by

M
n�1

H0.T;OT .0; n//

where the degrees are now considered in the transformation of A by the action of

�
1 2

0 1

�

from the left.

As already noted ˆ restricted to X is just the degree 2 del Pezzo fibration.
The restriction of f0 contracts the same line, to the same point on a subvariety
of T0. Once we set x D 1, a linear form “z” appears in f , hence locally in
the neighbourhood where the flip is happening one can eliminate this variable.
Therefore, �0 restricts to .1; 1;�2;�2/, which means a copy of P1 is contracted
to a point and a copy of P.2; 2/ Š P1 is extracted. The restriction of �1 to the
threefold X1, i.e., the image of X under the anti-flip, is an isomorphism. This is
because t2 is a term in f , and hence the toric flip happens away from the threefold.
Finally � restricts to a divisorial contraction to X1.

Remark 2. Note that it follows from some delicate version of Lefschetz principle
that rank Pic.X/ D 2. In fact, X is defined by a linear system of bi-degree .�4; 4/,
and does not belong to the nef cone of T , which is generated by .1; 0/ and .0; 1/.
However, it is in the interior of the mobile cone of T . In particular, it is nef and big
on both T1 and T2, which are isomorphic to T in codimension 1. Hence we have
that

Pic.X/ Š Pic.T1/ Š Pic.T / Š Z
2

These isomorphisms follow a singular version of Lefschetz hyperplane theorem as
in [12, Sect. 2.2], and in this particular case it holds because .�4; 4/ represents an
interior point in the cone of mobile divisors on T . A more detailed argument for
this can be found in [1, Sect. 4.3] or [8, Proof of Proposition 32]. Also note that X
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and X1 are isomorphic, so it does not really matter which one to consider for these
arguments.

Proposition 1. The 2-ray game on X obtained in Lemma 2 does not provide a new
Mfs model of X .

Proof. This is quite clear now. The first reason for the failure of the game is the anti-
flip .1; 1;�2;�2/. As mentioned before, in this anti-flip a copy of P1 is contracted
to a point and on the other side of the anti-flip a copy of P.2; 2/ Š P1 is extracted.
In particular, the map replaces a smooth line by a line that carries singularities at
each point of it. Note that the line itself is smooth (isomorphic to the projective
line) but on the threefold it is singular (at each point). As terminal singularities are
isolated, this game goes out of the Mori category. Another reason for the failure
is that �KX 2 @Mob.X/, as explained below. This means that in the last map of
the 2-ray game of X the contracted curves are trivial against the canonical divisor,
hence not fulfilling the rules of Mori theory.

Remark 3. It is also a good point here to observe that the anti-canonical class of X
has degree .�2; 1/. This can be seen as follows. The variety T is toric, hence its
anticanonical divisor is given by the sum of the toric principal divisors, in particular
it has degree .�6; 5/, note that I am still working with the matrix A and this bi-
degree is nothing but the sum of the columns of A. By adjunction formula KX D
.KT CX/jX , which implies that �KX � O.�2; 1/. On the other hand, the fact that
the 2-ray game on X is essentially the restriction of the 2-ray game on T implies
that Mob.X/ and Mob.T /, as convex cones in Q2, have the same boundaries. In fact,
the decomposition of Mob.X/ into the union of nef cones is a sub-decomposition
of Mob.T /. In particular

Mob.X/ D Convex h.1; 0/; .�2; 1/i ;

which implies

�KX 2 @Mob.X/:

And this shows that X satisfies conditions of Conjecture 1.

4 The Fano Variety Birational to X

Now consider the fibrewise transform T ! F, given by

.u; v; x; t; y; z/ 7! .u; v; u4x; u6t; u3y; z/

where F is a toric variety with Cox ring Cox.F/ D CŒu; v; x; t; z; y�, with irrelevant
ideal IF D .u; v/\ .x; y; z; t/, and the grading
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A0 D
0
@

u v x t z y

1 1 0 0 0 �1
0 0 1 2 1 1

1
A

Denote by X 0 the birational transform of X under this map. And suppose g is the
defining equation of X 0. The polynomial g can be realised from f by substituting
x; y; z; t by u4x; u3y; z; u6t , and then cancelling out u12 from it. In particular it is of
the form

g D t2 C x3z C z4 C x2y2 C a4.u; v/y
4 C fother termsg

In fact the full table of monomials appearing in g is given by

deg of u; v coefficient 0 1 2 3 4

fibre monomials x3z x2yz xy2z y3z y4

x2z2 xyz2 y2z2

xz3 yz3 y2t

z4 yzt uxy3

t2

xzt
z2t

u2x2y2

uxyt

Note that this table does not generate a general member in the linear system
jOF.0; 4/j, and the missing monomials are x4; tx2 and x3y. Also x2y2, xyt and
xy3 do not have general coefficients in u; v, as specified in the table above.

Theorem 2. The threefold X 0 is smooth and it is birational to a Fano threefold. In
particular, X 0, and hence X , are not birationally rigid.

Proof. A similar, and easier, check to that of Lemma 1 shows that X 0 is smooth:
First note that the base locus of the linear system is the line .u W vI 1 W 0 W 0 W 0/,
given by y D z D t D 0. Then observe that any point on this line is smooth,
guaranteed by appearance of the monomial x3z 2 g.

Now, let us play the 2-ray game on F and restrict it to X 0. The 2-ray game on F

proceeds, after the fibration to P1, by a divisorial contraction to P.1; 1; 1; 1; 2/. This
is realised by

M
n�1

H0.F;OF.0; n//
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and is given in coordinates by

.u W vI x W t W z W y/ 7! .x W z W uy W vy W t/

In particular, the divisor E W .y D 0/ � F is contracted to the locus P.1; 1; 2/ �
P.1; 1; 1; 1; 2/. The restriction of this map to X 0 shows that the divisor EX D E \
X is contracted to a quartic curve in P.1; 1; 2/. The image of X 0 under this map
is a quartic threefold in P.1; 1; 1; 1; 2/, which is a Fano variety of index 2. Note
that, similar to X , we can check that �KX 0 � OX 0.1; 1/. In particular, �KX 0 is
ample, and of course interior in the mobile cone. This variety is also studied in [1]
Theorem 3.3.
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1 Introduction

Let K be an algebraically closed field of characteristic zero and Ga the additive
group .K;C/. Consider the commutative unipotent affine algebraic group G

n
a.

In other words, Gn
a is the additive group of an n-dimensional vector space over K.

The first aim of this paper is to survey recent results on actions of Gn
a with an open

orbit on projective algebraic varieties. To this end we include a detailed proof of
the Hassett–Tschinkel correspondence, discuss its corollaries, interpretations, and
related examples. Also we develop the method of Hassett and Tschinkel to show
that the generically transitive actions of the group G

n
a on projective hypersurfaces

correspond to invariant multilinear symmetric forms on finite-dimensional local
algebras. This leads to explicit classification results for non-degenerate quadrics
and quadrics of corank one.

By an additive action on a variety X we mean a faithful regular action of the
group G

n
a on X such that one of the orbits is open in X . The study of such

actions was initiated by Brendan Hassett and Yuri Tschinkel [11]. They showed
that additive actions on the projective space P

n up to equivalence are in bijection
with isomorphism classes of local algebras of K-dimension nC 1. In particular, the
number of additive actions on P

n is finite if and only if n � 5.
Additive actions on projective subvarieties X 
 P

m induced by an action G
n
a �

P
m ! P

m can be described in terms of local .mC1/-dimensional algebras equipped
with some additional data. This approach was used in [2, 15] to classify additive
actions on projective quadrics. Elena Sharoiko proved in [15, Theorem 4] that an
additive action on a non-degenerate quadricQ 
 P

nC1 is unique up to equivalence.
Recently Baohua Fu and Jun-Muk Hwang [9] used a different technique to show the
uniqueness of additive action on a class of Fano varieties with Picard number 1. This
result shows that an abundance of additive actions on the projective space should be
considered as an exception.

A variety with a given additive action looks like an “additive analogue” of a toric
variety. Unfortunately, it turns out that two theories have almost no parallels, see
[2, 11].

Generalized flag varieties G=P of a semisimple algebraic group G admitting
an additive action are classified in [1]. Roughly speaking, an additive action on
G=P exists if and only if the unipotent radical P u of the parabolic subgroup P
is commutative. The uniqueness result in this case follows from [9]. In particular,
it covers the case of Grassmannians and thus answers a question posed in [2].
Another proof of the uniqueness of additive actions on generalized flag varieties
is obtained by Rostislav Devyatov [7]. It uses nilpotent multiplications on certain
finite-dimensional modules over semisimple Lie algebras.

Evgeny Feigin proposed a construction based on the PBW-filtration to degenerate
an arbitrary generalized flag variety G=P to a variety with an additive action, see
[8] and further publications.
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In [5], Ulrich Derenthal and Daniel Loughran classified singular del Pezzo
surfaces with additive actions; see also [6]. By the results of [4], Manin’s Conjecture
is true for such surfaces.

In this paper we prove that additive actions on projective hypersurfaces of
degree d in PnC1 are in bijection with invariant d -linear symmetric forms on
.n C 2/-dimensional local algebras. The corresponding form is the polarization of
the equation defining the hypersurface. As an application, we give a short proof
of uniqueness of additive action on non-degenerate quadrics and classify additive
actions on quadrics of corank one. The case of cubic projective hypersurfaces is
studied in the recent preprint of Ivan Bazhov [3].

The paper is organized as follows. In Sect. 2 we define additive actions and
consider the problem of extension of an action Gn

a � X ! X on a projective
hypersurfaceX to the ambient space PnC1. The Hassett–Tschinkel correspondence
is discussed in Sect. 3. Section 4 is devoted to invariant multilinear symmetric
forms on local algebras. Our main result (Theorem 2) describes additive actions
on projective hypersurfaces in these terms. Also we give an explicit formula for an
invariant multilinear symmetric form (Lemma 1) and prove that if a hypersurface
X in PnC1 admits an additive action and the group Aut.X/0 is reductive, then X is
either a hyperplane or a non-degenerate quadric (Proposition 5). Additive actions on
non-degenerate quadrics and on quadrics of corank one are classified in Sect. 5 and
Sect. 6, respectively.

2 Additive Actions on Projective Varieties

LetX be an irreducible algebraic variety of dimension n and G
n
a be the commutative

unipotent group.

Definition 1. An inner additive action on X is an effective action Gn
a � X ! X

with an open orbit.

It is well known that for an action of a unipotent group on an affine variety all
orbits are closed, see, e.g., [14, Sect. 1.3]. It implies that if an affine varietyX admits
an additive action, then X is isomorphic to the group Gn

a with the Gn
a-action by left

translations.
In general, the existence of an inner additive action implies that the variety X

is rational. For X normal, the divisor class group Cl.X/ is freely generated by
prime divisors in the complement of the open Gn

a-orbit. In particular, Cl.X/ is a
free finitely generated abelian group.

The most interesting case is the study of inner additive actions on complete
varietiesX . In this case an inner additive action determines a maximal commutative
unipotent subgroup of the linear algebraic group Aut.X/0. Two inner additive
actions are said to be equivalent, if the corresponding subgroups are conjugate in
Aut.X/.
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Proposition 1. Let X be a complete variety with an inner additive action. Assume
that the group Aut.X/0 is reductive. Then X is a generalized flag variety G=P ,
where G is a linear semisimple group and P is a parabolic subgroup.

Proof. Let X 0 be the normalization of X . Then the action of Aut.X/0 lifts to X 0.
By the assumption, some unipotent subgroup of Aut.X/0 acts on X 0 with an open
orbit. Then a maximal unipotent subgroup of the reductive group Aut.X/0 acts on
X 0 with an open orbit. It means that X 0 is a spherical variety of rank zero, see
[16, Sect. 1.5.1] for details. It yields that X 0 is a generalized flag variety G=P ,
see [16, Proposition 10.1], and Aut.X/0 acts on X 0 transitively. The last condition
implies that X D X 0. ut

A classification of generalized flag varieties admitting an inner additive action is
obtained in [1]. In particular, the parabolic subgroup P is maximal in this case.

Definition 2. Let X be a closed subvariety of dimension n in the projective
space Pm. Then an additive action on X is an effective action Gn

a � Pm ! Pm

such that X is Gn
a-invariant and the induced action Gn

a �X ! X has an open orbit.
Two additive actions on X are said to be equivalent if one is obtained from another
via automorphism of Pm preservingX .

Clearly, any additive action on a projective subvarietyX induces an inner additive
action on X . The converse is not true, i.e., not any action Gn

a � X ! X with an
open orbit on a projective subvariety X can be extended to the ambient space Pm.

Example 1. Consider a subvariety

X D V.x2z � y3/ 
 P
2

and a rational Ga-action on X given by

�y
x
; a
�

7! y

x
C a:

Using affine charts one can check that this action is regular. On the other hand, it
cannot be extended to P2, because the closure of a Ga-orbit on P2 cannot be a cubic,
see Example 2.

At the same time, if the subvariety X is linearly normal in Pm and X is
normal, then an extension of a Gn

a-action to Pm exists. Indeed, the restriction
L DW O.1/jX of the line bundle O.1/ on Pm can be linearized with respect to
the action Gn

a � X ! X , see, e.g., [12]. The linearization defines a structure
of a rational Gn

a-module on the space of sections H0.X;L/. Since X is linearly
normal, the restriction H0.Pm;O.1// ! H0.X;L/ is surjective. Consider a vector
space decomposition H0.Pm;O.1// D V1 ˚ V2, where V1 is the kernel of the
restriction. The complementary subspace V2 projects to H0.X;L/ isomorphically.
This isomorphism induces a structure of a rational Gn

a-module on V2. Further, we
regardV1 as the trivial Gn

a-module. This gives a structure of a rational Gn
a-module on
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H0.Pm;O.1//. Since Pm is the projectivization of the dual space to H0.Pm;O.1//,
we obtain a required extended action Gn

a � Pm ! Pm.
From now on we consider additive actions on projective subvarietiesX 
 Pm.

3 The Hassett–Tschinkel Correspondence

In [11] Brendan Hassett and Yuri Tschinkel established a remarkable correspon-
dence between additive actions on the projective space Pn and local algebras of
K-dimension nC 1. Moreover, they described rational cyclic Gn

a-modules in terms
of local algebras. In this section we recall these results. The proofs given here are
taken from [2]. By a local algebra we always mean a commutative associative local
algebra with unit.

Let � W Gn
a ! GLmC1.K/ be a faithful rational representation. The differential

defines a representation d� W g ! glmC1.K/ of the tangent algebra g D Lie.Gn
a/

and the induced representation 	 W U.g/ ! MatmC1.K/ of the universal enveloping
algebra U.g/. Since the group Gn

a is commutative, the algebra U.g/ is isomorphic
to the polynomial algebra KŒx1; : : : ; xn�, where g is identified with the subspace
hx1; : : : ; xni. The algebra R WD 	.U.g// is isomorphic to the factor algebra
U.g/=Ker 	 . As 	.x1/; : : : ; 	.xn/ are commuting nilpotent operators, the algebra
R is finite-dimensional and local. Let us denote by X1; : : : ; Xn the images of the
elements x1; : : : ; xn in R. Then the maximal ideal of R is m WD .X1; : : : ; Xn/. The
subspaceW WD 	.g/ D hX1; : : : ; Xni generates R as an algebra with unit.

Assume that KmC1 is a cyclic Gn
a-module with a cyclic vector v, i.e., h�.Gn

a/vi D
KmC1. The subspace 	.U.g//v is g- and Gn

a-invariant; it contains the vector v and
therefore coincides with the space KmC1. Let I D fy 2 U.g/ W 	.y/v D 0g. Since
the vector v is cyclic, the ideal I coincides with Ker 	 , and we obtain identifications

R Š U.g/=I Š 	.U.g//v D K
mC1:

Under these identifications the action of an element 	.y/ on KmC1 corresponds
to the operator of multiplication by 	.y/ on the factor algebra R, and the vector
v 2 KmC1 goes to the residue class of unit. Since Gn

a D exp.g/, the Gn
a-action on

KmC1 corresponds to the multiplication by elements of exp.W / on R.
Conversely, let R be a local .m C 1/-dimensional algebra with a maximal ideal

m, and W 
 m be a subspace that generates R as an algebra with unit. Fix a basis
X1; : : : ; Xn in W . Then R admits a presentation KŒx1; : : : ; xn�=I , where I is the
kernel of the homomorphism

KŒx1; : : : ; xn� ! R; xi 7! Xi:

These data define a faithful representation � of the group Gn
a WD exp.W / on

the space R: the operator �..a1; : : : ; an// acts as multiplication by the element
exp.a1X1 C 	 	 	 C anXn/. Since W generates R as an algebra with unit, one checks
that the representation is cyclic with unit in R as a cyclic vector.
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Summarizing, we obtain the following result.

Theorem 1 ([11, Theorem 2.14]). The correspondence described above estab-
lishes a bijection between

.1/ equivalence classes of faithful cyclic rational representations

� W Gn
a ! GL

mC1.K/I

.2/ isomorphism classes of pairs .R;W /, where R is a local .mC 1/-dimensional
algebra with the maximal ideal m and W is an n-dimensional subspace of m
that generates R as an algebra with unit.

Remark 1. Let � W Gn
a ! GLmC1.K/ be a faithful cyclic rational representation.

The set of cyclic vectors in KmC1 is an open orbit of a commutative algebraic group
C with �.Gn

a/ 
 C 
 GLmC1.K/, and the complement of this set is a hyperplane.
In our notation, the group C is the extension of the commutative unipotent group
exp.m/ Š Gm

a by scalar matrices.

A faithful linear representation � W G
n
a ! GLmC1.K/ determines an effective

action of the group G
n
a on the projectivization P

m of the space K
mC1. Conversely,

let G be a connected affine algebraic group with the trivial Picard group, and
X be a normal G-variety. By [12, Sect. 2.4], every line bundle on X admits a
G-linearization. Moreover, ifG has no non-trivial characters, then aG-linearization
is unique. This shows that every effective G

n
a-action on P

m comes from a (unique)
faithful rational .mC 1/-dimensional Gn

a-module.
An effective Gn

a-action on P
m has an open orbit if and only if n D m. In this case

the correspondingGn
a-module is cyclic. In terms of Theorem 1 the condition n D m

meansW D m, and we obtain the following theorem.

Proposition 2 ([11, Proposition 2.15]). There is a one-to-one correspondence
between

.1/ equivalence classes of additive actions on Pn;

.2/ isomorphism classes of local .nC 1/-dimensional algebras.

Remark 2. It follows from Remark 1 that if the group Gn
a acts on Pm and some

orbit is not contained in a hyperplane, then the action can be extended to an additive
action Gm

a � Pm ! Pm. It seems that such an extension exists without any extra
assumption.

Given the projectivization Pm of a faithful rational Gn
a-module and a point x 2

Pm with the trivial stabilizer, the closureX of the orbit Gn
a 	 x is a projective variety

equipped with an additive action. Closures of generic orbits are hypersurfaces if and
only if n D m � 1. If such a hypersurface is not a hyperplane, then Pm comes from
the projectivization of a cyclic Gn

a-module, it is given by a pair .R;W /, and the
condition n D m � 1 means that W is a hyperplane in m. We obtain the following
result.



Additive Actions on Projective Hypersurfaces 23

Proposition 3. There is a one-to-one correspondence between

.1/ equivalence classes of additive actions on hypersurfaces in PnC1 of degree at
least two;

.2/ isomorphism classes of pairs .R;W /, where R is a local .nC 2/-dimensional
algebra with the maximal ideal m andW is a hyperplane in m that generatesR
as an algebra with unit.

It is shown in [2, Theorem 5.1] that the degree of the hypersurface corresponding
to a pair .R;W / is the maximal exponent d such that the subspace W does not
contain the ideal md .

Example 2. There exist two 3-dimensional local algebras,

KŒx�=.x3/ and KŒx; y�=.x2; xy; y2/:

In the first case m3 D 0, and in the second one we have m2 D 0. This shows that for
every Ga-action on P2 the orbit closures are either lines or quadrics.

4 Invariant Multilinear Forms on Local Algebras

Consider a pair .R;W / as in Proposition 3 and let H 
 PnC1 be the corresponding
hypersurface. Let us fix a coordinate system on R D h1i ˚ m such that x0 is the
coordinate along h1i and x1; : : : ; xnC1 are coordinates on m.

Assume that H is defined by a homogeneous equation

f .x0; x1; : : : ; xnC1/ D 0

of degree d . Since H is invariant under the action of Gn
a, the polynomial f is Gn

a-
semi-invariant [14, Theorem 3.1]. But the group Gn

a has no non-trivial characters,
and the polynomial f is Gn

a-invariant. Equivalently, f is annihilated by the Lie
algebra g.

It is well known that for a given homogeneous polynomial f of degree d on a
vector space R there exists a unique d -linear symmetric map

F WR �R � 	 	 	 � R ! K

such that f .v/ D F.v; v; : : : ; v/ for all v 2 R, see, e.g., [14, Sect. 9.1]. The map F
is called the polarization of the polynomial f .

Since the representation d� of the Lie algebra g on R is given by multiplication
by elements of W; a homogeneous polynomial f on R is annihilated by g if and
only if

F.ab1; b2; : : : ; bd /CF.b1; ab2; : : : ; bd /C 	 	 	 C F.b1; b2; : : : ; abd /D 0 8 a2W;
b1; : : : ; bd 2 R: (1)
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Definition 3. Let R be a local algebra with the maximal ideal m. An invariant
d -linear form on R is a d -linear symmetric map

F WR �R � 	 	 	 � R ! K

such that F.1; 1; : : : ; 1/ D 0, the restriction of F to m is nonzero, and there exists
a hyperplane W in m which generates R as an algebra with unit and such that
condition (1) holds.

If F1 (resp. F2) are invariant d1-linear (resp. d2-linear) forms on R with respect
to the same hyperplane W , then the product F1F2 defines an invariant .d1 C d2/-
linear form. An invariant multilinear form is said to be irreducible, if it cannot be
represented as such a product.

One can show that there is no invariant linear form. It implies that any invariant
bilinear or 3-linear form is irreducible.

We are ready to formulate our main result.

Theorem 2. Additive actions on hypersurfaces of degree d � 2 in PnC1 are in
natural one-to-one correspondence with pairs .R; F /, where R is a local algebra
of dimension n C 2 and F is an irreducible invariant d -linear form on R up to a
scalar.

Proof. An additive action on a hypersurface H in PnC1 is given by a faithful
rational representation � W Gn

a ! GLnC2.K/ making KnC2 a cyclic Gn
a-module.

In our correspondence we identify KnC2 with the local algebra R. We choose
coordinates x0; x1; : : : ; xnC1 compatible with the decomposition R D h1i ˚ m.
Let f .x0; x1; : : : ; xnC1/ D 0 be the equation of the hypersurface H , where f is
irreducible. Then the algebra of Gn

a-invariants on KnC2 is freely generated by x0
and f .

Every Gn
a-invariant hypersurface in PnC1 is given by

f̨ .x0; x1; : : : ; xnC1/C ˇxd0 D 0; .˛; ˇ/ 2 K
2 n f.0; 0/g:

So we may assume that f does not contain the term xd0 . Let F be the polarization
of f . Then condition (1) holds and F.1; : : : ; 1/ D 0. If the restriction of F to m is
zero, then x0 divides f , and f is not irreducible, a contradiction.

Conversely, let .R; F / be such a pair and W be a subspace from the definition
of F . Then .R;W / gives rise to a structure of a rational Gn

a-module on R. Consider
the hypersurface f D 0 in P.R/ Š PnC1, where f .v/ D F.v; v; : : : ; v/. It is
invariant under the action of Gn

a. By the assumptions, f is irreducible and thus the
hypersurface f D 0 coincides with the closure of a generic Gn

a-orbit. ut
Given a hyperplaneW in the maximal ideal m of a local algebraR that generates

R as an algebra with unit, let d be the maximal exponent such that the subspace
W does not contain the ideal md . By Theorem 2 and [2, Theorem 5.1], there exists
a unique up to a scalar irreducible invariant (with respect to W ) d -linear form FW
on R. Let us write down this form explicitly.
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By linearity, we may assume that each argument of FW is either the unit 1 or
an element of m. Fix an isomorphism m=W Š K and consider the projection
�Wm ! m=W Š K. We define the form

FW .b1; : : : ; bd / WD .�1/kkŠ.d � k � 1/Š �.b1 : : : bd /;

where k is the number of units among b1; : : : ; bd , and for k D d we let
FW .1; : : : ; 1/ D 0.

Lemma 1. The form FW is an irreducible invariant d -linear form on R.

Proof. We begin with condition (1). Since abi 2 m for all a 2 W and bi 2 R, with
0 < k < d this condition can be rewritten as

.k.�1/k�1.k � 1/Š.d � k/ŠC .d � k/.�1/kkŠ.d � k � 1/Š/ �.ab1 : : : bd / D 0;

and it is obvious. For k D 0 we have ab1 : : : bd 2 mdC1 
 W , and thus
�.ab1 : : : bd / D 0. For k D d we have �.d � 2/Š�.a/ D 0, because a 2 W .

The restriction of F to m is nonzero since md is not contained in W .
It follows from [2, Theorem 5.1] that the form F is irreducible. Finally, we have
FW .1; : : : ; 1/ D 0 by definition. ut

The next proposition follows immediately from [13, Theorems 1 and 4]. Let us
obtain this result using our technique.

Proposition 4. Let H be a smooth hypersurface in PnC1 admitting an additive
action. Then H is either a hyperplane or a non-degenerate quadric.

Proof. Assume that an additive action on H is given by a triple .R;W;F /. Let
e0; e1; : : : ; enC1 be a basis of R compatible with the decomposition

R D h1i ˚W ˚ henC1i:

Moreover, we may assume that enC1 2 md , where mdC1 is contained in W . Then
in the notation of Lemma 1 we have �.benC1/ D 0 for all b 2 m. It means that the
variable xnC1 can appear in the equation f .x0; : : : ; xnC1/ D 0 of the hyperplaneH
only in the term xd�1

0 xnC1. Thus the point Œ0 W : : : W 0 W 1� lies onH and it is singular
provided d � 3. It remains to note that the only smooth quadric is a non-degenerate
one. ut
Proposition 5. Let H be a hypersurface in PnC1 which admits an additive action
and such that the group Aut.H/0 is reductive. Then H is either a hyperplane or a
non-degenerate quadric.

Proof. By Proposition 1, the variety H is smooth, and the assertion follows from
Proposition 4. ut
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Remark 3. Take a triple .R;W;F / as in Definition 3 and consider the sum I of
all ideals of the algebra R contained in W . It is the biggest ideal of R contained
inW . Taking a compatible basis ofR, we see that the equation of the corresponding
hypersurface does not depend on the coordinates in I . Moreover, for the factor
algebra R0 D R=I we have

R0 D h10i ˚W 0 ˚ .m0/d

with m0 D m=I , W 0 D W=I , and dim.m0/d D 1. The invariant form F descents to
R0, the subspaceW 0 contains no ideal of R0, and the algebraR0 is Gorenstein. Such
a reduction is useful in classification problems.

5 Non-degenerate Quadrics

In this section we classify non-degenerate invariant bilinear symmetric forms on
local algebras. These results are obtained in [15], but we give a short elementary
proof.

Let R be a local algebra of dimension n C 2 with the maximal ideal m and F a
non-degenerate bilinear symmetric form on R such that F.1; 1/ D 0. Assume that
for some hyperplaneW in m generatingR we have

F.ab1; b2/C F.b1; ab2/ D 0 for all b1; b2 2 R and a 2 W: (2)

We choose a basis e0 D 1; e1; : : : ; en; enC1 of R such that W D he1; : : : ; eni
and m D he1; : : : ; enC1i. For any b 2 R let b D b.0/ C b.1/ C 	 	 	 C b.nC1/ be the
decomposition corresponding to this basis.

Lemma 2. (1) F.1; a/ D 0 for all a 2 W ;
(2) F.1; b/ D F.1; b.nC1// for all b 2 R;
(3) If a; a0 2 W and aa0 2 W , then aa0 D 0;
(4) The restriction of the form F to W is non-degenerate.

Proof. Assertion (1) follows from (2) with b1 D b2 D 1. For (2), note that

F.1; b/ D F.1; b.0//C F.1; b.1/ C 	 	 	 C b.n//C F.1; b.nC1//:

The first term is 0 because of F.1; 1/ D 0, and the second one is 0 by (1).
If a; a0; aa0 2 W , then for any b 2 R we have

F.b; aa0/ D �F.ab; a0/ D F.aa0b; 1/ D �F.b; aa0/;

and F.b; aa0/ D 0. Since F is non-degenerate, we obtain (3).
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For (4), assume that for some 0 ¤ a 2 W we have F.a; a0/ D 0 for all a0 2 W .
Since F is non-degenerate, it yields F.a; enC1/ D � for some nonzero � 2 K.
If F.1; enC1/ D 
, then F.
a � �1; enC1/ D 0, and the vector 
a � �1 is in the
kernel of the form F . ut

Let us denote byM.F / the matrix of a bilinear form F in a given basis.

Proposition 6. In the notation as above, the triple .R;W; F / can be transformed
into the form

R D KŒe1; : : : ; en�=.e
2
i � e2j ; ei ej I 1 � i < j � n/; W D he1; : : : ; eni;

M.F / D

0
BBBBB@

0 0 : : : 0 1

0 �1 : : : 0 0
:::
:::
: : :

:::
:::

0 0 : : : �1 0
1 0 : : : 0 0

1
CCCCCA

Proof. Since F is non-degenerate, we may assume that F.1; enC1/ D 1. Using
Lemma 2, (4), we may suppose that F.ei ; ej / D �ıij for all 1 � i; j � n. Now the
matrix of the form F looks like

0
BBBBB@

0 0 : : : 0 1

0 �1 : : : 0 �
:::
:::
: : :

:::
:::

0 0 : : : �1 �
1 � : : : � �

1
CCCCCA

For all 1 � i < j � n we have F.1; eiej / D �F.ei ; ej / D 0. It follows from
Lemma 2, (2) that .eiej /.nC1/ D 0. We conclude that ei ej 2 W and thus eiej D 0

by Lemma 2, (3).
Since F.1; e2i / D �F.ei ; ei / D 1, we have e2i D enC1 C fi , where fi 2 W .

Then

.e1 C ei /.e1 � ei / D e21 � e2i D f1 � fi 2 W:

By Lemma 2, (3) we obtain e21 D e2i .
Without loss of generality it can be assumed that enC1 D e21 . Let n � 2. Then

enC1ei D e2j ei D 0, where 1 � i ¤ j � n. If n D 1 then enC1e1 D e31 2 m3 D 0.
Hence enC1b D 0 for any element b 2 m, and R is isomorphic to

KŒe1; : : : ; en�=.e
2
i � e2j ; ei ej /.
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It remains to prove that enC1 ?F m. Indeed, we have

F.enC1; b/ D F.e21; b/ D �F.e1; e1b/ D F.1; e21b/ D F.1; 0/ D 0 8b 2 m:

This completes the proof of the proposition. ut
As a corollary we obtain the result of [15, Theorem 4].

Corollary 1. A non-degenerate quadric Qn 
 PnC1 admits a unique additive
action up to equivalence.

6 Quadrics of Corank One

Let us classify invariant bilinear symmetric forms of rank n C 1 on local
.nC 2/-dimensional algebras. Geometrically these results can be interpreted as
a classification of additive actions on quadrics of corank one in PnC1.

Let R be a local algebra of dimension n C 2, n � 2, with the maximal ideal
m and F a bilinear symmetric form of rank n C 1 on R such that F.1; 1/ D 0.
Assume that for some hyperplane W in m condition (2) holds. We choose a basis
e0 D 1; e1; : : : ; en; enC1 of R such that W D he1; : : : ; eni and m D he1; : : : ; enC1i.

Lemma 3. The kernel KerF is contained in W .

Proof. Let KerF D hli. Assume that l is not in W . Then we should consider four
alternatives.

1. Let hli D h1i. Then F.a; b/ D �F.1; ab/ D 0 for all a 2 W; b 2 R, and
dim KerF � 2, a contradiction.

2. Let hli 
 m n W . Without loss of generality it can be assumed that l D enC1.
As we have seen, F.1; b/ D F.1; b.nC1// D 0 for all b 2 R. Thus we have
1 2 KerF , which leads to a contradiction.

3. Let hli 
 R n .m [ h1;W i/. Without loss of generality it can be assumed that
l D 1 C enC1. We have 0 D F.1; l/ D F.1; 1/ C F.1; enC1/ D F.1; enC1/.
It again follows that 1 2 KerF .

4. Let hli 
 h1;W i nW . We can assume that l D 1Cf , whereW 3 f ¤ 0. Then

F.1; b/ D �F.f; b/ D F.1; fb/ D 	 	 	 D F.1; f nC3b/ D 0 8 b 2 R:

Thus we again have 1 2 KerF .

This completes the proof of the lemma. ut
Proposition 7. In the notation as above, the triple .R;W; F / can be transformed
into the form
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M.F / D

0
BBBBBBBB@

0 0 : : : 0 0 1

0 �1 : : : 0 0 0
:::
:::
: : :

:::
:::
:::

0 0 : : : �1 0 0
0 0 : : : 0 0 0

1 0 : : : 0 0 0

1
CCCCCCCCA
; W D he1; : : : ; eni;

and R is isomorphic to one of the following algebras:

1. KŒe1; : : : ; en�=.eiej � �ijen; e
2
i � e2j � .�ii � �jj/en; esen; 1 � i < j � n � 1;

1 � s � n; n � 3/ where �ij are elements of a symmetric block diagonal
.n � 1/ � .n� 1/-matrix ƒ such that each block ƒk is

�k

0
BBBB@

1 0 0

0
: : :

: : :

: : :
: : : 0

0 0 1

1
CCCCA

C 1

2

0
BBBB@

0 1 0

1
: : :

: : :

: : :
: : : 1

0 1 0

1
CCCCA

C i

2

0
BBBB@

0 1 0
: : :

: : : �1
1
: : :

: : :

0 �1 0

1
CCCCA

with some �k 2 K;
2. KŒe1; e2�=.e31; e1e2; e

2
2/ or KŒe1�=.e

4
1/ with e2 D e31; e3 D e21 .

Remark 4. Blocksƒk of size 1 are
�
�k
	
. Blocksƒk of size 2 are

0
B@
�k C i

2

1

2
1

2
�k � i

2

1
CA

Proof of Proposition 7. By Lemma 3 we may assume that KerF D heni and
F.1; enC1/ D 1, because of F.1; a/ D 0 for all a 2 W . Let V be the linear span
he1; : : : ; en�1i. As in Lemma 2, (4) one can show that the restriction of F to V is
non-degenerate. Thus we can assume that the matrix of F has the form

0
BBBBBBBB@

0 0 : : : 0 0 1

0 �1 : : : 0 0 �
:::
:::
: : :

:::
:::
:::

0 0 : : : �1 0 �
0 0 : : : 0 0 �
1 � : : : � � �

1
CCCCCCCCA
:

We have 1 D �F.ei ; ei / D F.1; e2i / D F.1; .e2i /
.nC1// ) e2i D enC1 C fi for

some fi 2 W and every i D 1; : : : ; n � 1. We may assume that enC1 D e21 .
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Then fi D e2i � e21 D .ei C e1/.ei � e1/ and, as in Lemma 2, (3), we obtain
fi D �iien.

Again as in Lemma 2, (3), we have eiej D �ijen for all 1 � i < j � n � 1.
Thus multiplication on the subspace V is given by the matrix InenC1 C ƒen,

where In is the identity matrix and a symmetric matrix ƒ is defined up to adding a
scalar matrix.

It is easy to check that the symmetric matrix ƒ D .�ij/ under orthogonal
transformations on V transforms as the matrix of a bilinear symmetric form.
It follows from [10, Chap. 11, Sect. 3] that ƒ can be transformed into the canonical
block diagonal form by orthogonal transformation. Here each blockƒk has the form

�k

0
BBBB@

1 0 0

0
: : :

: : :

: : :
: : : 0

0 0 1

1
CCCCA

C 1

2

0
BBBB@

0 1 0

1
: : :

: : :

: : :
: : : 1

0 1 0

1
CCCCA

C i

2

0
BBBB@

0 1 0
: : :

: : : �1
1
: : :

: : :

0 �1 0

1
CCCCA
; �k 2 K:

We claim that enm D 0. Indeed,F.aen; b/ D �F.en; ab/ D 0 for all a 2 W and
b 2 R, and thus aen D ˛en for some ˛ 2 K. But a is nilpotent, and ˛ D 0. Finally,
we have enenC1 D ene

2
1 D 0.

Further,

F.enC1a; 1/ D �F.enC1; a/ D �F.e21; a/ D �F.1; e21a/
D �F.1; enC1a/ ) F.enC1; a/ D 0 (3)

for all a 2 W .

1. Let n � 3. We claim that enC1m D 0. Indeed, for 1 � i ¤ j � n� 1 we have

enC1ei D .e2j � �jjen/ei D �ijej en � �jjenei D 0:

In this case the algebra R is isomorphic to

KŒe1; : : : ; en�=.eiej � �ijen; e
2
i � e2j � .�ii � �jj/en; esen;

1 � i < j � n � 1; 1 � s � n/:

2. Let n D 2. We have e23 D e41 2 m4 D 0 ) e23 D 0. Since F.e1e3; 1/ D
�F.e3; e1/ D 0, it follows that e1e3 2 W . Thus e1e3 D ˛e1 C ˇe2 and we have

0 D e41 D .e1e3/e1 D ˛e21 C ˇe1e2 D ˛e3 ) ˛ D 0:

If ˇ D 0, then R Š KŒe1; e2�=.e
3
1; e1e2; e

2
2/. If ˇ ¤ 0, then we may assume that

ˇ D 1, and R ' KŒe1�=.e
4
1/ with e2 D e31; e3 D e21 .
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In all cases e2nC1 D e21enC1 D 0, and it follows that F.enC1; enC1/ D
F.1; e2nC1/ D 0. Combining this with (3), we obtain

M.F / D

0
BBBBBBBB@

0 0 : : : 0 0 1

0 �1 : : : 0 0 0
:::
:::
: : :

:::
:::
:::

0 0 : : : �1 0 0
0 0 : : : 0 0 0

1 0 : : : 0 0 0

1
CCCCCCCCA
:

Proposition 7 is proved. ut
Remark 5. The normal form of a symmetric matrixƒ is unique up to permutation of
blocks. Indeed, we conjugate the matrix ƒ by the symmetric block diagonal matrix
T such that each block Tk is

1

2

0
BBBBB@

1 0 : : : 0 i

0 1 i 0
:::

: : :
:::

0 i 1 0

i 0 : : : 0 1

1
CCCCCA
;

and obtain the Jordan normal form of ƒ with the same block sizes and the same
eigenvalues.

We claim that the matrix ƒ defining a triple .R;W;F / is unique up to
permutation of blocks, scalar multiplication, and adding a scalar matrix. To see
this, let two matrices ƒ;ƒ0 define the same triple .R;W;F /. Notice that adding
a scalar matrix to ƒ we do not change the defining relations of R. Denote by � an
automorphism of R such that W D �.W / and

F D ��1T F��1:

It yields KerF D �.KerF / and �.en/ D ˛en. Multiplying the matrix ƒ0 by
˛�1 we obtain �.en/ D en. Moreover, � induces on W=KerF an orthogonal
transformation, and thus two canonical forms of the matrix ƒ can differ only by
the order of blocks.

Example 3. Two cases in Proposition 7, (2), correspond to two non-equivalent
actions of G2

a on the quadric 2x0x3 � x21 D 0 in P3, namely,

.a1; a2/ 	 Œx0 W x1 W x2 W x3� D
�
x0 W x1 C a1x0 W x2 C a2x0 W x3 C a21

2
x0 C a1x1

�
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and

.a1; a2/ 	 Œx0 W x1 W x2 W x3�

D
�
x0 W x1 C a1x0 W x2 C

�
a2 C a31

6

�
x0 C a21

2
x1 C a1x3 W x3 C a21

2
x0 C a1x1

�
:

For the first action there is a line of fixed points, while the second one has three
orbits.

Example 4. Let n D 3. If the matrix ƒ is diagonal, then up to scalar addition and

multiplication we have ƒ D
�
0 0

0 0

�
or ƒ D

�
0 0

0 1

�
. With non-diagonalƒ we have

�
i=2 1=2

1=2 �i=2
�

. So there are three equivalence classes of additive actions in this case,

and they can be easily written down explicitly.

Example 5. Consider the case n D 4. We have six types of the matrix ƒ with one
depending on a parameter. Namely, in the diagonal matrix ƒ D diag.0; 1; t/,
where t 2 K n f0; 1g, the parameter t is defined up to transformations˚
t; 1
t
; 1 � t; t�1

t
; t
t�1 ;

1
1�t


. Therefore, the parameters t and t 0 determine equivalent

actions if and only if

.t2 � t C 1/3

t2.1 � t/2
D .t 02 � t 0 C 1/3

t 02.1 � t 0/2 :

The action of G4
a on the quadric 2x0x5 � x21 � x22 � x23 D 0 in this case has the form

.a1; a2; a3; a4/ 	 Œx0 W x1 W x2 W x3 W x4 W x5�

D
�
x0 W x1 C a1x0 W x2 C a2x0 W x3 C a3x0 W x4 C 2a4 C a22 C ta23

2
x0

Ca2x2 C ta3x3 W x5 C a21 C a22 C a23
2

x0 C a1x1 C a2x2 C a3x3

�
:

This agrees with the results of [2, Sect. 4].
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Cremona Groups of Real Surfaces

Jérémy Blanc and Frédéric Mangolte

Abstract We give an explicit set of generators for various natural subgroups of the
real Cremona group BirR.P2/. This completes and unifies former results by several
authors.

MSC 2000: 14E07, 14P25, 14J26

1 Introduction

1.1 On the Real Cremona Group BirR.P2/

The classical Noether–Castelnuovo Theorem [3] (see also [1, Chap. 8] for a modern
exposition of the proof) gives generators of the group BirC.P2/ of birational trans-
formations of the complex projective plane. The group is generated by the biregular
automorphisms, which form the group AutC.P2/ D PGL.3;C/ of projectivities, and
by the standard quadratic transformation

�0W .x W y W z/ Ü .yz W xz W xy/:
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This result does not work over the real numbers. Indeed, recall that a base point
of a birational transformation is a (possibly infinitely near) point of indeterminacy;
and note that two of the base points of the quadratic involution

�1W .x W y W z/ Ü .y2 C z2 W xy W xz/

are not real. Thus �1 cannot be generated by projectivities and �0. More generally,
we cannot generate this way maps having non real base-points. Hence the group
BirR.P2/ of birational transformations of the real projective plane is not generated
by AutR.P2/ D PGL.3;R/ and �0.

The first result of this note is that BirR.P2/ is generated by AutR.P2/, �0, �1, and
a family of birational maps of degree 5 having only non real base-points.

Theorem 1.1. The group BirR.P2/ is generated by AutR.P2/, �0, �1, and the
standard quintic transformations of P2 .defined in Example 3.1/.

The proof of this result follows the so-called Sarkisov program, which amounts
to decompose a birational map between Mori fibre spaces as a sequence of simple
maps, called Sarkisov links. The description of all possible links has been done in
[9] for perfect fields, and in [14] for real surfaces. We recall it in Sect. 2 and show
how to deduce Theorem 1.1 from the list of Sarkisov links.

Note that a family of generators of BirK.P2/ is given in [8], for any perfect
field K. When taking K D R, the list is however longer than the one given in
Theorem 1.1.

Let X be an algebraic variety defined over R (always assumed to be geomet-
rically irreducible), we denote as usual by X.R/ the set of real points endowed
with the induced algebraic structure. The topological space P2.R/ is then the real
projective plane, letting F0 WD P1 � P1, the space F0.R/ is the torus S1 � S1 and
lettingQ3;1 D f.w W x W y W z/ 2 P3 j w2 D x2 C y2 C z2g, the real locusQ3;1.R/ is
the sphere S2.

Recall that an isomorphism X.R/ ! Y.R/ is a birational map 'WX Ü Y

defined over R such that ' is defined at all real points ofX and '�1 at all real points
of Y . The set of automorphisms of X.R/ form a group Aut.X.R//, and we have
natural inclusions

AutR.X/ � Aut.X.R// � BirR.X/:

The strategy used to prove Theorem 1.1 allows us to treat similarly the case of
natural subgroups of BirR.P2/, namely the groups Aut.P2.R//, Aut.Q3;1.R// and
Aut.F0.R// of three minimal real rational surfaces (see Corollary 2.10). This way,
we give a unified treatment to prove three theorems on generators, the first two of
them already proved in a different way in [11, 15].

Observe that Aut.Q3;1.R// and Aut.F0.R// are not really subgroups of BirR.P2/,
but each of them is isomorphic to a subgroup which is determined up to conjugation.
In fact, for any choice of a birational map  WP2 Ü X (X D Q3;1 or F0),
 �1 Aut.X.R// � BirR.P2/.
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Theorem 1.2 ([15]). The group Aut.P2.R// is generated by

AutR.P2/ D PGL.3;R/

and by standard quintic transformations.

Note that, up to the action of PGL.3;R/, the standard quintic transformations
form an algebraic variety of (real) dimension 4. This is in contrast with the complex
case, where the set of standard quadratic transformations is f�0g, up to the action of
PGL.3;C/.

Theorem 1.3 ([11]). The group Aut.Q3;1.R// is generated by

AutR.Q3;1/ D PO.3; 1/

and by standard cubic transformations.

Here the real dimension of the variety of standard cubic transformations, modulo
PO.3; 1/, is 2.

Theorem 1.4. The group Aut.F0.R// is generated by

AutR.F0/ Š PGL.2;R/2 Ì Z=2Z

and by the involution

	0W ..x0 W x1/; .y0 W y1// Ü ..x0 W x1/; .x0y0 C x1y1 W x1y0 � x0y1//:

In each case, we don’t know any easy way of computing the relations between
the given generators. (See [10] for a description in a more general setting, whose
application to the real case does not fit our set of generators.)

The proof of Theorems 1.1, 1.2, 1.3, 1.4 is given in Sects. 4, 3, 5, 6, respectively.
Section 7 is devoted to present some related recent results on birational geometry of
real projective surfaces.

In the sequel, surfaces and maps are assumed to be real. In particular if we
consider that a real surface is a complex surface endowed with a Galois-action of
G WD Gal.CjR/, a map is G-equivariant. On the contrary, points and curves are not
assumed to be real a priori.

We would like to thank the referee whose remarks helped us to improve the
exposition and Igor Dolgachev for indicating us references.

2 Mori Theory for Real Rational Surfaces and Sarkisov
Program

We work with the tools of Mori theory. A good reference in dimension 2, over
any perfect field, is [9]. The theory, applied to smooth projective real rational
surfaces, becomes really simple. The description of Sarkisov links between real
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rational surfaces has been done in [14], together with a study of relations between
these links. In order to state this classification, we first recall the following classical
definitions (which can be found in [9]).

Definition 2.1. A smooth projective real rational surface X is said to be minimal
if any birational morphism X ! Y , where Y is another smooth projective real
surface, is an isomorphism.

Definition 2.2. A Mori fibration is a morphism �WX ! W where X is a smooth
projective real rational surface and one of the following occurs:

(1) �.X/ D 1, W is a point (usually denoted f�g), and X is a del Pezzo surface;
(2) �.X/ D 2, W D P1 and the map � is a conic bundle.

Note that for an arbitrary surface, the curve W in the second case should be any
smooth curve, but we restrict ourselves to rational surfaces which implies that W is
isomorphic to P1.

Proposition 2.3. Let X be a smooth projective real rational surface. If X is
minimal, then it admits a morphism �WX ! W which is a Mori fibration.

Proof. Follows from [7, Theorem 1]. See also [13]. ut
Definition 2.4. A Sarkisov link between two Mori fibrations �1WX1 ! W1 and
�2WX2 ! W2 is a birational map 'WX1 Ü X2 of one of the following four types,
where each of the diagrams is commutative:

(1) LINK OF TYPE I

X1

�1

��

'

�������� X2

�2

��

f�g D W1 W2 D P1
	

��

where '�1WX2 ! X1 is a birational morphism, which is the blow-up of either a
real point or two non-real conjugate points ofX1, and where 	 is the contraction
of W2 D P1 to the pointW1.

(2) LINK OF TYPE II

X1

'

��� � � � �

�1

��

Z
�1

��
�2

�� X2

�2

��
W1

	

'
�� W2
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where �i WZ ! Xi is a birational morphism, which is the blow-up of either
a real point or two non-real conjugate points of Xi , and where 	 is an
isomorphism betweenW1 andW2.

(3) LINK OF TYPE III

X1
'

��

�1

��

X2

�2

��
P1 D W1

	

�� W2 D f�g

where 'WX1 ! X2 is a birational morphism, which is the blow-up of either a
real point or two non-real conjugate points ofX2, and where 	 is the contraction
of W1 D P

1 to the pointW2. (It is the inverse of a link of type I.)
(4) LINK OF TYPE IV

X1
'

'
��

�1

��

X2

�2

��

P1 D W1 W2 D P1

where 'WX1 ! X2 is an isomorphism and �1; �2 ı ' are conic bundles on X1
with distinct fibres.

Remarks 2.5.

(1) The morphism 	 is important only for links of type II, between two surfaces
with a Picard group of rank 2 (in higher dimension 	 is important also for other
links).

(2) There is only one possibleW1 and one possibleW2 in cases I; III; IV but a priori
several possibilities in case II.

(3) We shall see in Example 2.13(2) that indeed there exists links of type II where
W1 D W2 D f�g. This is a feature of the real case that does not arise in the
complex case.

Definition 2.6. If �WX ! W and � 0WX 0 ! W 0 are two (Mori) fibrations, an
isomorphism  WX ! X 0 is called an isomorphism of fibrations if there exists an
isomorphism 	 WW ! W 0 such that � 0 D 	� .

Note that the composition ˛'ˇ of a Sarkisov link ' with some automorphisms of
fibrations ˛ and ˇ is again a Sarkisov link. We have the following fundamental
result:
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Proposition 2.7. If �WX ! W and � 0WX 0 ! W 0 are two Mori fibrations, then
any birational map  WX Ü X 0 is either an isomorphism of fibrations or admits a
decomposition into Sarkisov links  D 'n : : : '1 such that

.i/ for i D 1; : : : ; n � 1, the birational map 'iC1'i is not biregular;
.ii/ for i D 1; : : : ; n, every base-point of 'i is a base-point of 'n : : : 'i .

Proof. Follows from [9, Theorem 2.5] (see also the appendix of [5]).
Let us give an idea of the strategy here, and refer to [9] for the details. If  is

not an isomorphism of fibrations, then one can associate with it a Sarkisov degree,
which is a triple of numbers .a; r;m/ (see Definition at page 601 of [9]). The number
a 2 Q is given by the degree of the linear system HX on X associated with  , the
number r 2 N is the maximal multiplicity of the base-points of this system andm is
the number of base-points that realise this maximum. Then, we have the following
dichotomy:

.i/ If r > a, we denote by �W OX ! X the blow-up of one real point or two
conjugate non-real points that realise the multiplicity, then find that either OX
admits a structure of Mori fibration and '1 D ��1 is a link of type I, or find a
contraction � 0W OX ! X1 such that '1 D � 0��1WX Ü X1 is a link of type III.

.ii/ If r � a, we either find a contraction '1WX ! X1 which is a link of type III or
find a link of type IV, which is an automorphism '1WX ! X .

In each case, it is shown that the Sarkisov degree of  .'1/�1WX1 Ü X 0 is
smaller than the one of  , for the lexicographical ordering. The set of all possible
Sarkisov degrees being discrete and bounded from below ([9, last paragraph of page
601]), the procedure ends at some point.

Moreover, the construction of the links implies that the two properties described
above hold. ut
Remark 2.8. In the above decomposition, if  has no real base-point (for instance
when  induces an isomorphism X.R/ ! X 0.R/), then '1 and '2 have no real
base-point. However, the maps 'i for i � 3 can have some real base-points, which
have been artificially created, and correspond in fact to the base-points of .'j /�1 for
j < i .

This phenomenon happens for any 2 Aut.P2.R//nAut.P2/, as the first link '1
will blow-up two non-real base-point and contract the line through these two, onto
a real point, base-point of .'1/�1 and of 'n : : : '2 (see Example 2.13(2) below).

Theorem 2.9 ([4] (see also [7])). Let X be a real rational surface, if X is minimal,
then it is isomorphic to one of the following:

.1/ P2,

.2/ the quadric Q3;1 D f.w W x W y W z/ 2 P3 j w2 D x2 C y2 C z2g,

.3/ a Hirzebruch surface Fn D f..x W y W z/; .u W v// 2 P2 � P1 j yvn D zung with
n ¤ 1.



Cremona Groups of Real Surfaces 41

By [12], if n � n0 � 0 mod 2, Fn.R/ is isomorphic to Fn0.R/. We get:

Corollary 2.10. Let X.R/ be the real locus of a real rational surface. If X is
minimal, then X.R/ is isomorphic to one of the following:

.1/ P2.R/,

.2/ Q3;1.R/, diffeomorphic to S2,

.3/ F0.R/, diffeomorphic to S1 � S1,

.4/ F3.R/, diffeomorphic to the Klein bottle.

Remark 2.11. Note that F3.R/ and F1.R/ are isomorphic. However, F1 is not
minimal although F3 is.

In the same vein, there exists a birational morphism P2.R/ ! Q3;1.R/, that
contracts a real line (the map '�1 in Example 2.13(2)).

We give a list of Mori fibrations on real rational surfaces and will show that, up
to isomorphisms of fibrations, this list is exhaustive.

Example 2.12. The following morphisms �WX ! W are Mori fibrations on the
plane, the sphere, the Hirzebruch surfaces, and a particular Del Pezzo surface of
degree 6.

(1) P2 ! f�g;
(2) Q3;1 D f.w W x W y W z/ 2 P3

R
j w2 D x2 C y2 C z2g ! f�g;

(3) Fn D f..x W y W z/; .u W v// 2 P2 � P1 j yvn D zung ! P1 for n � 0 (the map is
the projection on the second factor);

(4) D6 D f.w W x W y W z/; .u W v/ 2 Q3;1 � P1 j wv D xug ! P1 (the map is the
projection on the second factor).

Example 2.13. The following maps between the surfaces of Example 2.12 are
Sarkisov links (in the list, fibres refer to those of the Mori fibrations introduced
in Example 2.12):

(1) The contraction of the exceptional curve of F1 (or equivalently the blow-up of
a real point of P2), is a link F1 ! P

2 of type III. Note that the inverse of this
link is of type I.

(2) The stereographic projection from the North pole pN D .1 W 0 W 0 W 1/,
'WQ3;1 Ü P

2 given by

'W .w W x W y W z/ Ü .x W y W w � z/

and its inverse '�1WP2 Ü Q3;1 given by

'�1W .x W y W z/ Ü .x2 C y2 C z2 W 2xz W 2yz W x2 C y2 � z2/

are both Sarkisov links of type II.
The map ' decomposes into the blow-up of pN , followed by the contraction

of the strict transform of the curve z D w (intersection of Q3;1 with the tangent
plane at pN ), which is the union of two non-real conjugate lines. The map '�1
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decomposes into the blow-up of the two non-real points .1 W ˙i W 0/, followed
by the contraction of the strict transform of the line z D 0.

(3) The projection on the first factor D6 ! Q3;1 which contracts the two disjoint
conjugate non-real .�1/-curves .0 W 0 W 1 W ˙i/ � P1 � D6 onto the two
conjugate non-real points .0 W 0 W 1 W ˙i/ 2 Q3;1 is a link of type III.

(4) The blow-up of a real point q 2 Fn, lying on the exceptional section if n > 0

(or any point if n D 0), followed by the contraction of the strict transform of the
fibre passing through q onto a real point of FnC1 not lying on the exceptional
section is a link Fn Ü FnC1 of type II.

(5) The blow-up of two conjugate non-real points p; Np 2 Fn lying on the
exceptional section if n > 0, or on the same section of self-intersection 0
if n D 0, followed by the contraction of the strict transform of the fibres
passing through p; Np onto two non-real conjugate points of FnC2 not lying on
the exceptional section is a link Fn Ü FnC2 of type II.

(6) The blow-up of two conjugate non-real points p; Np 2 Fn, n 2 f0; 1g not lying
on the same fibre (or equivalently not lying on a real fibre) and not on the same
section of self-intersection �n (or equivalently not lying on a real section of
self-intersection �n), followed by the contraction of the fibres passing through
p; Np onto two non-real conjugate points of Fn having the same properties is a
link Fn Ü Fn of type II.

(7) The exchange of the two components P1 � P1 ! P1 � P1 is a link F0 ! F0 of
type IV.

(8) The blow-up of a real pointp 2 D6, not lying on a singular fibre (or equivalently
p 6D ..1 W 1 W 0 W 0/; .1 W 1//, p 6D ..1 W �1 W 0 W 0/; .1 W �1//), followed by the
contraction of the strict transform of the fibre passing through p onto a real
point of D6, is a link D6 Ü D6 of type II.

(9) The blow-up of two non-real conjugate points p; Np 2 D6, not lying on the same
fibre (or equivalently not lying on a real fibre), followed by the contraction of
the strict transform of the fibres passing through p; Np onto two non-real points
of D6 is a link D6 Ü D6 of type II.

Remark 2.14. Note that in the above list, the three links Fn Ü Fm of type II can be
put in one family, and the same is true for the two links D6 Ü D6. We distinguished
here the possibilities for the base points to describe more precisely the geometry of
each link. The two links D6 Ü D6 could also be arranged into extra families, by
looking if the base points belong to the two exceptional sections of self-intersection
�1, but go in any case from D6 to D6 (see Definition 2.16 below).

Proposition 2.15. Any Mori fibration �WX ! W , where X is a smooth projective
real rational surface, belongs to the list of Example 2.12.

Any Sarkisov link between two such Mori fibrations is equal to ˛'ˇ, where
' or '�1 belongs to the list described in Example 2.13 and where ˛ and ˇ are
isomorphisms of fibrations.

Proof. Since any birational map between two surfaces with Mori fibrations decom-
poses into Sarkisov links and all links of Example 2.13 involve only the Mori
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fibrations of Example 2.12, it suffices to check that any link starting from one of
the Mori fibrations of Example 2.12 belongs to the list 2.13. This is an easy case-
by-case study; here are the steps.

Starting from a Mori fibration �WX ! W where W is a point, the only links
we can perform are links of type I or II centered at a real point or two conjugate
non-real points. From Theorem 2.9, the surface X is either Q3;1 or P2, and both are
homogeneous under the action of Aut.X/, so the choice of the point is not relevant.
Blowing-up a real point in P2 or two non-real points in Q3;1 gives rise to a link of
type I to F1 or D6. The remaining cases correspond to the stereographic projection
Q3;1 Ü P2 and its converse.

Starting from a Mori fibration �WX ! W where W D P1, we have additional
possibilities. If the link is of type IV, thenX admits two conic bundle structures and
by Theorem 2.9, the only possibility is F0 D P1�P1. If the link is of type III, then we
contract a real .�1/-curve ofX or two disjoint conjugate non-real .�1/-curves. The
only possibilities forX are respectively F1 and D6, and the image is respectively P2

and Q3;1 (these are the inverses of the links described before). The last possibility
is to perform a link a type II, by blowing up a real point or two conjugate non-real
points, on respectively one or two smooth fibres, and to contract the strict transform.
We go from D6 to D6 or from Fm to Fm0 where m0 � m 2 f�2;�1; 0; 1; 2g. All
possibilities are described in Example 2.13. ut

We end this section by reducing the number of links of type II needed for the
classification. For this, we introduce the notion of standard links.

Definition 2.16. The following links of type II are called standard:

(1) links Fm Ü Fn, with m; n 2 f0; 1g;
(2) links D6 Ü D6 which do not blow-up any point on the two exceptional section

of self-intersection �1.

The other links of type II will be called special.

The following result allows us to simplify the set of generators of our groups.

Lemma 2.17. Any Sarkisov link of type IV decomposes into links of type I, III, and
standard links of type II.

Proof. Note that a link of type IV is, up to automorphisms preserving the fibrations,
equal to the following automorphism of P1 � P1

	 W ..x1 W x2/; .y1 W y2// 7! ..y1 W y2/; .x1 W x2//:

We denote by  WP2 Ü P1 �P1 the birational map .x W y W z/ Ü ..x W y/; .x W z//
and observe that 	 D  � , where � 2 AutR.P2/. Hence, 	 D  	 �1 . Observing
that  decomposes into the blow-up of the point .0 W 0 W 1/, which is a link of type
III, followed by a standard link of type II, we get the result. ut
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Lemma 2.18. Let �WX ! P1 and � 0WX 0 ! P1 be two Mori fibrations, where
X;X 0 belong to the list F0;F1;D6. Let  WX Ü X 0 be a birational map, such
that � 0 D ˛� for some ˛ 2 AutR.P1/. Then,  is either an automorphism
or  D 'n 	 	 	'1, where each 'i is a standard link of type II. Moreover, if  is
an isomorphism on the real points .i.e. is an isomorphism X.R/ ! X 0.R//, the
standard links 'i can also be chosen to be isomorphisms on the real points.

Proof. We first show that  D 'n 	 	 	'1, where each 'i is a link of type II, not
necessarily standard. This is done by induction on the number of base-points of  
(recall that we always count infinitely near points as base-points). If  has no base-
point, it is an isomorphism. If q is a real proper base-point, or q; Nq are two proper
non-real base-points (here proper means not infinitely near), we denote by '1 a
Sarkisov link of type II centered at q (or q; Nq). Then, .'1/�1 has less base-points
than  . The result follows then by induction. Moreover, if  is an isomorphism on
the real points, i.e. if  and  �1 have no real base-point, then so are all 'i .

Let 'W D6 Ü D6 be a special link of type II. Then, it is centered at two
points p1; Np1 lying on the .�1/-curves E1; NE1. We choose then two general non-
real conjugate points q1; Nq1, and let q2 WD '.q1/ and Nq2 WD '. Nq1/. For i D 1; 2, we
denote by 'i W D6 Ü D6 a standard link centered at qi ; Nqi . The image by '2 of E1
is a curve of self-intersection 1. Hence, '2'.'1/�1 is a standard link of type II.

It remains to consider the case where each 'i is a link Fni Ü FniC1
. We denote

by N the maximum of the integers ni . If N � 1, we are done because all links of
type II between Fj and Fj 0 with j; j 0 � 1 are standard. We can thus assumeN � 2,
which implies that there exists i such that ni D N , ni�1 < N; niC1 � N . We
choose two general non-real points qi�1; qi�1 2 Fni�1 , and write qi D 'i�1.qi�1/,
qiC1 D 'i .qi /. For j 2 fi � 1; i; i C 1g, we denote by 	j WFnj Ü Fn0

j
a Sarkisov

link centered at qj ; qj . We obtain then the following commutative diagram

Fni�1

'i�1
�����

	i�1

���
�
�

Fni

'i
�����

	i

���
�
�

FniC1

	iC1

���
�
�

Fn0

i�1

'0

i�1
����� Fn0

i

'0

i
����� Fn0

iC1
;

where ' 0
i�1; ' 0

i are Sarkisov links. By construction, n0
i�1; n0

i ; n
0
iC1 < N , we can then

replace 'i'i�1 with .	iC1/�1' 0
i '

0
i�1	i�1 and “avoid” FN . Repeating this process if

needed, we end up with a sequence of Sarkisov links passing only through F1 and
F0. Moreover, since this process does not add any real base-point, it preserves the
regularity at real points. ut
Corollary 2.19. Let �WX ! W and � 0WX 0 ! W 0 be two Mori fibrations, where
X;X 0 are either F0;F1;D6 or P2. Any birational map  WX Ü X 0 is either an
isomorphism preserving the fibrations or decomposes into links of type I; III, and
standard links of type II.
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Proof. Follows from Proposition 2.7, Lemmas 2.17 and 2.18, and the description of
Example 2.13. ut

3 Generators of the Group Aut.P2.R//

We start this section by describing three kinds of elements of Aut.P2.R//, which
are birational maps of P2 of degree 5. These maps are associated with three pairs
of conjugate non-real points; the description is then analogue to the description of
quadratic maps, which are associated with three points.

Example 3.1. Let p1; Np1; p2; Np2; p3; Np3 2 P2 be three pairs of non-real points of
P2, not lying on the same conic. Denote by �WX ! P2 the blow-up of the six
points, which induces an isomorphism X.R/ ! P2.R/. Note that X is isomorphic
to a smooth cubic of P3. The set of strict transforms of the conics passing through
five of the six points corresponds to three pairs of non-real .�1/-curves (or lines on
the cubic), and the six curves are disjoint. The contraction of the six curves gives a
birational morphism �WX ! P2, inducing an isomorphism X.R/ ! P2.R/, which
contracts the curves onto three pairs of non-real points q1; Nq1; q2; Nq2; q3; Nq3 2 P2; we
choose the order so that qi is the image of the conic not passing through pi . The
map  D ���1 is a birational map P2 Ü P2 inducing an isomorphism

P
2.R/ ! P

2.R/:

Let L � P2 be a general line of P2. The strict transform of L on X by
��1 has self-intersection 1 and intersects the six curves contracted by � into two
points (because these are conics). The image  .L/ has then six singular points of
multiplicity 2 and self-intersection 25; it is thus a quintic passing through the qi with
multiplicity 2. The construction of  �1 being symmetric as the one of  , the linear
system of consists of quintics of P2 having multiplicity 2 at p1; Np1; p2; Np2; p3; Np3.

One can moreover check that  sends the pencil of conics through p1; Np1; p2; Np2
onto the pencil of conics through q1; Nq1; q2; Nq2 (and the same holds for the two other
real pencil of conics, through p1; Np1; p3; Np3 and through p2; Np2; p3; Np3).
Example 3.2. Let p1; Np1; p2; Np2 2 P2 be two pairs of non-real points of P2, not
on the same line. Denote by �1WX1 ! P2 the blow-up of the four points, and by
E2; NE2 � X1 the curves contracted onto p2; Np2 respectively. Let p3 2 E2 be a point,
and Np3 2 NE2 its conjugate. We assume that there is no conic of P2 passing through
p1; Np1; p2; Np2; p3; Np3 and let �2WX2 ! X1 be the blow-up of p3; Np3.

On X , the strict transforms of the two conics C; NC of P2, passing through
p1; Np1; p2; Np2; p3 and p1; Np1; p2; Np2; Np3 respectively, are non-real conjugate disjoint
.�1/ curves. The contraction of these two curves gives a birational morphism
�2WX2 ! Y1, contracting C , NC onto two points q3; Nq3. On Y1, we find two pairs
of non-real .�1/-curves, all four curves being disjoint. These are the strict trans-
forms of the exceptional curves associated with p2; Np2, and of the conics passing
through p1; p2; Np2; p3; Np3 and Np1; p2; Np2; p3; Np3 respectively. The contraction of
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these curves gives a birational morphism �1WY1 ! P2, and the images of the four
curves are points q2; Nq2; q1; Nq1 respectively. Note that the four maps �1; �2; �1; �2 are
blow-ups of non-real points, so the birational map  D �1�2.�1�2/

�1WP2 Ü P2

induces an isomorphism P2.R/ ! P2.R/.
In the same way as in Example 3.1, we find that the linear system of  is of

degree 5, with multiplicity 2 at the points pi ; Npi . The situation is similar for  �1,
with the six points qi ; Nqi in the same configuration: q1; Nq1; q2; Nq2 lie on the plane and
q3; Nq3 are infinitely near to q2; Nq2 respectively.

One can moreover check that  sends the pencil of conics through p1; Np1; p2; Np2
onto the pencil of conics through q1; Nq1; q2; Nq2 and the pencil of conics through
p2; Np2; p3; Np3 onto the pencil of conics through q2; Nq2; q3; Nq3. But, contrary to
Example 3.1, there is no pencil of conics through q1; Nq1; q3; Nq3 (because q3; Nq3 are
infinitely near to q2, Nq2).
Example 3.3. Let p1; Np1 be a pair of two conjugate non-real points of P2. We
choose a point p2 in the first neighbourhood of p1, and a point p3 in the first
neighbourhood of p2, not lying on the exceptional divisor corresponding to p1.
We denote by �WX ! P2 the blow-up of p1; Np1; p2; Np2; p3 Np3. We denote by
Ei; NEi � X the irreducible exceptional curves corresponding to the points pi ; Npi ,
for i D 1; 2; 3. The strict transforms of the two conics through p1; Np1; p2; Np2; p3
and p1; Np1; p2; Np2; Np3 respectively are disjoint .�1/-curves on X , intersecting
the exceptional curves E1; NE1;E2; NE2 similarly as E3; NE3. Hence, there exists a
birational morphism �WX ! P2 contracting the strict transforms of the two conics
and the curves E1; NE1;E2; NE2.

As in Examples 3.1 and 3.2, the linear system of  D ���1 consists of quintics
with multiplicity two at the six points p1; Np1; p2; Np2; p3; Np3.
Definition 3.4. The birational maps of P2 of degree 5 obtained in Example 3.1 will
be called standard quintic transformations and those of Examples 3.2 and 3.3 will
be called special quintic transformations respectively.

Lemma 3.5. Let  WP2 Ü P2 be a birational map inducing an isomorphism
P2.R/ ! P2.R/. The following hold:

.1/ The degree of  is 4k C 1 for some integer k � 0.

.2/ Every multiplicity of the linear system of  is even.

.3/ Every curve contracted by  is of even degree.

.4/ If  has degree 1, it belongs to AutR.P2/ D PGL.3;R/.

.5/ If  has degree 5, then it is a standard or special quintic transformation,
described in Examples 3.1, 3.2 or 3.3, and has thus exactly 6 base-points.

.6/ If  has at most 6 base-points, then  has degree 1 or 5.

Remark 3.6. Part (1) is [15, Teorema 1].

Proof. Denote by d the degree of  and by m1; : : : ; mk the multiplicities of
the base-points of  . The Noether equalities yield

Pk
iD1 mi D 3.d � 1/ andPk

iD1.mi /
2 D d2 � 1.
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Let C; NC be a pair of two curves contracted by  . Since C \ NC does not contain
any real point, the degree of C and NC is even. This yields .3/, and implies that all
multiplicities of the linear system of  �1 are even, giving .2/.

In particular, 3.d � 1/ is a multiple of 4 (all multiplicities come by pairs of even
integers), which implies that d D 4k C 1 for some integer k. Hence .1/ is proved.

If the number of base-points is at most k D 6, then by Cauchy–Schwartz we get

9.d � 1/2 D
 

kX
iD1

mi

!2
� k

kX
iD1
.mi /

2 D k.d2 � 1/ D 6.d2 � 1/

This yields 9.d � 1/ � 6.d C 1/, hence d � 5.
If d D 5, the Noether equalities yield k D 6 and m1 D m2 D 	 	 	 D m6 D

2. Hence, the base-points of  consist of three pairs of conjugate non-real points
p1; Np1; p2; Np2; p3; Np3. Moreover, if a conic passes through 5 of the six points, its
free intersection with the linear system is zero, so it is contracted by  , and there is
no conic through the six points.

.a/ If the six points belong to P2, the map is a standard quintic transformation,
described in Example 3.1.

.b/ If two points are infinitely near, the map is a special quintic transformation,
described in Example 3.2.

.c/ If four points are infinitely near, the map is a special quintic transformation,
described in Example 3.3. ut

Before proving Theorem 1.2, we will show that all quintic transformations are
generated by linear automorphisms and standard quintic transformations:

Lemma 3.7. Every quintic transformation  2 Aut.P2.R// belongs to the group
generated by AutR.P2/ and standard quintic transformations.

Proof. By Lemma 3.5, we only need to show the result when  is a special quintic
transformation as in Example 3.2 or Example 3.3.

We first assume that  is a special quintic transformation as in Example 3.2,
with base-points p1; Np1; p2; Np2; p3; Np3, where p3; Np3 are infinitely near to p2; Np2.
For i D 1; 2, we denote by qi 2 P

2 the point which is the image by  of the
conic passing through the five points of fp1; Np1; p2; Np2; p3; Np3g n fpig. Then, the
base-points of  �1 are q1; Nq1; q2; Nq2; q3; Nq3, where q3, Nq3 are points infinitely near to
q2, Nq2 respectively (see Example 3.2). We choose a general pair of conjugate non-
real points p4; Np4 2 P

2, and write q4 D  .p4/, Nq4 D  . Np4/. We denote by '1 a
standard quintic transformation having base-points at p1; Np1; p2; Np2; p4; Np4, and by
'2 a standard quintic transformation having base-points at q1; Nq1; q2; Nq2; q4; Nq4. We
now prove that '2 .'1/�1 is a standard quintic transformation; this will yield the
result. Denote by p0

i ; Npi 0 the base-points of .'1/�1, with the order associated with
the pi , which means that p0

i is the image by 'i of a conic not passing throughpi (see
Example 3.1). Similarly, we denote by q0

i ; Nqi 0 the base-points of .'2/�1. We obtain
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the following commutative of birational maps, where the arrows indexed by points
are blow-ups of these points:

Y1
p0

4; Np40

����
��
��
�� p4; Np4

��	
		

		
		

	
Y2

p3; Np3

����
��
��
�� q3; Nq3

��	
		

		
		

	
Y3

q4; Nq4

����
��
��
�� q0

4; Nq40

��















X1

p0

1; Np1 0

p0

2; Np2 0

��

X2
b'1

��� � � � � � � �
O 

����������

p1; Np1
p2; Np2 ��

X3
b'2

����������

q1; Nq1
q2; Nq2 ��

X4

q0

1; Nq1 0

q2; Nq2 0

��

P2 P2
'1

��� � � � � � � �
 

���������� P2
'2

���������� P2:

Each of the surfaces X1;X2;X3;X4 admits a conic bundle structure �i WXi ! P1,
which fibres correspond to the conics passing through the four points blown-up on
P2 to obtain Xi . Moreover, O'1, O , O'2 preserve these conic bundle structures. The
map . O'1/�1 blows-up p4; Np40 and contract the fibres associated with them, then O 
blows-up p3; Np3 and contract the fibres associated with them. The map O'2 blow-ups
the points q4; Nq4, which correspond to the image of the curves contracted by . O'1/�1,
and contracts their fibres, corresponding to the exceptional divisors corresponding
to the points p4; Np40. Hence, O'2 O O'1 is the blow-up of two conjugate non-real points
p0
3; Np30 2 X1, followed by the contraction of their fibres. We obtain the following

commutative diagram:

Z
p0

3; Np30

����
��
��
�� q0

3; Nq3 0

���
��

��
��

�

X1
b'2 O .b'1/�1

����������

p0

1; Np1 0

p0

2; Np2 0

��

X4

q0

1; Nq1 0

q2; Nq2 0

��

P2
'2 .'1/

�1

���������� P2;

and the points p0
3; Np30 correspond to the point of P2, hence '2 .'1/�1 is a standard

quintic transformation.
The remaining case is when  is a special quintic transformation as in Exam-

ple 3.3, with base-points p1; Np1; p2; Np2; p3; Np3, where p3; Np3 are infinitely near to
p2; Np2 and these latter are infinitely near to p1; Np1. The map  �1 has base-points
q1; Nq1; q2; Nq2; q3; Nq3, having the same configuration (see Example 3.3). We choose
a general pair of conjugate non-real points p4; Np4 2 P2, and write q4 D  .p4/,
Nq4 D  . Np4/. We denote by '1 a special quintic transformation having base-points

at p1; Np1; p2; Np2; p4; Np4, and by '2 a special quintic transformation having base-
points at q1; Nq1; q2; Nq2; q4; Nq4. The maps '1; '2 have four proper base-points, and are
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thus given in Example 3.2. The same proof as before implies that '2 .'1/�1 is a
special quintic transformation with four base-points. This gives the result. ut
Lemma 3.8. Let 'WP2 Ü P2 be a birational map that decomposes as ' D
'5 	 	 	'1, where 'i WXi�1 Ü Xi is a Sarkisov link for each i , where X0 D P2,
X1 D Q3;1, X2 D X3 D D6, X4 D Q3;1, X5 D P2. If '2 is an automorphism of
D6.R/ and '4'3'2 sends the base-point of .'1/�1 onto the base-point of '5, then '
is an automorphism of P2.R/ of degree 5.

Proof. We have the following commutative diagram, where each �i is the blow-up
of two conjugate non-real points and each �i is the blow-up of one real point. The
two maps .'2/�1 and '4 are also blow-ups of non-real points.

Y2
�2

��


 �3

		�
��

��
��

�

Y1

�1



��
��
��
��
��
��
��
�� �1

		�
��

��
��

�
D6

.'2/
�1

��

'3
����������� D6

'4

��

Y3
�2

����
��
��
��

�4

���
��
��
��
��
��
��
��
�

Q3;1 Q3;1

'5

���
��������

P
2

'1

���������

'

�������������������������������� P2:

The only real base-points are those blown-up by �1 and �2. Since �2 blows-up the
image by '4'3'2 of the real point blown-up by �1, the map ' has at most 6 base-
points, all being non-real, and the same holds for '�1. Hence, ' is an automorphism
of P2.R/ with at most 6 base-points. We can moreover see that ' 62 AutR.P2/, since
the two curves of Y2 contracted by �2 are sent by '4�3 onto conics of Q3;1, which
are therefore not contracted by '5.

Lemma 3.5 implies that  has degree 5. ut
Proposition 3.9. The group Aut.P2.R// is generated by AutR.P2/ and by elements
of Aut.P2.R// of degree 5.

Proof. Let us prove that any ' 2 Aut.P2.R// is generated by AutR.P2/ and
elements of Aut.P2.R// of degree 5 . Applying Proposition 2.7, we decompose '
into Sarkisov links ' D 'r 	 	 	'1 such that

.i/ for i D 1; : : : ; r � 1, the map 'iC1'i is not biregular;
.ii/ for i D 1; : : : ; r , every real base-point of 'i is a base-point of 'r : : : 'i .

In particular, '1 has no real base-point.
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We proceed by induction on r , the case r D 0, corresponding to ' 2 AutR.P2/,
being obvious. We also observe that the decompositions of smaller length obtained
by the induction process still satisfy property .i i/ above. We can assume that .i/ is
also satisfied, because removing a biregular map 'iC1'i produces a decomposition
of smaller length, still having the property .i i/.

Since '1 has no real base-point, the first link '1 is then of type II from P2 to
Q3;1, and 'r 	 	 	'2 has a unique real base-point r 2 Q3;1, which is the base-point
of .'1/�1. If '2 would blow-up this point, then '2'1 would be biregular, hence '2
is a link of type I from Q3;1 to D6. We can write the map '2'1 as ���1, where
�WX ! P2 is the blow-up of two pairs of non-real points, say p1; Np1; p2; Np2 and
�WX ! D6 is the contraction of the strict transform of the real line passing through
p1; Np1, onto a real point q 2 D6. Note that p1; Np1 are proper points of P2, blown-up
by '1 and p2; Np2 either are proper base-points or are infinitely near to p1; Np1.

The fibration D6 ! P1 corresponds to conics through p1; Np1; p2; Np2. If '3 was a
link of type III, then '3'2 would be biregular, so '3 is of type II.

If q is a base-point of '3, then '3 D �0��1, where �0WX ! D6 is the contraction
of the strict transform of the line throughp2; Np2. We can then write '3'2'1 into only
two links, exchangingp1 with p2 and Np1 with Np2, and this decreases r and preserves
property .i i/ on real base-points.

The remaining case is when '3 is the blow-up of two non-real points p3; Np3 of
D6, followed by the contraction of the strict transforms of their fibres. We denote by
q0 2 D6.R/ the image of q by '3, consider 4 D .'2/

�1W D6 ! Q3;1, which is a link
of type III, and write  5WQ3;1 Ü P2 the stereographic projection by  4.q0/, which
is a link of type II centered at  4.q0/. By Lemma 3.8, the map � D  5 4'3'2'1 is
an element of Aut.P2.R// of degree 5. Since '��1 decomposes into one link less
than ', with a decomposition having still property .i i/, this concludes the proof by
induction. ut
Proof of Theorem 1.2. By Proposition 3.9, Aut.P2.R// is generated by AutR.P2/
and by elements of Aut.P2.R// of degree 5. Thanks to Lemma 3.7, Aut.P2.R// is
indeed generated by projectivities and standard quintic transformations. ut

4 Generators of the Group BirR.P2/

Lemma 4.1. Let 'WQ3;1 Ü Q3;1 be a birational map that decomposes as ' D
'3'2'1, where 'i WXi�1 Ü Xi is a Sarkisov link for each i , where X0 D Q3;1 D
X2, X1 D D6. If '2 has a real base-point, then ' can be written as ' D  2 1,
where  1; . 2/�1 are links of type II from Q3;1 to P2.

Proof. We have the following commutative diagram, where each of the maps �1; �2
blow-ups a real point, and each of the maps .'1/�1; '3 is the blow-up of two
conjugate non-real points.
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Y

�1

��



 �2

		�
��

��
��

��

D6

.'1/
�1

��

'2
����������� D6

'3

��
Q3;1

'
���������� Q3;1:

The map ' has thus exactly three base-points, two of them being non-real and one
being real; we denote them by p1; Np1, q. The fibres of the Mori fibration D6 !
P1 correspond to conics of Q3;1 passing through the points p1; Np1. The real curve
contracted by �2 is thus the strict transform of the conic C of Q3;1 passing through
p1; Np1 and q. The two curves contracted by '3 are the two non-real sections of self-
intersection �1, which corresponds to the strict transforms of the two non-real lines
L1;L2 of Q3;1 passing through q.

We can then decompose ' as the blow-up of p1; p2; q, followed by the
contraction of the strict transforms of C;L1;L2. Denote by 1WQ3;1 Ü P2 the link
of type II centered at q, which is the blow-up of q followed by the contraction of
the strict transform of L1;L2, or equivalently the stereographic projection centered
at q. The curve  1.C / is a real line of P2, which contains the two points  1.p1/,
 1. Np1/. The map  2 D '. 1/

�1WP2 Ü Q3;1 is then the blow-up of these two
points, followed by the contraction of the line passing through both of them. It is
then a link of type II. ut
Proof of Theorem 1.1. Let us prove that any ' 2 BirR.P2/ is in the group generated
by AutR.P2/, �0, �1, and standard quintic transformations of P2. We decompose '
into Sarkisov links: ' D 'r 	 	 	'1. By Corollary 2.19, we can assume that all the 'i
are links of type I; III, or standard links of type II.

We proceed by induction on r , the case r D 0, corresponding to ' 2 AutR.P2/,
being obvious.

Note that '1 is either a link of type I from P2 to F1, or a link of type II from P2

to Q3;1. We now study the possibilities for the base-points of '1 and the next links:
.1/ Suppose that '1WP2 Ü F1 is a link of type I, and that '2 is a link F1 Ü F1.

Then, '2 blows-up two non-real base-points of F1, not lying on the exceptional
curve. Hence, D .'1/

�1'2'1 is a quadratic transformation of P2 with three proper
base-points, one real and two non-real. It is thus equal to ˛�1ˇ for some ˛; ˇ 2
AutR.P2/. Replacing ' with ' �1, we obtain a decomposition with less Sarkisov
links, and conclude by induction.
.2/ Suppose that '1WP2 Ü F1 is a link of type I, and that '2 is a link F1 Ü F0.

Then, '2'1 is the blow-up of two real pointsp1; p2 of P2 followed by the contraction
of the line through p1; p2. The exceptional divisors corresponding to p1; p2 are two
.0/-curves of F0 D P1 � P1, intersecting at one real point.



52 J. Blanc and F. Mangolte

.2a/ Suppose first that '3 has a base-point which is real, and not lying onE1;E2.
Then,  D .'1/

�1'3'2'1 is a quadratic transformation of P2 with three proper
base-points, all real. It is thus equal to ˛�0ˇ for some ˛; ˇ 2 AutR.P2/. Replacing
' with ' �1, we obtain a decomposition with less Sarkisov links and conclude by
induction.
.2b/ Suppose now that '3 has non-real base-points, which are q; Nq. Since '3

is a standard link of type II, it goes from F0 to F0, so q and Nq do not lie on a
.0/-curve, and then do not belong to the curves E1;E2. We can then decompose
'2'3WF1 Ü F2 into a Sarkisov link centered at two non-real points, followed by
a Sarkisov link centered at a real point. This reduces to case .1/, already treated
before.
.2c/ The remaining case (for .2/) is when '3 has a base-point p3 which is real,

but lying on E1 or E2. We choose a general real point p4 2 F0, and denote by
 WF0 Ü F1 a Sarkisov link centered at p4. We observe that  D .'1/

�1'2'1
is a quadratic map as in case .2a/, and that ' �1 D 'n : : : '3

�1'1 admits now a
decomposition of the same length, but which is in case .2a/.
.3/ Suppose now that '1WP2 Ü Q3;1 is a link of type II and that '2 is a link

of type II from Q3;1 to P2. If '2 and .'1/�1 have the same real base-point, the map
'2'1 belongs to AutR.P2/. Otherwise, '2'1 is a quadratic map with one unique
real base-point q and two non-real base-points. It is then equal to ˛�0ˇ for some
˛; ˇ 2 AutR.P2/. We conclude as before by induction hypothesis.
.4/ Suppose that '1WP2 Ü Q3;1 is a link of type II and '2 is a link of type I

from Q3;1 to D6. If '3 is a Sarkisov link of type III, then '3'2 is an automorphism
of Q3;1, so we can decrease the length. We only need to consider the case where '3
is a link of type II from D6 to D6. If '3 has a real base-point, we apply Lemma 4.1
to write .'2/�1'3'2 D  2 1 where  1; . 2/�1 are links Q3;1 Ü P2. By .3/,
the map � D  1'1 is generated by AutR.P2/ and �0. We can then replace ' with
'��1 D 'r 	 	 	'3'2. 1/�1 D 'r 	 	 	'4'2 2, which has a shorter decomposition.
The last case is when '3 has two non-real base-points. We denote by q 2 Q3;1

the real base-point of .'1/�1, write q0 D .'2/
�1'3'2.q/ 2 Q3;1 and denote by

 WQ3;1 Ü P2 the stereographic projection centered at q0. By Lemma 3.8, the map
� D  .'2/

�1'3'2'1 is an automorphism of P2.R/ of degree 5, which is generated
by AutR.P2/ and standard automorphisms of P2.R/ of degree 5 (Lemma 3.7). We
can thus replace ' with '��1, which has a decomposition of shorter length. ut

5 Generators of the Group Aut.Q3;1.R//

Example 5.1. Let p1; Np1; p2; Np2 2 Q3;1 � P3 be two pairs of conjugate non-real
points, not on the same plane of P3. Let �WX ! Q3;1 be the blow-up of these
points. The non-real plane of P3 passing through p1; Np2; Np2 intersects Q3;1 onto a
conic, having self-intersection 2: two general different conics on Q3;1 are the trace
of hyperplanes, and intersect then into two points, being on the line of intersection
of the two planes. The strict transform of this conic on X is thus a .�1/-curve.
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Doing the same for the other conics passing through 3 of the points p1; Np1; p2; Np2,
we obtain four disjoint .�1/-curves on X , that we can contract in order to obtain
a birational morphism �WX ! Q3;1; note that the target is Q3;1 because it is a
smooth projective rational surface of Picard rank 1. We obtain then a birational map
 D ���1WQ3;1 Ü Q3;1 inducing an isomorphismQ3;1.R/ ! Q3;1.R/.

Denote byH � Q3;1 a general hyperplane section. The strict transform ofH on
X by ��1 has self-intersection 2 and has intersection 2 with the 4 curves contracted.
The image  .H/ has thus multiplicity 2 and self-intersection 18; it is then the trace
of a cubic section. The construction of  and  �1 being similar, the linear system
of  consists of cubic sections with multiplicity 2 at p1; Np1; p2; Np2.
Example 5.2. Let p1; Np1 2 Q3;1 � P3 be two conjugate non-real points and let
�1WX1 ! Q3;1 be the blow-up of the two points. Denote by E1; NE1 � X1 the
curves contracted onto p1; Np1 respectively. Let p2 2 E1 be a point, and Np2 2 NE1
its conjugate. We assume that there is no conic of Q3;1 � P3 passing through
p1; Np1; p2; Np2 and let �2WX2 ! X1 be the blow-up of p2; Np2.

On X , the strict transforms of the two conics C; NC of P2, passing through
p1; Np1; p2 and p1; Np1; Np2 respectively, are non-real conjugate disjoint .�1/ curves.
The contraction of these two curves gives a birational morphism �2WX2 ! Y1.
On this latter surface, we find two disjoint conjugate non-real .�1/-curves. These
are the strict transforms of the exceptional curves associated with p1; Np1. The
contraction of these curves gives a birational morphism �1WY1 ! Q3;1. The
birational map  D �1�2.�1�2/

�1WQ3;1 Ü Q3;1 induces an isomorphism
Q3;1.R/ ! Q3;1.R/.

Definition 5.3. The birational maps of Q3;1 of degree 3 obtained in Example 5.1
will be called standard cubic transformations and those of Example 5.2 will be
called special cubic transformations.

Note that since Pic.Q3;1/ D ZH , where H is an hyperplane section, we can
associate with any birational map Q3;1 Ü Q3;1, an integer d , which is the degree
of the map, such that  �1.H/ D dH .

Lemma 5.4. Let  WQ3;1 Ü Q3;1 be a birational map inducing an isomorphism
Q3;1.R/ ! Q3;1.R/. The following hold:

.1/ The degree of  is 2k C 1 for some integer k � 0.

.2/ If  has degree 1, it belongs to AutR.Q3;1/ D PO.3; 1/.

.3/ If  has degree 3, then it is a standard or special cubic transformation,
described in Examples 5.1 and 5.2, and has thus exactly 4 base-points.

.4/ If  has at most 4 base-points, then  has degree 1 or 3.

Proof. Denote by d the degree of  and by a1; : : : ; an the multiplicities of the
base-points of  . Denote by �WX ! Q3;1 the blow-up of the base-points, and by
E1; : : : ; En 2 Pic.X/ the divisors being the total pull-back of the exceptional .�1/-
curves obtained after blowing-up the points. Writing �WX ! Q3;1 the birational
morphism  � , we obtain
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��.H/ D d��.H/�Pn
iD1 aiEi

KX D ��.�2H/CPn
iD1 Ei :

Since H corresponds to a smooth rational curve of self-intersection 2, we have
.��.H//2 and ��.H/ 	KX D �4. We find then

2 D .��.H//2 D 2d2 �Pn
iD1.ai /2

4 D �KX 	 ��.H/ D 4d �Pn
iD1 ai :

Since multiplicities come by pairs, n D 2m for some integer m and we can order
the ai so that ai D anC1�i for i D 1; : : : ; m. This yields

d2 � 1 D Pm
iD1.ai /2

2.d � 1/ D Pm
iD1 ai

Since .ai /2 � ai .mod 2/, we find d2 � 1 � 2.d � 1/ � 0 .mod 2/, hence d is
odd. This gives .1/.

If the number of base-points is at most 4, we can choose m D 2, and obtain by
Cauchy–Schwartz

4.d � 1/2 D
 

mX
iD1

ai

!2
� m

mX
iD1
.ai /

2 D m.d2 � 1/ D 2.d2 � 1/:

This yields 2.d � 1/ � d C 1, hence d � 3.
If d D 1, all ai are zero, and  2 AutR.Q3;1/.
If d D 3, we get

Pm
iD1.ai /2 D 8,

Pm
iD1 ai D 4, so m D 2 and a1 D

a2 D 2. Hence, the base-points of  consist of two pairs of conjugate non-real
points p1; Np1; p2; Np2. Moreover, if a conic passes through 3 of the points, its free
intersection with the linear system is zero, so it is contracted by  , and there is no
conic through the four points.

.a/ If the four points belong to Q3;1, the map is a standard cubic transformation,
described in Example 5.1.

.b/ If two points are infinitely near, the map is a special cubic transformation,
described in Example 5.2. ut

Lemma 5.5. Let 'WQ3;1 Ü Q3;1 be a birational map that decomposes as ' D
'3'2'1, where 'i WXi�1 Ü Xi is a Sarkisov link for each i , where X0 D Q3;1 D
X2, X1 D D6. If '2 is an automorphism of D6.R/, then ' is a cubic automorphism
ofQ3;1.R/ of degree 3 described in Examples 5.1 and 5.2. Moreover, ' is a standard
cubic transformation if and only if the link '2 of type II is a standard link of type II.

Proof. We have the following commutative diagram, where each of the maps �1,
�2, .'1/�1, '3 is the blow-up of two conjugate non-real points.



Cremona Groups of Real Surfaces 55

Y

�1

��





�2

		�
��

��
��

��

D6

.'1/
�1

��

'2
����������� D6

'3

��
Q3;1

'
���������� Q3;1:

Hence, ' is an automorphism of P2.R/with at most 4 base-points. We can moreover
see that ' 62 AutR.Q3;1/, since the two curves of Y contracted by �2 are sent by
'3�2 onto conics of Q3;1, contracted by '�1.

Lemma 3.5 implies that ' is cubic automorphism of Q3;1.R/ of degree 3
described in Examples 5.1 and 5.2. In particular, ' has exactly four base-points,
blown-up by .'1/�1�1. Moreover, ' is a standard cubic transformation if and only
these four points are proper base-points ofQ3;1. This corresponds to saying that the
two base-points of '2 do not belong to the exceptional curves contracted by .'1/�1,
and is thus the case exactly when '2 is a standard link of type II. ut
Proof of Theorem 1.3. Let us prove that any ' 2 Aut.Q3;1.R// is generated
by AutR.Q3;1/ and standard cubic transformations of Aut.Q3;1.R// of degree 3.
Applying Proposition 2.7, we decompose ' into Sarkisov links: ' D 'r 	 	 	'1, and
assume that every real base-point of 'i is a base-point of 'r : : : 'i . This property
implies that all links are either of type I, from Q3;1 to D6, of type II from D6 to
D6 with non-real base-points, or of type III from D6 to Q3;1. In particular, all base-
points of the 'i and their inverses are non-real. (Note that here the situation is easier
than in the case of P2, since no link produces “artificial” real base-points).

By Lemma 2.18, we can also assume that all links of type II are standard.
We proceed by induction on r . The first link '1 is of type I from Q3;1 to D6. If

'2 is of type III, then '2'1 2 AutR.Q3;1/. We replace these two links and conclude
by induction. If '2 is a standard link of type II, then  D .'1/

�1'2'1 is a standard
cubic transformation. Replacing ' with ' �1 decreases the number of links, so we
conclude by induction. ut

5.1 Twisting Maps and Factorisation

Choose a real line L � P3, which does not meet Q3;1.R/. The projection from L

gives a morphism �LWQ3;1.R/ ! P1.R/, which induces a conic bundle structure
on the blow-up 	LW D6 ! Q3;1 of the two non-real points of L \Q3;1.

We denote by T .Q3;1; �L/ � Aut.Q3;1.R// the group of elements ' 2
Aut.Q3;1.R// such that �L' D �L and such that the lift .	L/�1'	L 2 Aut.D6.R//
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preserves the set of two non-real .�1/-curves which are sections of the conic
bundle �L	L.

Any element ' 2 T .Q3;1; �L/ is called a twisting map of Q3;1 with axis L.
Choosing the line w D x D 0 for L, we can get the more precise description

given in [6, 11]: the twisting maps corresponds in local coordinates .x; y; z/ 7!
.1 W x W y W z/ to

'M W .x; y; z/ 7! �
x; .y; z/ 	M.x/	

whereM W Œ�1; 1� ! O.2/ � PGL.2;R/ D Aut.P1/ is a real algebraic map.

Proposition 5.6. Any twisting map with axis L is a composition of twisting maps
with axis L, of degree 1 and 3.

Proof. We can assume that L is the line y D z D 0.
The blow-up 	LW D6 ! Q3;1 is a link of type III, described in Example 2.13(3),

which blows-up two non-real points of Q3;1. The fibres of the Mori Fibration
�W D6 ! P1 correspond then, via 	L, to the fibres of �LWQ3;1.R/ ! P1.R/.
Hence, a twisting map of Q3;1 corresponds to a map of the form 	'	�1, where
'W D6 Ü D6 is a birational map such that �' D � , and which preserves the set of
two .�1/-curves. This implies that ' has all its base-points on the two .�1/-curves.
It remains to argue as in Lemma 2.18 and decompose ' into links that have only
base-points on the set of two .�1/-curves. ut

6 Generators of the Group Aut.F0.R//

Proof of Theorem 1.4. Let us prove that any ' 2 Aut.F0.R// is generated by
AutR.F0/ and by the involution

	0W ..x0 W x1/; .y0 W y1// Ü ..x0 W x1/; .x0y0 C x1y1 W x1y0 � x0y1//:

Observe that 	0 is a Sarkisov link F0 Ü F0 that is the blow-up of the two non-real
points p D ..i W 1/; .i W 1//, Np D ..�i W 1/; .�i W 1//, followed by the contraction of
the two fibres of the first projection F0 ! P1 passing through p; Np.

Applying Proposition 2.7, we decompose ' into Sarkisov links: ' D 'r 	 	 	'1,
and assume that every real base-point of 'i is a base-point of 'r : : : 'i . This property
implies that all links are either of type IV from F0 to F0, or of type II, from F2d to
F2d 0 , with exactly two non-real base-points. In particular, as for the case of Q3;1,
there is no real base-point which is artificially created.

By Lemma 2.18, we can also assume that all links of type II are standard, so all
go from F0 to F0.

Each link of type IV is an element of AutR.F0/.
Each link 'i of type II consists of the blow-up of two non-real points q; Nq,

followed by the contraction of the fibres of the first projection F0 ! P1 passing
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through q; Nq. Since the two points do not belong to the same fibre by any projection,
we have q D ..a C ib W 1/; .c C id W 1//, for some a; b; c; d 2 R, bd 6D 0. There
exists thus an element ˛ 2 AutR.F0/ that sends q onto p and then Nq onto Np. In
consequence, 	0˛.'i /�1 2 AutR.P2/. This yields the result. ut

7 Other Results

7.1 Infinite Transitivity on Surfaces

The group of automorphisms of a complex projective algebraic variety is small: in
most of the cases it is a finite dimensional algebraic group. Moreover, the group
of automorphisms is 3-transitive only if the variety is P1. On the other hand, it
was proved in [6] that for a real rational surface X , the group of automorphisms
Aut.X.R// acts n-transitively on X.R/ for any n. The next theorem determines all
real algebraic surfaces X having a group of automorphisms which acts infinitely
transitively on X.R/.

Definition 7.1. Let G be a topological group acting continuously on a topological
space M . We say that two n-tuples of distinct points .p1; : : : ; pn/ and .q1; : : : ; qn/
are compatible if there exists an homeomorphism WM ! M such that .pi / D qi
for each i . The action ofG onM is then said to be infinitely transitive if for any pair
of compatible n-tuples of points .p1; : : : ; pn/ and .q1; : : : ; qn/ ofM , there exists an
element g 2 G such that g.pi / D qi for each i . More generally, the action of G
is said to be infinitely transitive on each connected component if we require the
above condition only in case, for each i , pi and qi belong to the same connected
component ofM .

Theorem 7.2 ([2]). Let X be a nonsingular real projective surface. The group
Aut

�
X.R/

	
is then infinitely transitive on each connected component if and only

if X is geometrically rational and #X.R/ � 3.

7.2 Density of Automorphisms in Diffeomorphisms

In [11], it is proved that Aut
�
X.R/

	
is dense in Diff

�
X.R/

	
for the C1-topology

when X is a geometrically rational surface with #X.R/ D 1 (or equivalently when
X is rational). In the cited paper, it is said that #X.R/ D 2 is probably the only
other case where the density holds. The following collect the known results in this
direction.
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Theorem 7.3 ([2, 11]).
Let X be a smooth real projective surface.

• If X is not a geometrically rational surface, then Aut
�
X.R/

	 ¤ Diff
�
X.R/

	
;

• If X is a geometrically rational surface, then

– If #X.R/ � 5, then Aut
�
X.R/

	 ¤ Diff
�
X.R/

	
;

– if #X.R/ D 1, then Aut
�
X.R/

	 D Diff
�
X.R/

	
.

For i D 3; 4, there exists smooth real projective surfaces X with #X.R/ D i

such that Aut
�
X.R/

	 ¤ Diff
�
X.R/

	
.

In the above statements, the closure is taken in the C1-topology.
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On Automorphisms and Endomorphisms
of Projective Varieties

Michel Brion

Abstract We first show that any connected algebraic group over a perfect field
is the neutral component of the automorphism group scheme of some normal
projective variety. Then we show that very few connected algebraic semigroups
can be realized as endomorphisms of some projective variety X , by describing the
structure of all connected subsemigroup schemes of End(X ).

MSC classes: 14J50, 14L30, 20M20

1 Introduction and Statement of the Results

By a result of Winkelmann (see [22]), every connected real Lie group G can be
realized as the automorphism group of some complex Stein manifoldX , which may
be chosen complete, and hyperbolic in the sense of Kobayashi. Subsequently, Kan
showed in [14] that we may further assume dimC.X/ D dimR.G/.

We shall obtain a somewhat similar result for connected algebraic groups.
We first introduce some notation and conventions and recall general results on
automorphism group schemes.

Throughout this chapter, we consider schemes and their morphisms over a fixed
field k. Schemes are assumed to be separated; subschemes are locally closed unless
mentioned otherwise. By a point of a scheme S , we mean a T -valued point f W
T ! S for some scheme T . A variety is a geometrically integral scheme of finite
type.
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We shall use [18] as a general reference for group schemes. We denote by eG
the neutral element of a group scheme G, and by Go the neutral component. An
algebraic group is a smooth group scheme of finite type.

Given a projective scheme X , the functor of automorphisms,

T 7�! AutT .X � T /;

is represented by a group scheme, locally of finite type, that we denote by Aut.X/.
The Lie algebra of Aut.X/ is identified with the Lie algebra of global vector fields,
Der.OX/ (these results hold more generally for projective schemes over an arbitrary
base, see [12, p. 268]; they also hold for proper schemes of finite type over a field,
see [17, Theorem 3.7]). In particular, the neutral component, Auto.X/, is a group
scheme of finite type; when k is perfect, the reduced subscheme, Auto.X/red, is a
connected algebraic group. As a consequence, Auto.X/ is a connected algebraic
group if char.k/ D 0, since every group scheme of finite type is reduced under that
assumption. Yet Auto.X/ is not necessarily reduced in prime characteristics (see
e.g. the examples in [17, Sect. 4]).

We may now state our first result:

Theorem 1. Let G be a connected algebraic group, and n its dimension.
If char.k/ D 0, then there exists a smooth projective varietyX such that Auto.X/ Š
G and dim.X/ D 2n.
If char.k/ > 0 and k is perfect, then there exists a normal projective variety X
such that Aut0red.X/ Š G and dim.X/ D 2n (resp. Auto.X/ Š G and dim.X/ D
2nC 2/.

This result is proved in Sect. 2, first in the case where char.k/ D 0; then we
adapt the arguments to the case of prime characteristics, which is technically more
involved due to group schemes issues. We rely on fundamental results about the
structure and actions of algebraic groups over an algebraically closed field, for
which we refer to the recent exposition [5].

Theorem 1 leaves open many basic questions about automorphism group
schemes. For instance, can one realize every connected algebraic group over an
arbitrary field (or more generally, every connected group scheme of finite type) as
the full automorphism group scheme of a normal projective variety? Also, very
little seems to be known about the group of components, Aut.X/=Auto.X/, where
X is a projective variety. In particular, the question of the finite generation of this
group is open, already when X is a complex projective manifold.

As a consequence of Theorem 1, we obtain the following characterization of Lie
algebras of vector fields:

Corollary 1. Let g be a finite-dimensional Lie algebra over a field k of character-
istic 0. Then the following conditions are equivalent:

(i) g Š Der.OX/ for some proper scheme X of finite type.
(ii) g is the Lie algebra of a linear algebraic group.
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Under either condition, X may be chosen projective, smooth, and unirational of
dimension 2n, where n WD dim.g/. If k is algebraically closed, then we may further
choose X rational.

This result is proved in Sect. 2.3. The Lie algebras of linear algebraic groups
over a field of characteristic 0 are called algebraic Lie algebras; they have been
characterized by Chevalley in [6, 7]. More specifically, a finite-dimensional Lie
algebra g is algebraic if and only if its image under the adjoint representation is
an algebraic Lie subalgebra of gl.g/ (see [7, Chap. V, Sect. 5, Proposition 3]).
Moreover, the algebraic Lie subalgebras of gl.V /, where V is a finite-dimensional
vector space, are characterized in [6, Chap. II, Sect. 14]. Also, recall a result of
Hochschild (see [13]): the isomorphism classes of algebraic Lie algebras are in
bijective correspondence with the isomorphism classes of connected linear algebraic
groups with unipotent center.

In characteristic p > 0, one should rather consider restricted Lie algebras, also
known as p-Lie algebras. In this setting, characterizing Lie algebras of vector fields
seems to be an open question. This is related to the question of characterizing
automorphism group schemes, via the identification of restricted Lie algebras with
infinitesimal group schemes of height � 1 (see [18, Exp. VIIA, Theorem 7.4]).

Next, we turn to the monoid schemes of endomorphisms of projective varieties;
we shall describe their connected subsemigroup schemes. For this, we recall basic
results on schemes of morphisms.

Given two projective schemes X and Y , the functor of morphisms,

T 7�! HomT .X � T; Y � T / Š Hom.X � T; Y /;

is represented by an open subscheme of the Hilbert scheme Hilb.X � Y /, by
assigning to each morphism its graph (see [12, p. 268], and [15, Sect. 1.10], [19,
Sect. 4.6.6] for more details). We denote that open subscheme by Hom.X; Y /. The
composition of morphisms yields a natural transformation of functors, and hence a
morphism of schemes

Hom.X; Y / � Hom.Y;Z/ �! Hom.X;Z/; .f; g/ 7�! gf

where Z is another projective scheme.
As a consequence of these results, the functor of endomorphisms of a projective

scheme X is represented by a scheme, End.X/; moreover, the composition of
endomorphisms equips End.X/ with a structure of monoid scheme with neutral
element being of course the identity, idX . Each connected component of End.X/ is
of finite type, and these components form a countable set. The automorphism group
scheme Aut.X/ is open in End.X/ by [12, p. 267] (see also [15, Lemma I.1.10.1]).
If X is a variety, then Aut.X/ is also closed in End.X/, as follows from [3,
Lemma 4.4.4]; thus, Aut.X/ is a union of connected components of End.X/. In
particular, Auto.X/ is the connected component of idX in End.X/.
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As another consequence, given a morphism f W X ! Y of projective schemes,
the functor of sections of f is represented by a scheme that we shall denote by
Sec.f /: the fiber at idY of the morphism

�f W Hom.Y;X/ �! End.Y /; g 7�! fg:

Every section of f is a closed immersion; moreover, Sec.f / is identified with an
open subscheme of Hilb.X/ by assigning to each section its image (see [12, p. 268]
again; our notation differs from the one used there). Given a section s 2 Sec.f /.k/,
we may identify Y with the closed subschemeZ WD s.Y /; then f is identified with
a retraction of X onto that subscheme, i.e., to a morphism r W X ! Z such that
ri D idZ , where i W Z ! X denotes the inclusion. Moreover, the endomorphism
e WD ir of X is idempotent, i.e., satisfies e2 D e.

Conversely, every idempotent k-rational point of End.X/ can be written uniquely
as e D ir, where i W Y ! X is the inclusion of the image of e (which coincides
with its fixed point subscheme), and r W X ! Y is a retraction. WhenX is a variety,
Y is a projective variety as well. We now analyze the connected component of e in
End.X/:

Proposition 1. Let X be a projective variety, e 2 End.X/.k/ an idempotent, and
C the connected component of e in End.X/. Write e D ir, where i W Y ! X

denotes the inclusion of a closed subvariety, and r W X ! Y is a retraction.

(i) The morphism

�r W Hom.Y;X/ �! End.X/; f 7�! f r

restricts to an isomorphism from the connected component of i in Hom.Y;X/,
to C . Moreover, C is a subsemigroup scheme of End.X/, and f D fe for any
f 2 C .

(ii) The morphism

�i�r W End.Y / �! End.X/; f 7�! ifr

restricts to an isomorphism of semigroup schemes Auto.Y /
Š�! eC. In

particular, eC is a group scheme with neutral element e.
(iii) �r restricts to an isomorphism from the connected component of i in Sec.r/,

to the subscheme E.C / of idempotents in C . Moreover, f1f2 D f1 for all
f1; f2 2 E.C /; in particular, E.C / is a closed subsemigroup scheme of C .

(iv) The morphism

' W E.C / � eC �! C; .f; g/ 7�! fg

is an isomorphism of semigroup schemes, where the semigroup law on the left-
hand side is given by .f1; g1/ 	 .f2; g2/ D .f1; g1g2/.
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This is proved in Sect. 3.1 by using a version of the rigidity lemma (see [3,
Sect. 4.4]). As a straightforward consequence, the maximal connected subgroup
schemes of End.X/ are exactly the �i�r .Auto.Y // with the above notation (this
fact is easily be checked directly).

As another consequence of Proposition 1, the endomorphism scheme of a
projective variety can have everywhere nonreduced connected components, even
in characteristic 0. Consider for example a ruled surface

r W X D P.E/ �! Y;

where Y is an elliptic curve and E is a locally free sheaf on Y which belongs to a
nonsplit exact sequence

0 �! OY �! E �! OY �! 0

(such a sequence exists in view of the isomorphisms Ext1.OY ;OY / Š
H1.Y;OY / Š k). Let i W Y ! X be the section associated with the projection
E ! OY . Then the image of i yields an isolated point of Hilb.X/ with Zariski
tangent space of dimension 1 (see e.g. [19, Exercise 4.6.7]). Thus, the connected
component of i in Sec.r/ is a nonreduced fat point. By Proposition 1(iv), the
connected component of e WD ir in End.X/ is isomorphic to the product of that
fat point with Auto.Y / Š Y , and hence is nonreduced everywhere. This explains a
posteriori why we have to be so fussy with semigroup schemes.

A further consequence of Proposition 1 is the following:

Proposition 2. Let X be a projective variety, S a connected subsemigroup scheme
of End.X/, andE.S/ � S the closed subscheme of idempotents. Assume that S has
a k-rational point.

(i) E.S/ is a connected subsemigroup scheme of S , with semigroup law given by
f1f2 D f1. Moreover, E.S/ has a k-rational point.

(ii) For any e 2 E.S/.k/, the closed subsemigroup scheme eS � S is a group
scheme. Moreover, the morphism

' W E.S/ � eS �! S; .f; g/ 7�! fg

is an isomorphism of semigroup schemes.
(iii) Identifying S with E.S/ � eS via ', the projection � W S ! E.S/ is the

unique retraction of semigroup schemes from S to E.S/. In particular, � is
independent of the choice of the k-rational idempotent e.

This structure result is proved in Sect. 3.2; a new ingredient is the fact that
a subsemigroup scheme of a group scheme of finite type is a subgroup scheme
(Lemma 10). The case where S has no k-rational point is discussed in Remark 5 at
the end of Sect. 3.2.
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Proposition 2 yields strong restrictions on the structure of connected
subsemigroup schemes of End.X/, where X is a projective variety. For example, if
such a subsemigroup scheme is commutative or has a neutral element, then it is just
a group scheme.

As another application of that proposition, we shall show that the dynamics of
an endomorphism of X which belongs to some algebraic subsemigroup is very
restricted. To formulate our result, we need the following:

Definition 1. LetX be a projective variety, and f a k-rational endomorphism ofX .
We say that f is bounded, if f belongs to a subsemigroup of finite type of

End.X/. Equivalently, the powers f n, where n � 1, are all contained in a finite
union of subvarieties of End.X/.

We say that a k-rational point x 2 X is periodic, if x is fixed by some f n.

Proposition 3. Let f be a bounded endomorphism of a projective variety X .

(i) There exists a smallest closed algebraic subgroupG � End.X/ such that f n 2
G for all n � 0. Moreover, G is commutative.

(ii) When k is algebraically closed, f has a periodic point if and only ifG is linear.
If X is normal, this is equivalent to the assertion that some positive power f n

acts on the Albanese variety of X via an idempotent.

This result is proved in Sect. 3.3. As a direct consequence, every bounded
endomorphism of a normal projective variety X has a periodic point, whenever the
Albanese variety of X is trivial (e.g., when X is unirational); we do not know if
any such endomorphism has a fixed point. In characteristic 0, it is known that every
endomorphism (not necessarily bounded) of a smooth projective unirational variety
X has a fixed point: this follows from the Woods Hole formula (see [1, Theorem 2],
[8, Exp. 3, Corollary 6.12]) in view of the vanishing of Hi.X;OX/ for all i � 1,
proved e.g. in [20, Lemma 1].

Also, it would be interesting to extend the above results to endomorphism
schemes of complete varieties. In this setting, the rigidity lemma of [3, Sect. 4.4] still
hold. Yet the representability of the functor of morphisms by a scheme is unclear: the
Hilbert functor of a complete variety is generally not represented by a scheme (see
e.g. [15, Exercise 5.5.1]), but no such example seems to be known for morphisms.

2 Proofs of Theorem 1 and of Corollary 1

2.1 Proof of Theorem 1 in Characteristic 0

We begin by setting notation and recalling a standard result of Galois descent, for
any perfect field k.

We fix an algebraic closure Nk of k and denote by � the Galois group of Nk=k.
For any scheme X , we denote by X Nk the Nk-scheme obtained from X by the base
change Spec. Nk/ ! Spec.k/. Then X Nk is equipped with an action of � such that
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the structure map X Nk ! Spec. Nk/ is equivariant; moreover, the natural morphism
X Nk ! X may be viewed as the quotient by this action. The assignment Y 7! Y Nk
defines a bijective correspondence between closed subschemes of X and � -stable
closed subschemes of X Nk .

Next, recall Chevalley’s structure theorem: every connected algebraic group G
has a largest closed connected linear normal subgroupL, and the quotientG=L is an
abelian variety (see e.g. [5, Theorem. 1.1.1] when k D Nk; the general case follows
by the above result of Galois descent).

We shall also need the existence of a normal projective equivariant compactifica-
tion of G, in the following sense:

Lemma 1. There exists a normal projective variety Y equipped with an action of
G � G and containing an open orbit isomorphic to G, where G � G acts on G by
left and right multiplication.

Proof. When k is algebraically closed, this statement is [5, Proposition 3.1.1 (iv)].
For an arbitrary k, we adapt the argument of [loc. cit.].

If G D L is linear, then we may identify it to a closed subgroup of some GLn,
and hence of PGLnC1. The latter group has an equivariant compactification by the
projectivization, P.MnC1/, of the space of matrices of size .nC 1/� .nC 1/, where
PGLnC1� PGLnC1 acts via the action of GLnC1 � GLnC1 onMnC1 by left and right
matrix multiplication. Thus, we may take for Y the normalization of the closure of
L in P.MnC1/.

In the general case, choose a normal projective equivariant compactification Z
of L and let

Y WD G �L Z �! G=L

be the fiber bundle associated with the principal L-bundle G ! G=L and with the
L-variety Z, where L acts on the left. Then Y is a normal projective variety, since
so is L and hence L has an ample L � L-linearized line bundle. Moreover, Y is
equipped with a G-action having an open orbit, G �L L Š G.

We now extend this G-action to an action of G � G, where the open G-orbit
is identified to the G � G-homogeneous space .G � G/=diag.G/, and the original
G-action, to the action of G � eG . For this, consider the scheme-theoretic center
Z.G/ (resp. Z.L/) of G (resp. L). Then Z.L/ D Z.G/ \ L, since Z.L/ Nk D
Z.G/ Nk \ L Nk in view of [5, Proposition 3.1.1 (ii)]. Moreover, G Nk D Z.G/ NkL Nk by
[loc. cit.]; hence the natural map Z.G/=Z.L/ ! G=L is an isomorphism of group
schemes. It follows that G=L is isomorphic to

.Z.G/ �Z.G//=.Z.L/ �Z.L//diag.Z.G// Š .G �G/=.L � L/diag.Z.G//:

Moreover, theL�L-action onZ extends to an action of .L�L/diag.Z.G//, where
Z.G/ acts trivially: indeed, .L �L/diag.Z.G// is isomorphic to

.L � L �Z.G//=.L � L/ \ diag.Z.G// D .L � L �Z.G//=diag.Z.L//;
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and the subgroup scheme diag.Z.L// � L � L acts trivially on Z by construction.
This yields an isomorphism

G �L Z Š .G �G/ �.L�L/diag.Z.G// Z;

which provides the desired action of G �G. ut
From now on in this subsection, we assume that char.k/ D 0. We shall

construct the desired varietyX from the equivariant compactification Y , by proving
a succession of lemmas.

Denote by AutG.Y / the subgroup scheme of Aut.Y / consisting of automor-
phisms which commute with the left G-action. Then the rightG-action on Y yields
a homomorphism

' W G �! AutG.Y /:

Lemma 2. With the above notation, ' is an isomorphism.

Proof. Note that AutG.Y / stabilizes the open orbit for the left G-action, and this
orbit is isomorphic to G. This yields a homomorphism AutG.Y / ! AutG.G/.
Moreover, AutG.G/ Š G via the action of G on itself by right multiplication, and
the resulting homomorphism W AutG.Y / ! G is readily seen to be inverse of '.

ut
Lemma 3. There exists a finite subsetF � G. Nk/which generates a dense subgroup
of G Nk .

Proof. We may assume that k D Nk. If the statement holds for some closed normal
subgroup H of G and for the quotient group G=H , then it clearly holds for G.
Thus, we may assume that G is simple, in the sense that it has no proper closed
connected normal subgroup. Then, by Chevalley’s structure theorem, G is either a
linear algebraic group or an abelian variety. In the latter case, there exists g 2 G.k/
of infinite order, and every such point generates a dense subgroup of G (actually,
every abelian variety, not necessarily simple, is topologically generated by some
k-rational point, see [10, Theorem 9]). In the former case, G is either the additive
groupGa, the multiplicative groupGm, or a connected semisimple group. Therefore,
G is generated by finitely many copies of Ga and Gm, each of which is topologically
generated by some k-rational point (specifically, by any nonzero t 2 k for Ga, and
by any u 2 k� of infinite order for Gm). ut

Choose F � G. Nk/ as in Lemma 3. We may further assume that F contains idY
and is stable under the action of the Galois group � ; then F D E Nk for a unique
finite reduced subscheme E � G. We have

AutF .Y Nk/ D AutG.
Nk/.Y Nk/ D AutG Nk .Y Nk/
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and the latter is isomorphic to G Nk via ', in view of Lemma 2. Thus, ' yields an
isomorphismG Š AutE.Y /.

Next, we identify G with a subgroup of Aut.Y � Y / via the closed embedding
of group schemes

� W Aut.Y / �! Aut.Y � Y /; ' 7�! ' � ':

For any f 2 F , let �f � Y Nk � Y Nk be the graph of f ; in particular, �idY is the
diagonal, diag.Y Nk/. Then there exists a unique closed reduced subscheme Z � Y �
Y such that Z Nk D S

f 2F �f . We may now state the following key observation:

Lemma 4. With the above notation, we have

�.G/ D Auto.Y � Y;Z/;

where the right-hand side denotes the neutral component of the stabilizer of Z in
Aut.Y � Y /.
Proof. We may assume that k D Nk, so that Z D S

f 2F �f . Moreover, by
connectedness, Auto.Y � Y;Z/ is the neutral component of the intersectionT
f 2F Aut.Y �Y; �f /. On the other hand, Auto.Y �Y;Z/ � Auto.Y �Y /, and the

latter is isomorphic to Auto.Y / � Auto.Y / via the natural homomorphism

Auto.Y / � Auto.Y / �! Auto.Y � Y /; .';  / 7�! ' �  

(see [5, Corollary 4.2.7]). Also, '� stabilizes a graph �f if and only if  f D f '.
In particular, '� stabilizes diag.Y / D �idY iff  D ', and '�' stabilizes �f iff
' commutes with f . As a consequence, Auto.Y � Y;Z/ is the neutral component
of �.AutF .Y //. Since AutF .Y / D G is connected, this yields the assertion. ut

Next, denote by X the normalization of the blow-up of Y � Y along Z. Then X
is a normal projective variety equipped with a birational morphism

� W X �! Y � Y

which induces a homomorphism of group schemes

�� W G �! Aut.X/;

since Z is stable under the action of G on Y � Y .

Lemma 5. Keep the above notation and assume that n � 2. Then �� yields an

isomorphism of algebraic groupsG
Š�! Auto.X/.

Proof. It suffices to show the assertion after base change to Spec. Nk/; thus, we may
assume again that k D Nk.
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The morphism � is proper and birational, and Y � Y is normal (since normality
is preserved under separable field extension). Thus, ��.OX/ D OY�Y by Zariski’s
Main Theorem. It follows that � induces a homomorphism of algebraic groups

�� W Auto.X/ ! Auto.Y � Y /

(see e.g. [5, Corollary 4.2.6]). In particular, Auto.X/ preserves the fibers of � , and
hence stabilizes the exceptional divisor E of that morphism; as a consequence,
the image of �� stabilizes �.E/. By connectedness, this image stabilizes every
irreducible component of �.E/; but these components are exactly the graphs
�f , where f 2 F (since the codimension of any such graph in Y � Y is
dim.Y / D n � 2). Thus, the image of �� is contained in �.G/: we may view ��
as a homomorphism Auto.X/ ! G. Since � is birational, both maps ��, �� are
injective and the composition ���� is the identity. It follows that �� is inverse
to ��. ut

We may now complete the proof of Theorem 1 when n � 2. Let X be as
in Lemma 5; then X admits an equivariant desingularization, i.e., there exists a
smooth projective varietyX 0 equipped with an action ofG and with aG-equivariant
birational morphism

f W X 0 �! X

(see [16, Proposition 3.9.1, Theorem 3.36]). We check that the resulting homomor-
phism of algebraic groups

f � W G �! Auto.X 0/

is an isomorphism. For this, we may assume that k D Nk; then again, [5,
Corollary 4.2.6] yields a homomorphism of algebraic groups

f� W Auto.X 0/ �! Auto.X/ D G

which is easily seen to be inverse of f �.
On the other hand, if n D 1, thenG is either an elliptic curve, or Ga, or a k-form

of Gm. We now construct a smooth projective surface X such that Auto.X/ Š G,
via case-by-case elementary arguments.

When G is an elliptic curve, we have G Š Auto.G/ via the action of G by
translations on itself. It follows that G Š Auto.G � C/, where C is any smooth
projective curve of genus � 2.

When G D Ga, we view G as the group of automorphisms of the projective line
P1 that fix the point 1 and the tangent line at that point, T1.P1/. Choose x 2 P1.k/

such that 0, x, 1 are all distinct, and let X be the smooth projective surface
obtained by blowing up P1 � P1 at the three points .1; 0/, .1; x/, and .1;1/.
Arguing as in the proof of Lemma 5, one checks that Auto.X/ is isomorphic to
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the neutral component of the stabilizer of these three points, in Auto.P1 � P1/ Š
PGL2 � PGL2. This identifies Auto.X/ with the stabilizer of 1 in PGL2, i.e,
with the automorphism group Aff1 of the affine line, acting on the first copy of
P1. Thus, Auto.X/ acts on each exceptional line via the natural action of Aff1 on
P.T1.P1/ ˚ k/, with an obvious notation; this action factors through an action of
Gm D Aff1=Ga, isomorphic to the Gm-action on P1 by multiplication. LetX 0 be the
smooth projective surface obtained by blowing up X at a k-rational point of some
exceptional line, distinct from 0 and 1; then Auto.X 0/ Š Ga.

Finally, when G is a k-form of Gm, we consider the smooth projective curve
C that contains G as a dense open subset; then C is a k-form of the projective
line P1 on which Gm acts by multiplication. Thus, the complement P WD C n G
is a point of degree 2 on C (a k-form of f0;1g); moreover, G is identified with
the stabilizer of P in Aut.C /. Let X be the smooth projective surface obtained by
blowing up C �C at .P �P/[.P �eG/, where the neutral element eG is viewed as
a k-point of C . Arguing as in the proof of Lemma 5 again, one checks that Auto.X/
is isomorphic to the neutral component of the stabilizer of .P � P/ [ .P � eG/ in
Auto.C � C/ Š Aut0.C / � Aut0.C /, i.e., to G acting on the first copy of C . ut
Remark 1. One may ask for analogues of Theorem 1 for automorphism groups of
compact complex spaces. Given any such space X , the group of biholomorphisms,
Aut.X/, has the structure of a complex Lie group acting biholomorphically on X
(see [9]). If X is Kähler, or more generally in Fujiki’s class C, then the neutral
component Aut0.X/ DW G has a meromorphic structure, i.e., a compactificationG�
such that the multiplicationG�G ! G extends to a meromorphic mapG� �G� !
G� which is holomorphic on .G � G�/ [ .G� � G/; moreover, G is Kähler
and acts biholomorphically and meromorphically on X (see [11, Theorem 5.5,
Corollary 5.7]).

Conversely, every connected meromorphic Kähler group of dimension n is the
connected automorphism group of some compact Kähler manifold of dimension
2n; indeed, the above arguments adapt readily to that setting. But it seems to
be unknown whether any connected complex Lie group can be realized as the
connected automorphism group of some compact complex manifold.

2.2 Proof of Theorem 1 in Prime Characteristic

In this subsection, the base field k is assumed to be perfect, of characteristic p > 0.
Let Y be an equivariant compactification of G as in Lemma 1. Consider the closed
subgroup scheme AutG.Y / � Aut.Y /, defined as the centralizer of G acting on the
left; then the G-action on the right still yields a homomorphism of group schemes
' W G ! AutG.Y /.

As in Lemma 2, ' is an isomorphism. To check this claim, note that ' induces

an isomorphism G. Nk/ Š�! AutG.Y /. Nk/ by the argument of that lemma. Moreover,
the induced homomorphism of Lie algebras
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Lie.'/ W Lie.G/ �! Lie AutG.Y /

is an isomorphism as well: indeed, Lie.'/ is identified with the natural map

 W Lie.G/ �! DerG.OY /;

where DerG.OY / denotes the Lie algebra of left G-invariant derivations of OY .
Furthermore, the restriction to the open dense subsetG of Y yields an injective map

� W DerG.OY / �! DerG.OG/ Š Lie.G/

such that � D id; thus, � is the inverse of  . It follows that AutG.Y / is reduced;
this completes the proof of the claim.

Next, Lemma 3 fails in positive characteristics, already for Ga since every finite
subset of Nk generates a finite additive group; that lemma also fails for Gm when Nk is
the algebraic closure of a finite field. Yet we have the following replacement:

Lemma 6. With the above notation, there exists a finite subset F ofG. Nk/ such that
AutG Nk .Y Nk/ D AutF;o.Y Nk/, where the right-hand side denotes the neutral component
of AutF .Y Nk/.

Proof. We may assume that k D Nk; then AutG.Y / D AutG.k/.Y /. The subgroup
schemes AutE;o.Y /, where E runs over the finite subsets of G.k/, form a family
of closed subschemes of Auto.Y /. Thus, there exists a minimal such subgroup
scheme, say, AutF;o.Y /. For any g 2 G.k/, the subgroup scheme AutF[fgg;o.Y /
is contained in AutF;o.Y /; thus, equality holds by minimality. In other words,
AutF;o.Y / centralizes g; hence F satisfies the assertion. ut

It follows from Lemmas 2 and 6 that AutF;o.Y Nk/ Š G Nk for some finite subset
F � G. Nk/; we may assume again that F contains idY and is stable under the action
of the Galois group � . Thus, G Š AutE.Y /, where E � G denotes the finite
reduced subscheme such that E Nk D F .

Next, Lemma 4 still holds with the same proof, in view of [5, Corollary 4.2.7]. In
other words, we may again identify G with the connected stabilizer in Aut.Y � Y /
of the unique closed reduced subscheme Z � Y � Y such that Z Nk D S

f 2F �f .
Consider again the morphism � W X ! Y � Y obtained as the normalization

of the blow-up of Z. Then X is a normal projective variety, and � induces a
homomorphism of group schemes

�� W G �! Auto.X/:

Now the statement of Lemma 5 adapts as follows:

Lemma 7. Keep the above notation and assume that n � 2. Then �� yields an

isomorphism of algebraic groupsG
Š�! Auto.X/red.
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Proof. Using the fact that normality is preserved under separable field extension, we
may assume that k D Nk. By [5, Corollary 4.2.6] again, we have a homomorphism
of group schemes

�� W Auto.X/ �! Auto.Y � Y /

and hence a homomorphism of algebraic groups

��;red W Auto.X/red �! Auto.Y � Y /red:

Arguing as in the proof of Lemma 5, one checks that ��;red maps Auto.X/red onto
�.G/, and is injective on k-rational points. Also, the homomorphism of Lie algebras
Lie.��;red/ is injective, as it extends to a homomorphism

Lie.��/ W Lie Auto.X/ D Der.OX/ �! Der.OY�Y / D Lie Auto.Y � Y /

which is injective, since � is birational. Thus, we obtain an isomorphism ��;red W
Auto.X/red

Š�! �.G/ which is the inverse of ��. ut
To realize G as a connected automorphism group scheme, we now prove:

Lemma 8. With the above notation, the homomorphism of Lie algebras

Lie.��/ W Lie.G/ �! Der.OX/

is an isomorphism if n � 2 and n � 1 is not a multiple of p.

Proof. We may assume again that k D Nk. Since � is birational, both maps Lie.��/
and Lie.��/ are injective and the composition Lie.��/Lie.��/ is the identity of
Lie.G/. Thus, it suffices to show that the image of Lie.��/ is contained in Lie.G/.
For this, we use the natural action of Der.OX/ on the jacobian ideal of � , defined
as follows. Consider the sheaf ˝1

X of Kähler differentials on X . Recall that ˝1
X Š

Idiag.X/=I2diag.X/ with an obvious notation; thus, ˝1
X is equipped with an Aut.X/-

linearization (see [18, Exp. I, Sect. 6] for background on linearized sheaves, also
called equivariant). Likewise,˝1

Y�Y is equipped with an Aut.Y � Y /-linearization,
and hence with an Auto.X/-linearization via the homomorphism ��. Moreover, the
natural map ��.˝1

Y�Y / ! ˝1
X is a morphism of Aut0.X/-linearized sheaves, since

it arises from the inclusion ��1.Idiag.Y�Y // � Idiag.X/. This yields a morphism of
Auto.X/-linearized sheaves

��.˝2n
Y�Y / �! ˝2n

X :

Since the composition

˝2n
X � Hom.˝2n

X ;OX/ �! OX
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is also a morphism of linearized sheaves, we obtain a morphism of linearized
sheaves

Hom.˝2n
X ; �

�.˝2n
Y�Y // �! OX

with image the jacobian ideal I� . Thus, I� is equipped with an Auto.X/-
linearization. In particular, for any open subset U of X , the Lie algebra Der.OX/

acts on O.U / by derivations that stabilize � .U; I�/.
We now takeU D ��1.V /, where V denotes the open subset of Y �Y consisting

of those smooth points that belong to at most one of the graphs �f . Then the
restriction

�U W U �! V

is the blow-up of the smooth variety V along a closed subscheme W , the disjoint
union of smooth subvarieties of codimension n. Thus, I�U D OU .�.n � 1/E/,
where E denotes the exceptional divisor of �U . Hence we obtain an injective map

Der.OX/ D Der.OX ; I�/ �! Der.OU ;OU .�.n � 1/E//;

with an obvious notation. Since n � 1 is not a multiple of p, we have

Der.OU ;OU .�.n � 1/E// D Der.OU ;OU .�E//:

(Indeed, if D 2 Der.OU ;OU .�.n � 1/E// and z is a local generator of OU .�E/
at x 2 X , then zn�1OX;x contains D.zn�1/ D .n � 1/zn�2D.z/, and hence D.z/ 2
zOX;x). Also, the natural map

Der.OU / �! Der.�U;�.OU // D Der.OV /

is injective and sends Der.OU ;OU .�E// to Der.OV ; �U;�.OU .�E//. Moreover,
�U;�.OU .�E// is the ideal sheaf of W , and hence is stable under Der.OX/ acting
via the composition

Der.OX/ �! Der.��.OX// D Der.OY�Y / �! Der.OV /:

It follows that the image of Lie.��/ stabilizes the ideal sheaf of the closure of W in
Y � Y , i.e., of the union of the graphs �f . In view of Lemma 4, we conclude that
Lie.��/ sends Der.OX/ to Lie.G/. ut

Lemmas 7 and 8 yield an isomorphism G Š Auto.X/ when n � 2 and p does
not divide n � 1. Next, when n � 2 and p divides n � 1, we choose a smooth
projective curve C of genus g � 2, and consider Y 0 WD Y � C . This is a normal
projective variety of dimension nC1, equipped with an action ofG�G. Moreover,
we have isomorphisms
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Auto.Y /
Š�! Auto.Y / � Auto.C /

Š�! Auto.Y 0/; ' 7�! ' � idC

(where the second isomorphism follows again from [5, Corollary 4.2.6]); this
identifiesG Š AutG;o.Y /with AutG;o.Y 0/. We may thus replace everywhereY with
Y 0 in the above arguments, to obtain a normal projective variety X 0 of dimension
2nC 2 such that Aut0.X 0/ Š G.

Finally, if n D 1 then G is again an elliptic curve, or Ga, or a k-form of Gm

(since every form of Ga over a perfect field is trivial). It follows that G Š Auto.X/
for some smooth projective surface X , constructed as at the end of Sect. 2.1. ut
Remark 2. If G is linear, then there exists a normal projective unirational variety
X such that Auto.X/red Š G and dim.X/ D 2n. Indeed, G itself is unirational
(see [18, Exp. XIV, Corollary 6.10], and hence so is the variety X considered in the
above proof when n � 2; on the other hand, when n D 1, the above proof yields
a smooth projective rational surface X such that Auto.X/ Š G. If in addition k is
algebraically closed, then G is rational; hence we may further choose X rational.

Conversely, if X is a normal projective variety having a trivial Albanese variety
(e.g., X is unirational), then Auto.X/ is linear. Indeed, the Albanese variety of
Auto.X/red is trivial in view of [2, Theorem 2]. Thus, Auto.X/red is affine by
Chevalley’s structure theorem. It follows that Auto.X/ is affine, or equivalently
linear.

Returning to a connected linear algebraic group G, the above proof adapts to
show that there exists a normal projective unirational varietyX such that Auto.X/ Š
G: in the argument after Lemma 8, it suffices to replace the curve C with a normal
projective rational variety Z such that Auto.Z/ is trivial and dim.Z/ � 2 is not
a multiple of p. Such a variety may be obtained by blowing up P

2 at 4 points in
general position when p � 3; if p D 2, then we blow up P

3 along a smooth curve
which is neither rational nor contained in a plane.

Remark 3. It is tempting to generalize the above proof to the setting of an arbitrary
base field k. Yet this raises many technical difficulties; for instance, Chevalley’s
structure theorem fails over any imperfect field (see [18, Exp. XVII, Appendix III,
Proposition 5.1], and [21] for a remedy). Also, normal varieties need not be
geometrically normal, and hence the differential argument of Lemma 8 also fails
in that setting.

2.3 Proof of Corollary 1

(i))(ii) Let G WD Auto.X/. Recall from [17, Lemma 3.4, Theorem 3.7] thatG is a
connected algebraic group with Lie algebra g. Also, recall that

G Nk D Z.G/ Nk L Nk;
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where Z.G/ denotes the center of G, and L the largest closed connected normal
linear subgroup of G. As a consequence, g Nk D Lie.Z.G// Nk C Lie.L/ Nk . It follows
that g D Lie.Z.G// C Lie.L/, and hence we may choose a subspace V �
Lie.Z.G// such that

g D V ˚ Lie.L/

as vector spaces. This decomposition also holds as Lie algebras, since ŒV; V � D
0 D ŒV;Lie.L/�. Hence g D Lie.U �L/, where U is the (commutative, connected)
unipotent algebraic group with Lie algebra V .

(ii))(i) Let G be a connected linear algebraic group such that g D Lie.G/.
By Theorem 1 and Remark 2, there exists a smooth projective unirational variety X
of dimension 2n such that G Š Auto.X/; when k is algebraically closed, we may
further choose X rational. Then of course g Š Der.OX/. ut

3 Proofs of the Statements About Endomorphisms

3.1 Proof of Proposition 1

(i) Since C is connected and has a k-rational point, it is geometrically connected
in view of [18, Exp. VIB, Lemma 2.1.2]. Likewise, the connected component
of i in Hom.Y;X/ is geometrically connected. To show the first assertion, we
may thus assume that k is algebraically closed. But then that assertion follows
from [3, Proposition 4.4.2, Remark 4.4.3].

The scheme-theoretic image of C � C under the morphism

End.X/ � End.X/ �! End.X/; .f; g/ 7�! gf

is connected and contains e2 D e; thus, this image is contained in C . There-
fore, C is a subsemigroup scheme of End.X/. Also, every g 2 Hom.Y;X/
satisfies gre D grir D gr. Thus, f D fe for any f 2 C .

(ii) Since .if 1r/.if 2r/ D if 1f2r for all f1; f2 2 End.Y /, we see that �i�r is a
homomorphism of semigroup schemes which sends idY to e. Also, eifr D
irifr D ifr for all f 2 End.Y /, so that �i�r sends End.Y / to eEnd.X/. Since
Y is a projective variety, Auto.Y / is the connected component of i in End.Y /,
and hence is sent by �i�r to C \ eEnd.X/ D eC.

To show that �i�r is an isomorphism, note that eC D eCe D irCir by (i).
Moreover, the morphism

�r�i W End.X/ �! End.Y /; f 7�! rfi
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sends e to idY , and hence C to Auto.Y /. Finally, �r�i .�i�r .f // D r.ifr/i D
f for all f 2 End.Y /, and �i�r .�r�i .f // D i.rfi/r D efe D f for all
f 2 eC. Thus, �r�i is the desired inverse.

(iii) Let f 2 C such that f 2 D f . Then fef D f by (i), and hence ef 2 eC
is idempotent. But eC is a group scheme by (ii); thus, ef D e. Write f D
gr, where g is a point of the connected component of i in Hom.Y;X/. Then
egr D e and hence rgr D r , so that rg D idY . Conversely, if g 2 Sec.r/,
then gr is idempotent as already noted. This shows the first assertion. For the
second assertion, just note that .g1r/.g2r/ D g1r for all g1; g2 2 Sec.r/.

(iv) We have with an obvious notation '.f1; g1/'.f2; g2/ D f1g1f2g2 D
f1g1ef 2g2 by (i). Since ef 2 D e by (iv), it follows that '.f1; g1/'.f2; g2/ D
f1g1eg2 D f1g1g2. Thus, ' is a homomorphism of semigroup schemes.

We now construct the inverse of '. Let f 2 C ; then ef 2 eC has a
unique inverse, .ef /�1, in eC. Moreover, f D fe D f .ef /�1ef and f .ef /�1 is
idempotent, since

f .ef /�1f .ef /�1 D f .ef /�1ef .ef /�1 D f .ef /�1e D f .ef /�1:

We may thus define a morphism

 W C �! E.C / � eC; f 7�! .f .ef /�1; ef /:

Then ' .f / D f .ef /�1ef D fe D f for all f 2 C , and  '.f; g/ D
.fg.efg/�1; efg/ D .fgg�1; eg/ D .f; g/ for all f 2 E.C / and g 2 eC. Thus,
 is the desired inverse. ut

3.2 Proof of Proposition 2

(i) Consider the connected componentC of End.X/ that contains S . Then C is of
finite type, and hence so is S . Choose a k-rational point f of S and denote by
hf i the smallest closed subscheme of S containing all the powers f n, where
n � 1. Then hf i is a reduced commutative subsemigroup scheme of S . By the
main result of [4], it follows that hf i has an idempotent k-rational point. In
particular,E.S/ has a k-rational point.

Since E.S/ � E.C /, we have f1f2 D f1 for any f1; f2 2 E.S/, by
Proposition 1. It remains to show that E.S/ is connected; this will follow from
(ii) in view of the connectedness of S .

(ii) By Proposition 1 again, ' yields an isomorphismE.C /�eC
Š�! C . Moreover,

fe D f for all f 2 C , and eC D eCe is a group scheme. Thus, eS D eSe is
a submonoid scheme of eC, and hence a closed subgroup scheme by Lemma 9
below. In other words, ef is invertible in eS for any f 2 S . One may now
check as in the proof of Proposition 1(iv) that the morphism
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 W S �! E.S/ � eS; f 7�! .f .ef /�1; ef /

yields an isomorphism of semigroup schemes, with inverse '.
(iii) Since ' is an isomorphism of semigroup schemes, � is a homomorphism

of such schemes. Moreover, �.f / D f .ef /�1 for all f 2 S , since  is
the inverse of '. If f 2 E.S/, then f D f 2 D fef and hence �.f / D
fef .ef /�1 D fe D f . Thus, � is a retraction.

Let � W S ! E.S/ be a retraction of semigroup schemes. For any f 2 S ,
we have �.f / D �.f .ef /�1ef / D �.f .ef /�1/�.ef /. Moreover, �.f .ef /�1/ D
f .ef /�1, since f .ef /�1 2 E.S/; also, �.ef / D �.ef /�..ef /�1/ D �.e/ D e.
Hence �.f / D f .ef /�1e D f .ef /�1 D �.f /. ut

Lemma 9. Let G be a group scheme of finite type, and S � G a subsemigroup
scheme. Then S is a closed subgroup scheme.

Proof. We have to prove that S is closed and stable under the automorphism g 7!
g�1 ofG. It suffices to check these assertions after base extension to any larger field;
hence we may assume that k is algebraically closed.

Arguing as at the beginning of the proof of Proposition 2(i), we see that S has
an idempotent k-rational point; hence S contains the neutral element, eG . In other
words, S is a submonoid scheme of G. By Lemma 10 below, there exists an open
subgroup scheme G.S/ � S which represents the invertibles in S . In particular,
G.S/red is the unit group of the algebraic monoid Sred. Since that monoid has a
unique idempotent, it is an algebraic group by [3, Proposition 2.2.5]. In other words,
we have G.S/red D Sred. As G.S/ is open in S , it follows that G.S/ D S . Thus, S
is a subgroup scheme of G, and hence is closed by [18, Exp. VIA, Corollary 0.5.2].

ut
To complete the proof, it remains to show the following result of independent

interest:

Lemma 10. Let M be a monoid scheme of finite type. Then the group functor of
invertibles of M is represented by a group scheme G.M/, open in M .

Proof. We first adapt the proof of the corresponding statement for (reduced)
algebraic monoids (see [3, Theorem 2.2.4]). Denote for simplicity the composition
law of M by .x; y/ 7! xy, and the neutral element by 1. Consider the closed
subscheme G � M �M defined in set-theoretic notation by

G D f.x; y/ 2 M �M j xy D yx D 1g:

ThenG is a subgroup scheme of the monoid schemeM �M op, whereM op denotes
the opposite monoid, that is, the scheme M equipped with the composition law
.x; y/ 7! yx. Moreover, the first projection

p W G �! M
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is a homomorphism of monoid schemes, which sends the T -valued points of G
isomorphically to the T -valued invertible points of M for any scheme T . It follows
that the group scheme G represents the group functor of invertibles in M .

To complete the proof, it suffices to check that p is an open immersion; for
this, we may again assume that k is algebraically closed. Clearly, p is universally
injective; we now show that it is étale. Since that condition defines an open
subscheme of G, stable under the action of G.k/ by left multiplication, we only
need to check that p is étale at the neutral element 1 of G. For this, the argument of
[loc. cit.] does not adapt readily, and we shall rather consider the formal completion
of M at 1,

N WD Spf. OOM;1/:

Then N is a formal scheme having a unique point; moreover, N has a structure of
formal monoid scheme, defined as follows. The composition law 
 W M �M ! M

sends .1; 1/ to 1, and hence yields a homomorphism of local rings 
# W OM;1 !
OM�M;.1;1/. In turn, 
# yields a homomorphism of completed local rings

� W OOM;1 �! OOM�M;.1;1/ D OOM;1 Ő OOM;1:

We also have the homomorphism

" W OOM;1 �! k

associated with 1. One readily checks that � and " satisfy conditions
(i) (co-associativity) and (ii) (co-unit) of [18, Exp. VIIB, 2.1]; hence they define
a formal monoid scheme structure on N . In view of [loc. cit., 2.7. Proposition], it
follows that N is in fact a group scheme. As a consequence, p is an isomorphism
after localization and completion at 1; in other words, p is étale at 1. ut
Remark 4. Proposition 2 gives back part of the description of all algebraic semi-
group structures on a projective variety X , obtained in [3, Theorem 4.3.1].

Specifically, every such structure 
 W X � X ! X , .x; y/ 7! xy yields a
homomorphism of semigroup schemes � W X �! End.X/, x 7�! .y 7! xy/
(the “left regular representation”). Thus, S WD �.X/ is a closed subsemigroup
scheme of End.X/. Choose an idempotent e 2 X.k/. In view of Proposition 2,
we have �.x/�.e/ D �.x/ for all x 2 X ; moreover, �.e/�.x/ is invertible in
�.e/S . It follows that xey D xy for all x; y 2 X . Moreover, for any x 2 X ,
there exists y 2 eX such that yexz D exyz D ez for all z 2 X . In particular,
.exe/.eye/ D .eye/.exe/ D e, and hence eXe is an algebraic group.

These results are the main ingredients in the proof of [3, Theorem 4.3.1]. They
are deduced there from the classical rigidity lemma, while the proof of Proposition 2
relies on a generalization of that lemma.
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Remark 5. If k is not algebraically closed, then connected semigroup schemes
of endomorphisms may well have no k-rational point. For example, let X be
a projective variety having no k-rational point; then the subsemigroup scheme
S � End.X/ consisting of constant endomorphisms (i.e., of those endomorphisms
that factor through the inclusion of a closed point in X ) is isomorphic to X itself,
equipped with the composition law .x; y/ 7! y. Thus, S has no k-rational point
either.

Yet Proposition 2 can be extended to any geometrically connected subsemigroup
scheme S � End.X/, not necessarily having a k-rational point. Specifically, E.S/
is a nonempty, geometrically connected subsemigroup scheme, with semigroup law
given by f1f2 D f1. Moreover, there exists a unique retraction of semigroup
schemes

� W S �! E.S/I

it assigns to any point f 2 S , the unique idempotent e 2 E.S/ such that ef D f .
Finally, the above morphism � defines a structure of E.S/-monoid scheme on S ,
with composition law induced by that of S , and with neutral section the inclusion

� W E.S/ �! S:

In fact, this monoid scheme is a group scheme: consider indeed the closed
subscheme T � S � S defined in set-theoretic notation by

T D f.x; y/ 2 S � S j xy D yx; x2y D x; xy2 D yg;

and the morphism

� W T �! S; .x; y/ 7�! xy:

Then one may check that � is a retraction from T to E.S/, with section

" W E.S/ �! T; x 7�! .x; x/:

Moreover, T is a group scheme over E.S/ via �, with composition law given by
.x; y/.x0; y0/ WD .xx0; y0y/, neutral section ", and inverse given by .x; y/�1 WD
.y; x/. Also, the first projection

p1 W T �! S; .x; y/ �! x

is an isomorphism which identifies � with �; furthermore, p1 is an isomorphism of
monoid schemes. This yields the desired group scheme structure.

When k is algebraically closed, all these assertions are easily deduced from the
structure of S obtained in Proposition 2; the case of an arbitrary field follows by
descent.
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3.3 Proof of Proposition 3

(i) can be deduced from the results of [4]; we provide a self-contained proof by
adapting some of the arguments from [loc. cit.].

As in the beginning of the proof of Proposition 2, we denote by hf i the
smallest closed subscheme of End.X/ containing all the powers f n, where n �
1. In view of the boundedness assumption, hf i is an algebraic subsemigroup;
clearly, it is also commutative. The subsemigroups hf mi, where m � 1, form
a family of closed subschemes of hf i; hence there exists a minimal such
subsemigroup, hf n0i. Since hf mi \ hf ni  hf mni, we see that hf n0i is the
smallest such subsemigroup.

The connected components of hf n0i form a finite set F , equipped with
a semigroup structure such that the natural map ' W hf n0i ! F is
a homomorphism of semigroups. In particular, the finite semigroup F is
generated by '.f n0/. It follows readily that F has a unique idempotent, say
'.f n0n/. Then the fiber '�1'.f n0n/ is a closed connected subsemigroup of
hf n0i, and contains hf n0ni. By the minimality assumption, we must have
hf n0ni D '�1'.f n0n/ D hf n0i. As a consequence, hf n0i is connected.

Also, recall that hf n0i is commutative. In view of Proposition 2, it follows
that this algebraic semigroup is in fact a group. In particular, hf n0i contains a
unique idempotent, say e. Therefore, e is also the unique idempotent of hf i:
indeed, if g 2 hf i is idempotent, then g D gn0 2 hf n0i, and hence g D e.

Thus, ehf i D hef i is a closed submonoid of hf i with neutral element e
and no other idempotent. In view of [3, Proposition 2.2.5], it follows that ehf i
is a group, say, G. Moreover, f n0 D ef n0 2 ehf i, and hence f n 2 G for all
n � n0. On the other hand, if H is a closed subgroup of End.X/ and n1 is
a positive integer such that f n 2 H for all n � n1, then H contains hf n1i,
and hence hf n0i by minimality. In particular, the neutral element ofH is e. Let
g denote the inverse of f n1 in H ; then H contains f n1C1g D ef , and hence
G � H . Thus, G satisfies the assertion.

(ii) Assume that f n.x/ D x for some n � 1 and some x 2 X.k/. Replacing n with
a large multiple, we may assume that f n 2 G. Let Y WD e.X/, where e is the
neutral element ofG as above, and let y WD e.x/. Then Y is a closed subvariety
of X , stable by f and hence by G; moreover, G acts on Y by automorphisms.
Also, y 2 Y is fixed by f n. Since f n D .ef /n, it follows that the .ef /m.y/,
wherem � 1, form a finite set. As the positive powers of ef are dense in G, the
G-orbit of y must be finite. Thus, y is fixed by the neutral component Go. In
view of [5, Proposition 2.1.6], it follows that Go is linear; hence so is G.

Conversely, if G is linear, then Go is a connected linear commutative
algebraic group, and hence fixes some point y 2 Y.k/ by Borel’s fixed point
theorem. Then y is periodic for f .

Next, assume that X is normal; then so is Y by Lemma 11 below. In view
of [2, Theorem 2], it follows that Go acts on the Albanese variety A.Y / via
a finite quotient of its own Albanese variety, A.Go/. In particular, G is linear
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if and only if Go acts trivially on A.Y /. Also, note that A.Y / is isomorphic
to a summand of the abelian variety A.X/: the image of the idempotent A.e/
induced by e. If Go acts trivially on A.Y /, then it acts on A.X/ via A.e/, since
Go D Goe. Thus, some positive power f n acts on A.X/ via A.e/ as well.
Conversely, if f n acts on A.X/ via some idempotent g, then we may assume
that f n 2 Go by taking a large power. Thus, f n D ef n D f ne and hence
g D A.e/g D gA.e/; in other words, g acts on A.X/ as an idempotent of the
summand A.Y /. On the other hand, g D A.f n/ yields an automorphism of
A.Y /; it follows that g D A.e/.

Lemma 11. Let X be a normal variety, and r W X ! Y a retraction. Then Y is a
normal variety as well.

Proof. Consider the normalization map, � W QY ! Y . By the universal property of �,
there exists a unique morphism Qr W X ! QY such that r D � Qr . Since r has a section,
so has �. As QY is a variety and � is finite, it follows that � is an isomorphism. ut
Remark 6. With the notation of the proof of (i), the group G is the closure of the
subgroup generated by ef . HenceG is monothetic in the sense of [10], which obtains
a complete description of this class of algebraic groups. Examples of monothetic
algebraic groups include all the semiabelian varieties, except when k is the algebraic
closure of a finite field (then the monothetic algebraic groups are exactly the finite
cyclic groups).

Acknowledgements This work was began during a staying at Tsinghua University in March 2013.
I warmly thank the Mathematical Sciences Center for its hospitality, and Jérémy Blanc, Corrado
De Concini, Stéphane Druel, Baohua Fu, Eduard Looijenga, Jörg Winkelmann, and De-Qi Zhang
for helpful discussions or e-mail exchanges.

References

1. M. Atiyah, R. Bott, A Lefschetz fixed point formula for elliptic differential operators. Bull.
Am. Math. Soc. 72(2), 245–250 (1966)

2. M. Brion, Some basic results on actions of nonaffine algebraic groups, in Symmetry and Spaces.
Progress in Mathematics, vol. 278 (Birkhäuser, Boston, 2010), pp. 1–20

3. M. Brion, On algebraic semigroups and monoids, preprint. arXiv:1208.0675
4. M. Brion, L. Renner, Algebraic Semigroups are Strongly �-regular, preprint. arXiv:1209.2042
5. M. Brion, P. Samuel, V. Uma, Lectures on the Structure of Algebraic Groups and Geometric

Applications. CMI Lecture Series in Mathematics, vol. 1 (Hindustan Book Agency, New Dehli,
2013)

6. C. Chevalley, Théorie des groupes de Lie. Tome II. Groupes algébriques. Actualités Sci. Ind.,
vol. 1152 (Hermann & Cie., Paris, 1951)

7. C. Chevalley, Théorie des groupes de Lie. Tome III. Théorèmes généraux sur les algèbres de
Lie. Actualités Sci. Ind., vol. 1226 (Hermann & Cie., Paris, 1955)

8. Cohomologie l-adique et fonctions L (SGA5), Séminaire de Géométrie Algébrique du Bois
Marie 1965–66. Lecture Notes in Mathematics, vol. 589 (Springer, Berlin, 1977)



On Automorphisms and Endomorphisms of Projective Varieties 81

9. A. Douady, Le problème des modules pour les sous-espaces analytiques compacts d’un espace
analytique donné. Ann. Inst. Fourier (Grenoble) 16(1), 1–95 (1966)

10. G. Falcone, P. Plaumann, K. Strambach, Monothetic algebraic groups. J. Aust. Math. Soc.
82(3), 315–324 (2007)

11. A. Fujiki, On automorphism groups of compact Kähler manifolds. Invent. Math. 44(3), 225–
258 (1978)

12. A. Grothendieck, Techniques de construction et théorèmes d’existence en géométrie algébrique
IV: les schémas de Hilbert. Séminaire Bourbaki, vol. 5 (1960–1961), Exposé No. 221, 28 pp.

13. G. Hochschild, Note on algebraic Lie algebras. Proc. Am. Math. Soc. 29(1), 10–16 (1971)
14. S.-J. Kan, Complete hyperbolic Stein manifolds with prescribed automorphism groups.

Comment. Math. Helv. 82(2), 371–383 (2007)
15. J. Kollár, Rational Curves on Algebraic Varieties. Ergebnisse der Mathematik und ihrer

Grenzgebiete, vol. 32 (Springer, Berlin, 1996)
16. J. Kollár, Lectures on Resolution of Singularities. Annals of Mathematics Studies, vol. 166

(Princeton University Press, Princeton, 2007)
17. H. Matsumura, F. Oort, Representability of group functors, and automorphisms of algebraic

schemes. Invent. Math. 4(1), 1–25 (1967)
18. Schémas en groupes I, II, III (SGA3), Séminaire de Géométrie Algébrique du Bois Marie 1962–

1964. Lecture Notes in Mathematics, vols. 151, 152, 153 (Springer, Berlin, 1970). Revised
version ed. by P. Polo, P. Gille, vols. I, III (Soc. Math. France, 2011)

19. E. Sernesi, Deformations of Algebraic Schemes. Grundlehren Math. Wiss., vol. 334 (Springer,
Berlin, 2006)

20. J.-P. Serre, On the fundamental group of a unirational variety. J. Lond. Math. Soc. 34(4), 481–
484 (1959)

21. B. Totaro, Pseudo-abelian varieties. Ann. Sci. Éc. Norm. Sup. 46(5), 693–721 (2013)
22. J. Winkelmann, Realizing connected Lie groups as automorphism groups of complex mani-

folds. Comment. Math. Helv. 79(2), 285–299 (2004)



Del Pezzo Surfaces and Local Inequalities

Ivan Cheltsov

Abstract I prove new local inequality for divisors on smooth surfaces, describe its
applications, and compare it to a similar local inequality that is already known by
experts.
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Let X be a Fano variety of dimension n > 1 with at most Kawamata log terminal

singularities (see [6, Definition 6.16]). In many applications, it is useful to measure
how singular effective Q-divisors D on X can be provided that D �Q �KX . Of
course, this can be done in many ways depending on what I mean by measure.
A possible measurement can be given by the so-called ˛-invariant of the Fano
variety X that can be defined as

˛.X/ D sup

(
� 2 Q

ˇ̌
ˇ̌
ˇ
the pair .X; �D/ is Kawamata log terminal

for every effective Q-divisorD �Q �KX:

)
2 R:

The invariant ˛.X/ has been studied intensively by many people who used
different notation for ˛.X/. The notation ˛.X/ is due to Tian who defined ˛.X/
in a different way. However, his definition coincides with the one I just gave by
[4, Theorem A.3]. The ˛-invariants play a very important role in Kähler geometry
due to

Throughout this chapter, I assume that most of the considered varieties are algebraic, normal, and
defined over complex numbers.
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Theorem 1 ([13], [7, Criterion 6.4]). Let X be a Fano variety of dimension n
that has at most quotient singularities. If ˛.X/ > n

nC1 , then X admits an orbifold
Kähler–Einstein metric.

The ˛-invariants are usually very tricky to compute. But they are computed in
many cases. For example, the ˛-invariants of smooth del Pezzo surfaces have been
computed as follows:

Theorem 2 ([1, Theorem 1.7]). Let Sd be a smooth del Pezzo surface of degree d .
Then

˛.Sd / D

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

1

3
if d D 9; 7 or Sd D F1;

1

2
if d D 5; 6 or Sd D P

1 � P
1;

2

3
if d D 4;

˛.S3/ D

8̂
<̂
ˆ̂:

2

3
if S3 is a cubic surface in P

3 with an Eckardt point;

3

4
if S3 is a cubic surface in P

3 without Eckardt points;

˛.S2/ D

8̂
<̂
ˆ̂:

3

4
if j �KS2 j has a tacnodal curve;

5

6
if j �KS2 j has no tacnodal curves;

˛.S1/ D
8<
:
5

6
if j �KS1 j has a cuspidal curve;

1 if j �KS1 j has no cuspidal curves:

Note that ˛.X/ < 1 if and only if there exists an effective Q-divisor D on X
such that D �Q �KX and the pair .X;D/ is not log canonical. Such divisors (if
they exist) are called non-log canonical special tigers by Keel and McKernan (see
[9, Definition 1.13]). They play an important role in birational geometry of X . How
does one describe non-log canonical special tigers? Note that if D is a non-log
canonical special tiger on X , then

.1 � 
/D C 
D0

is also a non-log canonical special tiger on X for any effective Q-divisor D0 on X
such that D0 �Q �KX and any sufficiently small 
 > 0. Thus, to describe non-log
canonical special tigers onX , I only need to consider those of them whose supports
do not contain supports of other non-log canonical special tigers. Let me call such
non-log canonical special tigers Siberian tigers. Unfortunately, Siberian tigers are
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not easy to describe in general. But sometimes it is possible. For example, Kosta
proved

Lemma 3 ([11, Lemma 3.1]). Let S be a hypersurface of degree 6 in P.1; 1; 2; 3/

that has exactly one singular point O . Suppose that O is a Du Val singular point of
type A3. Then all Siberian tigers onX are cuspidal curves in j�KS j, which implies,
in particular, that

˛.S/ D
8<
:
5

6
if there is a cuspidal curve in j �KS j,

1 otherwise.

The original proof of Lemma 3 is global and lengthy. In [11], Kosta applied the
very same global method to compute the ˛-invariants of all del Pezzo surfaces of
degree 1 that has at most Du Val singularities (in most of cases her computations do
not give description of Siberian tigers). Later I noticed that the nature of her global
method is, in fact, purely local. Implicitly, Kosta proved

Theorem 4 ([3, Corollary 1.29]). Let S be a surface, let P be a smooth point in
S , let �1 and �2 be two irreducible curves on S that are both smooth at P and
intersect transversally at P , and let a1 and a2 be non-negative rational numbers.
Suppose that 2n�2

nC1 a1 C 2
nC1a2 6 1 for some positive integer n > 3. Let � be an

effective Q-divisor on the surface S whose support does not contain the curves �1

and�2. Suppose that the log pair .S; a1�1 Ca2�2 C�/ is not log canonical at P .
Then multP .� 	�1/ > 2a1 � a2 or multP .� 	�2/ >

n
n�1a2 � a1.

Unfortunately, Theorem 4 has a very limited application scope. Together with
Kosta, I generalized Theorem 4 as

Theorem 5 ([3, Theorem 1.28]). Let S be a surface, let P be a smooth point in
S , let �1 and �2 be two irreducible curves on S that both are smooth at P and
intersect transversally at P , let a1 and a2 be non-negative rational numbers, and
let � be an effective Q-divisor on the surface S whose support does not contain
the curves �1 and �2. Suppose that the log pair .S; a1�1 C a2�2 C �/ is not
log canonical at P . Suppose that there are non-negative rational numbers ˛, ˇ,
A, B , M , and N such that ˛a1 C ˇa2 6 1, A.B � 1/ > 1, M 6 1, N 6 1,
˛.AC M � 1/ > A2.B C N � 1/ˇ, ˛.1 �M/C Aˇ > A. Suppose, in addition,
that 2M CAN 6 2 or ˛.B C 1 �MB �N/C ˇ.AC 1�AN �M/ > AB � 1.
Then multP .� 	�1/ > M C Aa1 � a2 or multP .� 	�2/ > N C Ba2 � a1.

Despite the fact that Theorem 5 looks very ugly, it is much more flexible and
much more applicable than Theorem 4. By [6, Excercise 6.26], an analogue of
Theorem 5 holds for surfaces with at most quotient singularities. This helped me to
find in [2] many new applications of Theorem 5 that do not follow from Theorem 4.

Remark 6. How does one apply Theorem 5? Let me say few words about this. Let
S be a smooth surface, and let D be an effective Q-divisor on S . The purpose of
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Theorem 5 is to prove that .S;D/ is log canonical provided that D satisfies some
global numerical conditions. To do so, I assume that .S;D/ is not log canonical at
P and seek for a contradiction. First, I look for some nice curves that pass through
P that has very small intersection with D. Suppose I found two such curves, say
�1 and �2, that are both irreducible and both pass through P . If �1 or �2 are
not contained in the support of the divisor D, I can bound multP .D/ by D 	 �1

or D 	 �2 and, hopefully, get a contradiction with multP .D/ > 1, which follows
from the fact .S;D/ is not log canonical at P . This shows that I should look for
the curves�1 and �2 among the curves which are close enough to the boundary of
the Mori cone NE.S/. Suppose that both curves �1 and �2 lie in the boundary of
the Mori cone NE.S/. Then �2

1 6 0 and �2
2 6 0. Keeping in mind, that the curves

�1 and �2 can, a priori, be contained in the support of the divisor D, I must put
D D a1�1Ca2�2C� for some non-negative rational numbers a1 and a2, where�
is an effectiveQ-divisor on S whose support does not contain the curves�1 and�2.
Then I try to bound a1 and a2 using some global methods. Usually, I end up with two
non-negative rational numbers ˛ and ˇ such that ˛a1 C ˇa2 6 1. PutM D D 	�1,
N D C 	�2, A D ��2

1, and B D ��2
1. Suppose that �1 and �2 are both smooth

at P and intersect transversally at P (otherwise I need to blow up the surface S and
replace the pair .S;D/ by its log pull back). If I am lucky, then A.B � 1/ > 1,
M 6 1, N 6 1, ˛.A C M � 1/ > A2.B C N � 1/ˇ, ˛.1 � M/C Aˇ > A, and
either 2M CAN 6 2 or ˛.B C 1�MB �N/C ˇ.AC 1�AN �M/ > AB � 1
(or both), which implies that

MCAa1�a2 > MCAa1�a2�1 	�2 D � 	�1 > multP
�
� 	�1

�
> MCAa1�a2

or

N CBa2�a1 > N CBa2�a1�1 	�2 D � 	�2 > multP
�
� 	�2

�
> N CBa2�a1

by Theorem 5. This is the contradiction I was looking for.

Unfortunately, the hypotheses of Theorem 5 are not easy to verify in general.
Moreover, the proof of Theorem 5 is very lengthy. It seems likely that Theorem 5 is
a special case or, perhaps, a corollary of a more general statement that looks better
and has a shorter proof. Ideally, the proof of such generalization, if it exists, should
be inductive like the proof of

Theorem 7 ([6, Excercise 6.31]). Let S be a surface, let P be a smooth point in
S , let � be an irreducible curve on S that is smooth at P , let a be a non-negative
rational number such that a 6 1, and let � be an effective Q-divisor on the surface
S whose support does not contain the curve �. Suppose that the log pair .S; a�C
�/ is not log canonical at P . Then multP .� 	�/ > 1.

Proof. Put m D mult.�/. If m > 1, then I am done, since multP .� 	 �/ > m.
In particular, I may assume that the log pair .S; a� C �/ is log canonical in a
punctured neighborhood of the point P . Since the log pair .S; a�C �/ is not log
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canonical at P , there exists a birational morphism hW OS ! S that is a composition
of r > 1 blow ups of smooth points dominatingP , and there exists an h-exceptional
divisor, say Er , such that er > 1, where er is a rational number determined by

K OS C a O�C O�C
rX
iD1

eiEi �Q h
��KS C a�C�

	
;

where each ei is a rational number, eachEi is an h-exceptional divisor, O� is a proper
transform on OS of the divisor�, and O� is a proper transform on OS of the curve�.

Let f W QS ! S be the blow up of the point P , let Q� be the proper transform of
the divisor � on the surface QS , let E be the f -exceptional curve, and let Q� be the
proper transform of the curve� on the surface QS . Then the log pair . QS; a Q�C .aC
m � 1/E C Q�/ is not log canonical at some pointQ 2 E .

Let me prove the inequality multP .� 	�/ > 1 by induction on r . If r D 1, then
aCm�1 > 1, which implies thatm > 2�a > 1. This implies that multP .�	�/ > 1
if r D 1. Thus, I may assume that r > 2. Since

multP
�
� 	�

�
> mC multQ

� Q� 	 Q�
�
;

it is enough to prove that m C multQ. Q� 	 Q�/ > 1. Moreover, I may assume that
m 6 1, since multP .� 	�/ > m. Then the log pair . QS; a Q�C .aCm� 1/EC Q�/ is
log canonical at a punctured neighborhood of the pointQ 2 E , since aCm�1 6 2.

If Q 62 Q�, then the log pair . QS; .a C m � 1/E C Q�/ is not log canonical at
the pointQ, which implies that

m D Q� 	E > multQ
� Q� 	E

�
> 1

by induction. The latter implies that Q D Q� \ E , since m 6 1. Then

aCm � 1C multQ
� Q� 	 Q�

�
D multQ

 �
.a Cm � 1/E C Q�

�
	 Q�
!
> 1

by induction. This implies that multQ. Q� 	 Q�/ > 2�a�m. ThenmCmultQ. Q� 	 Q�/ >
2 � a > 1 as required. ut

Recently, I jointly with Park and Won proved that all Siberian tigers on smooth
cubic surfaces are just anticanonical curves that have non-log canonical singularities
(see [5, Theorem 1.12]). This follows from

Theorem 8 ([5, Corollary 1.13]). Let S be a smooth cubic surface in P3, let P be a
point in S , let TP be the unique hyperplane section of the surface S that is singular
at P , let D be any effective Q-divisor on the surface S such thatD �Q �KS . Then
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.S;D/ is log canonical at P provided that Supp.D/ does not contain at least one
irreducible component of Supp.TP /.

Siberian tigers on smooth del Pezzo surfaces of degree 1 and 2 are also just anti-
canonical curves that have non-log canonical singularities (see [5, Theorem 1.12]).
This follows easily from the proofs of [1, Lemmas 3.1 and 3.5]. Surprisingly, smooth
del Pezzo surfaces of degree 4 contains much more Siberian tigers.

Example 9. Let S be a smooth complete intersection of two quadric hypersurfaces
in P4, let L be a line on S , and let P0 be a point in L such that L is the only line in
S that passes though P0. Then there exists exactly five conics in S that pass through
P0. Let me denote them by C0

1 , C0
2 , C0

3 , C0
4 , and C0

5 . Then

P5
iD1 C 0

i

3
C 2

3
L �Q �KS;

is a Siberian tiger. Let Z be a general smooth rational cubic curve in S such that
Z C L is cut out by a hyperplane section and P 2 Z. Then Z \ L consists of
a point P and another point which I denote by Q. Let f W QS ! S be a blow up
of the point Q, and let E be its exceptional curve. Denote by QL and QZ the proper
transforms of the curvesL and Z on the surface QS , respectively. Then QZ \ QL D ¿.
Let gW OS ! QS be the blow up of the point QZ \ E , and let F be its exceptional
curve. Denote by OE, OL and OZ the proper transforms of the curves E , QL and QZ on
the surface OS , respectively. Then OS is a minimal resolution of a singular del Pezzo
surface of degree 2, and j � K OS j gives a morphism OS ! P2 that is a double cover
away from the curves OE and OL. This double cover induces an involution 	 2 Bir.S/.
Put C1

i D 	.C 0
i / for every i . Then C1

1 , C1
2 , C1

3 , C1
4 and C1

5 are curves of degree
5 that all intersect exactly in one point in L. Denote this point by P1. Iterate this
constriction k times. This gives me five irreducible curves Ck

1 , Ck
2 , Ck

3 , Ck
4 and Ck

5

that intersect exactly in one point Pk . Then

P5
iD1 C k

i

a2kC1 C a2kC3
C 4a2kC1 � a2kC3
a2kC1 C a2kC3

L �Q �KS; (1)

where ai is the i -th Fibonacci number. Moreover, each curveCk
i is a curve of degree

a2kC3. Furthermore, the log canonical threshold of the divisor (1) is

a2kC3.a2kC1 C a2kC3/
1C a2kC3.a2kC1 C a2kC3/

< 1;

which easily implies that the divisor (1) is a Siberian tiger.

Quite surprisingly, Theorem 8 has other applications as well. For example, it
follows from [10, Corollary 2.12], [5, Lemma 1.10] and Theorem 8 that every
cubic cone in A

4 having unique singular point does not admit non-trivial regular
Ga-actions (cf. [8, Question 2.22]).
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The crucial part in the proof of Theorem 8 is played by two sibling lemmas.
The first one is

Lemma 11 ([5, Lemma 4.8]). Let S be a smooth cubic surface in P3, let P be a
point in S , let TP be the unique hyperplane section of the surface S that is singular
at P , let D be any effective Q-divisor on the surface S such that D �Q �KS .
Suppose that TP consists of three lines such that one of them does not pass through
P . Then .S;D/ is log canonical at P .

Its younger sister is

Lemma 12 ([5, Lemma 4.9]). Let S be a smooth cubic surface in P3, let P be a
point in S , let TP be the unique hyperplane section of the surface S that is singular
at P , let D be any effective Q-divisor on the surface S such that D �Q �KS .
Suppose that TP consists of a line and a conic intersecting transversally. Then
.S;D/ is log canonical at P .

The proofs of Lemmas 11 and 12 we found in [5] are global. In fact, they
resemble the proofs of classical results by Segre and Manin on cubic surfaces (see
[6, Theorems 2.1 and 2.2]). Once the paper [5] has been written, I asked myself a
question: can I prove Lemmas 11 and 12 using just local technique? To answer this
question, let me sketch their global proofs first.

Global proof of Lemma 11. Let me use the notation and assumptions of Lemma 11.
I write TP D L C M C N , where L, M , and N are lines on the cubic surface S .
Without loss of generality, I may assume that the line N does not pass through the
point P . Let D be any effective Q-divisor on the surface S such that D �Q �KS .
I must show that .S;D/ is log canonical at P . Suppose that the log pair .S;D/ is
not log canonical at the point P . Let me seek for a contradiction.

Put D D aL C bM C cN C �, where a, b, and c are non-negative rational
numbers and � is an effective Q-divisor on S whose support contains none of the
lines L, M and N . Put m D multP .�/. Then a 6 1, b 6 1 and c 6 1. Moreover,
the pair .S;D/ is log canonical outside finitely many points. This follows from [6,
Lemma 5.3.6] and is very easy to prove (see, for example, [5, Lemma 4.1] or the
proof of [1, Lemma 3.4]).

Since .S;D/ is not log canonical at the point P , I have

mC aC b D multP .D/ > 1

by [6, Excercise 6.18] (this also follows from Theorem 7). In particular, the rational
number a must be positive, since otherwise I would have

1 D L 	D > multP .D/ > 1:

Similarly, the rational number b must be positive as well.
The inequality m C a C b > 1 is very handy. However, a stronger inequality

m C a C b > c C 1 holds. Indeed, there exists a non-negative rational number 
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such that the divisor .1C
/D�
TP is effective and its support does not contain at
least one components of TP . Now to obtainmCaCb > cC1, it is enough to apply
[6, Excercise 6.18] to the divisor .1C 
/D � 
TP , since .S; .1C 
/D � 
TP / is
not log canonical at P .

Since a, b, c do not exceed 1 and .S;LCM CN/ is log canonical,� ¤ 0. Let
me write � D Pr

iD1 eiCi , where every ei is a positive rational number, and every
Ci is an irreducible reduced curve of degree di > 0 on the surface S . Then

a C b C c C
rX
iD1

eidi D 3;

since �KS 	D D 3.
Let f W QS ! S be a blow up of the point P , and let E be the exceptional divisor

of f . Denote by QL, QM and QN the proper transforms on QS of the lines L, M and N ,
respectively. For each i , denote by QCi the proper transform of the curve Ci on the
surface QS . Then

K QS C a QLC b QM C c QN C .aC b Cm � 1/E C
rX
iD1

ei QCi �Q f
� .KS CD/ ;

which implies that the log pair . QS; a QLCb QMCc QNC.aCbCm�1/ECPr
iD1 ei QCi/

is not log canonical at some point Q 2 E .
I claim that either Q 2 QL \E or Q 2 QM \E . Indeed, it follows from

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

1 D D 	 L D
�

aL C bM C cN C�
�

	 L D �aC b C c C� 	 L > �aC b C c Cm;

1 D D 	M D
�

aL C bM C cN C�
�

	M D a � b C c C� 	M > a � b C c Cm;

1 D D 	N D
�

aL C bM C cN C�
�

	 N D aC b � c C� 	N > aC b � c;

that m 6 1 � c and a C b C m � 1 6 1, because a 6 1 and b 6 1. On the other
hand, if Q 62 QL[ QM , then the log pair . QS; .a C b Cm � 1/E CPr

iD1 ei QCi/ is not
log canonical at Q, which implies that

m D
� rX
iD1

ei QCi
�

	E > 1

by Theorem 7. This shows that eitherQ 2 QL\E orQ 2 QM \E , sincem 6 1�c 6
1. Without loss of generality, I may assume thatQ D QL \E .

Let �WS Ü P2 be the linear projection from the pointP . Then � is a generically
two-to-one rational map. Thus the map � induces an involution 	 2 Bir.S/ known
as the Geiser involution (see [6, Sect. 2.14]). The involution 	 is biregular outside
P [N , 	.L/ D L and 	.M/ D M .
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For each i , denote by Odi the degree of the curve 	.Ci /. Put O� D Pr
iD1 ei	.Ci /.

Then

aL C bM C .aC b Cm � 1/N C O� �Q �KS;

and .S; aLCbM C .aCbCm�1/M C O�/ is not log canonical at the pointL\N .
Thus, I can replace the original effective Q-divisorD by the divisor

aL C bM C .a C b Cm � 1/N C O� �Q �KS

that has the same properties as D. Moreover, I have

rX
iD1

ei Odi <
rX
iD1

eidi ;

sincemCaCb > cC1. Iterating this process, I obtain a contradiction after finitely
many steps. ut
Global proof of Lemma 12. Let me use the notations and assumptions of
Lemma 12. I write TP D L C C , where L is a line, and C is a conic. Let D
be any effective Q-divisor on the surface S such that D �Q �KS . I must show that
the log pair .S;D/ is log canonical at P . Suppose that .S;D/ is not log canonical
at the point P . Let me seek for a contradiction.

Let me write D D nL C kC C �, where n and k are non-negative rational
numbers and � is an effective Q-divisor on S whose support contains none of the
curvesL and C . Putm D multP .�/. Then 2nCm 6 2 and 2kCm 6 1Cn, since

8̂
<
:̂
1 D D 	 L D

�
nL C kC C�

�
	 L D �nC 2k C� 	 L > �nC 2k Cm;

2 D D 	 C D
�

nL C kC C�
�

	 C D 2nC� 	 C > 2nCm:

Arguing as in the proof [1, Lemma 3.4], I see that the log pair .S;D/ is
log canonical outside finitely many points (this follows, for example, from [6,
Lemma 5.3.6]). In particular, both rational numbers n and k do not exceed 1. On
the other hand, it follows from [6, Excercise 6.18] that

mC nC k D multP .D/ > 1;

because the log pair .S;D/ is not log canonical at the point P . The later implies
that n > 0, since 1 D L 	D > multP .D/ if n D 0.

I claim that n > k and m C n > 1. Indeed, there exists a non-negative rational
number 
 such that the divisor .1 C 
/D � 
TP is effective and its support does
not contain at least one components of TP . Then .S; .1 C 
/D � 
TP / is not log
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canonical at P . If n 6 k, then the support of .1C 
/D � 
TP does not contain L,
which is impossible, since

multP
�
.1C 
/D � 
TP

�
> 1

and 1 D L 	 ..1 C 
/D � 
TP /. Thus, I proved that n > k. Now I can apply [6,
Excercise 6.18] to the divisor .1C 
/D � 
TP and obtainmC n > 1.

Let f W QS ! S be the blow up of the point P , let Q� be the proper transform of
the divisor � on the surface QS , let QL be the proper transform of the line L on the
surface QS , let QC be the proper transform of the conic C on the surface QS , and let E
be the f -exceptional curve. Then

K QS C n QLC k QC C Q�C �
nC k Cm � 1	E �Q f

��KS CD
	 �Q 0;

which implies that the log pair . QS; n QLC k QC C .nC k Cm� 1/E C Q�/ is not log
canonical at some pointQ 2 E . On the other hand, I must have nCkCm� 1 6 1,
because 2nCm 6 2, 2k Cm 6 1C n and n 6 1.

I claim thatQ 2 QL. Indeed, ifQ 2 QC , then the log pair . QS; k QC C .nC kCm�
1/E C Q�/ is not log canonical at Q, which implies that k > n, since

1 � nC k D
� Q�C �

nC k Cm� 1
	
E
�

	 QC > 1;

by Theorem 7. Since I proved already that n > k, the curve QC does not contain Q.
Thus, if Q 62 QL, then Q 62 QL[ QC , which contradicts [5, Lemma 3.2], since

n QLC k QC C Q�C .nC k Cm � 1/E �Q �K QS :

Since n and k do not exceed 1 and the log pair .S;L C C/ is log canonical,
the effective Q-divisor � cannot be the zero-divisor. Let r be the number of
the irreducible components of the support of the Q-divisor �. Let me write
� D Pr

iD1 eiCi , where every ei is a positive rational number, and every Ci is
an irreducible reduced curve of degree di > 0 on the surface S . Then

nC 2k C
rX
iD1

aidi D 3;

since �KS 	D D 3.
Let �WS Ü P2 be the linear projection from the pointP . Then � is a generically

2-to-1 rational map. Thus the map � induces a birational involution 	 of the cubic
surface S . This involution is also known as the Geiser involution (cf. the proof of
Lemma 11). The involution 	 is biregular outside of the conic C , and 	.L/ D L.

For every i , put OCi D 	.Ci /, and denote by Odi the degree of the curve OCi . Put
O� D Pr

iD1 ei OCi . Then
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nLC .nC k Cm � 1/C C O� �Q �KS;

and .S; nL C .n C k C m � 1/C C O�/ is not log canonical at the point L \ C

that is different from P . Thus, I can replace the original effective Q-divisor D by
nLC .nC k C m � 1/C C O� that has the same properties as D. Moreover, since
mC n > 1, the inequality

rX
iD1

ei Odi <
rX
iD1

eidi

holds. Iterating this process, I obtain a contradiction in a finite number of steps as in
the proof of Lemma 11. ut

It came as a surprise that Theorem 5 can be used to replace the global proof of
Lemma 12 by its local counterpart. Let me show how to do this.

Local proof of Lemma 12. Let me use the assumptions and notation of Lemma 12.
I write TP D L C C , where L is a line, and C is a conic. Let D be any effective
Q-divisor on the surface S such that D �Q �KS . I must show that the log pair
.S;D/ is log canonical at P . Suppose that .S;D/ is not log canonical at the point
P . Let me seek for a contradiction.

Put D D nL C kC C�, where n and k are non-negative rational numbers and
� is an effective Q-divisor on S whose support contains none of the curves L and
C . Put m D multP .�/. Then

mC nC k D multP .D/ > 1;

since .S;D/ is not log canonical at P . The later implies that n > 0, since 1 D
L 	D > multP .D/ if n D 0.

ReplacingD by an effectiveQ-divisor .1C
/D�
TP for an appropriate
 > 0,
I may assume that k D 0. Then 2 D C 	 D D 2n C � 	 C > 2n C m. Moreover,
the log pair .S;D/ is log canonical outside finitely many points. The latter follows,
for example, from [6, Lemma 5.3.6] and is very easy to prove (cf. the proof of [1,
Lemma 3.4]).

Let f W QS ! S be the blow up of the point P , let Q� be the proper transform of
the divisor � on the surface QS , let QL be the proper transform of the line L on the
surface QS , and let E be the f -exceptional curve. Then

K QS C n QLC Q�C �
nCm � 1	E �Q f

��KS CD
	 �Q 0;

which implies that . QS; n QLC .nCm� 1/EC Q�/ is not log canonical at some point
Q 2 E . Arguing as in the proof of [1, Lemma 3.5], I get Q D QL \ E . Now I can
apply Theorem 5 to the log pair . QS; n QL C .n C m � 1/E C Q�/ at the point Q.
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Put�1 D E ,�2 D QL, M D 1, A D 1,N D 0, B D 2, and ˛ D ˇ D 1. Check that
all hypotheses of Theorem 5 are satisfied. By Theorem 5, I have

m D multQ. Q� 	E/ > 1C .nCm � 1/� n D m

or 1Cn�m D multQ. Q� 	 QL/ > 2n�.nCm�1/ D 1Cn�m, which is absurd. ut
I tried to apply Theorem 5 to find a local proof of Lemma 11 as well. But I failed.

This is not surprising. Let me explain why. The proof of Theorem 5 is asymmetric
with respect to the curves �1 and �2. The global proof of Lemma 12 is also
asymmetric with respect to the curves L and C . The proof of Theorem 5 is based
on uniquely determined iterations of blow ups: I must keep blowing up the point of
the proper transform of the curve �2 that dominates the point P . The global proof
of Lemma 12 is based on uniquely determined composition of Geiser involutions.
So, Lemma 12 can be considered as a global wrap up of a purely local special case
of Theorem 5, where the line L plays the role of the curve�2 in Theorem 5. On the
other hand, Lemma 11 is symmetric with respect to the lines L and M . Moreover,
its proof is not deterministic at all, since the composition of Geiser involutions in
the proof of Lemma 11 is not uniquely determined by the initial data, i.e., every time
I apply Geiser involution, I have exactly two possible candidates for the next one:
either I can use the Geiser involution induced by the projection fromL\N or I can
use the Geiser involution induced by the projection fromM \N . So, there is a little
hope that Theorem 5 can be used to replace the usage of Geiser involutions in the
proof of Lemma 11. Of course, there is a chance that the proof of Lemma 11 cannot
be localized like the proof of Lemma 12. Fortunately, this is not the case. Indeed,
instead of using Geiser involutions in the global proof of Lemma 11, I can use

Theorem 13. Let S be a surface, letP be a smooth point in S , let�1 and�2 be two
irreducible curves on S that both are smooth at P and intersect transversally at P ,
let a1 and a2 be non-negative rational numbers, and let � be an effective Q-divisor
on the surface S whose support does not contain the curves�1 and�2. Suppose that
the log pair .S; a1�1 C a2�2 C�/ is not log canonical at P . Put m D multP .�/.
Suppose thatm 6 1. Then multP .� 	�1/ > 2.1�a2/ or multP .� 	�2/ > 2.1�a1/.
Proof. I may assume that a1 6 1 and a2 6 1. Then the log pair .S; a1�1 C a2�2 C
�/ is log canonical in a punctured neighborhood of the point P , becausem 6 1.

Since the log pair .S; a1�1 C a2�2 C�/ is not log canonical at P , there exists
a birational morphism hW OS ! S that is a composition of r > 1 blow ups of smooth
points dominating P , and there exists an h-exceptional divisor, say Er , such that
er > 1, where er is a rational number determined by

K OS C a1 O�1 C a2 O�2 C O�C
rX
iD1

eiEi �Q h
��KS C a1�1 C a2�2 C�

	
;
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where ei is a rational number, each Ei is an h-exceptional divisor, O� is a proper
transform on OS of the divisor �, O�1 and O�2, are proper transforms on OS of the
curves�1 and�2, respectively.

Let f W QS ! S be the blow up of the point P , let Q� be the proper transform of
the divisor � on the surface QS , let E be the f -exceptional curve, let Q�1 and Q�2 be
the proper transforms of the curves�1 and �2 on the surface QS , respectively. Then

K QS Ca1 Q�1Ca2 Q�2 C �
a1 Ca2 Cm� 1	EC Q� �Q f

��KS Ca1�1 Ca2�2 C�
	
:

which implies that the log pair . QS; a1 Q�1 C a2 Q�2 C �
a1 C a2 C m � 1

	
E C Q�/ is

not log canonical at some point Q 2 E .
If r D 1, then a1 C a2 Cm� 1 > 1, which implies thatm > 2� a1 � a2. On the

other hand, ifm > 2�a1�a2, then eitherm > 2.1�a1/ orm > 2.1�a2/, because
otherwise I would have 2m 6 4�2.a1Ca2/, which contradicts tom > 2�a1�a2.
Thus, if r D 1, them multP .� 	�1/ > 2.1 � a2/ or multP .� 	�2/ > 2.1� a1/.

Let me prove the required assertion by induction on r . The case r D 1 is done.
Thus, I may assume that r > 2. If Q ¤ E \ Q�1 and Q ¤ E \ Q�2, then it
follows from Theorem 7 that m D Q� 	E > 1, which is impossible, since m 6 1 by
assumption. Thus, either Q D E \ Q�1 orQ D E \ Q�2. Without loss of generality,
I may assume that Q D E \ Q�1.

By induction, I can apply the required assertion to . QS; a1 Q�1 C .a1 C a2 Cm �
1/E C Q�/ at the pointQ. This implies that either

multQ
� Q� 	 Q�1

�
> 2

�
1 � .a1 C a2 Cm � 1/

�
D 4 � 2a1 � 2a2 � 2m

or multQ. Q� 	E/ > 2.1� a1/. In the latter case, I have

multP
�
� 	�2

�
> m > 2.1� a1/;

since m D multQ. Q� 	 E/ > 2.1 � a1/, which is exactly what I want. Thus, to
complete the proof, I may assume that multQ. Q� 	 Q�1/ > 4 � 2a1 � 2a2 � 2m.

If multP .� 	 �2/ > 2.1 � a1/, then I am done. Thus, to complete the proof, I
may assume that multP .� 	�2/ 6 2.1 � a1/. This gives me m 6 2.1 � a1/, since
multP .� 	�2/ > m. Then

multP
�
� 	�1

�
> mC multQ

� Q� 	 Q�1

�
> mC 4 � 2a1 � 2a2 � 2m

D 4 � 2a1 � 2a2 �m > 2.1 � a2/;
becausem 6 2.1� a1/. This completes the proof. ut

Let me show how to prove Lemma 11 using Theorem 13. This is very easy.

Local proof of Lemma 11. Let me use the assumptions and notation of Lemma 11.
I write TP D L C M C N , where L, M , and N are lines on the cubic surface S .
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Without loss of generality, I may assume that the line N does not pass through the
point P . Let D be any effective Q-divisor on the surface S such thatD �Q �KS . I
must show that the log pair .S;D/ is log canonical at P . Suppose that the log pair
.S;D/ is not log canonical at P . Let me seek for a contradiction.

The log pair .S;D/ is log canonical in a punctured neighborhood of the point P
(use [6, Lemma 5.3.6] or the proof of [1, Lemma 3.4]). PutD D aLCbMCcNC�,
where a, b, and c are non-negative rational numbers and� is an effective Q-divisor
on S whose support contains none of the lines L, M , and N . Put m D multP .�/.

Since .S;LCM CN/ is log canonical,D ¤ LCM CN . Then there exists a
non-negative rational number 
 such that the divisor .1C 
/D � 
TP is effective
and its support does not contain at least one components of TP D L C M C N .
Thus, replacingD by .1C
/D�
TP , I can assume that at least one number among
a, b, and c is zero. On the other hand, I know that

multP .D/ D mC aC b > 1;

because the log pair .S;D/ is not log canonical at P . Thus, if a D 0, then

1 D L 	D > multP
�
L
	
multP

�
D
	 D multP

�
D
	 D mC b > 1;

which is absurd. This shows that a > 0. Similarly, b > 0. Therefore, c D 0. Then

1 D N 	D D N 	 .aL C bM C�/ D a C b CN 	� > a C b;

which implies that a C b 6 1. On the other hand, I know that

8̂
<
:̂
1 D L 	

�
aL C bM C�

�
D �a C b C L 	� > �a C b Cm;

1 D M 	
�

aL C bM C�
�

D a � b CM 	� > a � b Cm;

which implies thatm 6 1. Thus, I can apply Theorem 13 to .S; aLCbM C�/. This
gives either

1C a � b D multP .� 	 L/ > 2.1 � b/

or 1 � a C b D multP .� 	 M/ > 2.1 � a/. Then either 1 C a � b > 2 � 2b or
1 � a C b > 2 � 2a. In both cases, a C b > 1, which is not the case (I proved this
earlier). ut

I was very surprised to find out that Theorem 13 has many other applications as
well. Let me show how to use Theorem 13 to give a short proof of Lemma 3.

Proof of Lemma 3. Let me use the assumptions and notation of Lemma 3. Every
cuspidal curve in j � KS j is a Siberian tigers, since all curves in j � KS j are
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irreducible. Let D be a Siberian tiger. I must prove that D is a cuspidal curve in
j �KS j.

The pair .S;D/ is not log canonical at some point P 2 S . Let C be a curve in
j � KS j that contains P . If P is the base locus of the pencil j � KS j, then .S; C /
is log canonical at P , because every curve in the pencil j � KS j is smooth at its
unique base point. Moreover, if P D O , then .S; C / is also log canonical at P by
[12, Theorem 3.3]. In the latter case, the curve C has an ordinary double point at P
by [12, Theorem 3.3], which also follows from Kodaira’s table of singular fibers of
elliptic fibration. Furthermore, if C is singular at P and .S; C / is not log canonical
at P , then C has an ordinary cusp at P .

If D D C and C is a cuspidal curve, then I am done. Thus, I may assume that
this is not the case. Let me seek for a contradiction.

I claim that C 6
 Supp.D/. Indeed, if C is cuspidal curve, then C 6
 Supp.D/,
sinceD is a Siberian tiger. If .S; C / is log canonical, putD D aC C�, where a is
a non-negative rational number, and� is an effective Q-divisor on S whose support
does not contain the curve C . Then a < 1, since D �Q C and D ¤ C . Then

1

1 � a
D � a

1 � aC D 1

1 � a .aC C�/� a

1 � a
C D 1

1 � a
� �Q �KS

and the log pair .S; 1
1�a�/ is not log canonical atP , because .S; C / is log canonical

at P , and .S;D/ is not log canonical at P . Since D is a Siberian tiger, I see that
a D 0, i.e., C 6� Supp.D/.

If P ¤ O , then

1 D C 	D > multP .D/;

which is impossible by [6, Excercise 6.18], since the log pair .S;D/ is not log
canonical at the point P . Thus, I see that P D O .

Let f W QS ! S be a minimal resolution of singularities of the surface S . Then
there are three f -exceptional curves, say E1, E2, and E3, such that E2

1 D E2
2 D

E2
3 D �2. I may assume that E1 	 E3 D 0 and E1 	 E2 D E2 	 E3 D 1. Let QC be

the proper transform of the curve C on the surface QS . Then QC �Q f
�.C / � E1 �

E2 � E3.
Let QD be the proper transform of the Q-divisorD on the surface QS . Then

QD �Q f
��D	 � a1E1 � a2E2 � a3E3

for some non-negative rational numbers a1, a2 and a3. Then

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

1 � a1 � a3 D QD 	 QC > 0;

2a1 � a2 D QD 	E1 > 0;

2a2 � a1 � a3 D QD 	E2 > 0;

2a3 � a2 D QD 	E3 > 0;
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which gives 1 > a1 C a3, 2a1 > a2, 3a2 > 2a3, 2a3 > a2, 3a2 > 2a1, a1 6 3
4
,

a2 6 1, a3 6 3
4
. On the other hand, I have

K QS C QD C
3X
iD1

aiEi �Q f
�.KS CD/ �Q 0;

which implies that . QS; QDCa1E1Ca2E2Ca3E3/ is not log canonical at some point
Q 2 E1 [E2 [E3.

Suppose that Q 2 E1 and Q 62 E2. Then . QS; QD C a1E1/ is not log canonical at
Q. Then 2a1 � a2 D QD 	E1 > 1 by Theorem 7. Therefore, I have

1 > 4

3
a1 > 2a1 � 2

3
a1 > 2a1 � a2 > 1;

which is absurd. Thus, if Q 2 E1, then Q D E1 \ E2. Similarly, I see that if
Q 2 E3, then Q D E3 \E2.

Suppose thatQ 2 E2 andQ 62 E1[E3. Then . QS; QDCa2E2/ is not log canonical
at Q. Then 2a2 � a1 � a3 D QD 	E2 > 1 by Theorem 7. Therefore, I have

1 > a2 D 2a2 � a2

2
� a2

2
> 2a2 � a1 � a3 > 1;

which is absurd. Thus, I proved that eitherQ D E1 \E2 orQ D E3 \E2. Without
loss of generality, I may assume that Q D E1 \E2.

The log pair . QS; QDCa1E1Ca2E2/ is not log canonical atQ. Putm D multQ. QD/.
Then

8̂
<̂
ˆ̂:

2a1 � a2 D QD 	E1 > m;

2a2 � a1 � a3 D QD 	E2 > m;

2a3 � a2 D QD 	E3 > 0;

which implies that a1 C a3 > 2m. Since I already proved that a1 C a3 6 1, m 6 1
2
.

Applying Theorem 13 to the log pair . QS; QD C a1E1 C a2E2/ at the point Q, I see
that QD 	E1 > 2.1� a2/ or QD 	E2 > 2.1� a1/. In the former case, one has

2a1 � a2 D QD 	E1 > 2.1� a2/;

which implies that 2 > 2a1C2a3 > 2a1Ca2 > 2, since 1 > a1Ca3 and 2a3 > a2.
Thus, I proved that

2a2 � a1 � a3 D QD 	E2 > 2.1� a1/;
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which implies that 2a2 C a1 > 2C a3. Then 2a2 C 1 � a3 > 2a2 C a1 > 2C a3,
since a1 C a3 6 1. The last inequality implies that 2a2 > 1C 2a3. Since I already
proved that 2a3 > a2 , I conclude that 2a2 > 1 C a2, which is impossible, since
a1 6 1. The obtained contradiction completes the proof. ut

Similarly, I can use Theorem 13 instead of Theorem 5 in the local proof
of Lemma 12 (I leave the details to the reader). Theorem 13 has a nice and
clean inductive proof like Theorem 7 has. So, what if Theorem 13 is the desired
generalization of Theorem 5? This may seem unlikely keeping in mind how both
theorems look like. However, Theorem 13 does generalize Theorem 4, which is the
ancestor and a special case of Theorem 5. The latter follows from

Remark 14. Let S be a surface, let �1 and �2 be two irreducible curves on S that
are both smooth at P and intersect transversally at P . Take an effective Q-divisor
a1�1 C a2�2 C�, where a1 and a2 are non-negative rational numbers, and� is an
effective Q-divisor on the surface S whose support does not contain the curves �1

and�2. Put m D multP .�/. Let n be a positive integer such that n > 3. Theorem 4
asserts that multP .� 	�1/ > 2a1 � a2 or

multP
�
� 	�2

�
>

n

n � 1
a2 � a1

provided that 2n�2
nC1 a1 C 2

nC1a2 6 1 and the log pair .S; a1�1 C a2�2 C�/ is not
log canonical at P . On the other hand, multP .� 	�1/ > m and multP .� 	�2/ > m.
Thus, Theorem 4 asserts something non-obvious only if

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

2a1 � a2 > m;

n

n� 1
a2 � a1 > m;

2n� 2

nC 1
a1 C 2

nC 1
a2 6 1:

(15)

Note that (15) implies that a1 6 1
2
, a2 6 1, and m 6 1. Thus, if (15) holds, then I

can apply Theorem 13 to the log pair .S; a1�1Ca2�2C�/ to get multP .� 	�1/ >

2.1 � a2/ or multP .� 	 �2/ > 2.1 � a1/. On the other hand, if (15) holds, then
2.1� a2/ > 2a1 � a2 and

2.1� a1/ > 2n� 2

nC 1
a1 C 2

nC 1
a2:

Nevertheless, Theorem 13 is not a generalization of Theorem 5, i.e., I cannot
use Theorem 13 instead of Theorem 5 in general. I checked this in many cases
considered in [2]. To convince the reader, let me give

Example 16. Put S D P2. Take some integersm > 2 and k > 2. Put r D km.m�
1/. Let C be a curve in S that is given by zr�1y D xr , where Œx W y W z� are



100 I. Cheltsov

projective coordinates on S . Put � D �C for some positive rational number �. Let
�1 be a line in S that is given by x D 0, and let �2 be a line in S that is given by
y D 0. Put a1 D 1

m
and a2 D 1� 1

m
. Let P be the intersection point�1 \�2. Then

.S; a1�1 C a2�2 C �/ is log canonical P if and only if � 6 1
m

C 1
km2

. Take any

� > 1
m

C 1
km2

such that � < k
km�1 . Then multP .�/ D � < 2

m
6 1 and

multP
�
� 	�1

�
D � <

k

km � 1
<
2

m
D 2.1� a2/;

which implies that

k.m � 1/C m � 1

m
> km.m� 1/� D multP

�
� 	�2

�
> 2.1 � a1/ D 2m � 2

m

by Theorem 13. Taking � close enough to 1
m

C 1
km2

, I can get multP .� 	�2/ as close
to k.m� 1/C m�1

m
as I want. Thus, the inequality multP .� 	�2/ >

2m�2
m

provided
by Theorem 13 is not very good when k � 0. Now let me apply Theorem 5 to the
log pair .S; a1�1 C a2�2 C�/ to get much better estimate for multP .� 	�2/. Put
˛ D 1, ˇ D 1, M D 1, B D km, A D 1

km�1 , and N D 0. Then

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

1 D ˛a1 C ˇa2 6 1;

1 D A.B � 1/ > 1;

1 D M 6 1;

0 D N 6 1;

1

km � 1 D ˛.ACM � 1/ > A2.B CN � 1/ˇ D 1

km � 1 ;
1

km � 1 D ˛.1 �M/C Aˇ > A D 1

km � 1
;

2 D 2M C AN 6 2:

By Theorem 5, multP .� 	�1/ > M C Aa1 �a2 or multP .� 	�2/ > N C Ba2 �a1.
Since multP

�
� 	 �1

	 D � < k
km�1 D M C Aa1 � a2, it follows from Theorem 5

that

multP .� 	�2/ > N C Ba2 � a1 D k.m � 1/� 1

m
:

For k � 0, the latter inequality is much stronger than multP .� 	�2/ >
2m�2
m

given
by Theorem 13. Moreover, I can always choose � close enough to 1

m
C 1

km2
so that

the multiplicity multP .� 	�2/ D km.m � 1/� is as close to k.m � 1/C m�1
m

as I
want. This shows that the inequality multP .� 	 �2/ > k.m � 1/ � 1

m
provided by

Theorem 5 is almost sharp.
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I have a strong feeling that Theorems 5 and 13 are special cases of some more
general result that is not yet found. Perhaps, it can be found by analyzing the proofs
of Theorems 5 and 13.
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one, but hypersurfaces of higher index are also discussed.
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1 Introduction

This paper gives an account of the main result of [9], which states that every smooth
complex hypersurface of degree N in PN , for N � 4, is birationally superrigid.
The result is contextualized within the framework of smooth Fano hypersurfaces in
projective spaces and the problem of rationality. The paper overviews the history of
the problem and the main ideas that come into play in its solution, from the method
of maximal singularities to the use of arc spaces and multiplier ideals.

Working over fields that are not necessarily algebraically closed, we also discuss
an extension of a theorem of Segre and Manin stating that every smooth projective
cubic surface of Picard number one over a perfect field is birationally rigid. The
proof, which is an adaptation of the arguments of Segre and Manin, is a simple
manifestation of the method of maximal singularities.
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The last section of the paper explores hypersurfaces in PN of degree d < N .
We suspect that the result of [9] is an extreme case of a more general phenomenon,
and propose two problems which suggest that the birational geometry of Fano hyper-
surfaces should progressively become more rigid as their degree d approaches N .
A theorem of [20] brings some evidence to this phenomenon.

Unless stated otherwise, we work over the field of complex numbers C. Some
familiarity with the basic notions of singularities of pairs and multiplier ideals will
be assumed; basic references on the subject are [21, 24].

2 Mori Fiber Spaces and Birational Rigidity

Projective hypersurfaces form a rich class of varieties from the point of view of
rationality problems and related questions. We focus on smooth hypersurfaces,
and let

X D Xd � P
N

denote a smooth complex projective hypersurface of dimensionN �1 and degree d .
By adjunction, X is Fano (i.e., its anticanonical class �KX is ample) if and only if
d � N .

If d � 2 then X is clearly rational with trivial moduli, and there is no much
else to say. However, already in degree d D 3 the situation becomes rather delicate.
Cubic surfaces are rational, but cubic threefolds are nonrational by a theorem of
Clemens and Griffiths [4]. Moving up in dimension, we find several examples
of families of rational cubics fourfolds [1, 15, 17, 18, 26, 36, 37], with those due
to Hassett filling up a countable union of irreducible families of codimension 2
in the moduli space of cubic hypersurfaces in P5. By contrast, a conjecture of
Kuznetsov [23] predicts that the very general cubic fourfold should be nonrational.
Apart from simple considerations (e.g., rationality of cubic hypersurfaces of even
dimension containing disjoint linear subspaces of half the dimension) no much is
known in higher dimensions, and there is no clear speculation on what the picture
should be. In degree d D 4, we only have Iskovskikh and Manin’s theorem on the
nonrationality of X4 � P4 [19].

The situation starts to show a more uniform behavior if one bounds the degree
from below in terms of the dimension. A result in this direction is due to Kollár [20].

Theorem 1. Let X D Xd � PN be a very general hypersurface.

(a) If 2d.N C 2/=3e � d � N , then X is not ruled (hence is nonrational).
(b) If 3d.N C 2/=4e � d � N , then X is not birationally equivalent to any conic

bundle.

This result suggests a certain trend: as the degree approaches (asymptotically)
the dimension, the birational geometry of the hypersurface tends to “rigidify.”
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This principle can be formulated precisely in the extreme case d D N , where the
geometry becomes as “rigid” as it can be.

A Mori fiber space is a normal Q-factorial projective variety with terminal
singularities, equipped with a morphism of relative Picard number one with
connected fibers of positive dimension such that the anticanonical class is relatively
ample. Examples of Mori fiber spaces are conic bundles and Del Pezzo fibrations.
A Fano manifold with Picard number one can be regarded as a Mori fiber space over
SpecC.

Theorem 2. Let X D XN � PN be any (smooth) hypersurface. If N � 4, then
every birational map from X to a Mori fiber space X 0=S 0 is an isomorphism (and
in fact a projective equivalence). In particular, X is nonrational.

We say that XN � PN , for N � 4, is birationally superrigid. In general, a Fano
manifold X of Picard number one is said to be birationally rigid if every birational
map � from X to a Mori fiber space X 0=S 0 is, up to an isomorphism, a birational
automorphism of X ; it is said to be birationally superrigid if any such � is an
isomorphism.1

Theorem 2 has a long history, tracing back to the work of Fano on quartic
threefolds [13, 14]. Let X D X4 � P4. Fano claimed that Bir.X/ D Aut.X/, a
fact that alone suffices to show that X is nonrational as Aut.X/ if finite and Bir.P3/
is not. Fano’s method is inspired to Noether’s factorization of planar Cremona
maps. The idea is to look at the indeterminacy locus of a given birational self-map
�WX Ü X . If � is not an isomorphism, then the base scheme B � X of a linear
system defining � must be “too singular” with respect to the equations cutting out
B in X . As this is impossible, one concludes that � is a regular automorphism.

Fano’s proof is incomplete. The difficulty that Fano had to face is that, differently
from the surface case where the multiplicities of the base scheme are a strong
enough invariant to quantify how “badly singular” the map is, in higher dimension
one needs to dig further into a resolution of singularities to extract the relevant
information.

The argument was eventually corrected and completed in [19]. In their paper,
Iskovskikh and Manin only look at the birational group Bir.X/, but it soon became
clear that the proof itself leads to the stronger conclusion that X is birationally
superrigid. In fact, the very definition of birational superrigidity was originally
motivated by their work.2

Following [19], significant work has been done throughout the years to extend
this result to higher dimensions, starting from Pukhlikov who proved it first for

1This definition can be generalized to all Mori fiber spaces, see [5].
2Mori fiber spaces are the output of the minimal model program for projective manifolds of
negative Kodaira dimension. It is natural to motivate the notion of birational rigidity also from this
point of view: a Mori fiber space is birationally rigid (resp., superrigid) if, within its own birational
class, it is the unique answer of the program up to birational (resp., biregular) automorphisms
preserving the fibration.
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X5 � P5 [29], and then in all dimensions under a suitable condition of “local
regularity” on the equation defining the hypersurface [30]. Some low dimensional
cases were established in [3, 10], and the complete proof of Theorem 2 was finally
given in [9].

While in this paper we focus on smooth projective hypersurfaces, the birational
rigidity problem has been extensively studied for many other Fano varieties and
Mori fiber spaces, especially in dimension 3. There is a large literature on the subject
that is too vast to be included here. For further reading, a good place to start is [7].

The study of birational rigidity has also ties with other birational properties of
algebraic varieties such as unirationality and rational connectedness. The work of
Iskovskikh and Manin was originally motivated by the Lüroth problem, which asked
whether unirational varieties are necessarily rational. It was known by work of Segre
[35] that there are smooth quartic threefolds X4 � P4 that are unirational, and it is
easy to see that all smooth cubic threefolds X3 � P4 are unirational. The results of
[4, 19] gave the first counter-examples to the Lüroth problem.

Birational rigidity also relates to stability properties. A recent theorem of Odaka
and Okada [28] proves that any birationally superrigid Fano manifold of index 1 is
slope stable in the sense of Ross and Thomas [33].

3 Cubic Surfaces of Picard Number One

Before Fano’s idea could be made work in dimension three, Segre found a clever
way to apply Noether’s method once more to dimension two. Cubic surfaces are
certainly rational over the complex numbers, but they may fail to be rational when
the ground field is not algebraically closed. The method of Noether works perfectly
well, in fact, to prove that every smooth projective cubic surface of Picard number
one over a field � is nonrational [34]. Later, Manin observed that if the field is perfect
then the proof can be adapted to show that if two such cubic surfaces are birational
equivalent, then they are projectively equivalent [25].3 For a thorough discussion of
these results, see also [22].

The theorems of Segre and Manin extend rather straightforwardly to the follow-
ing result, which implies that cubic surfaces of Picard number one are birationally
rigid (over their ground field).

Theorem 3. Let X� � P
3
� be a smooth cubic surface of Picard number one over a

perfect field �. Suppose that there is a birational map �� WX� Ü X 0
� where X 0

� is
either a Del Pezzo surface of Picard number one, or a conic bundle over a curve S 0

� .
Then X 0

� is a smooth cubic surface of Picard number one, and there is a birational
automorphismˇ� 2 Bir.X�/ such that ��ıˇ�WX� ! X 0

� is a projective equivalence.
In particular, X� is nonrational.

3The hypothesis in Manin’s theorem that � be perfect can be removed, cf. [22].
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Proof. Fix an integer r 0 � 1 and a divisorA0
� onX 0

� , given by the pullback of a very
ample divisor on S 0

� , such that �r 0KX 0

�
CA0

� is very ample. Here we set S 0
� D Spec �

and A0
� D 0 if X 0

� is a Del Pezzo surface of Picard number one.
Since X� has Picard number one, its Picard group is generated by the hyperplane

class, which is linearly equivalent to �KX� . Then there is a positive integer r such
that

.��/
�1� .�r 0KX 0

�
C A0

�/ � �rKX� :

Let � be the algebraic closure of �, and denote X D X� , X 0 D X 0
� , S

0 D S 0
� ,

A0 D A0
� and � D �� . Note that A0 is zero if dimS 0 D 0, and is the pullback of

a very ample divisor on S 0 if dimS 0 D 1. Let D0 2 j � r 0KX 0 C A0j be a general
element, and let

D D ��1� D0 2 j � rKX j:

We split the proof in two cases.

Case 1. Assume that multx.D/ > r for some x 2 X .

The idea is to use these points of high multiplicity to construct a suitable
birational involution of X (defined over �) that, pre-composed to �, untwists the
map. This part of the proof is the same as in the proof of Manin’s theorem, and we
only sketch it. The construction is also explained in [22], to which we refer for more
details.

The Galois group of � over � acts on the base points of � and preserves the
multiplicities of D at these points. Since D belongs to a linear system with zero-
dimensional base locus and degD D 3r (as a cycle in P3/, there are at most two
points at which D has multiplicity larger than r , and the union of these points is
preserved by the Galois action. If there is only one point x 2 X (not counting
infinitely near ones), then x is defined over �. Otherwise, we have two distinct points
x; y on X whose union fx; yg � X is defined over �.

In the first case, consider the rational map X Ü P2 given by the linear system
jOX.1/ ˝ mx j (i.e., induced by the linear projection P3 Ü P2 with center x).
The blow-up gW QX ! X of X at x resolves the indeterminacy of the map, and we
get a double cover hW QX ! P2. The Galois group of this cover is generated by an
involution Q̨1 of QX , which descends to a birational involution ˛1 ofX . In the second
case, consider the map X Ü P3 given by the linear system jOX.2/˝ m2

x ˝ m2
y j.

In this case, we obtain a double cover hW QX ! Q � P3 where now gW QX ! X is
the blow-up ofX at fx; yg andQ is a smooth quadric surface. As before, we denote
by Q̨1 the Galois involution of the cover and by ˛1 the birational involution induced
on X . In both cases, ˛1 is defined over �. Therefore the composition

�1 D � ı ˛1WX Ü X 0
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is defined over � and hence is given by a linear system in j � r1KX j for some r1.
A point x with multx.D/ > r cannot be an Eckardt point, and thus is a center of
indeterminacy for �1.

In either case, we have r1 < r . To see this, let E be the exceptional divisor of
gW QX ! X , and let L be the pullback to QX of the hyperplane class of P2 (resp.,
of Q � P3) by h. Note that L � g�.�KX/ � E by construction, and g� Q̨1�E �
�sKX for some s � 1 since it is supported on a nonempty curve (by Zariski’s Main
Theorem) that is defined over �. Ifm is the multiplicity ofD at x (and hence at y in
the second case) and QD is the proper transform ofD on QX , then QDC.m�r/E � rL.
Applying . Q̨1/� to this divisor and pushing down to X , we obtain ˛1�D � �r1KX

where r1 D r � .m � r/s < r since m > r . Therefore, this operation lowers the
degree of the equations defining the map.

Let D1 D �1
�1� D0 2 j � r1KX j. If multx.D1/ > r1 for some x 2 X , then we

proceed as before to construct a new involution ˛2, and proceed from there. Since
the degree decreases each time, this process stops after finitely many steps. It stops
precisely when, letting

�i D � ı ˛1 ı 	 	 	 ı ˛i WX Ü X 0

andDi D �i
�1� D0 2 j � riKX j, we have multx.Di / � ri for every x 2 X . Note that

�i is defined over �. Then, replacing � by �i , we reduce to the next case.

Case 2. Assume that multx.D/ � r for every x 2 X .

Taking a sequence of blow-ups, we obtain a resolution of indeterminacy

Y
p

����
��
��
�� q

���
��

��
��

X
�

��������� X 0

with Y smooth. Write

KY C 1
r 0
DY D p�.KX C 1

r 0
D/C E 0

D q�.KX 0 C 1
r 0
D0/C F 0

where E 0 is p-exceptional, F 0 is q-exceptional, and DY D p�1� D D q�1� D0.
Since X 0 is smooth and D0 is a general hyperplane section, we have F 0 � 0 and
Supp.F 0/ D Ex.q/. Note that KX 0 C 1

r 0
D0 is nef. Intersecting with the image in Y

of a general complete intersection curve C � X we see that .KX C 1
r 0
D/ 	 C � 0,

and this implies that r � r 0.
Next, we write

KY C 1
r
DY D p�.KX C 1

r
D/C E

D q�.KX 0 C 1
r
D0/C F
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where, again,E is p-exceptional and F is q-exceptional. The fact that multx.D/ �
r for all x 2 X implies that E � 0. Intersecting this time with the image in Y
of a general complete intersection curve C 0 in a general fiber of X 0 ! S 0, we get
.KX 0 C 1

r
D0/ 	 C 0 � 0, and therefore r D r 0. Note also that E D E 0 and F D F 0.

The difference E � F is numerically equivalent to the pullback of A0.
In particular, E � F is nef over X and is numerically trivial over X 0. Since
p�.E � F / � 0, the Negativity Lemma, applied to p, implies that E � F .
Similarly, since q�.E � F / � 0, the Negativity Lemma, applied to q, implies that
E � F . Therefore E D F . This means that A0 is numerically trivial, and hence
S 0 D Spec �. Furthermore, we have Ex.q/ � Ex.p/, and therefore Zariski’s Main
Theorem implies that the inverse map

� D ��1WX 0 Ü X

is a morphism.
To conclude, just observe that if S 0

� D Spec �, then X 0
� must have Picard number

one. But � , being the inverse of �, is defined over �. It follows that � is an
isomorphism, as otherwise it would increase the Picard number. Therefore X 0

� is
a smooth cubic surface of Picard number one. Since we can assume without loss of
generality to have picked r 0 D 1 to start with, we conclude that, after the reduction
step performed in Case 1, � is a projective equivalence defined over �. The second
assertion of the theorem follows by taking ˇ� given by ˛1 ı 	 	 	 ı ˛i over �. ut

4 The Method of Maximal Singularities

The proof of Theorem 3 already shows the main features of the method of maximal
singularities.

The reduction performed in Case 1 of the proof is clearly inspired by Noether’s
untwisting process used to factorize planar Cremona maps into quadratic transfor-
mations [2, 27]. This procedure has been generalized in higher dimensions to build
the Sarkisov’s program, which provides a way of factorize birational maps between
Mori fiber spaces into elementary links, see [5, 16].

The discussion of Case 2 of the proof generalizes to the following property, due
to [5, 19].4

Proposition 4 (Noether–Fano Inequality). Let �WX Ü X 0 be a birational map
from a Fano manifold X of Picard number one to a Mori fiber space X 0=S 0. Fix
a sufficiently divisible integer r 0 and a sufficiently ample divisor on S 0 such that if
A0 is the pullback of this divisor to X 0 then �r 0KX 0 C A0 is a very ample divisor

4For a comparison, one should notice how similar the arguments are. We decided to use the same
exact wording when the argument is the same so that the differences will stand out.
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(if S 0 D SpecC then take A0 D 0). Let r be the positive rational number such that
��1� .�r 0KX 0 C A/ �Q �rKX , and let B � X be the base scheme of the linear
system ��1� j � r 0KX 0 CAj � j � rKX j. If the pair .X; 1

r
B/ is canonical, then r D r 0

and � is an isomorphism.

Proof. Let

Y
p

����
��
��
�� q

���
��

��
��

X
�

��������� X 0

be a resolution of singularities. Note that the exceptional loci Ex.p/ and Ex.q/
have pure codimension 1. Fix a general element D0 2 j � r 0KX 0 C Aj and let
DY D q�1� D (which is the same as q�D) and D D p�DY . Note that DY D p�1� D

andD D ��1� D0 2 j � rKX j.
Write

KY C 1
r 0
DY D p�.KX C 1

r 0
D/C E 0

D q�.KX 0 C 1
r 0
D0/C F 0

whereE 0 is p-exceptional and F 0 is q-exceptional. SinceX 0 has terminal singulari-
ties andD0 is a general hyperplane section, we haveF 0 � 0 and Supp.F 0/ D Ex.q/.
Note that KX 0 C 1

r 0
D0 is numerically equivalent to the pullback of A0, which is nef.

Intersecting with the image in Y of a general complete intersection curve C � X

we see that .KX C 1
r 0
D/ 	 C � 0, and this implies that r � r 0.

Next, we write

KY C 1
r
DY D p�.KX C 1

r
D/C E

D q�.KX 0 C 1
r
D0/C F

where, again, E is p-exceptional and F is q-exceptional. Assume that the pair
.X; 1

r
B/ is canonical. Since D is defined by a general element of the linear system

of divisors cutting out B , and r � 1, it follows that .X; 1
r
D/ is canonical. This

means that E � 0. Intersecting this time with the image in Y of a general complete
intersection curve C 0 in a general fiber of X 0 ! S 0, we get .KX 0 C 1

r
D0/ 	 C 0 � 0,

and therefore r D r 0. Note also that E D E 0 and F D F 0.
The difference E � F is numerically equivalent to the pullback of A0.

In particular, E � F is nef over X and is numerically trivial over X 0. Since
p�.E � F / � 0, the Negativity Lemma, applied to p, implies that E � F .
Similarly, since q�.E � F / � 0, the Negativity Lemma, applied to q, implies that
E � F . Therefore E D F . This means that A0 is numerically trivial, and hence
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S 0 D SpecC and X 0 is a Fano variety of Picard number one. Furthermore, we have
Ex.q/ � Ex.p/,

By computing the Picard number of Y in two ways (from X and from X 0), we
conclude that Ex.p/ D Ex.q/, and thus the differencep�D�q�D0 is q-exceptional.
SinceD is ample, this implies that � is a morphism. Since X and X 0 have the same
Picard number and X 0 is normal, it follows that � is an isomorphism.

Remark 5. A more general version of this property gives a criterion for a birational
map �WX Ü X 0 between two Mori fiber spaces X=S and X 0=S 0 to be an
isomorphism preserving the fibration. Given the correct statement, the proof easily
adapts to this setting. For more details, see [5, 8] (the proof in [5] uses, towards the
end, some results from the minimal model program; this is replaced in [8] by an
easy computation of Picard numbers similar to the one done at the end of the proof
of the proposition).

The idea at this point is to relate this condition on the singularities of the pair
.X; 1

r
B/ to intersection theoretic invariants such as multiplicities, which can be

easily related to the degrees of the equations involved when, say,X is a hypersurface
in a projective space.

If X is a smooth surface andD is an effective divisor, then .X; 1
r
D/ is canonical

if and only if multx.D/ � r for every x 2 X . In higher dimension, however, being
canonical cannot be characterized by a simple condition on multiplicities.

The way [19] deals with this problem is by carefully keeping track of all val-
uations and discrepancies along the exceptional divisors appearing on a resolution
of singularities. The combinatorics of the whole resolution, encoded in a suitable
graph which remembers all centers of blow-up, becomes an essential ingredient of
the computation. This approach has been used to study birational rigidity problems
for several years until Corti proposed in [6] an alternative approach based on the
Shokurov–Kollár Connectedness Theorem. Corti’s approach has led to a significant
simplification of the proof of Iskovskikh–Manin’s theorem, and has provided a
starting point for setting up the proof of Theorem 2.

5 Cutting Down the Base Locus

Let X D X4 � P4, and suppose that �WX Ü X 0 is a birational map to a
Mori fiber space X 0=S 0 which is not an isomorphism. Using the same notation as
in Proposition 4, it follows that the pair .X; 1

r
B/ is not canonical. The following

property, due to [30], implies that the pair is canonical away from a finite set.

Lemma 6. Let X � PN be a smooth hypersurface, and let D 2 jOX.r/j. Then
multC .D/ � r for every irreducible curve C � X .

Proof. Let gWX ! PN�1 be the morphism induced by projecting from a general
point of PN , and write g�1.g.C // D C[C 0. The residual componentC 0 has degree
.d � 1/ deg.C / where d D deg.X/. Taking a sufficiently general projection, the
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ramification divisor intersects C transversely at .d � 1/ deg.C / distinct points xi ,
which are exactly the points of intersection C \ C 0. If multC .D/ > r , then we get

deg.DjC 0/ �
X
i

multxi .DjC 0/ > r.d � 1/ deg.C / D deg.DjC 0/;

a contradiction. ut
Therefore there is a prime exceptional divisorE on some resolution f W QX ! X ,

lying over a point x 2 X , such that

1
r

	 ordE.B/ > ordE.K QX=X/:

where K QX=X is the relative canonical divisor. In the left hand side we regard ordE
as a valuation on the function field of X , and ordE.B/ D ordE.IB/ denotes the
smallest valuation of an element of the stalk of the ideal sheaf IB � OX of B at the
center of valuation x.

Corti’s idea, at this point, is to take a general hyperplane section Y � X

through x. This has two effects:

(a) the restriction BjY of the base scheme B is a zero-dimensional scheme, and
(b) the pair .Y; 1

r
BjY / is not log canonical.

The first assertion is clear. Let us discuss why (b) is true. Suppose for a moment
that the proper transform QY � QX of Y intersects (transversely) E , and let F be an
irreducible component of Ej QY . By adjunction, we have

K QY =Y D .K QX=X C QY � f �Y /j QY :

Since ordE.Y / � 1 and ordF .BjY / � ordE.B/, we have

1
r

	 ordF .BjY / > ordF .K QY =Y /C 1;

and this implies (b). In general, we cannot expect that QY intersects E . Nevertheless,
the Connectedness Theorem tells us that, after possibly passing to a higher
resolution, QY will intersect some other prime divisor E 0 over X , with center x,
such that

1
r

	 ordE0.B/C ordE0.Y / > ordE0.K QX=X/C 1:

Then the same computation using the adjunction formula produces a divisor F over
Y satisfying the previous inequality.

The property that .Y; 1
r
BjY / is not log canonical can be equivalently formulated

in terms of log canonical thresholds. It says that the log canonical threshold c D
lct.Y; BjY / of the pair .Y; BjY / satisfies the inequality

c < 1=r:
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The advantage now is that we know how to compare log canonical thresholds to
multiplicities. The following result is due to [6, 11].

Theorem 7. Let V be a smooth variety of dimension n, let Z � V be a scheme
supported at a closed point x 2 V , and let c D lct.V;Z/. Then Z has multiplicity

ex.Z/ � .n=c/n:

For the purpose of establishing birational rigidity, one only needs the case n D 2

of this theorem, which is the case first proved by Corti. The case n D 2 can be
deduced from a more general formula which can be easily proven by induction
on the number of blow-ups needed to produce a log resolution. Here we sketch
the proof in all dimension which, although perhaps less direct, has the advantage
of explaining the nature of the result as a manifestation of the classical inequality
between arithmetic mean and geometric mean.

Sketch of the proof of Theorem 7. The proof uses a flat degeneration to monomial
ideals. It is easy to prove the theorem in this case. If a � CŒu1; : : : ; un� is a
.u1; : : : ; un/-primary monomial ideal then the log canonical threshold c can be
computed directly from the Newton polyhedron. This allows to reduce to the case in
which a D .ua11 ; : : : ; u

an
n /, where the log canonical threshold is equal to

P
1=ai and

the Samuel multiplicity is equal to
Q
ai . In this special case, the stated inequality is

just the usual inequality between arithmetic mean and geometric mean. ut
Applying the case n D 2 of this theorem to our setting, we get

ex.BjY / � .2=c/2 > 4r2;

which is impossible because BjY , being cut out on Y by equations of degree r , is
contained in a zero-dimensional complete intersection scheme of degree 4r2. This
finishes the proof of Iskovskikh–Manin’s theorem.

6 Beyond Connectedness: First Considerations

Consider now the general case X D XN � PN . We would like to apply Corti’s
strategy for all N � 4. Again, we use the notation of Proposition 4 and assume the
existence of a non-regular birational map �WX Ü X 0. Then there is a prime divisor
E on a resolution f W QX ! X such that

1
r

	 ordE.B/ > ordE.K QX=X/:

and E maps to a closed point x 2 X by Lemma 6.
In order to cut down the base schemeB to a zero-dimensional scheme, we need to

restrict to a surface. Let Y � X be the surface cut out by N � 3 general hyperplane
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sections through x. Then BjY is zero dimensional. As before, the Connectedness
Theorem implies that .Y; 1

r
BjY / is not log canonical at x, and we get the inequality

ex.BjY / > 4r2.
IfX is sufficiently general in moduli, then it contains certain cycles of low degree

and high multiplicity at x, and the inequality is still sufficient to conclude that X is
birationally superrigid, as shown in [30]. However, if X is arbitrary in moduli, then
for N � 5 the inequality is not strong enough to give a contradiction as now B is
cut out by equations of degree r on a surface of degree N (rather than 4).

The issue is that we are cutting down several times, but we are not keeping track
of this. Morally, we should expect that as we keep cutting down, the singularities
of the pair get “worse” at each step. One can try to measure this by looking at
the multiplier ideal of the pair. If we cut down to a general hyperplane section
H � X through x, then the pair .H; 1

r
BjH/ is not log canonical, and this implies

that its multiplier ideal J .H; 1
r
BjH/ is nontrivial at x. In fact, we can do better:

if we set c D lct.H;BjH/ then J .H; cBjH/ is nontrivial at x, which is a stronger
condition since c < 1=r . The question is: What happens when we cut further down?
Optimally, the multiplier ideal will “get deeper” at each step and we can use this
information to get a better bound on the multiplicity of BjY .

Suppose for instance that the proper transform QY intersects (transversely)E , and
let F be a component of Ej QY . Since Y has codimension N � 3, the adjunction
formula gives, this time,

c 	 ordF .BjY /� .N � 4/ 	 ordF .mY;x/ � ordF .K QY =Y /C 1:

This condition can be interpreted in the language of multiplier ideals by saying that,
locally at x,

.mY;x/
N�4 6� J .Y; cBjY /:

Applying Theorem 8 below, we get

ex.BjY / � 4.N � 3/=c2 > 4.N � 3/r2:

For N � 4, this contradicts the fact that BjY is contained in a zero-dimensional
complete intersection scheme of degreeNr2.

The result we have applied is the following reformulation of Theorem 2.1 of [10],
which in turn is a small variant of Theorem 7.

Theorem 8. Let V be a smooth variety of dimension n, let Z � V be a scheme
supported at a closed point x 2 V , and let c > 0. Assume that .mV;x/

k 6� J .V; cZ/
locally near x. Then Z has multiplicity

ex.Z/ � .k C 1/.n=c/n:
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Unfortunately, this computation breaks down if QY is disjoint from E , and there
is no stronger version of the Connectedness Theorem to fix it. In fact, in general the
multiplier ideal simply fails to “get deeper.” This is already the case in the following
simple example.

Example 9. Let D D .y2 D x3/ � A2 and c D 5=6. Then J .A2; cD/ D mA2;0.

(a) If L � A2 is a general line through the origin, then J .L; cDjL/ D mL;0.
(b) If L D .y D 0/ � A2, then J .L; cDjL/ D .mL;0/

2.

7 The Role of the Space of Arcs

Let us discuss the example a little further. The multiplier ideal of .A2; cD/ can be
computed by taking the well-known log resolution f W QX ! A2 of the cusp given
by a sequence of three blow-ups. The exceptional divisor E extracted by the third
blow-up computes the log canonical threshold of the pair (which is c D 5=6), and
is responsible for the nontrivial multiplier ideal. That is, we have c 	 ordE.D/ D
ordE.K QX=A2 /C 1, and

J .A2; cD/ D f�O QX.dK QX=A2 � cf �De/ D f�O QX.�E/ D mA2;0:

No matter how we chooseL, the proper transform QLwill always be disjoint fromE ,
so we cannot rely on the computation done in the previous section. What makes the
choice of L in case (b) more special is that in this case the proper transform of L on
the first blow-up Bl0A2 contains the center of ordE on the blow-up. The intuition is
that this choice brings QL “closer” to E , at least “to the first order.”

In order to understand what is really happening, we work with formal arcs. Given
a variety X , the arc space is given, set theoretically, by

X1 D f˛W SpecCŒŒt �� ! Xg:
This space inherits a scheme structure from his description as the inverse limit of
the jet schemes which parametrize maps SpecCŒt �=.tmC1/ ! X , and comes with
a morphism �WX1 ! X mapping an arc ˛.t/ to ˛.0/ 2 X . Note that X1 is not
Noetherian, is not of finite type, and does not have finite topological dimension.

Given a resolution f W QX ! X and a smooth prime divisor E on it, we consider
the diagram

Q��1.E/

��

� QX1

Q�
��

f1

�� X1

�

��

CX.E/

��

�

E � QX
f

�� X x3
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where f1 is the map on arc spaces given by composition andCX.E/ is the maximal
divisorial set of E , defined by

CX.E/ D f1. Q��1.E//:

This set is irreducible and only depends on the valuation ordE . The following
theorem due to [12] is the key to relate this construction to discrepancies and
multiplier ideals.

Theorem 10. Suppose that X is a smooth variety.

(a) The generic point ˛ of CX.E/ defines a valuation ord˛ WC.X/� ! Z, and this
valuation coincides with ordE .

(b) The set CX.E/ has finite topological codimension inX1, and this codimension
is equal to ordE.K QX=X/C 1.

It is easy to guess how the valuation is defined: the generic point of CX.E/ is a
K-valued arc ˛W SpecKŒŒt�� ! X , the pullback map ˛�W OX;�.˛/ ! KŒŒt�� extends
to an inclusion of fields ˛�WC.X/ ,! K..t//, and the valuation is obtained by
simply composing with the valuation ordt WK..t//� ! Z. The computation of the
codimension of CX.E/ uses the description of the fibers of the maps at the jet levels
fmW QXm ! Xm and is essentially equivalent to the change-of-variable formula in
motivic integration.

For our purposes, the advantage of working with divisorial sets in arc spaces is
that, given a subvariety Y � X containing the center of ordE , even if the proper
transform QY is disjoint from E , the arc space Y1 (which is naturally embedded in
X1) always intersects CX.E/. We can then pick an irreducible component

C � .Y1 \ CX.E//:

In general, C itself may not be a maximal divisorial set. However, it is not too
far from it. In the language of [12], one says that C is a cylinder in Y1, which
essentially means that C is cut out by finitely many equations (maximal divisorial
sets in arc spaces of smooth varieties are examples of cylinders). The upshot is that
the generic point ˇ of C defines a valuation valˇ of C.Y /, and we can find a prime
divisor F over Y and a positive integer q such that

valˇ D q 	 valF and codim.C; Y1/ � q 	 .ordF .K QY =Y /C 1/:

Now we can start relating multiplier ideals, since we can easily compare q 	 ordF
to valE , and we control the equations cutting out Y1 inside X1 and hence how the
codimension of C compares to that of CX.E/.

In order to control how the multiplier ideal behaves under restriction, and to
show that it gets deeper, we need to ensure that if E has center x 2 X then
q 	 ordF .mY;x/ D valE.mX;x/. In general, there is only an inequality. A tangency
condition on Y is the first step to achieve this. This condition alone is not enough in



Fano Hypersurfaces and their Birational Geometry 117

general, but it suffices in the homogeneous setting, whenX D An and the valuation
ordE is invariant under the homogeneous C�-action on a system of coordinates
centered at x. The following result is proved in [9].

Theorem 11. Let X D An, let Z � An be a closed subscheme, and let c > 0.
Assume that there is a prime divisor E on some resolution QX ! An with center a
point x 2 X such that

(a) c 	 ordE.Z/ � ordE.K QX=An/C 1, and
(b) the valuation ordE is invariant under the homogeneous C�-action on a system

of affine coordinates centered at x.

Let Y D An�k � An be a linear subspace of codimension k through x that is
tangent to the direction determined by a general point of the center of E in Blx An.
Then

.mY;x/
k 6� J .Y; cZjY /:

Note that the conclusion of the theorem is precisely the condition assumed in
Theorem 8. Unfortunately we cannot apply this theorem directly to where we left in
the proof of Theorem 2 because we first need to reduce to a homogeneous setting.
This reduction is probably the most delicate part of the proof of Theorem 2. To make
the reduction, we use linear projections to linear spaces and flat degenerations to
homogeneous ideals. The idea of using linear projections first appeared in [31],
where a proof of birational rigidity was proposed but turned out to contain a gap.
Theorem 8 is hidden behind the proof of a certain inequality on log canonical
thresholds under generic projection, just like it was in the proof of the main
theorem of [10]. Nadel’s vanishing theorem is used in the end to draw the desired
contradiction. This part of the proof is technical and goes beyond the purpose of this
note; for more details, we refer the interested reader to [9].

8 What to Expect for Fano Hypersurfaces of Higher Index

Birational rigidity fails for hypersurfaces X D Xd � PN of degree d < N for a
very simple reason: each linear projection PN Ü Pk , for 0 � k � N �d , induces a
Mori fiber structure on the hypersurface. If the center of projection is not contained
in X , then the general fiber of the Mori fiber space is given by a Fano hypersurface
of indexNC1�d�k. Note that, by the Lefschetz Hyperplane Theorem, if k � N=2

(and d � 2) then the center of projection cannot be contained in X .
In low dimensions, other Mori fiber spaces may appear. Consider for instance,

the case X D X3 � P4. As explained above, X admits fibrations in cubic surfaces
over P1, each induced by a linear projection P4 Ü P1. Additionally, for every line
L � X the linear projection P4 Ü P2 centered at L induces, birationally, a conic
bundle structure of X onto P2. Furthermore, the projection from any point x 2 X
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induces a birational involution of X which swaps the two sheets of the rational
cover X Ü P3. However, these two last constructions are more specific of the
low dimension and low degree of the hypersurface, and do not generalize when the
degree and dimension get larger.

With this in mind, it is natural to consider the following problem.

Problem 12. Find a (meaningful) function g.N / such that for every Xd � PN ,
with g.N / � d � N , the only Mori fiber spaces birational to X are those induced
by the linear projections PN Ü Pk for 0 � k � N � d .

Remark 13. Taking g.N / D N will of course work for N � 4 by Theorem 2.
The problem is to determine, if it exists, a better function which includes Fano
hypersurfaces of higher index. Already proving that g.N / D N � 1 works for
N � 1 would be very interesting.5

A similar problem is the following.

Problem 14. Find a (meaningful) function h.m;N / such that there is noXd � PN ,
with h.m;N / � d � N , birational to a Mori fiber space of fiber dimension � m

(other than X ! SpecC if m D N � 1).

As a first step, one can try to find solutions to these problems that work for
general (or, even, very general) hypersurfaces. Part (b) of Theorem 1 gives a great
solution to the case m D 1 of Problem 14 for very general hypersurfaces.
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On the Locus of Nonrigid Hypersurfaces

Thomas Eckl and Aleksandr Pukhlikov

Abstract We show that the Zariski closure of the set of hypersurfaces of degreeM
in PM , where M � 5, which are either not factorial or not birationally superrigid,
is of codimension at least

�
M�3
2

	C 1 in the parameter space.

Mathematics Subject Classification: 14E05, 14E07, 14J45

1 Formulation of the Main Result and Scheme of the Proof

Let PM , whereM � 5, be the complex projective space, F DP.H0.PM ;OPM .M///

the space parameterizing hypersurfaces of degreeM . There are Zariski open subsets
Freg � Fsm � F , consisting of hypersurfaces, regular and smooth, respectively (the
regularity condition, first introduced in [14], is now well known; for the convenience
of the reader we reproduce it below in Sect. 2). The well-known theorem proven
in [14] claims that every regular hypersurface V 2 Freg is birationally superrigid.
Let Fsrigid � F be the set of (possibly singular) hypersurfaces that are factorial and
birationally superrigid. The aim of this note is to show the following claim.

Theorem 1. The Zariski closure FnFsrigid of the complement is of codimension at
least

�
M�3
2

	C 1 in F .

Note that we do not discuss the question of whether Fsrigid is open or not.
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Remark 1. The concept of birational (super)rigidity is now very well known; there
are quite a few papers containing basic definitions and examples of birationally rigid
varieties and their properties. The most recent (and most detailed) reference is the
book [21], but all necessary information on birational rigidity can be also found in
[4,14,15,19]. Here we just remind the reader that a factorial birationally superrigid
Fano variety V of index 1 with Picard number 1 has the following most spectacular
geometric properties:

• every birational map to a Q-factorial Fano variety of the same dimension with
Picard number 1 is a biregular isomorphism (in particular, the groups of birational
and biregular automorphisms of V coincide),

• V admits no rational dominant maps onto a variety of positive dimension, the
general fiber of which is rationally connected (in a different wording, V admits
no structures of a rationally connected fiber space).

We prove Theorem 1, directly constructing a set in F , every point of which
corresponds to a factorial and birationally superrigid hypersurface, with the Zariski
closure of its complement of codimension at least

�
M�3
2

	 C 1. More precisely, let
Fqsing�r be the set of hypersurfaces, every point of which is either smooth or a
quadratic singularity of rank at least r . We do not assume that singularities are
isolated, but it is obvious that for V 2 Fqsing�r the following estimate holds:

codim SingV � r � 1:

In particular, by the famous Grothendieck theorem ([7, XI. Cor. 3.14], [1]) any V 2
Fqsing�5 is a factorial variety, therefore a Fano variety of index 1: the group of classes
of divisors modulo linear equivalence is the same as the Picard group and since
V � P is a hypersurface of degreeM , we have

PicV D ZKV ; KV D �H;

whereH 2 PicV is the class of a hyperplane section.

It is easy to see (Proposition 2) that codim.FnFqsing�5/ � �
M�3
2

	C 1.
Denote by Freg; qsing�5 � Fqsing�5 the subset, consisting of such Fano hypersur-

faces V 2 F that:

(1) at every smooth point the regularity condition of [14] is satisfied;
(2) through every singular point there are only finitely many lines on V .

We obtain Theorem 1 from the following two facts.

Theorem 2. The codimension of the complement of Freg; qsing�5 in F is at least
.M�3/.M�4/

2
C 1 if M � 5.

Theorem 3. Every hypersurface V 2 Freg; qsing�5 is birationally superrigid.

Proof of Theorem 2 is straightforward and follows the arguments of [14,16]; it is
given in Sect. 2.
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Proof of Theorem 3 starts in the usual way [14, 16, 19]: take a mobile linear
system † � jnH j on a hypersurface V 2 Freg; qsing�5. Assume that for a generic
D 2† the pair .V; 1

n
D/ is not canonical, that is, the system † has a maximal

singularity E�V C, where 'WV C !V is a birational morphism, V C a smooth
projective variety, E a '-exceptional divisor and the Noether–Fano inequality

ordE '
�† > na.E/

is satisfied (see [19] for definitions and details). We need to get a contradiction,
which would immediately imply birational superrigidity and complete the proof of
Theorem 3.

We proceed in the standard way.
Let D1;D2 2 † be generic divisors and Z D .D1 ı D2/ the effective cycle of

their scheme-theoretic intersection, the self-intersection of the system †. Further,
let B D '.E/ be the center of the maximal singularity E . If codimV B D 2, then

codimB.B \ SingV / � 2;

so we can take a curve C �B , C \ SingV D ;, and applying [14, Sect. 3],
conclude that

multC † � n:

As multB † > n, we get a contradiction. So we may assume that codimV B � 3.

Proposition 1 (The 4n2-Inequality). The following estimate holds:

multB Z > 4n2:

If B 6� SingV , then the 4n2-inequality is a well-known fact going back to the
paper on the quartic threefold [10], so in this case no proof is needed. The details
can be found in any of the above-mentioned references for the method of maximal
singularities: [4,14,15,19,21]. The treatment in [4] is based on somewhat different
approach, the remaining four texts making use of the same technique as in Sect. 3
below.

Therefore we assume that B � SingV . In that case Proposition 1 is a nontrivial
new result, proved below in Sect. 3. The proof makes use of the fact that the
condition of having at most quadratic singularities of rank � r is stable with respect
to blow ups, in some a bit subtle way. That fact is shown in Sect. 4.

Now we complete the proof of Theorem 3, repeating word for word the
arguments of [14]. Namely, we choose an irreducible component Y of the effective
cycle Z, satisfying the inequality

multo Y

degY
>

4

M
;
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where o 2 B is a point of general position. Applying the technique of hypertangent
divisors in precisely the same way as it is done in [14] (see also [19, Chap. 3]),
we construct a curve C �Y , satisfying the inequality multo C > degC , which is
impossible. It is here that we need the regularity conditions. This contradiction
completes the proof of Theorem 3.

Remark 2. (i) 4n2-inequality is not true for a quadratic singularity of rank � 4:
the non-degenerate quadratic point of a threefold shows that 2n2 is the best we
can achieve.

(ii) Birational superrigidity of Fano hypersurfaces with non-degenerate quadratic
singularities was shown in [18]. Birational (super)rigidity of Fano hypersur-
faces with isolated singular points of higher multiplicities 3 � m � M � 2

was proved in [17], but the argument is really hard. These two results show that
the estimate for the codimension of the nonrigid locus could most probably be
considerably sharpened.

(iii) There are a few other papers where various classes of singular Fano varieties
were studied from the viewpoint of their birational rigidity. The most popular
object was three-dimensional quartics [5, 11, 13, 22]. Other families were
investigated in [2, 3]. A family of Fano varieties (Fano double spaces of
index one) with a higher dimensional singular locus was recently proven to
be birationally superrigid in [12].

(iv) A recent preprint of de Fernex [6] proves birational superrigidity of a class
of Fano hypersurfaces of degree M in PM with not necessarily isolated
singularities without assuming regularity. But the dimension of the singularity
locus is bounded by 1

2
M � 4, and no estimate of the codimension of the

complement of this class is given.

2 The Estimates for the Codimension

Let us prove Theorem 2.
First we discuss the regularity conditions in more details. Let x be a smooth

point on a hypersurface V of degree M in PM . Choose homogeneous coordinates
.X0 W : : : W XM/ on PM such that x D .1 W 0 W : : : W 0/. Then V \ fX0 ¤ 0g is the
vanishing locus of a polynomial

q1 C 	 	 	 C qM

where each qi is a homogeneous polynomial of degree i in M variables
X1; : : : ; XM . According to [14] the hypersurface V is called regular in x if
q1; : : : ; qM�1 is a regular sequence in CŒx1; : : : ; xM �. This is equivalent to

codimAM .fq1 D 	 	 	 D qM�1 D 0g/ D M � 1: (1)
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Since all the vanishing loci fqi D 0g are cones with vertex in x, the set
fq1 D 	 	 	 D qM�1 D 0g must consist of a finite number of lines through x. Vice
versa, by homogeneity every line on X through x must be contained in each of the
loci fqi D 0g. Hence there is at most a finite number of lines on V through x.

If x is a singular point on V , then q1 � 0, and V is called regular in x if

codimAM .fq2 D 	 	 	 D qM D 0g/ D M � 1: (2)

The set fq2 D 	 	 	 D qM D 0g � V consists of all the lines on V through x, since
homogeneity implies that every line through x on V also lies in fqi D 0g.

Finally, since regularity is a Zariski-open condition on sequences of polynomials,
it does not depend on the choice of homogeneous coordinates on PM such that
x D .1 W 0 W : : : W 0/ whether x satisfies conditions (1) and (2).

The set Freg � F consists of all hypersurfaces V � PM of degree M such that
V is regular in all points x 2 V . It is not known whether the set Freg is Zariski-
open in F , but it certainly contains a Zariski-open subset of F . The codimension in
F of its complement F n Freg is defined as the codimension of the Zariski closure
of the complement. On the other hand, Fqsing�5 is certainly Zariski-open, hence
F n Fqsing�5 is Zariski-closed. We have

codimF .F n Freg; qsing�5/ D min.codimF .F n Freg/; codimF .F n Fqsing�5//:

Hence the estimate of Theorem 2 follows from the following two propositions:

Proposition 2. The codimension of the complement F n Fqsing�5 in F is at least�
M�3
2

	C 1 if M � 5.

Proposition 3. The codimension of the (Zariski closure of the) complement F nFreg

in F is at least M.M�5/
2

C 4 if M � 5.

Proof of Proposition 2. Let SM WD P.
MC1
2 /�1 be the projectivized space of all

symmetric M � M -matrices with complex entries. Let SM;r be the projectivized
algebraic subset of M � M symmetric matrices of rank � r . The locus Qr.P / of
hypersurfacesH 2 F with P 2 H a singularity that is at least a quadratic point of
rank at most r has codimension in F equal to

codimFQr.P / D 1CM C codimSM SM;r D 1CM C dimSM � dimSM;r D

D M C
 
M C 1

2

!
� dimSM;r :

Here, we use that a point P 2 H is quadratic of rank at most r if the Hessian of
H in P has rank � r .

LetG.M �r;M/ be the Grassmann variety parameterizing .M �r/-dimensional
subspaces of CM . To calculate dimSM;r we consider the incidence correspondence
(see [8, Ex. 12.4])
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ˆ WD ˚
.A;ƒ/ W ƒT 	 A D A 	ƒ D 0


 � SM �G.M � r;M/:

Since the fibers of the natural projection �2 W ˆ ! G.M � r;M/ is given by a
linear subspace of SM of dimension

�
rC1
2

	 � 1, the variety ˆ is irreducible of

dimˆ D
 
r C 1

2

!
� 1C r.M � r/:

Since on the other hand the natural projection �1 W ˆ ! SM is generically 1 W 1
onto SM;r , dimˆ D dimSM;r .

Consequently, since the Qr.P / coverQr and P varies in PM ,

codimFQr � codimFQr.P / �M D
 
M � r C 1

2

!
C 1:

This completes the proof of Proposition 2.

Proof of Proposition 3. As a first step we compare the codimension of F n Freg in
F with that of related algebraic sets, leading to the estimate (3).

Let ˆ D f.x;H/ W x 2 H g � PM � F be the incidence variety of hypersurfaces
of degree M in PM . Let ˆreg be the subset of pairs .x;H/ satisfying the regularity
conditions (1) and (2). Note that the Zariski closure ˆ nˆreg in ˆ maps onto the
Zariski closure F n Freg in F . Denote the fibers of ˆ and ˆreg over a point x 2 PM

under the natural projection �1 W PM � F ! PM by ˆ.x/ and ˆreg.x/.

Claim. For any two points x; x0 2 P
M there is a projective-linear automorphism

˛F on F D PH0.PM ;OPM .M// such that

˛F .ˆ.x// D ˆ.x0/ and ˛F .ˆreg.x// D ˆreg.x
0/:

Proof of Claim. It is possible to choose two sets of homogeneous coordinates
.X0 W : : : WXM/ and .X 0

0 W : : : W X 0
M/ on PM such that x D (1:0:. . . :0) in

terms of the X -coordinates, x0 D (1:0:. . . :0) in terms of the X 0-coordinates,
and we have X 0

0 DX0. These coordinates allow to decompose the vector space
H0.PM ;OPM .M// into the direct sums

MM
iD0

Pi;M 	XM�i
0 resp:

MM
iD0

P 0
i;M 	 .X 0

0/
M�i ;

where Pi;M resp. P 0
i;M denote the vector spaces of homogeneous polynomials

of degree i in X1; : : : ; XM resp. X 0
1; : : : ; X

0
M . Then a pair .x;H/ 2 ˆ.x/ if

H 2 LM
iD1 Pi;M 	XM�i

0 and .x;H/ 2 ˆreg.x/ if H D PM
iD1 Qi 	 XM�i

0 and the
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Qi satisfy the regularity conditions (1) resp. (2). Analogous statements hold for
pairs .x0;H 0/.

Let ˛ be the projective-linear automorphism on PM describing the coordinate
change from the X - to the X 0-coordinates. In particular, we have ˛.x/D x0.
The induced linear automorphism on H0.PM ;OPM .M// is denoted by Q̨F , and
its projectivization on F by ˛F . The choice of coordinates shows that Q̨F maps
Pi;M 	XM�i

0 onto P 0
i;M 	 .X 0

0/
M�i , hence ˛F .ˆ.x// D ˆ.x0/.

Furthermore, ˛ maps the hyperplane fX0 D 0g onto the hyperplane
fX 0

0 D 0g, hence ˛ is an affine isomorphism of the complements Š AM .
Consequently, if H D PM

iD1 Qi 	XM�i
0 and H 0 D Q̨F .H/D PM

iD1 Q0
i 	 .X 0

0/
M�i ,

then the vanishing loci fQi D 	 	 	 DQj D 0g � AM are mapped bijectively onto
fQ0

i D 	 	 	 DQ0
j D 0g �AM , for all possible 1 � i � j � M . This implies

˛F .ˆreg.x// D ˆreg.x
0/. ut

From now on we fix x 2 PM , and we also fix a homogeneous coordinate system
.X0 W : : : W XM/ such that x D .1 W 0 W : : : W 0/. The claim shows that whatever the
choice of x is,

dimˆ nˆreg D dimˆ.x/ nˆreg.x/CM:

Let Q̂ .x/ D QM
iD1 Pi;M and Q̂ reg.x/ be the preimages ofˆ.x/, ˆreg.x/ in the affine

coneH0.PM ;OPM .M// D QM
iD0Pi;M over F . Obviously,

codimˆ.x/ˆ.x/ nˆreg.x/ D codim Q̂ .x/ Q̂ .x/ n Q̂ reg.x/:

Since dim F n Freg � dimˆ nˆreg we finally calculate

codimFF n Freg � dim F � dimˆ nˆreg D dimˆ � .M � 1/� dimˆ nˆreg D
D dimˆ.x/CM � .M � 1/� dimˆ.x/ nˆreg.x/ �M D
D codimˆ.x/ˆ.x/ nˆreg.x/ � .M � 1/;

hence

codimFF n Freg � codim Q̂ .x/ Q̂ .x/ n Q̂ reg.x/ � .M � 1/: (3)

In a next step we stratify Q̂ .x/ n Q̂ reg.x/ according to the place where the
sequence q1; : : : ; qM�1 resp. q2; : : : ; qM first fails to be regular.

Setting P�
1;M WD P1;M n f0g we first split up Q̂ .x/ n Q̂ reg.x/ � QM

iD1Pi;M as the
union of the intersections

S1 WD Q̂ .x/ n Q̂ reg.x/ \
 

P�
1;M �

MY
iD2

Pi;M
!
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and

S2 WD Q̂ .x/ n Q̂ reg.x/ \
 

f0g �
MY
iD2

Pi;M
!
:

S1 stratifies further into strata

S1;k WD
(
.q1; : : : ; qM / 2 P�

1;M

�
MY
iD2

Pi;M W q1; : : : ; qk�1 regular; q1; : : : ; qk not regular

)
;

where k D 2; : : : ;M � 1, and S2 stratifies further into strata

S2;l WD
(
.0; q2; : : : ; qM / 2 f0g

�
MY
iD2

Pi;M W q2; : : : ; ql�1 regular; q2; : : : ; ql not regular

)
;

where l D 2; : : : ;M . Obviously,

codim Q̂ .x/ Q̂ .x/ n Q̂ reg.x/ D min
2�k�M�1;2�l�M.codim Q̂ .x/S1;k; codim Q̂ .x/S2;l /:

(4)

So we need to bound the codimension of the strata S1;k , S2;l in Q̂ .x/ from below.
Starting with the strata S1;k we follow the notation of [14] and set for

kD 1; : : : ;M � 2

Rk WD f.q1; : : : ; qk/ W q1; : : : ; qk regularg � P�
1;M �

kY
iD2

Pi;M :

Note that the natural projection �k�1 W P�
1;M � QM

iD2 Pi;M ! P�
1;M � Qk�1

iD2 Pi;M
maps S1;k onto Rk�1. Hence for k D 2; : : : ;M � 1 we have

codim Q̂ .x/S1;k � min
.q1;:::;qk�1/2Rk�1

codim��1
k�1.q1;:::;qk�1/

S1;k \ ��1
k�1.q1; : : : ; qk�1/:

(5)

Using the technique of [14], we obtain for k D 2; : : : ;M � 1
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min
.q1;:::;qk�1/2Rk�1

codim��1
k�1.q1;:::;qk�1/

S1;k \ ��1
k�1.q1; : : : ; qk�1/ �

 
M

k

!
: (6)

Unfortunately these estimates are too weak for our purposes if k D M � 1. The
technique of [16] yields the better estimate

codimP�

1;M�Qk�1
iD2 Pi;M

S1;M�1 � M.M � 3/
2

C 3: (7)

To prove this estimate we first observe that for each .q1; : : : ; qM / 2 S1;M�1 there
exist 2 � b � M , 1 � i1 < 	 	 	 < ib�2 � M � 2 and a b-dimensional linear
subspace Lb � AM (that is, 0 2 Lb) such that

1. Lb is linearly generated by one of the two-dimensional irreducible components
B of fq1 D 	 	 	 D qM�2 D 0g. Note that all the irreducible components of
fq1 D 	 	 	 D qM�2 D 0g are two-dimensional because S1;M�1 � ��1

M�2.RM�2/.
2. B is an irreducible component of fqi1 D 	 	 	 D qib�2

D 0g \ Lb . In the
terminology of [16] qi1 ; : : : ; qib�2

is called a good sequence for B � Lb . Note
further that this condition is empty if b D 2.

Vice versa, fix 2 � b � M and 1 � i1 < 	 	 	 < ib�2 � M � 2 and let G.b;M/

be the Grassmann variety of b-dimensional linear subspaces in AM . Let

Z.bI i1; : : : ; ib�2/ � G.b;M/ � P�
1;M �

MY
iD2

Pi;M

be the set of tuples .Lb; q1; : : : ; qM / such that there exists a two-dimensional
irreducible component B of fqi1 D 	 	 	 D qib�2

D 0g \ Lb satisfying the
conditions

(1)0 B linearly spans Lb ,
(2)0 qi jB � 0 for all 1 � i � M � 1.

Note that for b D 2 only the second condition is relevant.
ThenZ.bI i1; : : : ; ib�2/ is locally Zariski-closed inG.b;M/�P�

1;M �QM
iD2 Pi;M

since the existence of a B satisfying (1)0 is an open condition, and (2)0 is a closed
condition. Furthermore, the first observation shows that S1;M�1 is contained in the
image of

S
bIi1;:::;ib�2

Z.bI i1; : : : ; ib�2/ under the projection to P�
1;M � QM

iD2Pi;M .
Since this image is covered by the fibersZ.bI i1; : : : ; ib�2ILb/ of Z.bI i1; : : : ; ib�2/
over Lb 2 G.b;M/ we obtain the estimate

codimP�

1;M�Qk�1
iD2 Pi;M

S1;M�1 (8)

� min
bIi1;:::;ib�2ILb

�
codimP�

1;M�Qk�1
iD2 Pi;M

Z.bI i1; : : : ; ib�2ILb/ � b.M � b/
�
;

where b.M � b/ is the dimension of the Grassmann variety G.b;M/.
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Denote a fiber of Z.bI i1; : : : ; ib�2ILb/ over .qi1 ; : : : ; qib�2
/ � Qb�2

jD1Pij ;M by

Z.bI qi1 ; : : : ; qib�2
ILb/ �

Y
i 62fi1;:::;ib�2g

Pi;M :

Since these fibers are determined by condition (2)0 they are algebraic subsets, and

codimP�

1;M�Qk�1
iD2 Pi;M

Z.bI i1; : : : ; ib�2ILb/ (9)

� min
qi1 ;:::;qib�2

codimQ
i 62fi1;:::;ib�2g

Pi;M
Z.bI qi1 ; : : : ; qib�2

ILb/:

Obviously, .qi /i 62fi1;:::;ib�2g 2 Z.bI qi1 ; : : : ; qib�2
ILb/ implies

.�iqi /i 62fi1;:::;ib�2g 2 Z.bI qi1 ; : : : ; qib�2
ILb/; �i 2 C:

HenceZ.bI qi1 ; : : : ; qib�2
ILb/maps to a closed algebraic set Y�Q

i 62fi1;:::;ib�2gPPi;M
(the projectivization of

Q
i 62fi1;:::;ib�2g Pi;M in each factor Pi;M separately) that

has the same codimension as Z.bI qi1 ; : : : ; qib�2
ILb/. Note that Y is a product

of algebraic subsets in PPi;M . Choosing linear coordinates x1; : : : ; xn such that
Lb D fxbC1 D 	 	 	 D xM D 0g such a factor of Y cannot intersect the projectivized
algebraic subset of polynomials pi of the form

Qi
kD1.ak;1x1C	 	 	Cak;bxb/. This is

the case because such a pi cannot vanish on an irreducible algebraic subset of
Lb that locally spans Lb . Hence the factor of Y in the projective space PPi;M
must have codimension at least .b � 1/ 	 i C 1. Since furthermore we always have
M � 1 62 fqi1; : : : ; qib�2

g, we obtain the estimate

codimQ
i 62fi1;:::;ib�2g

Pi;M
Z.bI qi1 ; : : : ; qib�2

ILb/ (10)

�
X

1�i�M�1
i 62fi1;:::;ib�2g

..b � 1/ 	 i C 1/

� .b � 1/.1C 	 	 	 C .M � b/C .M � 1//C .M � b C 1/

D .b � 1/
.M � b C 1/.M � b/

2
C .M � 2/b C 2:

Note that this estimate also holds when b D 2 since the codimension of the set of
polynomials qi vanishing on a two-dimensional linear subspace is i C 1.

The estimates (8)–(10) show that the codimension of S1;M�1 in P�
1;M�QM

iD2 Pi;M
is at least the minimum of the numbers

F.b/ WD .b � 1/.M � b C 1/.M � b/

2
C .M � 2/bC 2� b.M � b/; 2 � b � M:
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An analysis of the derivative of F.b/ shows that F.b/ has no local minimum for
2 < b < M . Hence on the interval Œ2;M � the function F.b/ has its minimum in
F.2/ D M.M�3/

2
C 3 or in F.M/ D .M � 2/M C 2, and estimate (7) follows.

For the strata S2;l of S2 we again follow the notation of [14] and set for
l D 2; : : : ;M � 1

Ql WD
(
.q2; : : : ; ql / 2

lY
jD2

Pj;M W q2; : : : ; ql regular

)
:

Arguing as before we have for l D 2; : : : ;M

codim
Q̂ .x/S2;l � min

.q2;:::;ql�1/2Ql�1

codim��1
l�1.0;q2;:::;ql�1/

S2;l \ ��1
l�1.0; q2; : : : ; ql�1/CM;

(11)

where the additional summand M comes from the fact that always q1 D 0 for
sequences in S2;l . The technique of [14] shows that for l D 2; : : : ;M

min
.q2;:::;ql�1/2Ql�1

codim��1
l�1.0;q2;:::;ql�1/

S2;l \ ��1
l�1.0; q2; : : : ; ql�1/ �

 
M C 1

l

!
:

(12)

For l D M we deduce completely analogous to (7) that

codimf0g�QM
iD2 Pi;M

S2;M � .M C 1/.M � 2/
2

C 3: (13)

Finally, the estimates (3)–(13) imply that codimFF n Freg is bounded from
below by the minimum of the numbers

 
M

k

!
� .M � 1/; 2 � k � M � 2;

M.M � 3/

2
C 3 � .M � 1/;

 
M C 1

l

!
CM � .M � 1/; 2 � l � M � 1;

.M C 1/.M � 2/

2
C 3CM � .M � 1/;

that is

M.M � 3/

2
C 3 � .M � 1/ D M.M � 5/

2
C 4:
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3 The 4n2-Inequality

Let us prove Proposition 1. We fix a mobile linear system † on V and a maximal
singularity E � V C satisfying the Noether–Fano inequality ordE '�† > na.E/.
We assume the centreB D '.E/ of E on V to be maximal, that is, B is not
contained in the center of another maximal singularity of the system †. In other
words, the pair .V; 1

n
†/ is canonical outside B in a neighborhood of the generic

point of B .
Further, we assume that B � SingV (otherwise the claim is well known), so that

codim.B � V / � 4. Let

'i;i�1W Vi ! Vi�1
[ [
Ei ! Bi�1

i D 1; : : : ; K , be the resolution of E , that is, V0 D V , B0 D B , 'i;i�1 blows up
Bi�1 D centre.E; Vi�1/,Ei D '�1

i;i�1.Bi�1/ the exceptional divisor, and, finally, the
divisorial valuations, determined by E and EK , coincide.

As explained in Sect. 4 below, for every i D 0; : : : ; K � 1 there is a Zariski open
subset Ui � Vi such that Ui \ Bi ¤ ; is smooth and either Vi is smooth along
Ui \ Bi , or every point p 2 Ui \ Bi is a quadratic singularity of Vi of rank at
least 5. In particular, the quasi-projective varieties '�1

i;i�1.Ui�1/, i D 1; : : : ; K , are
factorial and the exceptional divisor

E�
i D Ei \ '�1

i;i�1.Ui�1/

is either a projective bundle overUi�1\Bi�1 (in the non-singular case) or a fibration
into quadrics of rank � 5 over Ui�1 \ Bi�1 (in the singular case). We may assume
that Ui � '�1

i;i�1.Ui�1/ for i D 1; : : : ; K � 1. The exceptional divisors E�
i are all

irreducible.
As usual, we break the sequence of blow ups into the lower .1 � i � L/ and

upper .L C 1 � i � K/ parts: codimBi�1 � 3 if and only if 1 � i � L. It may
occur that L D K and the upper part is empty (see [14, 15, 19]). Set

L� D maxfi D 1; : : : ; K j multBi�1 Vi�1 D 2g:

Obviously, L� � L. Set also

ıi D codimBi�1 � 2 for 1 � i � L�

and

ıi D codimBi�1 � 1 for L� C 1 � i � K:
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We denote strict transforms on Vi by adding the upper index i : say, †i means the
strict transform of the system † on Vi . Let D 2 † be a generic divisor. Obviously,

Di jUi D '�
i;i�1.Di�1jUi�1 /� �iE

�
i ;

where the integer coefficients �i D 1
2

multBi�1 †
i�1 for i D 1; : : : ; L� and

�i D multBi�1 †
i�1 for i D L� C 1; : : : ; K .

Now the Noether–Fano inequality takes the traditional form

KX
iD1

pi�i > n

 
KX
iD1

pi ıi

!
; (14)

where pi is the number of paths from the top vertex EK to the vertex Ei in the
oriented graph � of the sequence of blow ups 'i;i�1, see [14, 15, 19, 21] for details.

We may assume that �1 <
p
2n, otherwise for generic divisors D1;D2 2 †

we have

multB.D1 ıD2/ � 2�21 > 4n
2

and the 4n2-inequality is shown.

Remark 3. It is worth mentioning, although we do not use it in the proof, that the
inequality �1 > n holds. To show this inequality, one needs to take a point p 2 B of
general position and a generic complete intersection 3-germ Y 3 p. This operation
reduces the claim to the case of a non log canonical singularity centered at a non-
degenerate quadratic point, when the claim is well known, see [4, 20].

ut
Obviously, the multiplicities �i satisfy the inequalities

�1 � 	 	 	 � �L�
(15)

and, if K � L� C 1, then

2�L�
� �L�C1 � 	 	 	 � �K: (16)

Now let Z D .D1 ı D2/ be the self-intersection of the mobile system † and
set mi D multBi�1 Z

i�1 for 1 � i � L. Applying the technique of counting
multiplicities in word for word the same way as in [14,15,19], we obtain the estimate

LX
iD1

pimi � 2

L�X
iD1

pi�
2
i C

KX
iDL�C1

pi�
2
i :
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Denote the right-hand side of this inequality by q.�1; : : : ; �K/. We see that

LX
iD1

pimi > 
;

where 
 is the minimum of the positive definite quadratic form q.��/ on the
compact convex polytope� defined on the hyperplane

… D
(

KX
iD1

pi�i D n

 
KX
iD1

pi ıi

!)

by the inequalities (15,16). Let us estimate 
.
We use the standard optimization technique in two steps. First, we minimize qj…

separately for the two groups of variables

�1; : : : ; �L�
and �L�C1; : : : ; �K:

Easy computations show that the minimum is attained for

�1 D 	 	 	 D �L�
D 1 and �L�C1 D 	 	 	 D �K D 2;

satisfying the inequality 21 � 2. Putting

†� D
L�X
iD1

pi and †� D
KX

iDL�C1
pi ;

we get the extremal problem: to find the minimum of the positive definite
quadratic form

Nq.1; 2/ D 2†�21 C†�22

on the ray, cut out on the line

ƒ D
(
†�1 C†�2 D n

KX
iD1

pi ıi

)

by the inequality 21 � 2.
First we minimize Nqjƒ on the whole lineƒ. The minimum is attained for 1 D  ,

2 D 2 , where  is obtained from the equation of the line ƒ:

 D n

†� C 2†�
KX
iD1

pi ıi :

We see that the condition 21 � 2 is satisfied and for that reason can be ignored.
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Now set

†l D
LX
iD1

pi ; †�
l D

LX
iDL�C1

pi ; †u D
KX

iDLC1
pi

(if L � L� C 1; otherwise set †�
l D 0). Obviously, the relations

†l D †� C†�
l and †� D †�

l C†u (17)

hold. Recall that, due to our assumptions on the singularities of Vi we have ıi � 2

for i � L. Therefore,

 � 2†l C†u

†� C 2†� n

and so


 � 2
.2†l C†u/

2

†� C 2†� n2:

Since

†l multB Z �
LX
iD1

pimi ;

we finally obtain the estimate

multB Z > 2
.2†l C†u/

2

†l.†� C 2†�/
n2:

Therefore, the 4n2-inequality follows from the estimate

.2†l C†u/
2 � 2†l.†� C 2†�/:

Replacing in the right-hand side †� C 2†� by

†� C 2.†�
l C†u/ D †l C†�

l C 2†u;

we bring the required estimate to the following form:

2†2l C†2u � 2†l†
�
l ;

which is an obvious inequality. Proof of Proposition 1 is now complete. ut
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4 Stability of the Quadratic Singularities Under Blow Ups

We start with the following essential

Definition 1. Let X � Y be a subvariety of codimension 1 in a smooth quasi-
projective complex variety Y of dimension n. A point P 2 X is called a quadratic
point of rank r if there are analytic coordinates z D .z1; : : : ; zn/ of Y around P and
a quadratic form q2.z/ of rank r such that the germ of X in P is given by

.P 2 X/ Š fq2.z/C terms of higher degree D 0g � Y:

Theorem 4. Let X � Y be a subvariety of codimension 1 in a smooth quasi-
projective complex variety Y of dimension n, with at most quadratic points of rank
� r as singularities. Let B � X be an irreducible subvariety. Then there exists an
open set U � Y such that

(i) B \ U is smooth, and
(ii) the blow up QXU of X \ U along B \ U has at most quadratic points of rank

� r as singularities.

Proof. The statement is obvious if B 6� Sing.X/ because then we can pick an open
subset U � Y such that U \ Sing.X/ D ;. So we assume from now on that
B � Sing.X/.

By restricting to a Zariski-open subset of Y we may assume that B � Sing.X/ is
a smooth subvariety. By assumption there exist analytic coordinates z D .z1; : : : ; zn/
around each point P 2 B � Y such that the germ

.P 2 X/ Š ˚
f .z/ D z21 C 	 	 	 C z2r C terms of higher degree D 0


 � Y:

Then the singular locus Sing.X/ is contained in the vanishing locus of the partial
derivatives of this equation, hence in

�
@f

@z1
D 	 	 	 D @f

@zr
D 0

�
:

Since

@f

@zi
D 2zi C terms of higher degree; 1 � i � r;

setting z0
1 WD 1

2

@f

@z1
; : : : ; z0

r WD 1
2

@f

@zr
yields new analytic coordinates

z0
1; : : : ; z

0
r ; zrC1; : : : ; zn

of Y around P . In these new coordinates the defining equation of X still is of
the form
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z0
1
2 C 	 	 	 C z0

r
2 C terms of higher degree D 0;

and B � ˚
z0
1 D 	 	 	 D z0

r D 0


. Since B is smooth around P on the linear

subspace
˚
z0
1 D 	 	 	 D z0

r D 0



we can find further coordinates z0
rC1 : : : ; z0

n such that
around P ,

B D ˚
z0
1 D 	 	 	 D z0

k D 0


; k � r:

Claim. .P 2 X/ Š
n
z0
1
2 C 	 	 	 C z0

r
2 C f�3 D 0

o
where f�3 consists of terms of

degree � 3 and is an element of .z0
1; : : : ; z

0
k/
2.

Proof of Claim. B � Sing.X/ must be contained in
n
@f�3

@z0

j
D 0

o
, hence @f�3

@z0

j
2

.z0
1; : : : ; z

0
k/ for all k C 1 � j � n. This is only possible if f�3 2 .z0

1; : : : ; z
0
k/.

Write f�3 D z0
1f

0
1 C 	 	 	 C z0

kf
0
k . Then as before @f�3

@z0

i
D f 0

i CP
1�j�k;j¤i z0

j

@f 0

j

@z0

i
2

.z0
1; : : : ; z

0
k/ for all 1 � i � k. But this is only possible if f 0

i 2 .z0
1; : : : ; z

0
k/ for all

1 � i � k. �

Using the coordinates z0
1; : : : ; z

0
n we can cover the blow up of Y alongB overP 2 Y

by k charts with coordinates

t
.i/
1 ; : : : ; zi ; : : : ; t

.i/

k ; zkC1; : : : ; zn; 1 � i � k;

where z0
j D t

.i/
j zi for 1 � j � k, j ¤ i , z0

i D zi and z0
l D zl for k C 1 � l � n.

To prove the theorem we only need to check in each chart that along the fiber of the
exceptional divisor over P 2 B there are at most quadratic points of rank � r as
singularities. We distinguish several cases:

Case 1. 1 � i � r , say i D 1.
Then the strict transform of X is given by the equation

1C .t
.1/
2 /2 C 	 	 	 C .t .1/r /2 C z1 	 F CG D 0;

where G is a polynomial in .t .1/2 ; : : : ; t
.1/

k /2 \ .zkC1; : : : ; zn/. On the fiber of the
exceptional divisor over P given by fz1 D zkC1 D 	 	 	 D zn D 0g , the gradient
of this function can only vanish when t .1/2 D 	 	 	 D t

.1/
r D 0. But this locus does

not intersect the strict transform, hence in this chart the strict transform is smooth
along the fiber of the exceptional divisor over P .

Case 2. r C 1 � i � k, say i D k.

Then the strict transform of X is given by the equation

.t
.k/
1 /2 C 	 	 	 C .t .k/r /2 C zk 	 F CG D 0;
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where G is a polynomial in .t .1/1 ; : : : ; t
.1/

k /2 \ .zkC1; : : : ; zn/. On the fiber of the
exceptional divisor over P which is given by fzk D zkC1 D 	 	 	 D zn D 0g, the
gradient of this function can only vanish when t .k/1 D 	 	 	 D t

.k/
r D 0. Consequently,

we have to discuss all points P of the form

.0; : : : ; 0; arC1; : : : ; ak�1; 0; 0; : : : ; 0/ 2 ft .k/1 D 	 	 	 D t .k/r D zk D zkC1 D 	 	 	 D zn D 0g

on the strict transform of X . If we change to coordinates t .k/1 ; : : : ; t
.k/
r ; t 0rC1 WD

t
.k/
rC1�arC1; : : : ; t 0k�1 WD t

.k/

k�1�ak�1; zk; zkC1; : : : ; zn centered in P , then we obtain

the equation defining the strict transform ofX by substituting t .k/rC1 with t 0rC1CarC1,
. . . , t .k/k�1 with t 0k�1 C ak�1. Three cases may occur:

First, the defining equation may contain linear terms in the ideal

.t 0rC1; : : : ; t 0k�1; zk; zkC1; : : : ; zn/:

Then the strict transform of X is smooth in P .
Second, the defining equation may contain no linear terms, but quadratic terms in

.t 0rC1; : : : ; t 0k�1; zk; zkC1; : : : ; zn/. Since these quadratic terms are added to .t .k/1 /2 C
	 	 	 C .t

.k/
r /2, the quadratic term of the equation has still rank � r .

Finally, all terms of the defining equation besides those in .t .k/1 /2 C 	 	 	 C .t
.k/
r /2

may be at least of degree � 3. Then the quadratic term of the defining equation is
.t
.k/
1 /2 C 	 	 	 C .t

.k/
r /2, hence of rank r . ut

Remark 2. Note that QXU is again a subvariety of codimension 1 in the smooth quasi-
projective blow up of U along B \U . The universal property of blow ups [9, Prop.
II.7.14] and the calculations in the proof above tell us that the exceptional locus
EU � QXU is a Cartier divisor on QXU such that the morphism EU ! B \ U is a
fibration into quadrics of rank � r in a PcodimY B -bundle.
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On the Genus of Birational Maps Between
Threefolds

Stéphane Lamy

Abstract In this note we present two equivalent definitions for the genus of a
birational map 'WX Ü Y between smooth complex projective threefolds. The
first one is the definition introduced by Frumkin [Mat. Sb. (N.S.) 90(132):196–213,
325, 1973], and the second one was recently suggested to me by S. Cantat. By
focusing first on proving that these two definitions are equivalent, one can obtain
all the results in M.A. Frumkin [Mat. Sb. (N.S.) 90(132):196–213, 325, 1973] in
a much shorter way. In particular, the genus of an automorphism of C3, view as a
birational self-map of P3, will easily be proved to be 0.

2010 Mathematics Subject Classification. 14E07.

1 Preliminaries

By a n-fold we always mean a smooth projective variety of dimension n over C.
Let 'WX Ü Y be a birational map between n-folds. We assume that a projective

embedding of Y is fixed once and for all, hence ' corresponds to the linear system
on X given by preimages by ' of hyperplane sections on Y .

We call base locus of ' the base locus of the linear system associated with
': this is a subvariety of codimension at least 2 of X , which corresponds to the
indeterminacy set of the map.
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Another subvariety of X associated with ' is the exceptional set, which
is defined as the complement of the maximal open subset where ' is a local
isomorphism. If X D Y D Pn the exceptional set (given by the single equation
Jacobian D 0) has pure codimension 1, but this is not the case in general: consider
for instance the case of a flop, or more generally of any isomorphism in codimension
1, where the exceptional set coincides with the base locus.

A regular resolution of ' is a morphism � WZ ! X which is a sequence of
blow-ups � D �1 ı 	 	 	 ı �r along smooth irreducible centers, such that Z ! Y is a
birational morphism, and such that each center Bi of the blow-up �i WZi ! Zi�1 is
contained in the base locus of the induced mapZi�1 Ü Y . Recall that as a standard
consequence of resolution of singularities, a regular resolution always exists.

Z0 = X

Z1

Zr = Z

Yϕ

σ1

σ

We shall use the following basic observations about the exceptional set and the
base locus of a birational map.

Lemma 1. (1) Let 	 WX ! Y be a birational morphism between threefolds. Then
through a general point of any component of the exceptional set of 	 , there exists
a rational curve contracted by 	 .

(2) Let 'WX Ü Y be a birational map between threefolds, and let E � X be an
irreducible divisor contracted by '. ThenE is birational to P1�C for a smooth
curve C .

Proof. For the first assertion (which is in fact true in any dimension), see for instance
[2, Proposition 1.43]. When ' is a morphism, the second assertion is in fact what
is first proved in [2]. Finally, when ' is not a morphism, we reduce to the previous
case by considering a resolution of '. ut
Lemma 2. Let 'WX Ü Y be a birational map between n-folds, and consider

Z

�

����
��
��
�� 	

���
��

��
��

�

X
'

��������� Y
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a regular resolution of '. Then a point p 2 X is in the base locus of ' if and only if
the set 	.��1.p// has dimension at least 1.

Proof. If p is not in the base locus of ' then by regularity of the resolution ��1.p/
is a single point, and thus 	.��1.p// as well.

Now suppose that p is in the base locus of ', and consider HY a general
hyperplane section of Y . Denote by HX , HZ the strict transform of HY on X and
Z respectively. By definition of the base locus, we have p 2 HX , hence

��1.p/\HZ ¤ ; and 	.��1.p//\HY ¤ ;:

This implies that 	.��1.p// has positive dimension. ut
We will consider blow-ups of smooth irreducible centers in threefolds. If B is

such a center, B is either a point or a smooth curve. We define the genus g.B/ to be
0 if B is a point, and the usual genus if B is a curve. Similarly, if E is an irreducible
divisor contracted by a birational map between threefolds, then by Lemma 1 E is
birational to a product P1 � C where C is a smooth curve, and we define the genus
g.E/ of the contracted divisor to be the genus of C .

2 The Two Definitions

Consider now a birational map 'WX Ü Y between threefolds, and let � WZ ! Y

be a regular resolution of '�1.
Frumkin [3] defines the genus g.'/ of ' to be the maximum of the genus among

the centers of the blow-ups in the resolution � . Remark that this definition depends a
priori from a choice of regular resolution, and Frumkin spends a few pages in order
to show that in fact it does not.

During the social dinner of the conference Groups of Automorphisms in Bira-
tional and Affine Geometry, S. Cantat suggested to me another definition, which is
certainly easier to handle in practice: define the genus of ' to be the maximum of
the genus among the irreducible divisors in X contracted by '.

Denote by F1; : : : ; Fr the exceptional divisors of the sequence of blow-ups � D
�1ı	 	 	ı�r , or more precisely their strict transforms onZ. On the other hand, denote
byE1; : : : ; Es the strict transforms onZ of the irreducible divisors contracted by '.

Note that if '�1 is a morphism, then both collections fFig and fEig are empty.
In this case, by convention we say that the genus of ' is 0. In this section we prove:

Proposition 3. Assume '�1 is not a morphism. Then

max
iD1;:::;s g.Ei / D max

iD1;:::;r g.Fi /:
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In other words the definition of the genus by Frumkin coincides with the one
suggested by Cantat, and in particular it does not depend on a choice of a regular
resolution.

Denote by Bi the center of the blow-up �i producing Fi . We define a partial
order on the divisors Fi by saying that Fj < Fk if one of the following conditions
is verified:

(i) j D k;
(ii) j > k, Bk is a point, and Bj is contained in the strict transform of Fk ;

(iii) j > k, Bk is a curve, and Bj intersects the general fiber of the strict transform
of the ruled surface Fk .

We say that Fi is essential if Fi is a maximal element for the order <.

Lemma 4. The maximum maxi g.Fi / is realized by an essential divisor.

Proof. We can assume that the maximum is not 0, otherwise there is nothing to
prove. Consider Fk realizing the maximum, and Fj < Fk with j > k. Then the
centers Bj ;Bk of �j and �k are curves, and Bj dominates Bk by a morphism. By
the Riemann–Hurwitz formula, we get g.Fj / � g.Fk/, and the claim follows. ut
Lemma 5. The subset of the essential divisors Fi with g.Fi / � 1 is contained in
the set of the contracted divisors Ej .

Proof. Let Bi � Zi�1 be the center of a blow-up producing a non-rational essential
divisor Fi , and consider the diagram:

Z

	

����
��
��
�� Q�D�iı			ı�r

��















X Zi�1
 i�1

��� � � � � � �

By applying Lemma 2 to  i�1WZi�1 Ü X , we get dim 	. Q��1.p// � 1 for any
point p 2 Bi . Since Fi is essential, lp WD Q��1.p/ is a smooth rational curve
contained in Fi for all except finitely many p 2 Bi . So 	.lp/ is also a curve. If
	.lp/ varies with p, then 	.Fi / is a divisor, which is one of the Ei . Now suppose
	.lp/ is a curve independent of p, that means that Fi is contracted to this curve by
	 . Consider q a general point of Fi . By Lemma 1 there is a rational curve C � Fi
passing through q and contracted by 	 , but this curve should dominate the curve Bi
of genus � 1: contradiction. ut

Proof of Proposition 3. Observe that the strict transform of a divisor contracted by
' must be contracted by � , hence we have the inclusion fEi g � fFig. This implies
maxi g.Ei / � maxi g.Fi /. If all Fi are rational, then the equality is obvious.
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Suppose at least one of the Fi is non-rational. By Lemma 5 we have the
inclusions

fFi IFi is non-rational and essentialg � fEig � fFi g:

Taking maximums, this yields the inequalities

max
i

fg.Fi /IFi is non-rational and essentialg � max
i
g.Ei / � max

i
g.Fi /:

By Lemma 4 we conclude that these three maximums are equal. ut

3 Some Consequences

The initial motivation for a reworking of the paper of Frumkin was to get a simple
proof of the fact that a birational self-map of P3 coming from an automorphism of
C3 admits a resolution by blowing-up points and rational curves:

Corollary 6. The genus of ' is zero in the following two situations:

(1) ' 2 Bir.P3/ is the completion of an automorphism of C3;
(2) 'WX Ü Y is a pseudo-isomorphism (i.e. an isomorphism in codimension 1).

In particular for such a map ' any regular resolution only involves blow-ups of
points and of smooth rational curves.

Proof. Both results are obvious using the definition via contracted divisors! ut
I mention the following result for the sake of completeness, even if I essentially

follow the proof of Frumkin (with some slight simplifications).

Proposition 7 (Compare with [3, Proposition 2.2]). Let 'WX Ü Y be a
birational map between threefolds, and let � WZ ! X , � 0WZ0 ! Y be resolutions of
', '�1 respectively. Assume that � is a regular resolution and denote by hWZ Ü Z0
the induced birational map. Then g.h/ D 0.

Z
h

���������

�

����
��
��
��

�����
����

����
����

����
����

Z0

	 0

������
����

����
����

����
���

� 0

���
��

��
��

�

X
'

������������������ Y

Proof. We write � D �1 ı 	 	 	 ı �r , where �i WZi ! Zi�1 is the blow-up of a
smooth center Bi . Note that Z0 D X , and Zr D Z. Assume that the induced
map hi WZi Ü Z0 has genus 0 (this is clearly the case for h0 D 	 0�1), and let us
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prove the same for hiC1 D hi ı �iC1. We can assume that �iC1 is the blow-up of a
non-rational smooth curve BiC1, otherwise there is nothing to prove. Consider

Wi

pi

����
��
��
�� qi

���
��

��
��

Zi
hi

���������� Z0

a regular resolution of h�1
i . Since Wi dominates Y via the morphism � 0 ı qi , the

curve BiC1 is in the base locus of p�1
i : otherwise BiC1 would not be in the base

locus of Zi Ü Y , contradicting the regularity of the resolution � . Thus for any
point x 2 BiC1, p�1

i .x/ is a curve, and there exists an open set U � Zi such that
p�1
i .U \BiC1/ is a nonempty divisor. By applying overU the universal property of

blow-up (see [4, Proposition II.7.14]), we get that there exists an irreducible divisor
onWi whose strict transform onZiC1 is the exceptional divisorEiC1 of �iC1. Hence
the birational map p�1

i ı �iC1WZiC1 Ü Wi does not contract any divisor and so
has genus 0. Composing by qi which also has genus 0 by hypothesis we obtain
g.hiC1/ D 0. By induction we obtain g.hr / D 0, hence the result since hr D h. ut
Remark 8. In the setting of Proposition 7, even if � 0 is also a regular resolution,
there is no reason for hWZ Ü Z0 to be a pseudo-isomorphism. For instance, if
' admits a curve C in its base locus, one could construct regular resolutions of '
starting blowing-up arbitrary many points on C , and so the Picard number of Z can
be arbitrary large (thanks to the referee who pointed this fact out).

On the other hand, it is not clear if we could restrict the definition of a regular
resolution (for instance allowing the blow-up of a point only if it is a singular point
of the base locus), such that the regular resolutions � and � 0 would lead to threefolds
Z andZ0 with the same Picard numbers, and with h a pseudo-isomorphism. In such
a case, Proposition 7 would follow from Corollary 6.

The next result is less elementary.

Proposition 9. Let X be a threefold with Hodge numbers h0;1 D h0;3 D 0, and let
'WX Ü X be a birational self-map. Then g.'/ D g.'�1/.

For the proof, which relies on the use of intermediate Jacobians, I refer to the
original paper of Frumkin [3, Proposition 2.6], or to [5] where it is proved that the
exceptional loci of ' and '�1 are birational (and even more piecewise isomorphic).
Note that Frumkin does not mention any restriction on the Hodge numbers of X ,
but it seems implicit since the proof uses the fact, through the reference to [1, 3.23],
that the complex torus J .X/ is a principally polarized abelian variety.

Corollary 10. Let g � 0 be an integer. The set of birational self-maps of P3 of
genus at most g is a subgroup of Bir.P3/.
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Proof. Stability under taking inverse is Proposition 9, and stability under composi-
tion comes from the fact that any divisor contracted by ' ı' 0 is contracted either by
' or by ' 0. ut
Question 11. The last corollary could be stated for any threefold satisfying the
assumptions of Proposition 9, but I am not aware of any relevant example. For
instance, if X � P4 is a smooth cubic threefold, is there any birational self-map
of X with genus g � 1?

Acknowledgements I thank J. Blanc and A. Dubouloz who pointed out and helped me fix some
silly mistakes in an early version of this work. This research was supported by ANR Grant “BirPol”
ANR-11-JS01-004-01.
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On the Automorphisms of Moduli Spaces
of Curves

Alex Massarenti and Massimiliano Mella

Abstract In the last years the biregular automorphisms of Deligne–Mumford’s and
Hassett’s compactifications of the moduli space of n-pointed genus g smooth curves
have been extensively studied by A. Bruno and the authors. In this paper we give
a survey of these recent results and extend our techniques to some moduli spaces
appearing as intermediate steps of Kapranov’s and Keel’s realizations of M0;n, and
to the degenerations of Hassett’s spaces obtained by allowing zero weights.
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1 Introduction and Survey on the Automorphisms of Moduli
Spaces of Curves

The moduli space of n-pointed genus g curves is a central object in algebraic
geometry. The scheme Mg;n parametrizing genus g smooth curves with n marked
points satisfying the inequality 2g�2Cn > 0 has been compactified by Deligne and
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Mumford in [3] by adding Deligne–Mumford stable curves as boundary points. In
[7] Hassett introduced alternative compactifications ofMg;n by allowing the marked
points to have rational weights 0 < ai 6 1. In the last years A. Bruno and the
authors focused on the problem of determining the biregular automorphisms of all
these compactifications, see [1, 2, 11, 12].

In what follows we will summarize and contextualize these results. Furthermore,
in Sect. 2 we will extend our techniques to other moduli spaces of curves, namely
Hassett’s spaces appearing as intermediate steps of Kapranov’s Construction 2.1 and
of Keel’s Construction 2.2. Finally, in Sect. 3 we will compute the automorphism
groups of the degenerations of Hassett’s spaces obtained by allowing some of the
weights ai to be zero.

1.1 The Automorphism Groups of M g;n

The first fundamental result about the automorphisms of moduli spaces of curves is
due to Royden [15] and dates back to 1971.

Theorem 1.1. Let M un
g;n be the moduli space of genus g smooth curves marked by

n unordered points. If 2g � 2C n > 3 then M un
g;n has no nontrivial automorphisms.

For a contextualization of this result in the Teichmüller-theoretic literature we
refer to [13]. If 2g � 2C n > 3 the general genus g smooth curve with n unordered
marked points does not have nontrivial automorphisms. Furthermore, M un

g;n has at
most finite quotient singularities and the stack Mun

g;n is a smooth Deligne–Mumford
stack. Therefore, by the argument used in [11, Sect. 4], we have that Aut.Mun

g;n/ is
trivial if 2g � 2C n > 3.

The symmetric group on n elements Sn acts naturally on the moduli spacesMg;n

and on its Deligne–Mumford compactification Mg;n. Therefore Sn 
 Aut.Mg;n/

and Theorem 1.1 gave a strong evidence for the equality to hold, see also [10] for
the genus zero case. In particular Farkas [5, Question 4.6] asked if it is true that
Aut.M0;n/ Š Sn for any n > 5, and it seems that also W. Fulton pointed to this
question. Farkas himself brought Kapranov’s paper [8] to the attention of the second
author.

In [1,2], Bruno and the second author, thanks to Kapranov’s works [8], managed
to translate issues on the moduli space M0;n in terms of classical projective
geometry of Pn�3. Studying linear systems on Pn�3 with particular base loci they
derived a theorem on the fibrations of M0;n.

Theorem 1.2 ([2, Theorem 2]). Let f W M0;n ! M0;r1�	 	 	�M0;rh be a dominant
morphism with connected fibers. Then f factors with a forgetful map.

In its original form [2, Theorem 2] states that f is a forgetful map. This is
because in [2] a forgetful map is defined as the composition of a forgetful morphism
'I W M0;n ! M0;r with an automorphism of M0;r [2, Definition 1.1].
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Furthermore they realized that via this theorem on fibrations they could construct
a morphism of groups between Aut.M0;n/ and Sn. Indeed if ' W M0;n ! M0;n is an
automorphism and �i W M0;n ! M0;n�1 is a forgetful morphism by Theorem 1.2
we have the following diagram:

M0,n M0,n

M0,n−1 M0,n−1

ϕ−1

ϕ̃

πiπji

where �ji is a forgetful map. This allows us to define a surjective morphism of
groups

� W Aut.M0;n/ �! Sn

' 7�! �'
(1)

where

�' W f1; : : : ; ng �! f1; : : : ; ng
i 7�! ji

Note that in order to have a morphism of groups we have to consider '�1 instead of
'. Furthermore, the factorization of �i ı'�1 is unique. Indeed if �i ı'�1 admits two
factorizations Q'1 ı�j and Q'2 ı�h, then the equality Q'1 ı�j .ŒC; x1; : : : ; xn�/ D Q'2 ı
�h.ŒC; x1; : : : ; xn�/ for any ŒC; x1; : : : ; xn� 2 M0;n implies Q'1.ŒC; y1; : : : ; yn�1�/ D
Q'2.ŒC; y1; : : : ; yn�1�/ for any ŒC; y1; : : : ; yn�1� 2 M0;n�1. Now Q'1 D Q'2 implies
Q'1 ı �j D Q'1 ı �h and since Q'1 is an isomorphism we have �j D �h.

Once again, via the projective geometry inherited by Kapranov’s construction,
the kernel of � consists of automorphisms inducing on P

n�3 a birational self-map
that stabilizes lines and rational normal curves through .n � 1/ fixed points. This
proves that the kernel is trivial, see the proof of Theorem 2.6 for the details, and
gives the following positive answer to [5, Question 4.6].

Theorem 1.3 ([2, Theorem 3]). The automorphism group of M0;n is isomorphic
to Sn for any n > 5.

Although a similar statement in higher genus was expected for many years, the
problem of computing Aut.Mg;n/ for g > 1 was not explicitly settled. However,
A. Gibney, S. Keel, and I. Morrison gave an explicit description of the fibrations
Mg;n ! X of Mg;n on a projective variety X in the case g > 1, providing an
analogue of Theorem 1.2. Let N be the set f1; : : : ; ng of the markings. If S � N ,
then Sc denotes its complement.

Theorem 1.4 ([6, Theorem 0.9]). Let D 2 Pic.Mg;n/ be a nef divisor.

– If g > 2 either D is the pull-back of a nef divisor on Mg;n�1 via one of the
forgetful morphisms or D is big and the exceptional locus of D is contained in
@Mg;n.
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– If g D 1 eitherD is the tensor product of pull-backs of nef divisors onM1;S and
M1;Sc via the tautological projection for some subset S 
 N orD is big and the
exceptional locus of D is contained in @Mg;n.

An immediate consequence of Theorem 1.4 is that for g > 2 any fibration of
Mg;n to a projective variety factors through a projection to some Mg;i with i < n,
while Mg has no nontrivial fibrations. Such a clear description of the fibrations of
Mg;n is no longer true for g D 1. An explicit counterexample was given by R.
Pandharipande [2, Example A.2] who also observed that Theorem 1.4 could be the
starting point to compute the automorphism groups of Mg;n. In order to compute
Aut.M1;n/ the first author provided a factorization result for a particular type of
fibration.

Lemma 1.5 ([11, Lemma 1.3]). Let ' be an automorphism of M1;n. Any fibration
of the type �i ı ' factorizes through a forgetful morphism �j W M1;n ! M1;n�1.

Thanks to Theorem 1.4 and Lemma 1.5 in [11] the first author constructed the
analogue of the morphism (1) for g > 1 and proved the following theorem.

Theorem 1.6 ([11, Theorem 3.9]). Let Mg;n be the moduli stack parametrizing
Deligne–Mumford stable n-pointed genus g curves, and let Mg;n be its coarse
moduli space. If 2g � 2C n > 3 then

Aut.Mg;n/ Š Aut.Mg;n/ Š Sn:

For 2g � 2C n < 3 we have the following special behavior:

– Aut.M1;2/ Š .C�/2 while Aut.M1;2/ is trivial,
– Aut.M0;4/ Š Aut.M0;4/ Š Aut.M1;1/ Š PGL.2/ while Aut.M1;1/ Š C�,
– Aut.M0;3/ and Aut.M0;3/ are trivial,
– Aut.M2/ and Aut.M2/ are trivial [6, Corollary 0.12].

The proof of Theorem 1.6 is divided into two parts: the cases 2g�2Cn > 3 and
2g�2Cn < 3. When 2g�2Cn > 3 the proof uses extensively Theorem 1.4. This
result, combined with the triviality of the automorphism group of the generic curve
of genus g > 3, leads the first author to prove that the automorphism group ofMg;1

is trivial for any g > 3. However, any genus two curve is hyperelliptic and has a
nontrivial automorphism: the hyperelliptic involution. Therefore the argument used
in the case g > 3 completely fails and a different strategy is needed: the first author
proved that any automorphism of M2;1 preserves the boundary and then applied
Theorem 1.1 to conclude that Aut.M2;1/ is trivial. Finally he tackled the general
case by induction on n.

The case g D 1; n D 2 requires an explicit description of the moduli spaceM1;2.
In [11, Theorem 2.3] the first author proved that M1;2 is isomorphic to a weighted
blow-up of P.1; 2; 3/ in the point Œ1 W 0 W 0�. In particularM1;2 is toric. From this he
derived that Aut.M1;2/ is isomorphic to .C�/2 [11, Proposition 3.8].
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For the stack Mg;n and the coarse moduli space Mg;n the automorphism groups
are not known. However, it is reasonable that they both are isomorphic to Sn for
2g � 2 C n > 3. A possible strategy to prove this would be to show that any
automorphism of Mg;n andMg;n preserves the boundary and to apply Theorem 1.6.

1.2 Automorphisms of Hassett’s Moduli Spaces

Many of the techniques used to deal with the automorphisms of Mg;n apply also to
moduli spaces of weighted pointed curves. These are the compactifications of Mg;n

introduced by Hassett in [7]. Hassett constructed new compactifications Mg;AŒn� of
the moduli stack Mg;n andMg;AŒn� for the coarse moduli space by assigning rational
weights A D .a1; : : : ; an/, 0 < ai 6 1 to the markings.

We would like to stress that there is a dichotomy in our understanding of the
automorphism groups of Hassett’s moduli spaces: the case g > 1 where everything
is known and the case g D 0 where we have a limited understanding. Indeed
in genus zero we manage to compute just the automorphism groups of some of
the Hassett’s spaces satisfying Definition 1.8. Namely the spaces appearing in
Constructions 1.9 and 2.1, and some of the spaces in Construction 2.2.

In [7, Sect. 2.1.1] Hassett considers a natural variation on the moduli problem
of weighted pointed stable curves by allowing some of the marked points to have
weight zero. We introduce these more general spaces because we will compute their
automorphisms in Sect. 3. Consider the data .g; QA/ WD .g; a1; : : : ; an/ such that
ai 2 Q, 0 6 ai 6 1 for any i D 1; : : : ; n, and

2g � 2C
nX
iD1

ai > 0:

Definition 1.7. A family of nodal curves with marked points � W .C; s1; : : : ; sn/ !
S is stable of type .g; QA/ if

– the sections s1; : : : ; sn with positive weights lie in the smooth locus of � , and for
any subset fsi1 ; : : : ; sir g with nonempty intersection we have ai1 C 	 	 	 C air 6 1,

– K� CPn
iD1 ai si is �-relatively ample.

There exists a connected Deligne–Mumford stack Mg; QAŒn� representing the

moduli problem of pointed stable curves of type .g; QA/. The corresponding coarse
moduli scheme Mg; QAŒn� is projective over Z.

If ai > 0 for any i D 1; : : : ; n, by [7, Theorem 3.8] a weighted pointed stable
curve admits no infinitesimal automorphisms and its infinitesimal deformation space
is unobstructed of dimension 3g � 3 C n. Then Mg;AŒn� is a smooth Deligne–
Mumford stack of dimension 3g � 3 C n. However, when some of the marked
points are allowed to have weight zero even the stack Mg; QAŒn� may be singular, see
[7, Sect. 2.1.1].
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Following Hassett we denote by A the subset of QA containing all the positive
weights so that j QAj D jAj C N where N is the number of zero weights. Note that
an QA-stable curve is an A-stable curve with N additional arbitrary marked points.
Furthermore, the points with weight zero are allowed to be singular points. So at the
level of stacks

Mg; QAŒn� Š Cg;AŒn� �Mg;AŒn�
	 	 	 �Mg;AŒn�

Cg;AŒn�„ ƒ‚ …
N times

where Cg;AŒn� is the universal curve over Mg;AŒn�.
In the more general setting of zero weights we still have natural morphisms

between Hassett’s spaces. For fixed g; n, consider two collections of weight data
QAŒn�; QBŒn� such that ai > bi > 0 for any i D 1; : : : ; n. Then there exists a birational

reduction morphism

� QBŒn�; QAŒn� W Mg; QAŒn� ! Mg; QBŒn�

associating to a curve ŒC; s1; : : : ; sn� 2 Mg; QAŒn� the curve � QBŒn�; QAŒn�.ŒC; s1; : : : ; sn�/
obtained by collapsing components of C along which KC C b1s1 C 	 	 	 C bnsn fails
to be ample.

Furthermore, for any g consider a collection of weight data QAŒn� D .a1; : : : ; an/

and a subset QAŒr� WD .ai1 ; : : : ; air / � QAŒn� such that 2g � 2C ai1 C 	 	 	 C air > 0.
Then there exists a forgetful morphism

� QAŒn�; QAŒr� W Mg; QAŒn� ! Mg; QAŒr�

associating to a curve ŒC; s1; : : : ; sn� 2 Mg; QAŒn� the curve � QAŒn�; QAŒr�.ŒC; s1; : : : ; sn�/
obtained by collapsing components of C along whichKC Cai1 si1 C	 	 	Cair sir fails
to be ample. For the details see [7, Sect. 4].

Some of the spaces M0;AŒn� appear as intermediate steps of Kapranov’s blow-up
construction of M0;n [7, Sect. 6.1]. In higher genus Mg;AŒn� may be related to the
log minimal model program onMg;n, see for instance [14].

In the more general setting of Hassett’s spaces not all forgetful maps are well
defined as morphisms. However, in [12, Theorem 2.6, Proposition 2.7] the authors
manage to derive a weighted version of Theorems 1.2 and 1.4 and thanks to these
they construct a morphism of groups

� W Aut.Mg;AŒn�/ �! Sr
' 7�! �'

(2)

where

�' W f1; : : : ; rg �! f1; : : : ; rg
i 7�! ji



On the Automorphisms of Moduli Spaces of Curves 155

and r is the number of well-defined forgetful maps of relative dimension one on
Mg;AŒn�. We would like to stress that the morphism (2) makes sense for any space
Mg;AŒn� when g > 1 and in the genus zero case the morphism (2) is well defined only
for Hassett’s spaces factorizing Kapranov in the sense of the following definition.

Definition 1.8 ([12, Definition 2.1]). We say that Hassett’s moduli space M0;AŒn�

factors Kapranov if there exists a morphism �2 that makes the following diagram
commutative:

M0,n

M0,A[n] P
n−3

ρ1

ρ2

fi

where fi is Kapranov’s map and �1 is a reduction. We call such a �2 Kapranov’s
factorization.

Let us recall Kapranov’s construction.

Construction 1.9 ([8]). Fixed .n�1/-points p1; : : : ; pn�1 2 Pn�3 in linear general
position:

(1) Blow-up the points p1; : : : ; pn�2, then the lines
˝
pi ; pj

˛
for i; j D 1; : : : ; n�

2,. . . , the .n � 5/-planes spanned by n � 4 of these points.
(2) Blow-up pn�1, the lines spanned by pairs of points including pn�1 but not
pn�2,. . . , the .n� 5/-planes spanned by n� 4 of these points including pn�1 but
not pn�2.
:::

(r) Blow-up the linear spaces spanned by subsets fpn�1; pn�2; : : : ; pn�rC1g so
that the order of the blow-ups is compatible with the partial order on the subsets
given by inclusion, the .r � 1/-planes spanned by r of these points including
pn�1; pn�2; : : : ; pn�rC1 but not pn�r ,. . . , the .n� 5/-planes spanned by n� 4 of
these points including pn�1; pn�2; : : : ; pn�rC1 but not pn�r .
:::

(n� 3) Blow-up the linear spaces spanned by subsets fpn�1; pn�2; : : : ; p4g.

The composition of these blow-ups is the morphism fn W M0;n ! Pn�3 induced by
the psi-class ‰n.

In [7, Sect. 6.1] Hassett interprets the intermediate steps of Construction 1.9 as
moduli spaces of weighted rational curves. Consider the weight data

Ar;sŒn� WD .1=.n� r � 1/; : : : ; 1=.n� r � 1/„ ƒ‚ …
.n�r�1/ times

; s=.n � r � 1/; 1; : : : ; 1„ ƒ‚ …
r times

/
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for r D 1; : : : ; n � 3 and s D 1; : : : ; n � r � 2. Then the variety obtained at
the r-th step once we finish blowing-up the subspaces spanned by subsets S with
jS j 6 s C r � 2 is isomorphic to M0;Ar;s Œn�.

To help the reader getting acquainted with Construction 1.9 we develop in detail
the simplest case.

Example 1.10. Let n D 5, and fix p1; : : : ; p4 2 P2 points in general position.
Kapranov’s map f5 is as follows: blow-up p1; p2; p3 and then blow-up p4.

At the step r D 1; s D 1 we get M0;A1;1Œn� D P2 and the weights are

A1;1Œ5� WD .1=3; 1=3; 1=3; 1=3; 1/:

While for r D 2; s D 1 we get M0;A2;1Œn� Š M0;5, indeed in this case the weight
data are

A2;1Œ5� WD .1=2; 1=2; 1=2; 1; 1/:

Note that as long as all the weights are strictly greater than 1=3, Hassett’s space is
isomorphic toM0;n because at most two points can collide, so the only components
that get contracted are rational tail components with exactly two marked points.
Since these have exactly three special points they have no moduli and contracting
them does not affect the coarse moduli space even though it does change the
universal curve, see also [7, Corollary 4.7]. In our case M0;A2;1Œ5� Š M0;5.

We have only one intermediate step, namely r D 1; s D 2. The moduli space
M0;A1;2Œ5� parametrizes weighted pointed curves with weight data

A1;2Œ5� WD .1=3; 1=3; 1=3; 2=3; 1/:

Since a4 C ai D 1 for i D 1; 2; 3 and a4 C a5 > 1 the point p4 is allowed to collide
with p1; p2; p3 but not with p5 which has not yet been blown-up. Kapranov’s map
f5 W M0;5 ! P

2 factorizes as

M0,5 ∼= M0,A2,1[5]

M0,A1,2[5]

P
2 ∼= M0,A1,1[5]

ρ2

f5

ρ1

where �1; �2 are the corresponding reduction morphisms. Let us analyze these two
morphisms.

– Given .C; s1; : : : ; s5/ 2 M0;A2;1Œ5� the curve �1.C; s1; : : : ; s5/ is obtained by
collapsing components of C along which KC C 1

3
s1 C 1

3
s2 C 1

3
s3 C 2

3
s4 C s5
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fails to be ample. So it contracts the two-pointed components of the following
curves:

along whichKC C 1
3
s1C 1

3
s2C 1

3
s3C 2

3
s4Cs5 is anti-ample, and the two-pointed

components of the following curves:

along which KC C 1
3
s1 C 1

3
s2 C 1

3
s3 C 2

3
s4 C s5 is nef but not ample. However,

all the contracted components have exactly three special points, and therefore
they do not have moduli. This affects only the universal curve but not the coarse
moduli space.

Finally KC C 1
3
s1 C 1

3
s2 C 1

3
s3 C 2

3
s4 C s5 is nef but not ample on the three-

pointed component of the curve

In fact this corresponds to the contraction of the divisor E5;4 D f �1
5 .p4/.

– The morphism �2 contracts the three-pointed components of the curves
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along whichKC C 1
3
s1C 1

3
s2C 1

3
s3C 1

3
s4C s5 has degree zero. This corresponds

to the contractions of the divisors E5;3 D f �1
5 .p3/, E5;2 D f �1

5 .p2/ and E5;1 D
f �1
5 .p1/.

We do not have a complete classification in terms of the weights A of Hassett’s
spaces M0;AŒn� that factor Kapranov. However, this is enough to compute the
automorphisms of all intermediate steps of Construction 1.9.

Theorem 1.11 ([12, Theorem 3.3]). The automorphism groups of Hassett’s spaces
appearing in Construction 1.9 are given by

– Aut.M0;Ar;s Œn�/ Š .C�/n�3 � Sn�2; if r D 1; 1 < s < n � 3,
– Aut.M0;Ar;s Œn�/ Š .C�/n�3 � Sn�2 � S2; if r D 1; s D n � 3,
– Aut.M0;Ar;s Œn�/ Š Sn; if r > 2.

The automorphisms appearing in Theorem 1.11 are induced explicitly by the
morphism (2). More explicitly:

– Ker.�/ Š .C�/n�3 and Im.�/ Š Sn�2, if r D 1 and 1 < s < n � 3,
– Ker.�/ Š .C�/n�3 � S2 and Im.�/ Š Sn�2, if r D 1 and s D n � 3,
– Ker.�/ is trivial and Im.�/ Š Sn, if r > 2.

Furthermore, we have M0;A1;1Œn� Š Pn�3 and Aut.M0;A1;1Œn�/ Š PGL.n � 2/.

Remark 1.12. Hassett’s space M0;A1;2Œ5� is the blow-up of P2 in three points in
general position, that is Del Pezzo surface S6 of degree 6. By Theorem 1.11 we
recover the classical result on its automorphism group Aut.S6/ Š .C�/2 � S3 � S2.
For a proof not using the theory of moduli of curves see [4, Sect. 6].

Furthermore, note that we are allowed to permute the points labeled by 1; 2; 3
and to exchange the marked points 4; 5. However, any permutation mapping 1; 2 or
3 to 4 or 5 contracts a boundary divisor isomorphic to P1 to the point �1.E5;4/, so
it does not induce an automorphism. Furthermore, Cremona transformation lifts to
the automorphism of M0;A1;2Œ5� corresponding to the transposition 4 $ 5.

Remark 1.13. The step r D 1; s D n � 3 of Construction 1.9 is Losev–Manin’s
space Ln�2, see [7, Sect. 6.4]. This space is a toric variety of dimension n � 3. By
Theorem 1.11 we recover .C�/n�3 � Aut.Ln�2/. The automorphisms in Sn�2 � S2
reflect on the toric setting as automorphisms of the fan of Ln�2.

For example consider Del Pezzo surface of degree six M0;A1;2Œ5� Š L3 Š S6.
Let us say that S6 is the blow-up of P2 at the coordinate points p1; p2; p3 with
exceptional divisors e1; e2; e3 and let us denote by li D ˝

pj ; pk
˛
, i ¤ j; k, i D

1; 2; 3 the three lines generated by p1; p2; p3.
Such surface can be realized as the complete intersection in P2 � P2 cut out by

the equations x0y0 D x1y1 D x2y2. The six lines are given by ei D fxj D xk D 0g,
li D fyj D yk D 0g for i ¤ j; k, i D 1; 2; 3. The torus T D .C�/3=C� acts on
P2 � P2 by

.�0; �1; �2/ 	.Œx0 W x1 W x2�; Œy0 W y1 W y2�/ D .Œ�0x0 W �1x1 W �2x2�; Œ��1
0 y0 W ��1

1 y1 W ��1
2 y2�/:
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This torus action stabilizes S6. Furthermore, S2 acts on S6 by the transpositions
xi $ yi , and S3 acts on S6 by permuting the two sets of homogeneous coordinates
separately. The action of S3 corresponds to the permutations of the three points of P2

we are blowing-up, while the S2-action is the switch of roles of exceptional divisors
between the sets of lines fe1; e2; e3g and fl1; l2; l3g. These six lines are arranged in a
hexagon inside S6

which is stabilized by the action of S3 � S2. The fan of S6 is the following

where the six 1-dimensional cones correspond to the toric divisors e1; l3; e2; l1; e3
and l2. It is clear from the picture that the fan has many symmetries given by
permuting fe1; e2; e3g, fl1; l2; l3g and switching ei with li for i D 1; 2; 3.

In higher genus all the forgetful maps are well defined as morphisms [12,
Lemma 3.8]. However, a transposition i $ j of the marked points in order to
induce an automorphism of Mg;AŒn� has to preserve the weight data in a suitable
sense.

Example 1.14. InM3;AŒ6� with weights .1=4; 1=4; 1=2; 3=4; 1; 1/ consider the divi-
sor parametrizing reducible curves C1 [ C2, where C1 has genus zero and weights
.1=4; 1=4; 3=4/, and C2 has genus three and weights .1=2; 1; 1/.
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After the transposition 3 $ 4 the genus zero component has markings
.1=4; 1=4; 1=2/, so it is contracted. This means that the transposition induces a
birational map

M3,A[6] M3,A[6]
3↔4

contracting a divisor on a codimension two subscheme of M3;AŒ6�.

We see that troubles come from rational tails with at least three marked points.
To avoid this, the authors introduced the following definition.

Definition 1.15 ([12, Definition 3.10]). A transposition i $ j of two marked
points with positive weights in A is admissible if and only if for any h1; : : : ; hr 2
f1; : : : ; ng, with r > 2,

ai C
rX

kD1
ahk 6 1 ” aj C

rX
kD1

ahk 6 1:

In [12, Lemma 3.13] the authors proved that, if g > 1 then the image
of the morphism (2) is the subgroup AAŒn� of Sn generated by the admissi-
ble transpositions. Finally in [12, Theorems 3.15, 3.18] they managed to con-
trol the kernel of the morphism (2) and proved the following generalization of
Theorem 1.6.

Theorem 1.16. Let Mg;AŒn� be the Hassett’s moduli stack parametrizing weighted
n-pointed genus g stable curves, and letMg;AŒn� be its coarse moduli space. If g > 1

and 2g � 2C n > 3, then

Aut.Mg;AŒn�/ Š Aut.Mg;AŒn�/ Š AAŒn�:

Furthermore

– Aut.M1;AŒ2�/ Š .C�/2 while Aut.M1;AŒ2�/ is trivial,
– Aut.M1;AŒ1�/ Š PGL.2/ while Aut.M1;AŒ1�/ Š C�,
– Aut.M2/ and Aut.M2/ are trivial.
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2 Kapranov’s and Keel’s Spaces

Construction 1.9 provides a factorization of Kapranov’s blow-up construction of
M0;n. There are many other factorizations of the morphisms fi W M0;n ! P

n�3
as compositions of reduction morphisms. We consider other two factorizations. The
first is due to Kapranov [7, Sect. 6.2].

Construction 2.1. Fixed .n � 1/-points p1; : : : ; pn�1 2 Pn�3 in linear general
position:

(1) Blow-up the points p1; : : : ; pn�1,
(2) Blow-up the strict transforms of the lines hpi1 ; pi2i, i1; i2 D 1; : : : ; n � 1,
:::

(k) Blow-up the strict transforms of the .k�1/-planes hpi1 ; : : : ; pik i, i1; : : : ; ik D
1; : : : ; n � 1,
:::

(n� 4) Blow-up the strict transforms of the .n � 5/-planes hpi1; : : : ; pin�4i,
i1; : : : ; in�4 D 1; : : : ; n � 1.

Now, consider Hassett’s spacesXkŒn� WD M0;AŒn� for k D 1; : : : ; n� 4, such that

– ai C an > 1 for i D 1; : : : ; n � 1,
– ai1 C 	 	 	 C air 6 1 for each fi1; : : : ; irg � f1; : : : ; n � 1g with r 6 n� k � 2,
– ai1 C 	 	 	 C air > 1 for each fi1; : : : ; irg � f1; : : : ; n � 1g with r > n� k � 2.

Then XkŒn� is isomorphic to the variety obtained at the step k of the blow-up
construction. Clearly the spaces XkŒn� satisfy Definition 1.8.

Hassett’s spaces appearing in [7, Sect. 6.3] are strictly related to the construction
of M0;n provided by Keel in [9]. These spaces give another factorization of
Kapranov’s map fi W M0;n ! Pn�3.

Construction 2.2 ([7, Sect. 6.3]). We start with the variety Y0Œn� WD .P1/n�3 which
can be realized as Hassett’s space M0;AŒn� where AŒn� D .a1; : : : ; an/ satisfy the
following conditions:

– ai C aj > 1 where fi; j g � f1; 2; 3g,
– ai C aj1 C 	 	 	 C ajr 6 1 for i D 1; 2; 3, fj1; : : : ; jrg 
 f4; : : : ; ng, with r > 2.

Let �d be the locus in .P1/n�3 where at least n � 2 � d of the points coincide, that
is the d -dimensional diagonal. Let �i W .P1/n�3 ! P1 for i D 1; : : : ; n � 3 be the
projections, and let

F0 WD ��1
1 .0/[ : : : [ ��1

n�3.0/:

We define F1 and F1 similarly and use the same notation for proper transforms.
Consider the following sequence of blow-ups
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(1) Blow-up �1 \ .F0 [ F1 [ F1/.
:::

(h) Blow-up�k \ .F0 [ F1 [ F1/.
:::

(n� 4) Blow-up�n�4 \ .F0 [ F1 [ F1/.

The variety YhŒn� obtained at the step h can be realized as Hassett’s space M0;AŒn�

where the weights satisfy the following conditions:

– ai C aj > 1 if fi; j g � f1; 2; 3g,
– ai C aj1 C 	 	 	 C ajr 6 1 if i 2 f1; 2; 3g and fj1; : : : ; jrg � f4; : : : ; ng with
0 < r 6 n � h� 3,

– ai C aj1 C 	 	 	 C ajr > 1 if i 2 f1; 2; 3g and fj1; : : : ; jrg � f4; : : : ; ng with
r > n � h� 3.

Now, we consider another sequence of blow-ups starting from Yn�4Œn�.

(n� 3) Blow-up�1.
(n� 2) Blow-up�2.
:::

(2n� 9) Blow-up�n�5.

The variety YhŒn� obtained at the step h can be realized as Hassett’s spaceM0;AŒn�

where the weights satisfy the following conditions:

– ai C aj > 1 if fi; j g � f1; 2; 3g,
– aj1 C 	 	 	 C ajr 6 1 if fj1; : : : ; jr g � f4; : : : ; ng with 0 < r 6 2n � h � 7,
– aj1 C 	 	 	 C ajr > 1 if fj1; : : : ; jr g � f4; : : : ; ng with r > 2n� h� 7.

Remark 2.3. For instance taking

A D .1 � .n � 3/�; 1 � .n � 3/�; 1 � .n � 3/�; �; : : : ; �/

where � is an arbitrarily small positive rational number, we haveM0;AŒn� Š .P1/n�3.
Note that .P1/2 does not admit any birational morphism to P2. However, at the first
step of Construction 2.2 we get .P1/2 blown-up at three points on the diagonal.
Such blow-up is isomorphic to the blow-up of P2 at four general points that isM0;5.
In the following we will prove that this fact holds also in higher dimension. More
precisely the spaces YhŒn� factor Kapranov, in the sense of Definition 1.8, for any
n � 4 6 h 6 2n � 9.

Recall that Hassett’s spaces M0;Ar;s Œn� are the intermediate steps of Construc-
tion 1.9.

Lemma 2.4. Hassett’s spaces YhŒn� admit a reduction morphism to M0;A2;1Œn� for
any n � 4 6 h 6 2n � 9. Furthermore, Yn�3Œn� Š M0;A2;2Œn�.
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Proof. By construction YhŒn� has a reduction morphism to Yn�4Œn� for any h > n�3.
So it is enough to prove the statement for Yn�4Œn�. This variety is isomorphic to
M0;AŒn� with

AŒn� D .1 � �; 1 � �; 1 � �; �; : : : ; �/:

By [7, Corollary 4.7], the reduction morphism

A
0

Œn� WD .1; 1; 1� �; �; : : : ; �/ 7! AŒn�

is an isomorphism. So we may proceed with A
0

Œn� instead of AŒn�. Now, take � D
1
n�3 and consider the reduction morphism

A
0

Œn� WD .1; 1; 1� 1=.n� 3/; 1=.n� 3/; : : : ; 1=.n� 3// 7! A2;1Œn�:

The space Yn�3Œn� can be realized as a Hassett’s space with weight data

AŒn� D .1; 1; 1=.n� 3/; 1=.n� 3/; : : : ; 1=.n� 3/; 2=.n� 3//:

This is the weight data of Hassett’s spaces produced at the step r D s D 2 of
Construction 1.9. ut
Proposition 2.5. Hassett’s spaces YhŒn� factor Kapranov for any n � 4 6 h 6
2n � 9.

Proof. By Lemma 2.4 we have a reduction morphism � W YhŒn� ! M0;A2;1Œn�. Since
M0;A2;1Œn� factors Kapranov we get the following commutative diagram:

M0,n

Yh[n]

M0,A1,2[n]

P
n−3

ρ1

fi

ρ2

ψ

ρ

where  is a reduction morphism. Since �, �1, and  are reduction morphisms
�1 D � ı  and fi D �2 ı .� ı  /. ut

Note that, by Remark 2.3, in general the spaces YhŒn� do not factor Kapranov.
However, we do not know if the bound h > n � 4 in Proposition 2.5 is sharp.

Theorem 2.6. The automorphism groups of Hassett’s spaces XkŒn� for 1 6 k 6
n � 4 and YhŒn� for n � 4 6 h 6 2n � 9 are given by

Aut.XkŒn�/ Š Aut.YhŒn�/ Š Sn:
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Proof. Since step k D 1 of Construction 2.1 we have blown-up n � 1 points in
Pn�3. Furthermore, the same is true forM0;A2;1Œn�, which is the step r D 2; s D 1 of
Construction 1.9, and therefore, by Lemma 2.4, for YhŒn� with n� 4 6 h 6 2n� 9.

We may proceed by considering the spaces XkŒn� because our proof works
exactly in the same way for the spaces YhŒn�. The key fact is that in both these
classes of spaces we have blown-up n � 1 points in linear general position in Pn�3.
By Construction 2.1 for k D 1 we see that with weights

AŒn� D .1=.n� 3/; : : : ; 1=.n� 3/; 1/

we have M0;AŒn� Š X1Œn�. Clearly any transposition of the first n � 1 marked
points gives an automorphism of X1Œn�. Let C1 [ C2 be a stable curve with C1 not
necessarily irreducible and C2 Š P1 with two marked points xi ; xn. A transposition
xn $ xj induces the contraction of C2. On the other hand C2 is a smooth rational
curve with three special points. Therefore it does not have moduli and xn $ xj
induces an automorphism of X1Œn�. We conclude that any permutation induces an
automorphism of X1Œn�. Furthermore, for any k > 1 there is a birational morphism
XkŒn� ! X1Œn�. Then any permutation induces an automorphism ofXkŒn� for k > 1
as well. By Construction 2.1 any XkŒn� factors Kapranov and the morphism (2)

� W Aut.XkŒn�/ ! Sn

is surjective. Let ' 2 Ker.�/ be an automorphism inducing the trivial permutation.
Then ' preserves the fibers, say Fi , of all forgetful maps. Let fn W XkŒn� ! Pn�3
be the Kapranov’s map corresponding to the marked point pn. Then fn.Fi / is a
line through pi for i D 1; : : : ; n � 1 and fn.Fn/ is a rational normal curve through
p1; : : : ; pn�1. Therefore ' induces a birational map 'H W Pn�3 Ü Pn�3 preserving
the lines Li through pi and the rational normal curves C through p1; : : : ; pn�1. Let
jHj 
 jOPn�3.d /j be the linear system associated with 'H. The equalities

deg.'H.Li // D d � multpi H D 1;

deg.'H.C // D .n � 3/d �Pn�1
iD1 multpi H D n � 3:

yield d D 1. So 'H is an automorphism of Pn�3 fixing n � 1 points in general
position, this forces 'H D Id . Then � is injective and Aut.M0;Ar;s Œn�/ Š Sn. ut

3 Hassett’s Spaces with Zero Weights

In this section we compute the automorphisms of the moduli spaces of weighted
pointed curvesMg; QAŒn� of Definition 1.7. Recall that we denote by A 
 QA the set of
positive weights and by N the number of zero weights.
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Lemma 3.1. If g > 2, then all the forgetful morphismsMg; QAŒn� ! Mg; QAŒr� are well
defined morphisms.

Proof. If g > 2 we have 2g � 2 C ai1 C 	 	 	 C air > 2 C ai1 C 	 	 	 C air > 0. To
conclude it is enough to apply [7, Theorem 4.3]. ut
Remark 3.2. Lemma 3.1 does not hold for g D 1. For instance consider M1; QAŒ2�
with QA WD .1=3; 0/. The second forgetful morphism is well defined but the first is
not, being 2g � 2 C a2 D 0. To avoid this problem when g D 1 we will consider
Hassett’s spacesM1; QAŒn� such that at least two of the weights are different from zero.

Lemma 3.3. If M1; QAŒn� is a Hassett’s space with at least two weights ai1 ; ai2
different from zero, then all the forgetful morphismsMg; QAŒn� ! Mg; QAŒn�1� are well-
defined morphisms.

Proof. In any case we have 2g � 2 C aj1 C 	 	 	 C ajn�1 > 2g � 2 C ai1 > 0 or
2g � 2 C aj1 C 	 	 	 C ajn�1 > 2g � 2 C ai2 > 0. Again it is enough to apply [7,
Theorem 4.3]. ut

The following proposition describes the fibrations of Hassett’s spaces Mg; QAŒn�.
Its proof derives easily from the suitable variations on the proofs of [12, Proposi-
tion 2.7, Lemma 2.8].

Proposition 3.4. Let f W Mg; QAŒn� ! X be a dominant morphism with connected
fibers.

– If g > 2 either f is of fiber type and factorizes through a forgetful morphism
�I W Mg; QAŒn� ! Mg; QAŒr�, or f is birational and Exc.f / 
 @Mg; QAŒn�.

– If g D 1, ' is an automorphism of M1; QAŒn� and QAŒn� has at least two nonzero
weights then any fibration of the type �i ı ' factorizes through a forgetful
morphism �j W M1; QAŒn� ! M1; QAŒn�1�.

From now on we consider the case g > 2 and when g D 1 we restrict two
Hassett’s spaces having at least two nonzero weights. Let ' W Mg; QAŒn� ! Mg; QAŒn�
be an automorphism and �i W Mg; QAŒn� ! Mg; QAŒn�1� a forgetful morphism. By
Proposition 3.4 we have the following diagram:

Mg,Ã[n] Mg,Ã[n]

Mg,Ã[n−1] Mg,Ã[n−1]

ϕ−1

ϕ̃

πiπji

where �ji is a forgetful map. This allows us to associate with an automorphism
a permutation in Sr , where r is the number of well-defined forgetful maps. By
Lemmas 3.1 and 3.3 we have r D n. Therefore we get a morphism of groups

� W Aut.Mg; QAŒn�/ �! Sn

' 7�! �'
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where

�' W f1; : : : ; ng �! f1; : : : ; ng
i 7�! ji

Note that in order to have a morphism of groups we have to consider '�1 instead
of '. As for Hassett’s spaces with nonzero weights the image of � depends
on the weight data. Recall that A is the set of positive weights in QA. By [12,
Proposition 3.12] a transposition i $ j of two marked points with weights in A
induces an automorphism of Mg;AŒn� and therefore of Mg; QAŒn� if and only if i $ j

is admissible.
Furthermore, the symmetric group SN permuting the marked points with zero

weights acts on Mg; QAŒn�. Note that if i $ j is a transposition switching a marked
point with positive weight aj and a marked point with weight zero ai then i $ j

induces just a birational automorphism

Mg; QAŒn� Ü Mg; QAŒn�

because it is not defined on the loci parametrizing curves ŒC; x1; : : : ; xn� where the
marked point with weight zero xi lies in the singular locus of C .

Example 3.5. InM1; QAŒ6� with weights .0; 0; 1=3; 1=3; 1=3; 2=3/consider the divisor
parametrizing reducible curves C1 [ C2, where C1 has genus zero and markings
.1=3; 1=3; 2=3/, and C2 has genus one and markings .0; 0; 1=3/.

After the transposition 3 $ 6 the genus zero component has markings
.1=3; 1=3; 1=3/, so it is contracted. This means that the transposition induces a
birational map

M1,Ã[6] M1,Ã[6]
3↔6

contracting a divisor on a codimension two subscheme of M1;AŒ6�. Similarly the
transposition 1 $ 6 does not define an automorphism because it is not defined on
the locus where the first marked point x1 coincides with the node p D C1 \ C2.

Let us consider the subgroup AAŒn�N� 
 Sn�N generated by admissible transpo-
sitions of points with positive weights and the symmetric group SN permuting the
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marked points with zero weights. The actions of AAŒn�N� and SN on Mg; QAŒn� are
independent and AAŒn�N� � SN 
 Im.�/. Furthermore, by [12, Lemma 3.13] we
have

Im.�/ D AAŒn�N� � SN :

Finally, with the suitable variations in the proofs of [12, Proposition 3.14] and [12,
Theorems 3.15, 3.18] we have the following theorem.

Theorem 3.6. If g > 2 and if g D 1, n > 3, jAj > 2 then

Aut.Mg; QAŒn�/ Š Aut.Mg; QAŒn�/ Š AAŒn�N� � SN :
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Normal Analytic Compactifications of C2

Pinaki Mondal

Abstract This is a survey of some results on the structure and classification
of normal analytic compactifications of C2. Mirroring the existing literature, we
especially emphasize the compactifications for which the curve at infinity is
irreducible.
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1 Introduction

A compact normal analytic surface NX is called a compactification of C2 if there is a
subvarietyC (the curve at infinity) such that NXnC is isomorphic to C2. Non-singular
compactifications of C2 have been studied at least since 1954 when Hirzebruch
included the problem of finding all such compactifications in his list of problems on
differentiable and complex manifolds [11]. Remmert and Van de Ven [23] proved
that P2 is the only non-singular analytic compactification of C2 for which the
curve at infinity is irreducible. Kodaira as part of his classification of surfaces,
and independently Morrow [20] showed that every non-singular compactification
of C2 is rational (i.e., bimeromorphic to P2) and can be obtained from P2 or some
Hirzebruch surface via a sequence of blow-ups. Moreover, Morrow [20] gave the
complete classification (modulo extraneous blow-ups of points at infinity) of non-
singular compactifications of C2 for which the curve at infinity has normal crossing
singularities.
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The main topic of this chapter is therefore singular normal analytic compact-
ifications of C2. The studies on singular normal analytic compactifications so far
have concentrated mostly on the (simplest possible) case of compactifications for
which the curve at infinity is irreducible; following [21], we call these primitive
compactifications (of C2). These were studied from different perspectives in
[2–4, 8, 12, 13, 16, 21], and more recently in [17–19]. The primary motive of this
chapter is to describe these results. For relatively more technical of the results,
however, we omit the precise statements and prefer to give only a “flavour”.
The only new results of this chapter are Proposition 3.2 and parts of Proposition 4.1.

Notation 1.1. Unless otherwise stated, by a “compactification” we mean through-
out a normal analytic compactification of C2.

2 Analytic vs. Algebraic Compactifications

As mentioned in the introduction, non-singular compactifications of C2 are projec-
tive, and therefore, algebraic (i.e., analytifications of proper schemes). In particular
this implies that every compactification NX of C2 is necessarily Moishezon, or equiv-
alently, analytification of a proper algebraic space. Moreover, if � W NX 0 ! X is a
resolution of singularities of NX , then the intersection matrix of the curves contracted
by � is negative definite. On the other hand, by the contractibility criterion of
Grauert [10], for every non-singular compactification NX 0 of C2 and a (possibly
reducible) curve C 
 NX 0 n C2 with negative definite intersection matrix, there is
a compactification NX of C2 and a birational holomorphic map � W NX 0 ! NX such
that � contracts only C (and no other curve). The preceding observation, combined
with the classification of n on-singular compactifications of C2 due to Kodaira and
Morrow, forms the basis of our understanding of (normal) compactifications of C2.
However, it is an open question how to determine if a (singular) compactification
of C2 constructed via contraction of a given (possibly reducible) negative definite
curve (from a non-singular compactification) is algebraic. [19] solves this question
in the special case of primitive compactifications of C2 (for which, in particular,
algebraicity is equivalent to projectivity—see Theorem 5.4).

More precisely, let X WD C2 and NX0 WD P2 � X . Let NX be a primitive
compactification of X which is not isomorphic to P2 and � W NX0 Ü NX be the
bimeromorphic map induced by identification ofX . Then � maps the line at infinity
L1 WD P2 nX (minus the points of indeterminacy) to a point P1 2 C1 WD NX nX .

Theorem 2.1 ([19, Corollary 1.6]). NX is algebraic iff there is an algebraic curve
C 
 X with one place at infinity1 such that P1 does not belong to the closure of C
in NX .

1Recall that C has one place at infinity iff C meets the line at infinity at only one point Q and C
is unibranch at Q.
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Fig. 1 Dual graph of QE.i;r/ [E�

i;r

Remark 2.2. Theorem 2.1 can be viewed as the effective version of (a special case
of) some other algebraicity criteria (e.g., those of [22, 25]). More precisely, in the
situation of Theorem 2.1, both [25, Theorem 3.3] and [22, Lemma 2.4] imply that
NX is algebraic iff there is an algebraic curve C 
 X which satisfies the following

(weaker) condition:

P1 does not belong to the closure of C in NX . (�)

Theorem 2.1 implies that in the algebraic case it is possible to choose C with
an additional property, namely that it has one place at infinity. A possible way
to construct such curves is via the key forms of the divisorial valuation on C.X/

associated with C1 (see Remarks 5.2 and 5.16). The key forms are in general not
polynomials, but if they are indeed polynomials, then the last key form defines a
curve C with one place at infinity which satisfies (�). On the other hand, if the last
key form is not a polynomial, then it turns out that there are no curve C 
 X which
satisfies (�) [19, Proposition 4.2], so that NX is not algebraic.

Example 2.3 ([19, Examples 1.3 and 2.5]). Let .u; v/ be a system of “affine”
coordinates near a point O 2 P2 (“affine” means that both u D 0 and v D 0 are
lines on P2) and L be the line fu D 0g. Let C1 and C2 be curve-germs at O defined
respectively by f1 WD v5 � u3 and f2 WD .v � u2/5 � u3. For each i; r , 1 � i � 2

and r � 0, let QXi;r be the surface constructed by resolving the singularity of Ci at
O and then blowing up r more times the point of intersection of the (successive)
strict transform of Ci with the exceptional divisor. Let QE.i;r/ be the union of the
strict transform QLi;r (on QXi;r ) of L and (the strict transforms of) all exceptional
curves except the exceptional curveE�

i;r for the last blow up. It is straightforward to

compute that for r � 9 the intersection matrix of QE.i;r/ is negative definite, so that
QE.i;r/ can be analytically contracted to the unique singular point Pi;r on a normal

surface NXi;r which is a primitive compactification of C2. Note that the weighted dual
graphs of QE.i;r/ [E�

i;r are identical (see Fig. 1).
Choose coordinates .x; y/ WD .1=u; v=u/ onX WDP2 nL. Then C1 \X DV.y5�

x2/ and C2 \ X D V..xy � 1/5 � x7/. Let QCi;r (resp. Ci;r ) be the strict transform
of Ci on QXi;r (resp. NXi;r ). Note that each C1;r satisfies (�), so that all NX1;r are
algebraic by the criteria of Schröer and Palka. On the other hand, if L0

2;r is the

pullback on QX2;r of a general line in P2, then QC2;r � 5L0
2;r intersects components of
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QE.2;r/ trivially and E�
2;r positively, so its positive multiples are the only candidates

for total transforms of curves on NX2;r satisfying (�), provided the latter surface is
algebraic. In other words, Schröer and Palka’s criteria imply that NX2;r is algebraic
if and only if some positive multiple of QC2;r � 5L0

2;r is numerically equivalent to an
effective divisor. Theorem 2.1 implies that such a divisor does not exist for r D 8; 9.
Indeed, the sequence of key forms associated to (the divisorial valuation on C.x; y/

corresponding to) E�
i;r for 0 � r � 9 are as follows [19, Example 3.22]:

key forms
for E�

1;r
D
(
x; y if r D 0;

x; y; y5 � x2 if r � 1:

key forms
for E�

2;r
D

8̂
<̂
ˆ̂:

x; y if r D 0;

x; y; y5 � x2 if 1 � r � 7;

x; y; y5 � x2; y5 � x2 � 5y4x�1 if 8 � r � 9:

In particular, for 8 � r � 9, the last key form forE�
2;r is not a polynomial. It follows

(from Remark 2.2 and Theorem 2.1) that NX2;r are algebraic for r � 7, but NX2;8 and
NX2;9 are not algebraic. On the other hand, the key forms forE�

1;r are polynomials for
each r , 0 � r � 9, which implies via the same arguments that NX1;r are algebraic, as
we have already seen via Schröer and Palka’s criteria.

Remark 2.4. It can be shown (by explicitly computing the geometric genus and
multiplicity) that the singularities at Pi;8 (of Example 2.3) are in fact hypersurface
singularities which are Gorenstein and minimally elliptic (in the sense of [14]).
Minimally elliptic Gorenstein singularities have been extensively studied, and in a
sense they form the simplest class of non-rational singularities. Since having only
rational singularities implies algebraicity of the surface (via a result of Artin), it
follows that the non-algebraic surface NX2;8 of Example 2.3 is a normal non-algebraic
Moishezon surface with the “simplest possible” singularity.

We do not know to what extent the properties of C and NX of Theorem 2.1
influence one another (in the case that NX is algebraic). It is not hard to see that
NX n fP1g has at most one singular point, and the singularity, if exists, is a cyclic

quotient singularity (Proposition 4.1). The following question was suggested by
Tommaso de Fernex.

Question 2.5. Let NX be a primitive algebraic compactification of C2 formed by
(minimally) resolving the singularities of a curve-germ at a point on the line L1 at
infinity on P2 and then contracting the strict transform of L1 and all exceptional
curves other than the last one. Let P1 be as in Theorem 2.1 and g be the smallest
integer such that there exists a curveC on NX with geometric genus g which does not
pass through P1. What is the relation between g and the singularity of NX at P1?
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Some computed examples suggest the following conjectural answer to the first
case of Question 2.5:

Conjecture 2.6. In the situation of Question 2.5, g D 0 iff the singularity at P1 is
rational.

A motivation behind Conjecture 2.6 is to understand the relation between rational
singularity at a point and existence of rational curves that do not pass through
the singularity, as discovered e.g. in [6, Theorem 0.3]. Another motivation is
Abhyankar’s question about the relation between the genus and semigroup of poles
of plane curves with one place at infinity [24, Question 3]. More precisely, if NX
and C are as in Question 2.5, then the condition that NX has a rational singularity
induces (via assertion (1) of Corollary 5.7) a restriction on the semigroup of poles
of C (cf. Remark 5.2). In particular, if Conjecture 2.6 is true, then it (together with
Corollary 5.7) will answer the genus zero case of Abhyankar’s question.

3 Curve at Infinity

Let NX be a normal compactification of X WD C2 and C1 WD NX n X be the curve at
infinity. An application of the classification results of non-singular compactifications
of C2 to the desingularization of NX immediately yields that C1 is a connected tree
of (possibly singular) rational curves. In this section we take a deeper look at the
structure of C1 and describe a somewhat stronger version of a result of Brenton [2].

Let �1; : : : ; �k be the irreducible components of C1. Choose a copy NX0 of P2

such that the center (i.e., image under the natural bimeromorphic map NX Ü NX0

induced by identification of X ) of each �j on NX0 is a point Oj 2 L1, where
L1 WD NX0 n X is the “line at infinity” on NX0. Fix a �j , 1 � j � k. For each pair
of (distinct) points P1; P2 on �j , define a positive integermj .P1; P2/ as follows:

mj .P1; P2/WD minfiOj .C1; C2/ W for each i , 1� i � 2, Ci is an analytic curve germ

at Oj distinct from (the germ of) L1 and the closure of the strict

transform of Ci on NX passes through Pi g; where

iOj .C1; C2/ WD intersection multiplicity of C1 and C2 at Oj :

It is not hard to see (e.g., using [17, Proposition 4.2]) that there exists an integer Qmj

and a unique point QPj 2 �j such that

(1) mj .P1; P2/ D Qmj for all P1; P2 2 �j n f QPj g, and
(2) mj . QPj ; P 0/ < Qmj for all P 0 2 �j n f QPj g.

Remark 3.1. QPj has the following interpretation in the language of the valuative
tree [5]: the valuative tree Vj at Oj is the space of all valuations centered at
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Oj (which has a natural tree-structure rooted at ordOj ). The order of vanishing
ord�j along �j is an element of Vj and the points on �j are in a one-to-one
correspondence with the tangent vectors at ord�j [5, Theorem B.1]. Then QPj is
the point on �j which corresponds to the (unique) tangent vector at ordj which is
represented by ordOj .

The result below follows from a combination of [17, Proposition 4.2] and [18,
Proposition 3.1].

Proposition 3.2 (cf. the Proposition in [2]).

(1) �j n QPj Š C.
(2) Either QPj is a singular point of NX or QPj 2 �i for some i ¤ j .

Remark 3.3. Assertion 1 of Proposition 3.2 implies that for every proper birational
map Q�i ! �i , the pre-image of QPi consists of only one point and Q�i is uni-branched
at that point. In particular, in the language of [2], Q�i has a totally extraordinary
singularity at QPi . Consequently, Proposition 3.2 strengthens the main result of [2].

Remark 3.4. Assertion 2 implies in particular that if NX is non-singular and C1 is
irreducible, then C1 is non-singular as well. More precisely, a theorem of Remmert
and Van de Ven in [23] states that in this scenario NX is isomorphic to P2. On the other
hand, it was shown in [2] that Proposition 3.2 together with Morrow’s classification
[20] of “minimal normal compactifications2” of C2 implies the theorem of Remmert
and Van de Ven.

Remark 3.5. If C1 is not irreducible, then it is possible that some �i is singular,
even if NX is non-singular. One such example was constructed in [2] for which C1
has two irreducible components.

For special types of compactifications one can say more about the curve at
infinity. We say that a compactification NX of C2 is minimal if NX does not dominate
any other (normal analytic) compactification of C2, or equivalently (by Grauert’s
theorem), if the self-intersection number of every irreducible component of C1 is
non-negative.

Proposition 3.6 ([17, Proposition 3.7], [18, Corollary 3.6]).

(1) If NX is minimal, then there is a unique point P1 2 C1 such that �i \ �j D
fP1g for all i ¤ j . In particular, QPi D P1 for all i .

(2) If NX is primitive algebraic, then �1 D C1 is non-singular off QP1, and it has at
worst a (non-normal) toric singularity at QP1.

2 NX is a “minimal normal compactification” (in the sense of Morrow), or in modern terminology, a
minimal SNC-compactification of X WD C2 iff (i) NX is non-singular, (ii) each �i is non-singular,
(iii) C1 has at most normal-crossing singularities, and (iv) for all �i with self-intersection �1,
contracting �i destroys some of the preceding properties.
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4 Singular Points

As in the preceding section, let NX be a normal compactification of X WD C
2 and

C1 be the curve at infinity. In Proposition 4.1 below we give upper bounds for
j Sing. NX/j in the general case and in the case that NX is a minimal compactification.
Note that both of these upper bounds are sharp [17, Examples 3.9 and 4.8].
Moreover, it is not hard to see that the lower bound for j Sing. NX/j in both cases
is zero, i.e., for each k � 1, there are non-singular minimal compactifications of C2

with k irreducible curves at infinity.

Proposition 4.1. Assume that C1 has k irreducible components. Let Sing. NX/ be
the set of singular points of NX .

(1) (a) j Sing. NX/j � 2k.
(b) NX has at most one singular point which is not sandwiched.3

(2) Assume NX is a minimal compactification. Then

(a) j Sing. NX/j � k C 1.
(b) Let P1 be as in assertion 1 of Proposition 3.6. Then

ˇ̌
Sing. NX/ n fP1gˇ̌ �

k. Moreover, every point in Sing. NX/nfP1g is a cyclic quotient singularity.

Proof. Assertions 1a and 2a and the first statement of assertion 2b follows from
[17, Proposition 3.7]. We now prove assertion 1b. If NX dominates P2, then every
singularity of NX is sandwiched, as required. So assume that NX0 does not dominate
P2. Let NX1 be the normalization of the closure of the image of C2 in NX � P2

defined via identification of X with a copy of C2 in P2. Then all singularities of
NX1 are sandwiched. Assertion 1b now follows from the observation that the natural

projection NX1 ! NX is an isomorphism over the complement of the strict transform
on NX1 of the line at infinity on P2. The last statement of assertion 2b follows from
similar reasoning and an application of [18, Proposition 3.1]. ut

5 Classification Results for Primitive Compactifications

5.1 Primitive Algebraic Compactifications

Using the correspondence with plane curves with one place at infinity (Theo-
rem 2.1), it is possible to explicitly describe the defining equations of all primitive
algebraic compactifications of C2. In particular, it turns out that every primitive

3Recall that an isolated singular point P on a surface Y is sandwiched if there exists a birational
map Y ! Y 0 such that the image of P is non-singular. Sandwiched singularities are rational [15,
Proposition 1.2].
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algebraic compactification is a “weighted complete intersection” (embedded in a
weighted projective variety). We now describe this result.

Definition 5.1 ([18, Definition 3.2]). A sequence E! WD .!0; : : : ; !nC1/, n 2 Z�0,
of positive integers is called a key sequence if it has the following properties: let
dk WD gcd.!0; : : : ; !k/, 0 � k � n C 1 and pk WD dk�1=dk, 1 � k � n C 1.
Then

(1) dnC1 D 1, and
(2) !kC1 < pk!k , 1 � k � n.

A key sequence .!0; : : : ; !nC1/ is called algebraic if in addition

(3) pk!k 2 Z�0h!0; : : : ; !k�1i, 1 � k � n.

Finally, a key sequence .!0; : : : ; !nC1/ is called essential if pk � 2 for 1 � k �
n. Given an arbitrary key sequence .!0; : : : ; !nC1/, it has an associated essential
subsequence .!0; !i1 ; : : : ; !il ; !nC1/ where fij g is the collection of all k, 1 � k �
n, such that pk � 2.

Remark 5.2. Let NX be a primitive algebraic compactification of C2. Theorem 5.4
below states that NX has an associated algebraic key sequence E!. On the other
hand, Theorem 2.1 attaches to NX a curve C with one place at infinity. It turns out
that the essential subsequence E!e of E! is “almost the same as” the ı-sequence of
C (defined e.g. in [26, Sect. 3])—see [19, Remark 2.10] for the precise relation.
Moreover, recall (from Remark 2.2) that the last key form g of the divisorial
valuation associated to the curve at infinity on NX is a polynomial and defines a
curve C as in the preceding sentence. Then it can be shown that the polynomials
G1; : : : ; Gn (which induces an embedding of NX into a weighted projective space)
defined in Theorem 5.4 below contains a subsequenceGi1 ; : : : ; Gil such that Gij jC2
are precisely the approximate roots (introduced by Abhyankar and Moh [1])
of g.

Remark 5.3. Let E! WD .!0; : : : ; !nC1/ be a key sequence. It is straightforward to
see that property 2 implies the following: for each k, 1 � k � n, pk!k can be
uniquely expressed in the form pk!k D ˇk;0!0 Cˇk;1!1 C	 	 	Cˇk;k�1!k�1, where
ˇk;j ’s are integers such that 0 � ˇk;j < pj for all j � 1. ˇk;0 � 0. If E! is in
additional algebraic, then ˇk;0’s of the preceding sentence are non-negative.

Theorem 5.4 ([18, Proposition 3.5]). Let E! WD .!0; : : : ; !nC1/ be an algebraic
key sequence. Let w; y0; : : : ; ynC1 be indeterminates. Pick 1; : : : ; n 2 C

� and
define polynomialsG1; : : : ; Gn 2 CŒw; y0; : : : ; ynC1� as follows:

Gk WD wpk!k�!kC1ykC1 �
0
@ypkk � k

k�1Y
jD0

y
ˇk;j
j

1
A (1)
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where pk’s and ˇk;j ’s are as in Remark 5.3. Let NX E!;E be the subvariety of

the weighted projective space WP WD PnC2.1; !0; : : : ; !nC1/ (with weighted
homogeneous coordinates Œw W y0 W y1 W 	 	 	 W ynC1�) defined by G1; : : : ; Gn.
Then NX E!;E is a primitive compactification of C2 Š NX E!;E n V.w/. Conversely, every

primitive algebraic compactification of C2 is of the form NX E!;E for some E!; E .

A more or less straightforward corollary is:

Corollary 5.5 ([18, Proposition 3.1, Corollary 3.6]). Let NX be a primitive alge-
braic compactification of C2. Consider the equations of NX from Proposition 5.4. Let
C1 WD NX nX D NX nV.w/ and P1 (resp. P0) be the point on C1 with coordinates
Œ0 W 	 	 	 W 0 W 1� (resp. Œ0 W 1 W N1 W 	 	 	 W Nn W 0�), where Nk is an pk-th root of k ,
1 � k � n). Then

(1) NX n fP0; P1g is non-singular.
(2) If NX is not a weighted projective space, then P1 is a singular point of NX .
(3) Let Q! WD gcd.!0; : : : ; !n/. Then P0 is a cyclic quotient singularity of type

1
Q! .1; !nC1/.

(4) C1 n P1 Š C. In particular, C1 is non-singular off P1.
(5) Let S be the subsemigroup of Z2 generated by f.!k; 0/ W 0 � k � ng [

f.0; !nC1/g. Then C1 Š ProjCŒS�, where CŒS� is the semigroup algebra
generated by S , and the grading in CŒS� is induced by the sum of coordinates
of elements in S .

(6) Let QS WD Z�0hpnC1!nC1i \ Z�0h!0; : : : ; !ni. Then CŒC1 n P0� Š CŒ QS�,
In particular, C1 has at worst a (non-normal) toric singularity at P1.

Let NX E!;E be an algebraic primitive compactification of C2. We can compute the

canonical divisor of NX E!;E in terms of E!:

Theorem 5.6 ([18, Theorem 4.1]). Let p1; : : : ; pnC1 be as in the definition of
algebraic key sequences. Then the canonical divisor of NX E!;E is

K NX
E!;E

D �
 
!0 C !nC1 C 1 �

nX
kD1

.pk � 1/!k

!
ŒC1�; (2)

where ŒC1� is the Weil divisor corresponding to C1. Moreover, the index of NX E!;E
(i.e., the smallest positive integerm such that mK NX

E!;E
is Cartier) is

ind.K NX
E!;E
/ D min

(
m 2 Z�0 W m

 
!0 C !nC1 C 1 �

nX
kD1
.pk � 1/!k

!

2 ZpnC1 \ Z!nC1

)
: (3)
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Fig. 2 Dual graph of curves at infinity on Yk (from Definition 5.9)

5.2 Special Types of Primitive Algebraic Compactifications

Straightforward applications of Theorem 5.6 yield the following characterizations
of primitive algebraic compactifications of C2 which have only rational or elliptic
singularities, and those which are Gorenstein. For these results, let NX E!;E be, as in
Theorem 5.4, the primitive algebraic compactification corresponding to an algebraic
key sequence E! WD .!0; : : : ; !nC1/ and E 2 .C�/n.

Corollary 5.7 (Simple singularities, [18, Corollary 4.4]).

(1) NX E!;E has only rational singularities iff !0 C!nC1 C 1�Pn
kD1.pk � 1/!k > 0.

(2) NX E!;E has only elliptic singularities iff 0 � !0C!nC1C1�Pn
kD1.pk �1/!k >

�!min, where !min WD minf!0; : : : ; !lC1g.

Corollary 5.8 (Gorenstein, [18, Proposition 4.5]). NX E!;E is Gorenstein iff the
following properties hold:

(1) pnC1 divides !nC1 C 1, and
(2) !nC1 divides !0 C !nC1 C 1 �Pn

kD1.pk � 1/!k .

In the case that the anti-canonical divisor of NX E!;E is ample, a deeper examination
of conditions 1 and 2 of Corollary 5.8 yields the following result which is originally
due to [3, 4]. We will use the following construction:

Definition 5.9. For 1 � k � 8, we now describe a procedure to construct a
compactification Yk of C2 via n successive blow ups from P2. We will denote by
Ek , 1 � k � 8, the k-th exceptional divisor on Yk . Let E0 be the line at infinity in
P2 and pick a pointO 2 E0. Let Y1 be the blow up of P2 atO , and for 2 � k � 3, let
Yk be the blow up of Yk�1 at the intersection of the strict transform of E0 and Ek�1.
Finally, for 3 � k � 7, pick a point Ok on Ek which is not on the strict transform
of any Ej , 0 � j � k � 1, and define YkC1 to be the blow up of Yk at Ok (Fig. 2).

Corollary 5.10 (Gorenstein plus vanishing geometric genus, [3, Proposition 2],
[4, Theorem 6]). Let NX be a primitive Gorenstein compactification of C2. Then the
following are equivalent :

(i) the geometric genus pg. NX/ of NX is zero,
(ii) each singular point of NX is a rational double point, and

(iii) the canonical bundleK NX of NX is anti-ample.
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If any of these holds, then one of the following holds:

(1) NX Š P2,
(2) NX is the singular quadric hypersurface x2 C y2 C z2 D 0 in P3, or
(3) NX is obtained from some Yk (from Definition 5.9), 3 � k � 8, by contracting

the strict transforms of all Ej for 0 � j < k.

In particular, if NX is singular, then the dual curve for the resolution of singularities
of NX is one of the Dynkin diagrams A1, A1 C A2, A4, E5, E6, E7 or E8 (with the
weight of each vertex being �2).

Miyanishi and Zhang in [16] proved a converse to Corollary 5.10. Recall that
a surface S is called log del Pezzo if S has only quotient singularities and the
anticanonical divisor �KS is ample.

Theorem 5.11 ([16, Theorem 1]). Let S be a Gorenstein log del Pezzo surface of
rank one. Then S is a compactification of C2 iff the dual curve for the resolution
of singularities of NX is one of the Dynkin diagrams A1, A1 C A2, A4, E5, E6, E7
or E8.

In the same article Miyanishi and Zhang give a topological characterization of
primitive Gorenstein compactification of C2 with vanishing geometric genus:

Theorem 5.12 ([16, Theorem 2]). Let S be a Gorenstein log del Pezzo surface.
Suppose that either S is singular or that there are no .�1/-curves contained in the
smooth locus of S . Then S is a compactification of C2 iff the smooth locus of S is
simply connected.

From Theorem 5.6 and the classification of dual graph of resolution of singu-
larities of primitive compactifications discussed in Sect. 5.3, it is possible to obtain
classifications of primitive compactifications with ample anti-canonical divisors and
log terminal and log canonical singularities obtained originally by Kojima [12] and
Kojima and Takahashi [13]. Both of these classifications consist of explicit lists of
dual graphs of resolution of singularities, and we omit their statements. However,
they also prove converse results in the spirit of Theorems 5.11 and 5.12.

Theorem 5.13 ([12, Theorem 0.1]). Let S be a log del Pezzo surface of rank
one. Assume that the singularity type of S is one of the possible choices (listed in
[12, Appendix C]) for the singularity type of primitive compactifications of C2 with
at most quotient singularities. If ind.S/ � 3, then S is a primitive compactification
of C2.

Theorem 5.14 ([13, Theorem 1.2]). Let S be a numerical del Pezzo surface (i.e.,
the intersection of the anti-canonical divisor of S with itself and every irreducible
curve on S is positive) with at most rational singularities. Assume the singularity
type of S is one of the possible choices (listed in [13]) for the singularity type of
primitive numerical del Pezzo compactifications of C2 with rational singularities.
Then S is a primitive compactification of C2.
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From a slightly different perspective, Furushima [8] and Ohta [21] studied
primitive compactifications of C2 which are hypersurfaces in P3. The following was
conjectured and proved for d � 4 by Furushima, and then proved in the general
case by Ohta:

Theorem 5.15 ([8, 9, 21]). Let NXd be a minimal compactification of C2 which is a
hypersurface of degree d � 2 in P3 and Cd WD NXd n C2 be the curve at infinity.
Assume NXd has a singular point P of multiplicity d � 1. Then

(1) P is the unique singular point of NXd and the geometric genus of P is pg.P / D
.d � 1/.d � 2/.d � 3/=6.

(2) Cd is a line on P
3.

(3) . NXd ;Cd / Š .Vd ; Ld / (up to a linear change of coordinates), where

Vd WD fŒz0 W z1 W z2 W z3� 2 P
3 W zd0 D zd�1

1 z2 C zd�1
2 z3g

Ld WD fz0 D z2 D 0g:

5.3 Dual Graphs for the Resolution of Singularities

Let E! WD .!0; : : : ; !nC1/ be a key sequence. Then to every E WD .1; : : : ; n/ 2
.C�/n, we can associate a primitive compactification NX E!;E of C2. Moreover, NX E!;E
is algebraic iff E! is an algebraic key sequence, and the correspondence . E!; E/ 7!
NX E!;E is given by Theorem 5.4. The correspondence in the general case is treated

in [17]; in our notation it can be described as follows: define G1; : : : ; Gn 2 A WD
CŒw; y0; y�1

0 ; y1; : : : ; ynC1� as in Theorem 5.4 (if E! is not algebraic, then at least
one of the Gk’s will not be a polynomial). Let I be the ideal in A generated by
w � 1;G1; : : : ; Gn. Then A=I Š CŒx; x�1; y� via the map y0 7! x; y1 7! y. Let
fk 2 CŒx; x�1; y� be the image of Gk , 1 � k � n. Consider the family of curves
C� 
 C2 n V.x/, � 2 C, defined by f !0

n D �x!nC1 . Then NX E!;E is the unique

primitive compactification of C2 D SpecCŒx; y� which separates (some branches
of) the curves C� at infinity, i.e., for generic �, the closure of the curve C� in NX E!;E
intersects generic points of the curve at infinity. It follows from the results of [17,
Corollary 4.11] that every primitive compactification of C2 is of the form NX E!;E for

some appropriate E! and E .

Remark 5.16 (A valuation theoretic characterization of NX E!;E ). Let f1; : : : ; fn be as

in the preceding paragraph. Then NX E!;E is the unique primitive compactification of

C2 D SpecCŒx; y� such that the key forms (see Remark 2.2) of the valuation on
CŒx; y� corresponding to the curve at infinity on NX E!;E are x; y; f1; : : : ; fn.

The dual graph of the minimal resolution of singularities of NX E!;E depends only
on the essential subsequence (Definition 5.1) E!e of E!. The precise description of
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Fig. 3 Dual graph of
minimal resolution of
singularities of NXi;r from
Example 2.3

Table 1 Some key sequences E! and corresponding Ed , Ep
.!0; : : : ; !nC1/ .d0; : : : ; dnC1/ .p1; : : : ; pnC1/ .p1!1; : : : ; pn!n/

(2,5) (2,1) (2) ;
(2,5,10-r) (2,1,1) (2,1) (10)
(4,10,3,2) (4,2,1,1) (2,2,1) (20,6)

the dual graph in terms of E!e is a bit technical and it essentially corresponds to
the resolution of singularities of a point at infinity on (the closure of) the curve
C� from the preceding paragraph for generic �—we refer to [17, Appendix] for
details. Rather we now state the characterization from [19] of those dual graphs
which appear only for algebraic, only for non-algebraic, and for both algebraic and
non-algebraic compactifications.

Theorem 5.17 ([19, Theorem 2.8]). Let E! WD .!0; : : : ; !nC1/ be an essential key
sequence and let � E! be the dual graph for the minimal resolution of singularities
for some (and therefore, every) primitive compactification NX E!0 ;E of C2 where E!0 is a

key sequence with essential subsequence E!. Then

(1) There exists a primitive algebraic compactification NX of C2 such that the dual
graph for the minimal resolution of singularities of NX is � E! iff E! is an algebraic
key sequence.

(2) There exists a primitive non-algebraic compactification NX of C2 such that the
dual graph for the minimal resolution of singularities of NX is � E! iff

(a) either E! is not algebraic, or
(b)

S
1�k�nf˛ 2 Zh!0; : : : ; !ki nZ�0h!0; : : : ; !ki W !kC1 < ˛ < pk!kg ¤ ;.

Example 5.18 ([19, Corollary 2.13, Example 2.15]). The dual graph of the minimal
resolution of singularities of NXi;r from Example 2.3 (see Fig. 3) corresponds to the
essential key sequence .2; 5/ for r D 0 and .2; 5; 10� r/ for 1 � r � 9. A glance at
Table 1 shows that .2; 5/ and .2; 5; 10� r/, 1 � r � 9, are algebraic key sequences,
so that Theorem 5.17 implies that each of these sequences corresponds to some
algebraic primitive compactifications. Now note that for E! WD .2; 5; 10� r/,

Zh!0; !1i n Z�0h!0; !1i D Zh2; 5i n Z�0h2; 5i D Z n Z�0h2; 5i D f1; 3g:

Since for r D 8; 9, we have !2 D 10 � r < 3, Theorem 5.17 implies that in
this case E! also corresponds to some non-algebraic primitive compactifications.
In summary, .2; 5/ and .2; 5; 10 � r/, 1 � r � 7, correspond to only algebraic
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Fig. 4 �.4;10;3;2/

primitive compactifications, and .2; 5; 10 � r/, 8 � r � 9, corresponds to both
algebraic and non-algebraic compactifications, as it was shown in Example 2.3.

On the other hand, for E! D .4; 10; 3; 2/, Table 1 shows that p2!2 D 6 62
Z�0h4; 10i D Z�0h!0; !1i, so that E! is not an algebraic key sequence. Conse-
quently Theorem 5.17 implies that �.4;10;3;2/ corresponds to only non-algebraic
primitive compactifications (see Fig. 4).

6 Groups of Automorphism and Moduli Spaces of Primitive
Compactifications

In [18, Sect. 5] the groups of automorphisms and moduli spaces of primitive
compactifications have been precisely worked out. Here we omit the precise
statements and content ourselves with the description of some special cases.

Definition 6.1. A key sequence E! D .!0; : : : ; !nC1/ is in the normal form iff

(1) either n D 0, or
(2) !0 does not divide !1 and !1=!0 > 1.

Theorem 6.2 (cf. [18, Corollary 5.4]). Let NX be a primitive compactification of
C2. Then NX Š NX E!;E for some key sequence E! WD .!0; : : : ; !nC1/ in the normal

form (and some appropriate E ). Moreover,

(1) n D 0 iff NX is isomorphic to some weighted projective space P2.1; p; q/.
(2) If NX 6Š P2.1; 1; q/ for any q � 1, then there are coordinates .x; y/ on C2

such that for every automorphism F of NX , F jC2 is of the form .x; y/ 7! .ax C
b; a0y C f .x// for some a; a0; b 2 C and f 2 CŒx�. Moreover, if n > 1 then a
and a0 are some roots of unity and b D f D 0.

Theorem 6.3 (cf. [18, Corollary 5.8]). Let E! WD .!0; : : : ; !nC1/ be an essential
key sequence in the normal form and X E! (resp. X alg

E! ) be the space of normal analytic

(resp. algebraic) surfaces which are isomorphic to NX E!0 ;E for some key sequence E!0

with essential subsequence E! and some E . Then

(1) X E! is of the form
�
.C�/k � Cl

	
=G for some subgroup G of C�.

(2) X alg

E! is either empty (in the case that E! is not algebraic), or a closed subset of

X E! of the form
�
.C�/k � Cl

0

�
=G for some l 0 � l .
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Remark 6.4. The correspondence of Theorem 2.1 between primitive algebraic
compactifications with C2 and planar curves with one place at infinity extends to
their moduli spaces. The moduli spaces of curves with one place at infinity are of
the form .C�/k � Cl for some k; l � 0 [7, Corollary 1]. The extra complexity (i.e.,
action by the group G from Theorem 6.3) in the structure of the moduli spaces
of primitive algebraic compactifications comes from the action of their groups of
automorphisms.

(The precise version in [18, Corollary 5.8] of) Theorem 6.2 yields a classification
of all normal analytic surfaces of Picard rank 1 which admits a G2

a action
[18, Corollary 6.2].
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1 Jordan Groups

1.1 Main Definition

The notion of Jordan group was introduced in [43]:

Definition 1 ([43, Def. 2.1]). A group G is called a Jordan group if there exists a
positive integer d , depending on G only, such that every finite subgroup K of G
contains a normal abelian subgroup whose index in K is at most d . The minimal
such d is called the Jordan constant of G and is denoted by JG .

Informally, this means that all finite subgroups of G are “almost” abelian in the
sense that they are extensions of abelian groups by finite groups taken from a finite
list.

Actually, one obtains the same class of groups if the assumption of normality in
Definition 1 is dropped. Indeed, for any group P containing a subgroupQ of finite
index, there is a normal subgroupN of P such that ŒP W N� 6 ŒP W Q�Š andN 
 Q

(see, e.g., [26, Exer. 12 to Chap. I]).

1.2 Examples

1.2.1 Jordan’s Theorem

The first example that led to Definition 1 justifies the coined name. It is given by the
classical Jordan’s theorem [23] (see, e.g., [13, Sect. 36] for a modern exposition). In
terms of Definition 1 the latter can be reformulated as follows:

Theorem 1 ([23]). The group GLn.k/ is Jordan for every n.

Since the symmetric group SymnC1 admits a faithful n-dimensional represen-
tation and the alternating group AltnC1 is the only non-identity proper normal
subgroup of SymnC1 for n > 2, n ¤ 3, Definition 1 yields the lower bound

.nC 1/Š 6 JGLn.k/ for n > 4: (1)

Frobenius, Schur, and Blichfeldt initiated exploration of the upper bounds for
JGLn.k/. In 2007, using the classification of finite simple groups, M. J. Collins [12]
gave optimal upper bounds and thereby found the precise values of JGLn.k/ for all
n. In particular, in [12] is proved that

(a) the equality in (1) holds for all n > 71 and n D 63; 65; 67; 69;
(b) JGLn.k/ D 60rrŠ if n D 2r or 2r C 1 and either 20 6 n 6 62 or

n D 64; 66; 68; 70;
(c) JGLn.k/ D 60; 360; 25;920; 25;920; 6;531;840 resp., for n D 2; 3; 4; 5; 6.

The values of JGLn.k/ for 7 6 n 6 19 see in [12].
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1.2.2 Affine Algebraic Groups

Since any subgroup of a Jordan groups is Jordan, Theorem 1 yields

Corollary 1. Every linear group is Jordan.

Since every affine algebraic group is linear [61, 2.3.7], this, in turn, yields the
following generalization of Theorem 1:

Theorem 2. Every affine algebraic group is Jordan.

1.2.3 Nonlinear Jordan Groups

Are there nonlinear Jordan groups? The next example, together with Theorem 1,
convinced me that Definition 1 singles out an interesting class of groups and
therefore deserves to be introduced.

Example 1. By Serre [59, Thm. 5.3], [58, Thm. 3.1], the planar Cremona group Cr2
is Jordan. On the other hand, by [9, Prop. 5.1] (see also [10, Prop. 2.2]), Cr2 is not
linear. Note that in [59, Thm. 5.3] one also finds a “multiplicative” upper bound for
JCr2 : as is specified there, a crude computation shows that every finite subgroup G
of Cr2 contains a normal abelian subgroup A of rank 6 2 with ŒG W A� dividing
210 	 34 	 52 	 7 (it is also mentioned that the exponents of 2 and 3 can be somewhat
lowered, but those of 5 and 7 cannot). ut
Example 2. Let Fd be a free group with d free generators and let F n

d be its
normal subgroup generated by the nth powers of all elements. As is known (see,
e.g., [1, Thm. 2]), the group B.d; n/ WD Fd=F

n
d is infinite for d > 2 and odd

n > 665 (recently S. Adian announced in [2] that 665 may be replaced by 100). On
the other hand, by I. Schur, finitely generated linear torsion groups are finite (see,
e.g., [13, Thm. 36.2]). Hence infinite B.d; n/ is nonlinear. On the other hand, for
d > 2 and odd n > 665, every finite subgroup in B.d; n/ is cyclic (see [1, Thm. 8]);
hence B.d; n/ is Jordan and JB.d;n/ D 1. ut
Example 3. Let p be a positive prime integer and let T .p/ be a Tarski monster
group, i.e., an infinite group, such that every its proper subgroup is a cyclic group
of order p. By Olshanskii [40], for big p (e.g., > 1075), such a group exists. T .p/
is necessarily simple and finitely generated (and, in fact, generated by every two
non-commuting elements). By the same reason as in Example 2, T .p/ is not linear.
The definitions imply that Tp is Jordan and JT.p/ D 1. (I thank A. Yu. Ol’shanskiǐ
who drew in [41] my attention to this example.) ut

1.2.4 Diffeomorphism Groups of Smooth Topological Manifolds

Let M be a compact connected n-dimensional smooth topological manifold.
Assume that M admits an unramified covering QM ! M such that H1. QM;Z/
contains the cohomology classes ˛1; : : : ; ˛n satisfying ˛1 [ 	 	 	 [ ˛n ¤ 0. Then,
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by Mundet i Riera [35, Thm. 1.4(1)], the group Diff.M/ is Jordan. This result is
applicable to Tn, the product of n circles, and, more generally, to the connected sum
N]Tn, where N is any compact connected orientable smooth topological manifold.
(I thank I. Mundet i Riera who drew in [36] my attention to [17, 35, 51].)

Recently, in [38] has been proven that if N is a compact smooth topological
manifold whose integral cohomology is torsion free and supported in even degrees,
then the group Diff.N / is Jordan.1

1.2.5 Non-Jordan Groups

Are there non-Jordan groups?

Example 4. The group Sym1 of all permutations of Z contains the alternating
group Altn for every n. Hence Sym1 is non-Jordan because Altn is simple for n > 5

and jAltnj D nŠ=2 ����!
n!1 1. ut

Using Example 4 one obtains a finitely generated non-Jordan group:

Example 5. Let N be the subgroup of Sym1 generated by the transposition � WD
.1; 2/ and the “translation” ı defined by the condition

ı.i/ D i C 1 for every i 2 Z:

Then ım�ı�m is the transposition .m C 1;m C 2/ for every m. Since the set of
transpositions .1; 2/; .2; 3/; : : : ; .n � 1; n/ generates the symmetric group Symn,
this shows that N contains Altn for every n; whence N is non-Jordan. ut

One can show that N is not finitely presented. Here is an example of a finitely
presented non-Jordan group which is also simple.

Example 6. Consider Richard J. Thompson’s group V , see [6, Sect. 6]. It is finitely
presented, simple and contains a subgroup isomorphic with Symn for every n > 2.
The latter implies, as in Example 4, that V is non-Jordan. (I thank Vic. Kulikov who
drew my attention to this example.) ut

1.3 General Properties

1.3.1 Subgroups, Quotient Groups, and Products

Exploring whether a group is Jordan or not leads to the questions on the connections
between Jordaness of a group, its subgroup, and its quotient group.

1It is proved in the recent preprint I. Mundet i Riera, Finite group actions on spheres, Euclidean
spaces, and compact manifolds with � ¤ 0 (March 2014) [arXiv:1403.0383] that if M is a
sphere, an Euclidean space R

n, or a compact manifold (possibly with boundary) with nonzero
Euler characteristic, then Diff.M/ is Jordan.
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Theorem 3 ([43, Lemmas 2.6, 2.7, 2.8]).

(1) Let H be a subgroup of a group G.

(i) If G is Jordan, then H is Jordan and JH 6 JG .
(ii) If G is Jordan andH is normal in G, thenG=H is Jordan and JG=H 6 JG

in either of the cases:

(a) H is finite;
(b) the extension 1 ! H ! G ! G=H ! 1 splits.

(iii) If H is torsion-free, normal in G, and G=H is Jordan, then G is Jordan
and JG 6 JG=H .

(2) Let G1 and G2 be two groups. Then G1 �G2 is Jordan if and only if G1 andG2
are. In this case, JGi 6 JG1�G2 6 JG1JG2 for every i .

Proof. (1)(i). This follows from Definition 1.
If H is normal in G, let �WG ! G=H be the natural projection.
(1)(ii)(a). Let F be a finite subgroup ofG=H . SinceH is finite, ��1.F / is finite.

Since G is Jordan, ��1.F / contains a normal abelian subgroup A whose index is
at most JG . Hence �.A/ is a normal abelian subgroup of F whose index in F is at
most JG .

(1)(ii)(b). By the condition, there is a subgroupS inG such that �jS W S ! G=H

is an isomorphism; whence the claim by (1)(i).
(1)(iii). Let F be a finite subgroup of G. Since H is torsion free, F \ H D

f1g; whence �jF WS ! �.F / is an isomorphism. Therefore, as G=H is Jordan, F
contains a normal abelian subgroup whose index in F is at most JG=H .

(2) If G WD G1 �G2 is Jordan, then (1)(i) implies thatG1 and G2 are Jordan and
JGi 6 JG for every i . Conversely, let G1 and G2 be Jordan. Let �i WG ! Gi be the
natural projection. Take a finite subgroup F of G. Then Fi WD �i .F / contains an
abelian normal subgroup Ai such that

ŒFi W Ai � 6 JGi : (2)

The subgroup QAi WD ��1
i .Ai /\F is normal in F and F= QAi is isomorphic to Fi=Ai .

From (2) we then conclude that

ŒF W QAi � 6 JGi : (3)

Since A WD QA1 \ QA2 is the kernel of the diagonal homomorphism

F �! F= QA1 � F= QA2
determined by the canonical projection F ! F= QAi , we infer from (3) that

ŒF W A� D jF=Aj 6 jF= QA1 � F= QA2j D jF1=A1jjF2=A2j 6 JG1JG2 : (4)
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By construction, A 
 A1 � A2 and Ai is abelian. Hence A is abelian as well. Since
A is normal in F , the claim then follows from (4). ut
Theorem 4. LetH be a normal subgroup of a groupG. IfH andG=H are Jordan,
then any set of pairwise nonisomorphic simple nonabelian finite subgroups of G is
finite.

Proof. Since up to isomorphism there are only finitely many finite groups of a fixed
order, Definition 1 implies that any set of pairwise nonisomorphic simple nonabelian
finite subgroups of a given Jordan group is finite. This implies the claim because
simplicity of a finite subgroup S of G yields that either S 
 H or the canonical
projectionG ! G=H embeds S in G=H . ut

1.3.2 Counterexample

For a normal subgroup H of G, it is not true, in general, that G is Jordan if H and
G=H are.

Example 7. For every integer n > 0 fix a finite groupGn with the properties:

(i) Gn has an abelian normal subgroupHn such that Gn=Hn is abelian;
(ii) there is a subgroup Qn of Gn such that the index in Qn of every abelian

subgroup of Qn is greater or equal than n.

Such a Gn exists, see below. Now takeG WD Q
nGn andH WD Q

n Hn. ThenH and
G=H are abelian by (i), hence Jordan, but G is not Jordan by (ii).

The following construction from [62, Sect. 3] proves the existence of such a Gn.
Let K be a finite commutative group of order n written additively and let OK WD
Hom.K; k�/ be the group of characters of K written multiplicatively. The formula

.˛; g; `/.˛0; g0; `0/ WD .˛˛0`0.g/; g C g0; ``0/ (5)

endows the set k� � K � OK with the group structure. Denote by GK the obtained
group. It is embedded in the exact sequence of groups

f1g ! k� ��! GK
��! K � OK ! f.0; 1/g;

where �.˛/ WD .˛; 0; 1/ and �..˛; g; `// WD .g; `/.

Thus, if one takes Gn WD GK and Hn WD �.k�/, then property (i) holds. Let 
n be
the subgroup of all nth roots of unity in k�. From (5) and jKj D n we infer that the
subset QK WD 
n �K � OK is a subgroup of GK . In [62, Sect. 3] is proved that for
Qn D QK property (ii) holds. ut
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1.3.3 Bounded Groups

However, under certain conditions, G is Jordan if and only if H and G=H are. An
example of such a condition is given in Theorem 5 below; it is based on Definition 2
below introduced in [43].

Given a group G, put

bG WD sup
F

jF j;

where F runs over all finite subgroups of G.

Definition 2 ([43, Def. 2.9]). A groupG is called bounded if bG ¤ 1.

Example 8. Finite groups and torsion free groups are bounded. ut
Example 9. It is immediate from Definition 2 that every extension of a bounded
group by bounded is bounded. ut
Example 10. By the classical Minkowski’s theorem GLn.Z/ is bounded (see, e.g.,
[19, Thm. 39.4]). Since every finite subgroup of GLn.Q/ is conjugate to a subgroup
of GLn.Z/ (see, e.g., [13, Thm. 73.5]), this implies that GLn.Q/ is bounded and
bGLn.Q/ D bGLn.Z/. H. Minkowski and I. Schur obtained the following upper bound
for bGLn.Z/, see, e.g., [19, Sect. 39]. Let P.n/ be the set of all primes p 2 N such
that Œn=.p � 1/� > 0. Then

bGLn.Z/ 6
Y

p2P.n/

pdp ; where dp D
1X
iD0

�
n

pi .p � 1/

�
: (6)

In particular, the right-hand side of the inequality in (6) is

2; 24; 48; 5;760; 11;520; 2;903;040 resp., for n D 1; 2; 3; 4; 5; 6: ut

Example 11. Maintain the notation and assumption of Sect. 1.2.4. If �.M/ ¤
0, then by Mundet i Riera [35, Thm. 1.4(2)], the group Diff.M/ is bounded.
Further information on smooth manifolds with bounded diffeomorphism groups is
contained in [51]. ut
Example 12. Every bounded group G is Jordan with JG 6 bG , and there are non-
bounded Jordan groups (e.g., GLn.k/). ut
Theorem 5 ([43, Lemma 2.11]). Let H be a normal subgroup of a group G such
that G=H is bounded. Then G is Jordan if and only if H is Jordan, and in this case

JG 6 bG=HJ
bG=H
H :



192 V.L. Popov

Proof. A proof is needed only for the sufficiency. So let H be Jordan and let F be
a finite subgroup of G. By Definition 1

L WD F \H (7)

contains a normal abelian subgroup A such that

ŒL W A� 6 JH : (8)

Let g be an element of F . Since L is a normal subgroup of F , we infer that gAg�1
is a normal abelian subgroup of L and

ŒL W A� D ŒL W gAg�1�: (9)

The abelian subgroup

M WD
\
g2F

gAg�1: (10)

is normal in F . We intend to prove that ŒF W M� is upper bounded by a constant not
depending on F . To this end, fix the representatives g1; : : : ; gjF=Lj of all cosets of L
in F . Then (10) and normality of A in L imply that

M D
jF=Lj\
iD1

giAg
�1
i : (11)

From (11) we deduce that M is the kernel of the diagonal homomorphism

L �!
jF=LjY
iD1

L=giAg
�1
i

determined by the canonical projections L ! L=giAg
�1
i . This, (9), and (8) yield

ŒL W M� 6 ŒL W A�jF=Lj 6 J
jF=Lj
H : (12)

Let �WG ! G=H be the canonical projection. By (7) the finite subgroup �.F /
of G=H is isomorphic to F=L. Since G=H is bounded, this yields jF=Lj 6 bG=H .
We then deduce from (12) and ŒF W M� D ŒF W L�ŒL W M� that

ŒF W M� 6 bG=HJ
bG=H
H I

whence the claim. ut
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The following corollary should be compared with statement (1)(ii)(a) of
Theorem 3:

Corollary 2. Let H be a finite normal subgroup of a group G such that the center
of H is trivial. If G=H is Jordan, then G is Jordan and

JG 6 jAut.H/jJ jAut.H/j
G=H :

Proof. Let 'WG ! Aut.H/ be the homomorphism determined by the conjugating
action of G on H . Triviality of the center of H yields H \ ker' D f1g. Hence the
restriction of the natural projection G ! G=H to ker' is an embedding ker' ,!
G=H . Therefore, ker' is Jordan since G=H is. But G=ker' is finite since it is
isomorphic to a subgroup of Aut.H/ for the finite group H . By Theorem 5 this
implies the claim. ut

2 When Are Aut.X/ and Bir.X/ Jordan?

2.1 Problems A and B

In [43, Sect. 2] were posed the following two problems:

Problem A. Describe algebraic varieties X for which Aut.X/ is Jordan.

Problem B. The same with Aut.X/ replaced by Bir.X/.

Note that for rational varieties X Problem B means finding n such that the
Cremona group Crn is Jordan; in this case, it was essentially posed in [59, 6.1].

Describing finite subgroups of the groups Aut.X/ and Bir.X/ for various
varieties X is a classical research direction, currently flourishing. Understanding
which of these groups are Jordan sheds a light on the structure of these subgroups.
Varieties X with non-Jordan group Bir.X/ or Aut.X/ are, in a sense, more
“symmetric” and, therefore, more remarkable than those with Jordan group. The
discussion below supports the conclusion that they occur “rarely” and their finding
is a challenge.

2.2 Groups Aut.X/

In this subsection we shall consider Problem A.

Lemma 1. Let X1; : : : ; Xn be all the irreducible components of a variety X .
If every Aut.Xi / is Jordan, then Aut.X/ is Jordan.
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Proof. Define the homomorphism �W Aut.X/ ! Symn by g 	 Xi D X�.g/
for g 2 Aut.X/. Then g 	 Xi D Xi for every g 2 Ker.�/ and i , so the
homomorphism �i W Ker.�/ ! Aut.Xi/, g 7! gjXi , arises. The definition implies
that �1�	 	 	��nW Ker.�/ ! Qn

iD1 Aut.Xi/ is an injection; whence Ker.�/ is Jordan
by Theorem 3(2). Hence Aut.X/ is Jordan by Theorem 5. ut

At this writing (October 2013), not a single variety X with non-Jordan Aut.X/
is known (to me).

Question 1 ([43, Quest. 2.30 and 2.14]). Is there an irreducible varietyX such that
Aut.X/ is non-Jordan? Is there an irreducible affine variety X with this property?

Since every automorphism of X uniquely lifts to the normalizationX� of X , the
group Aut.X/ is isomorphic to a subgroup of Aut.X�/. Therefore, the existence of
an irreducible variety with non-Jordan automorphism group implies the existence of
a normal such variety.

Remark 1. One may consider the counterpart of the first question replacing X by a
connected smooth topological manifoldM , and Aut.X/ by Diff.M/. The following
yields the affirmative answer:

Theorem 6 ([47]). There is a simply connected noncompact smooth oriented
four-dimensional manifold M such that Diff.M/ contains an isomorphic copy of
every finitely presented .in particular, of every finite/ group. This copy acts on M
properly discontinuously.

Clearly, Diff.M/ is non-Jordan. By Popov [47, Thm. 2], “noncompact” in
Theorem 6 cannot be replaced by “compact”. The following question (I reformulate
it using Definition 1) was posed by É. Ghys (see [17, Quest. 13.1]): Is the
diffeomorphism group of any compact smooth manifold Jordan? In fact, according
to [36], É. Ghys conjectured the affirmative answer.

On the other hand, in many cases it can be proven that Aut.X/ is Jordan. Below
are described several extensive classes of X with this property.

2.2.1 Toral Varieties

First, consider the wide class of affine varieties singled out by the following

Definition 3 ([43, Def. 1.13]). A variety is called toral if it is isomorphic to a closed
subvariety of some An n Sn

iD1 Hi , where Hi is the set of zeros of the i th standard
coordinate function xi on An.

Remark 2. An n Sn
iD1 Hi is the group variety of the n-dimensional affine torus;

whence the terminology.2 Warning: “toral” does not imply “affine toric” in the sense
of [18].

2Recently I found that in some papers toral varieties are called very affine varieties.
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The class of toral varieties is closed with respect to taking products and closed
subvarieties.

Lemma 2 ([43, Lemma 1.14(a)]). The following properties of an affine variety X
are equivalent:

(i) X is toral;
(ii) kŒX� is generated by kŒX��, the group of units of kŒX�.

Proof. If X is closed in An n Sn
iD1 Hi , then the restriction of functions is

an epimorphism k

An n Sn

iD1 Hi

� ! kŒX�: Since k

An n Sn

iD1 Hi

� D
kŒx1; : : : ; xn; 1=x1; : : : 1=xn�, this proves .i/ ) .ii/.

Conversely, assume that .ii/ holds and let

kŒX� D kŒf1; : : : ; fn� (13)

for some f1; : : : ; fn 2 kŒX��. Since X is affine, (13) implies that �WX ! An, x 7!
.f1.x/; : : : ; fn.x//, is a closed embedding. The standard coordinate functions on
An do not vanish on �.X/ since every fi does not vanish on X . Hence �.X/ 

An nSn

iD1 Hi . This proves (ii))(i). ut
Lemma 3. Any quasiprojective variety X endowed with a finite automorphism
group G is covered by G-stable toral open subsets.

Proof. First, any point x 2 X is contained in a G-stable affine open subset of X .
Indeed, since the orbit G 	 x is finite and X is quasiprojective, there is an affine
open subset U of X containing G 	 x. Hence V WD T

g2G g 	 U is a G-stable open
subset containing x, and, since every g 	U is affine, V is affine as well, see, e.g., [61,
Prop. 1.6.12(i)].

Thus, the problem is reduced to the case where X is affine. Assume then that X
is affine, and let kŒX� D kŒh1; : : : ; hs�. Replacing hi by hi C ˛i for an appropriate
˛i 2 k, we may (and shall) assume that every hi vanishes nowhere on the G 	 x.
Expanding the set fh1; : : : ; hsg by including g 	 hi for every i and g 2 G, we may
(and shall) assume that fh1; : : : ; hsg is G-stable. Then h WD h1 	 	 	hs 2 kŒX�G .
Hence the affine open set Xh WD fz 2 X j h.z/ ¤ 0g is G-stable and containsG 	 x.
Since kŒXh� D kŒh1; : : : ; hs; 1=h� and h1; : : : ; hs; 1=h 2 kŒXh�

�, the variety Xh is
toral by Lemma 2. ut
Remark 3. Lemma 3 and its proof remain true for any variety X such that every
G-orbit is contained in an affine open subset; whence the following

Corollary 3. Every variety is covered by open toral subsets.

For irreducible toral varieties the following was proved in [43, Thm. 2.16].

Theorem 7. The automorphism group of every toral variety is Jordan.
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Proof. By Theorem 1 it suffices to prove this for irreducible toral varieties.
By Rosenlicht [56], for any irreducible variety X ,

� WD kŒX��=k�

is a free abelian group of finite rank. Let X be toral and let H be the kernel of
the natural action of Aut.X/ on � . We claim that H is abelian. Indeed, for every
function f 2 kŒX��, the line in kŒX� spanned over k by f is H -stable. Since GL1
is abelian, this yields that

h1h2 	 f D h2h1 	 f for any elements h1; h2 2 H: (14)

As X is toral, kŒX�� generates the k-algebra kŒX� by Lemma 2. Hence (14) holds
for every f 2 kŒX�. Since X is affine, the automorphisms of X coincide if and
only if they induce the same automorphisms of kŒX�. Therefore, H is abelian, as
claimed.

Let n be the rank of � . Then Aut.� / is isomorphic to GLn.Z/. By the definition
of H , the natural action of Aut.X/ on � induces an embedding of Aut.X/=H into
Aut.� /. Hence Aut.X/=H is isomorphic to a subgroup of GLn.Z/ and therefore is
bounded by Example 8(2). Thus, Aut.X/ is an extension of a bounded group by an
abelian group, hence Jordan by Theorem 5. This completes the proof. ut
Remark 4. Maintain the notation of the proof of Theorem 7 and assume that X
is irreducible. Let f1; : : : ; fn be a basis of � . There are the homomorphisms
�i WH ! k�, i D 1; : : : ; n, such that h 	 fi D �.h/fi for every h 2 H and i . Since
kŒX�� generates kŒX�, the diagonal map H ! .k�/n; h 7! .�1.h/; : : : ; �n.h//; is
injective. This and the proof of Theorem 7 show that for any irreducible toral variety
X with rk kŒX��=k� D n, there is an exact sequence

f1g ! D ! Aut.X/ ! B ! f1g;

whereD is a subgroup of the torus .k�/n and B is a subgroup of GLn.Z/.

Combining Theorem 7 with Corollary of Lemma 3, we get the following:

Theorem 8. Any point of any variety has an open neighborhood U such that
Aut.U / is Jordan.

2.2.2 Toric Varieties

By [14] (see also [39, Sect. 3.4]), if X is a smooth complete toric variety, then
Aut.X/ is an affine algebraic group. Whence Aut.X/ is Jordan by Theorem 2.
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2.2.3 Affine Spaces

Next, consider the fundamental objects of algebraic geometry, the affine spaces An.
The group Aut.An/ is the “affine Cremona group of rank n”.

Since Aut.A1/ is the affine algebraic group Aff1, it is Jordan by Theorem 2.
Since Aut.A2/ is the subgroup of Cr2, it is Jordan by Example 1. Another proof:

By Igarashi [20] every finite subgroup of Aut.A2/ is conjugate to a subgroup of
GL2.k/, so the claim follows from Theorem 1.

The group Aut.A3/ is Jordan being the subgroup of Cr3 that is Jordan by
Corollary 13 below.

At this writing (October 2013) is unknown whether Aut.An/ is Jordan for n > 4

or not. By Theorem 16, if the so-called BAB Conjecture (see Sect. 2.3.5 below)
holds true in dimension n, then Crn is Jordan, hence Aut.An/ is Jordan as well.

We note here that Diff.Rn/ is Jordan for n D 1; 2 [36], n D 3 [32], and n D 4

[25] (I thank I. Mundet i Riera who drew in [37] my attention to the last two
references). It would be interesting to understand whether Diff.Rn/ is Jordan for
every n or not (cf. Theorem 6).3

2.2.4 Fixed Points and Jordaness

The following method of proving Jordaness of Aut.X/was suggested in [43, Sect. 2]
and provides extensive classes of X with Jordan Aut.X/. It is based on the use of
the following fact:

Lemma 4. Let X be an irreducible variety, let G be a finite subgroup of Aut.X/,
and let x 2 X be a fixed point of G. Then the natural action of G on Tx;X , the
tangent space of X at x, is faithful.

Proof. Let mx;X be the maximal ideal of Ox;X , the local ring of X at x. Being
finite, G is reductive. Since char k D 0, this implies that mx;X D L ˚ m2

x;X for
some submodule L of the G-module mx;X . Let K be the kernel of the action of
G on L and let Ld be the k-linear span in mx;X of the d th powers of all the
elements of L. By the Nakayama’s Lemma, the restriction to Ld of the natural
projection mx;X ! mx;X=m

dC1
x;X is surjective. HenceK acts trivially on mx;X=m

dC1
x;X

for every d .
Take an element f 2 mx;X . Since G is finite, the k-linear span hK 	 f i of the

K-orbit of f in mx;X is finite-dimensional. This and
T
s m

s
x;X D f0g (see, e.g., [3,

Cor. 10.18]) implies that hK 	f i\mdC1
x;X D f0g for some d . Since f �g 	f 2 mdC1

x;X

3The answer is obtained in the recent preprint I. Mundet i Riera, Finite group actions on spheres,
Euclidean spaces, and compact manifolds with � ¤ 0 (March 2014) [arXiv:1403.0383] (see also
the footnote at the end of Sect. 1.2.4): Diff.Rn/ is Jordan for every n. Given Theorem 3(1)(i), this
yields the following

Theorem. Aut.An/ is Jordan for every n.
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for every element g 2 K , we conclude that f D g 	 f , i.e., f is K-invariant.
Thus, K acts trivially on mx;X , hence on Ox;X as well. Since k.X/ is the field of
fractions of Ox;X , K acts trivially on k.X/, and therefore, on X . But K acts on X
faithfully becauseK 
 Aut.X/. This proves that K is trivial. Since L is the dual of
the G-module Tx;X , this completes the proof. ut

The idea of the method is to use the fact that if a finite subgroupG of Aut.X/ has
a fixed point x 2 X , then, by Lemma 4 and Theorem 1, there is a normal abelian
subgroup of G whose index in G is at most JGLn.k/ for n D dim Tx;X .

This yields the following:

Theorem 9. Let X be an irreducible variety and let G be a finite subgroup of
Aut.X/. If G has a fixed point in X , then there is a normal abelian subgroup of G
whose index in G is at most JGLm.k/, where

m D max
x

dim Tx;X : (15)

Corollary 4. If every finite automorphism group of an irreducible variety X has a
fixed point in X , then Aut.X/ is Jordan and

JAut.X/ 6 JGLm.k/;

where m is defined by (15).

Corollary 5. Let p be a prime number. Then every finite p-subgroup G of Aut.An/
contains an abelian normal subgroup whose index in G is at most JGLn.k/.

4

Proof. This follows from Theorem 9 since in this case .An/G ¤ ¿, see [60,
Thm. 1.2]. ut
Remark 5. At this writing (October 2013), it is unknown whether or not .An/G ¤ ¿
for every finite subgroup G of Aut.An/. By Theorem 9 the affirmative answer would
imply that Aut.An/ is Jordan (cf. Sect. 2.2.3).

Remark 6. The statement of Corollary 5 remains true if An is replaced by any p-
acyclic variety X , and n in JGLn.k/ is replaced by m (see (15)). This is because in
this case XG ¤ ¿ for every finite p-subgroupG of Aut.X/, see [60, Sect. 7–8].

The following applications are obtained by combining the above idea with
Theorem 5.

Theorem 10. Let X be an irreducible variety. Consider an Aut.X/-stable equiva-
lence relation � on the set its points. If there is a finite equivalence class C of �,
then Aut.X/ is Jordan and

4See the footnote at the end of Sect. 2.2.3
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JAut.X/ 6 jC jŠJ jC jŠ
GLm.k/

;

where m is defined by (15).

Proof. By the assumption, every equivalence class of � is Aut.X/-stable. The
kernel K of the action of Aut.X/ on C is a normal subgroup of Aut.X/ and, since
the elements of Aut.X/ induce permutations of C ,

ŒAut.X/ WK� 6 jC jŠ: (16)

By Theorem 5, Jordaness of Aut.X/ follows from that of K . To prove that the
latter holds, take a point of x 2 C . Since x is fixed by every finite subgroup of K ,
Theorem 9 implies thatK is Jordan and JK 6 JGLm.k/. By Theorem 5, this and (16)
imply the claim. ut
Example 13. Below are several examples of Aut.X/-stable equivalence relations
on an irreducible variety X :

(i) x � y ” Ox;X and Oy;X are k-isomorphic;
(ii) x � y ” dim Tx;X D dim Ty;X ;

(iii) x � y ” the tangent cones of X at x and y are isomorphic. ut
Corollary 6. If an irreducible variety X has a point x such that the set

fy 2 X j Ox;X and Oy;X are k-isomorphicg

is finite, then Aut.X/ is Jordan.

Call a point x 2 X a vertex of X if

dim Tx;X > dim Ty;X for every point y 2 X:

Thus every point of X is a vertex of X if and only if X is smooth.

Corollary 7. The automorphism group of every irreducible variety with only
finitely many vertices is Jordan.

Corollary 8. The automorphism group of every nonsmooth irreducible variety with
only finitely many singular points is Jordan.

Corollary 9. Let X � An be the affine cone of a smooth closed proper irreducible
subvariety Z of Pn�1 that does not lie in any hyperplane. Then Aut.X/ is Jordan.

Proof. The assumptions imply that the singular locus ofX consists of a single point,
the origin; whence the claim by Corollary 8. ut
Corollary 10. If an irreducible variety X has a point x such that there are only
finitely many points y 2 X for which the tangent cones of X at x and at y are
isomorphic, then Aut.X/ is Jordan.
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Remark 7. Smoothness in Corollary 9 may be replaced by the assumption thatZ is
not a cone. Indeed, in this case the origin constitutes a single equivalence class of
equivalence relation (iii) in Example 13; whence the claim by Corollary 10.

2.2.5 The Koras–Russell Threefolds

Let X D Xd;s;l be the so-called Koras–Russell threefold of the first kind [33], i.e.,
the smooth hypersurface in A4 defined by the equation

xd1 x2 C xs3 C xl4 C x1 D 0;

where d > 2 and 2 6 s 6 l with s and l relatively prime; the case d D s D 2

and l D 3 is the famous Koras–Russell cubic. According to [33, Cor. 6.1], every
element of Aut.X/ fixes the origin .0; 0; 0; 0/ 2 X . By Corollary 4 and item (iii) of
Sect. 1.2.1 this implies that Aut.X/ is Jordan and

JAut.X/ 6 360:

Actually, during the conference I learned from L. Moser-Jauslin that X contains
a line ` passing through the origin, stable with respect to Aut.X/, and such that
every element of Aut.X/ fixing ` pointwise has infinite order. This implies that
every finite subgroup of Aut.X/ is cyclic and hence

JAut.X/ D 1:

2.2.6 Small Dimensions

Since Aut.X/ is a subgroup of Bir.X/, Jordaness of Bir.X/ implies that of Aut.X/.
This and Theorem 14 below yield the following

Theorem 11. Let X be an irreducible variety of dimension 6 2 not birationally
isomorphic to P1 � E , where E is an elliptic curve. Then Aut.X/ is Jordan.

Note that if E is an elliptic curve and X D P1 � E , then Aut.X/ D PGL2.k/ �
Aut.E/, see [29, pp. 98–99]. Fixing a point of E , endow E with a structure of
abelian variety Eab. Since Aut.E/ is an extension of the finite group Aut.Eab/ by
the abelian group Eab, Theorems 2, 5, and 3(2) imply that Aut.P1 �E/ is Jordan.5

5It is proved in the recent preprint T.I. Bandman, Y.G. Zarhin, Jordan groups and algebraic surfaces
(April 2014) [arXiv:1404.1581] that if X is birationally isomophic P1 � E , where E is an elliptic
curve, then Aut.X/ is Jordan. The proof is based on the other recent preprint Y.G. Zarhin, Jordan
groups and elliptic ruled surfaces (January 2014) [arXiv:1401.7596], where this is proved for
projective X . Given Theorem 11, we then obtain

Theorem. If X is a variety of dimension 6 2, then Aut.X/ is Jordan.
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Note also that all irreducible curves (not necessarily smooth and projective)
whose automorphism group is infinite are classified in [42].

2.2.7 Non-uniruled Varieties

Again, using that Jordaness of Bir.X/ implies that of Aut.X/, we deduce from
recent Theorem 17(i)(a) below the following

Theorem 12. Aut.X/ is Jordan for any irreducible non-uniruled variety X .

2.3 Groups Bir.X/

Now we shall consider Problem B (see Sect. 2.1). Exploring Bir.X/, one may,
maintaining this group, replace X by any variety birationally isomorphic to X .
Note that by Theorem 8 one can always attain that after such a replacement Aut.X/
becomes Jordan.

The counterpart of Question 1 is

Question 2 ([43, Quest. 2.31]). Is there an irreducible variety X such that Bir.X/
is non-Jordan?

In contrast to the case of Question 1, at present we know the answer to
Question 2: motivated by my question, Yu. Zarhin proved in [62] the following

Theorem 13 ([62, Cor. 1.3]). Let X be an abelian variety of positive dimension
and let Z be a rational variety of positive dimension. Then Bir.X � Z/ is non-
Jordan.

Sketch of proof. By Theorem 3(1)(i), it suffices to prove that Bir.X � A1/ is
non-Jordan. Consider an ample divisor D on X and the sheaf L WD OX.D/. For
a positive integer n, consider the following group �.Ln/. Its elements are all pairs
.x; Œf �/ where x 2 X is such that Ln Š T �

x .L
n/ for the translation Tx WX ! X ,

z 7! z C x, and Œf � is the automorphism of the additive group of k.X/ induced
by the multiplication by f 2 k.X/�. The group structure of �.Ln/ is defined by
.x; Œf �/.y; Œh�/ D .xCy; ŒT �

x h 	 f �/. One proves that �.Ln/ enjoys the properties:
(i) 'W�.Ln/ ! Bir.X � A1/, '.x; Œf �/.y; t/ D .x C y; f .y/t/, is a group
embedding; (ii)�.Ln/ is isomorphic to a groupGK from Example 7 with jKj > n.
This implies the claim (see Example 7). ut

Below Problem B is solved for varieties of small dimensions (6 2).
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2.3.1 Curves

If X is a curve, then the answer to Question 2 is negative.
Proving this, we may assume thatX is smooth and projective; whence Bir.X/ D

Aut.X/.
If g.X/, the genus of X , is 0, then X D P1, so Aut.X/ D PGL2.k/. Hence

Aut.X/ is Jordan by Theorem 2.
If g.X/ D 1, then X is an elliptic curve, hence Aut.X/ is Jordan (see the

penultimate paragraph in Sect. 2.2.6).
If g.X/ > 2, then, being finite, Aut.X/ is Jordan.

2.3.2 Surfaces

Answering Question 2 for surfacesX , we may assume thatX is a smooth projective
minimal model.

If X is of general type, then by Matsumura’s theorem Bir.X/ is finite, hence
Jordan.

If X is rational, then Bir.X/ is Cr2, hence Jordan, see Example 1.
If X is a nonrational ruled surface, it is birationally isomorphic to P1 �B where

B is a smooth projective curve such that g.B/ > 0; we may then take X D P1 �
B . Since g.B/ > 0, there are no dominant rational maps P1 Ü B; whence the
elements of Bir.X/ permute fibers of the natural projection P1 � B ! B . The set
of elements inducing trivial permutation is a normal subgroup BirB.X/ of Bir.X/.
The definition implies that BirB.X/ D PGL2.k.B//; hence BirB.X/ is Jordan by
Theorem 2. Identifying Aut.B/ with the subgroup of Bir.X/ in the natural way, we
get the decomposition

Bir.X/ D BirB.X/ Ì Aut.B/: (17)

If g.B/ > 2, then Aut.B/ is finite; whence Bir.X/ is Jordan by virtue of (17) and
Theorem 5. If g.B/ D 1, then Bir.X/ is non-Jordan by Theorem 13.

The canonical class of all the other surfaces X is numerically effective, so, for
them, Bir.X/ D Aut.X/, cf. [22, Sect. 7.1, Thm. 1 and Sect. 7.3, Thm. 2].

Let X be such a surface. The group Aut.X/ has a structure of a locally algebraic
group with finite or countably many components, see [31], i.e., there is a normal
subgroup Aut.X/0 in Aut.X/ such that

(i) Aut.X/0 is a connected algebraic group,
(ii) Aut.X/=Aut.X/0 is either a finite or a countable group,

By (i) and the structure theorem on algebraic groups [4, 55] there is a normal
connected affine algebraic subgroup L of Aut.X/0 such that Aut.X/0=L is an
abelian variety. By Matsumura [30, Cor. 1] nontriviality of L would imply that X is
ruled. Since we assumed that X is not ruled, this means that Aut.X/0 is an abelian
variety. Hence Aut.X/0 is abelian and, a fortiori, Jordan.
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By (i) the group Aut.X/0 is contained in the kernel of the natural action of
Aut.X/ on H2.X;Q/ (we may assume that k D C/. Therefore, this action
defines a homomorphism Aut.X/=Aut.X/0 ! GL.H2.X;Q//. The kernel of this
homomorphism is finite by Dolgachev [15, Prop. 1], and the image is bounded by
Example 10. By Examples 8, 9 this yields that Aut.X/=Aut.X/0 is bounded. In turn,
since Aut.X/0 is Jordan, by Theorem 5 this implies that Aut.X/ is Jordan.

2.3.3 The Upshot

The upshot of the last two subsections is

Theorem 14 ([43, Thm. 2.32]). Let X be an irreducible variety of dimension 6 2.
Then the following two properties are equivalent:

(a) the group Bir.X/ is Jordan;
(b) the variety X is not birationally isomorphic to P1 � B , where B is an elliptic

curve.

2.3.4 Finite and Connected Algebraic Subgroups of Bir.X/ and Aut.X/

Recall that the notions of algebraic subgroup of Bir.X/ and Aut.X/ make sense,
and every algebraic subgroup of Aut.X/ is that of Bir.X/, see, e.g., [44, Sect. 1].
Namely, a map  WS ! Bir.X/ of a variety S is called an algebraic family if the
domain of definition of the partially defined map ˛WS �X ! X , .s; x/ 7!  .s/.x/

contains a dense open subset of S � X and ˛ coincides on it with a rational map
%WS � X Ü X . The group Bir.X/ is endowed with the Zariski topology [58,
Sect. 1.6], in which a subsetZ of Bir.X/ is closed if and only if  �1.Z/ is closed in
S for every family  . If S is an algebraic group and  is an algebraic family which
is a homomorphism of abstract groups, then  .S/ is called an algebraic subgroup
of Bir.X/. In this case, ker. / is closed in S and the restriction to  .S/ of the
Zariski topology of Bir.X/ coincides with the topology determined by the natural
identification of  .S/ with the algebraic group S=ker. /. If  .S/ � Aut.X/ and
% is a morphism, then  .S/ is called an algebraic subgroup of Aut.X/.

The following reveals a relation between embeddability of finite subgroups of
Bir.X/ in connected affine algebraic subgroups of Bir.X/ and Jordaness of Bir.X/
(and the same holds for Aut.X/).

For every integer n > 0, consider the set of all isomorphism classes of connected
reductive algebraic groups of rank 6 n, and fix a group in every class. The obtained
set of groups Rn is finite. Therefore,

J6n WD sup
R2Rn

JR (18)

is a positive integer.
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Theorem 15. Let X be an irreducible variety of dimension n. Then every finite
subgroup G of every connected affine algebraic subgroup of Bir.X/ has a normal
abelian subgroup whose index in G is at most J6n.

Proof. Let L be a connected affine algebraic subgroup of Bir.X/ containing
G. Being finite, G is reductive. Let R be a maximal reductive subgroup of L
containing G. Then L is a semidirect product of R and the unipotent radical of
L, see [34, Thm. 7.1]. Therefore, R is connected because L is. Faithfulness of the
action R acts on X yields that rkR 6 dimX , see, e.g., [44, Lemma 2.4]. The claim
then follows from (18), Theorem 2, and Definition 1. ut

Theorem 15 and Definition 1 imply

Corollary 11. Let X be an irreducible variety of dimension n such that Bir.X/
.resp. Aut.X// is non-Jordan. Then for every integer d > J6n, there is a finite
subgroup G of Bir.X/ .resp. Aut.X// with the properties:

(i) G does not lie in any connected affine algebraic subgroup of Bir.X/ .resp.
Aut.X//;

(ii) for any abelian normal subgroup of G, its index in G is > d .

Corollary 12. If Crn .resp. Aut.An// is non-Jordan,6 then for every integer d >

J6n, there is a finite subgroup G of Crn .resp. Aut.An// with the properties:

(i) the action of G on An is nonlinearizable;
(ii) for any abelian normal subgroup of G, its index in G is > d .

Proof. This follows from Corollary 11 because GLn.k/ is a connected affine
algebraic subgroup of Aut.An/ and nonlinearizability of the action of G on An

means that G is not contained in a subgroup of Crn .resp. Aut.An// conjugate to
GLn.k/. ut

2.3.5 Recent Developments

The initiated in [43] line of research of Jordaness of Aut.X/ and Bir.X/ for
algebraic varieties X has generated interest of algebraic geometers in Moscow
among whom I have promoted it, and led to a further progress in Problem B (hence
A as well) in papers [49, 50, 62]. In [62], the earliest of them, the examples of non-
Jordan groups Bir.X/ only known to date (October 2013) have been constructed
(see Theorem 13 above). Below are formulated the results obtained in [49, 50].
Some of them are conditional, valid under the assumption that the following general
conjecture by A. Borisov, V. Alexeev, and L. Borisov holds true:

BAB Conjecture. All Fano varieties of a fixed dimension n and with terminal
singularities are contained in a finite number of algebraic families.

6See the footnote at the end of Sect. 2.2.3
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Theorem 16 ([49, Thm. 1.8]). If the BAB Conjecture holds true in dimension n,
then, for every rationally connected n-dimensional variety X , the group Bir.X/ is
Jordan and, moreover, JBir.X/ 6 un for a number un depending only on n.

Since for n D 3 the BAB Conjecture is proved [24], this yields

Corollary 13 ([49, Cor. 1.9]). The space Cremona group Cr3 is Jordan.

Proposition 1 ([49, Prop. 1.11]). u3 6 .25920 	 20736/20736.
The pivotal idea of the proof of Theorem 16 is to use a technically refined form

of the “fixed-point method” described in Sect. 2.2.4.

Theorem 17 ([50, Thm. 1.8]). Let X be an irreducible smooth proper n-
dimensional variety.

(i) The group Bir.X/ is Jordan in either of the cases:

(a) X is non-uniruled;
(b) the BAB Conjecture holds true in dimension n and the irregularity of X

.i.e., the dimension of its Picard variety/ is 0.

(ii) If X is non-uniruled and its irregularity is 0, then the group Bir.X/ is bounded
.see Definition 2/.

3 Appendix: Problems

Below I add afew additional problems to those which have already been formulated
above (Problems A and B in Sect. 2.1, and Questions 1, 2).

3.1 Crn-Conjugacy of Finite Subgroups of GLn.k/

Below GLn.k/ is identified in the standard way with the subgroup of Crn, which,
in turn, is identified with the subgroup of Crm for any m D n C 1; n C 2; : : : ;1
(cf. [44, Sect. 1] or [45, Sect. 1]).

Question 3. Consider the following properties of two finite subgroups A and B of
GLn.k/:

(i) A and B are isomorphic,
(ii) A and B are conjugate in Crn.

Does (i) imply (ii)?
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Comments. 1. Direct verification based on the classification in [16] shows that the
answer is affirmative for n 6 2.

2. By Popov [45, Cor. 5], if A and B are abelian, then the answer is affirmative for
every n.

3. If A and B are isomorphic, then they are conjugate in Cr2n. This is the corollary
of the following stronger statement:

Proposition 2. For any finite group G and any injective homomorphisms

G

˛1
��

˛2

��
GLn.k/; (19)

there exists an element ' 2 Cr2n such that ˛1 D Int.'/ ı ˛2.
Proof. Every element g 2 GLn.k/ is a linear transformation x 7! g 	 x of An (with
respect to the standard structure of k-linear space on An). The injections ˛1 and ˛2
determine two faithful linear actions of G on An: the i th action (i D 1; 2) maps
.g; x/ 2 G � An to ˛i .g/ 	 x. Consider the product of these actions, i.e., the action
of G on An � An defined by

G � An � An ! An � An; .g; x; y/ 7! .˛1.g/ 	 x; ˛2.g/ 	 y/: (20)

The natural projection of An � An ! An to the i th factor is G-equivariant. By
classical Speiser’s Lemma (see [27, Lemma 2.12] and references therein), this
implies that An � An endowed with G-action (20) is G-equivariantly birationally
isomorphic to An�An endowed with theG-action via the i th factor by means of ˛i .
Therefore, An � An endowed with the G-action via the first factor by means of ˛1
is G-equivariantly birationally isomorphic to An � An endowed with the G-action
via the second factor by means of ˛2; whence the claim. ut
Remark 8. In general, it is impossible to replace Cr2n by Crn in Proposition 8.
Indeed, in [54] one finds the examples of finite abelian groups G and embeddings
(19) such that ˛1 … Int.Crn/ı˛2. However, since the images of these embeddings are
isomorphic finite abelian subgroups of GLn.k/, by Popov [45, Cor. 5] these images
are conjugate in Crn.

3.2 Torsion Primes

LetX be an irreducible variety. The following definition is based on the fact that the
notion of algebraic torus in Bir.X/ makes sense.
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Definition 4 ([45, Sect. 8]). Let G be a subgroup of Bir.X/. A prime integer p is
called a torsion number of G if there exists a finite abelian p-subgroup of G that
does not lie in any torus of G.

Let Tors.G/ be the set of all torsion primes of G. If G is a connected reductive
algebraic subgroup of Bir.X/, this set coincides with that of the torsion primes of
algebraic groupG in the sense of classical definition, cf., e.g., [57, 1.3].

Question 4 ([45, Quest. 3]). What are, explicitly,

Tors.Crn/; Tors.Aut An/; Tors.Aut�An/; n D 3; 4; : : : ;1

where Aut�An is the group of those automorphisms of An that preserve the volume
form dx1 ^ 	 	 	 ^ dxn on An (here x1; : : : ; xn are the standard coordinate functions
on An), cf. [45, Sect. 2]?

Comments. By Popov [45, Sect. 8],

Tors.Cr1/ D f2g;
Tors.Cr2/ D f2; 3; 5g (this coincides with Tors.E8/),

Tors.Crn/ � f2; 3g for any n > 3;

Tors.Aut An/ D Tors.Aut�An/ D ¿ for n 6 2:

Question 5 ([45, Quest. 4]). What is the minimal n such that seven lies in one of
the sets Tors.Crn/, Tors.AutAn/, Tors.Aut�An/?

Question 6 ([45, Quest. 5]). Are these sets finite?

Question 7. Are the sets

S
n>1 Tors.Crn/;

S
n>1 Tors.AutAn/;

S
n>1 Tors.Aut�An/

finite?

3.3 Embeddability in Bir.X/

Not every groupG is embeddable in Bir.X/ for someX . For instance, by Cornulier
[11, Thm. 1.2], if G is finitely generated, its embeddability in Bir.X/ implies that
G has a solvable word problem. Another example: by Cantat [7], PGL1.k/ is not
embeddable in Bir.X/ for k D C (I thank S. Cantat who informed me in [8] about
these examples).

If Bir.X/ is Jordan, then by Example 5 and Theorem 3(1)(i), N is not
embeddable in Bir.X/. Hence, by Theorem 17(i)(a), N is not embeddable in
Bir.X/ for any non-uniruledX .



208 V.L. Popov

Conjecture 1. The finitely generated group N defined in Example 5 is not
embeddable in Bir.X/ for every irreducible variety X .

Since N contains Symn for every n, and every finite group can be embedded
in Symn for an appropriate n, the existence of an irreducible variety X for
which Bir.X/ contains an isomorphic copy of N implies that Bir.X/ contains an
isomorphic copy of every finite group and, in particular, every simple finite group.
Therefore, Conjecture 1 follows from the affirmative answer to

Question 8. Let X be an irreducible variety. Is any set of pairwise nonisomorphic
simple nonabelian finite subgroups of Bir.X/ finite?

The affirmative answer looks likely. At this writing (October 2013) about this
question I know the following:

Proposition 3. If dimX 6 2, then the answer to Question 8 is affirmative.

Proof. The claim immediately follows from Theorems 14 and 4 if X is not
birationally isomorphic to P1�B , whereB is an elliptic curve. ForX D P1�B the
claim follows from (17) and Theorem 4 because Aut.B/ and BirB.X/ are Jordan
groups. ut

By Theorems 16, 17 and by Kollár et al. [24], the answer to Question 8 is
affirmative also in each of the following cases:

1. X is non-uniruled;
2. X is rationally connected or smooth proper with irregularity 0, and

(a) either dimX D 3 or
(b) dimX > 3 and the BAB Conjecture holds true in dimension dimX .

Note that if X and Bir.X/ in Question 8 are replaced, respectively, by a
connected smooth topological manifold M and Diff.M/, then by Theorem 6, for a
noncompactM , the answer, in general, is negative. But for a compactM a finiteness
theorem [47, Thm. 2] holds.

3.4 Contractions

Developing the classical line of research, in recent years were growing activities
aimed at description of finite subgroups of Bir.X/ for variousX ; the case of rational
X (i.e., that of the Cremona group Bir.X/) was, probably, most actively explored
with culmination in the classification of finite subgroups of Cr2, [16]. In these
studies, all the classified groups appear in the corresponding lists on equal footing.
However, in fact, some of them are “more basic” than the others because the latter
may be obtained from the former by a certain standard construction. Given this, it is
natural to pose the problem of describing these “basic” groups.
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Namely, let X1 and X2 be the irreducible varieties and let Gi � Bir.Xi /,
i D 1; 2, be the subgroups isomorphic to a finite group G. Assume that fixing
the isomorphisms G ! Gi , i D 1; 2, we obtain the rational actions of G on X1
and X2 such that there is a G-equivariant rational dominant map 'WX1 Ü X2.
Let �Xi WXi Ü Xi --

-

G, i D 1; 2 be the rational quotients (see, e.g., [44, Sect. 1])

and let 'G WX1 --
-

G Ü X2 --
-

G be the dominant rational map induced by '. Then the
following holds (see, e.g., [52, Sect. 2.6]):

1. The appearing commutative diagram

X1
'

������

�X1
���
�
�

X2

�X2
���
�
�

X1 --
-

G
'G

����� X2 --
-

G

(21)

is, in fact, cartesian, i.e., �X1 WX1 Ü X1 --
-

G is obtained from �X2 WX2 Ü X2 --
-

G

by the base change 'G . In particular,X1 is birationallyG-isomorphic to

X2 �
X2 --

-G .X1 --
-

G/ WD f.x; y/ 2 X2 � .X1 --
-

G/ j �X2.x/ D 'G.y/g:

2. For every irreducible varietyZ and every dominant rational map ˇWZ ! X2 --
-

G

such that X2 �
X2 --

-G Z is irreducible, the variety X2 �
X2 --

-G Z inherits via X2
a faithful rational action of G such that one obtains commutative diagram (21)
with X1 D X2 �

X2 --
-G

Z, 'G D ˇ, and ' D pr1.

If such a ' exists, we say thatG1 is induced fromG2 by a base change. The latter
is called trivial if ' is a birational isomorphism. If a finite subgroupG of Bir.X/ is
not induced by a nontrivial base change, we say that G is incompressible.

Example 14. The standard embedding Crn ,! CrnC1 permits to consider the finite
subgroups of Crn as that of CrnC1. Every finite subgroup of CrnC1 obtained this way
is induced by the nontrivial base change determined by the projection AnC1 ! An,
.a1; : : : ; an; anC1/ 7! .a1; : : : ; an; anC1/. ut
Example 15. This is Example 6 in [53]. LetG be a finite group that does not embed
in Bir.Z/ for any curve Z of genus 6 1 (for instance, G D Sym5) and let X be a
smooth projective curve of minimal possible genus such that G is isomorphic to a
subgroup of Aut.X/. Then this subgroup of Bir.X/ is incompressible.7 ut

7The proof in [53] should be corrected as follows. Assume that there is a faithful action of G of a
smooth projective curve Y and a dominant G-equivariant morphism 'WX ! Y of degree n > 1.
By the construction, X and Y have the same genus g > 1, and the Hurwitz formula yields that the
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Example 16. By Example 5 in [53], a finite cyclic subgroup of order > 2 in Bir.X/
is never incompressible. ut
Example 17. Consider two rational actions of G WD Sym3 � Z=2Z on A3.
The subgroup Sym3 acts by natural permuting the coordinates in both cases.
The nontrivial element of Z=2Z acts by .a1; a2; a3/ 7! .�a1;�a2;�a3/ in the first
case and by .a1; a2; a3/ 7! .a�1

1 ; a
�1
2 ; a

�1
3 / in the second. The surfaces

P WD f.a1; a2; a3/ 2 A3 j a1 C a2 C a3 D 0g;
T WD f.a1; a2; a3/ 2 A3 j a1a2a3 D 1g

are G-stable in, resp., the first and the second case. Since P and T are rational,
these actions of G on P and T determine, up to conjugacy, resp., the subgroupsGP
and GT of Cr2, both isomorphic to G. By Iskovskikh [21] (see also [27, 28]), these
subgroups are not conjugate in Cr2. However, by Lemire et al. [28, Sect. 5], GT is
induced from GP by a nontrivial base change (of degree 2). ut

In fact, Example 17 is a special case (related to the simple algebraic group G2)
of the following.

Example 18. Let G be a connected reductive algebraic group. Recall [27, Def. 1.5]
that G is called a Cayley group if there is a birational isomorphism of �WG Ü
Lie.G/, where Lie.G/ is the Lie algebra of G, equivariant with respect to the
conjugating and adjoint actions of G on the underlying varieties of G and Lie.G/,
respectively, i.e., such that

�.gXg�1/ D AdGg.�.X// (22)

if g and X 2 G and both sides of (22) are defined.
Fix a maximal torus T of G and consider the natural actions of the Weyl group

W D NG.T /=T on T and on t WD Lie.T /. Since these actions are faithful and T
and t are rational varieties, this determines, up to conjugacy, two embeddings of W
in Crr , where r D dimT . Let WT and Wt be the images of these embeddings. By
Lemire et al. [27, Lemma 3.5(a) and Sect. 1.5], if G is not Cayley and W has no
outer autormorphisms, thenWT andWt are not conjugate in Crr . On the other hand,
by Lemire et al. [27, Lemma 10.3], WT is induced from Wt by a (nontrivial) base
change (see also Lemma 5 below).

This yields, for arbitrary n, the examples of isomorphic nonconjugate finite
subgroups of Crn one of which is induced from the other by a nontrivial base
change. For instance, if G D SLnC1, then r D n and W D Symn. Since, by
Lemire et al. [27, Thm. 1.31], SLnC1 is not Cayley for n > 3 and Symn has no

number of branch points of ' (counted with positive multiplicities) is the integer .n� 1/.2� 2g/.
But the latter is negative—a contradiction.
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outer automorphisms for n ¤ 6, the above construction yields for these n two
nonconjugate subgroups of Crn isomorphic to Symn, one of which is induced from
the other by a nontrivial base change. ut

The following gives a general way of constructing two finite subgroups of Crn
one of which is induced from the other by a base change.

Consider an n-dimensional irreducible nonsingular variety X and a finite sub-
group G of Aut.X/. Suppose that x 2 X is a fixed point of G. By Lemma 4, the
induced action of G on the tangent space of X at x is faithful. Therefore this action
determines, up to conjugacy, a subgroup G1 of Crn isomorphic to G. On the other
hand, if X is rational, the action of G on X determines, up to conjugacy, another
subgroupG2 of Crn isomorphic to G.

Lemma 5. G2 is induced from G1 by a base change.

Proof. By Lemma 3 we may assume thatX is affine, in which case the claim follows
from [27, Lemma 10.3]. ut
Corollary 14. Let X be a nonrational irreducible variety and let G be an incom-
pressible finite subgroup of Aut.X/. Then XG D ¿.

Question 9. Which finite subgroups of Cr2 are incompressible?

Acknowledgements Supported by grants RFFI 14-01-00160, NX–2998.2014.1, and the
programme Contemporary Problems of Theoretical Mathematics of the Branch of Mathematics in
the Russian Academy of Sciences.

References

1. S.I. Adian, TheBurnside problem and related topics. Russ. Math. Surv. 65(5), 805–855 (2011)
2. S.I. Adian, Newbounds of odd periods for which we can prove the infinity of free Burnside

groups, in International Conference “Contemporary Problems of Mathematics, Mechanics,
and Mathematical Physics”. Steklov Math. Inst. RAS, Moscow, 13 May 2013. http://www.
mathnet.ru/php/presentation.phtml?&presentid=6786&option_lang=eng

3. M.F. Atiyah, I.G. MacDonald, Introduction to Commutative Algebra (Addison-Wesley, Read-
ing, 1969)

4. I. Barsotti, Structure theorems for group varieties. Ann. Mat. Pura Appl. 38(4), 77–119 (1955)
5. A. Borel, Linear Algebraic Groups, 2nd edn. (Springer, New York, 1991)
6. J.W. Cannon, W.J. Floyd, W.R. Parry, Introductory notes on Richard Thompson’s groups.

L.’Enseignement Math. Revue Internat. IIe Sér. 42(3), 215–256 (1996)
7. S. Cantat, Morphisms between Cremona groups and a characterization of rational varieties.

Preprint (2012), http://perso.univ-rennes1.fr/serge.cantat/publications.html
8. S. Cantat,Letter of May 31, 2013 to V.L. Popov.
9. D. Cerveau, J. Deserti, Transformations birationnelles de petit degreé (April 2009)

[arXiv:0811.2325]
10. Y. Cornulier, Nonlinearity of some subgroups of the planar Cremona group. Preprint (February

2013), http://www.normalesup.org/~cornulier/crelin.pdf
11. Y. Cornulier, Sofic profile and computability of Cremona groups (May 2013)

[arXiv:1305.0993]

http://www.mathnet.ru/php/presentation.phtml?&presentid=6786&option_lang=eng
http://www.mathnet.ru/php/presentation.phtml?&presentid=6786&option_lang=eng
http://perso.univ-rennes1.fr/serge.cantat/publications.html
http://www.normalesup.org/~cornulier/crelin.pdf


212 V.L. Popov

12. M.J. Collins, On Jordan’s theorem for complex linear groups. J. Group Theory 10, 411–423
(2007)

13. C.W. Curtis, I. Reiner, Representation Theory of Finite Groups and Associative Algebras
(Wiley, New York, 1962)

14. M. Demazure, Sous-groupes algébriques de rang maximum du groupe de Cremona. Ann. Sci.
École Norm. Sup. 3(4), 507–588 (1970)

15. I. Dolgachev, Infinite Coxeter groups and automorphisms of algebraic surfaces. Contemp.
Math. 58(Part 1), 91–106 (1986)

16. I. Dolgachev, V. Iskovskikh, Finite subgroups of the plane Cremona group, in Algebra,
Arithmetic, and Geometry In Honor of Yu.I. Manin. Progress in Mathematics, vol. 269
(Birkhäuser, Boston, 2009), pp. 443–548

17. D. Fisher, Groups acting on manifolds: around the Zimmer program, in Geometry, Rigidity,
and Group Actions. Chicago Lectures in Mathematics (University of Chicago Press, Chicago,
2011), pp. 72–157

18. W. Fulton, Introduction to Toric Varieties. Annals of Mathematics Studies, vol. 131 (Princeton
University Press, Princeton, 1993)

19. B. Huppert, Character Theory of Finite Groups. De Gruyter Expositions in Mathematics, vol.
25 (Walter de Gruyter, Berlin, 1998)

20. T. Igarashi, Finite Subgroups of the Automorphism Group of the Affine Plane. M.A. thesis,
Osaka University, 1977

21. V.A. Iskovskikh, Two non-conjugate embeddings of Sym3 �Z2 into the Cremona group. Proc.
Steklov Inst. Math. 241, 93–97 (2003)

22. V.A. Iskovskikh, I.R. Shafarevich, Algebraic surfaces, in Algebraic Geometry, II. Encyclopae-
dia of Mathematical Sciences, vol. 35 (Springer, Berlin, 1996), pp. 127–262

23. C. Jordan, Mémoire sur les equations différentielle linéaire à intégrale algébrique. J. Reine
Angew. Math. 84, 89–215 (1878)

24. J. Kollár, Y. Miyaoka, S. Mori, H. Takagi, Boundedness of canonical Q-Fano 3-folds. Proc.
Jpn. Acad. Ser. A Math. Sci. 76, 73–77 (2000)

25. S. Kwasik, R. Schultz, Finite symmetries of R4 and S4 . Preprint (2012)
26. S. Lang, Algebra (Addison-Wesley, Reading, 1965)
27. N. Lemire, V. Popov, Z. Reichstein, Cayley groups. J. Am. Math. Soc. 19(4), 921–967 (2006)
28. N. Lemire, V. Popov, Z. Reichstein, On the Cayley degree of an algebraic group, in Proceedings

of the XVIth Latin American Algebra Colloquium. Bibl. Rev. Mat. Iberoamericana, Rev. Mat.
(Iberoamericana, Madrid, 2007), pp. 87–97

29. M. Maruyama, On automorphisms of ruled surfaces. J . Math. Kyoto Univ. 11-1, 89–112 (1971)
30. H. Matsumura, On algebraic groups of birational tansformations. Rend. Accad. Naz. Lincei

Ser. VIII 34, 151–155 (1963)
31. T. Matsusaka, Polarized varieties, fields of moduli and generalized Kummer varieties of

polarized varieties. Am. J. Math. 80, 45–82 (1958)
32. W.H. Meeks, Sh.-T. Yau, Group actions on R

3, in The Smith Conjecture (New York, 1979).
Pure Appl. Math., vol. 112 (Academic, Orlando, 1984), pp. 167–179

33. L. Moser-Jauslin, Automorphism groups of Koras–Russell threefolds of the first kind, in Affine
Algebraic Geometry. CRM Proceedings and Lecture Notes, vol. 54 (American Mathematical
Society, Providence, 2011), pp. 261–270

34. G. Mostow, Fully reducible subgroups of algebraic groups. Am. J. Math. 78, 200–221 (1956)
35. I. Mundet i Riera, Jordan’s theorem for the diffeomorphism group of some manifolds. Proc.

Am. Math. Soc. 138(6), 2253–2262 (2010)
36. I. Mundet i Riera, Letter of July 30, 2013 to V.L. Popov
37. I. Mundet i Riera, Letters of October 30 and 31, 2013 to V.L. Popov
38. I. Mundet i Riera, Finite Group Actions on Manifolds Without Odd Cohomology (November

2013) [arXiv:1310.6565v2]
39. T. Oda, Covex Bodies and Algebraic Geometry. Ergebnisse der Mathematik und ihrer

Grenzgebiete 3. Folge, Bd. 15 (Springer, Berlin, 1988)



Jordan Groups and Automorphism Groups of Algebraic Varieties 213

40. A.Yu. Olshanskii, Groups of bounded period with subgroups of prime order. Algebra Logic 21,
369–418 (1983) [Translation of Algebra i Logika 21, 553–618 (1982)]
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2-Elementary Subgroups of the Space Cremona
Group

Yuri Prokhorov

Abstract We give a sharp bound for orders of elementary abelian two-groups of
birational automorphisms of rationally connected threefolds.

Subject Classification: 14E07, 14E09, 14E30, 14E35, 14E08

1 Introduction

Throughout this paper we work overk, an algebraically closed field of characteristic
0. Recall that the Cremona group Crn.k/ is the group of birational transformations
of the projective space Pnk. We are interested in finite subgroups of Crn.k/. For nD 2

these subgroups are classified basically (see [5] and references therein) but for n � 3

the situation becomes much more complicated. There are only a few, very specific
classification results (see e.g. [14, 15, 18]).

Let p be a prime number. A group G is said to be p-elementary abelian of rank
r if G ' .Z=pZ/r . In this case we denote r.G/ WD r . A. Beauville [3] obtained a
sharp bound for the rank of p-elementary abelian subgroups of Cr2.k/.
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Theorem 1.1 ([3]). Let G � Cr2.k/ be a 2-elementary abelian subgroup.
Then r.G/ � 4. Moreover, this bound is sharp and such groups G with r.G/ D 4

are classified up to conjugacy in Cr2.k/.

The author [14] was able to get a similar bound for p-elementary abelian subgroups
of Cr3.k/ which is sharp for p � 17.

In this paper we improve this result in the case p D 2. We study 2-elementary
abelian subgroups acting on rationally connected threefolds. In particular, we obtain
a sharp bound for the rank of such subgroups in Cr3.k/. Our main result is the
following.

Theorem 1.2. Let Y be a rationally connected three-dimensional algebraic variety
over k and let G � Birk.Y / be a 2-elementary abelian group. Then r.G/ � 6.

Corollary 1.3. Let G � Cr3.k/ be a 2-elementary abelian group. Then r.G/ � 6

and the bound is sharp (see Example 3.4).

Unfortunately we are not able to classify all the birational actionsG ,! Birk.Y /
as above attaining the bound r.G/ � 6 (cf. [3]). However, in some cases we get a
description of these “extremal” actions.

The structure of the paper is as follows. In Sect. 3 we reduce the problem to the
study of biregular actions of 2-elementary abelian groups on Fano-Mori fiber spaces
and investigate the case of nontrivial base. A few facts about actions of 2-elementary
abelian groups on Fano threefolds are discussed in Sect. 4. In Sect. 5 (resp. Sect. 6)
we study actions on non-Gorenstein (resp. Gorenstein) Fano threefolds. Our main
theorem is a direct consequence of Propositions 3.2, 5.1, and 6.1.

2 Preliminaries

Notation.

• For a group G, r.G/ denotes the minimal number of generators. In particular, if
G is an elementary abelian p-group, then G ' .Z=pZ/r.G/.

• Fix.G;X/ (or simply Fix.G/ if no confusion is likely) denotes the fixed point
locus of an action of G on X .

Terminal Singularities. Recall that the index of a terminal singularity .X 3 P/ is
a minimal positive integer r such that KX is a Cartier divisor at P .

Lemma 2.1. Let .X 3 P/ be a germ of a threefold terminal singularity and let
G � Aut.X 3 P/ be a 2-elementary abelian subgroup. Then r.G/ � 4. Moreover,
if r.G/ D 4, then .X 3 P/ is not a cyclic quotient singularity.

Proof. Let m be the index of .X 3P/. Consider the index-one cover
�W .X] 3P ]/! .X 3P/ (see [19]). Here .X] 3P ]/ is a terminal point of index
1 (or smooth) and � is a cyclic cover of degree m which is étale outside of P .
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Thus X 3 P is the quotient of X] 3 P by a cyclic group of order m. If m D 1,
we take � to be the identity map. We may assume that k D C and then the map
X] n fP ]g ! X n fP g can be regarded as the topological universal cover. Hence
there exists a natural lifting G] � Aut.X] 3 P ]/ fitting in the following exact
sequence

1 �! Cm �! G] �! G �! 1; (*)

whereCm ' Z=mZ. We claim thatG] is abelian. Assume the converse, thenm � 2.
The group G] permutes the eigenspaces of Cm in the Zariski tangent space TP];X] .
Let n WD dimTP];X] be the embedded dimension. By the classification of three-
dimensional terminal singularities [10, 19] we have one of the following:

.1/ 1
m
.a;�a; b/; n D 3; gcd.a;m/ D gcd.b;m/ D 1I

.2/ 1
m
.a;�a; b; 0/; n D 4; gcd.a;m/ D gcd.b;m/ D 1I

.3/ 1
4
.a;�a; b; 2/; n D 4; gcd.a; 2/ D gcd.b; 2/ D 1; m D 4;

(**)

where 1
m
.a1; : : : ; an/ denotes the diagonal action

xk 7�! exp.2�iak=m/ 	 xk; k D 1; : : : ; n:

Put T D TP];X] in the first case and denote by T � TP];X] the three-dimensional
subspace x4 D 0 in the second and the third cases. Then Cm acts on T freely
outside of the origin and T is G]-invariant. By (*) we see that the derived subgroup
ŒG];G]� is contained in Cm. In particular, ŒG];G]� is abelian and also acts on T
freely outside of the origin. Assume that ŒG];G]� ¤ f1g. Since dimT D 3, this
implies that the representation of G] on T is irreducible (otherwise T has a one-
dimensional invariant subspace, say T1, and the kernel of the mapG] ! GL.T1/ '
k� must contain ŒG];G]�). In particular, the eigenspaces of Cm on T have the same
dimension. Since T is irreducible, the order of G] is divisible by 3 D dimT and
so m > 2. In this case, by the above description of the action of Cm on TP];X] we
get that there are exactly three distinct eigenspaces Ti � T . The action ofG] on the
set fTig induces a transitive homomorphism G] ! S3 whose kernel contains Cm.
Hence we have a transitive homomorphism G ! S3. Since G is a two-group, this
is impossible.

Thus G] is abelian. Then

r.G/ � r.G]/ � dimTP];X] :

This proves our statement. ut
Remark 2.2. If in the above notation the action of G on X is free in codimension
one, then r.G/ � dimTP];X] � 1.
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For convenience of references, we formulate the following easy result.

Lemma 2.3. Let G be a 2-elementary abelian group and let X be a G-threefold
with isolated singularities.

(i) If dim Fix.G/ > 0, then dim Fix.G/C r.G/ � 3.
(ii) Let ı 2 Gnf1g and let S � Fix.ı/ be the union of two-dimensional components.

Then S is G-invariant and smooth in codimension 1.

Sketch of the proof. Consider the action of G on the tangent space to X at a general
point of a component of Fix.G/ (resp. at a general point of Sing.S/). ut

3 G -Equivariant Minimal Model Program

Definition 3.1. LetG be a finite group. A G-variety is a variety X provided with a
biregular faithful action of G. We say that a normal G-variety X is GQ-factorial if
any G-invariant Weil divisor on X is Q-Cartier.

The following construction is standard (see e.g. [15]).
Let Y be a rationally connected three-dimensional algebraic variety and let

G � Bir.Y / be a finite subgroup. Taking an equivariant compactification and
running an equivariant minimal model program we get a G-variety X and a
G-equivariant birational map Y ÜX , where X has a structure a G-Fano-Mori
fibration f WX !B . This means that X has at worst terminal GQ-factorial
singularities, f is a G-equivariant morphism with connected fibers, B is normal,
dimB < dimX , the anticanonical Weil divisor �KX is ample over B , and the
relative G-invariant Picard number �.X/G equals to one. Obviously, in the case
dimX D 3 we have the following possibilities:

(C) B is a rational surface and a general fiber f �1.b/ is a conic;
(D) B ' P1 and a general fiber f �1.b/ is a smooth del Pezzo surface;
(F) B is a point and X is a GQ-Fano threefold, that is, X is a Fano threefold with

at worst terminalGQ-factorial singularities and such that Pic.X/G ' Z. In this
situation we say that X is G-Fano threefold if X is Gorenstein, that is, KX is a
Cartier divisor.

Proposition 3.2. Let G be a 2-elementary abelian group and let f W X ! B be a
G-Fano-Mori fibration with dimX D 3 and dimB > 0. Then r.G/ � 6. Moreover,
if r.G/ D 6 and B ' P1, then a general fiber f �1.b/ is a del Pezzo surface of
degree 4 or 8.

Proof. Let Gf � G (resp. GB � Aut.B/) be the kernel (resp. the image) of the
homomorphismG ! Aut.B/. Thus GB acts faithfully on B and Gf acts faithfully
on the generic fiber F � X of f . Clearly, Gf and GB are 2-elementary groups
with r.Gf / C r.GB/ D r.G/. Assume that B ' P1. Then r.GB/ � 2 by the
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classification of finite subgroups ofPGL2.k/. By Theorem 1.1 we have r.Gf / � 4.
If furthermore r.G/ D 6, then r.Gf / D 4 and the assertion about F follows
by Lemma 3.3 below. This proves our assertions in the case B ' P1. The case
dimB D 2 is treated similarly. ut
Lemma 3.3 (cf. [3]). Let F be a del Pezzo surface and let G� Aut.F / be a
2-elementary abelian group with r.F / � 4. Then r.F / D 4 and one of the following
holds:

(i) K2
F D 4, �.F /G D 1;

(ii) K2
F D 8, �.F /G D 2.

Proof. Similar to [3, §3]. ut
Example 3.4. LetF �P4 be the quartic del Pezzo surface given by

P
x2i D P

�ix
2
i

D 0 with �i ¤ �j for i ¤ j and let Gf � Aut.F / be the 2-elementary abelian
subgroup generated by involutions xi 7! �xi . Consider also a 2-elementary abelian
subgroup GB � Aut.P1/ induced by a faithful representation Q8 ! GL2.k/ of
the quaternion group Q8. Then r.Gf / D 4, r.GB/ D 2, and G WD Gf � GB
naturally acts on X WD F � P1. Two projections give us two structures of
G-Fano-Mori fibrations of types (D) and (C). This shows that the bound r.G/ � 6

in Proposition 3.2 is sharp. Moreover, X is rational and so we have an embedding
G � Cr3.k/.

4 Actions on Fano Threefolds

Main Assumption. From now on we assume that we are in the case (F), that is, X
is a GQ-Fano threefold.

Remark 4.1. The group G acts naturally on the space of anticanonical sections
H0.X;�KX/. Assume that H0.X;�KX/ ¤ 0. Since G is an abelian group, there
exists a decomposition if H0.X;�KX/ into eigenspaces. Then any eigensection
s 2 H0.X;�KX/ defines an invariant member S 2 j�KX j.
Lemma 4.2. Let X be a GQ-Fano threefold, where G is a 2-elementary abelian
group with r.G/ � 5. Let S be an invariant effective Weil divisor such that
�.KX CS/ is nef. Then the pair .X; S/ is log canonical (lc). In particular, S is
reduced. If �.KX C S/ is ample, then the pair .X; S/ is purely log terminal (plt).

Proof. Assume that the pair .X; S/ is not lc. Since S isG-invariant and �.X/G D 1,
we see that S is numerically proportional to KX . Hence S is ample. We apply
quite standard connectedness arguments of Shokurov [22] (see, e.g., [11, Prop.
2.6]): for a suitable G-invariant boundary D, the pair .X;D/ is lc, the divisor
�.KX C D/ is ample, and the minimal locus V of log canonical singularities
is also G-invariant. Moreover, V is either a point or a smooth rational curve.
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By Lemma 2.1 we may assume that G has no fixed points. Hence, V ' P1 and we
have a map & WG! Aut.P1/. By Lemma 2.3 r.ker &/ � 2. Therefore, r.&.G// � 3.
This contradicts the classification of finite subgroups of PGL2.k/.

If �.KX C S/ is ample and .X; S/ has a log canonical center of dimension � 1,
then by considering .X; S 0 D S C �B/, where B is a suitable invariant divisor and
0 < � � 1, we get a non-lc pair .X; S 0/. This contradicts the above considered case.

ut
Corollary 4.3. Let X be a GQ-Fano threefold, where G is a 2-elementary abelian
group with r.G/ � 6 and let S be an invariant Weil divisor. Then �.KX CS/ is not
ample.

Proof. If �.KX C S/ is ample, then by Lemma 4.2 the pair .X; S/ is plt. By the
adjunction principle [22] the surface S is irreducible, normal and has only quotient
singularities. Moreover, �KS is ample. Hence S is rational. We get a contradiction
by Theorem 1.1 and Lemma 2.3(i). ut
Lemma 4.4. Let S be a K3 surface with at worst Du Val singularities and let � �
Aut.S/ be a 2-elementary abelian group. Then r.� / � 5.

Proof. Let QS ! S be the minimal resolution. Here QS is a smooth K3 surface and
the action of � lists to QS . Let �s � � be the largest subgroup that acts trivially on
H2;0. QS/ ' C. The group � =�s is cyclic. Hence, r.� =�s/ � 1. According to [13,
Th. 4.5] we have r.�s/ � 4. Thus r.� / � 5. ut
Corollary 4.5. Let X be a GQ-Fano threefold, where G is a 2-elementary abelian
group. Let S 2 j�KX j be a G-invariant member. If r.G/ � 7, then the singularities
of S are worse than Du Val.

Proposition 4.6. Let X be a GQ-Fano threefold, where G is a 2-elementary
abelian group with r.G/ � 6. Let S 2 j�KX j be a G-invariant member and let
G
 � G be the largest subgroup that acts trivially on the set of components of S .
One of the following holds:

(i) S is a K3 surface with at worst Du Val singularities, then S � Fix.ı/ for some
ı 2 G n f1g and G=hıi faithfully acts on S . In this case r.G/ D 6.

(ii) The surface S is reducible (and reduced). The group G acts transitively on the
components of S and G
 acts faithfully on each component Si � S . There are
two subcases:

(a) any component Si � S is rational and r.G
/ � 4.
(b) any component Si � S is birationally ruled over an elliptic curve and

r.G
/ � 5.

Proof. By Lemma 4.2 the pair .X; S/ is lc. Assume that S is normal (and
irreducible). By the adjunction formula KS � 0. We claim that S has at worst Du
Val singularities. Indeed, otherwise by the Connectedness Principle [22, Th. 6.9] S
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has at most two non-Du Val points. These points are fixed by an index two subgroup
G0 � G. This contradicts Lemma 2.1. Taking Lemma 4.4 into account we get the
case (i).

Now assume that S is not normal. Let Si � S be an irreducible component (the
case Si D S is not excluded). If the action on components Si � S is not transitive,
there is an invariant divisor S 0 < S . Since X is GQ-factorial and �.X/G D 1, the
divisor �.KX C S 0/ is ample. This contradicts Corollary 4.3.

By Lemma 2.3(ii) the action of G
 on each component Si is faithful.
If Si is a rational surface, then r.G
/ � 4 by Theorem 1.1. Assume that Si is not

rational. Let �WS 0 ! Si be the normalization. Write 0 � ��.KX CS/ D KS 0 CD0,
whereD0 is the different, see [22, §3]. HereD0 is an effective reduced divisor and the
pair is lc [22, 3.2]. Since S is not normal,D0 ¤ 0. Consider the minimal resolution

W QS ! S 0 and let QD be the crepant pull-back of D0, that is, 
� QD D D0 and

K QS C QD D 
�.KS 0 CD0/ � 0:

Here QD is again an effective reduced divisor. Hence QS is a ruled surface. Consider
the Albanese map ˛ W QS ! C . Let QD1 � QD be an ˛-horizontal component. By the
adjunction formula QD1 is an elliptic curve and so C is. Let � be the image of G
 in
Aut.C /. Then r.� / � 3 and so r.G
/ � 5. So, the last assertion is proved. ut

5 Non-Gorenstein Fano Threefolds

Let G be a 2-elementary abelian group and let X be GQ-Fano threefold. In this
section we consider the case where X is non-Gorenstein, i.e., it has at least one
terminal point of index > 1. We denote by Sing0.X/ D fP1; : : : ; PM g the set of
non-Gorenstein points.

Recall that any (analytic) threefold terminal singularity U 3 P has a small
deformation Ut , where t 2 (unit disk) � C, such that for 0 < jt j � 1 the threefold
Ut 3 Pi;t has only cyclic quotient singularities Ut 3 Pi;t of the form 1

mi
.1;�1; ai /

with gcd.mi ; ai / D 1 [19]. The collection B.U; P / WD
n
1
mi
.1;�1; ai /

o
does not

depend on the choice of deformation and called the basket ofU 3 P . For a threefold
X with terminal singularities we denote by B D B.X/ its global basket, the union
of baskets of all singular points.

Proposition 5.1. Let X be a non-Gorenstein Fano threefold with terminal singu-
larities. Assume that X admits a faithful action of a 2-elementary abelian group G
with r.G/ � 6. Then r.G/ D 6, G transitively acts on Sing0.X/, j�KX j ¤ ;, and
the configuration of non-Gorenstein singularities is described below.

.1/ M D 8, B.X; Pi / D ˚
1
2
.1; 1; 1/



;

.2/ M D 8, B.X; Pi / D ˚
1
3
.1; 1; 2/



;

.3/ M D 4, B.X; Pi / D ˚
2 � 1

2
.1; 1; 1/



;
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.4/ M D 4, B.X; Pi / D ˚
2 � 1

3
.1; 1; 2/



;

.5/ M D 4, B.X; Pi / D ˚
3 � 1

2
.1; 1; 1/



;

.6/ M D 4, B.X; Pi / D ˚
1
4
.1;�1; 1/; 1

2
.1; 1; 1/



.

Proof. Let P .1/; : : : ; P .n/ 2 Sing0.X/ be representatives of distinctG-orbits and let
Gi be the stabilizer of P .i/. Let r WD r.G/, ri WD r.Gi /, and let mi;1; : : : ; mi;�i be
the indices of points in the basket of P .i/. We may assume that mi;1 � 	 	 	 � mi;�i

By the orbifold Riemann–Roch formula [19] and a form of Bogomolov–Miyaoka
inequality [8, 9] we have

nX
iD1

2r�ri
�iX
jD1

�
mi;j � 1

mi;j

�
< 24: (***)

If P is a cyclic quotient singularity, then �i D 1 and by Lemma 2.1 ri � 3. If P is
not a cyclic quotient singularity, then �i � 2 and again by Lemma 2.1 ri � 4. Since
mi;j � 1=mi;j � 3=2, in both cases we have

2r�ri
�iX
jD1

�
mi;j � 1

mi;j

�
� 3 	 2r�4 � 12:

Therefore, n D 1, i.e., G transitively acts on Sing0.X/, and r D 6.
If P is not a point of type cAx=4 (i.e., it is not as in (3) of (**)), then by

the classification of terminal singularities [19] m1;1 D 	 	 	 D m1;�i and (***) has
the form

24 > 26�r1�1
�
m1;1 � 1

m1;1

�
� 8

�
m1;1 � 1

m1;1

�
:

Hence r1 � 3, �1 � 3, m1;1 � 3, and 3 	 2r1�3 � �1m1;1. If r1 D 3, then �1 D 1.
If r1 D 4, then �1 � 2 and �1m1;1 � 6. This gives us the possibilities (1)– (5).

Assume that P is a point of type cAx=4. Then m1;1 D 4, �1 > 1, and m1;j D 2

for 1 < j � �1. Thus (***) has the form

24 > 26�r1
�
15

4
C 3

2
.�1 � 1/

�
D 24�r1 .9C 6�1/ :

We get �1 D 2, r1 D 4, i.e., the case (6).
Finally, the computation of dim j�KX j follows by the orbifold Riemann–Roch

formula [19]

dim j�KX j D �1
2
K3
X C 2 �

X
P2B.X/

bP .mP � bP /
2mP

:
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6 Gorenstein Fano Threefolds

The main result of this section is the following:

Proposition 6.1. Let G be a 2-elementary abelian group and let X be a (Goren-
stein) G-Fano threefold. Then r.G/ � 6. Moreover, if r.G/ D 6, then Pic.X/DZ 	
KX and �K3

X � 8.

Let X be a Fano threefold with at worst Gorenstein terminal singularities. Recall
that the number

�.X/ WD maxfi 2 Z j �KX � iA; A 2 Pic.X/g

is called the Fano index of X . The integer g D g.X/ such that �K3
X D 2g � 2 is

called the genus ofX . It is easy to see that dim j�KX j D gC1 [7, Corollary 2.1.14].
In particular, j�KX j ¤ ;.

Notation. Throughout this section G denotes a 2-elementary abelian group and
X denotes a Gorenstein G-Fano threefold. There exists an invariant member
S 2 j�KX j (see 4.1). We write S D PN

iD1 Si , where the Si are irreducible
components. Let G
 � G be the kernel of the homomorphism G ! SN induced
by the action of G on fS1; : : : ; SN g. Since G is abelian and the action of G on
fS1; : : : ; SN g is transitive, the group G
 coincides with the stabilizer of any Si .
Clearly, N D 2r.G/�r.G�/. If r.G/ � 6, then by Proposition 4.6 we have r.G
/ � 5

and so N � 2r.G/�5.

Lemma 6.2. Let G � Aut.Pn/ be a 2-elementary subgroup and n is even. Then G
is conjugate to a diagonal subgroup. In particular, r.G/ � n.

Proof. Let G] � SLnC1.k/ be the lifting of G and let G0 � G] be a Sylow two-
subgroup. Then G0 ' G. Since G0 is abelian, the representation G0 ,! SLnC1.k/
is diagonalizable. ut
Corollary 6.3. Let Q � P4 be a quadric and let G � Aut.Q/ be a 2-elementary
subgroup. Then r.G/ � 4.

Lemma 6.4. Let G � Aut.P3/ be a 2-elementary subgroup. Then r.G/ � 4.

Certainly, the fact follows by Blichfeldt’s theorem which asserts that the lifting
G] � SL4.k/ is a monomial representation (see e.g. [20, §3]). Here we give a
short independent proof.

Proof. Assume that r.G/ � 5. Take any element ı 2 G n f1g. By Lemma 2.1 the
groupG has no fixed points. Since the set Fix.ı/ is G-invariant, Fix.ı/ D L1 [L2,
where L1; L2 � P3 are skew lines.

Let G1 � G be the stabilizer of L1. There is a subgroup G2 � G1 of index 2
having a fixed point P 2 L1. Thus r.G2/ � 3 and the “orthogonal” plane ˘ is
G2-invariant. By Lemma 6.2 there exists an element ı0 2 G2 that acts trivially on
˘ , i.e., ˘ � Fix.ı0/. But then ı0 has a fixed point, a contradiction. ut
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Lemma 6.5. If Bsj�KX j ¤ ;, then r.G/ � 4.

Proof. By Shin [21] the base locus Bsj�KX j is either a single point or a rational
curve. In both cases r.G/ � 4 by Lemmas 2.1 and 2.3. ut
Lemma 6.6. If �KX is not very ample, then r.G/ � 5.

Proof. Assume that r.G/ � 6. By Lemma 6.5 the linear system j�KX j is base point
free. It is easy to show that j�KX j defines a double cover � W X ! Y � PgC1
(cf. [6, Chap. 1, Prop. 4.9]). Here Y is a variety of degree g � 1 in PgC1, a variety
of minimal degree. Let NG be the image of G in Aut.Y /. Then r. NG/ � r.G/ � 1.
If g D 2 (resp. g D 3), then Y D P3 (resp. Y � P4 is a quadric) and r.G/ � 5

by Lemma 6.4 (resp. by Corollary 6.3). Thus we may assume that g � 4. If Y
is smooth, then according to the Enriques theorem (see, e.g., [6, Th. 3.11]) Y is
a rational scroll PP1 .E /, where E is a rank 3 vector bundle on P1. Then X has a
G-equivariant projection to a curve. This contradicts �.X/G D 1. Hence Y is
singular. In this case, Y is a projective cone (again by the Enriques theorem). If its
vertex O 2 Y is zero-dimensional, then dimTO;Y � 5. On the other hand, X has
only hypersurface singularities. Therefore the double cover X ! Y is not étale
over O and so G has a fixed point on X . This contradicts Lemma 2.1. Thus Y is
a cone over a curve with vertex along a line L. As above, L must be contained in
the branch divisor and so L0 WD ��1.L/ is a G-invariant rational curve. Since the
image of G in Aut.L0/ is a 2-elementary abelian group of rank � 2, by Lemma 2.3
we have r.G/ � 4. ut
Remark 6.7. Recall that for a Fano threefold X with at worst Gorenstein terminal
singularities one has �.X/ � 4. Moreover, �.X/ D 4 if and only if X ' P3 and
�.X/ D 3 if and only if X is a quadric in P4 [7]. In these cases we have r.G/ � 4

by Lemma 6.4 and Corollary 6.3, respectively. If �.X/ D 2, then X is so-called del
Pezzo threefold. The number d WD .� 1

2
KX/

3 is called the degree of X .

Lemma 6.8. Assume that the divisor �KX is very ample, r.G/ � 6, and the
action of G on X is not free in codimension 1. Let ı 2 G be an element such
that dim Fix.ı/ D 2 and let D � Fix.ı/ be the union of all two-dimensional
components. Then r.G/ D 6 and D is a Du Val member of j�KX j. Moreover,
�.X/ D 1 except, possibly, for the case where �.X/ D 2 and � 1

2
KX is not very

ample.

Proof. Since G is abelian, Fix.ı/ and D are G-invariant and so �KX �Q �D

for some � 2 Q. In particular, D is a Q-Cartier divisor. Since X has only
terminal Gorenstein singularities, D must be Cartier. Clearly, D is smooth outside
of Sing.X/. Further,D is ample and so it must be connected. Since D is a reduced
Cohen–Macaulay scheme with dim Sing.D/ � 0, it is irreducible and normal.

Let X ,! PgC1 be the anticanonical embedding. The action of ı onX is induced
by an action of a linear involution of PgC1. There are two disjointed linear subspaces
VC; V� � PgC1 of ı-fixed points and the divisorD is contained in one of them. This
means that D is a component of a hyperplane section S 2 j�KX j and so � � 1.
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Since r.G/ � 6, by Corollary 4.3 we have � D 1 and �KX � D (because Pic.X/
is a torsion free group). SinceD is irreducible, the case (i) of Proposition 4.6 holds.

Finally, if �.X/ > 1, then by Remark 6.7 we have �.X/ D 2. If furthermore the
divisor A is very ample, then it defines an embedding X ,! PN so that D spans
PN . In this case the action of ı must be trivial, a contradiction. ut
Lemma 6.9. If �.X/ > 1, then r.G/ � 5.

Proof. We use the classification of G-Fano threefolds with �.X/ > 1 [17]. By this
classification �.X/ � 4. Let G0 be the kernel of the action of G on Pic.X/.

Consider the case �.X/ D 2. Then ŒG W G0� D 2. In the cases (1.2.1) and (1.2.4)
of [17] the variety X has a structure of G0-equivariant conic bundle over P2. As in
Proposition 3.2 we have r.G0/ � 4 and r.G/ � 5 in these cases. In the cases (1.2.2)
and (1.2.3) of [17] the variety X has two birational contractions to P3 and a quadric
Q � P4, respectively. As above we get r.G/ � 5 by Lemma 6.4 and Corollary 6.3.

Consider the case �.X/ D 3. We show that in this case Pic.X/G 6' Z (and so
this case does not occur). Since G is a 2-elementary abelian group, its action on
Pic.X/ ˝ Q is diagonalizable. Since, Pic.X/G D Z 	 KX , the group G contains
an element 	 that acts on Pic.X/ ' Z3 as the reflection with respect to the
orthogonal complement to KX . Since the group G preserves the natural bilinear
form hx1; x2i WD x1 	 x2 	KX , the action must be as follows:

	 W x 7�! x � �KX; � D 2x 	K2
X

K3
X

:

Hence �KX is an integral element for any x 2 Pic.X/. This gives a contradiction in
all cases (1.2.5)–(1.2.7) of [17, Th. 1.2]. For example, in the case (1.2.5) of [17, Th.
1.2] our varietyX has a structure (non-minimal) del Pezzo fibration of degree 4 and
�K3

X D 12. For the fiber F we have F 	K2
X D K2

F D 4 and �KX is not integral, a
contradiction.

Finally, consider the case �.X/ D 4. Then according to [17] X is a divisor of
multidegree .1; 1; 1; 1/ in .P1/4. All the projections 'i W X ! P

1, i D 1; : : : ; 4

are G0-equivariant. We claim that natural maps 'i� W G0 ! Aut.P1/ are injective.
Indeed, assume that '1�.#/ is the identity map in Aut.P1/ for some # 2 G. This
means that # ı '1 D '1. Since Pic.X/G D Z, the group G permutes the classes
'�
i OP1 .1/ 2 Pic.X/. Hence, for any i D 1; : : : ; 4, there exists �i 2 G such that
'i D '1 ı �i . Then

# ı 'i D # ı '1 ı �i D '1 ı �i D 'i :

Hence, 'i�.#/ is the identity for any i . Since '1�	 	 	�'4 is an embedding,# must be
the identity as well. This proves our clam. Therefore, r.G0/ � 2. The group G=G0
acts on Pic.X/ faithfully. By the same reason as above, an element of G=G0 cannot
act as the reflection with respect to KX . Therefore, r.G=G0/ � 2 and r.G/ � 4. ut

Now we consider the case of del Pezzo threefolds.
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Lemma 6.10. If �.X/ D 2, then r.G/ � 5.

Proof. By Lemma 6.9 we may assume that �.X/ D 1. Let A WD � 1
2
KX and let

d WD A3 be the degree of X . Since �.X/ D 1, we have d � 5 (see e.g. [16]).
Consider the possibilities for d case by case. We use the classification (see [21]
and [16]).

If d D 1, then the linear system jAj has a unique base point. This point is smooth
and must be G-invariant. By Lemma 2.1 r.G/ � 3. If d D 2, then the linear system
jAj defines a double cover ' W X ! P3. Then the image of G in Aut.P3/ is a
2-elementary group NG with r. NG/ � r.G/ � 1, where r. NG/ � 4 by Lemma 6.4.
If d D 3, then X D X3 � P4 is a cubic hypersurface. By Lemma 6.2 r.G/ � 4.
If d D 5, then X is smooth, unique up to isomorphism, and Aut.X/ ' PGL2.k/

(see [7]).
Finally, consider the case d D 4. Then X D Q1 \ Q2 � P5 is an intersection

of two quadrics (see e.g. [21]). Let Q be the pencil generated by Q1 and Q2. Since
X has a isolated singularities and it is not a cone, a general member of Q is smooth
by Bertini’s theorem and for any member Q 2 Q we have dim Sing.Q/ � 1. Let
D be the divisor of degree 6 on Q ' P1 given by the vanishing of the determinant.
The elements of Supp.D/ are exactly degenerate quadrics. Clearly, for any point
P 2 Sing.X/ there exists a unique quadric Q 2 Q which is singular at P . This
defines a map � W Sing.X/ ! Supp.D/. Let Q 2 Supp.D/. Then ��1.Q/ D
Sing.Q/ \ X D Sing.Q/ \ Q0, where Q0 2 Q, Q0 ¤ Q. In particular, ��1.Q/
consists of at most two points. Hence the cardinality of Sing.X/ is at most 12.

Assume that r.G/ � 6. Let S 2 j � KX j be an invariant member. We claim
that S  Sing.X/ and Sing.X/ ¤ ;. Indeed, otherwise S \ Sing.X/ D ;.
By Proposition 4.6 S is reducible: S D S1C	 	 	CSN , N � 2. Since �.X/ D 2, we
get N D 2 and S1 � S2, i.e., Si is a hyperplane section of X � P5. As in the proof
of Corollary 4.3 we see that Si is rational. This contradicts Proposition 4.6 (ii). Thus
; ¤ Sing.X/ � S . By Lemma 6.8 the action of G on X is free in codimension 1.
By Remark 2.2 for the stabilizer GP of a point P 2 Sing.X/ we have r.GP / � 3.
Then by the above estimate the variety X has exactly 8 singular points and G acts
on Sing.X/ transitively.

Note that our choice of S is not unique: there is a basis s.1/, . . . , s.gC2/ 2
H0.X;�KX/ consisting of eigensections. This basis gives us G-invariant divisors
S.1/, . . . , S.gC2/ generating j�KX j. By the above Sing.X/ � S.i/ for all i . Thus
Sing.X/ � \S.i/ D Bsj�KX j. This contradicts the fact that �KX is very ample.

ut
The following two examples show that the inequality r.G/ � 5 in the above

lemma is sharp.

Example 6.11. Let X D X2	2 � P5 be the variety given by
P
x2i D P

�ix
2
i D 0

with �i ¤ �j for i ¤ j and let G � Aut.X/ be the 2-elementary abelian subgroup
generated by involutions xi 7! �xi . Then X is a rational del Pezzo threefold of
degree 4 and r.G/ D 5.
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Example 6.12 (suggested by the referee). Let A be the Jacobian of a curve of genus
2 and let � be its theta-divisor. The linear system j2�j defines a finite morphism
˛ W A ! B � P3 of degree 2 whose image B D ˛.A/ is a quartic with 16 nodes
[2, Chap. VIII, Exercises]. Let ' W X ! P3 be the double cover branched along
B . Then X is a del Pezzo threefold of degree 2 whose singular locus consists of 16
nodes. In this situation, the rank of the Weil divisor class group Cl.X/ equals to 7
(see [16, Th. 7.1]) and X has a small resolution which can be obtained by blowing
up of six points in general position on P3 (see e.g. [4, 23, Chap. 3] or [16, Th. 7.1]).
In particular, X is rational. The translation by a two-torsion point a 2 A induces
a projective involution 	a of B � P3. These involutions lift to X and generate a
2-elementary subgroup H � Aut.X/ with r.H/ D 4. The Galois involution � of
the double cover ' is contained in the center of Aut.X/. Hence � and H generate a
2-elementary subgroupG � Aut.X/ of rank 5.

Note that the fixed point locus of � on X is a Kummer surface isomorphic to B .
On the other hand, the fixed point loci of involutions acting on X2	2 are either
rational surfaces or subvarieties of dimension � 1. Hence the groups constructed
in Examples 6.11 and 6.12 are not conjugate to each other in the Cremona group.

From now on we assume that Pic.X/ D Z 	KX . Let g WD g.X/.

Lemma 6.13. If g � 4, then r.G/ � 5. If g D 5, then r.G/ � 6.

Proof. We may assume that �KX is very ample. Automorphisms of X are induced
by projective transformations of PgC1 that preserve X � PgC1. On the other hand,
there is a natural representation of G on H0.X;�KX/ which is faithful. Thus the
composition

Aut.X/ ,! GL.H0.X;�KX// D GLgC2.k/ ! PGLgC2.k/

is injective. Since G is abelian, its image NG � GLgC2.k/ is contained in a maximal
torus and by the above NG contains no scalar matrices. Hence, r.G/ � g C 1. ut
Example 6.14. Let G be the two-torsion subgroup of the diagonal torus of
PGL7.k/. ThenX faithfully acts on the Fano threefold in P6 given by the equationsP
x2i D P

�ix
2
i D P


ix
2
i D 0. This shows that the bound r.G/ � 6 in the above

lemma is sharp. Note however that X is not rational if it is smooth [1]. Hence in
this case our construction does not give any embedding of G to Cr3.k/.

Lemma 6.15. If in the above assumptions g.X/ � 6, then X has at most 29
singular points.

Proof. According to [12] the variety X has a smoothing. This means that there
exists a flat family X ! T over a smooth one-dimensional base T with special
fiber X D X0 and smooth general fiber Xt D Xt . Using the classification of Fano
threefolds [6] (see also [7]) we obtain h1;2.Xt/ � 10. Then by Namikawa [12]
we have
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#Sing.X/ � 21� 1

2
Eu.Xt / D 20 � �.Xt /C h1;2.Xt / � 29:

Proof of Proposition 6.1. Assume that r.G/ � 7. Let S 2 j�KX j be an invariant
member. By Corollary 4.5 the singularities of S are worse than Du Val. So S satisfies
the conditions (ii) of Proposition 4.6. Write S D PN

iD1 Si . By Proposition 4.6 the
groupG
 acts on Si faithfully and

N D 2r.G/�r.G�/ � 4:

First we consider the case where X is smooth near S . Since �.X/ D 1, the
divisors Si ’s are linear equivalent to each other and so �.X/ � 4. This contradicts
Lemma 6.10.

Therefore, S \ Sing.X/ ¤ ;. By Lemma 6.8 the action of G on X is free in
codimension 1 and by Remark 2.2 we see that r.GP / � 3, whereGP is the stabilizer
of a point P 2 Sing.X/. Then by Lemma 6.15 the varietyX has exactly 16 singular
points and G acts on Sing.X/ transitively. Since S \ Sing.X/ ¤ ;, we have
Sing.X/ � S . On the other hand, our choice of S is not unique: there is a basis
s.1/, . . . , s.gC2/ 2 H0.X;�KX/ consisting of eigensections. This basis gives us G-
invariant divisors S.1/, . . . , S.gC2/ generating j�KX j. By the above Sing.X/ � S.i/

for all i . Thus Sing.X/ � \S.i/ D Bsj�KX j. This contradicts Lemma 6.6. ut
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Birational Automorphism Groups of Projective
Varieties of Picard Number Two

De-Qi Zhang

Abstract We slightly extend a result of Oguiso on birational automorphism groups
(resp. of Lazić–Peternell on Morrison–Kawamata cone conjecture) from Calabi–
Yau manifolds of Picard number 2 to arbitrary singular varieties X (resp. to klt
Calabi–Yau pairs in broad sense) of Picard number 2. When X has only klt
singularities and is not a complex torus, we show that either Aut.X/ is almost
infinite cyclic, or it has only finitely many connected components.

2000 Mathematics Subject Classification: 14J50, 14E07, 32H50.

1 Introduction

This note is inspired by Oguiso [8] and Lazić–Peternell [6].
Let X be a normal projective variety defined over the field C of complex

numbers. The following subgroup (of the birational group Bir.X/)

Bir2.X/ WD fg W X Ü X j g is an isomorphism outside codimension two subsetsg

is also called the group of pseudo-automorphisms of X .
Let NS.X/D fCartier divisorsg=.algebraic equivalence/ be the Neron–

Severi group, which is finitely generated. Let NSR.X/ WD NS.X/ ˝ R with
�.X/ WD dimR NSR.X/ the Picard number. Let Eff.X/ � NSR.X/ be the cone
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of effective R-divisor; its closure Eff.X/ is called the cone of pseudo-effective
divisors. The ample cone Amp.X/ � NSR.X/ consists of classes of ample R-
Cartier divisors; its closure Nef.X/ is called the nef cone. A divisor D is movable
if jmDj has no fixed component for some m > 0. The closed movable cone
Mov.X/ � NSR.X/ is the closure of the convex hull of movable divisors. Mov.X/
is the interior part of Mov.X/.

A pair .X;�/ of a normal projective varietyX and an effective Weil R-divisor�
is a klt Calabi–Yau pair in broad sense if it has at worst Kawamata log terminal (klt)
singularities (cf. [5, Definition 2.34] or [1, §3.1]) and KX C � � 0 (numerically
equivalent to zero); in this case, if KX C� is Q-Cartier, then KX C � �Q 0, i.e.,
r.KX C �/ � 0 (linear equivalence) for some r > 0, by Nakayama’s abundance
theorem in the case of zero numerical dimension. .X;�/ is a klt Calabi–Yau pair in
narrow sense if it is a klt Calabi–Yau pair in broad sense and if we assume further
that the irregularity q.X/ WD h1.X;OX/ D 0. When � D 0, a klt Calabi–Yau pair
in broad/narrow sense is called a klt Calabi–Yau variety in broad/narrow sense.

On a terminal minimal variety (like a terminal Calabi–Yau variety) X , we have
Bir.X/ D Bir2.X/. Totaro [9] formulated the following generalization of the
Morrison–Kawamata cone conjecture (cf. [4]) and proved it in dimension two.

Conjecture 1.1. Let .X;�/ be a klt Calabi–Yau pair in broad sense.

(1) There exists a rational polyhedral cone … which is a fundamental domain for
the action of Aut.X/ on the effective nef cone Nef.X/\ Eff.X/, i.e.,

Nef.X/\ Eff.X/ D
[

g2 Aut.X/

g�…;

and int.…/ \ int.g�…/ D ; unless g�
j NSR.X/

D id.
(2) There exists a rational polyhedral cone …0 which is a fundamental domain for

the action of Bir2.X/ on the effective movable cone Mov.X/\ Eff.X/.

If X has Picard number 1, then Aut.X/=Aut0.X/ is finite; here Aut0.X/ is the
connected component of identity in Aut.X/; see [7, Prop. 2.2].

Now suppose that X has Picard number 2. Then dimR NSR.X/ D 2. So the
(strictly convex) cone Eff.X/ has exactly two extremal rays. Set

A WD Aut.X/; A� WDAnAC; B2 WD Bir2.X/; B�
2 WDB2nBC

2 ; where

BC
2 D BirC

2 .X/ WD fg2B2 j g� preserves each of the two extremal rays of Eff.X/g;
ACD AutC.X/ WD fg2A j g� preserves each of the two extremal rays of Eff.X/g;
B0
2D Bir02.X/ WD fg2B2 j g�

j NSR.X/
D idg:

When X is a Calabi–Yau manifold, Theorem 1.2 is more or less contained in [8]
or [6]. Our argument here for general X is slightly streamlined and direct.
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Theorem 1.2. Let X be a normal projective variety of Picard number 2. Then:

(1) j Aut.X/ W AutC.X/j � 2; j Bir2.X/ W BirC
2 .X/j � 2.

(2) Bir02.X/ coincides with both Ker.Bir2.X/! GL.NSR.X/// and Ker.Aut.X/!
GL.NSR.X///. Hence we have inclusions:

Aut0.X/ 
 Bir02.X/ 
 AutC.X/ 
 BirC
2 .X/ 
 Bir2.X/:

(3) j Bir02.X/ W Aut0.X/j is finite.
(4) BirC

2 .X/=Bir02.X/ is isomorphic to either fidg or Z. In the former case,
j Aut.X/ W Aut0.X/j � j Bir2.X/ W Aut0.X/j < 1.

(5) If one of the extremal rays of Eff.X/ or of the movable cone of X is
generated by a rational divisor class, then BirC

2 .X/D Bir02.X/ and j Bir2.X/ W
Aut0.X/j < 1.

(6) If one of the extremal rays of the nef cone ofX is generated by a rational divisor
class, then AutC.X/ D Bir02.X/ and j Aut.X/ W Aut0.X/j < 1.

Theorem 1.2 and the proof of [6, Theorem 1.4] imply the following, and also a
weak cone theorem as in [6, Theorem 1.4(1)] when j Bir2.X/ W Aut0.X/j is finite.

Theorem 1.3. Let .X;�/ be a klt Calabi–Yau pair in broad sense of Picard num-
ber 2. Suppose that j Bir2.X/ W Aut0.X/j .or equivalently j BirC

2 .X/ W Bir02.X/j/ is
infinite. Then Conjecture 1.1 holds true.

A group G is almost infinite cyclic, if there exists an infinite cyclic subgroupH
such that the index jG W H j is finite. If a group G1 has a finite normal subgroup
N1 such that G1=N1 is almost infinite cyclic, then G1 is also almost infinite cyclic
(cf. [11, Lemma 2.6]).

Theorem 1.4. Let X be a normal projective variety of Picard number 2. Then:

(1) Either Aut.X/=Aut0.X/ is finite, or it is almost infinite cyclic and dimX is
even.

(2) Suppose that X has at worst Kawamata log terminal singularities. Then one
of the following is true.

(2a) X is a complex torus.
(2b) j Aut.X/ W Aut0.X/j � j Bir2.X/ W Aut0.X/j < 1.
(2c) X is a klt Calabi–Yau variety in narrow sense and Aut0.X/ D .1/, so both

Aut.X/ and Bir2.X/ are almost infinite cyclic.

Below is a consequence of Theorem 1.4 and generalizes Oguiso [8, Theorem
1.2(1)].

Corollary 1.5. Let X be an odd-dimensional projective variety of Picard number
2. Suppose that Aut0.X/ D .1/ .e.g.,X is non-ruled and q.X/ D h1.X;OX/ D 0/.
Then Aut.X/ is finite.



234 D.-Q. Zhang

For a linear transformation T W V ! V of a vector space V over R or C, the
spectral radius �.T / is defined as

�.T / WD maxfj�j I � is a real or complex eigenvalue of T g:

Corollary 1.6. Let X be a normal projective variety of Picard number 2. Then:

(1) Every g 2 BirC
2 .X/ n Bir02.X/ acts on NSR.X/ with spectral radius > 1.

(2) A class gAut0.X/ in Aut.X/=Aut0.X/ is of infinite order if and only if the
spectral radius of g�

j NSR.X/
is > 1.

(1) above follows from the proof of Theorem 1.2, while (2) follows from (1) and
again Theorem 1.2.

Remark 1.7. (1) The second alternative in Theorem 1.4(1) and (2c) in Theo-
rem 1.4(2) do occur. Indeed, the complete intersection X of two general
hypersurfaces of type .1; 1/ and .2; 2/ in P2 � P2 is called Wehler’s K3 surface
(hence Aut0.X/ D .1/) of Picard number 2 such that Aut.X/ D Z=.2/ �Z=.2/

(a free product of two copies of Z=.2/) which contains Z as a subgroup of index
two; see [10].

(2) We cannot remove the possibility (2a) in Theorem 1.4(2). It is possible that
Aut0.X/ has positive dimension and Aut.X/=Aut0.X/ is almost infinite cyclic
at the same time. Indeed, as suggested by Oguiso, using the Torelli theorem
and the surjectivity of the period map for abelian surfaces, one should be able
to construct an abelian surface X of Picard number 2 with irrational extremal
rays of the nef cone ofX and an automorphism g with g�

j NS.X/ of infinite order.
Hence gAut0.X/ is of infinite order in Aut.X/=Aut0.X/ and g� has spectral
radius > 1 (cf. Corollary 1.5).

(3) See Oguiso [8] for more examples of Calabi–Yau threefolds and hyperkähler
fourfolds with infinite Bir2.X/ or Aut.X/.

2 Proof of Theorems

We use the notation and terminology in the book of Hartshorne and the book [5].

Proof of Theorem 1.2. Since X has Picard number 2, we can write the pseudo-
effective closed cone as

Eff.X/ D R�0Œf1�C R�0Œf2�

(1) is proved in [6, 8]. For reader’s convenience, we reproduce here. Let g 2 B�
2

or A�. Since g permutes extremal rays of Eff.X/, we can write g�f1 D af2,
g�f2 D bf1 with a > 0, b > 0. Since g� is defined on the integral lattice
NS.X/=.torsion/, deg.g�/ D ˙1. Hence ab D 1. Thus ord.g�/ D 2 and
g2 2 B0

2 . Now (1) follows from the observation thatB�
2 D gBC

2 orA� D gAC.
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(2) The first equality is by the definition of B0
2 . For the second equality, we just

need to show that every g 2 B0
2 is in Aut.X/. Take an ample divisor H on X .

Then g�H D H as elements in NSR.X/ over which B0
2 acts trivially. Thus

Amp.X/ \ g.Amp.X// ¤ ;, where Amp.X/ is the ample cone of X . Hence
g 2 Aut.X/, g being isomorphic in codimension one (cf. e.g. [4, Proof of
Lemma 1.5]).

(3) Applying Lieberman [7, Proof of Proposition 2.2] to an equivariant resolution,
AutŒH �.X/ WD fg 2 Aut.X/ j g�ŒH � D ŒH �g is a finite extension of Aut0.X/
for the divisor class ŒH � of every ample (or even nef and big) divisor H on
X . Since B0

2 
 AutŒH �.X/ (cf. (2)), (3) follows. See [8, Proposition 2.4] for a
related argument.

(4) For g 2 BC
2 , write g�f1 D �.g/f1 for some �.g/ > 0. Then g�f2 D

.1=�.g//f2 since deg.g�/ D ˙1. In fact, the spectral radius �.g�
j NSR.X/

/ D
maxf�.g/; 1=�.g/g. Consider the homomorphism

' W BC
2 ! .R;C/; g 7! log�.g/:

Then Ker.'/ D B0
2 . We claim that Im.'/ � .R;C/ is discrete at the

origin (and hence everywhere). Indeed, since g� acts on NS.X/=.torsion/ Š
Z˚2, its only eigenvalues �.g/˙ are quadratic algebraic numbers, the coef-
ficients of whose minimal polynomial over Q are bounded by a function in
j log�.g/j. The claim follows. (Alternatively, as the referee suggested, BC

2 =B
0
2

sits in GL.Z;NS.X/=.torsion// \ Diag.f1; f2/ which is a discrete group; here
Diag.f1; f2/ is the group of diagonal matrices with respect to the basis of
NSR.X/ given by f1, f2.) The claim implies that Im.'/ Š Z˚r for some r � 1.
(4) is proved. See [6, Theorem 3.9] for slightly different reasoning.

(5) is proved in Lemma 2.2 below while (6) is similar (cf. [8]).

This proves Theorem 1.2.

Lemma 2.2. Let X be a normal projective variety of Picard number 2. Then
BirC

2 .X/ D Bir02.X/ and hence j Aut.X/ W Aut0.X/j � j Bir2.X/ W Aut0.X/j < 1,
if one of the following conditions is satisfied.

(1) There is an R-Cartier divisorD such that, as elements in NSR.X/, D ¤ 0 and
g�D D D for all g 2 BirC

2 .X/.
(2) The canonical divisorKX is Q-Cartier, and KX ¤ 0 as element in NSR.X/.
(3) At least one extremal ray of Eff.X/, or of the movable cone of X is generated

by a rational divisor class.

Proof. We consider Case(1) (which implies Case(2)). In notation of proof of
Theorem 1.2, for g 2 BC

2 nB0
2 , we have g�f1 D �.g/f1 with �.g/ ¤ 1 , and further

�.g/˙1 are two eigenvalues of the action g� on NSR.X/ Š R˚2 corresponding to
the eigenvectors f1; f2. Since g�D D D as elements in NSR.X/, g� has three
distinct eigenvalues: 1; �.g/˙1, contradicting the fact: dim NSR.X/ D 2.
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Consider Case(3). Since every g 2 Bir2.X/ acts on both of the cones, g2

preserves each of the two extremal rays of both cones, one of which is rational,
by the assumption. Thus at least one of the eigenvalues of .g2/�j NSR.X/

is a rational
number (and also an algebraic integer), so it is 1. Now the proof for Case(1) implies
g2 2 B0

2 . So BC
2 =B

0
2 is trivial (otherwise, it is isomorphic to Z and torsion free by

Theorem 1.2). ut
Proof of Theorem 1.4.

(1) follows from Theorem 1.2, and [8, Proposition 3.1] or [6, Lemma 3.1] for the
observation that dimX is even when AutC.X/ strictly contains B0

2 .

For (2), by Lemma 2.2, we may assume that KX D 0 as element in NSR.X/.
Since X is klt, rKX � 0 for some (minimal) r > 0, by Nakayama’s abundance
theorem in the case of zero numerical dimension.

Lemma 2.4. Suppose that q.X/ D h1.X;OX/ > 0. Then Theorem 1.4(2) is true.

Proof. SinceX is klt (and hence has only rational singularities) and a complex torus
contains no rational curve, the albanese map aD albX WX ! A.X/ WD Alb.X/
is a well-defined morphism, where dimA.X/ D q.X/ > 0; see [3, Lemma
8.1]. Further, Bir.X/ descends to a regular action on A.X/, so that a is Bir.X/-
equivariant, by the universal property of albX . Let X ! Y ! A.X/ be the Stein
factorization of a W X ! A.X/. Then Bir.X/ descends to a regular action on Y .

If X ! Y is not an isomorphism, then one has that 2 D �.X/ > �.Y /, so
�.Y / D 1 and the generator of NSR.Y / gives a Bir.X/-invariant class in NSR.X/.
Thus Lemma 2.2 applies, and Theorem 1.4(2b) occurs.

IfX ! Y is an isomorphism, then the Kodaira dimensions satisfy �.X/D �.Y / �
�.a.X// � 0, by the well-known fact that every subvariety of a complex torus has
nonnegative Kodaira dimension. Hence �.X/ D �.a.X// D 0, since rKX � 0.
Thus a is surjective and has connected fibers, so it is birational (cf. [2, Theorem 1]).
Hence X Š Y D a.X/ D A.X/, and X is a complex torus. ut

We continue the proof of Theorem 1.4(2). By Lemma 2.4, we may assume that
q.X/ D 0. This together with rKX � 0 imply that X is a klt Calabi–Yau variety in
narrow sense. G0 WD Aut0.X/ is a linear algebraic group, by applying [7, Theorem
3.12] to an equivariant resolution X 0 of X with q.X 0/ D q.X/ D 0, X having only
rational singularities. The relation rKX � 0 gives rise to the global index-one cover:

OX WD Spec ˚r�1
iD0 OX.�iKX/ ! X

which is étale in codimension one, where K OX � 0. Every singularity of OX is
klt (cf. [5, Proposition 5.20]) and also Gorenstein, and hence canonical. Thus
�. OX/ D 0, so OX is non-uniruled. Hence G0 D .1/, otherwise, since the class of
KX is G0-stable, the linear algebraic groupG0 lifts to an action on OX , so OX is ruled,
a contradiction. Thus Theorem 1.4 (2b) or (2c) occurs (cf. Theorem 1.2).

This proves Theorem 1.4.
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Proof of Theorem 1.3. It follows from the arguments in [6, Theorem 1.4], Theo-
rem 1.2 and the following (replacing [6, Theorem 2.5]):

Lemma 2.6. Let .X;�/ be a klt Calabi–Yau variety in broad sense. Then both the
cones Nef.X/ and Mov.X/ are locally rational polyhedral inside the cone Big.X/
of big divisors.

Proof. LetD 2 Mov.X/\Big.X/. Since .X;�/ is klt and klt is an open condition,
replacingD by a small multiple, we may assume that .X;�CD/ is klt. By Birkar
[1, Theorem 1.2], there is a composition � W X Ü X1 of divisorial and flip
birational contractions such that .X1;�1 C D1/ is klt and KX1 C �1 C D1 is nef;
here �1 WD ���1, D1 WD ��D, and KX1 C �1 D ��.KX C �/ � 0. Since
KX C�CD � D 2 Mov.X/, � consists only of flips, so D D ��D1. By Birkar
[1, Theorem 3.9.1], .KX1 C�1/CD1 (� D1) is semi-ample (and big), so it equals
	�D2, where 	 W X1 ! X2 is a birational morphism and D2 is an R-Cartier ample
divisor. Write D2 D Ps

iD1 ciHi with ci > 0 and Hi ample and Cartier. Then
D � Ps

iD1 ci��	�Hi with ��	�Hi movable and Cartier. We are done (letting
� D id when D 2 Nef.X/ \ Big.X/). Alternatively, as the referee suggested, in
the case when D2 lies on the boundary of the movable cone, fix a rational effective
divisorE close toD2 outside the movable cone—but still inside the big cone. Then,
for " 2 Q�0 small enough, "E � KX C�C "E is klt and a rational divisor. Taking
H an ample divisor, the rationality theorem in [5, Theorem 3.5, and Complement
3.6] shows that the ray spanned by D2 is rational. ut
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Rational Curves with One Place at Infinity

Abdallah Assi

Abstract Let K be an algebraically closed field of characteristic zero. Given a
polynomial f .x; y/ 2 KŒx; y� with one place at infinity, we prove that either f is
equivalent to a coordinate, or the family .f�/�2K has at most two rational elements.
When .f�/�2K has two rational elements, we give a description of the singularities
of these two elements.

2000 Mathematics Subject Classification: 14H20

1 Introduction and Notations

Let K be an algebraically closed field of characteristic zero, and let f D yn C
a1.x/y

n�1 C 	 	 	 C an.x/ be a monic reduced polynomial of KŒx�Œy�. For all � 2 K,
we set f� D f ��. Hence we get a family of polynomials .f�/�2K. We shall suppose
that f� is a reduced polynomial for all � 2 K. Let g be a nonzero polynomial of
KŒx�Œy�. We define the intersection multiplicity of f with g, denoted int.f; g/, to

be the rank of the K-vector space
KŒx�Œy�

.f; g/
. Note that int.f; g/ is also the x-degree

of the y-resultant of f and g. Let p D .a; b/ 2 V.f / \ V.g/, where V denotes
the set of zeros in K2. By setting Nx D x � a; Ny D y � b, we may assume that
p D .0; 0/. We define the intersection multiplicity of f with g at p, denoted
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intp.f; g/, to be the rank of the K-vector space
KŒŒx; y��

.f; g/
. Note that int.f; g/ D

P
p2V.f /\V.g/ intp.f; g/. We define the local Milnor number of f at p, denoted


p.f /, to be the intersection multiplicity intp.fx; fy/, where fx (resp. fy) denotes
the x-derivative (resp. the y-derivative) of f . We set 
.f / D P

p2V.f / 
p.f / and

 D int.fx; fy/ and we recall that 
 D P

�2K 
.f�/ D P
�2K

P
p2V.f�/ 
p.f�/.

Let q be a point in V.f / and assume after possibly a change of variables that
q D .0; 0/. The number of places of f at q, denoted rq , is defined to be the number
of irreducible components of f in KŒŒx; y��.

Assume, after possibly a change of variables, that degxai .x/ < i for all
i D 1; : : : ; n (where degx denotes the x-degree). In particular f has one point

at infinity defined by y D 0. Let hf .x; y; u/ D unf .
x

u
;
y

u
/. The local equation of

f at infinity is nothing but F.y; u/ D hf .1; y; u/ 2 KŒŒu��Œy�. We define the Milnor

number of f at infinity, denoted
1, to be the rank of the K-vector space
KŒŒu��Œy�

.Fu; Fy/
.

We define the number of places at infinity of f , denoted r1, to be the number of
irreducible components of F.y; u/ in KŒŒu��Œy�.

2 Curves with One Place at Infinity

Let the notations be as in Sect. 1, in particular f D yn C a1.x/y
n�1 C 	 	 	 C an.x/

is a monic reduced polynomial of KŒx; y�. Let R.x; �/ D P0.�/x
i C 	 	 	 C Pi.�/

be the y-resultant of f�; fy . We say that .f�/�2K is d -regular (discriminant-regular)
if P0.�/ 2 K

�. Note that .f�/�2K is d -regular if and only if int.f�; fy/ D i for
all � 2 K. Suppose that .f�/�2K is not d -regular, and let �1; : : : ; �s be the set of
roots of P0.�/. We set I.f / D f�1; : : : ; �sg, and we call I.f / the set of d -irregular
values of .f�/�2K. Let Af D Ps

kD1.i � int.f ��k; fy//. For all � 2 K� I.f /, we
have int.f�; fy/ D 
C n � 1C Af , where 
 D int.fx; fy/ (see [4, 5]).

Note thatAf D P
�2K.i � int.f�; fy//, in particular .f�/�2K, is d -regular if and

only if Af D 0. On the other hand, given a 2 K, if int.fa; fy/ D 
C n � 1, then
either .f�/�2K is d -regular or I.f / D fag.

Assume that degxak.x/ < k for all k D 1; : : : ; n, in such a way that y D 0 is the
only point at infinity of f .

Proposition 2.1 (see [1–3]). Let the notations be as above and assume that f
has one place at infinity, i.e., the projective curve defined by the homogeneous

equation hf .x; y; u/ D f .
x

u
;
y

u
/un is analytically irreducible at the point at infinity

.1 W 0 W 0/. We have the following

• For all � 2 K; f � � has one place at infinity.
• The family .f�/�2K is d -regular. In particular, int.f�; fy/ D 
 C n � 1 for all
� 2 K.

• If 
 D 0, then degxan.x/ divides n and there exists an automorphism � of K2

such that �.f / is a coordinate of K2.
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Let the notations be as above. If ıp (resp. ı1) denotes the order of the conductor
of f at p 2 V.f / (resp. at the point at infinity), then 2ıp D 
p C rp � 1 (resp.
2ı1 D 
1 C r1 � 1) (see [7]). Assume that f is an irreducible polynomial, and
let g.f / be the genus of the normalized curve of V.f /. By the genus formula we
have:

2g.f /C
0
@ X
p2V.f /

2ıp

1
AC 2ı1 D .n � 1/.n � 2/:

Now int.f; fy/ D 
 C n � 1 C A.f /, where A.f / is a nonnegative integer and
A.f / D 0 if and only if .f�/�2K has at most one d -irregular value at infinity.
On the other hand, the local intersection multiplicity of f with fy at the point at
infinity is 
1 C n � 1. In particular 
 C 
1 D .n � 1/.n � 2/, consequently, if

.f / D P

p2V.f / 
p , and 
.f / D 
 � 
.f /, then

2g.f /C
0
@ X
p2V.f /

2ıp

1
AC 2ı1 D 
.f /C 
.f /C 
1 CA.f /:

We finally get:

2g.f /C
X

p2V.f /
.rp � 1/C r1 � 1 D 
.f /C A.f / (**)

in particular g.f / D P
p2V.f /.rp � 1/ C r1 � 1 D 0 if and only if A.f / D


.f / D 0. Roughly speaking, f is a rational unibranch curve (at infinity as well
as at finite distance) if and only if the pencil .f�/�2K has at most one d -irregular
value at infinity and for all � 6D 0; f� is a smooth curve. Under these hypotheses,
Lin–Zaidenberg Theorem implies that f is equivalent to a quasihomogeneous curve
Y a�Xb with gcd.a; b/ D 1 (see [6]). Note that these hypotheses are satisfied when
r1 � 1 D 0 D 
. Hence we get the third assertion of Proposition 2.1. since in this
case, min.a; b/ D 1 and f is equivalent to a coordinate

3 Rational One Place Curves

Let f D yn C a1.x/y
n�1 C 	 	 	 C an.x/ be a polynomial of KŒx; y� and let the

notations be as in Sects. 1 and 2. Assume that f has one place at infinity, i.e., r1 D
1. If f is rational, then it follows from the equality (**) of Sect. 2 that

P
p2V.f /.rp�

1/ D 
.f /. We shall prove the following:

Theorem 3.1. Assume that f has one place at infinity and let .f�/�2K be the pencil
of curves defined by f . If f is rational, then exactly one of the following holds:
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i) For all � 2 K, f� is rational, and �.f / is a coordinate of K2 for some
automorphism � of K2.

ii) The polynomial f �� is rational for at most one �1 6D 0, i.e., the pencil .f�/�2K
has at most two rational elements.

We shall prove first the following Lemma:

Lemma 3.2. Let H D yN C a1.x/y
N�1 C 	 	 	 C aN .x/ be a nonzero reduced

polynomial of KŒŒx��Œy�, and let H D H1 : : : Hr be the decomposition of H into
irreducible components of KŒŒx��Œy�. Let 
.0;0/ denotes the Milnor number of H

at .0; 0/ (i.e., 
.0;0/ is the rank of the K-vector space
KŒŒx��Œy�

.Hx;Hy/
/. We have the

following:

i) 
.0;0/ � r � 1.
ii) If r � 3, then 
.0;0/ > r � 1.

iii) If r D 2 and 
.0;0/ D r � 1 D 1, then .H1;H2/ is a local system of coordinates
at .0; 0/.

Proof. We have int.0;0/.H;Hy/ D 
.0;0/ CN � 1, but

int.0;0/.H;Hy/ D
rX
iD1

int.Hi ;Hiy /C 2
X
i 6Dj

int.0;0/.Hi ;Hj /

D
rX
iD1

intŒ.Hix ;Hiy /C degyHi � 1�C 2
X
i 6Dj

int.0;0/.Hi ;Hj /

hence


.0;0/ CN � 1 D
 

rX
iD1

int.Hix ;Hiy /

!
CN � r C 2

X
i 6Dj

int.0;0/.Hi ;Hj /:

Finally we have 
.0;0/ D �Pr
iD1 int.Hix ;Hiy /

	 � r C 1C 2
P

i 6Dj int.0;0/.Hi ;Hj /.
Now for all 1 � i � r , int.0;0/.Hix ;Hiy / � 0 and

P
i 6Dj int.0;0/.Hi ;Hj / � C r

2 D
r.r � 1/

2
, hence
.0;0/ � r.r�1/�.r�1/ D .r�1/2 and (i), (ii) follow immediately.

Assume that r D 2. If 
.0;0/ D r�1, then int.0;0/.H1x ;H1y / D int.0;0/.H2x ;H2y / D
0 and int.0;0/.H1;H2/ D 1. This implies (iii) ut
Proof of Theorem 3.1. If 
.f / D 0, then 
 D 0 and by Proposition 2.1., �.f / is
a coordinate of K2 for some automorphism � of K2. Assume that 
.f / > 0 and
let p1; : : : ; ps be the set of singular points of V.f /. Let ri denotes the number of
places of f at pi for all 1 � i � s. By Lemma 3.2., for all 1 � i � s, 
pi � ri � 1,
on the other hand, equality (**) of Sect. 2 implies that

Ps
iD1.
pi C ri � 1/ D 
, in

particular 
 � Ps
iD1 2
pi D 2
.f /, hence 
.f / � 


2
. If f�1 is rational for some
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�1 6D 0, then the same argument as above implies that 
.f�1/ � 


2
. This is possible

only for at most one �1 6D 0, hence (ii) follows immediately. ut
The following proposition characterizes the case where the pencil .f�/�2K has
exactly two rational elements.

Proposition 3.3. Let the notations be as in Theorem 3.1 and assume that the pencil
.f�/�2K has exactly two rational elements f and f�1 . We have 
.f / D 
.f�1/ D



2
, furthermore, given a singular point p of V.f / (resp. V.f�1/), f (resp. f�1 ) has

two places at p and 
p.f / D 1 (resp. 
p.f�1/ D 1). In particular, f (resp. f�1 )

has exactly



2
singular points.

Proof. It follows from the proof of Theorem 3.1. that 
.f / � 


2
and that 
.f�1/ �




2
. Clearly this holds only if 
.f / D 
.f�1/ D 


2
. Let p be a singular point of

V.f /. We have 
p D rp � 1, hence, by Lemma 3.2(ii), rp � 2. But 
p > 0, hence

rp D 2 and 
p D 1. This implies that f has



2
singular points. Clearly the same

holds for f�1 . ut
The results above imply the following:

Proposition 3.4. Assume that f has one place at infinity and let .f�/�2K be the
pencil of polynomials defined by f . Assume that f is a rational polynomial and
that 
.f / > 0. Let p1; : : : ; ps be the set of singular points of f . We have the
following

i) If rpi D 1 (resp. rpi � 3) for some 1 � i � s, then f is the only rational point
of the pencil .f�/�.

ii) If rpi D 2 for all 1 � i � s but s 6D 


2
, then f is the only rational element of

the pencil .f�/�.

Proof. This is an immediate application of Theorem 3.1. and Proposition 3.3. ut
Proposition 3.5. Let f 6D g be two monic polynomials of KŒx�Œy� and assume that
f; g are parameterized by polynomials of KŒt �. Under these hypotheses, exactly one
of the following conditions holds:

i) f D g C �1 for some �1 2 K�, and f is equivalent to a coordinate, i.e., �.f /
is a coordinate of K2 for some automorphism � of K2.

ii) f D g C �1 for some �1 2 K�, 
.f / D 
.g/ D int.fx; fy/

2
> 0, and f

(resp. g) has
int.fx; fy/

2
singular points with two places at each of them.

iii) int.f; g/ > 0, i.e., f; g meet in a least one point of K2.
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Proof. The polynomial f (resp. g) has one place at infinity. If int.f; g/ D 0, then
f D ag C �1; a; �1 2 K�. Since f and g are monic, then a D 1. Hence g and
g C �1 are two rational elements of the pencil .f�/�2K. Now apply Theorem 3.1.
and Proposition 3.3. ut
Remark 3.6. Let .x.t/; y.t// D .t3�3t; t2�2/ and .X.s/; Y.s// D .s3C3s; s2C2/,
and let f .x; y/ D rest .x�x.t/; y�y.t// (resp. g.x; y/ D ress.x�X.s/; y�Y.s//).
We have .x.t/ �X.s/; y.t/ � Y.s// D KŒt; s�, hence int.f; g/ D 0. In fact,

f .x; y/ D y3 � x2 � 3y C 2 D �x2 C .y C 2/.y � 1/2

and

g.x; y/ D y3 � x2 � 3y � 2 D �x2 C .y � 2/.y C 1/2;

hence f D g C 4. The genus of a generic element of the family .f�/� is 1, and
f; f � 4 are the two rational elements of this family. Note that 
 D 2 and 
.f / D

.f � 4/ D 1. This example shows that the bound of Theorem 3.1. is sharp.

Remark 3.7. Let .f�/�2K be a pencil of polynomials of KŒx; y� and assume that
f � � is irreducible for all � 2 K. If the generic element of the pencil is rational,
then for all � 2 K, f � � is rational and irreducible. In this case, by Neumann and
Norbury [8], f has one place at infinity and �.f / is a coordinate of K2 for some
automorphism � of K. Assume that the genus of the generic element of the pencil
.f�/�2K is greater than or equal to one. Similarly to the case of curves with one
place at infinity, it is natural to address the following question:

Question: Is there an integer c 2 N such that, given a pencil of irreducible
polynomials .f�/�2K, if 
 C Af > 0, then the number of rational elements in
the pencil is bounded by c?
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The Jacobian Conjecture, Together with Specht
and Burnside-Type Problems

Alexei Belov, Leonid Bokut, Louis Rowen, and Jie-Tai Yu

Dedicated to the memory of A.V. Yagzhev

Abstract We explore an approach to the celebrated Jacobian Conjecture by
means of identities of algebras, initiated by the brilliant deceased mathematician,
Alexander Vladimirovich Yagzhev (1951–2001), whose works have only been
partially published. This approach also indicates some very close connections
between mathematical physics, universal algebra, and automorphisms of polyno-
mial algebras.

2010 Mathematics Subject Classification: Primary 13F20, 14E08, 14R15, 17A30,
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1 Introduction

This paper explores an approach to polynomial mappings and the Jacobian
Conjecture and related questions, initiated by A.V. Yagzhev [95–105] whereby
these questions are translated to identities of algebras, leading to a solution in [103]
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of the version of the Jacobian Conjecture for free associative algebras. (The first
version, for two generators, was obtained by Dicks and Levin [27, 28], and the
full version by Schofield [69].) We start by laying out the basic framework in this
introduction. Next, we set up Yagzhev’s correspondence to algebras in Sect. 2,
leading to the basic notions of weak nilpotence and Engel type. In Sect. 3 we
discuss the Jacobian Conjecture in the context of various varieties, including the
free associative algebra.

Given any polynomial endomorphism � of the n-dimensional affine space Ank D
Spec kŒx1; : : : ; xn� over a field k, we define its Jacobian matrix to be the matrix

�
@��.xi /=@xj

	
1�i;j�n :

The determinant of the Jacobian matrix is called the Jacobian of �. The celebrated
Jacobian Conjecture JCn in dimension n � 1 asserts that for any field k
of characteristic zero, any polynomial endomorphism � of Ank having Jacobian 1
is an automorphism. Equivalently, one can say that � preserves the standard top-
degree differential form dx1 ^ 	 	 	 ^ dxn 2 �n.Ank/. References to this well-known
problem and related questions can be found in [5,35,48]. By the Lefschetz principle
it is sufficient to consider the case k D C; obviously, JCn implies JCm if n > m.
The conjecture JCn is obviously true in the case n D 1, and it is open for n � 2.

The Jacobian Conjecture, denoted as JC, is the conjunction of the conjectures
JCn for all finite n. The Jacobian Conjecture has many reformulations (such as the
Kernel Conjecture and the Image Conjecture, cf. [35, 36, 39, 108, 109] for details)
and is closely related to questions concerning quantization. It is stably equivalent to
the following conjecture of Dixmier, concerning automorphisms of the Weyl algebra
Wn, otherwise known as the quantum affine algebra.

Dixmier Conjecture DCn: Does End.Wn/ D Aut.Wn/?
The implication DCn ! JCn is well known, and the inverse implication JC2n !

DCn was recently obtained independently by Tsuchimoto [80] (using p-curvature)
and Belov and Kontsevich [14, 15] (using Poisson brackets on the center of the
Weyl algebra). Bavula [10] has obtained a shorter proof, and also obtained a positive
solution of an analog of the Dixmier Conjecture for integro differential operators,
cf. [8]. He also proved that every monomorphism of the Lie algebra of triangular
polynomial derivations is an automorphism [9] (an analog of Dixmier’s conjecture).

The Jacobian Conjecture is closely related to many questions of affine alge-
braic geometry concerning affine space, such as the Cancellation Conjecture (see
Sect. 3.4). If we replace the variety of commutative associative algebras (and the
accompanying affine spaces) by an arbitrary algebraic variety,1 one easily gets a
counterexample to the JC. So, strategically these questions deal with some specific

1Algebraic geometers use the word variety, roughly speaking, for objects whose local structure is
obtained from the solution of system of algebraic equations. In the framework of universal algebra,
this notion is used for subcategories of algebras defined by a given set of identities. A deep analog
of these notions is given in [12].
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properties of affine space which we do not yet understand, and for which we do not
have the appropriate formulation apart from these very difficult questions.

It seems that these properties do indicate some sort of quantization. From that
perspective, noncommutative analogs of these problems (in particular, the Jacobian
Conjecture and the analog of the Cancellation Conjecture) become interesting for
free associative algebras, and more generally, for arbitrary varieties of algebras.

We work in the language of universal algebra, in which an algebra is defined
in terms of a set of operators, called its signature. This approach enhances the
investigation of the Yagzhev correspondence between endomorphisms and algebras.
We work with deformations and the so-called packing properties to be introduced in
Sects. 3 and 3.2.1, which denote specific noncommutative phenomena which enable
one to solve the JC for the free associative algebra.

From the viewpoint of universal algebra, the Jacobian conjecture becomes a
problem of “Burnside type,” by which we mean the question of whether a given
finitely generated algebraic structure satisfying given periodicity conditions is
necessarily finite, cf. Zelmanov [107]. Burnside originally posed the question of
the finiteness of a finitely generated group satisfying the identity xn D 1. (For odd
n � 661; counterexamples were found by Novikov and Adian, and quite recently
Adian reduced the estimate from 661 to 101.) Another class of counterexamples
was discovered by Ol’shanskij [60]. Kurosh posed the question of local finiteness
of algebras whose elements are algebraic over the base field. For algebraicity of
bounded degree, the question has a positive solution, but otherwise there are the
Golod–Shafarevich counterexamples.

Burnside-type problems play an important role in algebra. Their solution in the
associative case is closely tied to Specht’s problem of whether any set of polynomial
identities can be deduced from a finite subset. The JC can be formulated in the
context of whether one system of identities implies another, which also relates to
Specht’s problem.

In the Lie algebra case there is a similar notion. An element x 2 L is called Engel
of degree n if Œ: : : ŒŒy; x�; x� : : : ; x� D 0 for any y in the Lie algebra L. Zelmanov’s
result that any finitely generated Lie algebra of bounded Engel degree is nilpotent
yielded his solution of the Restricted Burnside Problem for groups. Yagzhev
introduced the notion of Engelian and weakly nilpotent algebras of arbitrary
signature (see Definitions 5 and 4), and proved that the JC is equivalent to the
question of weak nilpotence of algebras of Engel type satisfying a system of Capelli
identities, thereby showing the relation of the JC with problems of Burnside type.

A Negative Approach. Let us mention a way of constructing counterexamples.
This approach, developed by Gizatullin, Kulikov, Shafarevich, Vitushkin, and
others, is related to decomposing polynomial mappings into the composition of
�-processes [41, 48, 70, 89–91]. It allows one to solve some polynomial auto-
morphism problems, including tameness problems, the most famous of which is
Nagata’s Problem concerning the wildness of Nagata’s automorphism

.x; y; z/ 7! .x � 2.xz C y2/y � .xz C y2/2z; y C .xz C y2/z; z/;
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cf. [57]. Its solution by Shestakov and Umirbaev [73] is the major advance in this
area in the last decade. The Nagata automorphism can be constructed as a product
of automorphisms of K.z/Œx; y�, some of them having non-polynomial coefficients
(in K.z/). The following theorem of Abhyankar–Moh–Suzuki [2, 53, 78] can be
viewed in this context:

AMS Theorem. If f and g are polynomials in KŒz� of degrees n and m for
whichKŒf; g� D KŒz�, then n dividesm or m divides n.

Degree estimate theorems are polynomial analogs to Liouville’s approximation
theorem in algebraic number theory [23,50,51,54]. T. Kishimoto has proposed using
a program of Sarkisov, in particular for Nagata’s Problem. Although difficulties
remain in applying “�-processes” (decomposition of birational mappings into
standard blow-up operations) to the affine case, these may provide new insight. If we
consider affine transformations of the plane, we have relatively simple singularities
at infinity, although for bigger dimensions they can be more complicated. Blow-
ups provide some understanding of birational mappings with singularities. Relevant
information may be provided in the affine case. The paper [21] contains some deep
considerations about singularities.

2 The Jacobian Conjecture and Burnside-Type Problems,
via Algebras

In this section we translate the Jacobian Conjecture to the language of algebras and
their identities. This can be done at two levels: at the level of the algebra obtained
from a polynomial mapping, leading to the notion of weak nilpotence and Yagzhev
algebras and at the level of the differential and the algebra arising from the Jacobian,
leading to the notion of Engel type. The Jacobian Conjecture is the link between
these two notions.

2.1 The Yagzhev Correspondence

2.1.1 Polynomial Mappings in Universal Algebra

Yagzhev’s approach is to pass from algebraic geometry to universal algebra.
Accordingly, we work in the framework of a universal algebraA having signature�.
A.m/ denotes A � 	 	 	 � A, taken m times.

We fix a commutative, associative base ring C , and consider C -modules
equipped with extra operators A.m/ ! A; which we call m-ary. Often one of these
operators will be (binary) multiplication. These operators will be multilinear, i.e.,
linear with respect to each argument. Thus, we can define the degree of an operator
to be its number of arguments. We say an operator ‰.x1; : : : ; xm/ is symmetric if
‰.x1; : : : ; xm/ D ‰.x�.1/; : : : ; x�.m// for all permutations � .
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Definition 1. A string of operators is defined inductively. Any operator
‰.x1; : : : ; xm/ is a string of degree m, and if sj are strings of degree dj ; then
‰.s1; : : : ; sm/ is a string of degree

Pm
jD1 dj . A mapping

˛ W A.m/ ! A

is called polynomial if it can be expressed as a sum of strings of operators of the
algebra A. The degree of the mapping is the maximal length of these strings.

Example. Suppose an algebra A has two extra operators: a binary operator
˛.x; y/ and a tertiary operator ˇ.x; y; z/. The mapping F W A ! A given by
x ! xC˛.x; x/Cˇ.˛.x; x/; x; x/ is a polynomial mapping ofA, having degree 4.
Note that if A is finite dimensional as a vector space, not every polynomial mapping
of A as an affine space is a polynomial mapping of A as an algebra.

2.1.2 Yagzhev’s Correspondence Between Polynomial Mappings
and Algebras

Here we associate an algebraic structure with each polynomial map. Let V be an
n-dimensional vector space over the field k, and F W V ! V be a polynomial
mapping of degree m. Replacing F by the composite TF, where T is a translation
such that TF.0/ D 0, we may assume that F.0/ D 0. Given a base fEeigniD1 of V , and
for an element v of V written uniquely as a sum

P
xi Eei , for xi 2 k, the coefficients

of Eei in F.v/ are (commutative) polynomials in the xi . Then F can be written in the
following form:

xi 7! F0i .Ex/C F1i .Ex/C 	 	 	 C Fmi .Ex/

where each F˛i .Ex/ is a homogeneous form of degree ˛, i.e.,

F˛i .Ex/ D
X

j1C			CjnD˛
�J x

j1
1 	 	 	xjnn ;

with F0i D 0 for all i , and F1i .Ex/ D Pn
kD1 
kixk .

We are interested in invertible mappings that have a nonsingular Jacobian
matrix .
ij/. In particular, this matrix is nondegenerate at the origin. In this case
det.
ij/ ¤ 0, and by composing F with an affine transformation, we arrive at
the situation for which 
ki D ıki. Thus, the mapping F may be taken to have the
following form:

xi ! xi �
mX
kD2

Fki: (1)
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Suppose we have a mapping as in (1). Then the Jacobi matrix can be written as
E�G1�	 	 	�Gm�1 whereGi is an n�nmatrix with entries which are homogeneous
polynomials of degree i . If the Jacobian is 1, then it is invertible with inverse a
polynomial matrix (of homogeneous degree at most .n � 1/.m � 1/, obtained via
the adjoint matrix).

If we write the inverse as a formal power series, we compare the homogeneous
components and get:

X
jimjiDs

MJ D 0; (2)

where MJ is the sum of products a˛1a˛q in which the factor aj occurs mj times,
and J denotes the multi-index .j1; : : : ; jq/.

Yagzhev considered the cubic homogeneous mapping Ex ! Ex C .Ex; Ex; Ex/;
whereby the Jacobian matrix becomes E �G3: We return to this case in Remark 1.
The slightly more general approach given here presents the Yagzhev correspondence
more clearly and also provides tools for investigating deformations and packing
properties (see Sect. 3.5.1) i.e., when the mapping has the form

xi ! xi C Pi.x1; : : : ; xn/I i D 1; : : : ; n;

with Pi cubic homogenous polynomials), but the more general situation of arbitrary
degree.

For any `, the set of (vector valued) forms fF`;i gniD1 can be interpreted as a
homogeneous mapping ˆ` W V ! V of degree `. When Char.k/ does not divide `,
we take instead the polarization of this mapping, i.e. the multilinear symmetric
mapping

‰` W V ˝` ! V

such that

.F`;i .x1/; : : : ; F`;i .xn// D ‰`.Ex; : : : ; Ex/ 	 `Š

Then (1) can be rewritten as

Ex ! Ex �
mX
`D2

‰`.Ex; : : : ; Ex/: (3)

We define the algebra .A; f‰`g/; where A is the vector space V and the ‰` are
viewed as operators A` ! A:

Definition 2. The Yagzhev correspondence is the correspondence from the poly-
nomial mapping .V; F / to the algebra .A; f‰`g/:
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2.2 Translation of the Invertibility Condition to the Language
of Identities

The next step is to bring in algebraic varieties, defined in terms of identities.

Definition 3. A polynomial identity (PI) of A is a polynomial mapping of A; all of
whose values are identically zero.

The algebraic variety generated by an algebra A, denoted as Var.A/, is the class
of all algebras satisfying the same PIs as A.

Now we come to a crucial idea of Yagzhev:
The invertibility of F and the invertibility of the Jacobian of F can be expressed

via (2) in the language of polynomial identities.
Namely, let y D F.x/ D x �Pm

`D2 ‰`.x/. Then

F�1.x/ D
X
t

t .x/; (4)

where each t is a term, a formal expression in the mappings f‰`gm`D2 and the
symbol x. Note that the expressions ‰2.x;‰3.x; x; x// and ‰2.‰3.x; x; x/; x/ are
different although they represent same element of the algebra. Denote by jt j the
number of occurrences of variables, including multiplicity, which are included in t .

The invertibility of F means that, for all q � q0,

X
jt jDq

t.a/ D 0; 8a 2 A: (5)

Thus we have translated invertibility of the mapping F to the language of
identities. (Yagzhev had an analogous formula, where the terms only involved‰3.)

Definition 4. An element a 2 A is called nilpotent of index � n if

M.a; a; : : : ; a/ D 0

for each monomialM.x1; x2; : : : / of degree � n. The algebra A is weakly nilpotent
if each element of A is nilpotent. A is weakly nilpotent of class k if each element of
A is nilpotent of index k. (Some authors use the terminology index instead of class.)
Equation (5) means A is weakly nilpotent.

To stress this fundamental notion of Yagzhev, we define a Yagzhev algebra of
order q0 to be a weakly nilpotent algebra, i.e., satisfying the identities (5), also
called the system of Yagzhev identities arising from F .

Summarizing, we get the following fundamental translation from conditions on
the endomorphism F to identities of algebras.
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Theorem 1. The endomorphism F is invertible if and only if the corresponding
algebra is a Yagzhev algebra of high enough order.

2.2.1 Algebras of Engel Type

The analogous procedure can be carried out for the differential mapping. We recall
that ‰` is a symmetric multilinear mapping of degree `. We denote the mapping
y ! ‰`.y; x; : : : ; x/ as Ad`�1.x/.

Definition 5. An algebra A is of Engel type s if it satisfies a system of identities

X
`m`Ds

X
˛1C			C˛qDm`

Ad˛1 .x/ 	 	 	 Ad˛q .x/ D 0: (6)

A is of Engel type if A has Engel type s for some s.

Theorem 2. The endomorphism F has Jacobian 1 if and only if the corresponding
algebra has Engel type s for some s.

Proof. Let x0 D x C dx. Then

‰`.x
0/ D ‰`.x/C `‰`.dx; x; : : : ; x/

C forms containing more than one occurrence of dx:
(7)

Hence the differential of the mapping

F W Ex 7! Ex �
mX
`D2

‰`.Ex; : : : ; Ex/

is
 
E �

mX
`D2

`Ad`�1.x/
!

	 dx

The identities (2) are equivalent to the system of identities (6) in the signature� D
.‰2; : : : ; ‰m/, taking a˛j D Ad˛j and mj D deg‰` � 1.

Thus, we have reformulated the condition of invertibility of the Jacobian in the
language of identities.

As explained in [35], it is well known from [5, 98] that the Jacobian Conjecture
can be reduced to the cubic homogeneous case; i.e., it is enough to consider
mappings of type

x ! x C‰3.x; x; x/:
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In this case the Jacobian assumption is equivalent to the Engel condition—
nilpotence of the mapping Ad3.x/Œy� (i.e., the mapping y ! .y; x; x/). Invertibility,
considered in [5], is equivalent to weak nilpotence, i.e., to the identity

P
jt jDk t D 0

holding for all sufficiently large k.

Remark 1. In the cubic homogeneous case, j D 1, ˛j D 2 and mj D s, and we
define the linear map

Adxx W y ! .x; x; y/

and the index set Tj � f1; : : : ; qg such that i 2 Tj if and only if ˛i D j .
Then the equality (6) has the following form:

Ads=2xx D 0:

Thus, for a ternary symmetric algebra, Engel type means that the operators Adxx for
all x are nilpotent. In other words, the mapping

Ad3.x/ W y ! .x; x; y/

is nilpotent. Yagzhev called this the Engel condition. (For Lie algebras the nilpo-
tence of the operator Adx W y ! .x; y/ is the usual Engel condition. Here we have
a generalization for arbitrary signature.)

Here are Yagzhev’s original definitions, for edification. A binary algebra A
is Engelian if for any element a 2 A the subalgebra hRa;Lai of vector space
endomorphisms of A generated by the left multiplication operator La and the right
multiplication operator Ra is nilpotent, and weakly Engelian if for any element
a 2 A the operator Ra CLa is nilpotent.

This leads us to the Generalized Jacobian Conjecture:

Conjecture. Let A be an algebra with symmetric k-linear operators ‰`, for ` D
1; : : : ; m. In any variety of Engel type, A is a Yagzhev algebra.

By Theorem 2, this conjecture would yield the Jacobian Conjecture.

2.2.2 The Case of Binary Algebras

When A is a binary algebra, Engel type means that the left and right multiplication
mappings are both nilpotent.

A well-known result of Wang [5] shows that the Jacobian Conjecture holds for
quadratic mappings

Ex ! Ex C‰2.Ex; Ex/:
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If two different points .x1; : : : ; xn/ and .y1; : : : ; yn/ of an affine space are
mapped to the same point by .f1; : : : ; fn/, then the fact that the vertex of a parabola
is in the middle of the interval whose endpoints are at the roots shows that all
fi .Ex/ have gradients at this midpoint P D .Ex C Ey/=2 perpendicular to the line
segment ŒEx; Ey�. Hence the Jacobian is zero at the midpoint P . This fact holds in any
characteristic ¤ 2.

In Sect. 2.3 we prove the following theorem of Yagzhev, cf. Definition 6 below.

Theorem 3 (Yagzhev). Every symmetric binary Engel-type algebra of order k
satisfying the system of Capelli identities of order n is weakly nilpotent, of weak
nilpotence index bounded by some function F.k; n/.

Remark 2. Yagzhev formulates his theorem in the following way:
Every binary weakly Engel algebra of order k satisfying the system of Capelli

identities of order n is weakly nilpotent, of index bounded by some functionF.k; n/.
We obtain this reformulation, by replacing the algebraA by the algebra AC with

multiplication given by .a; b/ D ab C ba.

The following problems may help us understand the situation.

Problem. Obtain a straightforward proof of this theorem and deduce from it the
Jacobian Conjecture for quadratic mappings.

Problem (Generalized Jacobian Conjecture for Quadratic Mappings).
Is every symmetric binary algebra of Engel type k, a Yagzhev algebra?

2.2.3 The Case of Ternary Algebras

As we have observed, Yagzhev reduced the Jacobian Conjecture over a field of
characteristic zero to the question:

Is every finite dimensional ternary Engel algebra a Yagzhev algebra?
Druźkowski [33, 34] reduced this to the case when all cubic forms ‰3i are cubes
of linear forms. Van den Essen and his school reduced the JC to the symmetric
case; see [37, 38] for details. Bass et al. [5] use other methods including inversions.
Yagzhev’s approach matches that of [5], but using identities instead.

2.2.4 An Example in Nonzero Characteristic of an Engel Algebra
That Is Not a Yagzhev Algebra

Now we give an example, over an arbitrary field k of characteristic p > 3, of a finite
dimensional Engel algebra that is not a Yagzhev algebra, i.e., not weakly nilpotent.
This means that the situation for binary algebras differs intrinsically from that for
ternary algebras, and it would be worthwhile to understand why.

Theorem 4. If Char.k/ D p > 3, then there exists a finite dimensional k-algebra
that is Engel but not weakly nilpotent.
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Proof. Consider the noninvertible mapping F W kŒx� ! kŒx� with Jacobian 1:

F W x ! x C xp:

We introduce new commuting indeterminates fyi gniD1 and extend this mapping to
kŒx; y1; : : : ; yn� by sending yi 7! yi . If n is big enough, then it is possible to find
tame automorphisms G1 and G2 such that G1 ı F ı G2 is a cubic mapping Ex !
Ex C‰3.Ex/, as follows:

Suppose we have a mapping

F W xi ! P.x/CM

where M D t1t2t3t4 is a monomial of degree at least 4. Introduce two new
commuting indeterminates z; y and take F.z/ D z, F.y/ D y.

Define the mapping G1 via G1.z/ D z C t1t2, G1.y/ D y C t3t4 with G1 fixing
all other indeterminates; define G2 via G2.x/ D x � yz with G2 fixing all other
indeterminates.

The composite mapping G1 ı F ı G2 sends x to P.x/ � yz � yt1t2 � zt3t4, y to
y C t3t4, z to z C t1t2 and agrees with F on all other indeterminates.

Note that we have removed the monomial M D t1t2t3t4 from the image of F ,
but instead have obtained various monomials of smaller degree (t1t2 , t3t4, zy, zt3t4,
yt1t2). It is easy to see that this process terminates.

Our new mapping H.x/ D x C ‰2.x/ C ‰3.x/ is noninvertible and has
Jacobian 1. Consider its blowup

R W x 7! x C T 2y C T‰2.x/; y 7! y �‰3.x/; T 7! T:

This mapping R is invertible if and only if the initial mapping is invertible, and
has Jacobian 1 if and only if the initial mapping has Jacobian 1, by [98, Lemma
2]. This mapping is also cubic homogeneous. The corresponding ternary algebra is
Engel, but not weakly nilpotent. ut

This example shows that a direct combinatorial approach to the Jacobian Con-
jecture encounters difficulties, and in working with related Burnside-type problems
(in the sense of Zelmanov [107], dealing with nilpotence properties of Engel
algebras, as indicated in the introduction), one should take into account specific
properties arising in characteristic zero.

Definition 1. An algebra A is nilpotent of class � n if M.a1; a2; : : : / D 0 for
each monomialM.x1; x2; : : : / of degree � n. An ideal I of A is strongly nilpotent
of class � n if M.a1; a2; : : : / D 0 for each monomial M.x1; x2; : : : / in which
indeterminates occurring in strings of total degree � n have been substituted to
elements of I .

Although the notions of nilpotent and strongly nilpotent coincide in the associa-
tive case, they differ for ideals of nonassociative algebras. For example, consider
the following algebra suggested by Shestakov: A is the algebra generated by a; b; z
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satisfying the relations a2 D b, bz D a and all other products 0. Then I D Fa C Fb
is nilpotent as a subalgebra, satisfying I 3 D 0 but not strongly nilpotent (as an
ideal), since

b D ..a.bz//z/a ¤ 0;

and one can continue indefinitely in this vein. Also, [45] contains an example of a
finite dimensional non-associative algebra without any ideal which is maximal with
respect to being nilpotent as a subalgebra.

In connection with the Generalized Jacobian Conjecture in characteristic 0, it fol-
lows from results of Yagzhev [105], also cf. [42], that there exists a 20-dimensional
Engel algebra over Q, not weakly nilpotent, satisfying the identities

x2y D �yx2; ...yx2/x2/x2/x2 D 0;

.xy C yx/y D 2y2x; x2y2 D 0:

However, this algebra can be seen to be Yagzhev (see Definition 4).
For associative algebras, one uses the term “nil” instead of “weakly nilpotent.”

Any nil subalgebra of a finite dimensional associative algebra is nilpotent, by
Wedderburn’s Theorem [92]). Jacobson generalized this result to other settings,
cf. [68, Theorem 15.23]; and Shestakov [71] generalized it to a wide class of Jordan
algebras (not necessarily commutative).

Yagzhev’s investigation of weak nilpotence has applications to the Koethe
Conjecture, for algebras over uncountable fields. He reproved:

* In every associative algebra over an uncountable field, the sum of every two nil
right ideals is a nil right ideal [A.V. Yagzhev, On the Koethe problem, unpublished
(in Russian)].

(This was proved first by Amitsur [3]. Amitsur’s result is for affine algebras, but
one can easily reduce to the affine case.)

2.2.5 Algebras Satisfying Systems of Capelli Identities

Definition 6. The Capelli polynomial Ck of order k is

Ck WD
X
�2Sk

.�1/�x�.1/y1 	 	 	x�.k/yk:

It is obvious that an associative algebra satisfies the Capelli identity ck iff, for any
monomial M.x1; : : : ; xk; y1; : : : ; yr / multilinear in the xi , the following equation
holds identically in A:

X
�2Sk

.�1/�M.v�.1/; : : : ; v�.k/; y1; : : : ; yr / D 0: (8)
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However, this does not apply to nonassociative algebras, so we need to generalize
this condition.

Definition 7. The algebra A satisfies a system of Capelli identities of order k,
if (8) holds identically inA for any monomialM.x1; : : : ; xk; y1; : : : ; yr /multilinear
in the xi .

Any algebra of dimension< k over a field satisfies a system of Capelli identities
of order k. Algebras satisfying systems of Capelli identities behave much like
finite dimensional algebras. They were introduced and systematically studied by
Rasmyslov [64, 65].

Using Rasmyslov’s method, Zubrilin [113], also see [66, 111], proved that if A
is an arbitrary algebra satisfying the system of Capelli identities of order n, then
the chain of ideals defining the solvable radical stabilizes at the nth step. More
precisely, we utilize a Baer-type radical, along the lines of Amitsur [4].

Given an algebra A, we define Solv1 WD Solv1.A/ D PfStrongly nilpotent
ideals of Ag; and inductively, given Solvk , define SolvkC1 by SolvkC1 = Solvk D
Solv1.A= Solvk/: For a limit ordinal ˛; define

Solv˛ D [ˇ<˛ Solvˇ :

This must stabilize at some ordinal ˛, for which we define Solv.A/ D Solv˛ :
Clearly Solv.A= Solv.A// D 0I i.e., A= Solv.A/ has no nonzero strongly

nilpotent ideals. Actually, Amitsur [4] defines �.A/ as built up from ideals having
trivial multiplication, and proves [4, Theorem 1.1] that �.A/ is the intersection of
the prime ideals of A.

We shall use the notion of sandwich, introduced by Kaplansky and Kostrikin,
which is a powerful tool for Burnside-type problems [107]. An ideal I is called a
sandwich ideal if, for any k,

M.z1; z2; x1; : : : ; xk/ D 0

for any z1; z2 2 I , any set of elements x1; : : : ; xk , and any multilinear monomialM
of degree k C 2. (Similarly, if the operations of an algebra have degree � `, then it
is natural to use `-sandwiches, which by definition satisfy the property that

M.z1; : : : ; z`; x1; : : : ; xk/ D 0

for any z1; : : : ; z` 2 I , any set of elements x1; : : : ; xk , and any multilinear monomial
M of degree k C `.)

The next useful lemma follows from a result of [113]:

Lemma 1. If an ideal I is strongly nilpotent of class `, then there exists a
decreasing sequence of ideals I D I1 � 	 	 	 � IlC1 D 0 such that Is=IsC1 is a
sandwich ideal in A=IsC1 for all s � l .
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Definition 8. An algebra A is representable if it can be embedded into an algebra
finite dimensional over some extension of the ground field.

Remark 3. Zubrilin [113], properly clarified, proved the more precise statement,
that if an algebra A of arbitrary signature satisfies a system of Capelli identities
CnC1, then there exists a sequence B0 
 B1 
 	 	 	 
 Bn of strongly nilpotent ideals
such that:

• The natural projection of Bi in A=Bi�1 is a strongly nilpotent ideal.
• A=Bn is representable.
• If I1 
 I2 
 	 	 	 
 In is any sequence of ideals of A such that IjC1=Ij is a

sandwich ideal in A=Ij , then Bn � In.

Such a sequence of ideals will be called a Baer–Amitsur sequence. In affine
space the Zariski closure of the radical is radical, and hence the factor algebra is
representable. (Although the radical coincides with the linear closure if the base field
is infinite (see [18]), this assertion holds for arbitrary signatures and base fields.)
Hence in representable algebras, the Baer–Amitsur sequence stabilizes after finitely
many steps. Lemma 1 follows from these considerations.

Our next main goal is to prove Theorem 5 below, but first we need another notion.

2.2.6 The Tree Associated with a Monomial

Effects of nilpotence have been used by different authors in another language. We
associate a rooted labelled tree with any monomial: Any branching vertex indicates
the symbol of an operator, whose outgoing edges are the terms in the corresponding
symbol. Here is the precise definition.

Definition 9. Let M.x1; : : : ; xn/ be a monomial in an algebra A of arbitrary
signature. One can associate the tree TM by an inductive procedure:

1. If M is a single variable, then TM is just the vertex �.
2. Let M D g.M1; : : : ;Mk/, where g is a k-ary operator. We assume inductively

that the trees Ti , i D 1; : : : ; k; are already defined. Then the tree TM is the
disjoint union of the Ti , together with the root � and arrows starting with � and
ending with the roots of the trees Ti .

Remark 4. Sometimes one labels TM according to the operator g and the positions
inside g.

If the outgoing degree of each vertex is 0 or 2, the tree is called binary. If the
outgoing degree of each vertex is either 0 or 3, the tree is called ternary. If each
operator is binary, TM will be binary; if each operator is ternary, TM will be ternary.
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2.3 Lifting Yagzhev Algebras

Recall Definitions 4 and 5.

Theorem 5. Suppose A is an algebra of Engel type, and let I be a sandwich ideal
of A. If A=I is Yagzhev, then A is Yagzhev.

Proof. The proof follows easily from the following two propositions.

Let k be the class of weak nilpotence of A=I . We call a branch of the tree fat if
it has more than k entries.

Proposition 1. (a) The sum of all monomials of any degree s > k belongs to I .
(b) Let x1; : : : ; xn be fixed indeterminates, and M be an arbitrary monomial, with

s1; : : : ; s` > k. Then

X
jt1jDs1;:::;jt`jDs`

M.x1; : : : ; xn; t1; : : : ; t`/ � 0: (9)

(c) The sum of all monomials of degree s, containing at least ` non-intersecting fat
branches, is zero.

Proof. (a) is just a reformulation of the weak nilpotence of A=I ; (b) follows from
(a) and the sandwich property of an ideal I . To get (c) from (b), it is enough to
consider the highest non-intersecting fat branches.

Proposition 2 (Yagzhev). The linearization of the sum of all terms with a fixed fat
branch of length n is the complete linearization of the function

X
�2Sn

Y
.Adk�.i//.z/.t/:

Theorem 2, Lemma 1, and Zubrilin’s result give us the following major result.

Theorem 6. In characteristic zero, the Jacobian conjecture is equivalent to the
following statement.

Any algebra of Engel type satisfying some system of Capelli identities is a
Yagzhev algebra.

This theorem generalizes the following result of Yagzhev.

Theorem 7. The Jacobian conjecture is equivalent to the following statement:
Any ternary Engel algebra in characteristic 0 satisfying a system of Capelli

identities is a Yagzhev algebra.

The Yagzhev correspondence and the results of this section (in particular,
Theorem 6) yield the proof of Theorem 3.
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2.3.1 Sparse Identities

Generalizing Capelli identities, we say that an algebra satisfies a system of sparse
identities when there exist k and coefficients ˛� such that for any monomial
M.x1; : : : ; xk; y1; : : : ; yr / multilinear in xi , the following equation holds:

X
�

˛�M.c1v�.1/d1; : : : ; ckv�.k/dk; y1; : : : ; yr / D 0: (10)

Note that one needs only to check (10) for monomials. The system of Capelli
identities is a special case of a system of sparse identities (when ˛� D .�1/� ). This
concept ties in with the following “few long branches” lemma [112], concerning the
structure of trees of monomials for algebras with sparse identities:

Lemma 2 (Few Long Branches). Suppose an algebra A satisfies a system
of sparse identities of order m. Then any monomial is linearly representable by
monomials such that the corresponding tree has not more than m � 1 disjoint
branches of length � m.

Lemma 2 may be useful in studying nilpotence of Engel algebras.

2.4 Inversion Formulas and Problems of Burnside Type

We have seen that the JC relates to problems of “Specht type” (concerning whether
one set of polynomial identities implies another), as well as problems of Burnside
type.

Burnside-type problems become more complicated in nonzero characteristic;
cf. Zelmanov’s review article [107].

Bass et al. [5] attacked the JC by means of inversion formulas. D. Wright [93]
wrote an inversion formula for the symmetric case and related it to a combinatorial
structure called the Grossman–Larson Algebra. Namely, write F D X � H , and
define J.H/ to be the Jacobian matrix of H . Wright proved the JC for the case
where H is homogeneous and J.H/3 D 0, and also for the case where H is cubic
and J.H/4 D 0; these correspond in Yagzhev’s terminology to the cases of Engel
types 3 and 4, respectively. Also, the so-called chain vanishing theorem in [93]
follows from Engel type. Similar results were obtained earlier by Singer [75] using
tree formulas for formal inverses. The inversion formula, introduced in [5], was
investigated by D. Wright and his school. Many authors use the language of the
so-called tree expansion (see [75, 93] for details). In view of Theorem 4, the tree
expansion technique should be highly nontrivial.

The Jacobian Conjecture can be formulated as a question of quantum field theory
(see [1]), in which tree expansions are seen to correspond to Feynmann diagrams.

In the papers [75,93] (see also [94]), trees with one label correspond to elements
of the algebra A built by Yagzhev, and 2-labelled trees correspond to the elements
of the operator algebra D.A/ (the algebra generated by operators x ! M.x; Ey/,
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whereM is some monomial). These authors deduce weak nilpotence from the Engel
conditions of degree 3 and 4. The inversion formula for automorphisms of tensor
product of Weyl algebras and the ring of polynomials was studied intensively in the
papers [7, 10]. Using techniques from [14], this yields a slightly different proof of
the equivalence between the JC and DC, by an argument similar to one given in
Yagzhev [Invertibility criteria of a polynomial mapping, unpublished (in Russian)].
Yagzhev’s approach makes the situation much clearer, and the known approaches
to the Jacobian Conjecture using inversion formulas can be explained from this
viewpoint.

Remark 5. The most recent inversion formula (and probably the most algebraically
explicit one) was obtained by Bavula [6]. The coefficient q0 can be made explicit
in (5), by means of the Gabber Inequality, which says that if

f W Kn ! KnI xi ! fi .Ex/

is a polynomial automorphism, with deg.f / D maxi deg.fi /, then deg.f �1/ �
deg.f /n�1)

In fact, we are working with operads, cf. the classical book [55]. A review of
operad theory and its relation with physics and PI-theory, in particular Burnside-
type problems, will appear in Piontkovsky [62]; see also [47, 63]. Operad theory
provides a supply of natural identities and varieties, but they also correspond to
geometric facts. For example, the Jacobi identity corresponds to the fact that the
altitudes of a triangle are concurrent. M. Dehn’s observations that the Desargue
property of a projective plane corresponds to associativity of its coordinate ring,
and Pappus’ property to its commutativity, can be considered as a first step in
operad theory. Operads are important in mathematical physics, and formulas for
the famous Kontsevich quantization theorem resemble formulas for the inverse
mapping. The operators considered here are operads.

3 The Jacobian Conjecture for Varieties and Deformations

In this section we consider analogs of the JC for other varieties of algebras, partially
with the aim on throwing light on the classical JC (for the commutative associative
polynomial algebra). See [110] for background on nonassociative algebras.

3.1 Generalization of the Jacobian Conjecture to Arbitrary
Varieties

Birman [22] already proved the JC for free groups in 1973. The JC for free associa-
tive algebras (in two generators) was established in 1982 by Dicks and Levin [27,
28], utilizing Fox derivatives, which we describe later on. Their result was reproved
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by Yagzhev [96], whose ideas are sketched in this section. Schofield [69] proved
the full version. Yagzhev then applied these ideas to other varieties of algebras
[103, 105] including nonassociative commutative algebras and anti-commutative
algebras; Umirbaev [82] generalized these to “Schreier varieties,” defined by the
property that every subalgebra of a free algebra is free. The JC for free Lie algebras
was proved by Reutenauer [67], Shpilrain [74], and Umirbaev [81].

The Jacobian Conjecture for varieties generated by finite dimensional algebras
is closely related to the Jacobian Conjecture in the usual commutative associative
case, which is the most important.

Let M be a variety of algebras of some signature � over a given field k of
characteristic zero, and kMhExi the relatively free algebra in M with generators
Ex D fxi W i 2 I g. We assume that j�j; jI j < 1, I D 1; : : : ; n.

Take a set Ey D fyigniD1 of new indeterminates. For any f .Ex/ 2 kMhExi one can
define an element Of .Ex; Ey/ 2 kMhEx; Eyi via the equation

f .x1 C y1; : : : ; xn C yn/ D f . Ey/C Of .Ex; Ey/CR.Ex; Ey/ (11)

where Of .Ex; Ey/ has degree 1 with respect to Ex, and R.Ex; Ey/ is the sum of monomials
of degree � 2 with respect to Ex; Of is a generalization of the differential.

Let ˛ 2 End.kM< Ex>/, i.e.,

˛ W xi 7! fi .Ex/I i D 1; : : : ; n: (12)

Definition 1. Define the Jacobi endomorphism Ǫ 2 End.kMhEx; Eyi/ via the equality

Ǫ W
(
xi ! Ofi .Ex/;
yi ! yi :

(13)

The Jacobi mapping f 7! Of satisfies the chain rule, in the sense that it preserves
composition.

Remark 1. It is not difficult to check (and is well known) that if ˛ 2 Aut.kM< Ex>/
then Ǫ 2 Aut.kM< Ex; Ey>/.

The inverse implication is called the Jacobian Conjecture for the variety M. Here
is an important special case.

Definition 2. Let A 2 M be a finite dimensional algebra, with base fEeigNiD1.
Consider a set of commutative indeterminates E� D f�si js D 1; : : : ; nI i D
1; : : : ; N g. The elements

zj D
NX
iD1

�jiEei I j D 1; : : : ; n

are called generic elements of A.
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Usually in the matrix algebra Mm.k/; the set of matrix units feijgmi;jD1 is taken as

the base. In this case eijekl D ıjkeil and zl D P
ij �

l
ijeij, l D 1; : : : ; n.

Definition 3. A generic matrix is a matrix whose entries are distinct commutative
indeterminates, and the so-called algebra of generic matrices of order m is
generated by associative genericm �m matrices.

The algebra of generic matrices is prime, and every prime, relatively free, finitely
generated associative PI-algebra is isomorphic to an algebra of generic matrices.
If we include taking traces as an operator in the signature, then we get the algebra
of generic matrices with trace. That algebra is a Noetherian module over its center.

Define the k-linear mappings

�i W kMhExi ! kŒ��I i D 1; : : : ; n

via the relation

f

 
NX
iD1

�1i ei ; : : : ;

NX
iD1

�niei

!
D

NX
iD1
.f �i /ei :

It is easy to see that the polynomials f �i are uniquely determined by f .
One can define the mapping

'A W End.kM< Ex>/ ! End.kŒE��/

as follows: If

˛ 2 End.kM< Ex>/ W xs ! fs.Ex/ s D 1; : : : ; n;

then 'A.˛/ 2 End.kŒE��/ can be defined via the relation

'A.˛/ W �si ! Psi.E�/I s D 1; : : : ; nI i D 1; : : : ; n;

where Psi.E�/ D fs�i .
The following proposition is well known.

Proposition 1 ([105]). Let A 2 M be a finite dimensional algebra, and Ex D
fx1; : : : ; xng be a finite set of commutative indeterminates. Then the mapping 'A
is a semigroup homomorphism, sending 1 to 1, and automorphisms to automor-
phisms. Also the mapping 'A commutes with the operationbof taking the Jacobi
endomorphism, in the sense that 1'A.˛/ D 'A. Ǫ /. If ' is invertible, then O' is also
invertible.

This proposition is important, since as noted after Remark 1, the opposite
direction is the JC.
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3.2 Deformations and the Jacobian Conjecture for Free
Associative Algebras

Definition 4. A T-ideal is a completely characteristic ideal, i.e., stable under any
endomorphism.

Proposition 2. Suppose A is a relatively free algebra in the variety M, I is a
T -ideal in A, and M0 D Var.A=I /. Any polynomial mapping F W A ! A induces
a natural mapping F 0 W A=I ! A=I , as well as a mapping OF 0 in M0. If F is
invertible, then F 0 is invertible; if OF is invertible, then OF 0 is also invertible.

For example, let F be a polynomial endomorphism of the free associative algebra
k < Ex >, and In be the T -ideal of the algebra of generic matrices of order n. Then
F.In/ 
 In for all n. Hence F induces an endomorphism FIn of k < Ex > =In.
In particular, this is a semigroup homomorphism. Thus, if F is invertible, then FIn
is invertible, but not vice versa.

The Jacobian mapping cFIn of the reduced endomorphism FIn is the reduction of
the Jacobian mapping of F .

3.2.1 The Jacobian Conjecture and the Packing Property

This subsection is based on the packing property and deformations. Let us illustrate
the main idea. It is well known that the composite of all quadratic extensions of
Q is infinite dimensional over Q. Hence all such extensions cannot be embedded
(“packed”) into a single commutative finite dimensional Q-algebra. However, all
of them can be packed into M2.Q/. We formalize the notion of packing in
Sect. 3.5.1. Moreover, for any elements not in Q there is a parametric family
of embeddings (because it embeds non-centrally and thus can be deformed via
conjugation by a parametric set of matrices). Uniqueness thus means belonging
to the center. Similarly, adjoining noncommutative coefficients allows one to
decompose polynomials, as will be elaborated below.

This idea allows us to solve equations via a finite dimensional extension, and to
find a parametric sets of solutions if some solution does not belong to the original
algebra. That situation contradicts local invertibility.

Let F be an endomorphism of the free associative algebra having invertible
Jacobian. We suppose that F.0/ D 0 and

F.xi / D xi C
X

terms of order � 2:

We intend to show how the invertibility of the Jacobian implies invertibility of the
mapping F .

Let Y1; : : : ; Yk be generic m �m matrices. Consider the system of equations

fFi .X1; : : : ; Xn/ D Yi I i D 1; : : : ; kg :
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This system has a solution over some finite extension of order m of the field
generated by the center of the algebra of generic matrices with trace.

Consider the set of block diagonal mn � mn matrices:

A D

0
BBB@

A1 0 : : : 0

0 A2 0 : : : 0
:::

: : :
:::

0 : : : An

1
CCCA ; (14)

where the Aj are m �m matrices.
Next, we consider the system of equations

fFi .X1; : : : ; Xn/ D Yi I i D 1; : : : ; kg ; (15)

where the mn � mn matrices Yi have the form (14) with the Aj generic matrices.
Any m-dimensional extension of the base field k is embedded into Mm.k/. But

Mmn.k/ ' Mm.k/˝ Mn.k/. It follows that for appropriatem, the system (15) has
a unique solution in the matrix ring with traces. (Each is given by a matrix power
series where the summands are matrices whose entries are homogeneous forms,
seen by rewriting Yi D Xi C terms of order 2 as Xi D Yi C terms of order 2,
and iterating.) The solution is unique since their entries are distinct commuting
indeterminates.

If F is invertible, then this solution must have block diagonal form. However,
if F is not invertible, this solution need not have block diagonal form. Now we
translate invertibility of the Jacobian to the language of parametric families or
deformations.

Consider the matrices

E`
� D

0
BBBBBB@

E 0 : : : 0

0
: : : : : : 0

0 : : : � 	E 0
::: : : :

: : :
:::

0 : : : E

1
CCCCCCA

where E denotes the identity matrix. (The index ` designates the position of the
block � 	E .) TakingXj not to be a block diagonal matrix, then for some ` we obtain
a non-constant parametric family E`

�Xj .E
`
�/

�1 dependent on �.
On the other hand, if Yi has form (14), then E`

�Yi.E
`
�/

�1 D Yi for all � ¤ 0;
` D 1; : : : ; k.

Hence, if FIn is not an automorphism, then we have a continuous parametric
set of solutions. But if the Jacobian mapping is invertible, it is locally 1:1, a
contradiction. This argument yields the following result.
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Theorem 1. For F 2 End.khExi/, if the Jacobian of F is invertible, then the
reduction FIn of F , modulo the T -ideal of the algebra of generic matrices, is
invertible.

See [103] for further details of the proof. Because any relatively free affine
algebra of characteristic 0 satisfies the set of identities of some matrix algebra, it
is the quotient of the algebra of generic matrices by some T -ideal J . But J maps
into itself after any endomorphism of the algebra. We conclude:

Corollary 3.1.1. If F 2 End.k< Ex>/ and the Jacobian of F is invertible, then the
reduction FJ of F modulo any proper T -ideal J is invertible.

In order to get invertibility of EF itself, Yagzhev used the additional ideas:

• The block diagonal technique works equally well on skew fields.
• The above algebraic constructions can be carried out on Ore extensions, in

particular for the Weyl algebrasWn D kŒx1; : : : ; xnI @1; : : : ; @n�.
• By a result of L. Makar-Limanov, the free associative algebra can be embedded

into the ring of fractions of the Weyl algebra. This provides a nice presentation
for mapping the free algebra.

Definition 5. Let A be an algebra, B � A a subalgebra, and ˛ W A ! A a
polynomial mapping of A (and hence ˛.B/ � B , see Definition 1). B is a test
algebra for ˛, if ˛.AnB/ ¤ AnB .

The next theorem shows the universality of the notion of a test algebra.
An endomorphism is called rationally invertible if it is invertible over Cohn’s skew
field of fractions [24] of khExi.

Theorem 2 (Yagzhev). For any ˛ 2 End.k < Ex >/, one of the two statements
holds:

• ˛ is rationally invertible, and its reduction to any finite dimensional factor also
is rationally invertible.

• There exists a test algebra for some finite dimensional reduction of ˛.

This theorem implies the Jacobian conjecture for free associative algebras. We do
not go into details, referring the reader to the papers [103, 105].

Remark 2. The same idea is used in quantum physics. The polynomial x2Cy2Cz2

cannot be decomposed for any commutative ring of coefficients. However, it can
be decomposed using noncommutative ring of coefficients (Pauli matrices). The
Laplace operator in three-dimensional space can be decomposed in such a manner.

3.2.2 Reduction to Nonzero Characteristic

One can work with deformations equally well in nonzero characteristic. However,
the naive Jacobian condition does not give us parametric families, because of
consequences of inseparability. Hence it is interesting using deformations to get
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a reasonable version of the JC for characteristic p > 0, especially because of recent
progress in the JC related to the reduction of holonomic modules to the case of
characteristic p and investigation of the p-curvature or Poisson brackets on the
center [14, 15, 79].

In his very last paper [A.V. Yagzhev, Invertibility criteria of a polynomial
mapping, unpublished (in Russian)], A.V. Yagzhev approached the JC using positive
characteristics. He noticed that the existence of a counterexample is equivalent to
the existence of an Engel, but not Yagzhev, finite dimensional ternary algebra in
each positive characteristic p � 0. (This fact is also used in the papers [14,15,79].)

If a counterexample to the JC exists, then such an algebra A exists even over a
finite field, and hence can be finite. It generates a locally finite variety of algebras
that are of Engel type, but not Yagzhev. This situation can be reduced to the case of
a locally semiprime variety. Any relatively free algebra of this variety is semiprime,
and the centroid of its localization is a finite direct sum of fields. The situation can
be reduced to one field, and he tried to construct an embedding which is not an
automorphism. This would contradict the finiteness property.

Since a reduction of an endomorphism as a mapping on points of finite
height may be an automorphism, the issue of injectivity also arises. However,
this approach looks promising, and may involve new ideas, such as in the papers
[14, 15, 79]. Perhaps different infinitesimal conditions (like the Jacobian condition
in characteristic zero) can be found.

3.3 The Jacobian Conjecture for Other Classes of Algebras

Although the Jacobian Conjecture remains open for commutative associative
algebras, it has been established for other classes of algebras, including free
associative algebras, free Lie algebras, and free metabelian algebras. See Sect. 3.1
for further details.

An algebra is metabelian if it satisfies the identity Œx; y�Œz; t � D 0.
The case of free metabelian algebras, established by Umirbaev [84], involves

some interesting new ideas that we describe now. His method of proof is by means
of co-multiplication, taken from the theory of Hopf algebras and quantization. Let
Aop denote the opposite algebra of the free associative algebraA, with generators ti .
For f 2 Awe denote the corresponding element ofAop as f �. Put � W Aop˝A ! A

be the mapping such that �.
P
f �
i ˝ gi / D P

figi . IA WD ker.�/ is a free A
bimodule with generators t�i ˝ 1 � 1 ˝ ti . The mapping dA W A ! IA such that
dA.a/ D a� ˝1�1˝a is called the universal derivation of A. The Fox derivatives
@a=@ti 2 Aop ˝A [40] are defined via dA.a/ D P

i .t
�
i ˝ 1� 1˝ ti /@a=@ti , cf. [28]

and [84].
Let C D A= Id.ŒA;A�/, the free commutative associative algebra, and let B D

A= Id.ŒA;A�/2, the free metabelian algebra. Let

@.a/ D .@a=@t1; : : : ; @a=@tn/:
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One can define the natural derivations

N@ W A ! .A0 ˝ A/n ! .C 0 ˝ C/n;

Q@ W A ! .C 0 ˝ C/n ! Cn: (16)

where the mapping .C 0˝C/n/ ! Cn is induced by �. Then ker.N@/ D Id.ŒA;A�/2C
F and N@ induces a derivation B ! .C 0 ˝ C/n, whereas Q@ induces the usual
derivation C ! Cn. Let � W C ! C 0 ˝ C be the mapping induced by dA, i.e.,
�.f / D f � ˝ 1 � 1˝ f , and let zi D �.xi /. The Jacobi matrix is defined in the
natural way and provides the formulation of the JC for free metabelian algebras. One
of the crucial steps in proving the JC for free metabelian algebras is the following
homological lemma from [84]:

Lemma 1. Let Eu D .u1; : : : ; un/ 2 .C op ˝ C/n. Then Eu D N@. Nw/ for some w 2
Id.ŒA;A�/ iff

X
ziui D 0:

The proof also requires the following theorem:

Theorem 3. Let ' 2 End.C /. Then ' 2 Aut.C / iff Id.�.'.xi ///niD1 D Id.zi /niD1.

The paper [84] also includes the following result:

Theorem 4. Any automorphism of C can be extended to an automorphism of B ,
using the JC for the free metabelian algebra B .

This is a nontrivial result, unlike the extension of an automorphism of B to an
automorphism of A= Id.ŒA;A�/n for any n > 1.

3.4 Questions Related to the Jacobian Conjecture

Let us turn to other interesting questions which can be linked to the Jacobian
Conjecture. The quantization procedure is a bridge between the commutative and
noncommutative cases and is deeply connected to the JC and related questions.
Some of these questions also are discussed in the paper [30].

Relations between the free associative algebra and the classical commutative
situation are very deep. In particular, Bergman’s theorem that any commutative
subalgebra of the free associative algebra is isomorphic to a polynomial ring in
one indeterminate is the noncommutative analog of Zak’s theorem [106] that any
integrally closed subring of a polynomial ring of Krull dimension 1 is isomorphic
to a polynomial ring in one indeterminate.
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For example, Bergman’s theorem is used to describe the automorphism group
Aut.End.khx1; : : : ; xni// [13]; Zak’s theorem is used in the same way to describe
the group Aut.End.kŒx1; : : : ; xn�// [16]. Also see [77].

Question. Can one prove Bergman’s theorem via quantization?

Quantization could be a key idea for understanding Jacobian-type problems in
other varieties of algebras.

1. Cancellation problems.

We recall three classical problems.

1. Let K1 and K2 be affine domains for which K1Œt� ' K2Œt�. Is it true that
K1 ' K2?

2. Let K1 and K2 be an affine fields for which K1.t/ ' K2.t/. Is it true that K1 '
K2? In particular, ifK.t/ is a field of rational functions over the field k, is it true
that K is also a field of rational functions over k?

3. If KŒt� ' kŒx1; : : : ; xn�, is it true that K ' kŒx1; : : : ; xn�1�?

The answers to Problems 1 and 2 are “No” in general (even if k D C); see
the fundamental paper [11], as well as [17] and the references therein. However,
Problem 2 has a positive solution in low dimensions. Problem 3 is currently called
the Cancellation Conjecture, although Zariski’s original cancellation conjecture
was for fields (Problem 2). See [26, 44, 56, 76] for Zariski’s conjecture and related
problems. For n � 3, the Cancellation Conjecture (Problem 3) remains open, to the
best of our knowledge, and it is reasonable to pose the Cancellation Conjecture for
free associative rings and ask the following:

Question. If K � kŒt � ' k<x1; : : : ; xn>, then is K ' k<x1; : : : ; xn�1 >‹

This question was solved for n D 2 by Drensky and Yu [32].

2. The Tame Automorphism Problem.

Yagzhev utilized his approach to study the tame automorphism problem. Unfortu-
nately, these papers are not preserved.

It is easy to see that every endomorphism � of a commutative algebra can be
lifted to some endomorphism of the free associative algebra, and hence to some
endomorphism of the algebra of generic matrices. However, it is not clear that any
automorphism � can be lifted to an automorphism.

We recall that an automorphism of kŒx1; : : : ; xn� is elementary if it has the form

x1 7! x1 C f .x2; : : : ; xn/; xi 7! xi ; 8i � 2:
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A tame automorphism is a product of elementary automorphisms, and a non-tame
automorphism is called wild. The “tame automorphism problem” asks whether any
automorphism is tame. Jung [43] and van der Kulk [49] proved this for n D 2,
(also see [58, 59] for free groups, [24] for free Lie algebras, and [25, 52] for free
associative algebras), so one takes n > 2:

Elementary automorphisms can be lifted to automorphisms of the free associative
algebra; hence, every tame automorphism can be so lifted. If an automorphism '

cannot be lifted to an automorphism of the algebra of generic matrices, it cannot be
tame. This gives us an approach to the tame automorphism problem.

We can lift an automorphism of kŒx1; : : : ; xn� to an endomorphism of
khx1; : : : ; xni in many ways. Then replacing x1; : : : ; xn by N �N generic matrices
induces a polynomial mapping F.N/ W knN

2 ! knN
2
.

For each automorphism ', the invertibility of this mapping can be transformed
into compatibility of some system of equations. For example, Theorem 10.5 of
[61] says that the Nagata automorphism is wild, provided that a certain system
of five equations in 27 unknowns has no solutions. Whether Peretz’ method can
effectively attack tameness questions remains to be seen. The wildness of the Nagata
automorphism was established by Shestakov and Umirbaev [73]. One important
ingredient in the proof is degree estimates of an expression p.f; g/ of algebraically
independent polynomials f and g in terms of the degrees of f and g, provided
neither leading term is proportional to a power of the other, initiated by Shestakov
and Umirbaev [72]. An exposition based on their method is given in Kuroda [50].

One of the most important tools is the degree estimation technique, which in
the multidimensional case becomes the analysis of leading terms, and is more
complicated. We refer to the deep papers [23, 46, 50]. Several papers of Kishimoto,
although containing gaps, also provide deep insights.

One can also ask the weaker question of “coordinate tameness”: Is the image
of .x; y; z/ under the Nagata automorphism the image under some (other) tame
automorphism? This also fails, by [88].

An automorphism' is called stably tame if, when several new indeterminates fti g
are adjoined, the extension of ' given by ' 0.ti / D ti is tame; otherwise, it is called
stably wild. Stable tameness of automorphisms of kŒx; y; z� fixing z is proved in
[21]; similar results for khx; y; zi are given in [20].

Yagzhev tried to construct wild automorphisms via polynomial automorphisms
of the Cayley–Dickson algebra with base fEeig8iD1, and the set f�i ; �i ; &i g8iD1 of
commuting indeterminates. Let

x D
X

�i Eei ; y D
X

�i Eei ; z D
X

&i Eei :

Let .x; y; z/ denote the associator .xy/z � x.yz/ of the elements x; y; z, and write

.x; y; z/2 D
X

fi .E�; E�; E&/Eei :
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Then the endomorphismG of the polynomial algebra given by

G W �i ! �i C fi .E�; E�; E&/; �i ! �i ; &i ! &i ;

is an automorphism, which likely is stably wild.
In the free associative case, perhaps it is possible to construct an example of

an automorphism, the wildness of which could be proved by considering its Jacobi
endomorphism (Definition 1). Yagzhev tried to construct examples of algebrasR D
A˝Aop over which there are invertible matrices that cannot decompose as products
of elementary ones. Yagzhev conjectured that the automorphism

x1 ! x1 C y1.x1y2 � y1x2/; x2 ! x2 C .x1y2 � y1x2/y2; y1 ! y1; y2 ! y2

of the free associative algebra is wild.
Umirbaev [83] proved in characteristic 0 that the Anick automorphism x ! x C

y.xy � yz/, y ! y, z ! z C .zy � yz/y is wild, by using metabelian algebras.
The proof uses description of the defining relations of 3-variable automorphism
groups [85–87]. Drensky and Yu [29, 31] proved in characteristic 0 that the image
of x under the Anick Automorphism is not the image of any tame automorphism.

Stable Tameness Conjecture Every automorphism of the polynomial algebra
kŒx1; : : : ; xn�, resp. of the free associative algebra khx1; : : : ; xni, is stably tame.

Lifting in the free associative case is related to quantization. It provides some
light on the similarities and differences between the commutative and noncommu-
tative cases. Every tame automorphism of the polynomial ring can be lifted to an
automorphism of the free associative algebra. There was a conjecture that any wild
z-automorphism of kŒx; y; z� (i.e., fixing z) over an arbitrary field k cannot be lifted
to a z-automorphism of khx; y; zi. In particular, the Nagata automorphism cannot
be so lifted [30]. This conjecture was solved by Belov and Yu [19] over an arbitrary
field. However, the general lifting conjecture is still open. In particular, it is not
known whether the Nagata automorphism can be lifted to an automorphism of the
free algebra. (Such a lifting could not fix z:)

The paper [19] describes all the z-automorphisms of khx; y; zi over an arbitrary
field k. Based on that work, Belov and Yu [20] proved that every z-automorphism
of khx; y; zi is stably tame, for all fields k. A similar result in the commutative case
is proved by Berson, van den Essen, and Wright [21]. These are the important first
steps towards solving the stable tameness conjecture in the noncommutative and
commutative cases.

The free associative situation is much more rigid than the polynomial case.
Degree estimates for the free associative case are the same for prime characteristic
[51] as in characteristic 0 [54]. The methodology is different from the commutative
case, for which degree estimates (as well as examples of wild automorphisms) are
not known in prime characteristic.

J.-T. Yu found some evidence of a connection between the lifting conjecture and
the Embedding Conjecture of Abhyankar and Sathaye. Lifting seems to be “easier.”
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3.5 Reduction to Simple Algebras

This subsection is devoted to finding test algebras.
Any prime algebra B satisfying a system of Capelli identities of order n C 1

(n minimal such) is said to have rank n. In this case, its operator algebra is PI. The
localization of B is a simple algebra of dimension n over its centroid, which is a
field. This is the famous rank theorem [65].

3.5.1 Packing Properties

Definition 6. Let M D fMi W i 2 I g be an arbitrary set of varieties of algebras.
We say that M satisfies the packing property, if for any n 2 N there exists a prime
algebra A of rank n in some Mj such that any prime algebra in any Mi of rank n
can be embedded into some central extensionK ˝ A of A.

M satisfies the finite packing property if, for any finite set of prime algebras
Aj 2 Mi , there exists a prime algebra A in some Mk such that each Aj can be
embedded into A.

The set of proper subvarieties of associative algebras satisfying a system of
Capelli identities of some order k satisfies the packing property (because any simple
associative algebra is a matrix algebra over field).

However, the varieties of alternative algebras satisfying a system of Capelli
identities of order>8, or of Jordan algebras satisfying a system of Capelli identities
of order >27, do not even satisfy the finite packing property. Indeed, the matrix
algebra of order 2 and the Cayley–Dickson algebra cannot be embedded into
a common prime alternative algebra. Similarly, H3 and the Jordan algebra of
symmetric matrices cannot be embedded into a common Jordan prime algebra.
(Both of these assertions follow easily by considering their PIs.)

It is not known whether or not the packing property holds for Engel algebras
satisfying a system of Capelli identities; knowing the answer would enable us to
resolve the JC, as will be seen below.

Theorem 5. If the set of varieties of Engel algebras (of arbitrary fixed order)
satisfying a system of Capelli identities of some order satisfies the packing property,
then the Jacobian Conjecture has a positive solution.

Theorem 6. The set of varieties from the previous theorem satisfies the finite
packing property.

Most of the remainder of this section is devoted to the proof of these two
theorems.

Problem. Using the packing property and deformations, give a reasonable
analog of the JC in nonzero characteristic. (The naive approach using only the
determinant of the Jacobian does not work.)
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3.5.2 Construction of Simple Yagzhev Algebras

Using the Yagzhev correspondence and composition of elementary automorphisms
it is possible to construct a new algebra of Engel type.

Theorem 7. Let A be an algebra of Engel type. Then A can be embedded into a
prime algebra of Engel type.

Proof. Consider the mapping F W V ! V (cf. (1)) given by

F W xi 7! xi C
X
j

‰ijI i D 1; : : : ; n

(where the ‰ij are forms of homogenous degree j ). Adjoining new indeterminates
ftigniD0, we put F.ti / D ti for i D 0; : : : ; n.

Now we take the transformation

G W t0 7! t0; xi 7! xi ; ti 7! ti C t0x
2
i ; for i D 1; : : : ; n:

The composite F ıG has invertible Jacobian (and hence the corresponding algebra
has Engel type) and can be expressed as follows:

F ıG W xi 7! xi C
X
j

‰ij; t0 7! t0; ti 7! ti C t0x
2
i for i D 1; : : : ; n:

It is easy to see that the corresponding algebra OA also satisfies the following
properties:

• OA contains A as a subalgebra (for t0 D 0).
• If A corresponds to a cubic homogenous mapping (and thus is Engel), then OA

also corresponds to a cubic homogenous mapping (and thus is Engel).
• If some of the forms ‰ij are not zero, then A does not have nonzero ideals with

product 0, and hence is prime (but its localization need not be simple!).

Any algebra A with operators can be embedded, using the previous construction,
to a prime algebra with nonzero multiplication. The theorem is proved. ut

Embedding via the previous theorem preserves the cubic homogeneous case, but
does not yet give us an embedding into a simple algebra of Engel type.

Theorem 8. Any algebra A of Engel type can be embedded into a simple algebra
of Engel type.

Proof. We start from the following observation:

Lemma 2. Suppose A is a finite dimensional algebra, equipped with a base
Ee1; : : : ; Een; EenC1. If for any 1 � i; j � nC1 there exist operators!ij in the signature
�.A/ such that !ij.Eei ; : : : ; Eei ; EenC1/ D Eej , with all other values on the base vectors
being zero, then A is simple.
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This lemma implies:

Lemma 3. Let F be a polynomial endomorphism of CŒx1; : : : ; xnI t1; t2�, where

F.xi / D
X
j

‰ij:

For notational convenience we put xnC1 D t1 and xnC2 D t2. Let fkijgsiD1;j be a set
of natural numbers such that

• For any xi there exists kij such that among all ‰ij there is exactly one term

of degree kij, and it has the form ‰i;kij D t1x
kij�1
j .

• For t2 and any xi there exists kiq such that among all‰ij there is exactly one term

of degree kiq, and it has the form ‰nC2;kiq D t1x
kiq�1
j .

• For t1 and any xi there exists kiq such that among all‰ij there is exactly one term

of degree kiq, and it has the form ‰nC1;kiq D t2x
kiq�1
j .

Then the corresponding algebra is simple.

Proof. Adjoin the term t`x
k�1
i to the xi , for ` D 1; 2. Let ei be the base vector

corresponding to xi . Take the corresponding kij-ary operator

! W !.Eei ; : : : ; Eei ; EenC`// D Eej ;
with all other products zero. Now we apply the previous lemma. ut
Remark 3. In order to be flexible with constructions via the Yagzhev
correspondence, we are working in the general, not necessary cubic, case.

Now we can conclude the proof of Theorem 8. LetF be the mapping correspond-
ing to the algebra A:

F W xi 7! xi C
X
j

‰ij; i D 1; : : : ; n;

where ‰ij are forms of homogeneous degree j . Let us adjoin new indeterminates
ft1; t2g and put F.ti / D ti ; for i D 1; 2.

We choose all k˛;ˇ > max.deg.‰ij// and assume that these numbers are
sufficiently large. Then we consider the mappings

Gkij W xi 7! xi C x
kij�1
j t1; i � nI t1 7! t1I t2 7! t2I xs 7! xs for s ¤ i:

Gki.nC2/
W t2 7! x

kij�1
i t1I t1 7! t1I xs 7! xs for 1 � s � n:

Gki.nC1/
W t1 7! x

kij�1
i t2I t2 7! t2I xs 7! xs for 1 � s � n:

These mappings are elementary automorphisms.
Consider the mapping H D ıkijGkij ı F , where the composite is taken in order

of ascending k˛ˇ , and then with F . If the k˛ˇ grow quickly enough, then the terms
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obtained in the previous step do not affect the lowest term obtained at the next step,
and this term will be as described in the lemma. The theorem is proved. ut
Proof of Theorem 6. The direct sum of Engel-type algebras is also of Engel type,
and by Theorem 8 can be embedded into a simple algebra of Engel type. ut

The Yagzhev correspondence and algebraic extensions.

For notational simplicity, we consider a cubic homogeneous mapping

F W xi 7! xi C‰3i .Ex/:
We shall construct the Yagzhev correspondence of an algebraic extension.

Consider the equation

t s D
sX

pD1
�pt

s�p;

where the �p are formal parameters. If m � s, then for some �pm, which can be
expressed as polynomials in f�pgs�1pD1, we have

tm D
sX

pD1
�pmt

s�p:

Let A be the algebra corresponding to the mapping F . Consider

A˝ kŒ�1; : : : ; �s�

and its finite algebraic extension OA D A ˝ kŒ�1; : : : ; �s; t �. Now we take the
mapping corresponding (via the Yagzhev correspondence) to the ground ring R D
kŒ�1; : : : ; �s� and algebra OA.

For m D 1; : : : ; s � 1, we define new formal indeterminates, denoted
as T mxi . Namely, we put T 0xi D xi and for m � s, we identify T mxi withPs

pD1 �pmT
s�pxi , where f�pgs�1pD1 are formal parameters in the centroid of some

extension R˝ A. Now we extend the mapping F , by putting

F.T mxi / D T mxi C T 3m‰3i .Ex/; m D 1; : : : ; s � 1:

We get a natural mapping corresponding to the algebraic extension.
Now we can take more symbols Tj , j D 1; : : : ; s, and equations

T sj D
sX

pD1
�pj T

s�p
j
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and a new set of indeterminates xijk D T kj xi for j D 1; : : : ; s and i D 1; : : : ; n.
Then we put

xijm D T mj xi D
sX

pD1
�jpmT

s�p
j xi

and

F.xijm/ D xijm C T 3mj ‰3i .Ex/; m D 1; : : : ; s � 1:

This yields an “algebraic extension” of A.

Deformations of algebraic extensions.

Let m D 2. Let us introduce new indeterminates y1; y2, put F.yi / D y1; i D 1; 2,
and compose F with the automorphism

G W T 11 xi 7! T 11 xi C y1xi ; T 11 xi 7! T 12 xi C y1xi ; xi 7! xi ; i D 1; 2;

y1 7! y1 C y22y1; y2 7! y2:

(Note that the T 11 xi and T 12 xi are new indeterminates and not proportional to xi !)
Then compose G with the automorphism H W y2 7! y2 C y21 , where H fixes the
other indeterminates. Let us call the corresponding new algebra OA. It is easy to see
that Var.A/ ¤ Var. OA/.

Define an identity of the pair .A;B/, for A 
 B to be a polynomial in two sets
of indeterminates xi ; zj that vanishes whenever the xi are evaluated in A and zj
in B .) The variety of the pair .A;B/ is the class of pairs of algebras satisfying the
identities of .A;B/.

Recall that by the rank theorem, any prime algebraA of rank n can be embedded
into an n-dimensional simple algebra OA. We consider the variety of the pair .A; OA/.

Considerations of deformations yield the following:

Proposition 3. Suppose for all simple n-dimensional pairs there exists a universal
pair in which all of them can be embedded. Then the Jacobian Conjecture has a
positive solution.

We see the relation with

The Razmyslov–Kushkulei Theorem [65]. Over an algebraically closed
field, any two finite dimensional simple algebras satisfying the same identities are
isomorphic.

The difficulty in applying this theorem is that the identities may depend on
parameters. Also, the natural generalization of the Rasmyslov–Kushkulei theorem
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for a variety and subvariety does not hold: Even if Var.B/ � Var.A/, where B and
A are simple finite dimensional algebras over some algebraically closed field, B
need not be embeddable to A.
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Equivariant Triviality of Quasi-Monomial
Triangular Ga-Actions on A4

Adrien Dubouloz, David R. Finston, and Imad Jaradat

Abstract We give a direct and self-contained proof of the fact that additive group
actions on affine four-space generated by certain types of triangular derivations
are translations whenever they are proper. The argument, which is based on
explicit techniques, provides an illustration of the difficulties encountered and an
introduction to the more abstract methods which were used recently by the authors
to solve the general triangular case.
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1 Introduction

It was established recently in [6] that a proper Ga-action � W Ga � A4 ! A4 on
the affine space A4 D Spec.kŒx1; x2; x3; x4�/ over an algebraically closed field k of
characteristic zero generated by a triangular derivation
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@ D r1.x1/@x2 C q.x1; x2/@x3 C p.x1; x2; x3/@x4

is globally equivariantly trivial with geometric quotient A4=Ga isomorphic to A3.
That is, A4 is equivariantly isomorphic to the trivial Ga-bundle over A3, a property
which is usually abbreviated by saying that � is a translation.

In contrast with the situation in lower dimensions, there exist fixed point free
yet improper triangular actions on A4, see e.g. [15]. So the properness assumption
on � , which by definition means the properness of the morphism ˚ D .�; pr2/ W
Ga � A4 ! A4 � A4, is crucial. Nevertheless, the proof given in [6] exploits
this assumption in a rather abstract fashion, with the consequence that the relation
between the properness of a given triangular action and the properties of its
corresponding derivation remains quite elusive.

The aim of this note is to provide a more explicit treatment for a particular
class of triangular derivations that we call quasi-monomial: these are k-derivations
of kŒx1; x2; x3; x4� of the form @ D Q@ C p.x1; x2; x3/@x4 where p.x1; x2; x3/ 2
kŒx1; x2; x3� and where Q@ denotes the natural extension to kŒx1; x2; x3; x4� of a
nonzero monomial kŒx1�-derivation axn

0

1 @x2 C bx
q
1x

m
2 @x3 of kŒx1; x2; x3�, where

a; b 2 k and n0; m; q 2 Z�0. Showing that a proper action generated by a derivation
of this type is a translation is already nontrivial, and the methods we present
here were actually a source of inspiration for the general argument developed in
[6]. The strategy consists in building on an earlier result [5] which asserts that
if p.x1; x2; x3/ is a polynomial in x1 and x2 only, then the properness of the
correspondingGa-action is indeed equivalent to its equivariant triviality. Derivations
@ D Q@C p.x1; x2/@x4 were dubbed twin-triangular in loc. cit. and [2].

A proper action being in particular fixed point free, we may safely restrict
to quasi-monomial triangular derivations @ generating fixed point free actions, a
condition which is equivalent to @x2 D axn

0

1 , @x3 D bx
q
1x

m
2 and @x4 D p.x1; x2; x3/

generating the unit ideal in kŒx1; x2; x3�. Next we can dispense with all cases in
which such derivations are already known to have a slice. Since this holds in
particular if @ contains at least two variables of kŒx1; x2; x3; x4� in its kernel [1],
we may thus assume that a; b 2 k� and then that n0 > 0 since otherwise a�1x2 is a
slice for @. Up to a triangular change of the coordinate x3, we may assume next that
0 � q < n0 and set n0 D n C q where n > 0. Then we may suppose that m > 0

since otherwise x2 � ab�1xn1 x3 is a second variable of kŒx1; x2; x3; x4� contained in
the kernel of @. Summing up, we are reduced after a last linear coordinate change to
considering derivations of the form

@ D x
nCq
1 @x2 C .mC 1/x

q
1x

m
2 @x3 C p.x1; x2; x3/@x4

where m; n > 0, q � 0 and where xnCq
1 , xn1 x

m
2 and p.x1; x2; x3/ generate the unit

ideal in kŒx1; x2; x3�.1

Now the argument proceeds in three steps: we first exhibit in the case q D 0

certain restrictions on the form of the derivation imposed by the condition that the

1The factor .mC 1/ in @.x3/ is chosen to simplify calculations in the next sections.
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corresponding Ga-action is proper by means of the study of a suitable invariant
fibration on A4. We use this information to infer the existence of a coordinate system
on A4 in which every derivation @ as above takes again the form ı0 D xn1 @x2 C
.m C 1/xm2 @x3 C p0.x1; x2; x3/@x4 , but with additional very particular numerical
restrictions on the exponents of the monomials occurring in the polynomialp0. This
additional information is then exploited through a variant of the valuative criterion
for properness which renders the conclusion that non twin-triangular ı0 as above
generate improper Ga-actions. It also provides a complete characterization of quasi-
monomial twin-triangular derivations generating proper actions, which enables a
direct proof that such proper actions are indeed translations. The general case
is finally obtained in an indirect fashion by comparing the Ga-actions �q and �
generated by the derivations

@q D x
nCq
1 @x2 C .mC 1/x

q
1x

m
2 @x3 C p.x1; x2; x3/@x4

and

@ D xn1 @x2 C .mC 1/xm2 @x3 C p.x1; x2; x3/@x4 :

We show that the properness of �q implies that of � and that in this case the two
actions have isomorphic geometric quotients.

Notation 1. Hereafter we write r for an element .r1; r2; r3/ 2 Z
3�0 and we denote a

monomial cxr11 x
r2
2 x

r3
3 2 kŒx1; x2; x3� by cxr . Given two fixed integers m; n 2 Z�0,

we set for every l1; l2; l3 2 Z:

�.l1; l2/ D l1 � nl2; �.l1; l2/ D .mC 1/l2 C l1; 
.l1; l2; l3/ D nml3 C nl2 C l1:

We also set formally for every triple of elements 	; y1; y2 in a ring:

H	.y1; y2/ D y1 C 	y2 and G	.y1; y2/ D H	.y1; y2/
mC1 � ymC1

1 :

For an .mC 1/-th root of unity � 2 k and integers l1; l2 2 Z�0, we let

�l1;l2 .�/ D
Z �

1

zl1 .zmC1 � 1/l2d z D F.�/ � F.1/;

where F.z/ is any formal antiderivative of f .z/ D zl1 .zmC1 � 1/l2 . Then a
straightforward induction on l2 and integration by parts yields

�l1;l2 .�/ D .�1/l2l2Š .mC 1/l2Ql2
jD0 �.l1 C 1; j /

.�l1C1 � 1/:

Note that �l1;l2 .�/ D 0 if and only if � D 1 or l1 C 1 2 .mC 1/Z.
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2 Invariant Hypersurfaces

In this section, we consider quasi-monomial triangular derivations

@ D xn1 @x2 C .mC 1/xm2 @x3 C p.x1; x2; x3/@x4

where n;m > 0 and where xn1 , xm2 and p.x1; x2; x3/ generate the unit ideal in
kŒx1; x2; x3�. Up to a linear change of coordinates preserving the first three variables
we may thus assume that p D 1 C P

r2M crxr where for every r D .r1; r2; r3/ 2
M � Z

3�0 either r1 > 0 or r2 > 0.
Since a derivation as above annihilates the polynomial f D xmC1

2 � xn1 x3, the
corresponding Ga-action on A4 restricts to an action on the level surfaces V� D
f �1.�/, � 2 k, of f . We will exploit the fact that the properness of the action
generated by @ implies that of its restriction on every V� to get a hint at the structure
of derivations generating proper actions.

Since the defining equation for V� does not involve the last variable x4, V� '
S� � A1 where S� � A3 D Spec.kŒx1; x2; x3�/ is a surface stable under the Ga-
action on A3 generated by the derivation xn1 @x2 C .m C 1/xm2 @x3 . We note that S�,
hence V�, is smooth provided that � ¤ 0 and that in this case, the induced Ga-action
on S� is fixed point free. The projection pr1 W V� ! S� is equivariant, leading to a
commutative diagram

V�

��

�� V�=Ga

��
S� �� S�=Ga

which expresses the geometric quotient V�=Ga as the total space of a Ga-bundle
over the geometric quotient S�=Ga.

Those quotients exists a priori as smooth algebraic spaces of dimension 2 and 1
respectively [10], but in fact, as shown in the proof of Lemma 1 below, S�=Ga is
a scheme isomorphic to the affine line QA1 with an .mC 1/-fold origin, obtained
by gluing m C 1 copies Xi D Spec.kŒx1�/, i D 1; : : : ; m C 1, of A1 by the
identity outside their respective origins. This enables a description of the Ga-
bundle V�=Ga ! S�=Ga ' QA1 in terms of Čech 1-cocycles for the covering
U D fXigiD1;:::;mC1 of QA1. Noting that C1.U ;O QA1 / ' kŒx˙1

1 �.mC1/2 , we have:

Lemma 1. Let � ¤ 0 and let �1; : : : ; �mC1 2 k be the distinct .mC 1/-th roots of
�. Then V�=Ga ! S�=Ga ' QA1 is a locally trivial Ga-bundle with isomorphy class
in H1. QA1;O QA1 / represented by the Čech 1-cocycle
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(
hij .�I x1/ D x�n

1

Z �i

�j

p
�
x1; 	; x

�n
1 .	mC1 � �/

	
d	

)mC1

i;jD1
2 C1.U ;O QA1 /:

Proof. Let us first recall the description of the Ga-bundle S� ! S�=Ga ' QA1.
The surface S� is covered by Ga-invariant open subsets Ui D S n Sj¤i Cj , i D
1; : : : ; m C 1, where the curves Cj D fx1 D x2 � �j D 0g � S� are Ga-orbits.
Noting that the rational function ti D x�n

1 .x2��i / D Q
j¤i .x2��j /�1x3 on S� is a

regular slice for the Ga-action induced on Ui , i.e., ti 2 � .Ui ;OS�/ and @ jUi .ti / D
1, we obtain a collection of Ga-equivariant isomorphisms Ui ' Spec.kŒx1�Œti �/ '
Xi � Ga, i D 1; : : : ; m C 1, where Ga acts by translations on the second factor. It
follows that S�=Ga is isomorphic to the scheme QA1 obtained by gluing the Xi '
Ui=Ga by the identity along the open subsets Xi n f0g ' .Ui n Ci/=Ga, and that
gij D .ti � tj / jUi\Uj D x�n

1 .�j � �i / 2 kŒx˙1
1 �, i; j D 1; : : : ; m C 1, is a Čech

1-cocycle representing the isomorphy class of S� ! S�=Ga ' QA1.
To determine the structure of the induced bundle V�=Ga ! S�=Ga, we observe

that V� ' S� � A1 is covered by the Ga-invariant open subsets Wi D Ui � A1 '
Spec.kŒx1; ti �Œx4�/, i D 1; : : : ; m C 1. Since x2 jUiD xn1 ti C �i and x3 jUiD
x�n
1

�
.xn1 ti C �i /

mC1 � �
	
, we have,

@.x4/ jWi D p
�
x1; x

n
1 ti C �i ; x

�n
1 ..xn1 ti C �i /

mC1 � �/	 D ˚i.x1; ti /

and, since ti is again a slice for the induced Ga-action on Wi , we conclude that
Wi ' Spec.kŒx1; ui �Œti �/ ' A2 � Ga where ui D x4 jWi � R ti

0
˚i .x1; 	/d	 2

kŒx1; ti ; x4�
Ga . By construction, we have

ui � uj jWi\Wj D
�Z tj

0

˚j .x1; zj /d zj �
Z ti

0

˚i .x1; zi /d zi

�
jWi\Wj

D x�n
1

Z �i

�j

p
�
x1; 	; x

�n
1 .	mC1 � �/

	
d	;

the second equality being obtained by making the respective change of variables
z` D x�n

1 .	 � �`/, ` D i; j in the integrals. So V�=Ga ! S�=Ga is a Ga-bundle
represented by the advertised Čech 1-cocycle. ut

Knowing the structure of the induced Ga-bundle V�=Ga ! S�=Ga leads to a
first efficient criterion to test the properness of the Ga-action on A4 generated by a
derivation @ as above. Indeed, since a fixed point free Ga-action on a variety X is
proper if and only if its geometric quotientX=Ga is a separated algebraic space [11,
Lecture 3], the properness of the Ga-action generated by @ implies the separatedness
of V�=Ga for every � ¤ 0.

By virtue of Fieseler’s criterion [7], this holds if and only if each of the rational
functions hij .�I x1/ 2 kŒx˙1

1 �, i ¤ j , of the corresponding Čech cocycle has a pole
at 0. This leads to the following criterion:
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Proposition 1. If @ D xn1 @x2 C .m C 1/xm2 @x3 C p.x/@x4 generates a proper Ga-
action, then for every � ¤ 0 and every pair of distinct indices i; j 2 f1; : : : ; mC 1g,
the rational function

hij .�I x1/ D x�n
1

Z �i

�j

p
�
x1; 	; x

�n
1 .	mC1 � �/	d	

lies in kŒx1̇ � n kŒx1�.
For a polynomial p D 1CP

r2M crxr , we find more explicitly that

hij .�I x1/ D .�i � �j /

xn1

2
41C

X
r2M

cr�
r3˙r2;r3

�
r2C1
i � �

r2C1
j

�i � �j x
�.r1;r3/
1

3
5

where ˙r2;r3 D Pr3
`D0

�
r3
`

	
.�1/r3�`

�.r2C1;`/ ¤ 0. This reveals that the only monomials crxr

which could lead to the improperness of the induced Ga-action on some V� are those
with �.r1; r3/ D r1 � nr3 � 0. Note also that monomials for which r2 � m mod
.mC 1/ do not contribute to the above formula.

3 Normalized Derivations

The previous observations suggest a consideration of the following natural further
normalization of quasi-monomial derivations

@ D xn1 @x2 C .mC 1/xm2 @x3 C p.x1; x2; x3/@x4 ;

which is a particular case of the ]-reduction introduced in [6]:

Lemma 2. Every quasi-monomial derivation @ as above is conjugate to one

ı0 D x
nCq
1 @x2 C .mC 1/x

q
1x

m
2 @x3 C p0.x/@x4

where p0.x/ D 1CP
r2M crxr has the property that for each r D .r1; r2; r3/ 2 M

either .r1 < nr3 and 0 � r2 < m/ or .r3 D 0 and r2 6� m mod .mC 1//.

Proof. The image by @ of a monomial bx˛1 x
ˇ
2 x

�
3 is equal to bˇx˛Cn

1 x
ˇ�1
2 x

�
3 Cb.mC

1/�x˛1 x
ˇCm
2 x

��1
3 . It follows that triangular coordinate changes of the form Qx4 D

x4 C bx˛1 x
ˇ
2 x

�
3 allow to replace a monomial cxr11 x

r2
2 x

r3
3 of p by the monomial

c0xr
0

1

1 x
r 0

2

2 x
r 0

3

3 D
(

� cr3.mC1/
r2C1 x

r1�n
1 x

r2C.mC1/
2 x

r3�1
3 if r1 � n

� c.r2�m/
.mC1/.r3C1/x

r1Cn
1 x

r2�.mC1/
2 x

r3C1
3 if r2 � m:
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Note that in both cases we have r 0
2 � r2 mod .m C 1/ and r 0

1 � nr 0
3 D r1 � nr3. A

suitable sequence of triangular changes of coordinates of the second type reduces
to the situation where 0 � r2 < m for every monomial of p. Then monomials for
which r1 � nr3 � 0 can be reduced using the first type of coordinate change to
monomials with r3 D 0 and r2 6� m mod .mC 1/. ut
Remark 1. For a derivation ı0 normalized as in Lemma 2, the polynomial p0 has
the property that for a given pair of integers .�; 
/ 2 Z

2�0 there exists at most
one monomial cxr11 x

r2
2 x

r3
3 of p0 such that �.r2; r3/ D .m C 1/r3 C r2 D � and


.r1; r2; r3/ D n�.r2; r3/ C r1 � nr3 D 
. Indeed, for two monomials cxr11 x
r2
2 x

r3
3

and c0xr
0

1

1 x
r 0

2

2 x
r 0

3

3 satisfying �.r2; r3/ D �.r 0
2; r

0
3/ and 
.r1; r2; r3/ D 
.r 0

1; r
0
2; r

0
3/, if

both r2; r 0
2 < m or r3 D r 0

3 D 0 then clearly r1 D r 0
1 and r2 D r 0

2. Otherwise, if say
r2 < m and r 0

3 D 0, then the definition of 
.r2; r2; r3/ forces r3 D 0 as well.

Example 1. Consider the twin-triangular quasi-monomial derivations

d` D x1@x2 C 2x2@x3 C .1C x`2/@x4 ; ` � 1;

generating fixed point free Ga-actions on A
4. If ` is even, then d` is normalized and

it was established in [3] that the corresponding action is improper. On the other hand,
if ` is odd, then the normalization of d` as in Lemma 2 is equal to the derivation
ı0 D x1@x2 C 2x2@x3 C @x4 which has x4 as an obvious slice. The corresponding
Ga-action is thus a translation.

By construction, a derivation ı0 normalized as in Lemma 2 is either twin-triangular,
i.e., p0.x/ 2 kŒx1; x2� � kŒx1; x2; x3�, or there exists at least one nonzero monomial
crx

r of p0.x/ for which �.r1; r3/ D r1 � nr3 < 0. In the first case, the so
generatedGa-action is known to be proper if and only if it is a translation [5], and an
effective criterion for its properness will be given in the next section. In contrast, the
following example illustrates the general fact, which will also be established in the
next section, that in the second case the corresponding Ga-action on A4 is always
improper.

Example 2. Let � W Ga � A4 ! A4 be the Ga-action generated by a non twin-
triangular normalized derivation

ı0 D xn1 @x2 C .mC 1/xm2 @x3 C �
1C cx.r1;r2;r3/

	
@x4 :

Note that the cocycle hij .�I x1/ associated with @ has a pole at 0 for every � ¤ 0 and
every pair of distinct indices i; j 2 f1; : : : ; mC 1g so that by virtue of Proposition 1,
the induced Ga-action on every hypersurface V�, � ¤ 0, is proper. Nevertheless,
assuming further that k D C, we will show that˚ D .�; pr2/ W Ga �A4 ! A4 �A4

is not proper when considered as a holomorphic map between the corresponding
varieties equipped with their respective underlying structures of analytic manifolds,
hence not a proper morphism of algebraic varieties [12]. The non properness of ˚
will follow from the existence of sequences of points y` D �

y1;`; y2;`; y3;`; y4;`
	 2
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A4 and t` 2 Ga, ` 2 N, such that y` and �.t`; y`/ converge when ` ! 1 while
lim
`!1 jt`j D 1: namely, the closure of the set f˚.t`; y`/g`2N 2 A4 � A4 will be a

compact subset whose inverse image by ˚ is unbounded.
With r1 < nr3, the desired sequences can be produced as follows: let y` D�

a`�1; b`�ˇ; `�� ; 0
	

and t` D `! , where a 2 C�, b D an.� � 1/�1 for a primitive
.mC 1/-th root of unity �, and where ˇ; �; ! 2 Q>0 satisfy the relations ˇ D n�!
and � D mˇ. Note that lim

`!1y` D .0; 0; 0; 0/.

Using the identity

��.f /.x1; x2; x3; x4; t/ D f .x1; x2; x3; x4/C
Z t

0

��.ı0.f //.x1; x2; x3; x4; 	/d	

which holds in kŒx1; x2; x3; x4�Œt � for every f 2 kŒx1; x2; x3; x4� due to the fact
that ı0 is locally nilpotent, we obtain that the morphism �.t; 	/ maps a point x D
.x1; x2; x3; x4/ 2 A

4 to the point

�.t; x/ D

0
BB@

x1
Ht .x2; x

n
1 /

x3 C x�n
1 Gt .x2; x

n
1 /

x4 C t C cx
r1
1

R t
0
H	 .x2; x

n
1 /
r2
�
x3 C x�n

1 G	 .x2; x
n
1 /
	r3
d	

1
CCA

T

whereH	 and G	 are defined in Notation 1. It follows in particular that �.t`; y`/ D�
a`�1; an�.� � 1/�1`�ˇ; `�� ; z4;`

	
where

z4;` D `! C car1`�r1
Z `!

0

H	.b`
�ˇ; an`�n/r2.`�� C a�n`nG	.b`�ˇ; an`�n//r3d	

D `! C car1b�.r2;r3/`�
Z 1

0

H	.1; a
nb�1/r2.`�!b�m�1 C a�nG	 .1; anb�1//r3d	

for � D ! � �.r1; r3/C .! � n/�.r2; r3/. So the first three coordinates of �.t`; y`/
converge to 0 when ` ! 1, and it remains to show that we can choose the
parameters a 2 C� and ! 2 QC in such a way that the sequence z4;` converges.
To that end, we let

! D nC �.r1; r3/

�.r2; r3/
D nC r1 � nr3

.mC 1/r3 C r2
2 .0; n/

to obtain that z4;` D .1CR1/`
! CO.1/ where R1 2 C is given by the formula

R1 D ca�.r1;r3/b�.r2;r3/
Z 1

0

H	

�
1; anb�1	r2G	

�
1; anb�1	r3d	

D ca�.r1;r3/�nb�.r2C1;r3/�r2;r3 .�/:



Equivariant Triviality of Quasi-Monomial Triangular Ga-Actions on A4 295

Since r2 6� m mod .m C 1/, we have �r2;r3�1.�/ ¤ 0 (see Notation 1), and so the
equation R1 D �1 can be solved with respect to a to obtain the convergence of the
sequence z4;`.

4 An Effective Criterion for Properness

This section is devoted to the proof of the following result:

Proposition 2. Let ı0 D xn1 @x2 C .m C 1/xm2 @x3 C p0.x/@x4 be a derivation
normalized as in Lemma 2. If ı0 generates a proper Ga-action on A4, then .p0.x/�
1/ 2 x1kŒx1; x2�, i.e., ı0 is twin-triangular and every nonconstant monomial of p0
is divisible by x1.

The topological criterion for properness used in the last example was of course lim-
ited in that it applies only to varieties defined over C. Moreover, the technicality in
the construction of the sequences fy`g`2N and ft`g`2N presents daunting challenges
to extending the argument to the more general situation considered in Proposition 2.
To prove this proposition, we will use an alternative approach through the valuative
criterion for properness.

Note that since Ga has no nontrivial finite subgroup, the properness of an action
� W Ga � A4 ! A4 implies that the proper morphism ˚ D .�; pr2/ W Ga � A4 !
A4 � A4 is a monomorphism, hence a closed immersion [8, 8.11.5]. Equivalently,
the comorphism

˚� D id ˝ �� W kŒx1; x2; x3; x4�˝k kŒx1; x2; x3; x4� ! kŒx1; x2; x3; x4�Œt �

is surjective, which, because kŒx1; x2; x3; x4�Œt � is integrally closed, is in turn
equivalent to the fact that every discrete valuation ring of k.x1; x2; x3; x4/.t/ which
contains all xi and ��.xi / also contains t . The strategy for the proof of Proposition 2
is to exploit the existence of a nonconstant monomial crxr having either r1 D r3 D
0 in case ı0 is twin-triangular or r1 < nr3 otherwise to construct a discrete valuation
) of k.x1; x2; x3; x4/.t/ such that ).xi / and ).��.xi // are nonnegative for every
i D 1; : : : ; 4, while ).t/ < 0.

Proof. We write p0.x/ D 1 C P
r2M crxr 2 kŒx1; x2; x3� . Letting � ¤ 1 be a

primitive .m C 1/-th root of unity, we find similarly as in Example 2 above that
��.x1/ D x1, ��.x2/ D Ht

�
x2; x

n
1

	
, ��.x3/ D x3 C x�n

1 Gt
�
x2; x

n
1

	
and

��.x4/ D x4 C t C
X
r2M

crx
r1
1

Z t

0

H	

�
x2; x

n
1

	r2�
x3 C x�n

1 G	
�
x2; x

n
1

	�r3
d	:

By definition ofGt
�
x2; x

n
1

	
, ��.x3/ � x3 modulo the ideal

�
x2 � txn1 .� � 1/�1	 and

the residue class of ��.x4/ modulo the ideal
�
x2 � txn1 .� � 1/�1; x3

	
is equal to
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��.x4/ D x4 C t C
X
r2M

crx

.r1;r2;r3/
1

Z t

0

H	 .t.� � 1/�1; 1/r2 G	.t.� � 1/�1; 1/r3d	

D x4 C t C
X
r2M

cr.� � 1/��.r2C1;r3/�r2;r3 .�/ x

.r1;r2;r3/
1 t�.r2C1;r3/

D x4 C t.1C
X
r2M

ˇr x

.r1;r2;r3/
1 t�.r2;r3//

where, for every r D .r1; r2; r3/ 2 M , ˇr D cr .� � 1/��.r2C1;r3/�r2;r3 .�/ ¤ 0 as
r2 6� m mod .mC 1/. We view

Y.x1; t/ D ��.x4/ � x4
t

D 1C
X
r2M

ˇrx

.r1;r2;r3/
1 t�.r2;r3/ 2 kŒx1; t �

as a polynomial in t with coefficients in the algebraically closed field F of Puiseux
series in the variable x1.

Now suppose that either p0 2 kŒx1; x2; x3� n kŒx1; x2� or .p0 � 1/ 2 kŒx1; x2� n
x1kŒx1; x2�. In each case, it follows from Remark 1 that Y.x1; t/ is nonconstant and
our goal is to check that there exists a root �.x1/ 2 F of Y.x1; t/ for which the
factor .t � �.x1/

	
of Y.x1; t/ can be assigned a value large enough to ensure that

the value of tY.x1; t/ will be nonnegative.
Write �.r/ D 
.r1;r2;r3/

�.r2;r3/
D nC r1�nr3

�.r2;r3/
, let �0 WD minr2M f�.r/gr and letM0 be the

subset of M on which the minimum occurred. Note that "0 D n if p0 2 kŒx1; x2�

and that otherwise "0 < n. Furthermore, every r 2 M0 has r2 ¤ 0 in the first case
and r3 ¤ 0 in the second. Because of Remark 1, there exists a unique r0 2 M0

such that � .r2; r3/ is minimal. Denote this value of � .r2; r3/ by �0 and by 
0
the corresponding value of 
 .r1; r2; r3/. Since �0 is minimal, all the points of the
Newton polygon for the set f.0; 0/g [ f.�.r2; r3/; 
.r1; r2; r3//g � R2 lie above or
on the line L that passes through .0; 0/ and .�0; 
0/. The segment Œ.0; 0/; .�0; 
0/�
is thus an edge of the polygon and hence, by virtue of the Newton-Puiseux Theorem
(see e.g. [14, Theorem 3.1]), there exists a root �.x1/ 2 F of Y.x1; t/ whose
Puiseux expansion has the form �.x1/ D a1x

�1
1 .1C O.x

�2
1 // where a1 2 k, �1 D

�Slope .L/ D ��0 < 0 and �2 > 0. Substituting �.x1/ into the Eq.Y.x1; t/ D 0,
we get

1C
X
r2M

ˇr

�
a1x

�1
1 .1CO.x

�2
1 //

��.r2;r3/
x

.r1;r2;r3/

1 D 0:

The constant term 1CP
r2M0

ˇra
�.r2;r3/

1 of the last equation must be zero, and since
�.r2; r3/ ¤ 0 for every r 2 M0, we conclude that a1 ¤ 0.

Now using the algebraic independence of t � �.x1/, x2 � txn1 .� � 1/�1, x3 and
x4 over F, we can define a discrete valuation on F.x2; x3; x4/.t/ as follows: first
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we let ).x1/ D �0 > 0. By construction, ).�.x1// D �1�0 D �
0 < 0 and so
choosing ).t � �.x1// to be nonnegative will force ).t/ D �
0 < 0. Our choice
of the root �.x1/ of Y.x1; t/ forces ).t � Q�.x1// D �
0 for every other root Q�
of Y.x1; t/ in F and so, it is enough to choose ).t � �.x1// large enough to obtain
).tY.x1; t// � 0. Since for the triple r0 D .r1; r2; r3/ we have either r1 D r3 D 0

or r1�nr3 < 0, it follows in turn that )
�
txn1

	 D ) .t/Cn) .x1/ D �
0Cn�0 � 0,
with strict inequality in the case where p0 2 kŒx1; x2; x3� n kŒx1; x2�. So choosing
).x2 � txn1 .� � 1/�1/ to be nonnegative forces ).x2/ � 0 whence ).��.x2// � 0.
Writing

��.x3/ D x3 C t.x2 � txn1 .� � 1/�1/R.x2; txn1 /
��.x4/ D x4 C tY.x1; t/C .x2 � txn1 .� � 1/�1/S.x1; x2; t/C

X
Ti.x1; x2; t/x

i
3

for suitable polynomials R;S; Ti with coefficients in k, we see that choosing
).x3/ � 0 and ).x2 � txn1 .� � 1/�1// sufficiently large is enough to obtain
the nonnegativity of ).��.x3// and )..x2 � txn1 .� � 1/�1/S.x1; x2; t//. Finally,
choosing ).x4/ � 0 and ).x3/ sufficiently large guarantees that ).��.x4// � 0.
The restriction of ) to k.x1; x2; x3; x4/.t/ is the required valuation. ut

5 Applications

We conclude with our main result:

Theorem 1. For each q 2 Z�0 the Ga-action on A4 generated by a quasi-
monomial derivation @q D x

nCq
1 @x2 C.mC1/xq1xm2 @x3 Cp.x/@x4 is either improper

or a translation.

Proof. We first consider the case where q D 0. We may assume that @0 is
normalized as in Lemma 2. If @0 generates a proper Ga-action, then by virtue of
Proposition 2, p D 1 C x1q.x1; x2/ for some polynomial q.x1; x2/ 2 kŒx1; x2�.
So @0 is an extension to kŒx1; x2; x3; x4� of the triangular kŒx1�-derivation @0 D
xn1 @x2 C .1Cx1q.x1; x2//@x4 of kŒx1; x2; x4�. Since the latter generates a fixed point
free action on A3, it is a translation by virtue of [13]. Any slice s 2 kŒx1; x2; x4� for
@0 is then also a slice for @0, and we conclude that �0 is globally equivariantly trivial,
with geometric quotient isomorphic to Spec.kŒx1; x2; x4�=.s/Œx3�/ ' A2�A1 ' A3.

Now assume that q > 0 and let @ D xn1 @x2 C .m C 1/xm2 @x3 C p.x/@x4 . It is
enough to show that @q and @ have isomorphic kernels and that the properness of the
Ga-action �q generated by @q implies the properness of the Ga-action � generated
by @. Indeed, if so, the previous case implies that Ker@q ' Ker@ is a polynomial ring
in three variables over k, in particular a regular ring. Thus �q is locally equivariantly
trivial by [3], whence a translation by [4].
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To check that @q and @ have isomorphic kernels, we note that since x1 belongs
to the kernel of @, the derivation x

q
1 @ is again locally nilpotent. Letting � W

kŒx1; x2; x3�Œx4� ! kŒx1; x2; x3�Œx4� be the kŒx1; x2; x3�-algebra endomorphism
defined by �.x4/ D x

q
1 x4, we have � ı xq1 @ D @q ı � and by induction � ı x`q1 @.`/ D

@
.`/
q ı � for every ` 2 Z>0. The kernel algorithm [16] applied to @ has as initial data

the polynomial invariants cj D x
nj
1 Qcj where Qcj D exp.� x2

xn1
@/.xj / for j D 1; : : : ; 4,

and where nj is the least power for which x
nj
1 Qcj 2 kŒx1; x2; x3; x4�. Extending � to

kŒx˙1
1 ; x2; x3�Œx4� we have

�i . Qcj / D
8<
:

exp.� x2

x
nCq
1

@q/.xj / 1 � j � 3

x
q
1 exp.� x2

x
nCq
1

@q/.xj / j D 4:

It follows that the polynomial invariants cj , j D 1; : : : ; 4, are also the initial data
for the kernel algorithm for @q and we conclude that ker@q ' ker@.

Now suppose that � is improper. Letting fi .x; t/ D ��.xi / � xi and gi .x; t/ D
��
q .xi / � xi , i D 1; : : : ; 4, considered as elements of kŒx1; x2; x3�Œt �, it follows

from the definition of @ and @q that fi .x; t/ D gi .x; x
q
1 t/ for i D 1; 2; 3 while

f4.x; t/ D x
�q
1 g4.x; x

q
1 t/. The construction given in the proof of Proposition 2

implies the existence of valuations ) W k.x1; x2; x3; x4; t/ ! Z [ f1g negative
on t , nonnegative on all xi and ��.xi / and with the property that ).g4.x; t// is
arbitrarily bigger than ).x1/. In particular, we may choose such a valuation ) for
which ).g4.x; t// � q).x1/. Then it is straightforward to check using the above
relations between the fi and gi that the valuation )q defined by )q.xi / D ).xi / � 0,
i D 1; : : : ; 4 and )q.t/ D ).t/� q).x1/ < 0 is nonnegative on all ��

q .xi /. So �q is
improper, which completes the proof. ut
Remark 2. The conclusion of Theorem 1 holds more generally for derivations
@ D x

nCq
1 @x2 C x

q
1g.x2/@x3 C p.x/@x4 . A more elaborate version of Lemma 2

provides a normalized form for such @. The valuative criterion for properness
applies again here, but the reduction of ��.x3/ is carried out over kŒŒtxn1 ��Œx2� rather
than over kŒtxn1 �Œx2�. For the details we refer to the thesis [9]. As a consequence,
the conclusion of Theorem 1 also holds for instance for Ga-actions generated
by triangular derivations @ D x1@x2 C q.x1; x2/@x3 C p.x/@x4 . Indeed, writing
q.x1; x2/ D Pl

iD1 aix
mi
2 C P

` q`.x2/x
n`
1 where n` � 1 for all `, the triangular

change of coordinates Qx3 D x3 �P
` x

n`�1
1

R x2
0
q`.u/du brings the derivation to the

form covered by the aforementioned version.
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Automorphism Groups of Certain Rational
Hypersurfaces in Complex Four-Space

Adrien Dubouloz, Lucy Moser-Jauslin, and Pierre-Marie Poloni

Abstract The Russell cubic is a smooth contractible affine complex threefold
which is not isomorphic to affine three-space. In previous articles, we discussed
the structure of the automorphism group of this variety. Here we review some
consequences of this structure and generalize some results to other hypersurfaces
which arise as deformations of Koras–Russell threefolds.

Subject Classification: 14L30; 13R20

1 Introduction

In order to prove the linearizability of algebraic actions of C� on affine three-space,
[9, 10], Koras and Russell studied hyperbolic C�-actions on more general smooth
contractible threefolds. This led them to introduce a set of threefolds which are
smooth affine and contractible, however not isomorphic to A3. These varieties are
now known as Koras–Russell threefolds. One of the families of these varieties,
called Koras–Russell threefolds of the first kind, is given by hypersurfaces Xd;k;`
in the affine space A4 D Spec.CŒx; y; z; t �/ defined by equations of the form
xdy C zk C t ` C x D 0 where d � 2 and 2 � k < ` with k and ` relatively
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prime. All of these threefolds admit algebraic actions of the complex additive
group Ga and they were originally proven to be not isomorphic to affine space
by means of invariants associated with those actions. These invariants, known as
the Derksen and Makar-Limanov invariants, are defined respectively for an affine
variety X D Spec.A/ admitting nontrivial Ga-actions as the sub-algebra Dk.X/ of
A consisting of regular functions invariant under at least one nontrivial Ga-action
onX and its sub-algebra ML.X/ consisting of regular functions invariants under all
nontrivial such actions.

These tools have since become important and useful to study affine algebraic
varieties. In particular, one of the central elements in the proofs of many existing
results concerning Koras–Russell threefolds of the first kind, and some of the
generalizations we consider in this chapter is the fact that their Makar-Limanov and
Derksen invariants are equal to CŒx� and CŒx; z; t �, respectively (see, for example,
[6], Lemma 8.3 and [7], Example 9.1. for the Koras–Russell threefolds). This
property imposes very strong restrictions on the nature of isomorphisms between
such varieties which enable sometimes an explicit description of their isomorphism
classes and automorphism groups.

Koras–Russell threefolds of the first kind belong to the more general family of
hypersurfacesX D X.d; r0; g/ in A4 D Spec.CŒx; y; z; t �/ defined by equations of
the form

xdy C r0.z; t/C xg.x; z; t/ D 0

where d � 2, r0 2 CŒz; t �, and g 2 CŒx; z; t �. All varieties of this type share the
property that they come equipped with a flat A2-fibration � D prx W X ! A1 D
Spec.CŒx�/ restricting to a trivial bundle over the complement of the origin and with
degenerate fiber ��1.0/ isomorphic to the cylinder C0 � A1 over the plane curve
C0 � Spec.CŒz; t �/ with equation r0 D 0. In particular, noting that ��1.A1 n f0g/
is factorial, and that ��1.0/ D div.x/ is a prime principal divisor if and only if
C0 is reduced and irreducible, we see that a threefold X is factorial whenever the
corresponding curve C0 is reduced and irreducible (see also [12]). A combination
of [5, 13] implies that X is isomorphic to A3 if and only if ��1.0/ is reduced
and isomorphic to A2, whence, by virtue of [1] if and only if C0 is isomorphic
to the affine line. Furthermore, identifying the coordinate ring A of X with the sub-
algebra CŒx; z; t; x�d .r0 C xg.x; z; t//� of CŒx; z; t �x via the canonical localization
homomorphism with respect to x gives rise to a description of X as the affine
modification � D prx;z;t jX W X ! A3 of A3 D Spec.CŒx; z; t �/ with center at the
closed subschemeZ with defining ideal J D .xd ; r0.z; t/C xg.x; z; t// and divisor
D D fxd D 0g in the sense of [8]. That is, X is isomorphic to the complement
of the proper transform of D in the blow-up of A3 with center at Z. Noting that
the closed subscheme Z of A3 is supported along the curve C0 � Spec.CŒz; t �/,
this description implies that a smooth X for which C0 is irreducible, topologically
contractible, but not isomorphic to the affine line, is an exotic A3 [8, Theorem 3.1].
This holds for instance for smooth deformations of Koras–Russell threefolds of the
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first kind defined by equations of the form xdy C zk C t ` C xg.x; y; z/ D 0, with
k; ` � 2 relatively prime and g.0; 0; 0/ D 1, corresponding to the irreducible,
singular, topologically contractible plane curves C0 D fzk C t ` D 0g.

The present chapter reviews three complementary applications of Derksen and
Makar-Limanov invariants to the study of threefolds X.d; r0; g/ as above. First we
summarize several properties of automorphism groups of Koras–Russell threefolds
of the first kind which appeared separately in previous articles by the authors,
and we complete the picture with a characterization of certain natural subgroups
of these automorphism groups. Then we turn to the study of non-necessarily
smooth deformations of Koras–Russell threefolds defined by equations of the form
xdy C zk C t ` C xg.x; y; z/ D 0. We explain how to obtain a description of
isomorphism classes of these threefolds that is reminiscent of the (mini)-versal
deformation of the corresponding singular plane curve C0 D fzk C t ` D 0g:
Finally, we illustrate on an example of a threefold X D fxdy C r0.z; t/ D 0g
with non-connected associated plane curve C0 D fr0 D 0g a general procedure to
construct new types of automorphisms of X which do not admit any extension to
automorphisms of the ambient space A4.

2 A Preliminary Observation

Let d 2 N and r0 2 CŒz; t � be fixed. For any g 2 CŒx; z; t �, we denote by

Jg D .xd ; r0 C xg/

the ideal of CŒx; z; t � generated by xd and r0 C xg, and by A.g/ the coordinate ring
of the hypersurfaceX.g/ of A4 D Spec.CŒx; y; z; t �/ defined by the equation

xdy C r0.z; t/C xg.x; z; t/ D 0:

Corresponding to the presentation of X.g/ as the affine modification � W X.g/ !
A3 mentioned in the introduction, we have a chain of inclusions

CŒx; z; t � � A.g/ � A.g/Œx�1� ' CŒx; x�1; z; t �:

The second inclusion is induced by the localization homomorphism with respect
to the regular element x 2 A.g/, identifying y 2 A.g/ with �x�d .r0 C xg/ 2
CŒx; x�1; z; t �.

Given a pair of polynomials f; g 2 CŒx; z; t �, the universal property of affine
modifications [8, Proposition 2.1] implies that every automorphism ' of CŒx; z; t �
which fixes the ideal .x/ and maps Jg into Jf lifts in a unique way to a morphism
Q' W A.g/ ! A.f / restricting to ' on the subring CŒx; z; t �. Actually, Q' is even
an isomorphism. Indeed, by hypothesis, there exist ˛ 2 C� and a; b 2 CŒx; z; t �
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such that '.x/ D ˛x and '.r0 C xg/ D axd C b.r0 C xf /. The second equation
implies that b is congruent modulo x to a nonzero constant whence that its residue
class in CŒx; z; t �=.xd / is a unit for every d � 1. Choosing b0 2 CŒx; z; t � such that
bb0 � 1 mod .xd / and multiplying the previous equation by it, we conclude that
r0 C xf 2 '.Jg/. Thus ' maps Jg isomorphically onto Jf .

The following lemma will be used several times throughout this chapter.

Lemma 1. With the notation above assume further that the Derksen and
Makar-Limanov invariants of X.f / and X.g/ are equal to CŒx; z; t � and CŒx�,
respectively. Then the previous construction provides a one-to-one correspondence
between isomorphisms from A.g/ to A.f / and automorphisms of CŒx; z; t � which
fix the ideal .x/ and map Jg into Jf .

Proof. Note first that the hypotheses imply that neither X.f / nor X.g/ is isomor-
phic to A3 and hence, as a consequence of [13], that the surface C0 � A1 D fr0 D
0g � Spec.CŒx; z; t �/ is not isomorphic to A2. Since an isomorphism between A.g/
and A.f / preserves the Makar-Limanov and the Derksen invariants, it restricts to
an automorphism ' of CŒx; z; t � and an automorphism of CŒx�. That is, '.x/ is of
the form ax C b where a 2 C� and b 2 C. Actually, b D 0 since by the previous
remark the zero set of axCb inX.f / andX.g/ is non-isomorphic to A2 if and only
if b D 0. This shows that ' fixes the ideal .x/. Noting that Jg D xdA.g/\CŒx; z; t �
and similarly for Jf , we conclude that '.Jg/ D Jf , which completes the proof. ut

3 Automorphisms of Koras–Russell Threefolds of the First
Kind

In this section, we consider Koras–Russell threefolds of the first kind X D
X.d; k; `/ corresponding to the cases where d � 2, r0 D zk C t `, and g D 1.
Since Dk.X/ D CŒx; z; t � and ML.X/ D CŒx�, we deduce from Lemma 1 that
the projection � D prx;z;t jX W X ! A3 gives rise to an isomorphism between
the automorphism group of X and the subgroup A of automorphisms of CŒx; z; t �
which preserve the ideals .x/ and .xd ; r0 C x/. In particular, C� acts linearly on
X . In fact, letting An, 1 � n � d be the normal subgroup of A consisting of the
automorphisms ' which fix x and which are congruent to the identity modulo .xn/,
it was shown more precisely in [2, 11] that

Aut.X/ ' A1 Ì C
� and An=AnC1 Š .CŒz; t �;C/ for all 1 � n � d � 1:

The next proposition summarizes several consequences of this description:

Proposition 1. Let X D Xd;k;` � A4 be a Koras–Russell threefold of the first kind.
Then the following hold:

1) Every automorphism of X extends to an automorphism of A4.
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2) The group Aut.X/ acts on X with exactly four orbits:

– an open orbit fx ¤ 0g ' C� � C2,
– a copy of C� � C given by x D 0 and z 6D 0,
– the line fx D z D t D 0g minus the point .0; 0; 0; 0/,
– a fixed point .0; 0; 0; 0/.

3) Every finite subgroup of Aut.X/ is cyclic.
4) Every one-parameter unipotent subgroup of Aut.X/ is contained in Ad . In par-

ticular, the subgroup generated by all Ga-actions on X is strictly smaller
than A1.

Remark 1. In contrast with Property 2) above, the group of holomorphic automor-
phisms of X acts with at most three orbits. Indeed, one checks for instance that the
holomorphic automorphism � of A4 defined by

�.x; y; z; t/ D
 
x; ex

d�1

y � 1 � ex
d�1

xd�1 ; e
xd�1

k z; e
xd�1

` t

!

maps X onto itself. Hence � induces a holomorphic automorphism  of X for
which  .0; 0; 0; 0/ D .0; 1; 0; 0/, i.e., .0; 0; 0; 0/ is no longer a fixed point for the
action of holomorphic automorphisms of X . The exact number of orbits under the
action this group is not known. In particular, it is still an open question whether any
threefoldXd;k;` is biholomorphic to the affine space.

Proof. Properties 1) and 2) were established in [2] for the Russell cubic and in [11]
for the general case.

The third property was originally formulated as a question by V. Popov. Since
Aut.X/ ' A1 Ì C�, it is enough to show that A1 does not contain nontrivial
torsion elements. Indeed, if so, the projection to the second factor C� will induce an
isomorphism between every finite subgroup of Aut.X/ and a subgroup of C�. So
suppose that ' 2 A1 is a nontrivial torsion element, say of orderm � 2. By possibly
switching z and t , we can further assume that '.z/ 6D z. Choosing N 2 N minimal
with the property that '.z/ � zCf .z; t/xN mod .xNC1/ for some f 2 CŒz; t �nf0g,
we would have 'm.z/ � z Cmf.z; t/xN 6� z mod .xNC1/, a contradiction.

For the last property, it follows from Lemma 1 that every additive group action
on X is induced by a locally nilpotent derivation D of the coordinate ring of X
extending a locally nilpotent CŒx�-derivation of CŒx; z; t � which maps the ideal J D
.xd ; zk C t ` C x/ into itself, the second condition being equivalent to the property
that the corresponding exponential automorphisms preserve this ideal. We will show
that in fact the image of D is contained in the ideal .xd /, which implies that the
corresponding one-parameter unipotent subgroup of Aut.X/ is contained in Ad .
We prove this by induction, assuming that D � 0 modulo .xk/ with 0 � k <

d . Since D.zk C t ` C x/ D axd C b.zk C t ` C x/ where a; b 2 CŒx; z; t �, the
hypothesis implies that xk divides b. On the other hand, D1 D x�kD is again a
locally nilpotent derivation such that D1.x/ D 0 and for which we have D1.zk C
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t ` C x/ D axd�k C .b=xk/.zk C t ` C x/. Thus D1 induces a locally nilpotent
derivationD1 of CŒx; z; t �=.x/ Š CŒz; t � which maps the ideal generated by zk C t `

into itself. SoD1 is necessarily trivial as there is no nontrivial Ga-action preserving
a singular plane curve. ThusD1 � 0 modulo .x/ and hence D � 0 mod .xkC1/.

ut
Remark 2. Recall that we always have an exact sequence of groups

0 ! Aut0.A4; X/ ! Aut.A4; X/
�! Aut.X/

where Aut.A4; X/ denotes the subgroup of Aut.A4/ consisting of automorphisms
which leaveX invariant and where Aut0.A4; X/ denotes the kernel of �. The surjec-
tivity of � was established in Property 1) of the above proposition by constructing
explicit lifts of automorphisms of X to automorphisms of A4. Nevertheless, this
construction was only set-theoretic and it is not clear whether the above sequence
splits. Note however that since an element ' 2 Ad is the identity modulo .xd / and
preserves the subring CŒx; z; t � of the coordinate ring ofX , it lifts in a natural way to
an automorphism˚ of CŒx; y; z; t � by letting simply ˚.y/ D yC .'.r0Cx/� r0�
x/=xd . This gives rise to group homomorphism Ad ! Aut.A4; X/, ' 7! ˚ , which,
combined with the fact that the action of C� onX comes as the restriction of a linear
action on A4, extends to a group homomorphism j W Ad Ì C� ! Aut.A4; X/ such
that � ı j D id. We do not know whether j can be extended to a splitting of the
above exact sequence.

4 Deformations of Koras–Russell Threefolds

In this section, we consider hypersurfacesX.g/ of A4 D Spec.CŒx; y; z; t �/ defined
by equations of the form

xdy C r0.z; t/C xg.x; z; t/ D 0

where r0 D zk C t ` and d � 2 are fixed, and we let the polynomial g 2 CŒx; z; t �
vary. The case r0 D z2 C t3 was treated in [3], leading to the construction of large
families of non-isomorphic smooth affine threefolds that are all biholomorphic to
each other and diffeomorphic to the affine space. Here, we show that similar tech-
niques can be applied to find isomorphisms between deformations of hypersurfaces
in a more general setting.

Theorem 1 below relies again in a crucial way on the fact that the Derksen
and Makar-Limanov invariant of threefolds X.g/ are equal to CŒx; z; t � and CŒx�,
respectively. These properties can be checked using the methods developed in [7],
namely via a careful study of homogeneous locally nilpotent derivations on a well-
chosen quasi-homogeneous deformation of X.g/. The complete proof is quite long
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and technical but is essentially straightforward using the aforementioned methods.
We shall omit it here, in particular since it involves no new ideas or arguments.

Notation 1 We will be considering derivations of CŒz; t � defined by the Jacobian
of a polynomial. If f 2 CŒz; t �, we denote by fz the partial derivative @f=@z,
and by ft the partial derivative @f=@t . For f; g 2 CŒz; t �, the Jacobian Jac.f; g/
denotes fzgt � ftgz. Finally, Jac.f; 	/ denotes the derivation of CŒz; t � defined by
g 7! Jac.f; g/.

Let B D CŒai;j � be the polynomial ring in the .k�1/.`�1/ indeterminates ai;j ,
0 � i � k � 2; 0 � j � ` � 2, let m0 � B be the maximal ideal generated by the
ai;j and let

F D r0 C
X

0�i�k�2; 0�j�`�2
ai;j zi t j 2 BŒz; t �:

Given a homomorphism ˛ W B ! CŒx� such that ˛.m0/ � xCŒx�, the image of
F in CŒx� ˝B BŒz; t � ' CŒx; z; t � has the form r0 C xg˛ for some polynomial g˛
belonging to the CŒx�-submodule of CŒx; z; t � generated by the monomials zi t j with
0 � i � k � 2 and 0 � j � ` � 2. Every such homomorphism ˛ thus determines a
threefold X˛ D X.g˛/ defined by the equation xdy C r0 C xg˛ D 0.

Theorem 1. With the notation above, the following statements hold:

1) For every g 2 CŒx; z; t �, there exists a homomorphism ˛ W B ! CŒx� such that
X.g/ is isomorphic to X˛.

2) Two homomorphisms ˛; ˇ W B ! CŒx� determine isomorphic threefolds X˛ and
Xˇ if and only if there exist constants �;
 2 C� such that the following diagram
commutes

B
�d ı˛

��

��

��

CŒx�=.xd /

x 7!
x

��

B
�d ıˇ

�� CŒx�=.xd /

where �d W CŒx� ! CŒx�=.xd / denotes the natural projection and where �� W
B ! B is the linear automorphism defined by ai;j 7! �`iCkj�k`ai;j .

Remark 3. Noting that the subvariety V of T � A2 D Spec.BŒz; t �/ with equation
F D 0 is the (mini)-versal deformation of the curve C0 � A2 with equation r0 D 0

(see e.g. §14.1 in [4]), we can reinterpret the above result as the fact that for fixed
d � 2, isomorphism classes of hypersurfaces of the form X.g/ are in one-to-one
correspondence with one-parameter infinitesimal embedded deformations of order
d � 1 of C0, up to the equivalence between such deformations defined in the second
assertion of the theorem.
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Proof. 1) In view of Lemma 1, to prove the first assertion, it is enough to show that,
given a polynomial g 2 CŒx; z; t �, there exist elements bm, m D 1; : : : ; d � 1 in
the sub-vector space of CŒz; t � generated by the monomials zi t j , 0 � i � k � 2,
0 � j � ` � 2 and a CŒx�-automorphism ' of CŒx�Œz; t � which maps the ideal
.xd ; r0 C xg/ into the ideal .xd ; r0 CPd�1

mD1 bmxm/. We may write

g D
X
m�1

umx
m�1 D

X
m�1

.sm C tm/x
m�1

where for every m, sm belongs to the sub-vector space of CŒz; t � generated by
the monomials zi t j , 0 � i � k � 2, 0 � j � ` � 2, while tm is in the ideal
.zk�1; t`�1/CŒz; t �. Let t0 D 0 and denote by � D �.g/ the maximal integer with
the property that tm D 0 for every m � � � 1. If � D d then we are done.
Otherwise, we will proceed by induction.

Note that the image of the C-derivation of CŒz; t �=.r0/ induced by the
Jacobian derivation Jac.r0; 	/ of CŒz; t � is equal to the ideal of CŒz; t �=.r0/
generated by the residue classes of zk�1 and t `�1. Indeed, one checks for example
that, given a � k � 1 and b � 0, we have

Jac.r0; �za�kC1tbC1/ D zatb � �`.a � k C 1/za�ktbr0 � zatb mod .r0/;

where � D .k.b C 1/C `.a � k C 1//�1. This fact guarantees the existence of
polynomials h; f 2 CŒz; t � such that Jac.h; r0/ D t� C r0f .

Let us consider the CŒx�=.x�C1/-automorphism ' D exp.�x�Jac.h; 	// of
CŒx�=.x�C1/Œz; t �. Since its Jacobian is a nonzero constant, it lifts, by the main
theorem in [14], to a CŒx�-automorphism ' of CŒx�Œz; t � such that '.x/ D x and
'.a/ � a � x�Jac.h; a/ mod .x�C1/ for all a 2 CŒx; z; t �. Then, we have the
following congruences modulo .x�C1/.

'.r0 C xg/ � r0 C
��1X
mD1

smx
m C x�.s� C t�/ � x�Jac.h; r0/ mod .x�C1/

� r0 C
�X

mD1
smx

m � x�r0f mod .x�C1/

� .1 � x�f /.r0 C
�X

mD1
smx

m/ mod .x�C1/:

It follows that there exists a polynomial R 2 CŒx; z; t � such that '.r0 C xg/ �
.1�x�f /.r0CP�

mD1 smxmCx�C1R/ mod .xd /. Letting Qg D P�
mD1 smxm�1C

x�R, we obtain that ' maps the ideal .xd ; r0 C xg/ into the ideal .xd ; r0 C x Qg/,
and since �. Qg/ > �.g/ by construction, we are done by induction.
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2) Let us first rephrase the second assertion. If we let ˛.ai;j / D x˛i;j .x/ and
ˇ.ai;j / D xˇi;j .x/ with ˛i;j ; ˇi;j 2 CŒx� for 0 � i � k � 2; 0 � j � ` � 2,
the latter states that the threefolds X˛ and Xˇ are isomorphic if and only if there
exist two constants �;
 2 C� such that


x˛i;j .
x/ � �`iCkj�k`xˇi;j .x/ mod .xd /

for all 0 � i � k � 2 and all 0 � j � ` � 2. If such constants �;
 2 C� exist
then the automorphism ' of CŒx; z; t � defined by '.x/ D 
x, '.z/ D ��`z,
'.t/ D ��kt satisfies that '.r0 C xg˛/ � ��k`.r0 C xgˇ/ modulo .xd /. Thus, '
maps the ideal .xd ; r0 C xg˛/ into the ideal .xd ; r0 C xgˇ/, and X˛ and Xˇ are
isomorphic by Lemma 1.

Conversely, suppose that X˛ and Xˇ are isomorphic and let ' be an automor-
phism ofCŒx; z; t � which fixes the ideal .x/ and maps the ideal .xd ; r0Cxg˛/ into
the ideal .xd ; r0 C xgˇ/. Up to changing Xˇ by its image under an isomorphism
coming from an automorphism of C3 of the type .x; z; t/ 7! .
x; ��`z; ��kt/
as above, we may further assume that ' is a CŒx�-automorphism of CŒx�Œz; t �
which is the identity modulo .x/ and we are thus reduced to the following
statement. “Suppose that there exists a CŒx�-automorphism ' of CŒx�Œz; t � which
is congruent to the identity modulo .x/ and such that '.r0 C xg˛/ 2 .xd ; r0 C
xgˇ/. Then g˛ and gˇ are congruent modulo .xd�1/.”

Choose � maximal such that ' is congruent to the identity modulo .x�/. If
� � d , then we are done. So, suppose that � � d � 1. Writing down that the
Jacobian of ' is constant equal to 1, we remark that there exists a polynomialh 2
CŒz; t � such that '.z/ and '.t/ are congruent modulo .x�C1/ to zCx�ht and to t�
x�hz, respectively. Consequently, we have '.r0Cxg˛/ � r0Cxg˛Cx�Jac.r0; h/
modulo .x�C1/. On the other hand, since '.r0 C xg˛/ 2 .xd ; r0 C xgˇ/ and
since, by definition, g˛ and gˇ contain no monomials of the form cxi1zi2 t i3 with
i2 � k � 1 or i3 � ` � 1, there exists a polynomial a 2 CŒz; t � such that
'.r0 C xg˛/ � r0 C xgˇ C x�ar0 modulo .x�C1/.

Writing xg˛ D P
m�1 s˛;mxm and xgˇ D P

m�1 sˇ;mxm as before, we have
thus

r0 C
��1X
mD1

s˛;mx
m C x�.s˛;� C Jac.r0; h// � r0 C

��1X
mD1

sˇ;mx
m C x�.sˇ;� C ar0/

modulo .x�C1/. Since Jac.r0; h/ and r0 both belong to the ideal .zk�1; t`�1/
of CŒz; t �, we conclude that s˛;m D sˇ;m for every m D 1; : : : ; � and that
Jac.r0; h/ 2 r0CŒz; t �. This implies in turn that h D �r0 C c for some � 2
CŒz; t � and c 2 C. Now consider the CŒx�=.xd /-automorphism  D exp.ı/ of
CŒx�=.xd /Œz; t � associated with the derivation ı D x�Jac.	; �.r0 C xg˛//. Since
 has Jacobian determinant equal to 1 (see [11]), we deduce again from [14] that
it lifts to a CŒx�-automorphism  of CŒx�Œz; t �. By construction  � ' modulo
x�C1 and since r0 C xg˛ divides ı.r0 C xg˛/ D x�.r0 C xg˛/Jac.r0 C xg˛; �/,
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it maps the ideal .xd ; r0 C xg˛/ into itself. Thus '1 D ' ı �1 is a CŒx�-
automorphism of CŒx�Œz; t � congruent to identity modulo x�C1 which maps
.xd ; r0 C xg˛/ into .xd ; r0 C xgˇ/ and we can conclude the proof by induction.

ut

5 An Example of a Non-extendible Automorphism

Most of the algebraic results of the previous two sections can be generalized to the
situation where r0 2 CŒz; t � defines a connected and reduced plane curve, provided
that the Makar-Limanov and Derksen invariants of the corresponding threefolds are
equal to CŒx� and CŒx; z; t �, respectively. Here we illustrate a new phenomenon in a
particular case where the zero set of r0 is not connected.

For this section, we fix d D 2, r0 D z.zt2 C 1/ and we let X be the smooth
hypersurface in A4 D Spec.CŒx; y; z; t �/ defined by the equation

P D x2y C z.zt2 C 1/ D 0:

Note that X is neither factorial nor topologically contractible. It is straightforward
to check using the methods in [7] that Dk.X/ D CŒx; z; t � and ML.X/ D CŒx�. We
will use the fact that the plane curve C0 with equation r0 D z.zt2 C 1/ D 0 has two
connected components to construct a particular automorphism Q' ofX which cannot
extend to the ambient space A4.

Starting from the polynomial h D zt2 2 CŒz; t �, we first construct in a
similar way as in [11] an automorphism ' of CŒx; z; t � as follows: Noting that the
CŒx�=.x2/-automorphism' D exp.xJac.h; 	// of CŒx�=.x2/Œz; t � has Jacobian equal
to 1, we deduce again from [14], that it lifts to a CŒx�-automorphism ' of CŒx; z; t �.
In other words, there exists an automorphism ' of CŒx; z; t � with '.x/ D x and
such that ' � ' mod .x2/. One checks further using the explicit formulas that
'.z/ D .1� 2tx/z, '.t/ D .1C tx/t and that '.r0/ D .1� 2xt/r0. So ' preserves
the ideals .x/ and J D .x2; z.zt2 C 1// and hence lifts to a CŒx�-automorphism Q'
of the coordinate ring CŒX� of X .

Proposition 2. The automorphism ofX � A4 determined by Q' cannot extend to an
automorphism of the ambient space.

Proof. Suppose by contradiction that there exists an automorphism˚ of CŒx; y; z; t �
which extends Q'. Then there exists a constant � 2 C� such that ˚.P / D �P and so
we obtain a commutative diagram

CŒx; y; z; t �
˚

�� CŒx; y; z; t �

CŒu�

��

u7!�u
�� CŒu�

��



Automorphism Groups of Certain Rational Hypersurfaces in Complex Four-Space 311

where CŒu� ! CŒx; y; z; t � maps u onto P D x2y C z.zt2 C 1/ 2 CŒx; y; z; t �.
Passing to the field of fractions of CŒu�, we see that ˚ induces an isomorphism
between the C.u/-algebras

A D C.u/Œx; y; z; t �=.P � u/ and A� D C.u/Œx; y; z; t �=.P � ��1u/:

Now the key observation is that the Makar-Limanov and Derksen invariants of A
and A� are equal to C.u/Œx� and C.u/Œx; z; t �, respectively (this follows from an
application of Theorem 9.1 of [7] which in fact only requires that the base field
has characteristic 0, we do not give the details here). Now since ˚ induces an
isomorphism between the Makar-Limanov invariants of A and A�, it follows that
˚.x/ D 
x C � for some 
 2 C.u/� and � 2 C.u/. From the fact that the ideal
.x; P / of CŒx; y; z; t � is not prime, whereas the ideals .x C c; P / are prime for all
c 2 C�, we can conclude that � D 0 and since Q'.x/ D x, we eventually deduce
that 
 D 1. Thus ˚.x/ D x. Next, noting that ˚ induces an automorphism ˚ of
CŒx; y; z; t �=.x/ Š CŒy; z; t � with˚.z.zt2C1// D �z.zt2C1/, we deduce that there
exists ˛ 2 C� such that ˚.z/ D ˛z. By comparing with Q'.z/, we find that ˛ D 1.
Thus˚.zt2 C 1/ D z˚.t/2 C 1 D �.zt2 C 1/ and by considering the constant terms
in the last equality, we conclude that in fact � D 1. Also, since '.t/ � t mod .x/,
we have that ˚.t/ � t mod .x/. Thus, ˚ is congruent to the identity modulo .x/.

So ˚ actually induces a C.u/Œx�-automorphism of A and the observation made
on the Makar-Limanov and Derksen invariants of A implies that the induced
automorphism preserves the subringC.u/Œx; z; t � ofA and fixes the ideal .x2; r0�u/.
This implies that there existsH 2 CŒu�Œz; t � such that˚.f / � f CxJac.H; f /mod
x2 for every f 2 C.u/Œz; t �. Furthermore, since ˚ is an extension of Q', the residue
class of H in CŒu�Œz; t �=.u/ ' CŒz; t � coincides with hC c for some c 2 C. But on
the other hand, one has Jac.H; r0 � u/ 2 .r0 � u/ as the restriction of ˚ fixes the
ideal .x2; r0�u/. Since r0�u is irreducible, this implies thatH is, up to the addition
of a polynomial in CŒu�, an element of the ideal .r0 � u/CŒu�Œz; t � and so its image
in CŒu�Œz; t �=.u/ ' CŒz; t � is a regular function on A2 whose restriction to the curve
C0 D fr0 D 0g is constant. This is absurd since by construction hC c D zt2 C c is
locally constant but not constant on C0. ut
Remark 4. Note that there are many examples of non-extendible automorphisms of
hypersurfaces. In this setting, for example, we showed in [2] that the hypersurface
in A4 given by the equation

x2y C z2 C t3 C x.1C x C z2 C t3/ D 0;

which is in fact isomorphic to the Russell cubic as a variety, admits automorphisms
that do not extend to the ambient space. However, none of these non-extendible
automorphisms fixes x. The present example exhibits a new phenomenon coming
from the fact that the curve defined by r0 D 0 is not connected. Note also that
viewing X as a subvariety of A1 � A3 D Spec.CŒx�Œy; z; t �/ the restriction of the
automorphism determined by Q' to every fiber Xs , s 2 A1 of the first projection
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prx W X ! A1 actually extend to an automorphism of A3
s : indeed, Q' restricts to the

identity modulo x and therefore the restriction of the corresponding automorphism
to X0 extends. On the other hand, the argument used in the proof of Lemma 1
shows immediately that the induced automorphism of X jA1nf0g extends to an
automorphism of A1 n f0g � A3.
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Laurent Cancellation for Rings
of Transcendence Degree One Over a Field

Gene Freudenburg

Abstract If R is an integral domain and A is an R-algebra, then A has the Laurent
cancellation property over R if AŒ˙n� ŠR B

Œ˙n� implies A ŠR B (n � 0 and B
an R-algebra). Here, AŒ˙n� denotes the ring of Laurent polynomials in n variables
over A. Our main result (Theorem 4.1) is that, if R is a field and the transcendence
degree of A over R is one, then A has the Laurent cancellation property over R.
Two additional cases of Laurent cancellation are given in Theorem 5.1
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ondary)

1 Introduction

If R is an integral domain, then an R-algebra will mean an integral domain
containing R as a subring. If A is an R-algebra and n 2 Z, n � 0, then AŒn� is the
polynomial ring in n variables over A, and AŒ˙n� is the ring of Laurent polynomials
in n variables over A.

In this paper, we consider the following question.

Let R be an integral domain, let A and B beR-algebras, and let n be a non-negative integer.
Does AŒ˙n� ŠR B

Œ˙n� imply A ŠR B?

We say that A has the Laurent cancellation property over R if this question has a
positive answer for all pairs .B; n/.
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Our main result (Theorem 4.1) is that, if k is a field, then any k-algebra of
transcendence degree one over k has the Laurent cancellation property over k. This
result parallels the well-known theorem of Abhyankar, Eakin, and Heinzer which
asserts that ifA andB are k-algebras of transcendence one over k, then the condition
AŒn� Šk B

Œn� for some n � 0 implies A Šk B; see [1]. Note that our main result
implies that if X and Y are affine algebraic curves over k, and if Tn is the torus of
dimension n over k (n � 0), then the conditionX � Tn Š Y � Tn implies X Š Y .

In [12], Makar-Limanov gives a proof of the Abhyankar–Eakin–Heinzer theorem
for the field k D C using the theory of locally nilpotent derivations (LNDs); see
also [5, Corollary 3.2]. The proof of our main result uses Z-gradings in a similar
way. Where Makar-Limanov uses the subring of elements of degree zero for all
LNDs, we use the subring of elements of degree zero for all Z-gradings over R.
This subring is called the R-neutral subalgebra and is denoted NR.A/. The other
key ingredient in the proof is Theorem 3.2, which is the following characterization
of Laurent polynomial rings over a field.

Let k be a field, and let A be a k-algebra. The following are equivalent.

1. A D kŒ˙1�.
2. The following three conditions hold.

(a) k is algebraically closed in A
(b) tr:degkA D 1

(c) A� 6� Nk.A/

Again using the neutral subalgebra NR.A/, two additional cases of Laurent
cancellation are established in Sect. 5. Suppose R is an integral domain and A is
an R-algebra. For each u 2 A�, define:

Ru.A/ D f� 2 R j u � � 2 A�g

We say that u is R-transtable if Ru.A/ ¤ f0g. The set of R-transtable units of A is
denoted by A	R. Theorem 5.1 shows that if either RŒA�� D RŒA	R�, or A is algebraic
over RŒA	R�, then A has the Laurent cancellation property overR.

1.1 Background

In [4], Bhatwadekar and Gupta showed that the Laurent polynomial ring RŒ˙n� has
the Laurent cancellation property over the integral domain R. This is discussed in
Sect. 4.2 below. There seem to be no other results in the literature specific to the
Laurent (torus) cancellation problem.

Other versions of the cancellation problem have been investigated since Zariski
posed the birational version (see [14, Sect. 5]). Beauville et al. [3] solved Zariski’s
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problem by constructing fields k � K with the property that K.3/ Šk k.6/ but
K 6Šk k.3/.

The polynomial cancellation problem asks whether, given k-algebras A and
B over a field k, the condition AŒn� Šk BŒn� implies A Šk B . As mentioned,
Abhyankar, Eakin, and Heinzer showed that this implication holds if the transcen-
dence degree of A over k is one. The first examples where this implication does
not hold were given by Hochster and Murthy (unpublished); see [10]. In Hochster’s
example,A is the coordinate ring of the tangent bundle over the real 2-sphere, which
is a stably trivial bundle, but not trivial. Danielewski [6] gave a counterexample
using the coordinate rings of affine surfaces over C.

The cancellation problem for affine spaces is the special case when A is a
polynomial ring. It was shown by Fujita, Miyanishi, and Sugie (characteristic k = 0)
and Russell (positive characteristic) thatAŒn� Šk kŒnC2� impliesA Šk kŒ2� [8,13,15].
In [2], Asanuma constructed a k-algebra A over a field k of positive characteristic
and showed that AŒ1� Šk kŒ4�. His construction is based on the existence of non-
standard embeddings of lines in the k-plane. Subsequently, Gupta [9] showed that
A 6Šk kŒ3�. For fields of characteristic zero, the cancellation problem for affine
spaces remains open. A nice discussion of this problem is found in [11].

1.2 Terminology and Notation

The group of units of the integral domainA is denotedA�, and the field of fractions
of A is frac.A/. Given f 2 A, Af denotes the localization of A at f . Given z 2 A�,
the notation z˙1 is used for the set fz; z�1g.

For n � 0, the polynomial ring in n variables over A is denoted by AŒn�. If
AŒx1; : : : ; xn� D AŒn�, the ring of Laurent polynomials over R is the subring of
frac.AŒn�/ defined and denoted by:

AŒ˙n� D AŒx1; x
�1
1 ; : : : ; xn; x

�1
n �

For any subring S � A, the transcendence degree of A over S is equal to
the transcendence degree of frac.A/ over frac.S/, denoted tr:degSA. The set of
elements in A algebraic over S is denoted by AlgSA; we also say that AlgSA is
the algebraic closure of S in A. If S D AlgSA, then S is algebraically closed in A.
Any Z-grading of A such that S � A0 is a Z-grading over S , where A0 denotes the
subring of elements of degree zero.

Over a ground field k, An denotes the affine n-space Spec.kŒn�/, and Tn denotes
the n-torus Spec.kŒ˙n�/.

Throughout this paper, the term R-algebra will mean an integral domain
containingR as a subring.



316 G. Freudenburg

2 Z-Gradings and the Neutral Subalgebra

2.1 Z-Gradings

Assume that R is an integral domain, and A is an R-algebra. The set of Z-gradings
of A is denoted Z.A/, and the subset of Z-gradings of A overR is denoted ZR.A/.

Given g 2 Z.A/, let degg denote the induced degree function on A, and let
A D ˚i2ZAi be the decomposition of A into g-homogeneous summands, where
Ai consists of g-homogeneous elements of degree i . Define Ag D A0, which is a
subalgebra of A. The subalgebra S � A is g-homogeneous if S is generated by
g-homogeneous elements.

Given a 2 A, write a D P
i2Z ai , where ai 2 Ai for each i . The g-support of a

is defined by:

Suppg.a/ D fi 2 Z j ai ¤ 0g

Note that (1) Suppg.a/ D ; if and only if a D 0, and (2) #Suppg.a/ D 1 if and
only if a is nonzero and homogeneous.

Lemma 2.1. Let A be an integral domain, and let g 2 Z.A/ be given.

(a) Ag is algebraically closed in A.
(b) If H � A is a g-homogeneous subalgebra, then AlgHA is also a g-

homogeneous subalgebra.

Proof. Let A D ˚i2ZAi be the decomposition of A into g-homogeneous sum-
mands. Given nonzero a 2 A, write a D P

i2Z ai , where ai 2 Ai , and let Na denote
the highest-degree (nonzero) homogeneous summand of a.

In order to prove part (a), let v 2 A be algebraic overAg. If v 62 Ag, then we may
assume that degg v > 0. Suppose that

P
0�i�n civi D 0 is a nontrivial dependence

relation for v over Ag, where ci 2 Ag for each i , and n � 1. Since degg Nv > 0 and
degg ci D 0 for each i , we see that cn Nvn D 0, a contradiction. Therefore, v 2 Ag,
and Ag is algebraically closed in A.

For part (b), given an integer n � 0, let H.n/ denote the ring obtained by
adjoining to H all elements a 2 AlgHA such that #Suppg.a/ � n. In particular,
H.0/ D H . We show by induction on n that, for each n � 1:

H.n/ � H.1/ (1)

This property implies AlgHA D H.1/, which is a g-homogeneous subring of A.
Assume that, for some n � 2, H.n � 1/ � H.1/. Let a 2 AlgHA be given such

that #Suppg.a/ D n, and let
P

i�0 hiai D 0 be a nontrivial dependence relation for
a overH , where hi 2 H for each i . Define:

d D max
i�0 fdegg hia

i g and I D fi 2 Z j i � 0 ; degg hia
i D d g
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Then I is nonempty, and
P

i2I Nhi Nai D 0. Since H is homogeneous, Nhi 2 H for
each i . Therefore, Na is algebraic over H . Since a D .a � Na/ C Na, it follows that
a 2 H.n�1/CH.1/. SinceH.n�1/ � H.1/, we see that a 2 H.1/, thus proving
by induction the equality claimed in (1). ut

2.2 The Neutral Subalgebra

Assume that R is an integral domain, and A is an R-algebra.

Definition 2.1. The neutral R-subalgebra of A is:

NR.A/ D \g2ZR.A/Ag

A is a neutral R-algebra if NR.A/ D A.

Lemma 2.2. Let R be an integral domain, and let A be an R-algebra.

(a) NR.A/ is algebraically closed in A
(b) NR.A

Œn�/ � NR.A/ and NR.A
Œ˙n�/ � NR.A/ for each n � 0

(c) If A is algebraic over RŒA��, then NR.A
Œn�/ D NR.A/ and NR.A

Œ˙n�/ D
NR.A/ for each n � 0

Proof. Part (a) is implied by Lemma 2.1(a).
For part (b), let C D AŒy˙1

1 ; : : : ; y˙1
n � D AŒ˙n�. For each i , 1 � i � n, let

Ci be the subring of C generated over A by yj for all j ¤ i . Given i , define
g 2 ZCi .C / by declaring that yi is homogeneous of degree one. The subring of
elements of degree 0 is Ci . Therefore, NR.C / � Ci for each i , which implies
NR.C / � A. Suppose that there exist h 2 ZR.A/ and f 2 NR.C / such that
degh f ¤ 0. Then h extends to C by setting degh yi D 0 for each i , meaning
f 62 NR.C /, a contradiction. Therefore, f 2 NR.A/. The argument is the same if
C D AŒn�.

For part (c), letC D AŒy˙1
1 ; : : : ; y˙1

n � D AŒ˙n�, and let f 2 A be given. Suppose
that g 2 ZR.C / has degg f ¤ 0. Since every element of A� is g-homogeneous, it
follows from Lemma 2.1(b) that A is a g-homogeneous subring of C . Therefore, g
restricts to an element of ZR.A/ for which the degree of f is nonzero, meaning that
f is not in NR.A/. The argument is the same if C D AŒn�. ut
Example 2.1. Let R be an integral domain, and define A D RŒx; y�=.x2 � y3 � 1/.
Then NR.A/ D A. To see this, let g 2 ZR.A/ be given. Set K D frac.R/ and
define AK D K ˝R A. Then g extends to AK , which is the coordinate ring of the
plane curve C W x2 � y3 D 1 overK . This Z-grading induces an action of the torus
T D Spec.KŒt; t�1�/ on AK , namely, if a 2 AK is homogeneous of degree d , then
t 	 a D td a. If this were a nontrivial action, then C would contain T as a dense open
orbit, implying that C isK-rational, which it is not. Therefore, g must be the trivial
Z-grading.
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3 Laurent Polynomial Rings

3.1 Units and Automorphisms

Lemma 3.1. Let R be an integral domain, and let A D RŒy˙1
1 ; : : : ; y˙1

n � D RŒ˙n�.
Then:

A� D R� 	 fyd11 	 	 	ydnn j di 2 Z; i D 1; : : : ; ng D R� 	 Zn

Proof. By induction, it suffices to prove the case n D 1.
Suppose A D RŒy; y�1� D RŒ˙1�, and let u 2 A� be given. Write u D p.y/=yk

and u�1 D q.y/=yl , where p; q 2 RŒy� D RŒ1�; p.0/ ¤ 0 and q.0/ ¤ 0; and
k; l � 0. We thus have p.y/q.y/ D ykCl . If k C l > 0, then p.0/q.0/ D 0,
contradicting the fact that A is an integral domain. Therefore, k C l D 0, meaning
that p.y/q.y/ D 1 in RŒy�. Since RŒy�� D R�, we see that p.y/ 2 R�, which
proves the lemma. ut

We next consider the group of R-automorphisms of RŒ˙n�, which is a well-
understood group. Its main features, which are easy to check, are summarized as
follows.

1. Given E 2 GLn.Z/, the R-morphism �E W A ! A given by

�E.yi / D
Y

1�j�n
y
eij

j

whereE D .eij/, defines a faithful action ofGLn.Z/ on A byR-automorphisms.
2. Given a D .a1; : : : ; an/ 2 .R�/n, the R-morphism  a W A ! A given by

 a.yi / D aiyi

defines a faithful action of .R�/n on A by R-automorphisms.
3. The group of R-automorphisms of RŒ˙n� is a semi-direct product of the sub-

groupsGLn.Z/ and .R�/n.

3.2 A Criterion for Cancellation

Proposition 3.1. Let R be an integral domain, and let A and B be R-algebras.
Assume that, for some n � 0, there exists an R-isomorphism

F W AŒ˙n� ! BŒ˙n�

such that F.A�/ � B . Then A ŠR B .
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Proof. Let

C D AŒy˙1
1 ; : : : ; y˙1

n � D AŒ˙n� and D D BŒz˙1
1 ; : : : ; z˙1

n � D BŒ˙n�

By Lemma 3.1, we have:

C � D A� 	 fyd11 	 	 	ydnn j di 2 Z; i D 1; : : : ; ng and

D� D B� 	 fze11 	 	 	 zenn j ei 2 Z; i D 1; : : : ; ng
Thus, given i with 1 � i � n, there exist bi 2 B� and eik 2 Z such that:

F.yi / D bi
Y

1�k�n
zeik
k

Likewise, there exist ai 2 A� and dij 2 Z such that:

F�1.zi / D ai
Y

1�j�n
y
dij

j

Therefore, given i , we have:

zi D FF�1.zi /

D F

 
ai
Y
k

y
dik
k

!

D F.ai /
Y
kF

.yk/
dik

D F.ai /
Y
k

0
@bk

Y
j

z
ekj

j

1
A
dik

D
 
F.ai /

Y
k

b
dik
k

!Y
k

Y
j

z
dikekj

j

D
 
F.ai /

Y
k

b
dik
k

!Y
j

z
.
P
k dikekj/

j

Since F.ai /
Q
k b

dik
k 2 B for each i , we conclude that, for each i; j

(1 � i; j � n):

F.ai /
Y
k

b
dik
k D 1 and

X
k

dikekj D ıij

It follows that, if E is the n � n matrix E D .eij/, then E 2 GLn.Z/.
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Define b D .b1; : : : ; bn/ 2 .B�/n. Then for each i D 1; : : : ; n we see that:

Zi WD F.yi / D �E b.zi /

On one hand:

D D �E b.D/ D BŒZ˙1
1 ; : : : ; Z˙1

n �

On the other hand:

D D F.C / D F.A/ŒF.y1/
˙1; : : : ; F .yn/˙1� D F.A/ŒZ˙1

1 ; : : : ; Z˙1
n �

Therefore, if I � D is the ideal I D .Z1 � 1; : : : ; Zn � 1/, then:

A ŠR F.A/ ŠR D=I ŠR B

ut
Note that, if A� D R�, then Proposition 3.1 implies that A has the Laurent

cancellation property over R. In particular, every polynomial ring A D RŒn� has the
Laurent cancellation property over R.

3.3 A Characterization of Laurent Polynomial Rings
over a Field

Theorem 3.1. Let R be an integral domain, and let A be anR-algebra such thatR
is algebraically closed in A, tr:degRA D 1, and A� 6� NR.A/.

(a) There exists u 2 A� such that RŒA�� D RŒu; u�1� D RŒ˙1�.
(b) There exist r 2 R and w 2 A�

r such that Ar D RrŒw;w�1� D R
Œ˙1�
r .

Proof. Let u 2 A� be given such that u 62 NR.A/. By Lemma 2.2(a), we see that
R D NR.A/ and RŒu� D RŒ1�.

Let g 2 ZR.A/ be such that u 62 Ag, and let A D ˚i2ZAi be the decomposition
of A into g-homogeneous summands. SinceR and Ag are algebraically closed in A,
it must be that either Ag D R or Ag D A, and therefore Ag D R.

Part (a): If RŒA�� D RŒu; u�1�, there is nothing further to prove. So assume that
RŒA�� is strictly larger than RŒu; u�1�. Let v 2 A� be such that v 62 RŒu; u�1�. Then
v is g-homogeneous, and v 62 Ag D R.

Set d D gcd.degg u; degg v/, and let a; b 2 Z be such that:

degg u D ad and degg v D bd
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If ab < 0, replace u by u�1; in this way we can assume that ab > 0. If a < 0 and
b < 0, replace the grading g by .�g/; in this way we can assume that a > 0 and
b > 0.

Since v is algebraic over RŒu; u�1�, there exists a nontrivial dependence relation
P.u; v/ D 0, where P 2 RŒx; y� D RŒ2�. Define a Z-grading h of RŒx; y� over R
by setting degh x D a and degh y D b. Then it suffices to assume that P.x; y/ is
h-homogeneous.

Let K be the algebraic closure of frac.R/. Consider P.x; y/ as an element of
KŒx; y�, and view A as a subring of K ˝R A. By Lemma 4.6 of [7], P has the
form:1

P D xiyj
NY
kD1
.˛kx

b C ˇky
a/ ; i; j � 0 ; N � 1 ; ˛k; ˇk 2 K�

Since P.u; v/ D 0, it follows that rub C va D 0 for some r 2 K�. We see that
r D �u�bva 2 R�. Moreover, a > 1, since otherwise v 2 RŒu; u�1�.

Let m; n 2 Z be such that amC bn D 1. Set w D umvn, noting that w 2 A� and
degg w D d ¤ 0. Then:

wa D .�r/nu and wb D .�r/�mv

It follows that:

RŒu˙1; v˙1� D RŒw˙a;w˙b� D RŒw;w�1�

If RŒA�� D RŒw;w�1�, the desired result holds. Otherwise, replace u by w and
repeat the argument above. Since

degg u D ad > d D degg w > 0

this process must terminate in a finite number of steps. This completes the proof of
part (a).

Part (b): The proof of part (b) is a continuation of the algorithm used in the proof
of part (a), where units are adjoined where needed.

Suppose thatRŒA�� D RŒu; u�1�. IfRŒA�� D A, there is nothing further to prove.
So assume that RŒA�� ¤ A, and choose g-homogeneous v 2 A not in RŒu; u�1�.
As before, we obtain an equation rub C va D 0, where r 2 R, and a; b are relatively
prime positive integers with a > 1. However, in this case r 62 R�, since otherwise v
is a unit.

1The lemma is stated for fields of characteristic zero, but the proof is valid over any field.
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In order to continue the algorithm, we extend g to the ringAr , noting that v 2 A�
r .

As above, there exists w 2 A�
r such that 0 < degg w < degg u and RrŒA�

r � D
RrŒw;w�1�.

If Ar D RrŒw;w�1�, the desired result holds. Otherwise, replace u by w and
repeat the argument. As before, since a strict decrease in degrees takes place, the
process must terminate in a finite number of steps. This completes the proof of part
(b). ut

As a consequence of this theorem, we obtain the following characterization of
Laurent polynomial rings over a field.

Theorem 3.2. Let k be a field, and let A be a k-algebra. The following are
equivalent.

1. A D kŒ˙1�.
2. The following three conditions hold.

(a) k is algebraically closed in A
(b) tr:degkA D 1

(c) A� 6� Nk.A/

Corollary 3.1. Let k be a field, and let A be a k-algebra. Assume that k is
algebraically closed in A. Given u 2 A�, if u 62 Nk.A/, then there exists w 2 A�
such that:

AlgkŒu�A D kŒw;w�1� D kŒ˙1�

Proof. By hypothesis, there exists g 2 Zk.A/ such that degg u ¤ 0. Set B D
AlgkŒu�A. Since u is a unit, u is g-homogeneous, and kŒu� is a g-homogeneous
subring. By Lemma 2.1(b), it follows that B is g-homogeneous, meaning that g
restricts to B . Since degg u ¤ 0, we see that u 62 Nk.B/. The result now follows
from Theorem 3.2. ut

4 Laurent Cancellation for R-Algebras of Transcendence
Degree One Over R

4.1 A Reduction

Let R be an integral domain, and let A be an R-algebra. If n � 0, then since A is
algebraically closed in AŒ˙n� we have:

AlgR.A
Œ˙n�/ D AlgR.A/
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Let ˛ W AŒ˙n� ! BŒ˙n� be an isomorphism of R-algebras. If S D AlgR.A/, then
˛.S/ D AlgR.B/, since B is algebraically closed in BŒ˙n�. Therefore, identifying
S and ˛.S/, we can view A and B as S -algebras, and ˛ as an S -isomorphism.
In considering the question of Laurent cancellation, it thus suffices to assume R
is algebraically closed in A. Note that this condition implies the group A�=R� is
torsion free.

4.2 Cancellation for Laurent Polynomial Rings

In [4], Lemma 4.5, Bhatwadekar and Gupta showed the following: Let R be an
integral domain, and let A be an R-algebra with R algebraically closed in A.
Suppose that m; n are nonnegative integers such that:

AŒ˙n� ŠR R
Œ˙.mCn/�

Then A ŠR R
Œ˙m�. This fact will be used in the next section.

4.3 Main Theorem

We show that Laurent cancellation holds for several classes of rings that are of
transcendence degree one over a subalgebra. For fields in particular, we obtain the
analogue of the Abhyankar–Eakin–Heinzer Theorem for Laurent polynomial rings.

Theorem 4.1. Let R be an integral domain, and let A be an R-algebra with
tr:degRA D 1. Then A has the Laurent cancellation property over R if any one
of the following conditions holds.

(a) RŒA�� is algebraic over R
(b) A� � NR.A/

(c) R is a field

Proof. By Sect. 4.1, it suffices to assume that R is algebraically closed in A. Let
F W AŒ˙n� ! BŒ˙n� be an isomorphism of R-algebras.

Part (a): If RŒA�� is algebraic over R, then A� D R�, and F.A�/ D F.R�/ D
R� � B . By Proposition 3.1, it follows that A ŠR B in this case.

Part (b): Assume that A� � NR.A/. By part (a), we may also assume that
RŒA�� is transcendental over R, meaning that A is algebraic over RŒA��. By
Lemma 2.2(c), NR.A

Œ˙n�/ D NR.A/. Therefore:

F.A�/ � F.NR.A// D F
�NR

�
AŒ˙n�

		 D NR

�
BŒ˙n�	 � NR.B/ � B

By Proposition 3.1, it follows that A ŠR B in this case.
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Part (c): Assume that R is a field. By part (b), we may assume that A� 6�
NR.A/. Then, by Corollary 3.2, we have that A ŠR R

Œ˙1�. By the theorem of
Bhatwadekar and Gupta (see Sect. 4.2), it follows that A ŠR B in this case. ut

5 Two Additional Cases of Laurent Cancellation

Let R be an integral domain, and let A be an R-algebra. We say that A has the
strong Laurent cancellation property over R if, whenever ˛ W AŒ˙n� ! BŒ˙n� is an
R-isomorphism for some R-algebra B and some n � 0, we have ˛.A/ D B .

Given u 2 A�, define the set:

Ru.A/ D f� 2 R j u � � 2 A�g

Then u is said to be an R-transtable unit if Ru.A/ ¤ f0g. The set of R-transtable
units of A is denoted A	R.

Lemma 5.1. Let R be an integral domain, and let A be an R-algebra.

(a) If ˛ W A ! B is an isomorphism of R-algebras, then ˛.A	R/ D B	
R.

(b) A	R � NR.A/

(c) .AŒ˙n�/	R D A	R for all integers n � 0.

Proof. Part (a): Given u 2 A	R, choose nonzero � 2 Ru.A/. Then ˛.u � �/ D
˛.u/ � � 2 B�. Therefore, ˛.u/ 2 B	

R.
Part (b): Let g 2 ZR.A/ be given, and letA D ˚i2ZAi be the decomposition ofA
into g-homogeneous summands. Note that any element of A� is g-homogeneous.
In particular, given u 2 A	R and non-zero � 2 Ru.A/, there exist i; j 2 Z such
that u 2 Ai and u � � 2 Aj . We therefore have non-zero elements a D � 2 A0,
b D u 2 Ai , and c D u �� 2 Aj such that aC bC c D 0 in A0 CAi CAj , and
this can only happen if i D j D 0.
Part (c): Let C D AŒy˙1

1 ; : : : ; y˙1
n � D AŒ˙n�, and let f 2 C 	

R be given. By part
(b), and by Lemma 2.2(b), we see that:

f 2 C 	
R � NR.C / � NR.A/ � A

Therefore, given non-zero � 2 Rf .C /, it follows that f � � 2 C � \ A D A�,
and f 2 A	R.
Conversely, if g 2 A	R, then g � 
 2 A� � C � for some nonzero 
 2 R. So
g 2 C 	

R. ut
Theorem 5.1. Let R be an integral domain, and let A be an R-algebra.

(a) If RŒA�� D RŒA	R�, then A has the Laurent cancellation property over R.
(b) If A is algebraic over RŒA	R�, then A has the strong Laurent cancellation

property over R.
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Proof. Let B be an R-algebra such that, for some n � 0, AŒ˙n� ŠR BŒ˙n�. Let
C D AŒ˙n� and D D BŒ˙n�, and let ˛ W C ! D be an R-isomorphism. Assume
that:

C D AŒy˙1
1 ; : : : ; y˙1

n � and D D BŒz˙1
1 ; : : : ; z˙1

n �

Part (a): Assume that RŒA�� D RŒA	R�. Using Lemma 5.1, we see that:

˛.A�/ � RŒ˛.A�/�D˛.RŒA��/D˛.RŒA	R�/D˛.RŒC 	
R�/ D RŒ˛.C 	

R/�

D RŒD	
R� D RŒB	

R� � B

By Proposition 3.1, it follows that A ŠR B .
Part (b): Assume that A is algebraic over RŒA	R�. By Lemma 5.1(a), ˛.A	R/ D

B	
R. Therefore, given a 2 A, ˛.a/ is algebraic over B	

R. Since B is
algebraically closed in D, it follows that ˛.a/ 2 B . Therefore, if B0 D
˛.A/, then B0 � B , and B0 is algebraically closed in B .
If B0 ¤ B , then there exists t 2 B transcendental over B0. In this case,

B
ŒnC1�
0 D B0Œt; z1; : : : ; zn� � D D BŒz˙1

1 ; : : : ; z˙1
n � D ˛.C /

D ˛.A/Œ˛.y1/
˙1; : : : ; ˛.yn/˙1� D B

Œ˙n�
0

which is absurd: On one hand,BŒnC1�
0 � D shows tr:degB0D � nC1. On

the other hand,D D B
Œ˙n�
0 shows tr:degB0D D n. Therefore, B0 D B .

ut
Example 5.1. Assume that k is an algebraically closed field, and let C1; : : : ; Cm
(m � 1) be factorial affine curves over k other than A

1 or T
1. Form the affine

k-varietyX D C1�	 	 	�Cn, which is smooth, rational, and factorial. Theorem 5.1(b)
implies that, if Y is an algebraic variety such thatX�T

n Šk Y �T
n for some n � 0,

then X Šk Y . To see this, we show that the coordinate ring A D O.X/ has A D
kŒA	k�. By hypothesis, each ring Ai D O.Ci /, i D 1; : : : ; m, is a one-dimensional
affine UFD other than kŒ1� or kŒ˙1�. For such rings, it is known that Ai D kŒ.Ai /	k�;
see the proof of Lemma 2.8 of [7]. It follows that A D kŒA	k�.

6 Remarks

Remark 6.1. For the R-algebra A, the question of Laurent cancellation over R is
closely related to the question whether NR.A

Œ˙n�/ D NR.A/. In particular, we ask
if this equality holds in the case tr:degRA D 1. A related question is the following:
While a Z-grading of AŒ˙n� may not restrict to A, it does give a Z-filtration of both
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AŒ˙n� and A. Let Gr.AŒ˙n�/ and Gr.A/ denote the associated graded rings. Does
Gr.AŒ˙n�/ D Gr.A/Œ˙n�?

Remark 6.2. We are not aware of an example of an integral domain R and an
R-algebra A such that A fails to have the Laurent cancellation property over R.

Acknowledgements The author wishes to thank the organizers of the GABAG2012 Conference in
Levico, Italy. The stimulating environment of that conference gave impetus to the work represented
in this paper.
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Deformations of A1-Fibrations

Rajendra V. Gurjar, Kayo Masuda, and Masayoshi Miyanishi

Abstract LetB be an integral domain which is finitely generated over a subdomain
R and let D be an R-derivation on B such that the induced derivationDm on B˝R

R=m is locally nilpotent for every maximal ideal m. We ask ifD is locally nilpotent.
Theorem 2.1 asserts that this is the case if B and R are affine domains. We next
generalize the case of Ga-action treated in Theorem 2.1 to the case of A1-fibrations
and consider the log deformations of affine surfaces with A1-fibrations. The case
of A1-fibrations of affine type behaves nicely under log deformations, while the
case of A1-fibrations of complete type is more involved [see Dubouloz–Kishimoto
(Log-uniruled affine varieties without cylinder-like open subsets, arXiv: 1212.0521,
2012)]. As a corollary, we prove the generic triviality of A2-fibration over a curve
and generalize this result to the case of affine pseudo-planes of ML0-type under a
suitable monodromy condition.
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1 Introduction

An A
1-fibration � W X ! B on a smooth affine surface X to a smooth curve B

is given as the quotient morphism of a Ga-action if the parameter curve B is an
affine curve (see [8]). Meanwhile, it is not so if B is a complete curve. When we
deform the surface X under a suitable setting (log deformation), our question is if
the neighboring surfaces still have A

1-fibrations of affine type or of complete type
according to the type of the A

1-fibration on X being affine or complete. Assuming
that the neighboring surfaces have A

1-fibrations, the propagation of the type of
A
1-fibration is proved in Lemma 3.2, whose proof reflects the structure of the

boundary divisor at infinity of an affine surface with A
1-fibration. The stability of

the boundary divisor under small deformations, e.g., the stability of the weighted
dual graphs has been discussed in topological methods (e.g., [26]). Furthermore,
if such property is inherited by the neighboring surfaces, we still ask if the ambient
threefold has an A

1-fibration or equivalently if the generic fiber has an A
1-fibration.

The answer to this question is subtle. We consider first in Sect. 2 the case where
each of the fiber surfaces of the deformation has an A

1-fibration of affine type
induced by a global vector field on the ambient threefold. This global vector field is
in fact given by a locally nilpotent derivation (Theorem 2.1). If the A

1-fibrations
on the fiber surfaces are of affine type, we can show (Theorem 3.8), with the
absence of monodromies of boundary components that there exists an A

1-fibration
on the ambient threefold such that the A

1-fibration on each general fiber surface is
induced by the global one up to an automorphism of the fiber surface. The proof of
Theorem 3.8 depends on Lemma 3.2 which we prove by observing the behavior of
the boundary rational curves. This is done by the use of Hilbert scheme (see [21])
and by killing monodromies by étale finite changes of the base curve.

As a consequence, we can prove the generic triviality of an A
2-fibration over

a curve. Namely, if f W Y ! T is a smooth morphism from a smooth affine
threefold to a smooth affine curve such that the fiber over every closed point of
T is isomorphic to the affine plane A

2, then the generic fiber of f is isomorphic to
A
2 over the function field k.T / of T and f is an A

2-bundle over an open set of T
(see Theorem 3.10). This fact, together with a theorem of Sathaye [29], shows that
f is an A

2-bundle over T in the Zariski topology.
The question on the generic triviality is also related to a question on the triviality

of a k-form of a surface with an A
1-fibration (see Problem 3.13). In the case of an

A
1-fibration of complete type, the answer is negative by Dubouloz–Kishimoto [3]

(see Theorem 6.1).
Theorem 3.10 was proved by our predecessors Kaliman–Zaidenberg [16] in a

more comprehensive way and without assuming that the base is a curve. The idea in
our first proof of Theorem 3.10 is of more algebraic nature and consists of using the
existence of a locally nilpotent derivation on the coordinate ring of Y and the second
proof of using the Ramanujam–Morrow graph of the normal minimal completion of
A
2 was already used in [16]. The related results are also discussed in the article
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[23, 28]. We cannot still avoid the use of a theorem of Kambayashi [13] on the
absence of separable forms of the affine plane.

Some of the algebro-geometric arguments using Hilbert scheme in Sect. 3 can
be replaced by topological arguments using Ehresmann’s theorem which might be
more appreciated than the use of the Hilbert scheme. But they are restricted to the
case of small deformations. This is done in Sect. 4.

In Sect. 5, we extend the above result on the generic triviality of an A2-fibration
over a curve by replacing A2 by an affine pseudo-plane of ML0-type which has
properties similar to A2, e.g., the boundary divisor for a minimal normal completion
is a linear chain of rational curves. But we still need a condition on the monodromy.
An affine pseudo-plane, not necessarily of ML0-type, is a Q-homology plane, and
we note that Flenner–Zaidenberg [5] made a fairly exhaustive consideration for the
log deformations of Q-homology planes.

In the final section six, we observe the case of A1-fibration of complete type and
show by an example of Dubouloz–Kishimoto [3] that the ambient threefold does
not have an A1-fibration. But it is still plausible that the ambient threefold is affine-
uniruled in the stronger sense that the fiber product of the ambient deformation space
by a suitable lifting of the base curve has a global A1-fibration. But this still remains
open.

We use two notations for the intersection of (not necessarily irreducible)
subvarietiesA;B of codimension one in an ambient threefold. Namely,A\B is the
intersection of two subvarieties, and A 	 B is the intersection of effective divisors.
In most cases, both are synonymous.

As a final remark, we note that a preprint of Flenner–Kaliman–Zaidenberg [6]
recently uploaded on the web treats also deformations of surfaces withA1-fibrations.

The referees pointed out several flaws in consideration of monodromies in the
preliminary versions of the article. In particular, we are indebted for Example 3.6 to
one of the referees. The authors are very grateful to the referees for their comments
and advice.

2 Triviality of Deformations of Locally Nilpotent Derivations

Let k be an algebraically closed field of characteristic zero which we fix as the
ground field. Let Y D Spec B be an irreducible affine algebraic variety. We define
the tangent sheaf TY=k as HomOY .�

1
Y=k;OY /. A regular vector field on Y is an

element of �.Y; TY=k/. A regular vector field ‚ on Y is identified with a derivation
D on B via isomorphisms

�.Y; TY=k/ Š HomB.�
1
B=k; B/ Š Derk.B;B/:

We say that ‚ is locally nilpotent if so is D. In the first place, we are interested in
finding a necessary and sufficient condition for D to be locally nilpotent. Suppose
that Y has a fibration f W Y ! T . A natural question is to ask whetherD is locally
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nilpotent if the restriction of D on each closed fiber of f is locally nilpotent. The
following result shows that this is the case.1

Theorem 2.1. Let Y D Spec B and T D Spec R be irreducible affine varieties
defined over k and let f W Y ! T be a dominant morphism such that general fibers
are irreducible and reduced. We consider R to be a subalgebra of B . Let D be an
R-trivial derivation of B such that, for each closed point t 2 T , the restriction
Dt D D ˝R R=m is a locally nilpotent derivation of B ˝R R=m, where m is the
maximal ideal of R corresponding to t . Then D is locally nilpotent.

We need some preliminary results. We retain the notations and assumptions in
the above theorem.

Lemma 2.2. There exist a finitely generated field extension k0 of the prime field
Q which is a subfield of the ground field k, geometrically integral affine varieties
Y0 D Spec B0 and T0 D Spec R0, a dominant morphism f0 W Y0 ! T0 and an
R0-trivial derivationD0 of B0 such that the following conditions are satisfied:

(1) Y0; T0; f0 and D0 are defined over k0.
(2) Y D Y0 ˝k0 k; T D T0 ˝k0 k; f D f0 ˝k0 k andD D D0 ˝k0 k.
(3) D0 is locally nilpotent if and only if so is D.

Proof. Since B andR are integral domains finitely generated over k, write B andR
as the residue rings of certain polynomial rings over k modulo the finitely generated
ideals. Write B D kŒx1; : : : ; xr �=I and R D kŒt1; : : : ; ts�=J . Furthermore, the
morphism f is determined by the images f �.�j / D 'j .�1; : : : ; �r / in B , where
�i D xi .mod I / and �j D tj .mod J /. Adjoin to Q all coefficients of the finite
generators of I and J as well as the coefficients of the 'j to obtain a subfield
k0 of k. Let B0 D k0Œx1; : : : ; xr �=I0 and R0 D k0Œt1; : : : ; ts �=J0, where I0 and
J0 are, respectively, the ideals in k0Œx1; : : : ; xr � and k0Œt1; : : : ; ts� generated by the
same generators of I and J . Furthermore, define the homomorphism f �

0 by the
assignment f �

0 .�j / D 'j .�1; : : : ; �r /. Let Y0 D Spec B0, T0 D Spec R0 and let
f0 W Y0 ! T0 be the morphism defined by f �

0 . The derivation D corresponds
to a B-module homomorphism ı W �1

B=R ! B . Since �1
B=R D �1

B0=R0
˝k0 k,

we can enlarge k0 so that there exists a B0-homomorphism ı0 W �1
B0=R0

! B0

satisfying ı D ı0 ˝k0 k. Let D0 D ı0 	 d0, where d0 W B0 ! �1
B0=R0

is the standard
differentiation. Then we have D D D0 ˝k0 k.

Let ˆ0 W B0 ! B0ŒŒu�� be the R0-homomorphism into the formal power series
ring in u over B0 defined by

ˆ0.b0/ D
X
i�0

1

i Š
Di
0.b0/u

i :

1The result is also remarked in [3, Remark 13].
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Let ˆ W B ! BŒŒu�� be the R-homomorphism defined in a similar fashion. Then
ˆ0 and ˆ are determined by the images of the generators of B0 and B . Since the
generators of B0 and B are the same, we haveˆ D ˆ0 ˝k0 k. The derivationD0 is
locally nilpotent if and only ifˆ0 splits via the polynomial subring B0Œu� of B0ŒŒu��.
This is the case for D as well. Since ˆ0 splits via B0Œu� if and only if ˆ splits via
BŒu�, D0 is locally nilpotent if and only if so is D. ut
Lemma 2.3. Let k1 be the algebraic closure of k0 in k. Let Y1 D Spec B1 with
B1 D B0 ˝k0 k1, T1 D Spec R1 with R1 D R0 ˝k0 k1 and f1 D f0 ˝k0 k1. Let
D1 D D0 ˝k0 k1. Then the following assertions hold.

(1) Let t1 be a closed point of T1. Then the restriction of D1 on the fiber f �1
1 .t1/ is

locally nilpotent.
(2) D1 is locally nilpotent if and only if so is D.

Proof. (1) Let t be the unique closed point of T lying over t1 by the projection
morphism T ! T1, where R D R1 ˝k1 k. (If m1 is the maximal ideal of R1
corresponding to t1, m1 ˝k1 k is the maximal ideal of R corresponding to t .)
Then Ft D f �1.t/ D f �1

1 .t1/˝k1 k and the restrictionDt ofD onto Ft is given
as D1;t1 ˝k1 k, where D1;t1 is the restriction of D1 onto f �1

1 .t1/. We consider
also the R-homomorphism ˆ W B ! BŒŒu�� and the R1-homomorphism ˆ1 W
B1 ! B1ŒŒu��. As above, let m and m1 be the maximal ideals of R and R1
corresponding to t and t1. ThenDt gives rise to theR=m-homomorphismˆ˝R

R=m W B˝RR=m ! .B˝RR=m/ŒŒu��. Similarly,D1;t1 gives rise to theR1=m1-
homomorphismˆ1˝R1R1=m1 W B1˝R1R1=m1 ! .B1˝R1R1=m1/ŒŒu��, where
R=m D k andR1=m1 D k1. Thenˆ˝RR=m D .ˆ1˝R1 R1=m1/˝k1 k. Hence
ˆ ˝R R=m splits via .B ˝R R=m/Œu� if and only if ˆ1 ˝R1 R1=m1 splits via
.B1 ˝R1 R1=m1/Œu�. Hence D1;t is locally nilpotent as so is Dt .

(2) The same argument as above using the homomorphismˆ can be applied.
ut

The field k0 can be embedded into the complex field C because it is a finitely
generated field extension of Q. Hence we can extend the embedding k0 ,! C to the
algebraic closure k1. Thus k1 is viewed as a subfield of C. Then Lemma 2.3 holds if
one replaces the extension k=k1 by the extension C=k1. Hence it suffices to prove
Theorem 2.1 with an additional hypothesis k D C.

Lemma 2.4. Theorem 2.1 holds if k is the complex field C.

Proof. Let Y.C/ be the set of closed points which we view as a complex analytic
space embedded into a complex affine space CN as a closed set. Consider the
Euclidean metric on CN and the induced metric topology on Y.C/. Then Y.C/ is a
complete metric space.

Let b be a nonzero element ofB . For a positive integerm, define a Zariski closed
subset Ym.b/ of Y.C/ by

Ym.b/ D fQ 2 Y.C/ j Dm.b/.Q/ D 0g :
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SinceQ lies over a closed point t of T .C/ andDt is locally nilpotent on f �1.t/ by
the hypothesis, we have

f �1.t/ �
[
m>0

Ym.b/ :

This implies that Y.C/ D
[
m>0

Ym.b/. We claim that Y.C/ D Ym.b/ for somem > 0.

In fact, this follows by Baire category theorem, which states that if the Ym.b/ are all
proper closed subsets, its countable union cannot cover the uncountable set Y.C/.
If Y.C/ D Ym.b/ for some m > 0, then Dm.b/ D 0. This implies that D is locally
nilpotent on B .

One can avoid the use of Baire category theorem in the following way. Suppose
that Ym.b/ is a proper closed subset for everym > 0. LetH be a general hyperplane
in CN such that the section Y.C/\H is irreducible, dimY.C/\H D dimY.C/�1,
and Y.C/ \ H D

[
m>0

.Ym.b/ \H/ with Ym.b/ \ H a proper closed subset of

Y.C/ \ H for every m > 0. We can further take hyperplane sections and find a
general linear subspace L in CN such that Y.C/ \ L is an irreducible curve and
Y.C/ \ L D

[
m>0

.Ym.b/ \ L/, where Ym.b/ \ L is a proper Zariski closed subset.

Hence Ym.b/\L is a finite set, and
[
m>0

.Ym.b/ \L/ is a countable set, while Y.C/\
L is not a countable set. This is a contradiction. Thus Y.C/ D Ym.b/ for some
m > 0. ut

Let D be a k-derivation on a k-algebra B . It is called surjective if D is so as a
k-linear mapping. The following result is a consequence of Theorem 2.1

Corollary 2.5. Let Y D Spec B , T D Spec R and f W Y ! T be the same
as in Theorem 2.1. Let D be an R-derivation of B such that Dt is a surjective
k-derivation for every closed point t 2 T . Assume further that the relative
dimension of f is one. Then D is a locally nilpotent derivation and f is an
A1-fibration.

Proof. Let t be a closed point of T such that the fiber f �1.t/ is irreducible and
reduced. By [9, Theorem 1.2 and Proposition 1.7], the coordinate ring B ˝ R=m
of f �1.t/ is a polynomial ring kŒx� in one variable and Dt D @=@x, where m is
the maximal ideal of R corresponding to t . Then Dt is locally nilpotent. Taking
the base change of f W Y ! T by U ,! T if necessary, where U is a small
open set of T , we may assume that Dt is locally nilpotent for every closed point
t of T . By Theorem 2.1, the derivation D is locally nilpotent and hence f is an
A1-fibration. ut
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3 Deformations of A1-Fibrations of Affine Type

In the present section, we assume that the ground field k is the complex field C.
Let X be an affine algebraic surface which is normal. Let p W X ! C be an
A1-fibration, where C is an algebraic curve which is either affine or projective and
p is surjective. We say that the A1-fibration p is of affine type (resp. complete type)
if C is affine (resp. complete). The A1-fibration on X is the quotient morphism of a
Ga-action onX if and only if it is of affine type (see [8]). We consider the following
result on deformations. For the complex analytic case, one can refer to [19] and also
to [12, p. 269].

Lemma 3.1. Let f W Y ! T be a smooth projective morphism from a smooth
algebraic threefold Y to a smooth algebraic curve T . Let C be a smooth rational

complete curve contained in Y 0 D f
�1
.t0/ for a closed point t0 of T .2 Then the

following assertions hold.

(1) The Hilbert scheme Hilb.Y / has dimension less than or equal to h0.C;NC=Y /

in the point ŒC �. If h1.C;NC=Y / D 0, then the equality holds and Hilb.Y / is

smooth at ŒC �. Here NC=Y denotes the normal bundle of C in Y .

(2) Let n D .C 2/ on Y 0. Then NC=Y Š OC ˚ OC .n/ provided n � �1.
(3) Suppose n D 0. Then there exists an étale finite covering �2 W T 0 ! T such

that the morphism f T 0 splits as

f T 0 W Y �T T
0 '�! V

�1�! T 0 ;

where ' is a P1-fibration with C contained as a fiber and �1 makes V a smooth
T 0-scheme of relative dimension one with irreducible fibers. Assume further that
every smooth rational complete curve C 0 in Y 0 satisfies .C 0 	 C/ D 0 provided
C 0 is algebraically equivalent to C in Y . Then the covering �2 W T 0 ! T is
trivial, i.e., �2 is the identity morphism.

(4) Suppose n D �1. Then C does not deform in the fiber Y 0 but deforms along the
morphism f after an étale finite base change. Namely, there are an étale finite
morphism � W T 0 ! T and an irreducible subvariety Z of codimension one in
Y

0 WD Y �T T
0 such thatZ can be contracted along the fibers of f

0 W Y 0 ! T 0,
where T 0 is an irreducible smooth affine curve and f

0
is the second projection

of Y �T T
0 to T 0.

(5) Assume that there are no .�1/-curves E and E 0 in Y 0 such that E \ E 0 ¤ ;
and E is algebraically equivalent to E 0 as 1-cycles on Y . Then, after shrinking
T to a smaller open set if necessary, we can take Z in the assertion (4) above

2When we write t 2 T , we tacitly assume that t is a closed point of T .
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as a subvariety of Y . The contraction of Z gives a factorization f jZ W Z g�!
T 0 ��! T , where g is a P1-fibration, C is a fiber of g and � is as above.

Proof. (1) The assertion follows from Grothendieck [7, Corollary 5.4].
(2) We have an exact sequence

0 ! NC=Y 0
! NC=Y ! NY 0=Y

jC ! 0 ;

where NC=Y 0
Š OC .n/ and NY 0=Y

jC Š OC . The obstruction for this exact

sequence to split lies in Ext1.OC ;OC .n// Š H1.C;OC .n//, which is zero if
n � �1.

(3) Suppose n D 0. Then dimŒC � Hilb.Y / D 2 and ŒC � is a smooth point of Hilb.Y /.
Let H be a relatively ample divisor on Y =T and set P.n/ WD PC .n/ D
h0.C;OC .nH// the Hilbert polynomial in n of C with respect to H . Then
HilbP .Y / is a scheme which is projective over T . Let V be the irreducible
component of HilbP .Y / containing the point ŒC �. Then V is a T -scheme with
a morphism � W V ! T , dimV D 2 and V has relative dimension one over T .
Furthermore, there exists a subvariety Z of Y �T V such that the fibers of the
composite morphism

g W Z ,! Y �T V
p2�! V

are curves on Y parametrized by V . For a general point v 2 V , the
corresponding curve C 0 WD Cv is a smooth rational complete curve because

PC 0.n/ D P.n/ and .C 0/2 D 0 on Y t D f
�1
.t/ with t D �.v/ because

dimŒC 0 � Hilb.Y / D 2. In fact, if .C 0/2 � �1, then the exact sequence of
normal bundles in (2) implies h0.C 0;NC 0=Y / � 1, which contradicts dimŒC 0 �

Hilb.Y / D 2. If .C 0/2 > 0, then dimŒC 0� Hilb.Y / > 2, which is again a
contradiction. So, .C 0/2 D 0. Hence Y t has a P1-fibration 't W Y t ! Bt

such that C 0 is a fiber andBt is a smooth complete curve. By the universality of
the Hilbert scheme, there are an open set U of Bt and a morphism ˛t W U ! Vt
such that '�1

t .U / D Z �V U . Since V is smooth over T , ˛t induces an
isomorphism from Bt to a connected component of Vt WD ��1.t/. This is
the case if we take v 2 V from a different connected component of Vt . Let

� W V �1�! T 0 �2�! T be the Stein factorization of � . Then �2 is an étale
finite morphism and �1 W V ! T 0 is a smooth morphism of relative dimension
one with irreducible fibers. Furthermore, the morphism g above factors as a
composite of T 0-morphsims

g W Z ,! .Y �T T
0/ �T 0 V

p2�! V ;
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whereZ is identified with Y �T T
0 by the above construction. Hence g induces

a T 0-morphism ' W Y �T T
0 ! V such that the composite �1 	 ' W Y �T T

0 !
V ! T 0 is the pull-back f T 0 W Y �T T

0 ! T 0 of the morphism f .
In the above argument, we take two curves C;C 0 corresponding two points

v; v0 in Vt0 . ThenC is algebraically equivalent toC 0 in Y , and hence .C 	C 0/ D 0

by the hypothesis. So, C D C 0 or C \ C 0 D ;. This implies that C 0 and C
are the fibers of the same P1-fibration 't0 W Y t0 ! Bt0 and hence that Vt0 is
irreducible. Namely, ��1

2 .t0/ consists of a single point. Hence deg�2 D 1, i.e.,
�2 is the identity morphism.

(4) Suppose n D �1. Then h0.C;NC=Y / D 1 and h1.C;NC=Y / D 0. Hence

HilbP .Y / has dimension one and is smooth at ŒC �, where P.n/ D PC .n/

is the Hilbert polynomial of C with respect to H . Let T 0 be the irreducible
component of HilbP .Y / containing ŒC �. Note that dimT 0 D 1. Then we find
a subvariety Z in Y �T T

0 such that C is a fiber of g and every fiber of the
T -morphism g D p2jT 0 W Z ! T 0 is a .�1/ curve in the fiber Y t . In fact, the
nearby fibers of C are .�1/ curves as a small deformation of C by [19]. Hence,
by covering T 0 by small disks, we know that every fiber of g is a .�1/ curve.
Further, the projection � W T 0 ! T is a finite morphism as it is projective and
T 0 is smooth because each fiber is a .�1/ curve in Y (see the above argument
for ŒC �). Furthermore, � is étale since f is locally a product of the fiber and the
base in the Euclidean topology. Hence � induces a local isomorphism between
T 0 and T . This implies that Y �T T

0 is a smooth affine threefold and the second
projection f

0 W Y �T T
0 ! T 0 is a smooth projective morphism. Now, after an

étale finite base change � W T 0 ! T , we may assume that Z is identified with
a subvariety of Y . Since C is a .�1/ curve in Y 0, it is an extremal ray in the
cone NE.Y 0/. Since C is algebraically equivalent to the fibers of g W Z ! T 0,
it follows that C is an extremal ray in the relative cone NE.Y =T /. Then it
follows from [22, Theorem 3.25] that Z is contracted along the fibers of g in Y
and the threefold obtained by the contraction is smooth and projective over T .

(5) Let ��1.t0/ D fu1; : : : ; ud g and let Zui D Z 	 .Y � fuig/ for 1 � i � d . Then
the Zui are the .�1/ curves on Y 0 which are algebraically equivalent to each
other as 1-cycles on Y . By the assumption, Zui \ Zuj D ; whenever i ¤ j .
This property holds for all t 2 T if one shrinks to a smaller open set of t0.
Then we can identify Z with a closed subvariety of Y . In fact, the projection
p W Z ,! Y �Y T

0 ! Y is a T -morphism. For the point t0 2 T , the morphism
p ˝OT;t0

OOT;t0 with the completion OOT;t0 of OT;t0 is a direct sum of the closed

immersions from Z ˝OT;t0
OOT 0;ui into Y ˝OT;t0

OOT 0;ui for 1 � i � r . So,

p ˝OT;t0
OOT;t0 is a closed immersion. Hence p is a closed immersion locally

over t0 because OOT;t0 is faithfully flat over OT;t0 . The rest is the same as in the
proof of the assertion (4).

ut
Let Y0 be a smooth affine surface and let Y 0 be a smooth projective surface

containing Y0 as an open set in such a way that the complement Y 0 n Y0 supports
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a reduced effective divisor D0 with simple normal crossings. We call Y 0 a normal
completion of Y0 and D0 the boundary divisor of Y0. An irreducible component of
D0 is called a .�1/ component if it is a smooth rational curve with self-intersection
number �1. We say that Y 0 is a minimal normal completion if the contraction of
a .�1/ component of D0 (if any) results the image of D0 losing the condition of
simple normal crossings.

Let f W Y ! T be a smooth projective morphism from a smooth algebraic
threefold Y to a smooth algebraic curve T and let S D Pr

iD1 Si be a reduced
effective divisor on Y with simple normal crossings. Let Y D Y n S and let f D
f jY . We assume that for every point t 2 T , the intersection cycle Dt D f

�1
.t/ 	

S is a reduced effective divisor of Y t D f
�1
.t/ with simple normal crossings3

and Yt D Y \ Y t is an affine open set of Y t . For a point t0 2 T , we assume
that Y t0 D Y 0;Dt0 D D0 and Yt0 D Y0. A collection .Y; Y ; S; f ; t0/ is called a
family of logarithmic deformations of a triple .Y0; Y 0;D0/. We call it simply a log
deformation of the triple .Y0; Y 0;D0/. Since f is smooth and S is a divisor with
simple normal crossings, .Y; Y ; S; f ; t0/ is a family of logarithmic deformations in
the sense of Kawamata [17, 18]. (See also [20].)

From time to time, we have to make a base change by an étale finite morphism
� W T 0 ! T with irreducible T 0. Let Y

0 D Y �T T
0; f 0 D f �T T

0; S 0 D S �T T
0

and Y 0 D Y �T T
0. Since the field extension k.Y /=k.T / is a regular extension, Y

0

is an irreducible smooth projective threefold, and S 0 is a divisor with simple normal
crossings. Hence .Y 0; Y 0

; S 0; f 0
; t 00/ is a family of logarithmic deformations of the

triple .Y 0
0 ; Y

0
0;D

0
0/ Š .Y0; Y 0;D0/, where t 00 2 T 0 with �.t 00/ D t0.

We have the following result on logarithmic deformations of affine surfaces with
A1-fibrations.

Lemma 3.2. Let .Y; Y ; S; f ; t0/ be a log deformation of the triple .Y0; Y 0;D0/.
Then the following assertions hold.

(1) Assume that Y0 has an A1-fibration. Then Yt has an A1-fibration for every
t 2 T .

(2) If Y0 has an A1-fibration of affine type (resp. of complete type), then Yt has also
an A1-fibration of affine type (resp. of complete type) for every t 2 T .

Proof. (1) Note thatKY t
D .KY C Y t / 	 Y t D KY 	 Y t because Y t is algebraically

equivalent to Y t 0 for t 0 ¤ t . ThenKY t
CDt D .KY CS/	Y t . By the hypothesis,

h0.Y 0;O.n.KY 0
C D0/// D 0 for every n > 0. Then the semicontinuity

theorem [11, Theorem 12.8] implies that h0.Y t ;O.n.KY t
C Dt/// D 0 for

3In order to avoid the misreading, it is better to specify our definition of simple normal crossings in
the case of dimension three. We assume that every irreducible component Si of S and every fiber
Y t are smooth and that analytic-locally at every intersection point P of Si \Sj (resp. Si \Sj \Sk
or Si \ Y t ), Si and Sj (resp. Si ; Sj and Sk , or Si and Y t ) behave like coordinate hypersurfaces.
Hence Si \ Sj or Si \ Y t are smooth curves at the point P .
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every n > 0. Hence �.Yt / D �1. Since Yt is affine, this implies that Yt has an
A1-fibration.

(2) Suppose that Y0 has an A1-fibration �0 W Y0 ! B0 which is of affine type. Then
�0 defines a pencil ƒ0 on Y 0.

Suppose first that ƒ0 has no base points and hence defines a P1-fibration �0 W
Y 0 ! B0 such that �0jY0 D �0 and B0 is a smooth completion of B0. If �0 is not
minimal, let E be a .�1/ curve contained in a fiber of �0, which is necessarily not
contained in Y0. By Lemma 3.1,E extends along the morphism f if one replaces the
base T by a suitable étale finite covering T 0 and can be contracted simultaneously
with other .�1/ curves contained in the fibers Y t .t 2 T /. Note that this étale finite
change of the base curve does not affect the properties of the fiber surfaces. Hence
we may assume that all simultaneous blowing-ups and contractions as applied below
are achieved over the base T .

The contraction is performed either within the boundary divisor S or the
simultaneous half-point detachments in the respective fibers Yt for t 2 T . (For the
definition of half-point detachment (resp. attachment), see, for example, [4].) Hence
the contraction does not change the hypothesis on the simple normal crossing of S
and the intersection divisor S 	 Y t . Thus we may assume that �0 is minimal. Since
B0 ¤ B0, a fiber of �0 is contained in a boundary component, say S1. Then the
intersection S1 	 Y 0 as a cycle is a disjoint sum of the fibers of �0 with multiplicity
one. Hence .S21 	 Y 0/ D ..S1 	 Y 0/2/Y 0 D 0. Since Y t and Y 0 are algebraically
equivalent, we have .S21 	 Y t / D 0 for every t 2 T . Note that Y t is also a ruled
surface by Iitaka [12] and minimal by the same reason as for Y 0. Considering the
deformations of a fiber of �0 appearing in S1 	 Y 0, we know by Lemma 3.1 that
S1 	 Y t is a disjoint sum of smooth rational curves with self-intersection number
zero. Namely, S1 	 Y t is a sum of the fibers of a P1-fibration. Here we may have to
replace the P1-fibration �t by the second one if Y t Š P1 � P1. In fact, if a smooth
complete surface has two different P1-fibrations and is minimal with respect to one
fibration, then the surface is isomorphic to P1 � P1 and two P1-fibrations are the
vertical and horizontal fibrations. This implies that Yt has an A1-fibration of affine
type.

Suppose next that ƒ0 has a base point, say P0, and that the A1-fibration �0 is of
affine type. Then all irreducible components of D0 WD S 	 Y 0 are contained in the
members of ƒ0. Since the boundary divisorD0 of Y 0 is assumed to be a connected
divisor with simple normal crossings, there are at most two components of S 	 Y 0
passing through P0, and if there are two of them, they lie on different components
of S and P0 lies on their intersection curve. In particular, if S1 is a component of S
containing P0, then S1 	 Y 0 is a disjoint sum of smooth rational curves. Let C1 be
the component of S1 	Y 0 passing throughP0 and let F0 be the member ofƒ0 which
contains C1. We may assume that F0 is supported by the boundary divisorD0. If F0
contains a .�1/ curve E such that P0 62 E , then E extends along the morphism
f and can be contracted simultaneously along f after the base change by an étale
finite covering T 0 ! T . So, we may assume that every irreducible component of
F0 not passing P0 has self-intersection number � �2 on Y 0. Then we may assume
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that .C 2
1 /Y 0 � 0. In fact, if there are two irreducible components of S 	 Y 0 passing

throughP0 and belonging to the same memberF0 ofƒ0, one of them must have self-
intersection number � 0, for otherwise all the components of the member of ƒ0,
after the elimination of base points, would have self-intersection number � �2,
which is a contradiction. So, we may assume that the one on S1, i.e., C1, has self-
intersection number � 0. Then the proper transform of C1 is the unique .�1/ curve
with multiplicity > 1 in the fiber corresponding to F0 after the elimination of base
points ofƒ0.

On the other hand, S1 	 Y 0 (as well as Si 	 Y 0 if it is non-empty) is a disjoint
sum of smooth rational curves, one of which is C1. Let n WD .C 2

1 /Y 0 � 0. Then
HilbP .Y / has dimension nC 2 and is smooth at the point ŒC1�. Since C1 Š P1 and
NC1=Y

Š O.n/ ˚ O, C1 extends along the morphism f . Namely, f jS1 W S1 ! T

is a composite of a P1-fibration �1 W S1 ! T 0 and an étale finite morphism �2 W
T 0 ! T , where C1 is a fiber of �1. By the base change by �2, we may assume that
S1 	 Y 0 D C1. In particular, .C 2

1 /S1 D 0.
Suppose that C2 is a component of F0 meeting C1. Then C2 is contained in a

different boundary component, say S2, which intersects S1. Since .H 	S2 	Y 0/ > 0,
we have .H 	 S2 	 Y t / > 0 for every t 2 T , where H is a relatively ample divisor
on Y over T . Furthermore, S2 	 Y 0 is algebraically equivalent to S2 	 Y t . Note that
S2 	 Y 0 is a disjoint sum of smooth rational curves, one of which is the curve C2
connected to C1. By considering the factorization of f jS2 W S2 ! T into a product
of a P1-fibration and an étale finite morphism as in the case for S1 	 Y 0 and taking
the base change by an étale finite morphism, we may assume that S2 	 Y 0 D C2.
Hence we have

.S1 	 S2 	 Y t / D .S1 	 S2 	 Y 0/ D .C1 	 .S2 	 Y 0//Y 0 D .C1 	 C2/Y 0 D 1:

This implies that S2 	 Y t is irreducible for a general point t 2 T . For otherwise, by
the Stein factorization of the morphism f jS2 W S2 ! T , the fiber S2 	Y t is a disjoint
sum A1 C 	 	 	 CAs of distinct irreducible curves which are algebraically equivalent
to each other on S2. Since

1 D .S1 	 S2 	 Y t / D ..S1 	 S2/ 	 .S2 	 Y t //S2
D ..S1 	 S2/ 	 .A1 C 	 	 	 C As//S2 D s..S1 	 S2/ 	 A1/;

we have s D 1 and .S1 	 S2 	 A1/ D 1. So, f jS2 W S2 ! T is now a P1-bundle and
.C 2

2 /S2 D 0. This implies that NC2=Y
Š O.m/ ˚ O with m D .C 2

2 /Y 0 � �2 and

that C2 extends along the morphism f . We can argue in the same way as above with
irreducible components of F0 other than C1.

Assume that no members of ƒ0 except F0 have irreducible components outside
of Y0. If Ci is shown to move on the component Si along the morphism f , we
consider a component CiC1 anew which meets Ci . Each of them is contained in
a distinct irreducible boundary component of S and extends along the morphism
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f . Let S1; S2; : : : ; Sr be all the boundary components which meet Y 0 along the
irreducible components of F0. Then Y t intersects S1 CS2 C 	 	 	 CSr in an effective
divisor which has the same form as F0. Furthermore, we have

..Si 	 Y t /2/Y t D .S2i 	 Y t / D .S2i 	 Y 0/ D ..Si 	 Y 0/2/Y 0
for 1 � i � r . Namely, the components Si 	 Y t .1 � i � r/ with the same
multiplicities as Si 	 Y 0 in F0 is a member Ft of the pencil ƒt lying outside of Yt .
This implies that ƒt has a base point Pt and at least one member of ƒt lies outside
of Yt . So, the A1-fibration �t on Yt is of affine type.

If the pencil ƒ0 contains two members F0; F 0
0 such that the components C1; C 0

1

of F0; F 0
0 lie outside of Y0 and pass through the point P0, we may assume that F0 is

supported by the boundary components, while F 0
0 may not. Then no other members

of ƒ0 have irreducible components outside of Y0 because Y 0 n Y0 is connected. We
can argue as above to show, after a suitable étale finite base change, that the member
F0 moves along the morphism f , and further that every boundary component of F 0

0

moves on a boundary component, say S 0
j , as a fiber of f jS 0

j
W S 0

j ! T . Hence the
pencilƒt has the member Ft corresponding to F0 whose all components lie outside
of Yt and the member F 0

t corresponding to F 0
0 . In fact, the part of F 0

t lying outside
of Yt is determined as above, but since Yt \ F 0

t is a disjoint union of the A1 which
correspond to the .�1/ components of F 0

t (the half-point attachments), the member
F 0
t is determined up to its weighted graph. This proof also implies that if �0 is of

complete type then �t is of complete type for every t 2 T . ut
Remark 3.3. (1) In the above proof of Lemma 3.2, the case where the pencil ƒ0

has a base point P0 on one of the connected components S1 \ Y 0, say C1, there
might exist a monodromy on Y which transformƒ0 to a pencilƒ0

0 on Y 0 having
a base point P 0

0 on a different connected component C 0
1 of S1 \ Y 0. However,

we have .C 2
1 /Y 0 � 0 as shown in the proof, and .C 2

1 / D .C 02
1/. Since C 0

1 is

contained in a member of ƒ0, whence .C 02
1/ < 0. This is a contradiction. So,

S1 \ Y 0 is irreducible.
(2) In the step of the above proof of Lemma 3.2 where we assume that no members

of ƒ0 except F0 have irreducible components outside of Y0, let P 0
t be a point

on C1;t WD S1 	 Y t other than Pt which is the base point of the given pencil
ƒt . Then there is a pencil ƒ0

t on Y t which is similar to ƒt . In fact, note first
that Y t is a rational surface. Perform the same blowing-ups with centers at
P 0
t and its infinitely near points as those with centers at Pt and its infinitely

near points which eliminate the base points of ƒt . Then we find an effective
divisor QF 0

t supported by the proper transforms of Si 	 Y t .1 � i � r/ and
the exceptional curves of the blowing-ups such that QF 0

t has the same form and
multiplicities as the corresponding member QFt in the proper transform Qƒt of
ƒt after the elimination of base points. Then . QF 0

t /
2 D 0 and hence QF 0

t is a
fiber of an P1-fibration on the blown-up surface of Y t . Then the fibers of the
P1-fibration form the pencil ƒ0

t on Y t after the reversed contractions. In fact,
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the surface Yt D Y t n Dt is the affine plane with two systems of coordinate
lines given as the fibers of ƒt and ƒ0

t . Hence the A1-fibrations induced by ƒt

and ƒ0
t are transformed by an automorphism of Y t .

ut
The following is one of the simplest examples of our situation.

Example 3.4. Let C be a smooth conic and let S be the subvariety of codimension
one in P2 � C defined by

S D f.P;Q/ j P 2 LQ; Q 2 C g;

whereLQ is the tangent line ofC atQ. Let Y D .P2�C/nS and let f W Y ! C be
the projection onto C . We set T D C to fit the previous notations. Set Y D P2 �C .
Then f W Y ! T is the second projection and the boundary divisor S is irreducible.
For every point Q 2 C , YQ WD P2 n LQ has a linear pencil ƒQ generated by C
and 2LQ, which induces an A1-fibration of affine type. The restriction f jS W S !
T is a P1-bundle. Let C be defined by X0X2 D X2

1 with respect to a system of
homogeneous coordinates .X0;X1;X2/ of P2 and let � D .1; t; t2/ be the generic
point of C with t an inhomogeneous coordinate on C Š P1. Then L� is defined by
t2X0�2tX1CX2 D 0. The generic fiber Y� of f has an A1-fibration induced by the
linear pencil ƒ� whose general members are the conics defined by .X0X2 �X2

1 /C
u.t2X0 � 2tX1 C X2/

2 D 0, where u 2 A1. Indeed, the conics are isomorphic to
P1k.t/ since they have the k.t/-rational point .1; t; t2/, and Y� is isomorphic to A2k.t/.

This implies that the affine threefold Y itself has an A1-fibration. ut
In the course of the proof of Lemma 3.2, we frequently used the base change

by a finite étale morphism � W T 0 ! T , where T 0 is taken in such a way that for
every t 2 T , the points ��1.t/ correspond bijectively to the connected components
of Si \ Y t , where Si is an irreducible component of S . Suppose that deg � > 1.
Let Y

0 D Y �T T
0 and f

0 D f �T T
0. Note that Y

0
is smooth because � is étale.

The morphism � W T 0 ! T gives the Stein factorization f jSi W Si '�! T 0 ��! T .
Then the subvariety Si is considered to be a subvariety of Y

0
via a closed immersion

.idSi ; '/ W Si ! Si �T T
0 ,! Y �T T

0. We denote it by S 0
i . Let t1; t2 be points of

T 0 such that they correspond to the connected componentsA;B of Si \Y t , whence
�.t1/ D �.t2/ D t . Then A;B are the fibers of S 0

i over the points t1; t2 of T 0. Hence
A and B are algebraically equivalent in Y . Since T 0 is étale over T , we say more
precisely that they are étale-algebraically equivalent. We have .A2/Y t D .B2/Y t .

In fact, noting that Y
0
t1

and Y
0
t2

are algebraically equivalent in Y
0

and that Y
0
t1

and

Y
0
t2

are isomorphic to Y t , we have

.A2/Y t D .A2/
Y

0

t1

D .S 0
i 	 S 0

i 	 Y 0
t1
/

D .S 0
i 	 S 0

i 	 Y 0
t2
/ D .B2/

Y
0

t2

D .B2/Y t
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Let C be an irreducible curve in Y 0 \ S , say a connected component of Y 0 \ S1
with an irreducible component S1 of S . We say that C has no monodromy in Y if

f jS1 W S1 ! T has no splitting f jS1 W S1 �1�! T 0 �2�! T , where �2 is an étale
finite morphism with deg�2 > 1. Note that, after a suitable étale finite base change
Y �T T

0, this condition is fulfilled. Namely, the monodromy is killed. Concerning the
extra hypothesis in Lemma 3.1(3) and the possibility of achieving the contractions
over the base curve T in Lemma 3.1(5), we have the following result.

Lemma 3.5. Let .Y; Y ; S; f ; t0/ be a family of logarithmic deformation of the
triple .Y0; Y 0;D0/. Assume that Y0 has an A1-fibration of affine type. Let ƒ0 be the
pencil on Y 0 whose general members are the closures of fibers of the A1-fibration.
Suppose that ƒ0 defines a P1-fibration '0 W Y 0 ! B0. Suppose further that the
section of '0 in S \ Y 0 has no monodromy in Y . Then the following assertions
hold.

(1) If C is a fiber of '0 with C \ Y0 ¤ ; and C 0 is a smooth rational complete
curve which is algebraically equivalent to C in Y , then .C 	 C 0/ D 0.

(2) There are no two .�1/ curves E1 and E2 such that they belong to the same
connected component of the Hilbert scheme Hilb.Y /, E1 is an irreducible
component of a fiber of '0 and E1 \E2 ¤ ;.

Proof. (1) Let S0 be an irreducible component of S such that .S0 	 F / D 1 for
a general fiber F of '0. Then S0 \ Y 0 contains a cross-section of '0. The
assumption on the absence of the monodromy implies that S0\Y 0 is irreducible
and is the section of '0. Note that '0 contains a fiber F1 at infinity which is
supported by the intersection of Y 0 with the boundary divisor S in Y . Such
a fiber exists by the assumption that the A1-fibration on Y0 is of affine type.
Since S0 \ Y 0 gives the cross-section, F1 is supported by S n S0. Since
C \ .S n S0/ D ; and C 0 is algebraically equivalent to C in Y , C 0 does not
meet the components of S n S0. Hence C 0 \ F1 D ;, and C 0 is a component
of a fiber of '0. So, .C 	 C 0/ D 0.4

(2) Suppose that suchE1 andE2 exist. SinceE1 andE2 are algebraically equivalent
1-cycles on Y , E1 and E2 have the same intersections with subvarieties of
codimension one in Y . We consider possible cases separately.

(i) Suppose that both E1 and E2 are contained in the fiber at infinity F1.
SinceE1\E2 ¤ ;, it follows thatF1 D E1CE2 with .E1 	E2/ D 1. IfE1
meets the section S0\Y 0, then .E1 	S0/ D 1, whence .E2 	S0/ D 1 because
E1 andE2 are algebraically equivalent in Y . This is a contradiction. Hence
E1 \E2 D ;.

(ii) Suppose that only E1 is contained in the fiber at infinity F1. Take a
smooth fiber F0 of '0 with F0 \ Y0 ¤ ; and consider a deformation of
F0 in Y . Then there exist an étale finite morphism �2 W T 0 ! T and

4We note here that without the condition on the absence of the monodromy of the cross-section,
the assertion fails to hold. See Example 3.6.
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a decomposition of f T 0 W Y �T T
0 '�! V

�1�! T 0 such that F0 is a
fiber of ' (see Lemma 3.1(3)). Let B be an irreducible curve on V such
that '.F1/ 62 B and let W D '�1.B/. Note that E1 and E2 are also
algebraically equivalent in Y �T T

0. Since .E1 	 W / D 0 by the above
construction, it follows that .E2 	W / D 0. This implies thatE2 is contained
in a fiber of '0. Hence E1 \E2 D ;.

(iii) Suppose thatE1 andE2 are not contained in the fiberF1. ThenE1 andE2
are the fiber components of '0 because .Ei 	F1/ D 0 for i D 1; 2. If they
belong to the same fiber, we obtain a contradiction by the same argument
as in the case (i). If they belong to different fibers, then E1 \E2 D ;.

ut
The following example, which is due to one of the referees of this article, shows

that Lemma 3.5(1) does not hold without the monodromy condition on the section
of '0.

Example 3.6. Let Q D P1 � P1 and T 0 D A1� which is the affine line minus one
point and hence is the underlying scheme of the multiplicative groupGm. We denote
by ` (resp. M ) a general fiber of the first projection p1 W Q ! P1 (resp. the second
projection p2 W Q ! P1). Let x (resp. y) be an inhomogeneous coordinate on
the first (resp. the second) factor of Q. Set `1 D p�1

1 .1/ and M1 D p�1
2 .1/.

We consider an involution � onQ� T 0 defined by .x; y; z/ 7! .y; x;�z/, where z is
a coordinate of A1�. Let Q0 be the blowing-up of Q with center P1 WD `1 \M1
and let E be the exceptional curve. Then the involution � extends to the threefold
Q0 � T 0 in such a way that E � T 0 is stable under �. Let Y be the quotient threefold
of Q0 � T 0 by this Z2-action induced by the involution �. Since the projection p2 W
Q0 � T 0 ! T 0 is Z2-equivariant, it induces a morphism f W Y ! T , where
T D T 0==Z2 Š A1�. Let S1 D ..`1 [ M1/ � T 0/==Z2, S2 D .E � T 0/==Z2 and
S D S1 C S2. Further, we let Y D Y n S and f W Y ! T the restriction of f
onto Y . Then the following assertions hold:

(1) The surfaces S1 and S2 are smooth irreducible surfaces intersecting normally.
(2) Fix a point t0 2 T and denote the fibers over t0 with the subscript 0. Then the

collection .Y; Y ; S; f ; t0/ is a family of logarithmic deformations of the triple
.Y0; Y 0;D0/, whereD0 D S 	 Y 0.

(3) For every t 2 T , S1 \ Y t is a disjoint union of two smooth curves C1t ; C 0
1t and

S2 \ Y t is a smooth rational curve C2t , where .C1t 	 C2t / D .C 0
1t 	 C2t/ D 1

and .C 2
1t / D .C 0

1t
2
/ D .C 2

2t / D �1. In particular, C1t is étale-algebraically
equivalent to C 0

1t , and hence has a nontrivial monodromy.
(4) Each fiber Y t is isomorphic to Q0 with C1t ; C 0

1t and C2t identified with the
proper transforms ofM1; `1 on Q0 and E .

(5) Let 't W Y t ! P1 be the P1-fibration induced by the first projection p1 W Q !
P1. Then a general fiber ` D p�1

1 .x/ is algebraically equivalent toM D p�1
2 .x/

for x 2 T .
(6) For every t 2 T , the affine surface Yt has an A1-fibration of affine type.



Deformations of A1-Fibrations 343

Proof. (1) Since .Q n .`1 [ M1/ D Spec kŒx; y�, the quotient threefold
V D .Q � T 0/==Z2 contains an open set .A2 � T 0/==Z2, which has the coor-
dinate ring over k generated by elements X D x C y; U D xy; Z D z2 and
W D .x � y/z. Hence the open set is a hypersurface W 2 D Z.X2 � 4U /.
The quotient threefold V has a similar open neighborhood of the image of the
curve fP1g � T 0. This can be observed by taking inhomogeneous coordinates
x0; y0 on Q such that x0 D 1=x and y0 D 1=y, where `1 [ M1 is given by
x0y0 D 0. If we put W 0 D x0 C y0; U 0 D x0y0 and W 0 D .x0 � y0/z, the
open neighborhood is defined by a similar equation W 02 D Z.X 02 � 4U 0/.
Then the image of .`1 [ M1/ � T 0 is given by U 0 D 0. Hence it has an
equation W 02 D ZX 02. So, this is a smooth irreducible surface. The curve E
has inhomogeneous coordinate x0=y0 (or y0=x0). Hence E is stable under the
involution �. Note that the involution � has no fixed point because there are no
fixed points on the factor T 0. The surface S1 is simultaneously contracted along
T , and by the contraction, Y becomes a P2-bundle and the surface S2 becomes
an immersed P1-bundle. Then the assertion (1) follows easily.

(2) The threefold Y is smooth and f is a smooth morphism. In fact, every closed
fiber of f D f jY W Y ! T is isomorphic to the affine plane.

(3) If t D z2, C1t (resp. C 0
1t ) is identified with M 01 (resp. `01) in Q0 � fzg and `01

(resp.M 01) in Q0 � f�zg under the identification Y t Š Q0 � fzg Š Q0 � f�zg,
where `01 and M 01 are the proper transforms of `1 and M1 on Q0. Now the
rest of the assertions are easily verified.

ut
A sufficient condition on the absence of the monodromy in Lemma 3.5 is given

by the following result.

Lemma 3.7. Let the notations and the assumptions be the same as in Lemma 3.5
and its proof. Let S0 \ Y 0 D C01 [ 	 	 	 [ C0m. Suppose that C01 is a section of the
P1-fibration '0. If .C 2

01/ � 0, then C01 has no monodromy in Y . Namely,m D 1 and
S0 \ Y 0 is irreducible.

Proof. Suppose thatm > 1. Note that C02; : : : ; C0m are mutually disjoint and do not
meet a general fiber of '0 because they lie outside Y0 and a general fiber meets only
C01 in the boundary at infinity. This implies that C02; : : : ; C0m are rational curves
and the fiber components of '0. By the remark given before Lemma 3.5, we have
.C 2

0i / D .C 2
01/ � 0 for 2 � i � m. Then C02; : : : ; C0m are full fibers of '0 and

hence they meet the section C01. This is a contradiction. ut
We prove one of our main theorems.

Theorem 3.8. Let f W Y ! T be a morphism from a smooth affine threefold onto
a smooth curve T with irreducible general fibers. Assume that general fibers of f
have A1-fibrations of affine type. Then, after shrinking T if necessary and taking an
étale finite morphism T 0 ! T , the fiber product Y 0 D Y �T T

0 has an A
1-fibration

which factors the morphism f 0 D f �T T
0. Furthermore, suppose that there is a
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relative normal completion f W Y ! T of f W Y ! T satisfying the following
conditions:

(1) .Y; Y ; S; f ; t0/ with t0 2 T and S D Y n Y is a family of logarithmic

deformations of .Y0; Y 0;D0/ as above, where Y0 D f �1.t0/; Y 0 D f
�1
.t0/

and D0 D S 	 Y 0.
(2) The given A1-fibration of affine type on each fiber Yt extends to a P1-fibration

't W Y t ! Bt .
(3) A section of '0 in the fiber Y 0 lying in D0 has no monodromy in Y .

Then the given morphism f W Y ! T is factored by an A
1-fibration.

Proof. Embed Y into a smooth threefold Y in such a way that f extends to a
projective morphism f W Y ! T . We may assume that the complement S WD Y nY
is a reduced divisor with simple normal crossings. Let S D S0 C S1 C 	 	 	 C Sr be
the irreducible decomposition of S . For a general point t 2 T , let Yt be the fiber
f �1.t/ and let �t W Yt ! Bt be the given A1-fibration on Yt . By the assumption, Bt
is an affine curve. We may assume that Yt is smooth and henceBt is smooth. Let Y t
be the closure of Yt in Y which we may assume to be a smooth projective surface
with t a general point of T . By replacing T by a smaller Zariski open set, we may
assume that f is a smooth morphism and that S 	Y t is a divisor with simple normal
crossings for every t 2 T . Hence we may assume that the condition (1) above is
realized.

For each t 2 T , let ƒt be the pencil generated by the closures (in Y t ) of the
fibers of the A1-fibration �t . Ifƒt has a base point, we can eliminate the base points
by simultaneous blowing ups on the boundary at infinity after an étale finite base
change of T . In this step, we may have to replace, for some t 2 T , the pencil ƒt

by another pencil ƒ0
t which also induces an A1-fibration of affine type on Yt (see

the proof of Lemma 3.2). So, we may assume that the condition (2) above is also
satisfied.

If S0\Y 0 contains a section of '0, we may assume by an étale finite base change
that S0 \ Y 0 is irreducible (see the remark before Lemma 3.5). So, we may assume
that the condition (3) is satisfied as well.

Hence, we may assume from the beginning that three conditions are satisfied.
The fibration �t extends to a P1-fibration 't W Y t ! Bt for every t 2 T , where Bt

is a smooth completion of Bt . For t0 2 T , we consider the fibration '0 W Y 0 ! B0.
A general fiber of '0 meets one of the irreducible components, say S0, of S in one
point. Then so does every fiber of '0 because S0 	 Y 0 is an irreducible divisor on Y 0
and the fibers of '0 are algebraically equivalent to each other on Y 0. Hence S0 	 Y 0
is a section. We claim that

(1) Y t meets the component S0 for every t 2 T .
(2) After possibly switching the A1-fibrations if some Yt has two A1-fibrations, we

may assume that for every t 2 T , the fibers of the P1-fibration 't on Y t meet
S0 along a curve At such that At is a cross-section of 't and hence 't induces
an isomorphism between At and Bt .
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In fact, for a relatively ample divisorH of Y over T , we have .H 	 S0 	 Y 0/ > 0,
whence .H 	 S0 	 Y t / > 0 for every t 2 T because Y t is algebraically equivalent
to Y 0. This implies the assertion (1). To prove the assertion (2), we consider
the deformation of a smooth fiber C of '0 in Y 0. Since general fibers Yt of f
have A1-fibrations of affine type, by Lemma 3.1(3) and Lemma 3.5(1), there is a
P1-fibration ' W Y ! V such that C is a fiber of '. Then the restriction 'jY 0 is
the P1-fibration '0. For every t 2 T , the restriction 'jY t is a P1-fibration on Y t .
If it is different from 't , we replace 't by 'jY t . Then .S0 	 C 0/ D .S0 	 C/ D 1 for
a general fiber C 0 of 't because C 0 is algebraically equivalent to C . The assertion
follows immediately.

With the notations in the proof of Lemma 3.1, the isomorphisms At
��! Vt WD

��1.t/ Š Bt show that the morphism

S0 ,! Y
'�! V

��! T

induces a birational T -morphism S0 ! V and S0 is a cross-section of '. It is clear
that the boundary divisor S contains no other components which are horizontal to '.
Hence Y has an A1-fibration. ut

As a consequence of Theorem 3.8, we have the following result.

Corollary 3.9. Let f W Y ! T be a smooth morphism from a smooth affine
threefold Y to a smooth affine curve T . Assume that f has a relative projective
completion f W Y ! T which satisfies the same conditions on the boundary divisor
S and the intersection of each fiber Y t with S as set in Lemma 3.2. If a fiber Y0
has a Ga-action, then there exists an étale finite morphism T 0 ! T such that the
threefold Y 0 D Y �T T

0 has aGa-action as a T 0-scheme. Furthermore, if the relative
completion f W Y ! T is taken so that the three conditions in Theorem 3.8 are
satisfied, the threefold Y itself has a Ga-action as a T -scheme.

Proof. By Lemma 3.2, every fiber Yt has an A1-fibration of affine type �t W Yt ! Bt ,
whereBt is an affine curve. As in the proof of Theorem 3.8, we may assume that the
three conditions therein are satisfied. By the same theorem, Y has an A1-fibration
� W Y ! U such that f is factored as

f W Y ��! U
��! T ;

where Ut WD ��1.t/ Š Bt for every t 2 T . Then U is an affine scheme after
restricting T to a Zariski open set. Then Y has a Ga-action by [8]. ut

Given a smooth affine morphism f W Y ! T from a smooth algebraic variety Y
to a smooth curve T such that every closed fiber is isomorphic to the affine space An

of fixed dimension, one can ask if the generic fiber of f is isomorphic to An over
the function field k.T /. If this is the case with f , we say that the generic triviality
holds for f . In the case n D 2, this holds by the following theorem. If the generic
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triviality for n D 2 holds for f W Y ! T in the setup of Theorem 3.10, a theorem
of Sathaye [29] shows that f is an A2-bundle in the sense of Zariski topology.

Theorem 3.10. Let f W Y ! T be a smooth morphism from a smooth affine
threefold Y to a smooth affine curve T . Assume that the fiber Yt is isomorphic to
A2 for every closed point of T . Then the generic fiber Y� of f is isomorphic to the
affine plane over the function field of T . Hence f W Y ! T is an A2-bundle over T
after replacing T by an open set if necessary.

Before giving a proof, we prepare two lemmas where an integral k-scheme is
a reduced and irreducible algebraic k-scheme and where a separable K-form of
A2 over a field K is an algebraic variety X defined over K such that X ˝K K

0 is
K 0-isomorphic to A2 for a separable algebraic extensionK 0 of K .

Lemma 3.11. Let p W X ! T be a dominant morphism from an integral k-scheme
X to an integral k-scheme T . Assume that the fiber Xt is an integral k-scheme
for every closed point t of T . Then the generic fiber X� D X �T Spec k.T / is
geometrically integral k.T /-scheme.

Proof. We have only to show that the extension of the function fields k.X/=k.T / is
a regular extension. Namely, k.X/=k.T / is a separable extension, i.e., a separable
algebraic extension of a transcendental extension of k.T / and k.T / is algebraically
closed in k.X/. Since the characteristic of k is zero, it suffices to show that k.T / is
algebraically closed in k.X/. Suppose the contrary. Let K be the algebraic closure
of k.T / in k.X/, which is a finite algebraic extension of k.T /. Let T 0 be the
normalization of T in K . Let � W T 0 ! T be the normalization morphism which is

a finite morphism. Then p W X ! T splits as p W X p0

�! T 0 ��! T , which is the
Stein factorization. Then the fiber Xt is not irreducible for a general closed point
t 2 T , which is a contradiction to the hypothesis. ut

The following result is due to Kambayashi [13].

Lemma 3.12. Let X be a separable K-form of A2 for a field K . Then X is
isomorphic to A2 over K .

The following proof of Theorem 3.10 uses a locally nilpotent derivation and
hence is of purely algebraic nature.

Proof of Theorem 3.10. Every closed fiber Yt has an A
1-fibration of affine type and

hence a Ga-action. By Corollary 3.9, there exists an étale finite morphism T 0 ! T

such that Y 0 D Y �T T
0 has a Ga-action as a T 0-scheme. Suppose that the generic

fiber Y 0
�0 of fT 0 W Y 0 ! T 0 is isomorphic to A

2 over the function field k.T 0/. Since

Y 0
�0 D Y� ˝k.T / k.T

0/, it follows by Lemma 3.12 that Y� is isomorphic to A2 over
k.T /. Hence, we may assume from the beginning that Y has a Ga-action which
induces A1-fibrations on general closed fibers Yt . The Ga-action on a T -scheme Y
is induced by a locally nilpotent derivation ı on the coordinate ringB of Y , i.e., Y D
SpecB . Let T D SpecR. Here ı is anR-trivial derivation on B . LetA be the kernel
of ı. SinceB is a smooth k-algebra of dimension 3,A is a finitely generated, normal
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k-algebra of dimension 2. The derivation ı induces a locally nilpotent derivation ıt
on Bt D B ˝R R=mt , where mt is the maximal ideal of R corresponding to a
general point t of T . We assume that ıt ¤ 0. Since Bt is a polynomial k-algebra of
dimension 2 by the hypothesis, At WD Ker ıt is a polynomial ring of dimension 1.

Claim 1. At D A˝R R=mt if ıt is nonzero.

Proof. Let ' W B ! BŒu� be the k-algebra homomorphism defined by

'.b/ D
X
i�0

1

i Š
ıi .b/ui :

Then Ker ı D Ker.' � id/. Hence we have an exact sequence of R-modules

0 ! A ! B
'�id�! BŒu� :

Let Ot be the local ring of T at t , i.e., the localization of R with respect to mt , and
let OOt be the mt -adic completion of Ot . Since OOt is a flat R-module, we have an
exact sequence

0 ! A˝R
OOt ! B ˝R

OOt ! .B ˝R
OOt /Œu� : (*)

The completion OOt as a k-module decomposes as OOt D k˚ Omt , where Omt D mt
OOt ,

the above exact sequence splits as a direct sum of exact sequences of k-modules

0 ! A˝R k ! B ˝R k ! .B ˝R k/Œu�

0 ! A˝R Omt ! B ˝R Omt ! .B ˝R Omt /Œu� :

The first one is, in fact, equal to

0 ! A˝R R=mt ! Bt
't�id�! Bt Œu� ;

where 't is defined by ıt in the same way as ' by ı. Hence Ker ıt D A ˝R R=

mt D At . ut
Let X D Spec A and let p W X ! T be the morphism induced by the inclusion

R ,! A. Thus f W Y ! T splits as

f W Y q�! X
p�! T ;

where q is the quotient morphism by the inducedGa-action on Y .

Claim 2. Suppose that ıt ¤ 0 for every t 2 T . Then X is a smooth surface with
A1-bundle structure over T .
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Proof. Note that R is a Dedekind domain and A is an integral domain. Hence p is a
flat morphism. Since f is surjective, p is also surjective. Hence p is a faithfully flat
morphism. Further, by Claim 1, Xt D Spec .A ˝R R=mt / is equal to Spec At for
every t , which is isomorphic to A1. In fact, the kernel of a nontrivial locally nilpotent
derivation on a polynomial ring of dimension 2 is a polynomial ring of dimension 1.
The generic fiber of p is geometrically integral by Lemma 3.11. Hence, by [14,
Theorem 2], X is an A1-bundle over T . In particular,X is smooth. ut

Let K D k.T / be the function field of T . The generic fiber XK D X �T SpecK
is geometrically integral as shown in the above proof of Claim 2.

Claim 3. The generic fiber YK D Y �T SpecK is isomorphic to A2K .

Proof. We consider qK W YK ! XK , whereXK Š A
1
K . We prove the following two

assertions.

(1) For every closed point x of XK , the fiber YK �XK Spec K.x/ is isomorphic to
A1K.x/.

(2) The generic fiber of qK is geometrically integral.

Note that K.x/ is a finite algebraic extension of K . Let T 0 be the normalization
of T in K 0 WD K.x/. We consider Y 0 WD Y �T T

0 instead of Y . Then the Ga-action
on Y lifts to Y 0 and the quotient variety isX 0 D X �T T

0. Indeed, the normalization
R0 ofR inK 0 is the coordinate ring of T 0 and is a flat R-module. Then the sequence
of R0-modules

0 ! A˝R R
0 ! B ˝R R

0 '0�id�! .B ˝R R
0/Œu�

is exact, where ' 0 D ' ˝R R
0. Hence qK0 W Y 0

K0 ! X 0
K0 , which is the base

change of qK with respect to the field extension K 0=K , is the quotient morphism
by the Ga-action on Y 0

K0 induced by ı. Since X 0
K0 D X �T Spec K 0, there exists a

K 0-rational point x0 on X 0
K0 such that x is the image of x0 by the projectionX 0

K0 !
XK . If the fiber of qK0 over x0, i.e., Y 0

K0 �X 0

K0

.SpecK 0; x0/, is isomorphic to A
1
K0 , then

YK�XK SpecK 0 is isomorphic to A1
K0 because Y 0

K0 �X 0

K0

SpecK 0 D YK�XK SpecK 0.
Thus we may assume that x is a K-rational point. Let C be the closure of x in X .
Then C is a cross-section of p W X ! T . Let Z WD Y �X C . Then qC W Z ! C is
a faithfully flat morphism such that the fiber q�1

C .w/ is isomorphic to A1 for every
closed point w 2 C . In fact, q�1

C .w/ is the fiber of Yt ! Xt over the point w 2 C ,
where t D p.w/; Yt Š A2; Xt Š A1 and Xt D Yt==Ga. By Lemma 3.11 (which is
extended to a non-closed field K), the generic fiber of qC is geometrically integral,
and the generic fiber of qC , which is YK �XK Spec K.x/, is isomorphic to A1

K0 by
[14, Theorem 2]. This proves the first assertion.

The generic point of XK corresponds to the quotient field L WD Q.A/. Then it
suffices to show that B ˝A Q.A/ is geometrically integral overQ.A/. Meanwhile,
B ˝A Q.A/ has a locally nilpotent derivation ı ˝A Q.A/ such that Ker .ı ˝A

Q.A// D Q.A/. Hence B ˝A Q.A/ is a polynomial ring Q.A/Œu� in one variable
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overQ.A/ because ı˝AQ.A/ has a slice. So, B˝AQ.A/ is geometrically integral
overQ.A/. Now, by [15, Theorem], YK is an A1-bundle overXK Š A1K . Hence YK
is isomorphic to A2K . We have to replace T by an open set T n F , where F D ft 2
T j ıt D 0g. This completes the proof of Theorem 3.10. ut

We can prove Theorem 3.10 in a more geometric way by making use of a theorem
of Ramanujam–Morrow on the boundary divisor of a minimal normal completion
of the affine plane [25, 27]. The proof given below is explained in more precise and
explicit terms in [16, Lemma 3.2]. In particular, the step to show that Y K Š P

2
K and

YK Š A
2
K is due to [loc. cit.].

The second proof of Theorem 3.10. Let f W Y ! T be as in Theorem 3.10.
Let Y be a relative completion such that Y is smooth and f extends to a smooth
projective morphism f W Y ! T with the conditions in Lemma 3.2 being satisfied
together with S WD Y n Y . To obtain this setting, we may have to shrink T to a
smaller open set of T . As in the first proof and the proof of Lemma 3.2, we can
apply an étale finite base change T 0 ! T by which the intersection Si \ Y t is
irreducible for every irreducible component Si of S and every t 2 T . In particular,
we assume that Y t is a smooth normal completion of Yt for every t 2 T , where Yt is

isomorphic to A2. Fix one such completed fiber, say Y 0 D f
�1
.t0/, and consider the

reduced effective divisor Y 0 nY0 with Y0 D f �1.t0/ Š A2. Namely, .Y; Y ; S; f ; t0/
is a log deformation of .Y0; Y 0;D0/. If the dual graph of this divisor is not linear,
then it contains a .�1/-curve meeting at most two other components of D0 by a
result of Ramanujam [27]. By (4) of Lemma 3.1, such a .�1/-curve deforms along
the fibers of f and we get an irreducible component, say S1, of S D Pr

iD0 Si
which can be contracted. Repeating this argument, we can assume that all the dual
graphs for Y t n Yt , as t varies on the set of closed points of T , are linear chains of
smooth rational curves. By [25], at least one of these curves is a .0/-curve. Fix such
a .0/-curve C1 in Y 0 n Y0. Then C1 deforms along the fibers of f and forms an
irreducible component, say S1, of S by abuse of the notations. By the argument in
the proof of Lemma 3.2, ifC2 is a component of Y 0nY0 meetingC1, it deforms along
the fibers of f on an irreducible component, say S2, of S . Repeating this argument,
we know that all irreducible components of Y 0 n Y0 extend along the fibers of f to
form the irreducible components of S and that the dual graphs of Y t n Yt are the
same for every t 2 T . Now let K be the function field of T over k. We consider
the generic fibers Y K and YK of f and f . Then the dual graph of Y K n YK is
the same linear chain of smooth rational curves as the closed fibers Y t n Yt . Write
Y 0nY0 D Pr

iD1 Ci . If Ci andCj meet for i ¤ j , then the intersection pointCi \Cj
moves on the intersection curve Si 	 Sj . Since any minimal normal completion of
A2 can be brought to P2 by blowing ups and downs with centers on the boundary
divisor, we can blow up simultaneously the intersection curves and blow down the
proper transforms of the Si according to the blowing ups and downs on Y 0. Here
we note that the beginning center of blowing up is a point on a .0/-curve C1. In this
case, we choose a suitable cross-section on the irreducible component S1 which is
a P1-bundle in the Zariski topology because dimT D 1. Note that if T is irrational,
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then the chosen cross-section may meet the intersection curves on S1 with other
components of S . Then we shrink T so that the cross-section does not meet the
intersection curves. If T is rational, S1 is a trivial P1-bundle, hence we do not need
the procedure of shrinking T . Thus we may assume that, for every t 2 T , Y t is
isomorphic to P2 and Y t n Yt is a single curve Ct with .Ct /2 D 1. This implies that
Y K Š P2K and YK Š A2K . ut

In connection with Theorem 3.10, we can pose the following:

Problem 3.13. Let K be a field of characteristic zero and let X be a smooth affine
surface defined over K . Suppose that X ˝K K has an A1-fibration of affine type,
where K is an algebraic closure of K . Does X then have an A1-fibration of affine
type?

If we consider an A
1-fibration of complete type, an example of

Dubouloz–Kishimoto gives a counterexample to a similar problem for the complete
type (see Theorem 6.1). In view of Example 3.6 and Theorem 3.8, we need perhaps
some condition for a positive answer in the case of affine type which guarantees the
absence of monodromy of a cross-section of a given A

1-fibration.

4 Topological Arguments Instead of Hilbert Schemes

In this section we will briefly indicate topological proofs of some of the results in
Sect. 3. The use of topological arguments would make the cumbersome geometric
arguments more transparent for the people who do not appreciate the heavy
machinery like Hilbert scheme.

We will use the following basic theorem due to Ehresmann [30, Chapter V,
Proposition 6.4].

Theorem 4.1. Let M be a connected differentiable manifold, S a closed subman-
ifold, f W M ! N a proper differentiable map such that the tangent maps
corresponding to f and f jS W S ! N are surjective at any point in M and S .
Then f jMnS W M n S ! N is a locally trivial fiber bundle with respect to the
base N .

Note that the normal bundle of any fiber of f is trivial. We can give a proof
of Ehresmann’s theorem using this observation, and the well-known result from
differential topology that given a compact submanifold S of a C1 manifoldX there
are arbitrarily small tubular neighborhoods of S in X which are diffeomorphic to
neighborhoods of S in the total space of normal bundle of S in X [1, Chapter II,
Theorem 11.14].

Now let f W Y ! T be a smooth projective morphism from a smooth algebraic

threefold onto a smooth algebraic curve T . Let Y t D f
�1
.t/ be the fiber over t 2 T .

Let S be a simple normal crossing divisor on Y such that Dt WD S \ Y t is a simple
normal crossing divisor for each t 2 T and Yt WD Y t nDt is affine for each t .
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We can assume that f W Y ! T has the property that the tangent map is
surjective at each point. It follows from Ehresmann’s theorem that all the surfaces Y t
are mutually diffeomorphic. In particular, they have the same topological invariants
like the fundamental group �1 and the Betti number bi . By shrinking T if necessary,
we will assume that the restricted map f W Si ! T is smooth for each i . For fixed
i and t0 the intersection Si \ Y t0 is a disjoint union of smooth, compact, irreducible
curves. Let Ct0;i be one of these irreducible curves. Then for each t which is close
to t0, there is an irreducible curve Ct;i in Si \Y t and suitable tubular neighborhoods
of Ct0;i ; Ct;i in Y t0 ; Y t , respectively, are diffeomorphic by Ehresmann’s theorem.
This implies that C2

t0;i
in Y t0 and C2

t;i in Y t are equal. This proves that the weighted
dual graphs of the curvesDt in Y t are the same for each t .

Recall that if X is a smooth projective surface with a smooth rational curve C �
X such that C2 D 0 then C is a fiber of a P1-fibration on X . If the irregularity
q.X/ > 0, then the Albanese morphism X ! Alb.X/ gives a P1-fibration on
X with C as a fiber. By the above discussion the fiber surfaces Y t have the same
irregularity.

Suppose that Y 0 has an A1-fibration of affine type f W Y0 ! B . If f W Y 0 ! B

is an extension of f to a smooth completion of Y0 then, after simultaneous blowing
ups and downs along the fibers of f , we may assume thatD0 WD Y 0 nY0 contains at
least one .0/-curve which is a tip, i.e., the end component of a maximal twig ofD0.
Since Dt and D0 have the same weighted dual graphs Dt also contains a .0/-curve
which is a tip of Dt . Hence, Yt also has an A1-fibration of affine type. This proves
the assertion (2) in Lemma 2.2.

We can also shorten the part of showing the invariance of the boundary weighted
graphs in the second proof of Theorem 3.10. Suppose now that f W Y ! T is
a fibration on a smooth affine threefold Y onto a smooth curve T such that every
scheme-theoretic fiber of f is isomorphic to A2. We can embed Y in a smooth
projective threefold Y such that f extends to a morphism f W Y ! T . By shrinking
T we can assume that f is smooth, each irreducible componentSi of Y nY intersects
each Y t transversally, etc. By the above discussions, eachDt WD Y tnYt has the same
weighted dual graph. Since Yt is isomorphic to A2, we can argue as in the second
proof of Theorem 3.10 using the result of Ramanujam–Morrow to conclude that f
is a trivial A2-bundle on a nonempty Zariski-open subset of T . This observation
applies also to the proof of Theorem 5.6.

5 Deformations of ML0 Surfaces

For i D 0; 1; 2, an MLi surface is by definition a smooth affine surface X such
that the Makar-Limanov invariant ML.X/ has transcendence degree i over k [10].
In this section, we assume that the ground field k is the complex field C. Let
F D .Y; Y ; S; f ; t0/ be a family satisfying the conditions of Lemma 3.2. Let
D0 D S \ Y 0.
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Lemma 5.1. Let F D .Y; Y ; S; f ; t0/ be a log deformation of .Y0; Y 0;D0/.
Assume that D0 is a tree of smooth rational curves satisfying one of the following
conditions.

(i) D0 contains an irreducible component C1 such that .C 2
1 / � 0.

(ii) D0 contains a .�1/ curve which meets more than two other components ofD0.

Then the following assertions hold after changing T by an étale finite covering of an
open set of T if necessary.

(1) Every irreducible component of D0 deforms along the fibers of f . Namely,
if D0 D Pr

iD1 Ci is the irreducible decomposition, then, for every 1 � i � r ,
there exists an irreducible component Si of S such that f jSi W Si ! T has the
fiber .f jSi /�1.t0/ D Ci . Furthermore, S D Pr

iD1 Si .
(2) For t 2 T , let Ci;t D .f jSi /�1.t/. Then Dt D Pr

iD1 Ci;t and Dt has the same
weighted graph on Y t as D0 does on Y 0.

(3) For every i , f jSi W Si ! T is a trivial P1-bundle over T .

Proof. By a suitable étale finite base change of T , we may assume that Si \ Y 0 is
irreducible for every irreducible component Si of S . Then the argument is analytic
locally almost the same as in the proof for the assertion (2) of Lemma 3.2. Consider
the deformation of C1 along the fibers of f , which moves along the fibers because
.C 2

1 / � �1. Then the components of D0 which are adjacent to C1 also move along
the fibers of f . Once these components of D0 move, then the components adjacent
to these components move along the fibers of f . Since D0 is connected because
Y0 is affine, all the components of D0 move along the fibers of f . If S contains an
irreducible component which does not intersect Y 0, it is a fiber component of f .
Then we remove the fiber by shrinking T . This proves the assertion (1).

Let S D Pr
iD1 Si be the irreducible decomposition of S . As shown in (1), Si \

Y 0 ¤ ; for every i . Then Si \ Y t ¤ ; as well by the argument in the proof of
Lemma 3.2.

Note that ..Si 	 Y t /2/Y t D .S2i 	 Y t / D .S2i 	 Y 0/ D ..Si 	 Y 0/2/Y 0 because Y t is
algebraically equivalent to Y 0. Hence D0 and Dt have the same dual graphs. ut

In order to prove the following result, we use Ehresmann’s theorem, which is
Theorem 4.1.

Lemma 5.2. Let F D .Y; Y ; S; f ; t0/ be a log deformation of .Y0; Y 0;D0/ which
satisfies the same conditions as in Lemma 5.1. Assume further that pg.Y 0/ D
q.Y 0/ D 0. Then the following assertions hold:

(1) Pic .Yt / Š Pic .Y0/ for every t 2 T .
(2) �.Yt ;O�

Yt
/ Š �.Y0;O�

Y0
/ for every t 2 T .

Proof. Since pg and q are deformation invariants, we have pg.Y t / D q.Y t / D 0

for every t 2 T . The exact sequence
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0 �! Z �! OY t

exp�! O�
Y t

�! 0

induces an exact sequence

H1.Y t ;OY t
/ ! H1.Y t ;O�

Yt
/ ! H2.Y t IZ/ ! H2.Y t ;OY t

/

Since pg.Y t / D q.Y t / D 0, we have an isomorphism

H1.Y t ;O�
Y t
/ Š H2.Y t IZ/ :

Now consider the canonical homomorphism t W H2.Dt IZ/ ! H2.Y t IZ/, where
H2.Y t IZ/ Š H2.Y t IZ/ D Pic .Y t / by the Poincaré duality. Then Coim t D
Pic .Yt / and Ker t D �.Yt ;O�

Yt
/=k�.

Let N be a nice tubular neighborhood of S with boundary in Y . The smooth
morphism f W Y ! T together with its restriction on the .N; @N / gives a proper
differential mapping which is surjective and submersive. By Theorem 4.1, it is
differentiably a locally trivial fibration. Namely, there exists a small disc U of t0
in T and a diffeomorphism '0 W Y 0 � U

��! .f /�1.U / such that its restriction
induces a diffeomorphism

'0 W .N \ Y 0/ � U ��! .f jN /�1.U / :

For t 2 U , noting that U is contractible and hence H2.Y 0 � U IZ/ D H2.Y 0IZ/
andH2..N \ Y 0/�U IZ/ D H2.N \ Y 0IZ/, the inclusions Y t ,! .f /�1.U / and
N \ Y 0 ,! .f jN /�1.U / induces compatible isomorphisms

pt W H2.Y t IZ/ ! H2..f /
�1.U /IZ/ .'

�1/��! H2.Y 0 � U IZ/ D H2.Y 0IZ/

and its restriction qt W H2.N \ Y t IZ/ ��! H2.N \ Y 0IZ/. Since S and hence
Dt are strong deformation retracts of N and N \ Y t respectively, the isomorphism

qt induces an isomorphism rt W H2.Dt IZ/ ��! H2.D0IZ/ such that the following
diagram

H2.Dt IZ/ t�����! H2.Y t IZ/
rt

??y
??ypt

H2.D0IZ/ �����!
0

H2.Y 0IZ/

This implies that Pic .Yt / Š Pic .Y0/ and �.Yt ;O�
Yt
/ Š �.Y0;O�

Y0
/. If t is an

arbitrary point of T , we choose a finite sequence of points ft0; t1; : : : ; tn D tg such
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that ti is in a small disc Ui�1 around ti�1 .1 � i � n/ for which we can apply the
above argument. ut
Remark 5.3. By a result of Neumann [26, Theorem 5.1], if X is a normal affine
surface, D an SNC divisor at infinity of X which does not contain any .�1/-curve
meeting at least three other components of D and all whose maximal twigs are
smooth rational curves with self-intersections � �2, then the boundary 3-manifold
of a nice tubular neighborhoodN ofD determines the dual graph ofD. If we use the
local differentiable triviality of a tubular neighborhood N , this result of Neumann
shows that the weighted dual graph of Dt is deformation invariant.

According to [10, Lemmas 1.2 and 1.4], we have the following property and
characterization of ML0-surface.

Lemma 5.4. Let X be a smooth affine surface and let V be a minimal normal
completion of X . Then the following assertions hold:

(1) X is an ML0-surface if and only if �.X;O�
X/ D k� and the dual graph of the

boundary divisor D WD V � X is a linear chain of smooth rational curves.
(2) If X is an ML0-surface, X has an A1-fibration, and any A1-fibration � W X !

B has base curve either B Š P1 or B Š A1. If B Š P1, � has at most two
multiple fibers, and if B Š A1, it has at most one multiple fiber.

The following result is a direct consequence of the above lemmas.

Theorem 5.5. Let F D .Y; Y ; S; f ; t0/ be a log deformation of .Y0; Y 0;D0/,
where Y0 is an ML0-surface. Then Yt is an ML0-surface for every t 2 T .

Proof. If S\Y t contains a .�1/ curve, then it deforms along the fibers of f after an
étale finite base change of T , and these .�1/ curves are contracted simultaneously
by Lemma 3.1. Hence we may assume that Y t is a minimal normal completion of Yt
for every t 2 T . By Lemma 5.4, D0 WD S \ Y 0 is a linear chain of smooth rational
curves. Hence Dt WD S \ Y t is also a linear chain of smooth rational curves. By
Lemma 5.2, �.Yt ;O�

Yt
/ D k� for every t 2 T because �.Y0;O�

Y0
/ D k�. So, Yt is

an ML0-surface by Lemma 5.4. ut
A smooth affine surface X is, by definition, an affine pseudo-plane if it has an

A1-fibration of affine type p W X ! A1 admitting at most one multiple fiber of
the form mA1 as a singular fiber (see [24] for the definition and relevant results).
An affine pseudo-plane is a Q-homology plane, its Picard group is a cyclic group
Z=mZ, and there are no non-constant invertible elements. An ML0-surface is an
affine pseudo-plane if the Picard number is zero.

If X is a minimal normal completion of an affine pseudo-planeX , the boundary
divisor D D X � X is a tree of smooth rational curves, which is not necessarily
a linear chain. By blowing-ups and blowing-downs with centers on the boundary
divisor D, we can make the completion X satisfy the following conditions [24,
Lemma 1.7].
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(i) There is a P1-fibration p W X ! P1 which extends the A1-fibration
p W X ! A1.

(ii) The weighted dual graph of D is

.0/ .0/ A

` M

(iii) There is a .�1/ curve F0 (called feather) such that F0\X Š A1 and the union
F0 A is contractible to a smooth rational curve meeting the image of the
componentM .

Note that X is an ML0-surface if and only if A is a linear chain. We then call X an
affine pseudo-plane of ML0-type.

If we are given a log deformation .Y; Y ; S; f ; t0/ of the triple .Y 0;D0; Y0/,
it follows by Ehresmann’s fibration theorem that pg and the irregularity q of the
fiber Y t is independent of t . Furthermore, by Lemma 3.2, Yt has an A1-fibration
if Y0 has an A1-fibration. So, we can expect that Yt is an affine pseudo-plane if so
is Y0. Indeed, we have the following result.

Theorem 5.6. Let F D .Y; Y ; S; f ; t0/ be a log deformation of .Y 0;D0; Y0/.
Assume that Y0 is an affine pseudo-plane. Then the following assertions hold:

(1) Yt is an affine pseudo-plane for every point t 2 T .
(2) Assume that Y0 is an affine pseudo-plane of ML0-type. Assume further that the

boundary divisor D0 in Y 0 has the same weighted dual graph as above. Then
f W Y ! T is a trivial bundle with fiber Y0 after shrinking T if necessary.

Proof. (1) We have only to show that Yt is an affine pseudo-plane for a small
deformation of Y0. After replacing T by an étale finite covering, we may assume
that Y t is a minimal normal completion of Yt for every t 2 T . Then, by
Lemma 5.1, the boundary divisor Dt D S \ Y t has the same weighted dual
graph as shown above for D0. Hence Yt has an A1-fibration of affine type. By
Lemma 5.2, Pic .Yt / Š Pic .Y0/ which is a finite cyclic group. This implies that
Yt is an affine pseudo-plane.

(2) Consider the completion Y 0 of Y0. We may assume that Y 0 is a minimal normal
completion of Y0. In fact, a .�1/-curve contained in the boundary divisor D0

which meets at most two other components of D0 deforms to the nearby fibers
and contracted simultaneously over the same T by Lemma 3.5(2). Note that
every fiber Yt has an A1-fibration of affine type by Lemma 3.2. As in the
proof of Lemma 3.2(2), by performing simultaneous (i.e., along the fibers of
f ) blowing-ups and blowing-downs on the boundary S , we may assume that
Y0 has an A1-fibration which extends to a P1-fibration on Y 0 and that the
boundary divisor D0 has the weighted dual graph `–M –A as specified in the
condition (ii) above, where A is a linear chain by the hypothesis. To perform a
simultaneous blowing-up, we may have to choose as the center a cross-section
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on an irreducible component Si which is a P1-bundle over T . If such a
cross-section happens to intersect the curve Si \ Sj with another component
Sj , we shrink T to avoid this intersection (see the remark in the second proof
of Theorem 3.10). Note that the interior Y (more precisely, the inverse image of
f of the shrunken T ) is not affected under these operations. Then the .0/ curve
` defines a P1-fibration ' W Y ! V (see Lemma 3.5(1)). In particular, ` moves
in an irreducible component, say S�1, of S . The .0/ curve M moves along
the fibers of f in an irreducible component, say S0, of S . By Lemma 5.1, the
curves in A move along the fibers of f and fill out the irreducible components
S1; : : : ; Sr of S . Hence S D S�1 [ S0 [ S1 [ 	 	 	 [ Sr andDt D S 	 Y t has the
same weighted dual graph as D0.

Now consider a .�1/ curve F0 on Y 0. By Lemma 3.1, F0 moves along
the fibers of f and fills out a smooth irreducible divisor F which meets
transversally an irreducible component Si .1 � i � r/. In fact, the feather
F0 is unique on Y0 and .Si 	 F 	 Y t / D .Si 	 F 	 Y 0/ D 1. Let S1 be the
component of S meeting S0. Let Ft D F \ Y t and Sj;t D Sj \ Y t for
every t 2 T . Then Ft C Pr

jD2 Sj;t is contractible to a smooth point Pt lying
on S1;t . After performing simultaneous elementary transformations on the fiber
` which is the fiber at infinity of the A1-fibration of the affine pseudo-plane
Yt , we may assume that Pt is the intersection point S0;t \ S1;t . By applying
Lemma 3.5(2) repeatedly, we can contract F and the components S2; : : : ; Sr
simultaneously. Let Z be the threefold obtained from Y by these contractions.
Then Z has a P1-fibration  W Z ! V and the image of S0 is a cross-section.

Let g D � 	  W Z  �! V
��! T (see Lemma 3.1(3) for the notations). For

every t 2 T , Zt WD g�1.t/ is a minimal P1-bundle with a cross-section S0;t .
Since .S0;t /2 D 0, Zt is isomorphic to P1 � P1. Then Z is a trivial P1 � P1-
bundle over T after shrinking T if necessary. In fact, Z with the images of S0
and S�1 removed is a deformation of A2, which is locally trivial in the Zariski
topology by Theorem 3.10. We may assume that  W Z ! V is the projection
of P1 � P1 � T onto the second and the third factors. Choose a section S

0
0 of  

which is disjoint from the image S0 of S0. Then there is a nontrivialGm-action
on Z along the fibers of  which has S0 and S

0
0 as the fixed point locus.

Now reverse the contractions Y ! Z. The center of the first simultaneous
blowing-up with center S0\S1 and the centers of the consecutive simultaneous
blowing-ups except for the blowing-up which produces the component F are
Gm-fixed because the blowing-ups are fiberwise sub-divisional. Only the center
Qt of the last blowing-up on Y t is non-subdivisional. Let

' W Y ��! Y 1
�1�! Z

be the factorization of ' where � is the last non-subdivisional blowing-up. By
the construction, the natural T -morphism f 1 W Y 1 ! T is a trivial fibration

with fiber .Y 1/0 D f
�1
1 .t0/. Then there exists an element f�tgt2T of Gm.T /
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such that �t .Qt0/ D Qt for every t 2 T after shrinking T if necessary.
Here note that the Gm-action is nontrivial on the component with the point
Qt thereon, for otherwise the Gm-action is trivial from the beginning. Then
these f�tgt2T extend to a T -isomorphism Q� W Y 0 � T ! Y , which induces a
T -isomorphism Y0 � T ! Y . Hence Y is trivial.

ut

6 Deformations of A1-Fibrations of Complete Type

In the setting of Theorem 3.8, if the A1-fibration of a general fiber Yt is of complete
type, we do not have the same conclusion. This case is treated in a recent work of
Dubouloz and Kishimoto [3]. We consider this case by taking the same example of
cubic surfaces in P3 and explain how it is affine-uniruled.

Taking a cubic hypersurface as an example, we first observe the behavior of the

log Kodaira dimension for a flat family of smooth affine surfaces. Let
_
P3 be the dual

projective 3-space whose points correspond to the hyperplanes of P3. We denote it
by T . Let S be a smooth cubic hypersurface in P3 and let W D S � T which is a
codimension one subvariety of P3�T . Let H be the universal hyperplane in P3�T ,
which is defined by �0X0 C �1X1 C �2X2 C �3X3 D 0, where .X0;X1;X2;X3/ and
.�0; �1; �2; �3/ are, respectively, the homogeneous coordinates of P3 and T . Let D
be the intersection of W and H in P3 � T . Let � W W ! T be the projection
and let �D W D ! T be the restriction of � onto D. Then � and �D are the
flat morphism. For a closed point t 2 T , Wt D ��1.t/ is identified with S and
Dt D ��1

D .t/ is the hyperplane section S \ Ht in P3, where Ht is the hyperplane
	0X0 C 	1X1 C 	2X2 C 	3X3 D 0 with t D .	0; 	1; 	2; 	3/. Let X D W n D and
p W X ! T be the restriction of � onto X . Then Xt D p�1.t/ is an affine surface
S n .S \ Ht /.

Since S is smooth, the following types of S \ Ht are possible. In the following,
F D 0 denotes the defining equation of S andH D 0 does the equation for Ht .

(1) A smooth irreducible plane curve of degree 3.
(2) An irreducible nodal curve, e.g., F D X0.X

2
1 � X2

2 / � X3
2 C X2

0X3 CX3
3 and

H D X3.
(3) An irreducible cuspidal curve, e.g., F D X0X

2
1 �X3

2 CX3.X2
0 CX2

1 CX2
2 CX2

3 /

and H D X3.
(4) An irreducible conic and a line which meets in two points transversally or in

one point with multiplicity two. In fact, let ` and D be, respectively, a line and
an irreducible conic in P2 meeting in two points Q1;Q2, where Q1 is possibly
equal to Q2. Let C be a smooth cubic meeting ` in three points Pi .1 � i � 3/

and D in six points Pi .4 � i � 9/, where the points Pi are all distinct and
different from Q1;Q2. Choose two points P1; P2 on ` and four points Pi .4 �
i � 7/ on D. Let � W S ! P2 be the blowing-up of these six points. Let `0;D0
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and C 0 be the proper transforms of `;D and C 0. Then S is a cubic hypersurface
in P3 and KS � �C 0. Since `0 CD0 � C 0, it is a hyperplane section of S with
respect to the embeddingˆjC 0j W S ,! P3.

(5) Three lines which are either meeting in one point or not. Let `i .1 � i � 3/

be the lines. Let Q1 D `1 \ `3 and Q2 D `2 \ `3. In the setting of (4) above,
we consider ` D `3 and D D `1 C `2. So, if Q1 D Q2, three lines meet in
one point. Choose a smooth cubic C meeting three lines in nine distinct points
Pi .1 � i � 9/ other than Q1;Q2. Choose six points from the Pi , two points
lying on each line. Then consider the blowing-up in these six points. The rest
of the construction is the same as above.

Note that if S is smooth S \ Ht cannot have a non-reduced component. In fact, the
non-reduced component is a line in Ht . Hence we may write the defining equation
of S as

F D X2
0 .aX1 CX0/CX3G.X0;X1;X2;X3/ D 0;

where G D G.X0;X1;X2;X3/ is a quadratic homogeneous polynomial and a 2 k.
We understand that a D 0 if the non-reduced component has multiplicity three. By
the Jacobian criterion, it follows that S has singularities at the points G D X0 D
X3 D 0.

The affine surface Xt has log Kodaira dimension 0 in the cases (1), (2), (4) with
the conic and the line meeting in two distinct points and (5) with non-confluent
three lines, and �1 in the rest of the cases. Although p W H ! T is a flat family
of affine surfaces, the log Kodaira dimension drops to �1 exactly at the points
t 2 T where the boundary divisor S \ Ht is not a divisor with normal crossings.
This accords with a result of Kawamata concerning the invariance of log Kodaira
dimension under deformations (cf. [18]).

If �.Xt / D �1, then Xt has an A1-fibration. We note that if �.Xt / D 0 then
Xt has an A1�-fibration. In fact, we consider the case where the boundary divisor
Dt is a smooth cubic curve. Then S is obtained from P2 by blowing up six points
Pi .1 � i � 6/ on a smooth cubic curve C . Choose four points P1; P2; P3; P4 and
let ƒ be a linear pencil of conics passing through these four points. Let � W S ! P2

be the blowing-up of six points Pi .1 � i � 6/. The proper transform � 0ƒ defines a
P1-fibration f W S ! P1 for which the proper transform C 0 D � 0.C / is a 2-section.
Since Xt is isomorphic to S n C 0, Xt has an A1�-fibration.

Looking for an A1-fibration in the case �.Xt / D �1 is not an easy task.
Consider, for example, the case where X D Xt is obtained as S n .Q [ `/, where
Q is a smooth conic and ` is a line in P2 which meet in one point with multiplicity
two. As explained in the above, such an X is obtained from P2 by blowing up six
points P1; : : : ; P6 such that P1; P2 lie on a line Q̀ and P3; P4; P5; P6 are points on
a conic QQ. Then the proper transforms on S of Q̀; QQ are `;Q. Consider the linear
pencil Qƒ on P2 spanned by 2 Q̀ and QQ. Then a general member of ƒ is a smooth
conic meeting QQ in one point QQ\ Q̀ with multiplicity four. The proper transformƒ

of Qƒ on S defines an A1-fibration on X .
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The following result of Dubouloz–Kishimoto except for the assertion (4) was
orally communicated to one of the authors (see [3]).

Theorem 6.1. Let S be a cubic hypersurface in P3 with a hyperplane section S\H
which consists of a line and a conic meeting in one point with multiplicity two. Let
Y D P3nS which is a smooth affine threefold. Then the following assertions hold:

(1) �.Y / D �1.
(2) Let f W Y ! A

1 be a fibration induced by the linear pencil on P
3 spanned by S

and 3H . Then a general fiber Yt of f is a cubic hypersurface St minus Q [ `,
whereQ is a conic and ` is a line which meet in one point with multiplicity two.
Hence �.Yt / D �1 and Yt has an A

1-fibration.
(3) Y has no A

1-fibration.
(4) There is a finite covering T 0 of A1 such that the normalization of Y �A1 T

0 has
an A

1-fibration.

Proof. (1) Since KP3 C S � �4H C 3H D �H , it follows that �.Y / D �1.
(2) The pencil spanned by S and 3H has base locusQ[ ` and its general member,

say St , is a cubic hypersurface containing Q [ ` as a hyperplane section. It is
clear that St n .Q[ `/ D Yt . Hence, as explained above, Yt has an A1-fibration.

(3) Let 	 W QS ! P3 be the cyclic triple covering of P3 ramified totally over the cubic
hypersurface S . Then QS is a cubic hypersurface in P4 and 	�.S/ D 3 QH , where
QH is a hyperplane in P4. The restriction of 	 onto Z WD QS n QS \ QH induces

a finite étale covering 	Z W Z ! Y . Suppose that Y has an A1-fibration ' W
Y ! T . Then T is a rational surface. Since 	Z is finite étale, this A1-fibration
' lifts up to an A1-fibration Q' W Z ! QT . By [2], QS is unirational and irrational.
Hence QT is a rational surface. This implies that Z is a rational threefold. This is
a contradiction because QS is irrational.

(4) There is an open set T of A1 such that the restriction of f onto f �1.T / is a
smooth morphism onto T . By abuse of the notations, we denote f �1.T / by
Y anew and the restriction of f onto f �1.T / by f . Hence f W Y ! T is a
smooth morphism. Let K D k.t/ be the function field of T and let YK be the
generic fiber. Let K be an algebraic closure of K . Then YK WD YK ˝K K is
identified with SK n .Q [ `/, where SK is a cubic hypersurface in P3

K
defined

by FK D F0 C tX3
3 D 0. Here t is a coordinate of A1 and .X0;X1;X2;X3/ is

a system of homogeneous coordinates of P3 such that F0.X0;X1;X2;X3/ D 0

is the defining equation of the cubic hypersurface S and the hyperplane H is
defined by X3 D 0. Then YK is obtained from P2

K
by blowing up sixK-rational

points in general position (two points on the image of ` and four points on
the image of Q). As explained earlier, there is an A1-fibration on YK which
is obtained from conics on P2

K
belonging to the pencil spanned by Q and 2`.

This construction involves six points on P
2

K
to be blown up to obtain the cubic

hypersurface SK and four points (the point Q \ ` and its three infinitely near
points). Hence there exists a finite algebraic extensionK 0=K such that all these
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points are rational over K 0. Let T 0 be the normalization of T in K 0. Let Y 0 D
Y ˝K K

0. Then Y 0 has an A1-fibration.
ut

Based on the assertion (4) above, we propose the following conjecture.

Conjecture 6.2. Let f W Y ! T be a smooth morphism from a smooth affine
threefold Y onto a smooth affine curve T such that every closed fiber Yt has an
A1-fibration of complete type. Then there exists a finite covering T 0 of T such that
the normalization of Y �T T

0 has an A1-fibration.

Remark 6.3. The Conjecture 6.2 is true if Theorem 3.8 holds after an étale finite
base change of T in the case where the general fibers of f have A1-fibrations
of complete type. A main obstacle in trying to extend the proof in the case of
A1-fibrations of affine type is to show that, with the notations in the proof of
Theorem 3.8, the locus of base pointsPt of the linear pencilƒt on Y t with t varying
in an open neighborhood of t0 2 T (resp. the loci of infinitely near base points) is a
cross-section of the P1-bundle f jS1 W S1 ! T (resp. the exceptional P1-bundle).
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Remark on Deformations of Affine Surfaces
with A1-Fibrations

Takashi Kishimoto

Abstract The possible structure of singular fibers of an A1-fibration on a smooth
affine surface is well understood, in particular, any such fiber is a disjoint union
of affine lines (possibly with multiplicities). This paper lies in a three-dimensional
generalization of this fact, i.e., properties concerning a fiber component of a given
fibration f W X ! B from a smooth affine algebraic threefold X onto a smooth
algebraic curve B whose general fibers are affine surfaces admitting A1-fibrations.
The phenomena differ according to the type of A1-fibrations on general fibers of
f (namely, of affine type, or of complete type). More precisely, in case of affine
type, each irreducible component of every fiber of f W X ! B admits an effective
Ga-action provided Pic.X/ D .0/ with some additional conditions concerning a
compactification, whereas for the complete type, there exists an example in which a
special fiber of f W A3 ! A1 possesses no longer an A1-fibration.

MSC2010: 14R25, 14R20, 14D06, 14J30.

1 Introduction

1.1. All varieties treated in this chapter are defined over the field of complex
numbers C otherwise mentioned. An affine algebraic variety X is said to be affine
ruled if X possesses an A1-fibration f W X ! Y , where Y is an algebraic variety
of dim.Y / D dim.X/ � 1. This terminology is fitting to the geometric fact that an
affine ruled variety X contains an A1-cylinder, i.e., an open affine subset U 
 X of
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the form U Š Z � A1 with a suitable affine variety Z (cf. [18]). It is obvious that
an affine ruled affine curve is isomorphic to the affine line A1. Meanwhile, there
are infinitely many affine ruled smooth affine surfaces, hence it is not possible to
list all of such surfaces concretely. Nevertheless, there is fortunately a very useful
invariant, so-called log Kodaira dimension �, in order to characterize affine ruled
smooth affine surfaces (see [12, 13] for the definition of log Kodaira dimension).
More precisely, for a smooth affine surface Y , the following three conditions are
equivalent to each other (cf. [19, 25]):

1. �.Y / D �1,
2. Y admits an A1-fibration,
3. for a general point y 2 Y , there exists an algebraic curve Cy 
 Y passing

through y such that the normalization of Cy is isomorphic to A1. In other words,
there exists a Zariski dense subset of Y which is covered by images of the affine
line A1.

Suppose that Y is an affine ruled affine surface, and let f W Y ! B be an A1-
fibration, where B is a smooth algebraic curve. Then there exist two possibilities
about the type of f according to the base curve B as follows:

(a) B is an affine curve (in this case f is said to be of affine type),
(b) B is a projective curve (in this case f is said to be of complete type).

Remark 1.1. It is worthwhile to note that the difference of type of an A
1-fibration

f W Y ! B on an affine surface Y as above (i.e., of affine type or of complete type)
seems to be tiny geometrically, whereas from the viewpoint of the coordinate ring
it is crucial. In fact, in case of (a), it follows that f is realized as a quotient map
with respect to a suitable effective Ga-action on Y , which is in turn translated in
terms of a locally nilpotent derivation on the coordinate ring �.OY / of Y , which is
a purely algebraic object (cf. [10]). Meanwhile, in case of (b), f is never obtained
as a quotient map of an effective Ga-action on Y , so that we are obliged to consider
more geometrically in this case.

Remark 1.2. As an immediate consequence of a theorem of Abhyankar–Moh–
Suzuki (cf. [1, 26], see also [22, Chapter 2, *1]), every A1-fibration on the affine
plane A2 is of affine type. But, in general, the type of an A1-fibration (a) or (b) is
not intrinsic on a given smooth affine surface Y . For instance, let us consider the
complement Y WD .P1 � P1/n�, where � is a diagonal. For a given point Q 2 �,
let us denote by li the fiber of the ruling �i W P1 � P1 ! P1 passing through Q
.i D 1; 2/. Then the restriction of the rational map determined by the linear pencil
L spanned by � and l1 C l2 to Y yields an A1-fibration over the affine line A1:

ˆL jY W Y �! A
1;

hence ˆL jY is of affine type. On the other hand, the restrictions �i jY .i D 1; 2/

give rise to those of complete type.
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1.2. Assume that f W Y ! B is an A1-fibration on a smooth affine surface Y . The
structure of appearing singular fibers of f is well known (cf. [24]), namely, for both
cases of affine type and of complete type, a fiber f �.b/ .b 2 B/ is described as
follows:

f �.b/ D
X
i

mi li .mi = 1/;

where li Š A1 .8 i/ and li \ li D ; .i ¤ j /.

1.3. In consideration of the facts mentioned above in 1.1 and 1.2 about A1-
fibrations on smooth affine surfaces, we propose the following question:

Problem 1.3. Let X be a smooth affine algebraic variety of dim.X/ D n. Suppose
that X admits a morphism f W X ! B onto a smooth algebraic curve B whose
general fibers are affine ruled. Then what kinds of properties does each irreducible
component of a fiber of f possess? For example, is every component of its fiber also
affine ruled? Can f be factored by means of an A1-fibration, say f D h ı g W X !
Y ! B , where g is an A1-fibration over a normal variety Y of dim.Y / D n � 1 (if
necessary by shrinking the base curve B)?

1.4. As recalled in 1.2, Problem 1.3 holds true in case of n D 2. Meanwhile, even
in case of n D 3, the satisfactory answer to Problem 1.3 is not known so far. In
this chapter, we investigate mainly the case of n D 3 according to the type of A1-
fibrations of general fibers of f (i.e., being of affine type or of complete type),
separately, by paying attention to the result due to Gurjar, Masuda, Miyanishi (cf.
Theorem 1.4), and we obtain Theorems 1.6 and 1.8 below.

1.5. At first, we deal with the case in which general fibers possess A1-fibrations of
affine type. Before stating our results, we need to mention the following result due
to Gurjar, Masuda, and Miyanishi (cf. [11]), which plays an essential role to prove
Theorem 1.6.

Theorem 1.4 (cf. [11, Theorem 2.8]). Let f W X ! B be a morphism from a
smooth affine algebraic threefold X onto a smooth algebraic curve B such that a
general fiber of f is a smooth affine surface with an A1-fibration of affine type. Then
we have the following:

(1) After shrinking the base curve B if necessary, say B0 
 B , and after taking
an étale finite morphism QB0 ! B0, the resulting morphism from f on the fiber
product QX0 WD f �1.B0/ �B0

QB0, say Qf W QX0 ! QB0 is factored in such a way
that:

Qf D Qh ı Qg W QX0 Qg�! QY0
Qh�! QB0;

where Qg is an A1-fibration over a surface QY0.
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(2) If we suppose additionally that there exists a relative completion of f W X !
B , say f W X ! B , which satisfies the following conditions: (Notation: Let
� WD XnX , and for a point b 2 B , let us put Xb WD f

�
.b/, Xb WD f �.b/ and

�b WD � 	Xb .)

(i) .X;X;�; f ; 0/ with a fixed point 0 2 B is a family of logarithmic
deformations of the triple .X0;X0;�0/,

(ii) A given A1-fibration of affine type on a general fiber Xb is extended to a
P1-fibration on Xb , say 'b , and

(iii) A section of the P1-fibration '0 found in �0 has no monodromy in X ,

then after shrinking the base curve B if necessary, say 0 2 B0 
 B ,
the restricted morphism f jf �1.B0/ is factored by an A1-fibration (without the
necessity to take an étale finite morphism as in the assertion (1)).

Remark 1.5. As a special case of such a deformation f W X ! B , if a general fiber
of f is isomorphic to the affine plane A2, then there exists an open dense subset
B0 
 B such that the inverse image f �1.B0/ is isomorphic to the fiber product
f �1.B0/ Š B0�A2 (cf. [17]), in particular, for such an f , the factorization property
asked in Problem 1.3 holds true. By experience, such a factorization becomes to be
more subtle when the Picard group of a general fiber of f is bigger.

1.6. By making use of Theorem 1.4, we can obtain the following result:

Theorem 1.6. Let X be a smooth affine algebraic threefold with Pic.X/ D .0/,
and let f W X ! B be a morphism onto a smooth algebraic curve B such that
general fibers are equipped with A1-fibrations of affine type. Suppose that there
exists a relative completion f W X ! B of f which satisfies conditions (i)–(iii) in
(2) of Theorem 1.4. Then each irreducible component of every fiber of f is an affine
surface admitting an effective Ga-action, in particular, it possesses an A1-fibration
of affine type.

Remark 1.7. As stated in Theorem 1.4, if a morphism f W X ! B in question,
whose general fibers possess A1-fibrations of affine type, admits a relative com-
pletion as in Theorem 1.4 (2), then we have only to shrink the base curve B in
order to obtain a factorization of f by an A1-fibration. However, we need in general
to take a suitable étale finite covering of the base curve after shrinking without an
assumption about an existence of a relative completion. In fact, in [11, Example 2.6],
they construct an example in which we are obliged to take an étale finite covering
of degree two of the base to reach a decomposition by means of an A1-fibration.

1.7. In the case where a general fiber of f has an A1-fibration of complete type
only, the special fibers of f W X ! B behave often in a more complicated manner.
In fact, the following result (Theorem 1.8) asserts that the answer to Problem 1.3 is
negative in general even if X is isomorphic to the affine 3-space A3.

Theorem 1.8. Let f .x; y; z/ D x3 C y3 C z.z C 1/ 2 CŒx; y; z� and let us denote
by the same notation f the polynomial map:
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f W A
3 D Spec.CŒx; y; z�/ 3 .a; b; c/ 7! f .a; b; c/ 2 A

1 D Spec.CŒf �/;

defined by f .x; y; z/. Then we have the following:

(1) All fibers f �.˛/ of f except for f �.� 1
4
/ are smooth affine surfaces admitting

A1-fibrations of complete type only.
(2) The fiber f �.� 1

4
/ is an irreducible normal affine surface which is not affine

ruled.

Remark 1.9. As mentioned in [11] (see also [2]), the behavior of a deformation
of surfaces equipped with A1-fibrations of complete type only is more involved to
understand than those having A1-fibrations of affine type. For instance, let S 
 P3

be a smooth cubic hypersurface and let H 
 P3 be a hyperplane such that the
intersection H jS is either of the form (i) l C C or (ii) l1 C l2 C l3, where l and C
are a line and a smooth conic meeting at a point tangentially in case of (i), on the
other hand, l1, l2, and l3 are lines meeting at a point (an Eckardt point) in case of
(ii). Notice that for any smooth cubic surface S , we can find a suitable hyperplane
H satisfying (i) or (ii) (cf. [2]). In any case, the morphism from A3 Š P3nH
onto A1 obtained as the restriction of the rational map on P3 determined by the
linear pencil spanned by S and 3H yields a family of affine surfaces with A1-
fibrations of complete type only (cf. [2]). Note that the fibration in Theorem 1.8
is regarded as the special one realized as in the above-mentioned fashion in case
of (ii). The strange looking behavior of a deformation of surfaces of complete type
brings us something interesting, for instance, letting S 
 P3 be the closure of the
hypersurface VA3 .f / 
 A3 with f 2 CŒx; y; z� as in Theorem 1.8, the complement
P3n.S [ f �.�1=4// is covered by mutually disjoint affine lines, notwithstanding,
this complement admits neither an A1-fibration nor an effective Ga-action (cf.
Remark 4.1 and Proposition 4.2).

This chapter is organized in the following way. In Sect. 2, we shall yield several
examples of affine ruled smooth affine surfaces some of which admit only A1-
fibrations of complete type. Then we say about deformations of affine ruled surfaces
in consideration of Theorem 1.4 due to Gurjar, Masuda, and Miyanishi. Roughly
speaking, a given morphism f W X ! B from a smooth affine algebraic threefold
onto a smooth algebraic curve with general fibers possessing A1-fibrations of affine
type can be factored by means of an A1-fibration up to shrinking and taking an
étale finite morphism of the base curve B . However under the condition about an
existence of a relative completion f W X ! B of f as in Theorem 1.4 (2), we have
only to shrink the base B to reach a factorization of f by an A1-fibration. Then
it is not difficult to see the assertion of Theorem 1.6, which is done in Sect. 3. On
the other hand, we prove Theorem 1.8 in Sect. 4, in addition, we give the proof for
Proposition 4.2. In the final section (Sect. 5), we shall mention some remarks and
relevant problems.
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2 Preliminaries

2.1. In this section, we shall recall at first some typical examples of affine ruled
surfaces, some of which admit only A

1-fibrations of complete type, then we observe
a deformation f W X ! B of affine ruled smooth affine surfaces by taking works
[2, 11] (cf. Theorem 1.4) into account.

2.2. We begin with several examples of smooth affine surfaces admitting
A
1-fibrations of affine type or of complete type, respectively (see Sect. 1 for the

definition of being of affine type and of complete type). In fact, affine surfaces with
A
1-fibrations of affine type are more handy to treat compared with those having only

A
1-fibrations of complete type because such A

1-fibrations are obtained as quotients
of effective Ga-actions (cf. [10]), which is in turn translated in terms of locally
nilpotent derivations. For instance, the following surfaces are typical examples that
admit A1-fibrations of affine type.

Example 2.1. (1) It is well known that any A1-fibration on the affine plane A2

is of affine type with the affine line A1 as the base curve. Furthermore, all
closed fibers are scheme-theoretically isomorphic to A1 (cf. [1, 26], see also
[22, Chapter II]).

(2) Let Y be a Q-homology plane with log Kodaira dimension � D �1, where we
recall that Y is said to be a Q-homology plane, by definition, ifHi.Y IQ/ D .0/

.8 i > 0/. It is known that an A1-fibrationg W Y ! B on such an Y should be of
affine type, more precisely the base curve B is isomorphic to A1 by noting that
every Q-homology plane is rational (cf. [6–8]). Moreover, letting g�.bi / .1 5
i 5 r/ exhaust all of singular fibers of g (if there exist at all), they are of the
form g�.bi / D mili , wheremi = 2 and li Š A1. In terms of these multiplicities
mi , the first integral homology group and the Picard group are expressed as
H1.Y IZ/ Š Lr

iD1.Z=miZ/ and Pic.Y / Š Lr
iD1 ZŒli � Š Lr

iD1.Z=miZ/ (see
[24, Chapter 3] for more informations on Q-homology planes). Furthermore,
provided that the Makar-Limanov invariant ML.Y / of Y , which is defined to be
the intersection of kernels of all locally nilpotent derivations on the coordinate
ring �.OY /, is trivial, i.e., ML.Y / D C, Masuda and Miyanishi [21, Theorem
3.1] show that g W Y ! B possesses exactly one multiple fiber g�.b1/ D
m1l1 with m1 D jH1.Y IZ/j, and its universal covering is isomorphic to the
Danielewski surface Ym in the next example (3), further Y is realized as the
quotient of Ym with respect to a suitable .Z=m1Z/-action on Ym.

(3) Let us consider a Danielewski surface:

Ym WD �
xy C zm C 1 D 0

	 
 A
3 D Spec .CŒx; y; z�/:

Then the restriction of the projection prx W A3 ! A
1 D Spec.CŒx�/ onto Ym

yields an A
1-fibration g D prxjYm over the affine line A

1. Moreover, any fiber
g�.b/ distinct from the central fiber g�.0/ is scheme-theoretically isomorphic
to A

1, whereas the central one g�.0/ is a disjoint union of m affine lines with
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the respective multiplicities one. By the same fashion, the restriction pry jYm is
an A1-fibration over A1 with the same properties as prx jYm .

Meanwhile, as examples of affine surfaces that admit only A
1-fibrations of complete

type, we have the following:

Example 2.2. Let B be a smooth projective curve of positive genus. Let E be a
vector bundle of rank.E / D 2 on B , and � W PB.E / ! B the associated P1-
bundle. Letting S 
 P.E / be an ample section with respect to � , the affine surface
Y WD P.E /nS is equipped with the A1-bundle �jY over B . It is easy to see that
�jY is the unique A1-fibration on Y (up to automorphisms of the base curve B), in
particular, Y does not admit an A1-fibration of affine type.

Example 2.3. Let S 
 P3 be a smooth cubic hypersurface with an Eckardt point,
and letH 
 P3 be a hyperplane such thatH jS is composed of three lines meeting at
an Eckardt point, say H jS D l1 C l2 C l3. Then we can verify by a straightforward
computation that the log Kodaira dimension of the affine surface S0 WD Sn.l1 [
l2 [ l3/ is equal to �.S0/ D �1. Thus S0 admits an A1-fibration g W S0 ! B by
[25]. In fact, as investigated explicitly in [2], it follows that the base curve B of g
is isomorphic to the projective line B Š P1, i.e., S0 is an affine ruled affine surface
having only A1-fibrations of complete type.

Example 2.4. Even in the case in which a smooth cubic hypersurface S 
 P3 does
not possess an Eckardt point, we can find a suitable hyperplane H 
 P3 such that
H jS consists of a line l and a conic C that meet to each other at a single point
tangentially (cf. [2]). In this case also, a direct computation says that �.Sn.l[C// D
�1 to deduce that an affine surface Sn.l [ C/ admits an A1-fibration, which is
indeed defined over P1, in particular, it is of complete type.

2.3. We consider a deformation of affine ruled smooth affine surfaces, say f W X !
B , where X is a smooth affine algebraic threefold and B is an algebraic curve by
taking Problem 1.3 into account. The properties of X differ according to the type
of an A1-fibration found on a general fiber of f . If a general fiber of f W X ! B

is an affine surface possessing an A1-fibration of complete type only, then we know
already several examples in which there does not exist an open subset U 
 X

such that the restriction f jU is decomposed by an A1-fibration over a surface (see
e.g. [2] for such examples. Notice that the morphism f W A3 ! A1 found in the
assertion of Theorem 1.8 is also one of the examples). On the other hand, if a general
fiber of f admits an A1-fibration of affine type, then Theorem 1.4 gives rise to
an information of f and X , which plays an essential role to prove Theorem 1.6.
Roughly speaking, such an f can be factorized by means of an A1-fibration after
shrinking and taking an étale finite covering of the base eventually. For an actual
application, it is hopeful that we do not have to take an étale finite covering, but
we are in general obliged to take an étale covering without a hypothesis about an
existence of a relative completion as requested in Theorem 1.4 (2). For instance,
[11, Example 2.6] yields such an example.
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Remark 2.5. In some case, a deformation f W X ! B of affine ruled surfaces can
be decomposed by an A�

1 -fibration over a surface instead of an A1-fibration itself as
in the following example. Let S andH be respectively a smooth cubic surface and a
hyperplane in P3 such that the hyperplane sectionH jS is of type (ii) in Remark 1.9,
and let f W A3 ! A1 be the morphism obtained as the restriction onto A3 Š P3nH
of the rational map defined by the linear pencil spanned by S and 3H . Then a
general fiber of f is a smooth affine surface possessing A1-fibrations of complete
type only, furthermore, f cannot be factored by means of A1-fibration even if we
restrict f onto an open dense subset ofX however as remarked in 2.3. Nevertheless,
it is instead decomposed in such a way that:

f D h ı g W A
3 g�! A

2 h�! A
1;

where g is a twisted A
1�-fibration and h is a trivial A

1-bundle (cf. [3]). It is
worthwhile to note that this factorization f D h ı g is obtained geometrically by
use of minimal model program. More precisely, we can embed A

3 into a suitable
normal projective threefold V with at worst Q-factorial, terminal singularities,
which is equipped with a Mori conic bundle structure p W V ! W , i.e., p is
obtained as the contraction of an extremal ray in NE.V / with dim.W / D 2 such
that the restriction of p onto A

3 gives rise to g. Furthermore, we note that p does
not admit any birational section. Indeed, there exists an irreducible component
in the boundary V nA3 which meets general fibers of p twice (cf. [3]). Provided
that p admits a birational section, say ‚, the restriction ‚jA3 gives rise to a 2-
torsion element of Pic.A3/, which is absurd. This particular phenomenon in higher
dimension is interesting since, for any smooth affine algebraic surface with the
factorial coordinate ring, an A

1�-fibration on it should be untwisted (cf. [24]).

3 Proof of Theorem 1.6

3.1. In this section, we shall prove Theorem 1.6. LetX be a smooth affine algebraic
threefold with Pic.X/ D .0/, which possesses a morphism f W X ! B onto a
smooth algebraic curve B such that general fibers of f are affine surfaces equipped
with A1-fibrations of affine type. Suppose that there exists a relative completion
f W X ! B of f that satisfies conditions (i)–(iii) in (2) of Theorem 1.4. Then,
by virtue of Theorem 1.4, we can find an open dense subset B0 
 B such that the
restriction of f onto X0 WD f �1.B0/ 
 X can be factored as in the following
fashion:

.�/ f0 WD f jX0 W X0 g0�! Y0
h0�! B0;

where g0 is an A1-fibration over a surface. By [18], there exists an open affine subset
V0 of Y0 such that the inverse image U0 WD g0

�1.V0/ 
 X0 is isomorphic to the
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fiber product with A1, i.e., U0 Š V0 � A1. Let ı0 be a locally nilpotent derivation
on �.OU0/ corresponding to translations along the second factor on U0 Š V0 � A1.
Notice that the complement XnU0 is purely of codimension one, hence triviality
of Pic.X/ implies that there exists a regular function a in A WD �.OX/ such that
the principal divisor divX.a/ coincides with XnU0, i.e., AŒa�1� D �.OU0/. Hence
ı WD aN ı0 becomes a locally nilpotent derivation on A with N = 0 suitably chosen
because A is a finitely generated C-algebra. Letting R WD Ker.ı/ be the kernel of ı,
which is known to be a finitely generated C-algebra of dimension two, let us denote
by � W X ! Y D Spec.R/ the morphism associated with the inclusion R 
 A.
Note that � is nothing but the quotient map with respect to an effective Ga-action
on X arising from ı, and � W X ! Y contains g0jU0 W U0 ! V0 by construction.

3.2. Let F D Ps
jD1 mjFj be a fiber of f , where Fj is an irreducible component

of F and mj = 1. There exists aj 2 A such that the principal divisor divX.aj /
coincides with Fj for 1 5 j 5 s because of the hypothesis Pic.X/ D .0/. Then we
have the following:

Claim. aj 2 R .1 5 j 5 s/.

Proof of Claim. Assume to the contrary, for instance, that a1 2 AnR. Then F1
dominates Y with respect to � . Further, it follows then that a general fiber of f
also dominates Y . Indeed, if a general fiber of f does not dominate Y via � , then
it does not intersect a general Ga-orbit, say l WD Ga:Œx� on X . Let us embed X
into a smooth projective threefold Z in such a way that Z possesses a projective
fibration p W Z ! C , which is an extension of the given morphism f W X ! B .
Since l meets a fiber component F1, we have .p�.c/ 	 l/ > 0 for every point c 2 C ,
where l is the closure of l in Z. Meanwhile, as l does not meet general fibers of
f , the closure l should be found in the boundary part ZnX , whereas l D l \ X

meets F1, a contradiction. Now let Q be a general point of B0. Then we have
f �.Q/ D g�

0 .h
�
0 .Q//, which means that none of components of the fiber f �.Q/

does not dominate Y via � , which is a contradiction. ut
3.3. Recall that aj 2 A is a prime element vanishing along Fj , that is divX.aj / D
Fj . Then we are able to ascertain that Fj admits an effective Ga-action by the
same argument as in [10, Lemma 3.10] (see also [15, Lemma 2.2]). Indeed, after
dividing ı by anj with n = 0 appropriately chosen, the resulting a�n

j ı becomes to
be nontrivial along Fj . Note that a�n

j ı is again locally nilpotent because of aj 2 R
(see Claim above). Hence it yields a nontrivial locally nilpotent derivation on the
coordinate ring�.OFj / ofFj to see thatFj admits an effectiveGa-action as desired.

Thus we complete the proof for Theorem 1.6.

Remark 3.1. We notice that the argument in 3.3 cannot be applicable directly if we
assume only that Pic.X/ is finite instead of the triviality of Pic.X/. In fact, provided
that Pic.X/ ˝Z Q D .0/, there exists a regular function aj 2 A such that the
support of the principal divisor divX.aj / coincides with Fj , i.e., divX.aj / D djFj
for some dj = 1. As seen in 3.3, we can show that A=ajA Š �.Odj Fj / admits
a locally nilpotent derivation a�n

j ı with n = 0 adequately chosen. But, this does
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not always give rise to a nontrivial locally nilpotent derivation on A=
p
ajA, which

is the coordinate ring �.OFj / of the reduced one. In fact, such an obstacle occurs
already in case of dimension two as seen in the following example:

Example 3.2. Let X WD . xz � y2 D 0 / 
 A3, which is an affine cone over the
smooth conic xz � y2 D 0, and let us consider a locally nilpotent derivation ı on its
coordinate ring A WD CŒx; y; z�=.xz � y2/ determined by:

ı D x
@

@y
C 2y

@

@z
:

Notice that ı yields an effective Ga-action onX , which is nothing but the projection
onto the x-axis, say px W X ! A1 D Spec.CŒx�/. It is easy to see that px has the
unique singular fiber p�

x .0/, which is a multiple fiber p�
x .0/ D 2l , where l is the

line defined by x D y D 0. Furthermore, it follows that Pic.X/ Š ZŒ l � Š Z=2Z.
Since 2l is a principal divisor on X , indeed 2l is defined by xA, it follows that ı
descends to a nontrivial locally nilpotent derivation on the coordinate ring of 2l , i.e.,
on A=xA Š CŒx; y; z�=.x; y2/, however it becomes to be trivial when we restrict
to A=

p
xA Š CŒx; y; z�=.x; y/. This fact can be also verified in terms of geometry

by noticing that the singular point .0; 0; 0/ 2 X belongs to l , hence Ga-action on l
should be trivial.

4 Proof of Theorem 1.8

4.1. This section is devoted to the proof of Theorem 1.8. Thus let us set:

f .x; y; z/ WD x3 C y3 C z.z C 1/ 2 CŒx; y; z�;

and we denote tacitly by the same notation f the polynomial map:

f W A
3 D Spec.CŒx; y; z�/ 3 .a; b; c/ 7! f .a; b; c/ 2 A

1 D Spec.CŒf �/;

associated with the inclusion CŒf � 
 CŒx; y; z�. Further, let us denote by S ı̨ the
fiber f �.˛/, i.e., S ı̨ WD �

f .x; y; z/�˛ D 0
	 
 A3 for ˛ 2 C. First of all, we shall

observe singularities on the fiber S ı̨. In fact, we see the following:

Claim 1. S ı̨ is a smooth affine surface for any ˛ 2 Cnf� 1
4
g.

Proof of Claim 1. The proof of the assertion depends on a straightforward calcula-
tion. Letting S˛ be the closure of S ı̨ 
 A3 in P3, the surface S˛ is defined by the
following cubic homogeneous polynomial:

F˛.x; y; z; u/ WD x3 C y3 C z.z C u/u � ˛u3 2 CŒx; y; z; u�;
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where u D 0 corresponds to the hyperplane at infinity H1 with respect to the
canonical embedding A3.x;y;z/ ,! P3ŒxWyWzWu�. By looking at the Jacobian of F˛:

J.F˛/ D
� @F˛
@x

;
@F˛

@y
;
@F˛

@z
;
@F˛

@u

�
D �

3x2; 3y2; 2zu C u2; z2 C 2zu � 3˛u2
	
;

it follows that S˛ is smooth for ˛ 2 Cnf� 1
4
g, in particular, S ı̨ is smooth. ut

4.2. For a while, we shall observe an affine surface S ı̨ for ˛ 2 Cnf� 1
4
g. By the

proof of Claim 1 above, the surface S˛, which is the closure of S˛ in P3, is smooth.
Meanwhile, we have �KS˛ D H1jS˛ D l1 C l2 C l3 by adjunction, where l1, l2 and
l3 are three lines intersecting only at Œ0 W 0 W 1 W 0�, which is an Eckardt point of S˛.
Then a straightforward computation shows that �.S ı̨/ D �1, which implies that
S˛ possesses an A1-fibration (cf. [25]). Moreover, it follows that an A1-fibration on
S ı̨ is defined over P1, i.e., it is an A1-fibration of complete type (cf. [2]).

4.3. In the subsequent argument, we investigate the remaining fiber Sı
.�1=4/, which

is singular. In fact, we can readily confirm that Sing.S.�1=4// D fP WD Œ0 W 0 W 1 W
�2�g. More precisely, we see:

f .x; y; z/C 1

4
D x3 C y3 C z.z C 1/C 1

4
D x3 C y3 C

�
z C 1

2

�2
;

thence the point P D .0; 0;�1=2/ 2 Sı
.�1=4/ is a Du Val singularity of D4-type. In

particular, P is not a cyclic quotient singularity.

Claim 2. Sı
.�1=4/ does not admit any A1-fibration.

Proof of Claim 2. Assume to the contrary that Sı
.�1=4/ is equipped with an A1-

fibration. Then by virtue of [23] (see also [5]), the surface Sı
.�1=4/ has at most cyclic

quotient singularities. This is absurd as Sı
.�1=4/ has a singularity of D4-type. ut

Thus we complete the proof of Theorem 1.8.

Remark 4.1. Certainly, the fiber Sı
.�1=4/ does not admit any A1-fibration, whereas

S ı̨ does admit for all ˛ 2 Cnf� 1
4
g as seen above. Let

g˛ W S ı̨ �! P
1

be one of such A1-fibrations on S ı̨. Notice that g˛ is defined over P1, namely an A1-
fibration on S ı̨ is of complete type (cf. [2]). It follows that any fiber of g˛ is a disjoint
union of affine lines (cf. [24, Chapter 3, 1.4.2. Lemma]). PutX WD P3n.S.�1=4/[S0/.
Then by the argument just mentioned, there exists a two-dimensional family F D
fC�g of affine lines C� Š A1 such that for any point x 2 X we can find the unique
member C� 2 F passing through x. In other words, X is covered by mutually
disjoint affine lines belonging to F . Nevertheless, we claim that:
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Proposition 4.2. With the above notation, X is not affine ruled.

Proof. Suppose on the contrary that X is affine ruled. Hence, by definition, we can
find an open affine subset U 
 X , which is a fiber product U Š V � A1 with
V a suitable affine algebraic variety. Recall that X is an open subset of P3nS0,
thence P3nS0 is also affine ruled. Then P3nS0 admits an effective Ga-action (cf.
Remark 4.4), which is a contradiction to [2]. ut
Remark 4.3. We do not know so far whether or not the complement P3nS.�1=4/
itself is affine ruled.

Remark 4.4. LetZ be a normal affine algebraic threefold with Pic.Z/˝ZQ D .0/.
Then the following three conditions on Z are equivalent to each other:

(1) Z is affine ruled in the sense of 1.1,
(2) Z admits an effective Ga-action,
(3) Z admits an A1-fibration.

Indeed, the implication (1) ) (2) can proceed by the similar argument as in 3.1.
Suppose that Z satisfies (1), so that Z contains an open affine subset U of the form
U Š V � A1 by definition. Then a locally nilpotent derivation on �.OU /, say ı,
corresponding to translations along the second factor of U Š V � A1 defines a
locally nilpotent derivation on �.OZ/ after multiplying a suitable regular function
on Z vanishing along the complement ZnU . In fact, the existence of a regular
function a 2 �.OZ/ such that Supp .divZ.a// D ZnU is guaranteed by virtue
of the finiteness of Pic.Z/. Then aN ı becomes a locally nilpotent derivation on
�.OZ/ with N = 0 adequately chosen as �.OZ/ is a finitely generated C-algebra,
which gives rise to an effective Ga-action on Z as desired. As for (2) ) (3), if Z
possesses an effective Ga-action, then its quotient map is an A1-fibration. Notice
that the kernel of a corresponding locally nilpotent derivation on �.OZ/ is finitely
generated over C (cf. [22, Chapter 1]). Finally as for (3) ) (1), assuming that Z
has an A1-fibration p W Z ! W over a surface, there exists an open affine subset
V 
 W with the property that p�1.V / Š V � A1 by [18], hence Z is affine ruled.

5 Relevant Remarks and Problems

5.1. In this section, we shall mention relevant remarks and questions. It is well
known that the defining polynomial g.x; y/ 2 CŒx; y� of an irreducible curve C in
the affine plane A

2, which is isomorphic to the affine line C Š A
1, gives rise to a

trivial A1-bundle structure:

g W A
2 D Spec.CŒx; y�/ 3 .a; b/ 7! g.a; b/ 2 A

1 D Spec.CŒg�/;

by virtue of Abhyankar–Moh–Suzuki’s theorem (cf. [1, 26], see also [22,
Chapter 2] for an alternative geometric proof). Moreover, as a generalization
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of Abhyankar–Moh–Suzuki’s theorem, Gurjar, Masuda, Miyanishi, and Russell
investigate affine lines on a smooth affine surface S with the trivial Makar-Limanov
invariant ML.S/ D C and they prove in [9] that any affine line C Š A1 on such
an S becomes a fiber component of a suitable A1-fibration on S .1 Whereas, if we
work with the other smooth affine surfaces, the existence of an affine line C Š A1

is not enough to guarantee that there exists an A1-fibration there which contains C
as a fiber component, in general.

Example 5.1. Let S be a Q-homology plane with �.S/ D �1 (see e.g. [24,
Chapter 3] for relevant results on Q-homology planes). In [20, Theorem 1.1], they
have classified affine lines C Š A1 on S with the property �.SnC/ = 0. In
particular, the existence of such an affine line implies that the Makar-Limanov
invariant ML.S/ of S is not trivial, i.e., ML.S/ ¤ C (see [20, Corollary 1.2]),
and any fibration on S with C as a fiber component is not an A1-fibration.

Example 5.2. Let S be a homology plane with �.S/ D 1. Notice that there exist
such smooth surfaces (cf. [24, 4.8.3. Theorem]), for instance,

Sa;b W D
n .xz C 1/a � .yz C 1/b

z
D 0

o

 A

3

D Spec.CŒx; y; z�/; a > b = 1; gcd.a; b/ D 1

yields an example of such surfaces. It is known that there is exactly one affine line on
S , say C Š A1 (cf. [24, 4.10.1. Theorem]), indeed, in case of S D Sa;b above, fx D
y D 0g is the unique affine line contained in Sa;b . As the coordinate ring �.OS / of S
is UFD (cf. [24, 4.2.1. Lemma]), we can find a regular function g 2 �.OS/ such that
the principal divisor divS .g/ defined by g coincides with C scheme-theoretically.
Then the map defined by g:

g W S 3 s 7! g.s/ 2 A
1 D Spec.CŒg�/

is not an A1-fibration, meanwhile the central fiber g�.0/ D C is isomorphic to A1.

Example 5.3. Let g.x; y/ WD xa � yb 2 CŒx; y�, where a; b = 2 such that
gcd.a; b/ D 1. We take a fiber g�.˛/ .˛ ¤ 0/ of the polynomial map g W A2 D
Spec.CŒx; y�/ ! A1 D Spec.CŒg�/ associated with the inclusion CŒg� 
 CŒx; y�,
and let us take furthermore a point Q 2 g�.˛/ on it. We apply then an affine
modification of A2 with the center .Q 2 g�.˛//, say � W S ! A2 (see [16]
for the definition of affine modifications). Then the resulting affine surface S is
equipped with a fibration h WD g ı � induced by g. By construction, the fiber h�.˛/
is isomorphic to A1, whereas the other fibers are not isomorphic to A1.

1Recall that ML.S/ is defined to be an intersections in �.OS / of Ker.@/’s when @ ranges over all
of locally nilpotent derivations of �.OS /.
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5.2. As seen in Examples 5.1–5.3 above, the existence of the affine line on a
smooth affine surface S is not sufficient in general to guarantee the existence
of an A1-fibration there, even if the Picard group of S is finite, i.e., Pic.S/ ˝Z

Q D .0/. It is reasonable to think that the similar phenomena would occur in
case of higher dimension also, e.g., of dimension three. For example, Abhyankar-
Sathaye embedding problem in dimension three asks whether or not an irreducible
hypersurface S in the affine 3-space A3, which is isomorphic to S Š A2, is a
coordinate plane, namely, all of the fibers of the polynomial map:

g W A
3 D Spec.CŒx; y; z�/ 3 .a; b; c/ 7! g.a; b; c/ 2 A

1 D Spec.CŒg�/;

determined by the polynomial g 2 CŒx; y; z� defining S D V.g/ 
 A3 are
isomorphic to A2, and the generic one of g is isomorphic to the affine plane A2

C.g/

over the function field C.g/ of the base curve. Notice that it suffices actually to
confirm that general fibers of g are isomorphic to A2 in order to settle out this
problem by virtue of [14]. Therefore, the essential of this embedding problem
in dimension three consists in how to observe whether or not one hypersurface
S D VA3 .g/ 
 A3, which is isomorphic to the affine plane A2, is enough to see
that fibers in a neighborhood of the origin of the base curve 0 2 A1 D Spec.CŒg�/
are still isomorphic to A2.

5.3. Instead of the affine plane A2, more generally, instead of affine ruled rational
surfaces in the affine 3-space A3, we consider affine ruled irrational surfaces in A3,
namely, we propose the following problem:

Problem 5.4. Let S 
 A3 be an irreducible smooth affine hypersurface, which is
irrational and affine ruled. Letting g.x; y; z/ 2 CŒx; y; z� be the polynomial defining
S in the affine 3-space A3, is it true that general fibers of the polynomial map:

g W A
3 D Spec.CŒx; y; z�/ 3 .a; b; c/ 7! g.a; b; c/ 2 A

1 D Spec.CŒg�/;

are still (irrational) affine ruled?

Remark 5.5. In [4], we show that if general fibers g�.˛/ of the map g W A3 ! A1

are irrational and affine ruled, then it follows that the type of an A1-fibration on
g�.˛/ is automatically of affine type. This is remarkable because, as in Theorem 1.8
or the results in [2], there are examples of polynomials f .x; y; z/ 2 CŒx; y; z� in
three variables such that the polynomial maps determined by f yield fibrations
whose general fibers are rational affine surfaces having only A1-fibrations of
complete type. More precisely, in the work [4], we show that if general fibers of
a given fibration:

f W X �! B;

from a normal affine algebraic threefold X with at most Q-factorial, terminal
singularities (but without any condition about Pic.X/) onto a smooth algebraic
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curve are irrational and affine ruled, then there exists an open affine subset U 
 X

such that the restriction f jU can be factored as follows:

f jU D h0 ı g0 W U g0�! V
h0�! W;

where g0 W U ! V is a trivial A1-bundle, i.e., U Š V � A1 and W 
 B is an
open subset of B (compare with Theorem 1.4, a result due to Gurjar, Masuda, and
Miyanishi). Further, under the additional condition that Pic.X/ ˝Z Q D .0/, the
above-mentioned factorization can be extended to that on whole X :

f D h ı g W X g�! Y
h�! B;

where g is a quotient map with respect to an effective Ga-action on X . Anyway, it
is worthwhile to recognize that the argument in [4] to obtain these results consists
in an application of minimal model program in a relative setting.

5.4. Let X be a normal affine algebraic threefold with Pic.X/ ˝Z Q D .0/

possessing an effective Ga-action, and let us denote by � W X ! Y the
corresponding quotient map. In an algebraic viewpoint, letting ı be a locally
nilpotent derivation on A D �.OX/, which corresponds to the given Ga-action
on X , the inclusion R WD Ker.ı/ ,! A gives rise to � . It is well known that
R is normal, finitely generated over C and an inert sub-algebra of A (cf. [22,
Chapter 1]), furthermore it follows that Pic.Y /˝Z Q D .0/ (cf. [10, Lemma 1.14]).
In particular, for any irreducible curve C 
 Y , there exists an element a 2 R

vanishing along C , i.e., VY .
p
aR/ D C , and the ideal

p
aA of A defines a prime

divisor S WD VX.
p
aA/ 
 X , which coincides with the set-theoretic inverse image

��1.C /, i.e., divX.a/ D dS for some d = 1. Then as seen in 3.3, we can confirm
that ı descends to a nontrivial locally nilpotent derivation on �.OS / after dividing
by a�n with n = 0 suitably chosen to see that S also admits an effective Ga-
action arising from that on X provided d D 1. Whereas in case of d = 2, ı does
not necessarily descend to a nontrivial one on �.OS/ (see Example 3.2, which is
in fact an example of dimension two, but if we consider X in the affine 4-space
Spec.CŒx; y; z; u�/ with the same defining equation xz � y2 D 0 instead of the
affine 3-space Spec.CŒx; y; z�/, then ı, that is the same as in Example 3.2, gives a
nontrivial locally nilpotent derivation on the principal divisor 2L on X , where L
is the .z; u/-plane. However, ı yields in turn a trivial one on L). We note however
that in such an example X is not smooth. Instead if we work with smooth affine
algebraic threefolds with finite Picard groups, we do not know so far the answer to
the following problem:

Problem 5.6. Let X be a smooth affine algebraic threefold with Pic.X/ ˝Z Q D
.0/, and let � W X ! Y be the quotient morphism with respect to a given effective
Ga-action on X . Letting ı be a locally nilpotent derivation on �.OX/, which
corresponds to � , is it true that for any irreducible curve C 
 Y , the restriction
of ı onto the set-theoretic inverse image ��1.C / 
 X becomes a nontrivial locally
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nilpotent derivation on �.O��1.C // (after dividing by a suitable regular function
on X which vanishes along ��1.C / if necessary)? In particular, is ��1.C / affine
ruled?
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How to Prove the Wildness of Polynomial
Automorphisms: An Example

Shigeru Kuroda

Abstract Nagata (On Automorphism Group of kŒx; y�, Lectures in Mathematics,
Department of Mathematics, Kyoto University, vol. 5. Kinokuniya Book-Store
Co. Ltd., Tokyo, 1972) conjectured the wildness of a certain automorphism of
the polynomial ring in three variables. This famous conjecture was solved by
Shestakov–Umirbaev (J. Am. Math. Soc., 17, 181–196, 197–227, 2004) in the
affirmative. Although the Shestakov–Umirbaev theory is powerful and applicable
to various situations, not so many researchers seem familiar with this theory due to
its technical difficulty.

In this paper, we explain how to prove the wildness of polynomial automorphisms
using this theory practically. First, we recall a useful criterion for wildness which
is derived from the generalized Shestakov–Umirbaev theory. Then, we demonstrate
how to use this criterion effectively by showing the wildness of the exponential
automorphisms for some well-known locally nilpotent derivations of rank three.
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1 Introduction

Let k be a field, kŒx� D kŒx1; : : : ; xn� the polynomial ring in n variables over k, and
AutkkŒx� the automorphism group of the k-algebra kŒx�. We say that � 2 AutkkŒx�
is elementary if there exists 1 � l � n such that �.xi / D xi for all i ¤ l .
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Note that, if this is the case, we have �.xl/ D ˛xl C f for some ˛ 2 k� and
f 2 kŒfxi j i ¤ lg�. The subgroup T.n; k/ of AutkkŒx� generated by all the
elementary automorphisms of kŒx� is called the tame subgroup of AutkkŒx�. We
call elements of AutkkŒx� n T.n; k/ wild automorphisms. When n � 2, a question
arises whether AutkkŒx� D T.n; k/. Due to Jung [2] and van der Kulk [12], the
answer is yes if n D 2. Nagata [9] conjectured that the answer is no when n D 3,
and gave  2 AutkkŒx� defined by

 .x1/ D x1 � 2.x1x3 C x22/x2 � .x1x3 C x22/
2x3;  .x2/ D x2 C .x1x3 C x22/x3

and  .x3/ D x3 as a candidate of wild automorphism. This famous conjecture was
solved in the affirmative by Shestakov–Umirbaev [10,11] in the case of char.k/ D 0.
The question remains open when n D 3 and char.k/ > 0, and when n � 4.

It is 10 years since Nagata’s conjecture was solved, but not so many researchers
seem familiar with the Shestakov–Umirbaev theory because of the technical
difficulty. In fact, to decide the wildness of � 2 AutkkŒx� by means of this theory,
one needs precise information on the polynomials �.x1/, �.x2/ and �.x3/, which
is sometimes quite difficult. For example, let D be a locally nilpotent derivation of
kŒx�, i.e., a derivation of kŒx� such that, for each f 2 kŒx�, we have Dl.f / D 0

for some l � 1. If char.k/ D 0, then we can define the exponential automorphism
expD 2 AutkkŒx� by

.expD/.f / D
1X
lD0

Dl.f /

lŠ
for each f 2 kŒx�:

Various interesting automorphisms are obtained as expD for some D. In general,
however, it is not easy to describe .expD/.xi /’s.

The purpose of this paper is to explain how to prove the wildness of polyno-
mial automorphisms in three variables practically. In Sect. 2, we recall a useful
criterion for wildness which is derived from the generalized Shestakov–Umirbaev
theory [3, 4]. Then, in Sect. 3, we demonstrate how to use the criterion effectively
by showing the wildness of the exponential automorphisms for some well-known
locally nilpotent derivations of rank three. Here, the rank of a derivationD of kŒx�
is defined to be the minimal number r for which there exists 	 2 AutkkŒx� such
that D.	.xi // D 0 for i D 1; : : : ; n � r . Rank three locally nilpotent derivations
of kŒx1; x2; x3� are rather complicated and difficult to handle, so the exponential
automorphisms for such locally nilpotent derivations are interesting test case to
apply the criterion.

2 Monomial Orders

Let � be a monomial order on kŒx�, i.e., a total order on Zn such that a � b

implies a C c � b C c for each a;b; c 2 Zn, and that the coordinate unit vectors
e1; : : : ; en of Rn are greater than the zero vector. Take any f 2 kŒx�n f0g and write
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f D P
a �axa, where �a 2 k and xa WD x

a1
1 	 	 	xann for each a D .a1; : : : ; an/.

Then, we define degf WD maxfa j �a ¤ 0g and inf WD �bxb, where b WD
degf .

In what follows, we assume that char.k/ D 0 and n D 3. The following
useful criterion is implicit in the generalized Shestakov–Umirbaev theory, where
Z�0 denotes the set of nonnegative integers.

Theorem 1. � 2 AutkkŒx� is wild if there exists a monomial order � on kŒx� for
which the following conditions holdW
(M1) deg�.x1/, deg�.x2/ and deg�.x3/ are linearly dependent over Z, and

are pairwise linearly independent over Z.
(M2) deg�.xi1/ is not equal to pdeg�.xi2/C qdeg�.xi3/ for any p; q 2 Z�0

and .i1; i2; i3/ D .1; 2; 3/; .2; 3; 1/; .3; 1; 2/.

For example, let  be Nagata’s automorphism mentioned above, and �lex the
lexicographic order on kŒx� with e1 �lex e2 �lex e3, i.e., the total order on Z3

defined by .a1; a2; a3/ �lex .b1; b2; b3/ if ai D bi for all i , or al < bl for l WD
maxfi j ai ¤ bi g. Then, we have

deglex
 .x1/ D .2; 0; 3/; deglex

 .x2/ D .1; 0; 2/; deglex
 .x3/ D .0; 0; 1/:

Since these three vectors satisfy (M1) and (M2), we can conclude that  is wild.
Let us briefly explain how Theorem 1 follows from the generalized Shestakov–

Umirbaev theory. Recall that a monomial order � on kŒx� induces a structure of
totally ordered additive group on Zn. Set w D .e1; : : : ; en/. Then, in the notation
of [5], we have degwf D degf and f w D inf for each f 2 kŒx�. In
[5] (after Theorem 5.1.3), we derived a wildness criterion from the generalized
Shestakov–Umirbaev theory (see also [6, Theorem 2.4]). According to this criterion,
� 2 AutkkŒx� is wild if the following conditions hold for some monomial order �:

(1) �.x1/w, �.x2/w and �.x3/
w are algebraically dependent over k, and are

pairwise algebraically independent over k.
(2) �.xi /w does not belong to kŒf�.xl/w j l ¤ ig� for i D 1; 2; 3.

Since �.xi/w D in�.xi / is a monomial for each i , we see that (1) and (2) are
equivalent to (M1) and (M2), respectively. Therefore, � is wild if (M1) and (M2)
hold for some monomial order � on kŒx�.

We note that the result in [5] used to derive Theorem 1 is a consequence of [4,
Theorem 2.1] which is a generalization of Shestakov–Umirbaev [11, Theorem 1].
As in the case of [11, Theorem 1], the proof of [4, Theorem 2.1] is long and technical
(see [7] for the main idea behind the proofs of these theorems; see also [13] for a
survey of the theory of Shestakov–Umirbaev).
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3 Example

Let l and m be positive integers. We set f D x1x3 � x22 , r D f lx2 C xm1 and

gDf 2lC1 C r2

x1
D f 2l .x1x3 � x22/C .f lx2 C xm1 /

2

x1
Df 2lx3C2f lxm�1

1 x2Cx2m�1
1 :

Using f and g, we define a derivation� of kŒx� by

�.p/ D
ˇ̌
ˇ̌ @.f; g; p/
@.x1; x2; x3/

ˇ̌
ˇ̌ for each p 2 kŒx�:

In this notation, the following proposition holds.

Proposition 1 ([1,5]). � is an irreducible locally nilpotent derivation of kŒx� such
that ker� D kŒf; g� and�.r/ D �f lg. If m � 2, then� is of rank three.

Here, a derivation D of kŒx� is said to be irreducible if D.kŒx�/ is contained in
no proper principal ideal of kŒx�.

This result is due to Freudenburg [1] whenm D 2lC1. The general case follows
from a more general result of the author [5, Theorems 7.1.5(i) and 7.1.6(iii)] (see
the discussion at the end of Sect. 7.1 of [5]).

In this section, we prove the following theorem using Theorem 1.

Theorem 2. � WD exph� is wild for any integers l; m � 1 and h 2 ker� n f0g.

We note that Theorem 2 is a special case of [5, Theorem 7.1.5(ii)]. However,
since the proof for the general statement is rather technical and complicated, it is
worthwhile to give a direct proof for this simple example.

Let �lex be the lexicographic order on kŒx� with e1 �lex e2 �lex e3, and put
deg WD deglex

. Then, we have

degf D .1; 0; 1/ and degg D degf 2lx3 D .2l; 0; 2l C 1/:

Hence, degf and degg are linearly independent over Z. Thus, degf igj ’s are
different for different .i; j /’s. Since h is a nonzero element of ker� D kŒf; g�, we
may write degh D a degf Cb degg, where a; b 2 Z�0. Since�.f / D �.g/ D 0,
�.r/ D �f lg by Proposition 1, and x1g D f 2lC1 C r2 by the definition of g, we
have

�.x1/g D �.x1g/ D �.f 2lC1 C r2/ D 2r�.r/ D �2rf l g;

and so �.x1/ D �2rf l . Hence, we get

�.x1/ D x1 C h�.x1/C h2�2.x1/

2Š
C 	 	 	 D x1 � 2rf lhC f 2lgh2:
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Since deg r D .l; 1; l/ is less than degg, it follows that

deg�.x1/ D degf 2lgh2 D 2.aC l/ degf C .2b C 1/ degg: (1)

Thus, deg�.x1/ and degf are linearly independent over Z. Since

f l�.x2/C �.x1/
m D �.f lx2 C xm1 / D �.r/ D r C h�.r/C 	 	 	 D r � f lgh

and deg.r � f lgh/ D degf lgh < deg�.x1/m, we have degf l�.x2/ D
deg�.x1/m. Hence, we get

deg�.x2/ D m deg�.x1/� l degf: (2)

Since �.f / D 0, we have

�.x1/�.x3/� �.x2/
2 D �.x1x3 � x22/ D �.f / D f;

in which deg�.x1/�.x3/ � deg�.x1/ > degf . Thus, deg�.x1/�.x3/ D
deg�.x2/2, and so

deg�.x3/ D 2 deg�.x2/ � deg�.x1/ D 2.m deg�.x1/� l degf / � deg�.x1/

D .2m � 1/ deg�.x1/ � 2l degf:
(3)

Now, observe that .1; 0/, .m; l/ and .2m � 1; 2l/ are linearly dependent over Z,
and are pairwise linearly independent over Z. Moreover, none of these three vectors
belongs to the additive subsemigroup of Z2 generated by the other two vectors.
Since deg�.x1/ and � degf are linearly independent over Z, we see from (1), (2)
and (3) that � satisfies (M1) and (M2). Therefore, � is wild by Theorem 1.

Note: Recently, the author [8] showed that the automorphism group AutkŒf;g�kŒx�
of the kŒf; g�-algebra kŒx� is equal to fexph� j h 2 kŒf; g�g. Therefore, we know
that AutkŒf;g�kŒx� \ T.3; k/ D fidkŒx�g thanks to Theorem 2.

Acknowledgements The author is partly supported by the Grant-in-Aid for Young Scientists
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Abstract In the last decades affine algebraic varieties and Stein manifolds with big
(infinite-dimensional) automorphism groups have been intensively studied. Several
notions expressing that the automorphisms group is big have been proposed. All of
them imply that the manifold in question is an Oka–Forstnerič manifold. This
important notion has also recently merged from the intensive studies around the
homotopy principle in Complex Analysis. This homotopy principle, which goes
back to the 1930s, has had an enormous impact on the development of the area
of Several Complex Variables and the number of its applications is constantly
growing. In this overview chapter we present three classes of properties: (1) density
property, (2) flexibility, and (3) Oka–Forstnerič. For each class we give the relevant
definitions, its most significant features and explain the known implications between
all these properties. Many difficult mathematical problems could be solved by
applying the developed theory, we indicate some of the most spectacular ones.
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1 Introduction

This is a survey of recent developments in Complex Analysis and Affine Algebraic
Geometry which emphasize on objects described as elliptic, in the opposite to
hyperbolic in the sense of Kobayashi or more general in the sense of Eisenman
(all Eisenman measures on these objects vanish identically.)

Here is the scheme of properties we are going to discuss, together with the known
implications between them. Although the properties do not require the manifolds to
be Stein or affine algebraic, some of the implications do. We therefore assume the
manifold to be Stein in the upper row and to be a smooth affine algebraic variety in
the lower row.

density property (DP) H) holomorphic flexible H) Oka–Forstneric
* *

algebraic density property (ADP) algebraic flexible
(1)

In each of the following three sections we present one class of properties together
with main features. We hope that researchers from the algebraic and from the
holomorphic side can join their efforts to enlarge the class of examples and to find
out which of the reverse implications between these properties hold.

In the last section we briefly recall that in the presence of a volume form there is
a similar property to (algebraic) density property, called (algebraic) volume density
property, which if replacing DP and ADP in Scheme .1/ by these properties (AVDP,
VDP) gives another scheme with the same implications true. Also we elaborate on
the reverse implications in our Scheme .1/.

We sincerely thank the referee for very carefully reading the chapter and making
many valuable comments. He helped a lot to improve the presentation. Many thanks
to Finnur Lárusson for careful reading and catching an inaccuracy in a previous
version of the text.

2 Density Property

2.1 Definition and Main Features

Considering a question promoted by Walter Rudin, Andersén and Lempert in 1989
[1, 3] proved a remarkable fact about the affine n-space n � 2, namely that the
group generated by shears (maps of the form .z1; : : : ; zn/ 7! .z1; : : : ; zn�1; zn C
f .z1; : : : ; zn�1// where f 2 O.Cn�1/ is a holomorphic function and any linear
conjugate of such a map) and overshears (maps of the form .z1; : : : ; zn/ 7!
.z1; : : : ; zn�1; zng.z1; : : : ; zn�1// where g 2 O�.Cn�1/ is a nowhere vanishing
holomorphic function and any linear conjugate of such a map) are dense in
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holomorphic automorphism group of Cn, endowed with compact-open topology.
The main importance of their work was not the mentioned result but the proof
itself which implies, as observed by Forstnerič and Rosay in [17] for X D Cn,
the remarkable Andersén–Lempert theorem, see below. The natural generalization
from Cn to arbitrary manifolds X was made by Varolin [40] who introduced the
following important property of a complex manifold:

Definition 1. A complex manifold X has the density property if in the compact-
open topology the Lie algebra generated by completely integrable holomorphic
vector fields on X is dense in the Lie algebra of all holomorphic vector fields on X .

Here a holomorphic vector field‚ on a complex manifoldX is called completely
integrable if the ODE

d

dt
'.x; t/ D ‚.'.x; t//

'.x; 0/ D x

has a solution '.x; t/ defined for all complex times t 2 C and all starting
points x 2 X . It gives a complex one-parameter subgroup in the holomorphic
automorphism group Authol.X/.

The density property is a precise way of saying that the automorphism group of
a manifold is big, in particular for a Stein manifold this is underlined by the main
result of the theory (see [17] for Cn, [40], a detailed proof can be found in the
Appendix of [36] or in [14]).

Theorem 2 (Andersén–Lempert Theorem). Let X be a Stein manifold with the
density property and let� be an open subset ofX . Suppose thatˆ W Œ0; 1��� ! X

is a C1-smooth map such that

(1) ˆt W � ! X is holomorphic and injective for every t 2 Œ0; 1�,
(2) ˆ0 W � ! X is the natural embedding of � into X , and
(3) ˆt.�/ is a Runge subset1 of X for every t 2 Œ0; 1�.
Then for each � > 0 and every compact subset K � � there is a continuous family,
˛ W Œ0; 1� ! Authol.X/ of holomorphic automorphisms of X such that

˛0 D id and j˛t �ˆt jK < � for every t 2 Œ0; 1�

Philosophically one can think of the density property as a tool for realizing
local movements by global maps (automorphisms). In some sense it is a substitute

1Recall that an open subset U of X is Runge if any holomorphic function on U can be
approximated by global holomorphic functions on X in the compact-open topology. Actually, for
X Stein by Cartan’s Theorem A this definition implies more: for any coherent sheaf on X its
section over U can be approximated by global sections.
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for cutoff functions which in the differentiable category are used for globalizing
local movements. In the holomorphic category we of course lose control on
automorphism outside the compact set K . This makes constructions more com-
plicate but still constructing sequences of automorphisms by iterated use of the
Andersén–Lempert theorem has led to remarkable constructions.

Let us further remark that the implications of the density property for manifolds
which are not Stein have not been explored very much yet. If the manifold is
compact all (holomorphic) vector fields are completely integrable, the density
property trivially hold and thus cannot give any further information on the manifold.

Remark 3. Andersén and Lempert proved that every algebraic vector field on
Cn is a finite sum of algebraic shear fields (fields of form p.z1; : : : zn�1/ @

@zn
for a polynomial p 2 CŒCn�1� and their linear conjugates, i.e., fields who’s
one-parameter subgroups consist of shears) and overshear fields (fields of form
p.z1; : : : zn�1/zn @

@zn
for a polynomial p 2 CŒCn�1� and their linear conjugates, i.e.,

fields whose one-parameter subgroups consist of overshears). Together with the fact
that any holomorphic automorphism of Cn can be joined to the identity by a smooth
pat, this shows how the Andersén–Lempert theorem implies that the group generated
by shears and overshears is dense in the holomorphic automorphism group of Cn

The algebraic density property can be viewed as a tool to prove the density
property, whereas the ways of proving it are purely algebraic work.

Definition 4. An affine algebraic manifold X has the algebraic density property if
the Lie algebra Liealg.X/ generated by completely integrable algebraic vector fields
on it coincides with the Lie algebra VFalg.X/ of all algebraic vector fields on it.

An algebraic vector field is an algebraic section of the tangent bundle, for
example on Cn it can be written as

Pn
iD1 pi .z1; : : : ; zn/ @@zi

with polynomials pi 2
CŒCn�. If it is completely integrable, its flow gives a one-parameter subgroup in the
holomorphic automorphism group not necessarily in the algebraic automorphism
group. For example, a polynomial shear field of the form p.z1; : : : ; zn�1/zn @

@zn
has

the flow map �.t; z/ D .z1; : : : ; zn�1; exp.tp.z1; : : : ; zn�1//zn/. This is the reason
that algebraic density property is in the intersection of affine algebraic geometry
and complex analysis. It is an algebraic notion, proven using algebraic methods but
has implications for the holomorphic automorphism group.

2.2 Applications and Examples

A first application we like to mention is to the notoriously difficult question whether
every open Riemann surface can be properly holomorphically embedded into C2.
This is the only dimension for which the conjecture of Forster [12], saying that
every Stein manifold of dimension n can be properly holomorphically embedded
into CN for N D Œ n

2
� C 1, is still unsolved. The conjectured dimension is sharp
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by examples of Forster [12] and has been proven by Eliashberg, Gromov [10] and
Schürmann [37] for all dimensions n � 2. Their methods of proof fail in dimension
n D 1. But Fornaess Wold invented a clever combination of a use of shears (nice
projection property) and Theorem 2 which led to many new embedding theorems
for open Riemann surfaces. As an example we like to mention the following two
recent results of Forstnerič and Fornaess Wold [18, 19] the first of them being the
most general one for open subsets of the complex line:

Theorem 5. Every domain in the Riemann sphere with at least one and at most
countably many boundary components, none of which are points, admits a proper
holomorphic embedding into C2.

Theorem 6. If N† is a (possibly reducible) compact complex curve in C
2 with

boundary @† of class C r for some r > 1, then the inclusion map i W † D N† n† !
C
2 can be approximated, uniformly on compacts in †, by proper holomorphic

embeddings† ! C
2.

Many versions of embeddings with interpolation are also known and proven
using the same methods invented by Fornaess Wold in [42].

Another application is to construct non-straightenable holomorphic embeddings
of Ck into Cn for all pairs of dimensions 0 < k < n, a fact which is contrary to the
situation in affine algebraic geometry, namely contrary to the famous Abhyankar-
Moh-Suzuki theorem for k D 1; n D 2 and also to work of Kaliman [26] or 2k C
1 < n, whereas straightenability for the other dimension pairs is still unknown in
algebraic geometry. The most recent and quite striking result in this direction says
that there are even holomorphic families of pairwise non-equivalent holomorphic
embeddings (referring to holomorphic automorphisms of the source and target in
the definition below). Here non-straightenable for an embedding Ck into Cn means
to be not equivalent to the standard embedding.

Definition 7. Two embeddings ˆ;‰WX ,! Cn are equivalent if there exist
automorphisms ' 2 Aut.Cn/ and  2 Aut.X/ such that ' ıˆ D ‰ ı  .

Theorem 8. see [33]. Let n; l be natural numbers with n � l C 2. There exist, for
k D n � l � 1, a family of holomorphic embeddings of Cl into Cn parametrized by
Ck , such that for different parameters w1 ¤ w2 2 Ck the embeddings  w1 ;  w2 W
Cl ,! Cn are non-equivalent.

We would like to mention a nice application of Theorem 8 to actions of compact
(or equivalently complex reductive, see [31]) groups on Cn. It was a long-standing
problem, whether all holomorphic actions of such groups on affine space are linear
after a change of variables (see for example the overview article [24]). The first
counterexamples to that (Holomorphic Linearization) problem were constructed
by Derksen and the first author in [9]. The method from [9] is holomorphic in a
parameter and therefore applied to our parametrized situation leads to the following
result ([33])
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Theorem 9. For any n � 5 there is a holomorphic family of C�-actions on Cn

parametrized by Cn�4

C
n�4 � C

� � C
n ! C

n; .w; ; z/ 7! w.z/

so that for different parameters w1 ¤ w2 2 Cn�4 there is no equivariant
isomorphism between the actions w1 and w2 .

The linearization problem for holomorphic C�-actions on Cn is thus solved to
the positive for n D 2 by Suzuki [39] and still open for n D 3. For n D 4 there are
uncountably many actions (non-linearizable ones among them) [8] and for n � 5

Theorem 9 implies that there are families. Moreover, there are families including a
linear action as a single member of the family;

Theorem 10. For any n � 5 there is a holomorphic family of C�-actions on Cn

parametrized by C

C � C
� � C

n ! C
n .w; ; z/ 7! w.z/

so that for different parameters w1 ¤ w2 2 C there is no equivariant isomorphism
between the actions w1 and w2 . Moreover, the action 0 is linear.

Open Problem: Suppose X is a Stein manifold with density property and Y � X

is a closed submanifold. Is there always another proper holomorphic embedding
' W Y ,! X which is not equivalent to the inclusion i W Y ,! X?

We should remark that an affirmative answer to this question is stated in [41], but
the author apparently had another (weaker) notion of equivalence in mind.

Here comes the essentially complete list of examples of Stein manifolds known
to have the density property:

List of examples of Stein manifolds known to have the density property:

1. X D G=R where G is linear algebraic and R a reductive subgroup has ADP
and thus DP (defined on p. 2), except for X D C and X D .C�/n. (this
includes all examples known from the work of Andersén–Lempert and Varolin
and Varolin–Toth and Kaliman–Kutzschebauch, the final result is proven by
Donzelli–Dvorsky–Kaliman [7]);

2. The manifoldsX given as a submanifold in C
nC2 with coordinates u 2 C, v 2 C,

z 2 C
n by the equation uv D p.z/, where the zero fiber of the polynomial

p 2 CŒCn� is smooth (otherwise X is not smooth), have ADP [28].
3. The only known non-algebraic example with DP are the manifolds X given as

a submanifold in C
nC2 with coordinates u 2 C, v 2 C, z 2 C

n by the equation
uv D f .z/, where the zero fiber of the holomorphic function f 2 O.Cn/ is
smooth (otherwise X is not smooth) [28].

4. Danilov–Gizatullin surfaces have ADP [6].
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A variant of density property for (normal) singular varieties (considering vector
fields vanishing on a subvariety in particular on the singular locus Sing.X/) was
introduced in [34]. A version of Andersén–Lempert theorem holds in this situation
which allows to approximate local movements taking place in the smooth part of X
by automorphisms fixing the singular locus. It is proven in [34] that normal affine
toric varieties have this property. Another version of this generalization considering
holomorphic automorphisms of Cn fixing a codimension two subvariety can be
found in [27]. For more information on the density property we refer to the overview
article [29].

3 Flexibility

3.1 Definition and Main Features

The notion of flexibility is the most recent among the described properties. It was
defined in [4]. First the algebraic version:

Definition 11. Let X be a reduced algebraic variety defined over C (any
algebraically closed field would do). We let SAut.X/ denote the subgroup
of Autalg.X/ generated by all algebraic one-parameter unipotent subgroups of
Autalg.X/, i.e., algebraic subgroups isomorphic to the additive group Ga (usually
denoted CC in complex analysis). The group SAut.X/ is called the special
automorphism group of X ; this is a normal subgroup of Autalg.X/.

Definition 12. We say that a point x 2 Xreg is algebraically flexible if the tangent
space TxX is spanned by the tangent vectors to the orbits H:x of one-parameter
unipotent subgroupsH 
 Autalg.X/. A variety X is called algebraically flexible if
every point x 2 Xreg is.

Clearly, X is algebraically flexible if one point of Xreg is and the group Autalg.X/

acts transitively on Xreg.
The main feature of algebraic flexibility is the following result from [4] (whose

proof mainly relies on the Rosenlicht theorem);

Theorem 13. For an irreducible affine variety X of dimension � 2, the following
conditions are equivalent.

(1) The group SAut.X/ acts transitively on Xreg.
(2) The group SAut.X/ acts infinitely transitively on Xreg.
(3) X is an algebraically flexible variety.

The paper [4] also contains versions of simultaneous transitivity (where the
space Xreg is stratified by orbits of SAut.X/) and versions with jet-interpolation.
Moreover, it was recently remarked that the theorem holds for quasi-affine varieties,
see Theorem 1.11. in [11].
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The holomorphic version of this notion is much less explored, it is obviously
implied by the algebraic version in case X is an algebraic variety.

Definition 14. We say that a point x 2 Xreg is holomorphically flexible if the
tangent space TxX is spanned by the tangent vectors of completely integrable
holomorphic vector fields, i.e., holomorphic one-parameter subgroups in Authol.X/.
A complex manifoldX is called holomorphically flexible if every point x 2 Xreg is.

Clearly,X is holomorphically flexible if one point ofXreg is and the group Authol.X/

acts transitively on Xreg.
In the holomorphic category it is still open whether an analogue of Theorem 13

holds.

Open Problem: Are the three equivalences from Theorem 13 true for an
irreducible Stein space X? More precisely, if an irreducible Stein space X is
holomorphically flexible, does the holomorphic automorphism group Authol.X/ act
infinitely transitively on Xreg?

It is clear that holomorphic flexibility of X implies that Authol.X/ acts transi-
tively on Xreg, i.e., the implication .3/ ) .1/ is true. Indeed, let i ; i D 1; 2; : : : ; n

be completely integrable holomorphic vector fields which span the tangent space
TxX at some point x 2 Xreg, where n D dimX . If  i W C � X ! X; .t; x/ 7!
 it .x/ denote the corresponding one-parameter subgroups, then the map C

n !
X; .t1; t2; : : : ; tn/ 7!  ntn ı  n�1

tn�1
ı 	 	 	 ı 1t1 .x/ is of full rank at t D 0 and thus by

the Inverse Function Theorem a local biholomorphisms from a neighborhood of 0
to a neighborhood of x. Thus the Authol.X/-orbit through any point of Xreg is open.
If all orbits are open, each orbit is also closed, being the complement of all other
orbits. Since Xreg is connected, this implies that it consists of one orbit.

The inverse implication .1/ ) .3/ is also true. For the proof we appeal to the
Hermann–Nagano Theorem which states that if g is a Lie algebra of holomorphic
vector fields on a manifold X , then the orbit Rg.x/ (which is the union of all
points z over any collection of finitely many fields v1; : : : vN 2 g and over all times
.t1; : : : ; tN / for which the expression z D  NtN ı  N�1

tN�1
ı 	 	 	 ı  1t1 .x/ is defined)

is a locally closed submanifold and its tangent space at any point y 2 Rg.x/ is
TyRg.x/ D spanv2gv.y/. We consider the Lie algebra g generated by completely
integrable holomorphic vector fields. Since by the assumption the orbit is Xreg

we conclude that Lie combinations of completely integrable holomorphic vector
fields span the tangent space at each point in Xreg. Now suppose at some point
x0 the completely integrable fields do not generate Tx0Xreg, i.e., there is a proper
linear subspace W of Tx0Xreg, such that v.x0/ 2 W for all completely integrable
holomorphic fields v. Any Lie combination of completely integrable holomorphic
fields is a limit (in the compact open topology) of sums of completely integrable
holomorphic fields due to the formula fv;wg D limt!0

��

t .w/�w
t

for the Lie bracket
(��
t .w/ is a completely integrable field pulled back by an automorphism, thus

completely integrable!). Therefore all Lie combinations of completely integrable
fields evaluated at x0 are contained in W � Tx0Xreg, a contradiction.
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In order to prove the remaining implication .3/ ) .2/ one would like to find
suitable functions f 2 Ker for a completely integrable holomorphic vector field  ,
vanishing at one point and not vanishing at some other point of X . In general these
functions may not exist, an orbit of  can be dense in X .

At this point it is worth mentioning that for a Stein manifold DP implies all
three conditions from Theorem 13. For flexibility this is lemma 26 below, infinite
transitivity (with jet-interpolation) is proved by Varolin in [41].

Also the generalized form of DP for Stein spaces defined in [34] implies all three
conditions from Theorem 13.

3.2 Examples

Examples of algebraically flexible varieties are homogeneous spaces of semisimple
Lie groups (or extensions of semisimple Lie groups by unipotent radicals), toric
varieties without non-constant invertible regular functions, cones over flag varieties,
and cones over Del Pezzo surfaces of degree at least 4, normal hypersurfaces of the
form uv D p. Nx/ in C

nC2
u;v; Nx . Moreover, algebraic subsets of codimension at least 2 can

be removed as recently shown by Flenner, Kaliman, and Zaidenberg in [11]

Theorem 15. Let X be a smooth quasi-affine variety of dimension � 2 and Y � X

a closed subscheme of codimension � 2. If X is flexible, then so is X n Y .

4 Oka–Forstnerič Manifolds

4.1 Historical Introduction to Oka Theory and Motivational
Examples

The notion of Oka–Forstnerič manifolds is quite new (it was introduced by
Forstnerič in [13], who called them Oka manifolds following a suggestion of
Lárusson who underlined the importance of such a notion already in [35]) but
the development merging into this important notion, called Oka theory, has a long
history. It started with Oka’s theorem from 1939 that the second (multiplicative)
Cousin problem on a domain of holomorphy is solvable with holomorphic functions
if it is solvable with continuous functions. This implies that a holomorphic line
bundle on such a domain is holomorphically trivial if it is topologically trivial.

Let us recall how the generalizations of the classical one variable results of
Mittag–Leffler (construct meromorphic functions with prescribed main parts) and
Weierstrass (construct meromorphic functions with prescribed zeros and poles) are
generalized to several complex variables.
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Let us recall the first (additive) Cousin problem which arises from the
Mittag–Leffler problem, generalizing the famous Mittag–Leffler theorem from
one variable to several variables: Given data f.Ui ;mi/g, where Ui is an open cover
of a complex space X and mi 2 M .Ui / is a meromorphic function on Ui such that
every difference fij D mi jUij � mj jUij is holomorphic on Uij D Ui \ Uj , find a
global meromorphic functionm 2 M .X/ onX such thatmjUi �mi is holomorphic
on Ui for all i .

For solving this Mittag–Leffler problem one first solves the associated additive
Cousin problem, defined as follows: The collection fij 2 O.Uij/ defines a 1-cocycle
on the cover Ui with values in the sheaf O of holomorphic functions, meaning that
for each triple i; j; k of indexes we have

fij C fjk C fki D 0 on Uijk D Ui \ Uj \ Uk:
Given such a 1-cocycle ffijg, the Cousin I problem asks for a collection of

holomorphic functions fj 2 O.Uj / (a 0-cochain) such that

fi � fj D fij on Uij:

One expresses this by saying the cocycle splits or it is a 1-coboundary. From the
solution to the additive Cousin problem one obtains by setting mjUi D mi � fi
a well-defined (since mi � mj D fij D fi � fj on Uij) global meromorphic
functionm 2 M .X/ solving the Mittag–Leffler problem.

The vanishing of the first Cech cohomology group H1.X;O/ with coefficients
in the sheaf O means that every 1-cocycle splits on a refinement of the covering.
In other wordsH1.X;O/ D 0 implies that every 1-cocycle becomes a 1-coboundary
on a refinement, so every Mittag–Leffler problem is solvable, in particular by
Cartan’s Theorem B this is true for any Stein manifold.

The second (multiplicative) Cousin Problem arises from the problem of finding
meromorphic functions with prescribed zeros and poles, solved by Weierstrass in
one variable. Given data f.Ui ;mi /g, whereUi is an open cover of a complex spaceX
and mi 2 M �.Ui / is an invertible (i.e., not vanishing identically on any connected
component) meromorphic function on Ui such that for any pair of indexes the
quotient fij WD gig

�1
j is a nowhere vanishing holomorphic function fij 2 O�.Uij/.

Our data defines a divisor D on X and the problem is to find a global meromorphic
functionm 2 M .X/ defining this divisor, meaning, such a function thatmm�1

i is a
nowhere vanishing holomorphic function on Ui for every i . A solution is obtained
by solving the second Cousin problem: Given a collection fij of nowhere vanishing
holomorphic functions fij W Uij ! C� satisfying the 1-cocycle condition

fii D 1 fijfji D 1 fijfjkfki D 1

on Ui , Uij, Uijk respectively, find nowhere vanishing holomorphic functions fj W
Uj ! C� such that

fi D fijfj on Uij:
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If such fi exist then gif
�1
i D gj f

�1
j on Uij which defines a solution,

a meromorphic functionm 2 M .X/ representing our divisor.
The following cohomological formulation and proof of Oka’s Theorem are

standard, see e.g. [14] Theorem 5.2.2..

Theorem 16. If X is a complex space satisfying H1.X;O/ D 0, then the homo-
morphism H1.X;O�/ ! H1.X;C�/ induced by the sheaf inclusion O� ,! C� is
injective. In particular if a multiplicative Cousin problem is solvable by continuous
functions, then it is solvable by holomorphic functions. If in addition we have
H2.X;O/ D 0, then the above map is an isomorphism.

Proof. Consider the exponential sheaf sequence (where �.f / D e2�if ).

0 �� Z ��

id

��

O
�

��

��

O� ��

��

1

0 �� Z �� C
�

�� C� �� 1

Since due to partition of unity H1.X;C/ D H2.X;C/ D 0 the relevant portion
of long exact cohomology sequence is:

H1.X;Z/ �� H1.XO/ ��

��

H1.X;O�/
c1

��

��

H2.X;Z/ �� H2.X;O/

��
0 �� H1.X;C�/

c1
�� H2.X;Z/ �� 0

The map in the bottom row is an isomorphism H1.X;C�/ Š H2.X;Z/.
If H1.X;O/ D 0 the (1-st Chern class) map c1 in the first row is injective

0 ! H1.X;O�/
c1�! H2.X;Z/ Š H1.X;C�/. If in addition H2.X;O/ D 0 this

map is an isomorphism. �

By Oka’s theorem on a complex space with H1.X;O/ D H2.X;O/ D 0

(by Theorem B this holds in particular on a Stein space) the natural map from
equivalence classes of holomorphic line bundles into equivalence classes of contin-
uous (complex) line bundles is an isomorphism. For higher rank vector bundles this
cohomological proof fails due to non-commutativity of the relevant cohomology
groups. Nevertheless, Grauert was able to prove the corresponding statement in
higher dimensions. The following theorem is the holomorphic counterpart of
Quillen’s and Suslin’s result that projective modules over affine space are free.

Theorem 17. For a Stein space X the natural map Vectrhol.X/ ! Vectrtop.X/
of equivalence classes of rank r complex vector bundles is a bijection for every
r 2 N.
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This theorem follows from the following result, named Grauert’s Oka principle
by H. Cartan, obtained by Grauert [20], Grauert and Kerner [21], and Ramspott [36]
(see Theorem 5.3.2. in [14]).

Theorem 18. If X is a Stein space and � W Z ! X is a holomorphic fiber bundle
with a complex homogeneous fiber whose structure group is a complex Lie group
acting transitively on the fiber, then the inclusion �hol.X;Z/ ,! �cont.X;Z/ of the
space of global holomorphic sections into the space of global continuous sections is
a weak homotopy equivalence. In particular every continuous section is homotopic
to a holomorphic section.

An equivariant version of Grauerts Oka principle with respect to an action of a
reductive complex Lie group has been proven by Heinzner and Kutzschebauch [23].
This principle in particular implies that the method of constructing counterexamples
to the linearization problem, found by Schwarz in the algebraic setting [38], does not
work in the holomorphic category. Moreover, the above-mentioned Oka principle
was recently used by Kutzschebauch, Lárusson, and Schwarz [32] to show among
others a strong linearization result: A generic holomorphic action, which is locally
over a common categorical quotient isomorphic to a linear action on C

n, is in fact
globally isomorphic to that linear action.

The next step in Oka theory was made by Gromov in his seminal paper [22],
which marks the beginning of modern Oka theory. He introduced the notion of
dominating spray and ellipticity (see the last section). The great improvement
compared to Grauert’s Oka principle is the fact that not the fiber together with
the transition maps of the bundle, but only certain properties of the fiber totally
independent of transition maps allow to derive the conclusions. In the above-cited
classical works, the structure group was indeed assumed to be a complex Lie
group. However, in modern Oka theory the structure group is completely irrelevant.
Moreover, modern Oka theory allows to consider sections of stratified elliptic
submersions, generalizing the case of locally trivial fiber bundles. The emphasis
shifted from the cohomological to the homotopy theoretic aspect, focusing on those
analytic properties of a complex manifold Y which ensure that every continuous
map from a Stein space X to Y is homotopic to a holomorphic map, with natural
additions concerning approximation and interpolation of maps that are motivated
by the extension and approximation theorems for holomorphic functions on Stein
spaces. The approximation and extension are needed for generalizing from maps
X ! Y (which can be considered as sections of the trivial bundle X � Y ! X

with fiber Y ) to sections of holomorphic submersionsZ ! X with Oka–Forstnerič
fibers and moreover to stratified elliptic submersions.

4.2 Definition and Main Features

Definition 19. A complex manifold Y is an Oka–Forstnerič manifold if every
holomorphic map f W K ! Y from (a neighborhood of) a compact convex set
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K � Cn (any dimension n) can be approximated uniformly on K by entire maps
Cn ! Y .

The property in this definition is also called Convex Approximation Property (CAP),
if the dimension n is fixed we speak of .CAP/n, thus (CAP) means .CAP/n for all n.
By work of Forstnerič (CAP) is equivalent to any of 13 different Oka properties, one
of them is mentioned in the following Theorem which includes all versions of the
classical Oka–Grauert principle discussed in the Introduction. This theorem answers
Gromov’s question whether Runge approximation on a certain class of compact
sets in Euclidean spaces suffices to infer the Oka property. Since all these 13 Oka
properties are equivalent characterizations of the same class of manifolds Forstnerič
called them Oka manifolds. In order to honor his work on the equivalence of all
the Oka properties the author finds the notation Oka–Forstnerič manifolds more
appropriate.

Theorem 20. Let � W Z ! X be a holomorphic submersion of a complex space Z
onto a reduced Stein space X . Assume that X is exhausted by a sequence of open
subsets U1 � U2 � 	 	 	 [j Uj D X such that each restriction ZjUj ! Uj is a
stratified holomorphic fiber bundle whose fibers are Oka manifolds. Then sections
X ! Z satisfy the following

Parametric Oka property (POP): Given a compact O.X/-convex subset K
of X , a closed complex subvariety A of X, compact sets P0 � P in a Euclidean
space Rm, and a continuous map f W P �X ! Z such that

(a) for every p 2 P , f .p; 	/ W X ! Z is a section of Z ! X that is
holomorphic on a neighborhood ofK (independent of p) and such that f (p, 	)jA
is holomorphic on A, and

(b) f (p, 	) is holomorphic on X for every p 2 P0
there is a homotopy ft W P � X ! Z .t 2 Œ0; 1�/; with f0 D f , such that ft
enjoys properties .a/ and .b/ for all t 2 Œ0; 1�, and also the following hold:

(i) f1.p; 	/ is holomorphic on X for all p 2 P
(ii) ft is uniformly close to f on P �K for all t 2 Œ0; 1�

(iii) ft D f on .P0 �X/[ .P � A/ for all t 2 Œ0; 1�
As a general reference for Oka theory we refer to the monograph [14] and the

overview article [15].

4.3 Applications and Examples

The number of applications of the Oka theory is growing, we already indicated
the classical Cousin problems and Grauert’s classification of holomorphic vector
bundles over Stein spaces in the introduction. The only application we would like
to mention is a recent solution to a problem posed by Gromov, called the Vaserstein
problem. It is a natural question about the K1-group of the ring of holomorphic
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functions or in simple terms it is asking whether (and when) in a matrix whose
entries are holomorphic functions (parameters) the Gauss elimination process can
be performed in a way holomorphically depending on the parameter. This is to our
knowledge the only application where a stratified version of an Oka theorem is
needed, i.e., no proof using a non-stratified version is known.

Theorem 21. (see [25]). Let X be a finite dimensional reduced Stein space and
f WX ! SLm.C/ be a holomorphic mapping that is null-homotopic. Then there
exist a natural numberK and holomorphic mappingsG1; : : : ; GK WX ! Cm.m�1/=2
such that f can be written as a product of upper and lower diagonal unipotent
matrices

f .x/ D
�

1 0

G1.x/ 1

��
1 G2.x/

0 1

�
: : :

�
1 GK.x/

0 1

�

for every x 2 X .

Here the assumption null-homotopic means that the map is homotopic through
continuous maps to a constant map (matrix), which since Grauert’s Oka principle,
Theorem 18, is equivalent of being null-homotopic through holomorphic maps.
This is an obvious necessary condition since multiplying all lower/upper diagonal
matrices in the product by t 2 Œ0; 1� yields a homotopy to the (constant) identity
matrix. It is a result of Vaserstein that null-homotopic is also sufficient in order
to factorize the map as a product with continuous entries. Thus we have the Oka
principle. For the existence of a holomorphic factorization there are only topological
obstructions, it exists iff a topological factorization exists.

Now we come to examples of Oka–Forstnerič manifolds:
A Riemann surface is an Oka–Forstnerič manifold iff it is non-hyperbolic, i.e.,

one of P1 C, C�, or a compact torus C=� .
Oka–Forstnerič manifolds enjoy the following functorial properties, for elliptic

manifolds (see Definition below) these properties are unknown.

• If � W E ! B is a holomorphic covering map of complex manifolds then B is
Oka–Forstnerič iff E is ([14] Proposition 5.5.2).

• IfE andX are complex manifolds and � W E ! X is a holomorphic fiber bundle
whose fiber is an Oka–Forstnerič manifold, the X is an Oka–Forstnerič manifold
iff E is ([14] Theorem 5.5.4).

• If a complex manifold Y is exhausted by open domains D1 � D2 � 	 	 	 �
[1
jD1 D Y such that every Dj is an Oka–Forstnerič manifold, then Y is

an Oka–Forstnerič manifold. In particular every long Cn is an Oka–Forstnerič
manifold. (A manifold is called a long Cn if all Dj are biholomorphic to Cn.
If the inclusion Di � DiC1 is not a Runge pair, on those manifolds the ring of
holomorphic functions may consist of constants only!!)

The main source of examples are the elliptic manifolds (see Definition 22 below),
a notion invented by Gromov. This includes by our scheme (1) of implications
all holomorphic flexible manifolds and all manifolds with the density property,
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in particular complex Lie groups and homogeneous spaces of Lie groups, the
manifolds from the classical theorems of Oka and Grauert. For a Stein manifold
ellipticity is equivalent to being an Oka–Forstnerič manifold. For general manifolds
this is an open question. One possible counterexample is the complement of the ball
in Cn, the set fz 2 Cn W jz1j2 C jz2j2 C : : : C jznj2 > 1g. It was recently shown by
Andrist and Wold [5] that it is not elliptic for n � 3, whereas it has two “nearby”
properties implied by being an Oka–Forstnerič manifold, strongly dominable and
CAPn�1 ([16]).

5 Proof of the Implications from Scheme (1): Ellipticity
in the Sense of Gromov

First remark that the two bottom up arrows in Scheme (1) are obvious from the
definitions. In order to prove the left–right arrows let’s define the notions introduced
by Gromov [22] revolutionizing Oka theory (see also [14, Chap. 5]):

Definition 22. Let Y be a complex manifold.

(1) A holomorphic spray on Y is a triple .E; �; s/ consisting of a holomorphic
vector bundle � W E ! Y (a spray bundle) and a holomorphic map s W E ! Y

(a spray map) such that for each y 2 Y we have s.0y/ D y.
(2) A spray .E; �; s/ on Y is dominating on a subset U � Y if the differential

d0y s W T0yE ! TyY maps the vertical tangent space Ey of T0yE surjectively
onto TyY for every y 2 U , s is dominating if this holds for all y 2 Y .

(3) A complex manifold Y is elliptic if it admits a dominating holomorphic spray.

The main result of Gromov can now be formulated in the following way.

Theorem 23. An elliptic manifold is an Oka–Forstnerič manifold.

Of course Gromov proved the full Oka principle for elliptic manifolds. This proof
can now be decomposed in two stages. The main (and the only) use of ellipticity
is to prove a homotopy version of Runge (Oka–Weil) theorem, which in particular
gives CAP (= Oka–Forstnerič) and the second stage is CAP implies Oka principle.

Gromov’s theorem proves our implication

holomorphically flexible H) Oka � �Forstneric manifold

using the following example of a spray given by Gromov and Lemma 25;

Example 24. Given completely integrable holomorphic vector fields 1; 2; : : : ; N
on a complex manifoldX such that at each point x 2 X they span the tangent space,
span.1.x/; 2.x/; : : : ; N .x/ D TxX . Let  i W C � X ! X; .t; x/ 7!  it .x/

denote the corresponding one-parameter subgroups; Then the map s W CN �X ! X
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defined by ..t1; t2; : : : ; tn/; x/ 7!  ntn ı n�1
tn�1

ı 	 	 	 ı 1t1.x/ is of full rank at t D 0 for
any x. It is therefore a dominating spray map from the trivial bundleX �CN ! X .

Lemma 25. If a Stein manifoldX is holomorphically flexible, then there are finitely
many completely integrable holomorphic fields which span the tangent space TxX
at every point x 2 X
Proof. To prove that there are finitely many completely integrable holomorphic
fields that span each tangent space, let us start with n fields 1; : : : ; n which span
the tangent space at some point x0 and thus outside a proper analytic subset A. The
set A may have countably many irreducible componentsA1;A2; A3; : : :.

It suffices now to find a holomorphic automorphism ˆ 2 Authol.X/ such that
ˆ.X n A/ \ Ai ¤ ; for every i D 1; 2; 3; : : :. Indeed, for such an automorphism
ˆ the completely integrable holomorphic vector fieldsˆ�.1/; : : : ; ˆ�.n/ span the
tangent space at a general point in each Ai , i.e., together with the fields 1; : : : ; n
they span the tangent space at each point outside an analytic subset B of a smaller
dimension than A. Then the induction by dimension implies the desired conclusion.

In order to construct ˆ consider a monotonically increasing sequence of
compacts K1 � K2 � : : : in X such that

S
i Ki D X and a closed imbedding

� W X ,! Cm. For every continuous map ' W X ! Cm denote by jj'jji the standard
norm of the restriction of ' to Ki . Let d be the metric on the space Authol.X/ of
holomorphic automorphisms of X given by the formula

d.ˆ;‰/ D
1X
iD1

2�i .min.jjˆ�‰jji ; 1/C min.jjˆ�1 �‰�1jji ; 1/ (4.1)

where automorphismsˆ˙1; ‰˙1 2 Authol.X/ are viewed as continuous maps from
X to Cm. This metric makes Authol.X/ a complete metric space.

Set Zi D f‰ 2 Authol.X/ W ‰.Ai / \ .X n A/ ¤ ;g. Note that Zi is open in
Authol.X/ and let us show that it is also everywhere dense.

Since completely integrable holomorphic fields generate the tangent space at
each point of X , we can choose such a field  non-tangent to Ai . Then for every
‰ 2 Authol.X/ its composition with general elements of the flow induced by  is
inZi . That is, a perturbation of‰ belongs toZi which proves thatZi is everywhere
dense in Authol.X/. By the Baire category theorem the set

T1
iD1 Zi is not empty

which yields the existence of the desired automorphism. �

Since the question whether holomorphic maps are approximable by morphisms is
an important issue in algebraic geometry, we would like to remark at this point that
there is an application of Oka-theory to this question. Clearly there is an obvious
notion of algebraic spray, thus algebraic ellipticity. Also the proof of the above
lemma generalizes showing that an algebraically flexible manifold is algebraically
elliptic. These algebraically elliptic manifolds satisfy an algebraic version of CAP.
However, in the algebraic category, simple examples show that algebraic CAP does
not imply the full algebraic Oka principle, but only a weaker statement that being
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approximable by algebraic morphisms is a homotopy invariant property (at least
for maps from affine algebraic manifolds to algebraically elliptic manifolds). For a
precise treatment of this question we refer to [14] chapter 7.10.

The implication DP H) holomorphically flexible is contained in the following
Lemma.

Lemma 26. If a Stein manifold X has the density property, the completely inte-
grable holomorphic vector fields span the tangent space at each point x 2 X .

Proof. It follows from the density property that Lie combinations of completely
integrable holomorphic vector fields span the tangent space TxX at any given point
x 2 X . Observe that every Lie bracket Œ�; 
� of completely integrable holomorphic
vector fields can be approximated by a linear combination of such fields which
follows immediately from the equality Œ�; 
� D limt!0

��

t .�/��
t

where �t is the
flow generated by 
. Thus the completely integrable holomorphic vector fields span
TxX at any x 2 X . �

6 Concluding Remarks and Open Problems

There is also another property which has similar consequences as the density
property for holomorphic automorphisms preserving a volume form.

Definition 27. Let a complex manifoldX be equipped with a holomorphic volume
form ! (i.e., ! is nowhere vanishing section of the canonical bundle). We say that
X has the volume density property (VDP) with respect to ! if in the compact-open
topology the Lie algebra generated by completely integrable holomorphic vector
fields � such that �.!/ D 0 is dense in the Lie algebra of all holomorphic vector
fields that annihilate ! (note that condition �.!/ D 0 is equivalent to the fact that
� is of !-divergence zero). If X is affine algebraic we say that X has the algebraic
volume density property (AVDP) with respect to an algebraic volume form ! if
the Lie algebra generated by completely integrable algebraic vector fields � such
that �.!/ D 0, coincides with the Lie algebra of all algebraic vector fields that
annihilate !.

For Stein manifolds with the volume density property (VDP) an
Andersén–Lempert theorem for volume preserving maps holds. The implication
(AVDP) ) (VDP) holds but its proof is not trivial (see [30]). Also (VDP)
) holomorphic flexibility is true (see [29]). Thus we can have a scheme of
implications like (1) with (DP) replaced by (VDP) and (ADP) replaced by (AVDP).

Volume density property and density property are not implied by each other, if
X has density property it may not even admit a holomorphic volume form, if X
has volume density property with respect to one volume form it may not have it
with respect to another volume form and there is no reason to expect it has density
property. For example, .C�/n for n > 1 has (algebraic) volume density property
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with respect to the Haar form, it does not have algebraic density property [2] and
it is expected not to have density property. It is a potential counterexample to the
reverse of the left horizontal arrow in scheme (1).

Concerning the reverse implications in scheme (1): The variety .C�/n; n > 1 is
an obvious counterexample to the reverse of the right vertical arrow, the others are
more delicate.

Open Problem: Which of the other three implications in scheme (1) are reversible
for a Stein manifold (resp. smooth affine algebraic variety for the vertical arrow)?

The main problem here is that no method is known how to classify (meaning
exclude the existence of any other than the obvious) completely integrable holomor-
phic vector fields on Stein manifolds with any of our flexibility properties. There is
not even a classification of completely integrable holomorphic vector fields on C2

available.
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Strongly Residual Coordinates over AŒx�

Drew Lewis

Abstract For a commutative ring A, a polynomial f 2 AŒx�Œn� is called a strongly
residual coordinate if f becomes a coordinate (over A) upon going modulo x, and
f becomes a coordinate (over AŒx; x�1�) upon inverting x. We study the question
of when a strongly residual coordinate in AŒx�Œn� is a coordinate, a question closely
related to the Dolgachev–Weisfeiler conjecture. It is known that all strongly residual
coordinates are coordinates for n D 2 over an integral domain of characteristic zero.
We show that a large class of strongly residual coordinates that are generated by
elementaries over AŒx; x�1� are in fact coordinates for arbitrary n, with a stronger
result in the n D 3 case. As an application, we show that all Vénéreau-type
polynomials are 1-stable coordinates.

MSC : 14R10, 14R25

1 Introduction

Let A (and all other rings) be a commutative ring with one. An A-coordinate (if A
is understood, we simply say coordinate; some authors prefer the term variable)
is a polynomial f 2 AŒn� for which there exist f2; : : : ; fn 2 AŒn� such that
AŒf; f2; : : : ; fn� D AŒn�. It is natural to ask when a polynomial is a coordinate; this
question is extremely deep and has been studied for some time. There are several
longstanding conjectures giving a criteria for a polynomial to be a coordinate:
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Conjecture 1 (Abhyankar–Sathaye). Let A be a ring of characteristic zero, and let
f 2 AŒn�. If AŒn�=.f / Š AŒn�1�, then f is an A-coordinate.

Conjecture 2 (Dolgachev–Weisfeiler). Suppose A D CŒr�, and let f 2 AŒn�.
If AŒf � ,! AŒn� is an affine fibration, then f is an A-coordinate.

Conjecture 3 (Stable coordinate conjecture). Suppose A D C
Œr�, and let f 2 AŒn�.

If f is a coordinate in AŒnCm� for some m > 0, then f is a coordinate in AŒn�.

The Abhyankar–Sathaye conjecture was shown for A a field and n D 2 by
Abhyankar and Moh [1] and Suzuki [15], independently; this was later generalized
to A a Q-algebra (still n D 2) by van den Essen and van Rossum [17]. The n D 2

case of the Dolgachev–Weisfeiler conjecture follows from the results of Asanuma
[2] and Hamann [7]. The case where both n D 3 andA D C follows from a theorem
of Sathaye [13]; see [5] for more details on the background of the Dolgachev–
Weisfeiler conjecture. The stable coordinates conjecture is known for n D 2, due to
van den Essen and van Rossum [17]; van den Essen [16] also showed the r D 0 part
of the n D 3 stable coordinates conjecture.

There are several examples of polynomials satisfying the hypotheses of these
conjectures whose status as a coordinate is unresolved. Many are constructed
via a slight variation of the following classical method for constructing exotic
automorphisms of AŒn�: let x 2 A be a nonzero divisor. One may easily construct
elementary automorphisms (those that fix n � 1 variables) of AŒn�x ; then, one can
carefully compose these automorphisms (over Ax) to produce an endomorphism of
AŒn�. It is a simple application of the formal inverse function theorem to see that
such maps must, in fact, be automorphisms of AŒn�. The well-known Nagata map
arises in this manner:

� D .y C x.xz � y2/; z C 2y.xz � y2/C x.xz � y2/2/

D .y; z C y2

x
/ ı .y C x2z; z/ ı .y; z � y2

x
/ (1)

The Nagata map is somewhat atypical, in that it arises as a conjugation. A more
typical example is perhaps

� 0 D .y C x.x2z � y2/; z C 2xyz C 6y2.x2z � y2/

C .1C 6xy/.x2z � y2/2 C 2.x2z � y2/3/

D .y; z C 2y3

x
/ ı .y; z C y2

x2
/ ı .y C x3z; z/ ı .y; z � y2

x2
/ (2)

These two examples are generalized in Lemma 8 and Theorem 13, respectively.
While � and � 0 are generated over CŒx; x�1� by elementary automorphisms,
Shestakov and Umirbaev [14] famously proved that they are wild (i.e., not generated
by elementary and linear automorphisms) as automorphisms of CŒx; y; z� over C.
They are, however, both stably tame ([3]).
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When interested in producing exotic polynomials, we may relax the construction
somewhat; let y be a variable of AŒn�, and compose elementary automorphisms of
A
Œn�
x until the resulting map has its y-component in AŒn�. For example, the Vénéreau

polynomial f D yCx.xzCy.yuCz2// arises as the y-component of the following
automorphism over CŒx; x�1�

�D .y C x2z; z; u/ ı
�
y; z C y.yu C z2/

x
; u � 2z.yu C z2/

x
� y.yu C z2/2

�
(3)

This type of construction motivates the following definition:

Definition 1. A polynomial f 2 AŒx�Œn� is called a strongly residual coordinate
if f is a coordinate over AŒx; x�1� and if Nf , the image modulo x, is a coordinate
over A.

Remark 1. IfA is a field, then a strongly residual coordinate is a residual coordinate
(i.e., AŒx; f � ,! AŒx�Œn� is an affine fibration).

The Vénéreau polynomial is perhaps the most widely known example of a
strongly residual coordinate that satisfies the hypotheses of Conjectures 1, 2, and 3
(with A D CŒx�), yet it is an open question whether it is a coordinate (see [6, 8, 18],
and [11], among others, for more on that particular question).

One may observe that the second automorphism in the above composition (3) is
essentially the Nagata map, and is wild over CŒx; x�1�. The wildness of this map is
a crucial difficulty in resolving the status of the Vénéreau polynomial. Our present
goal is to show that a large class of strongly residual coordinates generated by
maps that are elementary over CŒx; x�1� are coordinates. Our methods are quite
constructive and algorithmic, although the computations can become unwieldy
quite quickly. One application is to show that all Vénéreau-type polynomials, a
generalization of the Vénéreau polynomial studied by the author in [11], are one-
stable coordinates (coming from the fact that the Nagata map is one-stably tame).
Additionally, we also very quickly recover a result of Russell (Corollary 6) on
coordinates in 3 variables over a field of characteristic zero.

2 Preliminaries

Throughout, we set R D AŒx� and S D Rx D AŒx; x�1�. We adopt the standard
notation for automorphism groups of the polynomial ring AŒn� D AŒz1; : : : ; zn�:

1. GAn.A/ denotes the general automorphism group AutSpecA.SpecAŒn�/, which is
anti-isomorphic to AutA AŒn� (some authors choose to define it as the latter).

2. EAn.A/ denotes the subgroup generated by the elementary automorphisms; that
is, those fixing n � 1 variables.

3. TAn.A/ D hEAn.A/;GLn.A/i is the tame subgroup.
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4. Dn.A/ � GLn.A/ is the subgroup of diagonal matrices.
5. Pn.A/ � GLn.A/ is the subgroup of permutation matrices.
6. GPn.A/ D Dn.A/Pn.A/ � GLn.A/ is the subgroup of generalized permutation

matrices.

We also make one non-standard definition when working overR D AŒx�:

7. IAn.R/ D f� 2 GAn.R/ j � � id .mod x/g is the subgroup of all
automorphisms that are equal to the identity modulo x. It is the kernel of the
natural map GAn.R/ ! GAn.A/.

Remark 2. In fact, the surjection GAn.R/ ! GAn.A/ splits (by the natural
inclusion), so we have GAn.R/ Š IAn.R/ Ì GAn.A/.

Definition 2. Let f1; : : : fm 2 RŒn�.
1. .f1; : : : ; fm/ is called a partial system of coordinates (over R) if there exists
gmC1; : : : ; gn 2 RŒn� such that .f1; : : : ; fm; gmC1; : : : ; gn/ 2 GAn.R/.

2. .f1; : : : ; fm/ is called a partial system of residual coordinates1 if RŒf1; : : : ;
fm� ,! RŒn� is an affine fibration; that is, RŒn� is flat over RŒf1; : : : ; fm� and
for each prime ideal p 2 SpecRŒf1; : : : ; fm�, RŒn� ˝RŒf1;:::;fm� �.p/ Š �.p/Œn�m�.

3. .f1; : : : ; fm/ is called a partial system of strongly x-residual coordinates if
.f1; : : : ; fm/ is a partial system of coordinates over S and . Nf1; : : : ; Nfm/, the
images modulo x, is a partial system of coordinates over A D NR D R=xR. If x
is understood, we may, in a slight abuse, simply say strongly residual coordinate.

A single polynomial is called a coordinate (respectively residual coordinate,
strongly residual coordinate) whenm D 1 in the above definitions.

The Dolgachev–Weisfeiler conjecture can be stated in this context as

Conjecture 4. Partial systems of residual coordinates are partial systems of coordi-
nates

Similarly, we have

Conjecture 5. Partial systems of strongly residual coordinates are partial systems
of coordinates.

Our main focus will be on constructing and identifying strongly residual
coordinates that are coordinates, although in some cases our methods will generalize
slightly to partial systems of coordinates. While we lose some generality as
compared to considering residual coordinates, we are able to use some very
constructive approaches. We first give a short, direct proof of the n D 2 case (for
coordinates) that shows the flavor of our methods:

1Some authors have used the term x-residual coordinate instead; however, as the definition does
not depend on the choice of the variable x, we will stick with residual coordinate.
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Theorem 1. Let A be an integral domain of characteristic zero, andR D AŒx�. Let
f 2 RŒ2� be a strongly residual coordinate. Then f is a coordinate.

Proof. Since Nf is a coordinate in NRŒ2� D NRŒy; z�, without loss of generality we may
assume f D y C xQ for some Q 2 RŒy; z�. Since f is an S -coordinate, perhaps
after composing with an element of GL2.S/, we obtain some � D .y C xQ; z C
x�t P / 2 GA2.S/ with J� D 1 and P 2 RŒ2� n xRŒ2�. We inductively show that
such a map � is elementarily (over S ) equivalent to a map with t � 0, which gives
an element of GA2.R/. We compute

J� D J.y; z/C xJ.Q; z/C x1�t J.Q;P /C x�t J.y; P /

Since J� D 1, we have xJ.Q; z/ C x1�t J.Q;P / C x�t J.y; P / D 0. Thus,
comparingx-degrees, we must have J.y; P / 2 xRŒ2�. This meansP D P0.y/CxP1
for someP1 2 RŒ2�. Then we have .y; z�x�t P0.y//ı� D .yCxQ; zCx�tC1P 0/ for
some P 0 2 RŒ2� by Taylor’s formula, allowing us to apply the inductive hypothesis.
�

Remark 3. Analogous results for residual coordinates are due to Kambayashi and
Miyanishi [9] and Kambayashi and Wright [10].

The n D 3 case remains open, with the Vénéreau polynomial providing the
most widely known example of a strongly residual coordinate whose status as a
coordinate has not been determined.

We next describe some notation necessary to state the most general form of our
results.

Definition 3. Given 	 D .t1; : : : ; tn/ 2 Nn, define A	 D RŒm�Œxt1 z1; : : : ; xtnzn�. We

also set A	 ŒOzk� D A	 \ RŒmCn�ŒOzk� D RŒm�Œxt1z1; : : : ; bxtk zk; : : : ; xtnzn�. We will use
� to denote the product order on Nn; thus, given �; 	 2 Nn, � � 	 if and only if
A� � A	 .

Given 	 2 Nn and � 2 GAn.R
Œm�/, we will consider the natural action

�	 WD .x�t1z1; : : : ; x�tnzn/ ı � ı .xt1z1; : : : ; xtnzn/

Note that algebraically, the image of this action this gives us the group AutRŒm� A	 ;
we denote the corresponding automorphism group of SpecA	 by GA	

n.R
Œm�/ �

GAn.S
Œm�/. For any subgroup H � GAn.R

Œm�/, we analogously define H	 D
f�	 j � 2 H g � GA	

n.R
Œm�/. We will concern ourselves mostly with EA	

n.R
Œm�/,

GL	n.R
Œm�/, GP	n.R

Œm�/, and IA	
n.R

Œm�/.
We also define, choosing variables RŒy1; : : : ; ym� D RŒm�,

IA	
mCn.R/ WDIA.0;	/

mCn.R/ D ˚
.y1; : : : ; ym; x

�t1z1; : : : ; x�tnzn/

ı� ı .y1; : : : ; ym; xt1z1; : : : ; xtnzn/ j � 2 IAmCn.R/
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where .0; 	/ D .0; : : : ; 0; t1; : : : ; tn/ 2 NmCn. Note that IA	
mCn.R/  IA	

n.R
Œm�/.

Automorphisms in these subgroups can be characterized by the following lemma.

Lemma 2. Let 	 D .t1; : : : ; tn/ 2 N
n.

1. Let ˛ 2 IA	
mCn.R/. Then there exist F1; : : : ; Fm;G1; : : : ; Gn 2 A	 such that

˛ D .y1 C xF1; : : : ; ym C xFm; z1 C x�t1C1G1; : : : ; zn C x�tnC1Gn/

2. Let ˆ 2 EA	
n.R

Œm�/ be elementary. Then there exists P.Ozk/ 2 A	ŒOzk� such that

ˆ D .z1; : : : ; zk�1; zk C x�tkP.Ozk/; zkC1; : : : ; zn/

3. Let � 2 GL	n.R
Œm�/. Then there exists aij 2 RŒm� n xRŒm� such that

� D .a11z1 C a12x
t2�t1z2 C 	 	 	 C a1nx

tn�t1zn; : : : ; a1nxt1�tnz1

C 	 	 	 C an�1;nxtn�1�tnzn�1 C annzn/

The rest of the chapter is organized as follows: the most general form of our
results is given in Main Theorems 1 and 2 in the next section. Here, we state a
couple of less technical versions that are easier to apply. This section concludes with
some more concrete applications of these results. The subsequent section consists
of a series of increasingly technical lemmas culminating in the two Main Theorems
in Sect. 3.3.

Theorem 3. Let � 2 EAn.S
Œm�/, and write � D ˆ0 ı 	 	 	 ı ˆq as a product of

elementaries. For 0 � i � q define 	i 2 Nn to be minimal such that .ˆi ı 	 	 	 ı
ˆq/.A	i / � RŒmCn�. Let ˛ 2 IA	0

nCm.R/, and set  D ˛ ı �. Suppose also that
either

1. A is an integral domain and n D 2, or
2. ˆi 2 EA	i

n .R
Œm�/ for 0 � i � q

Then the partial system of strongly residual coordinates ..y1/; : : : ; .ym// is a
partial system of coordinates over R. Moreover, if A is a regular domain and ˛ 2
TAmCn.S/, then ..y1/; : : : ; .ym// can be extended to a stably tame automorphism
over R.

Proof. If we assume hypothesis 1, the theorem follows immediately from Main
Theorem 2. If we instead assume the second hypothesis, we need only to show that
	0 � 	 	 	 � 	q , as then the result follows from Main Theorem 1. Let i < q. Since
ˆi 2 EA	i

n .R
Œm�/, we haveˆi.A	i / D A	i . Then .ˆi ı 	 	 	ıˆq/.A	i / D .ˆiC1 ı 	 	 	ı

ˆq/.A	i / � RŒmCn�. Then the minimality assumption on 	iC1 immediately implies
	i � 	iC1 as required. �

It is often more practical to rephrase the general (n > 2) case in the following
way:
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Theorem 4. Let � 2 EAn.S
Œm�/, and write � D ˆ0 ı 	 	 	 ı ˆq as a product

of elementaries. Define inductively the sequence .�0; : : : ; �q/, which we call the
induced �-sequence, by letting �qC1 D 0 2 Nn and setting each �i 2 Nn to
be minimal such that ˆi.A�i / � A�iC1

(for 0 � i � q). Let ˛ 2 IA�0
nCm.R/,

and set  D ˛ ı �. Then the partial system of strongly residual coordinates
..y1/; : : : ; .ym// is a partial system of coordinates over R. Moreover, if A is a
regular domain and ˛ 2 TAmCn.S/, then ..y1/; : : : ; .ym// can be extended to a
stably tame automorphism over R.

Proof. We will use the definition of �i to show the following two facts:

1. ˆi 2 EA�i
n .R

Œm�/

2. �0 � 	 	 	 � �q

Once these are shown, we can apply Main Theorem 1 to achieve the result. To see
these two facts, write �i D .si;1; : : : ; si;n/. Without loss of generality, supposeˆi is
elementary in z1, and write

ˆi D .z1 C x�sP.xsiC1;2z2; : : : ; x
siC1;nzn/; z2; : : : ; zn/

for some P.Oz1/ 2 A�iC1
ŒOz1� n xA�iC1

ŒOz1�. Clearly, the minimality condition on
�i guarantees si;k D siC1;k for k D 2; : : : ; n. Since ˆi .xsi;1z1/ D xsi;1z1 C
xsi;1�sP.Oz1/ 2 A�iC1

n xA�iC1
, we see si;1 � siC1;1 (giving �i � �iC1) and

s � si;1. From the latter, one easily sees that ˆi D .x�si;1z1; : : : ; x�si;nzn/ ı .z1 C
xsi;1�sP.z2; : : : ; zn/; z2; : : : ; zn/ ı .xsi;1z1; : : : ; xsi;nzn/ 2 EA�i

n .R
Œm�/. �

The remainder of this section is devoted to consequences of these three theorems
in more concrete settings.

Example 1. Let m D 1 and n D 1. Set

˛ D .y C x2z; z/ ˆ0 D
�
y; z � y2

x

�

Theorem 4 implies .˛ ıˆ0/.y/ D yCx.xz �y2/ is a coordinate. The construction
produces the Nagata map

� D .y C x.xz � y2/; z C 2y.xz � y2/C x.xz � y2/2/

Example 2. Let m D 1, n D 1, and R D kŒx; t �. Set

˛ D .y C x2z; z/ ˆ0 D
�
y; z C yt

x

�

Theorem 4 implies y C x.xz C yt/ is a coordinate. The construction produces
Anick’s example

ˇ D .y C x.xz C yt/; z � t.xz C yt//
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In [11], a generalization of the Vénéreau polynomial called Vénéreau-type
polynomials were studied by the author. They are polynomials of the form y C
xQ.xz Cy.yu C z2/; x2u �2xz.yu C z2/�y.yu C z2/2/ 2 CŒx; y; z; u� whereQ 2
CŒx�Œ2�. Many Vénéreau-type polynomials remain as strongly residual coordinates
that have not been resolved as coordinates. However, we are able to show them all
to be 1-stable coordinates, generalizing Freudenburg’s result [6] that the Vénéreau
polynomial is a 1-stable coordinate.2

Corollary 5. Every Vénéreau-type polynomial is a 1-stable coordinate.

Proof. Let Q 2 CŒx�Œxz; x2u�, and set

˛ D .y C xQ; z; u; t/

ˆ0 D .y; z C yt; u; t/ ˆ3 D .y; z � yt; u; t/

ˆ1 D .y; z; u � 2zt � yt2; t/ ˆ4 D .y; z; u � 2zt C yt2; t/

ˆ2 D .y; z; u; t C yu C z2

x
/

A direct computation shows that .˛ ı ˆ0 ı 	 	 	 ı ˆ4/.y/ D y C xQ.xz C y.yu C
z2/; x2u � 2xz.yu C z2/ � y.yu C z2/2/ is an arbitrary Vénéreau-type polynomial.
We compute the induced �-sequence .1; 2; 1/ � .0; 2; 1/ � .0; 0; 1/ � .0; 0; 0/ �
.0; 0; 0/, and note that since Q 2 A�0 , then ˛ 2 IA�0

4 .CŒx�/. It then follows
immediately from Theorem 4 (with m D 1, n D 3, y1 D y, z1 D z, z2 D u, and
z3 D t) that any Vénéreau-type polynomial is a CŒx�-coordinate in CŒx�Œy; z; u; t �.
�

The following result is first due to Russell [12] and later appeared also in [4].

Corollary 6. Let k be a field, and let P 2 kŒx; y; z� be of the form P D y C
xf .x; y/ C �xsz for some s 2 N, � 2 k� and f 2 kŒx; y�. Then P is a kŒx�-
coordinate.

Proof. Here R D kŒx� and S D kŒx; x�1�. Let  D .y C �xsz; z/ ı .y; z C
��1x1�sf .x; y// 2 EA3.S/. Then Theorem 3 yields .y/ is a kŒx�-coordinate,
and one easily checks that .y/ D P . �

3 Main Results

The two main theorems can be found in Sect. 3.3. Sections 3.1 and 3.2 contain a
series of technical results necessary for the proofs of the main theorems. Section 3.1
contains the tools necessary to prove Theorem 27, a slightly stronger version of

2Our construction provides a different coordinate system than Freudenburg’s.
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Main Theorem 1 which is useful in proving Main Theorem 2. Section 3.2 contains
additional calculations that are needed to prove Main Theorem 2.

In Sect. 3.1, the reader will recognize Lemma 8 as generalizing the Nagata
construction (1), while Theorem 13 is a generalization of the Nagata-like construc-
tion (2). We also prove several lemmas allowing us to transpose a composition
of elements of two subgroups by modifying only one of the two elements; see
Corollaries 9 and 18. The section concludes with some basic results about GPn.SŒm�/
which are needed for Theorem 27.

Section 3.2 may be skipped by the reader interested only in Theorem 4 and Main
Theorem 1. In it, we develop the necessary tools to handle the n D 2 case when
the elementary automorphisms are allowed to be any elements of EA2.S

Œm�/ (as
opposed to the general case of Main Theorem 1, where we requireˆi 2 GA	i

n .S
Œm�/

with 	i 2 Nn and 	0 � 	 	 	 � 	q). The key induction step in Main Theorem 1
relies on the 	i � 	iC1 hypothesis. To prove Main Theorem 2, the basic idea is to
replace the given composition with a different (possibly shorter) composition that
does satisfy a hypothesis of the form 	0 � 	 	 	 � 	q , and then proceed as in Main
Theorem 1.

We use Lemmas 22 and 25 to show that the only obstacles to this replacement
process are elements of EA	i

2 .R
Œm�/ \ GL	i2 .R

Œm�/. In fact, the root of the problem
is that we could end up with an element of GPn.SŒm�/. We thus use Lemma 23
to distill these out of any elements of EA	i

2 .R
Œm�/ \ GL	i2 .R

Œm�/. We then use the
“bookkeeping” results Lemma 19, Corollary 20, and Lemma 21 to keep track of
elements of GPn.SŒm�/ as we push them out of the way, allowing us to substitute a
suitable composition satisfying the hypothesis of Theorem 27.

3.1 The General Case

We begin with an observation that follows immediately from Taylor’s formula.

Lemma 7. Let 	 2 Nn and let P 2 A	 .
1. If � 2 GA	

n.R
Œm�/, then �.A	/ D A	 .

2. If ˛ 2 IA	
mCn.R/, then ˛.P / � P 2 xA	 .

Next, we note that GA	
n.R

Œm�/ is contained in the normalizer of IA	
mCn.R/ in

GAmCn.S/. This is slightly more general than the fact that IA	
n.R

Œm�/ G GA	
n.R

Œm�/.

Lemma 8. Let 	 2 Nn. Then IA.0;	/
mCn.R/ G GA.0;	/

mCn.R/. In particular, for any ˛ 2
IA	

mCn.R/ and � 2 GA	
n.R

Œm�/, we have ��1 ı ˛ ı � 2 IA	
mCn.R/.

Proof. Simply note that the surjection R D AŒx� ! A induces a short exact
sequence

0 ! IA.0;	/
mCn.R/ ! GA.0;	/

mCn.R/ ! GA.0;	/
mCn.A/ ! 0 (4)
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Here, we are viewing GAmCn.A/ � GAmCn.R/ by extension of scalars, and thus
obtaining GA.0;	/

mCn.A/ � GA.0;	/
mCn.R/. �

As a result, we have the ability to “push” an element of GA	
n.R

Œm�/ past
an element of IA	

mCn.R/, at the price of replacing with a different element of
IA	

mCn.R/.

Corollary 9. Let 	 2 Nn, ˛ 2 IA	
mCn.R/, and � 2 GA	

n.R
Œm�/. Then there exists

˛0 2 IA	
mCn.R/ such that ˛ ı � D � ı ˛0.

Next, we show how we can use elementaries to transform elements of IA	
mCn.R/

into elements of IA�
mCn.R/ for any � � 	 .

Lemma 10. Let 	 2 Nn and ˛ 2 IA	
mCn.R/. Then there exists � 2 EA	

n.R
Œm�/ \

IA	
n.R

Œm�/ such that

� ı ˛ 2
\

0���	
IA�

mCn.R/

Proof. We begin by writing 	 D .t1; : : : ; tn/ 2 Nn and, using Lemma 2,

˛ D .y1 C xF1; : : : ; ym C xFm; z1 C x�t1C1Q1; : : : ; zn C x�tnC1Qn/ (5)

for some F1; : : : ; Fm;Q1; : : : ;Qn 2 A	 . We prove the following by induction.

Claim 11. For any � 0 D .s1; : : : ; sn/ 2 Nn, there exists � 2 EA	
n.R

Œm�/\ IA	
n.R

Œm�/

such that � ı ˛ 2 IA	
mCn.R/ is of the form

�ı˛ D .y1CxF1; : : : ; ymCxFm; z1Cxz1G1Cx�t1Cs1C1H1; : : : ; znCxznGnCx�tnCsnC1Hn/

for some G1;H1; : : : ; Gn;Hn 2 A	 .
Clearly the case � 0 D 	 proves the lemma, since � � 	 implies A	 � A� .

We induct on � 0 in the partial ordering of Nn. Our base case of � 0 D .0; : : : ; 0/ is
provided by � D id (from (5)).

Suppose the claim holds for � 0 2 Nn. We will show that this implies the claim for
� 0 C ek , where ek is the k-th standard basis vector of Nn. Without loss of generality,
we take k D 1, so e1 D .1; 0; : : : ; 0/. By the inductive hypothesis, we may write

˛0 WD � ı ˛ D .y1 C xF1; : : : ; ym C xFm; z1 C xz1G1 C x�t1Cs1C1H1; : : : ; zn

C xznGn C x�tnCsnC1Hn/

for some Gi ;Hi 2 A	 and � 2 EA	
n.R

Œm�/ \ IA	
n.R

Œm�/. Write H1 D P.Oz1/ C
xt1z1Q for some Q 2 A	 and P.Oz1/ 2 A	ŒOz1�. Then we may set �0 D .z1 �
x�t1Cs1C1P.Oz1/; z2; : : : ; zn/ 2 EA	

n.R
Œm�/\ IA	

n.R
Œm�/ and compute
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.�0 ı ˛0/.z1/ D z1 C xz1G1 C x�t1Cs1C1.H1 � ˛0.P.Oz1///
D z1 C xz1G1 C x�t1Cs1C1.P.Oz1/C xt1z1Q � ˛0.P.Oz1//
D z1 C xz1.G1 C xs1Q/C x�t1Cs1C1.P.Oz1/ � ˛0.P.Oz1/// (6)

Since ˛0 2 IA	
mCn.R/, we can write (by Lemma 7) ˛0.P.Oz1// D P.Oz1/ � xH 0

1 for
some H 0

1 2 A	 . We also set G0
1 D G1 C xs1Q 2 A	 , and thus clearly see from (6)

that �0 ı ˛0 is of the required form:

�0 ı ˛0 D .y1 C xF1; : : : ; ym C xFm; z1 C xz1G
0
1 C x�t1C.s1C1/C1H 0

1;

z2 C xz2G2 C x�t2Cs2C1H2; : : : ; zn C xznGn C x�tnCsnC1Hn/

�

Corollary 12. Let � � 	 2 N
n, and let ˛ 2 IA	

mCn.R/. Then there exists
ˇ 2 IA�

mCn.R/ and � 2 EA	
n.R

Œm�/ such that ˛ D ˇ ı �. Moreover, if 	 � � D
.0; : : : ; 0; ı; 0; : : : ; 0/, then � can be taken to be elementary.

Proof. Applying Lemma 10 to ˛�1, we obtain � 2 EA	
n.R

Œm�/ such that � ı ˛�1 D
ˇ�1 for some ˇ 2 IA�

mCn.R/. Rearranging yields ˛ D ˇ ı � as required. �

The next theorem provides the crucial inductive step necessary to prove
Theorem 27, and thus Main Theorem 1.

Theorem 13. Let 	 2 Nn, ˛ 2 IA	
mCn.R/, and let � 2 GA	

n.R
Œm�/. Then there

exists Q� 2 h�;EA	
n.R

Œm�/i such that

Q� ı ˛ ı � 2
\

0���	
IA�

mCn.R/

In particular, Q� ı ˛ ı � 2 IAmCn.R/; and if �; ˛ 2 TAmCn.S/, then Q� ı ˛ ı � 2
TAmCn.S/ as well.

Proof. By Lemma 8, ��1 ı ˛ ı � 2 IA	
mCn.R/. But then by Lemma 10, there exists

 2 EA	
n.R

Œm�) such that

 ı .��1 ı ˛ ı �/ 2
\

0���	
IA�

mCn.R/

So we simply set Q� D  ı ��1 2 h�;EA	
n.R

Œm�/i to obtain the desired result. �

At this point, one could go ahead and directly prove Main Theorem 1. However, it
will be useful in proving Main Theorem 2 to have the stronger result of Theorem 27
(which immediately implies Main Theorem 1). The rest of this section is devoted
to studying GPn.SŒm�/ and its relation with other subgroups, which we will need to
prove Theorem 27.
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Definition 4. Let A be a connected, reduced ring. Given � 2 GPn.SŒm�/, we can
then write � D .��.1/x

r�.1/z�.1/; : : : ; ��.n/xr�.n/z�.n// for some permutation � 2 Sn,
�i 2 A�, and ri 2 Z. If we are also given 	 D .t1; : : : ; tn/ 2 Nn, we can define
�.	/ D .t��1.1/ C r1; : : : ; t��1.n/ C rn/ 2 Zn.

Remark 4. The condition that A is connected and reduced is essential to obtain
.AŒm�Œx; x�1�/� D f�xr j� 2 A�; r 2 Zg, which is what allows us to write � in the
given form.

The definition of �.	/ is chosen precisely so that the following lemma holds.

Lemma 14. Let A be a connected, reduced ring, let � 2 GPn.SŒm�/ and let 	 2 Nn.
Then �.A	/ D A�.	/.

Proof. Write � D .��.1/x
r�.1/z�.1/; : : : ; ��.n/xr�.n/z�.n// as in Definition 4, and let

	 D .t1; : : : ; tn/. Then

�.A	/ D A

xt1
�
��.1/x

r�.1/z�.1/
	
; : : : ; xtn

�
��.n/x

r�.n/z�.n/
	�

D A
h
�1x

r1Ct��1.1/z1; : : : ; �nx
rnCt

��1.n/zn
i

D A
h
x
r1Ct��1.1/z1; : : : ; x

rnCt��1.n/zn
i

D A�.	/

�

Recall that for 	 D .t1; : : : ; tn/ 2 Nn, one obtains �	 from � via conjugation
by .xt1z1; : : : ; xtnzn/ 2 GPn.SŒm�/. Then, recalling that for any subgroup H �
GAn.R

Œm�/, H	 D f�	 j � 2 H g, we immediately see the following.

Lemma 15. Let A be a connected, reduced ring. Let H � GAn.R
Œm�/ be any

subgroup whose normalizer contains GPn.RŒm�/. Let 	 2 Nn, � 2 GPn.SŒm�/, and
� 2 GAn.S

Œm�/. Then � 2 H	 if and only if ��1 ı � ı � 2 H�.	/.

Proof. Since H is closed under conjugation by GPn.RŒm�/, from Definition 4 it
suffices to assume � D .xr1z1; : : : ; xrnzn/ for some ri 2 Z; then if 	 D .t1; : : : ; tn/,
�.	/ D .t1Cr1; : : : ; tnCrn/. Now the claim is immediate from the definition ofH	 .
�

Remark 5. Observe that IAmCn.R/ and EAn.R
Œm�/ are closed under conjugation by

GPn.RŒm�/.

The next three corollaries can be thought of as tools for pushing elements of
GPn.RŒm�/ out of the way.

Corollary 16. Let A be a connected, reduced ring, let 	 2 Nn, and let ˛ 2
IA	

mCn.R/ and � 2 GPn.SŒm�/. Then ��1 ı ˛ ı � 2 IA�.	/
mCn.R/.
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Proof. One need only consider .0; 	/ 2 NmCn and view � 2 GPnCm.S/; it then
follows from the previous lemma. �

Corollary 17. Let A be a connected, reduced ring, let 	 2 Nn, let ˆ 2 EA	
n.R

Œm�/

be elementary, and let � 2 GPn.SŒm�/. Then ˆ 2 EA�.	/
n .RŒm�/ if and only if � ıˆ ı

��1 2 EA	
n.R

Œm�/.

Corollary 18. Let A be a connected, reduced ring, let � 2 EA	
n.R

Œm�/ and � 2
GPn.SŒm�/. Then there exists �0 2 EA�.	/

n .RŒm�/ such that � ı � D � ı �0. Moreover,
if � is elementary, then so is �0.

3.2 The n D 2 Case

This section contains the additional tools necessary to prove Main Theorem 2. First,
we prove a lemma allowing us to shorten a composition of automorphisms in the
more complicated �i .	i / � 	iC1 case.

Lemma 19. Let A be a connected, reduced ring. Let 	0; : : : ; 	qC1 2 Nn. Let
�i 2 GPn.SŒm�/, ˛i 2 IA	i

mCn.R/, �i 2 EA
	iC1
n .RŒm�/ for 0 � i < q, and

�q 2 GAn.S
Œm�/. Suppose also that �i .	i / � 	iC1 for each 0 � i � q. Then

there exist ˛0 2 IA	0
mCn.R/ and, for each 0 � i < q, �0

i 2 EA
.�iC1ı			ı�q/.	iC1/
n .RŒm�/

such that

˛0 ı �0 ı �0 ı 	 	 	 ı ˛q ı �q ı �q D ˛0 ı .�0 ı 	 	 	 ı �q/ ı �0
0 ı �0

1 ı 	 	 	 ı �0
q�1 ı �q

Proof. The proof is by induction on q. If q D 0, the claim is trivial, so we assume
q > 0. By the inductive hypothesis, we may assume

˛1 ı �1 ı �1 ı 	 	 	 ı ˛q ı �q ı �q D ˛0
1 ı �0

1 ı �0
1 ı 	 	 	 ı �0

q�1 ı �q

for some ˛0
1 2 IA	1

mCn.R/, �0
i 2 EA

.�iC1ı			ı�q/.	iC1/
n .RŒm�/, and �0

1 WD �1 ı 	 	 	 ı �q .

Note that it now suffices to find ˛0 2 IA	0
n .R

Œm�/ and �0
0 2 EA

�0

1.	1/

2 .RŒm�/ such that

˛0 ı �0 ı �0 ı ˛0
1 ı �0

1 D ˛0 ı .�0 ı �0
1/ ı �0

0

From Corollary 9, since �0 2 EA	1
n .R

Œm�/ and ˛0
1 2 IA	1

mCn.R/, there exists
Q̨ 2 IA	1

mCn.R/ such that

�0 ı ˛0
1 D Q̨ ı �0 (7)

Then, plugging this Q̨ into Corollary 16, we see there exists ˛00 2 IA
��1
0 .	1/

mCn .R/ such
that

�0 ı Q̨ D ˛00 ı �0 (8)
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In addition, by Corollary 12, since 	0 � ��1
0 .	1/, there exist ˇ 2 IA	0

mCn.R/ and

Q� 2 EA
��1
0 .	1/
n .RŒm�/ such that

˛00 D ˇ ı Q� (9)

Combining (7), (8), and (9), we have

˛0 ı �0 ı �0 ı ˛0
1 ı �0

1 D ˛0 ı �0 ı Q̨ ı �0 ı �0
1

D ˛0 ı ˛00 ı �0 ı �0 ı �0
1

D ˛0 ı ˇ ı Q� ı �0 ı �0 ı �0
1 (10)

Now by Corollary 18, since Q� 2 EA
��1
0 .	1/
n .RŒm�/, there exists �0 2 EA	1

2 .R
Œm�/

such that

Q� ı �0 D �0 ı �0 (11)

Then since �0; �0 2 EA	1
n .R

Œm�/, we again use Corollary 18 to obtain �0
0 2

EA
�0

1.	1/

2 .R/ such that

.�0 ı �0/ ı �0
1 D �0

1 ı �0
0 (12)

Then , combining (11) and (12),

˛0 ı ˇ ı Q� ı �0 ı �0 ı ˛0
1 ı �0

1 D ˛0 ı ˇ ı �0 ı �0 ı �0 ı �0
1

D ˛0 ı ˇ ı �0 ı �0
1 ı �0

0 (13)

From (10) and (13), we obtain

˛0 ı �0 ı �0 ı ˛0
1 ı �0

1 D ˛0 ı ˇ ı �0 ı �0
1 ı �0

0

So we simply set ˛0 D ˛0 ı ˇ 2 IA	0
mCn.R/ to achieve the desired result. �

In fact, this same proof gives the following, noting that the hypothesis 	2 �
�1.	1/ D ıek is what implies that the resulting ˆ is elementary (recall that ek is
the k-th standard basis vector of Nn):

Corollary 20. Let A be a connected, reduced ring. Suppose 	1; 	2 2 Nn , ˛1 2
IA	1

mCn.R/, ˛2 2 IA	2
mCn.R/, and �1; �2 2 GP2.S Œm�/. If 	2 � �1.	1/ D ıek for some

1 � k � n and ı 2 N, then there exist ˛0 2 IA	1
mCn, �0 2 GP2.S Œm�/, and elementary

ˆ 2 EA�2.	2/
n .RŒm�/ such that

˛1 ı �1 ı ˛2 ı �2 D ˛0 ı �0 ıˆ
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Next we show a bookkeeping lemma, allowing us to push any generalized
permutations �i around as is convenient.

Lemma 21. Suppose A is a connected, reduced ring. Let 	0; : : : ; 	q 2 Nn,
ˆ0; : : : ; ˆq 2 EAn.S

Œm�/ be elementaries, ˛i 2 IA	i
mCn.R/, and �i 2 GPn.SŒm�/.

Set

!i D ˛i ı �i ıˆi ı 	 	 	 ı ˛q ı �q ıˆq
Also set ˆ0

i D �i ıˆi ı ��1
i . Then the following conditions are equivalent:

1. Each 	i 2 Nn is minimal such that !i .A	i / � RŒmCn�
2. Each 	i 2 Nn is minimal such that .ˆi ı !iC1/.A�i .	i // � RŒmCn�.
3. Each 	i 2 Nn is minimal such that .�i ıˆi ı !iC1/.A	i / � RŒmCn�.
4. Each 	i 2 Nn is minimal such that .ˆ0

i ı �i ı !iC1/.A	i / � RŒmCn�.

Moreover, if the above are satisfied, then, writing 	i D .ti;1; : : : ; ti;n/,

1. If ˆ0
i is elementary in zj , then .�i ı !iC1/.xti;k zk/ 2 RŒmCn� n xRŒmCn� for all

k ¤ j .
2. If ˆi is elementary in zj , then �i .	i / � 	iC1 D ıiej for some ıi 2 Z (recall
ej D .0; : : : ; 0; 1; 0; : : : ; 0/).

Proof. The equivalence of (2) and (3) is immediate from the fact that �i .A	i / D
A�i .	i /. Since ˛i 2 IA	i

mCn.R/ � GA	i
mCn.R/, we have ˛i .A	i / D A	i and thus

!i .A	i / D .�i ı ˆi ı !iC1/.A	i /, giving the equivalence of (1) and (3). The
equivalence of (3) and (4) follows immediately from the definition of ˆ0

i .
Suppose now that the four conditions are satisfied. Suppose also that ˆ0

i is
elementary in zj , so that ˆ0

i .zk/ D zk for k ¤ j . Then (4) immediately implies
.�i ı !iC1/.xti;k zk/ D .ˆ0

i ı �i ı !iC1/.xti;k zk/ 2 RŒmCn� n xRŒmCn�. Now suppose
(perhaps instead) thatˆi is elementary in zj . Then .ˆi ı!iC1/.xszk/ D !iC1.xszk/
for k ¤ j . The minimal s such that this lies in RŒmCn� is precisely tiC1;k, so we see
from (2) that �i .	i / D 	iC1 C ıi ej for some ıi 2 Z. �

One key difference in the statements of the two main theorems is that in Main
Theorem 1, we must assume ˆi 2 GA	i

n .R
Œm�/, whereas in Main Theorem 2 we

simply assume more generally ˆi 2 EA2.S
Œm�/. To account for this in the latter

case, we use the following criteria to find a 	 such that ˆi 2 EA	
2.R

Œm�/.

Lemma 22. Assume A is an integral domain. Let 	 D .t1; t2/ 2 N2, and let
! 2 GAmCn.S/ such that !.xt1z1/; !.xt2 z2/ 2 RŒmC2� n xRŒmC2�. Suppose ˆ 2
EA2.S

Œm�/ is of the form ˆ D .z1 C �.xt2z2/d ; z2/ for some � 2 SŒm� and d 2 N. If
.ˆ ı !/.A	 / � RŒmC2�, then ˆ 2 EA	

2.R
Œm�/.

Proof. Write � D x�r
 for some r 2 Z and 
 2 RŒm� n xRŒm�. It suffices to show
that r � t1. We compute

.ˆ ı !/.xt1z1/ D !.xt1z1/C 
xt1�r
�
!.xt2 z2/

	d
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Since .ˆı!/.A	/ � RŒmC2�, we must have .ˆı!/.xt1z1/ 2 RŒmC2�. But !.xt1z1/ 2
RŒmC2� by assumption, so we then have 
xt1�r .!.xt2z2//d 2 RŒmC2�. Since R is a
domain and
;!.xt2 z2/ 2 RŒmC2�nxRŒmC2�, we must have
 .!.xt2 z2//

d 2 RŒmC2�n
xRŒmC2�, and thus r � t1 as required. �

The next lemma is our key tool for distilling out the troublesome elements of
GP2.S Œm�/.

Lemma 23. Let 	 D .t1; t2/ 2 N2. Let ˆ 2 EA	
2.R

Œm�/ be elementary, and let
ˇ D .az1 C bxt2�t1z2; d z2 C cxt1�t2z1/ 2 GL	2.R

Œm�/.

1. If ˆ is elementary in z1 and either c D 0 or d D 0, then there exists � 2
GP	2.R

Œm�/ and elementary ˆ0 2 EA	
2.R

Œm�/ such that ˆ ı ˇ D � ıˆ0.
2. If ˆ is elementary in z2 and either a D 0 or b D 0, then there exists � 2

GP	2.R
Œm�/ and elementary ˆ0 2 EA	

2.R
Œm�/ such that ˆ ı ˇ D � ıˆ0.

Proof. Supposeˆ is elementary in z1 and write ˆ D .z1 C x�t1P.xt2z2/; z2/. First,
suppose c D 0, so

ˆ ı ˇ D .az1 C bxt2�t1z2 C x�t1P.dxt2z2/; d z2/

D .az1; d z2/ ı .z1 C 1

a
x�t1 .bxt2z2 C P.dxt2z2//; z2/

If instead d D 0, then

ˆ ı ˇ D .az1 C bxt2�t1z2 C x�t1P.cxt1z1/; cxt1�t2z1/

D .bxt2�t1z2; cxt1�t2z1/ ı .z1; z2 C 1

b
x�t2 .axt1z1 C P.cxt1z1//; z2/

These are both precisely in the desired form. The case where ˆ is elementary in z2
follows similarly. �

Our final preliminary result, Lemma 25, can be thought of as zeroing in on the
crucial technical obstacle: namely, elements of GL2.S Œm�/ (which can then be further
refined by the previous lemma). We make the following definition to aid in its proof.

Definition 5. Let 	 D .t1; : : : ; tn/ 2 N. Note that as in (4), we have GAn.A
Œm�/ �

GAn.R
Œm�/. Then, we can consider EAn.A

Œm�/ � GAn.R
Œm�/, and define

EA	n.A
Œm�/ WD f.x�t1z1; : : : ; x�tnzn/ı�ı.xt1z1; : : : ; xtnzn/

ˇ̌
� 2 EAn.AŒm�/g � GA	n.R

Œm�/

Given ˆ 2 EA	
n.R

Œm�/, we will use ˆ to denote its image under the quotient
map EA	

n.R
Œm�/ ! EA	

n.A
Œm�/. That is, if ˆ D .x�t1z1; : : : ; x�tnzn/ ı � ı

.xt1z1; : : : ; xtnzn/ for some � 2 EAn.R
Œm�/, we set

ˆ WD .x�t1z1; : : : ; x�tnzn/ ı � ı .xt1z1; : : : ; xtnzn/
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where N� 2 EAn.A
Œm�/ is the image of � modulo x. We define other subgroups such

as GL	2.A
Œm�/ in a similar way.

We observe in the following lemma that a composition in EA	
n.R

Œm�/ is deter-
mined by a composition in EA	

n.A
Œm�/ and an element of IA	

n.R
Œm�/.

Lemma 24. Let 	 2 N, and let ˆ1; : : : ; ˆq 2 EA	
n.R

Œm�/. Then there exists ˛ 2
IA	

n.R
Œm�/ such that ˆ1 ı 	 	 	 ıˆq D ˛ ıˆ1 ı 	 	 	 ıˆq .

Proof. First, note that it suffices to assume each ˆi is elementary. The key

observation is that if ˆ 2 EA	
n.R

Œm�/ is elementary, then ˆ ı ˆ�1 2 IA	
n.R

Œm�/.
We prove the lemma by induction on q: suppose ˆ2 ı 	 	 	 ı ˆq D ˛ ı ˆ2 ı 	 	 	 ıˆq
for some ˛ 2 IA	

n.R
Œm�/. Then noting that ˆ1 D ˇ ı ˆ1 for some ˇ 2 IA	

n.R
Œm�/,

we can write

ˆ1 ı 	 	 	ˆq D ˇ ıˆ1 ı ˛ ıˆ2 ı 	 	 	 ıˆq
D ˇ ı ˛0 ıˆ1 ı 	 	 	 ıˆq

for some ˛0 2 IA	
n.R

Œm�/ by Corollary 9 (applied to ˆ
�1
1 ). The simple observation

that ˇ ı ˛0 2 IA	
n.R

Œm�/ completes the proof. �

Now, we are ready to state and prove our final lemma.

Lemma 25. Suppose A is an integral domain. Let 	 D .t1; t2/ 2 N2, let
ˆ1; : : : ; ˆq 2 EA	

2.R
Œm�/ be elementaries, and let ! 2 GA2.S

Œm�/ . Assume that
the following three conditions hold:

1. Either !.xt1z1/ 2 xRŒmC2� and !.xt2z2/ 2 RŒmC2� n xRŒmC2�, or !.xt2z2/ 2
xRŒmC2� and !.xt1z1/ 2 RŒmC2� n xRŒmC2�.

2. Setting !i D ˆi ı 	 	 	 ıˆq ı!, we have !i .xt1z1/; !i .xt2z2/ 2 RŒmC2� n xRŒmC2�
for 1 < i � q

3. !1.xt1z1/ 2 xRŒmC2�

Then there exists ˛ 2 IA	
2.R

Œm�/, � 2 GP	2.R
Œm�/ and elementary ˆ 2 EA	

2.R
Œm�/ \

GL	2.R
Œm�/ such that ˆ1 ı 	 	 	 ıˆq D ˛ ı � ıˆ.

Proof. We first prove the following claim:

Claim 26. There exist r � q, nonlinear elementariesˆ0
1; : : : ; ˆ

0
r 2 EA	

2.A
Œm�/, and

ˇ1; : : : ; ˇr 2 GL	2.A
Œm�/ such that, setting

!0
k D ˆ0

k ı ˇk ı 	 	 	 ıˆ0
r ı ˇr ı !

for 1 � k � r , and writing ˇk D .akz1 C bkx
t1�t2z2; dkz2 C ckx

t1�t2z1/ for some
ak; bk; ck; dk 2 AŒm�,
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1. There exists 1 D i1 < i2 < 	 	 	 < ir�1 < ir D q such that, for each 1 � k � r ,

!ik D ˛k ı �k ı !0
k

for some ˛k 2 IA	
2.R

Œm�/ and �k 2 GP	2.R
Œm�/

2. If ˆ0
k is elementary in z1, then either

a. ˇk D id and ˆ0
kC1 is elementary in z2, or

b. ck ¤ 0 and dk ¤ 0.

3. If ˆ0
k is elementary in z2, then either

a. ˇk D id and ˆ0
kC1 is elementary in z1, or

b. ak ¤ 0 and bk ¤ 0.

Proof. By Lemma 24, for each 1 � k � q, there exists ˛k 2 IA	
2.R

Œm�/ such that

!k D ˛k ıˆk ı 	 	 	 ıˆq ı !

By concatenating adjacent linear elements, we obtain nonlinear elementaries
ˆ0
1; : : : ˆ

0
r 2 EA	

2.A
Œm�/ and ˇ1; : : : ; ˇr 2 GL	2.A

Œm�/ \ EA	
2.A

Œm�/ such that
for each 1 � k � r , there exists 1 � ik � q with

!ik D ˛k ıˆ0
k ı ˇk ı 	 	 	 ıˆ0

r ı ˇr ı !

Now we inductively apply Lemma 23. We assumeˆ0
k is elementary in z1 (the z2 case

follows similarly). If ck D 0 or dk D 0, then by Lemma 23 we can writeˆ0
k ıˇk D

�k ıˆ00
k for some �k 2 GP	2.A

Œm�/ and nonlinear elementaryˆ00
k 2 EA	

2.A
Œm�/. Then,

if k > 1, we set ˇ0
k�1 D ˇk�1 ı �k 2 GL	2.A

Œm�/. Thus, we have

!ik D ˛k ı �k ıˆ00
k ı ˇ0

k ı 	 	 	 ıˆ00
r ı ˇ0

r ı !

and

!0
k�1 D ˆ0

k�1 ı ˇ0
k�1 ı !0

k

Finally, if ˇk D id andˆ0
k ,ˆ0

kC1 are elementaries in the same variable, then their
composition is also an elementary, and we can thus concatenate the two and shorten
our sequence. �

Now, let ˆ0
k; ˇk; ˛k; �k be as in the claim. Since ˛k 2 IA	

2.R
Œm�/ and �k 2

GP	2.A
Œm�/, then !ik .zj / and !0

k.z�.j // (where � 2 S2 is the permutation induced
by �k) have the same x-degrees; thus , setting Fk D !0

k.x
t1z1/ andGk D !0

k.x
t2z2/,

we may rewrite our three assumptions as
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1. Either FrC1 D 0 and GrC1 ¤ 0; or GrC1 D 0 and FrC1 ¤ 0.
2. For 1 < k � r , Fk ¤ 0 and Gk ¤ 0

3. Either F1 D 0 or G1 D 0

We now use a quick induction to show that 1 and 2 imply for 1 � k � r C 1, if
ˆ0
k is elementary in z1, then degFk > degGk ; and if ˆ0

k is elementary in z2, then
degFk < degGk . Note that assumption 1 yields the base case of k D r C 1. Let
k < r , and without loss of generality, assume ˆ0

k is elementary in z1. We may then
write ˆ0

k D .z1 C x�t1Pk.xt2z2/; z2/. Then, since !0
k D ˆ0

k ı ˇk ı !0
kC1, we see

Fk D akFkC1 C bkGkC1 C Pk
�
ckFkC1 C dkGkC1

	

Gk D ckFkC1 C dkGkC1

Note that we may assume (from the claim) that degPk � 2 for 2 � k � q. Recall
also that ck ¤ 0 and dk ¤ 0 from the claim; then by the induction hypothesis,
degFkC1 ¤ degGkC1, thus

degGk D max
˚
degFkC1; degGkC1




degFk D .degPk/
�
degGk

	

> degGk

Now we can see that assumption 3 implies that ˆ0
1 D id; for if not, and ˆ0

1

is elementary in z1 (the other case follows similarly), the above argument shows
degF1 > degG1; but as G1 is a nontrivial linear combination of two nonzero
polynomials of differing degrees (namely c1F2Cd1G2), it is nonzero, contradicting
assumption 3.

Thus, we may now write

F1 D a1F2 C b1G2

G1 D c1F2 C d1G2

But since degF2 ¤ degG2, we can only have F1 D 0 or G1 D 0 if F2 D
0 or G2 D 0. By assumption 2, we must then have r D 1; moreover, ˇ1 must
be triangular, since assumption 3 yields exactly one of F2;G2 is nonzero. Then
by Lemma 23, we must have ˇ1 D �0 ı ˆ0 for some �0 2 GP	2.A

Œm�/ and ˆ0 2
EA	

2.A
Œm�/ \ GL	2.A

Œm�/. Then we have

!1 D ˛1 ı �1 ı !0
1 D ˛1 ı �1 ı ˇ1 ı ! D ˛1 ı .�1 ı �0/ ıˆ0 ı !

which yields the lemma. �
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3.3 Main Theorems

We can now state and prove our main theorems.

Main Theorem 1 Let 	0 � 	 	 	 � 	q 2 Nn. For 0 � i � q, let ˆi 2 GA	i
n .R

Œm�/

and ˛i 2 IA	i
mCn.R/. Set

 D ˛0 ıˆ0 ı 	 	 	 ı ˛q ıˆq
Then . .y1/; : : : ;  .ym// is a partial system of coordinates over R. Moreover,
if A is a regular domain, and ˛i ;ˆi 2 TAmCn.S/ for 0 � i � q, then
. .y1/; : : : ;  .ym// can be extended to a stably tame automorphism of RŒmCn�.

Rather than prove this directly, we prove a slightly stronger version below that
immediately implies the above statement. The inclusion of the permutation maps �i
is not necessary to achieve Main Theorem 1, but will help us in our proof of Main
Theorem 2. Note that if we assume each �i is of the form in Definition 4, then we
may drop the assumption “A is a connected, reduced ring”. In particular, we do not
need to assumeA is connected and reduced in Main Theorem 1, since we set �i D id
for each i to obtain it from Theorem 27.

Theorem 27. Let A be a connected, reduced ring, and let 	0; : : : ; 	q 2 Nn. Let
�i 2 GPn.SŒm�/, �i 2 GLmCn.S/, ˛i 2 IA	i

mCn.R/, and ˆi 2 GA�i .	i /
n .RŒm�/ for

each 0 � i � q. Set

 i D ˛0 ı �0 ıˆ0 ı 	 	 	 ı ˛i ı �i ıˆi
Suppose �i .	i / � 	iC1 for each 0 � i � q. Then for each 0 � i � q, there exists
i 2 IA

	iC1

mCn.R/\ IAmCn.R/ with i .yj / D  i .yj / for each 1 � j � m. Moreover,
if A is a regular domain and ˛k;ˆk 2 TAmCn.S/ for 0 � k � i , then i is stably
tame.

Proof. The proof is by induction on i . Note that we may use a trivial base case
of i D �1 and �1 D id. So we suppose i � 0. By the induction hypothesis
we have i�1 2 IA	i

mCn.R/. Thus, .i�1 ı ˛i / 2 IA	i
mCn.R/, and by Corollary 16,

��1
i ı .i�1 ı ˛i / ı �i 2 IA�i .	i /

mCn .R/. Since ˆi 2 GA�i .	i /
n .R/ and 	iC1 � �.	i /, we

can apply Theorem 13 to obtain Q̂ 2 GA�i .	i /
n .RŒm�/ such that

i WD Q̂ ı .��1
i ı i�1 ı ˛i ı �i / ıˆi 2 IA

	iC1

mCn.R/\ IAmCn.R/

Noting that Q̂ ; �i 2 GAn.S
Œm�/ and thus fix each yj , and by the inductive hypothesis

i�1.yj / D  i�1.yj / we have

i .yj / D . Q̂ ı ��1
i ı i�1 ı ˛i ı �i ıˆi/.yj /

D .i�1 ı ˛i ı �i ıˆi/.yj /
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D . i�1 ı ˛i ı �i ıˆi /.yj /
D  i .yj /

for each 1 � j � m. Moreover, if ˛0;ˆ0; : : : ; ˛i ; ˆi 2 TAmCn.S/, then the
inductive hypothesis along with Theorem 13 guarantee i 2 TAmCn.S/ as well.
Noting that since i 2 IAmCn.R/ we have i � id .mod x/, the stable tameness
assertion follows immediately from the following result of Berson, van den Essen,
and Wright:

Theorem 28 ([3], Theorem 4.5). Let A be a regular domain, and let � 2 GAn.R/

with J� D 1. If � 2 TAn.S/ and N� 2 EAn.R=xR/, then � is stably tame.

�

Main Theorem 2 Suppose A is an integral domain. Let ˆ0; : : : ; ˆq 2 EA2.S
Œm�/

be elementaries. Let ˛i 2 GAmC2.S/ and �i 2 GP2.S Œm�/ for each 0 � i � q. Set

!i D ˛i ı �i ıˆi ı 	 	 	 ı ˛q ı �q ıˆq
and define 	i 2 N

2 to be minimal such that !i .A	i / � RŒmC2� for 0 � i � q. If
˛i 2 IA	i

mC2.R/ for each 0 � i � q, then there exists  2 IAmC2.R/ such that
.yj / D !0.yj /. Moreover, if A is a regular domain and ˛0; : : : ; ˛q 2 TAmC2.S/,
then  is stably tame.

The theorem follows from following theorem, which allows us to apply
Theorem 27 to !0 D Q!0. By convention, we will let 	qC1 D 0.

Theorem 29. Suppose A is an integral domain. Let ˆ0; : : : ; ˆq 2 EA2.S
Œm�/ be

elementaries. Let ˛i 2 GAmC2.S/ and �i 2 GP2.S Œm�/ for each 0 � i � q. Set

!i D ˛i ı �i ıˆi ı 	 	 	 ı ˛q ı �q ıˆq
and define 	i 2 N2 to be minimal such that !i .A	i / � RŒmC2� for 0 � i � q.
Assume also that ˛i 2 IA	i

mC2.R/ for each 0 � i � q. Then there exists r � q

and

1. A sequence 0 D j0 < j1 < 	 	 	 < jr�1 < jr D q

2. A sequence Q	0; : : : ; Q	r 2 N2

3. Q�0; : : : ; Q�r 2 GP2.S Œm�/
4. For each 0 � i � r , Q̨ i 2 IAQ	i

mC2.R/ and Q̂
i 2 EAQ�i .Q	i /

2 .RŒm�/

such that

1. Q�i . Q	i / � Q	iC1 for 0 � i � r

2. Setting Q!i D Q̨ i ı Q�i ı Q̂
i ı 	 	 	 ı Q̨q ı Q�q ı Q̂

q , each Q	i is minimal such that
Q!i .AQ	i / � RŒmC2�, for a � i � q

3. !ji D Q!i
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Proof. Note that the original composition satisfies all of the conclusions except for
ˆi 2 EA�i .	i /

2 .RŒm�/ and �i .	i / � 	iC1. Let b < q be minimal such that �b.	b/ >
	bC1, and �i .	i / � 	iC1 for b � i � q (we will see below that this implies ˆi 2
EA�i .	i /

2 .RŒm�/ for b � i � q). The proof is by induction downwards on b. Let
a < b be maximal such that �a.	a/ < 	aC1 (if any such a exist). The case where a
does not exist will form the base of our induction. If we do have such an a, we will
replace our composition with a shorter composition with a smaller b, allowing us to
apply the induction hypothesis.

The subsequent claim (with c D 0) yields the base case of our induction:

Claim 30. If �i .	i / � 	iC1 for c � i � q, then ˆi 2 EA�i .	i /
2 .RŒm�/ for c � i � q.

Proof. Note that by Corollary 17 this is equivalent to showing that ˆ0
i WD �i ı

ˆi ı ��1
i 2 EA	i

2 .R/ for c � i � q. Fix i , and without loss of generality, write
ˆ0
i D .z1 C �x�s.xti;2z2/d ; z2/ for some � 2 RŒm� n xRŒm�, s 2 Z, and d 2 N. Then

.�i ıˆi ı !iC1/.xti;1z1/ D .ˆ0
i ı �i ı !iC1/.xti;1z1/

D .�i ı !iC1/.xti;1z1/C �xti;1�s
�
.�i ı !iC1/.xti;2z2/

	d
(14)

Since �i .	i / � 	iC1, we have �i .A	i / D A�i .	i / � A	iC1
. In particular,

.�i ı !iC1/.xti;1z1/ 2 .�i ı !iC1/.A	i / D !iC1.A�i .	i // � !iC1.A	iC1
/ � RŒmC2�

with the last containment following from the minimality condition on 	iC1. Observe
also that, since ˛i .A	i / D A	i ,

.�i ıˆi ı !iC1/.xti;1z1/ 2 .�i ıˆi ı !iC1/.A	i / D .˛i ı �i ıˆi ı !iC1/.A	i /
D !i .A	i / � RŒmC2�

and therefore, from (14) we see �xti;1�s ..�i ı !iC1/.xti;2z2//d 2 RŒmC2� as well.
Thus since A is a domain, we have ti;1 � s since � … .x/ and .�i ı !iC1/.xti;2z2/ 2
RŒmC2� n xRŒmC2� (by Lemma 21). But ti;1 � s is precisely the condition that ˆ0

i 2
EA	i

2 .R
Œm�/ as required. �

We thus now assume b > 0 and a as defined above exists. Then the maximality
of a yields �i .	i / D 	iC1 for a < i < b. By the preceding claim, we have ˆi 2
EA�i .	i /

2 .RŒm�/ for aC 1 � i � q.
Observe that since �a.	a/ < 	aC1, then

.ˆa ı !aC1/.A	aC1
/ � .ˆa ı !aC1/.A�a.	a// D .˛a ı �a ıˆa ı !aC1/.A	a /

D !a.A	a / � RŒmC2�
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Then by Lemma 22 (with 	 D 	aC1, and ! D !aC1), we must have ˆa 2
EA

	aC1

2 .RŒm�/. Also, since �i .	i / D 	iC1 for a < i < b, ˆi 2 EA
	iC1

2 .RŒm�/ for
a � i < b. Then by Lemma 19, it suffices to assume that ˛aC1 D 	 	 	 D ˛b D id,
�aC1 D 	 	 	 D �b D id, �a.	a/ < 	aC1 D 	 	 	 D 	b > 	bC1 and ˆi 2 EA	b

n .R
Œm�/ for

a � i � b.
A priori, it seems we may no longer be able to assume the minimality condition

on the 	i when a � i < b. However, we may simply replace the 	i by the minimal 	i
such that !i .A	i / � RŒmC2� (for a � i < b). Note that our application of Lemma 19
did not changeˆb; then, while we may need to increase a (but it will not exceed b),
we may still assume ˛aC1 D 	 	 	 D ˛b D id, �aC1 D 	 	 	 D �b D id, ˆa; : : : ; ˆb 2
EA	b

n .R
Œm�/, and

�a.	a/ < 	aC1 D 	 	 	 D 	b > 	bC1

We also now see that

!a D ˛a ı �a ıˆa ıˆaC1 ı 	 	 	 ıˆb ı !bC1 (15)

Set

	b D .t1; t2/

for some t1; t2 2 N. Without loss of generality, assumeˆa is elementary in z1. Then
since �a.	a/ < 	aC1 D 	b D .t1; t2/, the minimality of 	a implies .ˆa ı 	 	 	 ı
ˆb ı !bC1/.xt1z1/ 2 xRŒmC2�. Then, by Lemma 25, we may assume that ˆa ı 	 	 	 ı
ˆb D ˛ ı � ı ˆ for some ˛ 2 IA

	aC1

2 .RŒm�/, � 2 GP
	aC1

2 .RŒm�/ and elementary
ˆ 2 EA

	aC1

2 .RŒm�/ \ GL
	aC1

2 .RŒm�/. Then from (15), we see

!a D ˛a ı �a ı ˛ ı � ıˆ ı !bC1

Noting that �a.	a/ < 	aC1, by Corollary 20, we have ˛a ı �a ı ˛ ı � D ˛0
a ı �0

a ıˆ0
for some ˛0

a 2 IA	a
mC2.R/, �0

a D �a ı � 2 GP2.S Œm�/, and ˆ0 2 EA
	aC1

2 .RŒm�/ (since
�.	aC1/ D 	aC1). Thus we have

!a D ˛0
a ı �0

a ıˆ0 ıˆ ı !bC1

First, suppose ˆ0 and ˆ are both elementary in the same variable; then we may
set Q̂ D ˆ0 ıˆ and Q̂ 2 EA

	aC1

2 .RŒm�/ is elementary, and

!a D ˛0
a ı �0

a ı Q̂ ı !bC1

Similarly, if we suppose instead that ˆ0 and ˆ are elementary in different
variables, then sinceˆ 2 GL

	aC1

2 .RŒm�/, by Lemma 23 there exist Q� 2 GP
	aC1

2 .RŒm�/

and Q̂ 2 EA
	aC1

2 .RŒm�/ such that ˆ0 ıˆ D Q� ı Q̂ . Then we have

!a D ˛0
a ı .�0

a ı Q�/ ı Q̂ ı !bC1
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Now set r D q� .b � a/. If i � a, set ji D i , and if i > a, set ji D i C .b � a/.
Then, for i ¤ a, set Q̂

i D ˆji , Q̨i D ˛ji , and Q�i D �ji . Finally, set Q̂
a D Q̂ ,

Q̨a D ˛0
a, and Q�a D �0

a ı Q�. Note that we now have Q!i D !ji for 0 � i � r . Thus,
we have a new composition satisfying all of the conclusions for i > a. Since a < b,
the new minimal b has been reduced, and we may apply the induction hypothesis.
�
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Configuration Spaces of the Affine Line
and their Automorphism Groups

Vladimir Lin and Mikhail Zaidenberg

Abstract The configuration space Cn.X/ of an algebraic curve X is the algebraic
variety consisting of all n-point subsets Q � X . We describe the automorphisms
of Cn.C/, deduce that the (infinite dimensional) group Aut Cn.C/ is solvable, and
obtain an analog of the Mostow decomposition in this group. The Lie algebra and
the Makar-Limanov invariant of Cn.C/ are also computed. We obtain similar results
for the level hypersurfaces of the discriminant, including its singular zero level.

2010 Mathematics Subject Classification: 14R20, 32M17.

1 Introduction

Let X be an irreducible smooth algebraic curve over the field C. The nth config-
uration space Cn.X/ of X is a smooth affine variety of dimension n consisting
of all n-point subsets Q D fq1; : : : ; qng � X with distinct q1; : : : ; qn. We would
like to study its biregular automorphisms and the algebraic structure of the group
Aut Cn.X/.

For a hyperbolic curve X the group Aut Cn.X/ is finite (possibly, trivial for a
generic curve). We are interested in the case where X is non-hyperbolic, i.e., one of
the curves C, P1 D P1

C
, C� D Cnf0g, or an elliptic curve. In the latter two cases the
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groups Aut Cn.X/were described in [35] and [10], respectively. Here we investigate
automorphisms of the configuration space Cn D Cn.C/ and of some related spaces.

All varieties in this chapter are defined over C and reduced; in general,
irreducibility is not required. Morphism means a regular morphism of varieties.
The same applies to the terms automorphism and endomorphism. The actions of
algebraic groups are assumed to be regular. We use the standard notation O.Z/,
OC.Z/, and O�.Z/ for the algebra of all regular functions on a variety Z , the
additive group of this algebra, and its group of invertible elements, respectively.

For z 2 Cn, let dn.z/ denote the discriminant of the monic polynomial

Pn.�; z/ D �n C z1�
n�1 C 	 	 	 C zn ; z D .z1; : : : ; zn/ 2 C

n D C
n
.z/ : (1)

If dn.z/ ¤ 0 and Q � C is the set of all roots of Pn.	; z/, then Q 2 Cn and

Dn.Q/
defDD

Y
fq0;q00g�Q

.q0 � q00/2 D dn.z/ : (2)

Denoting by Pn the space of all polynomials (1) with simple roots, we have the
natural identification

Cn D fQ � C j #Q D ng Š Pn D C
n
.z/ n†n�1 ; Q $ z D .z1; : : : ; zn/ ; (3)

where 1 the discriminant variety †n�1 is defined by

†n�1 defDD fz 2 C
n j dn.z/ D 0g : (4)

We describe the automorphisms of the configuration space Cn for n > 2, of the
discriminant variety †n�1 for n > 6, and, for n > 4, of the special configuration
space

SCn�1 defDD fQ 2 Cn j Dn.Q/ D 1g Š fz 2 C
n j dn.z/ D 1g : (5)

This leads to structure theorems for the automorphism groups Aut Cn, Aut SCn�1,
and Aut †n�1.

The varieties Cn and †n�1 can be viewed as the complementary to each other
parts of the symmetric power Symn

C D Cn=S.n/, where S.n/ is the symmetric
group permuting the coordinates q1; : : : ; qn in Cn D Cn.q/. We have the natural
projections

pWCn ! Symn
C Š C

n
.z/ ; �

n�1 ! †n�1 ; and C
n n�n�1 ! Cn ; (6)

1The upper index will usually mean the dimension of the variety.
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where �n�1 defDD S
i¤j

fq D .q1; : : : ; qn/ 2 Cn j qi D qj g is the big diagonal. The

points z 2 †n�1 are in one-to-one correspondence with unordered n-term multisets
(or corteges)Q D fq1; : : : ; qng, qi 2 C, with at least one repetition; the regular part
reg†n�1 of †n�1 consists of all unordered multisets Q D fq1; : : : ; qn�2; u; ug � C

with qi ¤ qj for i ¤ j and qi ¤ u for all i .
The barycenter bc.Q/ of a pointQ 2 Symn

C D Cn[†n�1 Š C
n
.z/ is defined as

bc.Q/
defDD 1

n

X
q2Q

q D �z1=n (7)

(if Q is a multiset, the summation takes into account multiplicities).
Let Z be one of the varieties Cn, SCn�1, or †n�1. The corresponding balanced

variety Zblc � Z is defined by

Zblc D fQ 2 Z j bc.Q/ D 0g ; dimC Zblc D dimC Z � 1 : (8)

A free regular CC-action 	 on Cn defined by 	�Q D QC � D fq1 C �; : : : ; qn C �g
for � 2 C and Q 2 Z gives rise to the projections

�W Z ! Zblc; Q 7! Qı defDD Q � bc.Q/ ; and � 0W Z ! C ; Q 7! bc.Q/ ;
(9)

where the retraction � yields the orbit map of 	 with all fibers isomorphic to C. The
corresponding cylindrical direct decompositions of our varieties

Cn D Cn�1
blc � C ; SCn�1 D SCn�2

blc � C ; and †n�1 D †n�2
blc � C (10)

play an important part in the paper.
Our main results related to automorphisms of Cn are the following two theorems

(for more general results see Theorems 4.10, 5.4, 5.5, and Corollary 5.2).

Theorem 1.1. Assume that n > 2. A map F W Cn ! Cn is an automorphism if and
only if it is of the form

F.Q/ D s 	 �.Q/CA.�.Q// bc.Q/ for any Q 2 Cn ; (11)

where �.Q/ D Q � bc.Q/, s 2 C�, and AW Cn�1
blc ! Aff C is a regular map.

Theorem 1.2. If n � 3, then the following hold.

(a) The group Aut Cn is solvable. More precisely, it is a semi-direct product

Aut Cn Š �OC.Cn�1
blc / Ì .C�/2

	
Ì Z :

(b) Any finite subgroup � � Aut Cn is Abelian.
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(c) Any connected algebraic subgroupG of Aut Cn is either Abelian or metabelian
of rank � 2. 2

(d) Any two maximal tori in Aut Cn are conjugated.

Similar facts are established for SCn�1 and †n�1, see loc. cit.
Let us overview some results of [10, 19, 21, 24, 26, 27, 35] initiated the present

paper and used in the proofs. Given a smooth irreducible non-hyperbolic algebraic
curveX , consider the diagonal action of the group Aut X on the configuration space
Cn.X/,

AutX 3 AW Cn.X/ ! Cn.X/ ;

Q D fq1; : : : ; qng 7! AQ
defDD fAq1; : : : ; Aqng :

(12)

To any morphism T W Cn.X/ ! Aut X we assign an endomorphism FT of Cn.X/
defined by

FT .Q/
defDDT .Q/Q for all Q 2 Cn.X/ : (13)

Such endomorphisms FT are called tame. A tame endomorphism preserves each
.Aut X/-orbit in Cn.X/. A theorem below implies the converse in the following
stronger form: an endomorphism of Cn.X/ whose image is not contained in a single
.Aut X/-orbit is tame and hence preserves each .Aut X/-orbit. If the image of F is
contained in a single .Aut X/-orbit, F is called orbit-like.

The braid group of X , Bn.X/ D �1.Cn.X//, is non-Abelian for any n � 3. If
X D C, then Bn.X/ D Bn is the Artin braid group on n strands. An endomorphism
F of Cn.X/ is called non-Abelian if the image of the induced endomorphism
F�W �1.Cn.X// ! �1.Cn.X// is a non-Abelian group. Otherwise, F is said to be
Abelian. Rather unexpectedly, this evident algebraic dichotomy gives rise to the
following analytic one.

Tame Map Theorem. Let X be a smooth irreducible non-hyperbolic algebraic
curve. For n > 4 any non-Abelian endomorphism of Cn.X/ is tame, whereas any
Abelian endomorphism of Cn.X/ is orbit-like.

Remarks 1.3. (a) A proof of Tame Map Theorem for X D C is sketched in [21]
and [22]; a complete proof for X D C or P1 in the analytic category can be
found in [24, 26], and [27]. For X D C� the theorem is proved in [35], 3 and
for elliptic curves in [10]. The proofs mutatis mutandis apply in the algebraic
setting. We use this theorem to describe automorphisms of the balanced spaces
Cn�1

blc and †n�2
blc (see Theorems 5.1(a),(c) and 7.1); its analytic counterpart is

involved in the proof of Theorem 8.2.

2The rank of an affine algebraic group is the dimension of its maximal tori.
3The complex Weyl chamber of type B studied in [35] is isomorphic to Cn.C�/.
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(b) A morphism T W Cn.X/ ! Aut X in the tame representation F D FT is
uniquely determined by a non-Abelian endomorphismF . Indeed, if T1.Q/Q D
T2.Q/Q for all Q 2 Cn.X/, then the automorphism ŒT1.Q/�

�1T2.Q/ is con-
tained in the Aut .X/-stabilizer ofQ, which is trivial for general configurations
Q. Therefore, T1 D T2.

(c) According to Tame Map Theorem and Theorem 1.1, the map F in (11), being
an automorphism, must be tame. It is indeed so with the morphism

T W Cn ! Aff C; T .Q/� D s 	 .� � bc.Q//C A.�.Q// bc.Q/ ; (14)

where � 2 C and Q 2 Cn.
(d) Let X D C. Then Tame Map Theorem holds also for n D 3, but not for n D 4.

However, any automorphism of C4.C/ is tame. The automorphism groups of
C1.C/ Š C and C2.C/ Š C� � C are well known, so we assume in the sequel
that n > 2.

Using Tame Map Theorem, Zinde and Feler [loc. cit.] described all automor-
phisms of Cn.X/when dimC Aut X D 1, i.e., whenX is C� or an elliptic curve. For
C and P1, where the automorphism groups Aff C and PSL.2;C/ have dimension
2 and 3, respectively, the problem becomes more difficult. The group Aut Cn D
Aut Cn.C/ is the subject of the present paper; the case X D P1 remains open.

The content of this chapter is as follows. In Sect. 2 we propose an abstract scheme
to study the automorphism groups of cylinders over rigid bases. An irreducible affine
variety X will be called rigid if the images of non-constant morphisms C ! reg X
do not cover any Zariski open dense subset in the smooth locus reg X , i.e., if reg X is
non-C-uniruled, see Definition 2.1. Any cylinder X �C over a rigid base X is tight,
meaning that its cylinder structure is unique, see Definition 2.2 and Corollary 2.4.

We show in Sect. 2.3 that the bases Cn�1
blc , SCn�2

blc , and †n�2
blc of cylinders (10)

are rigid. So, the scheme of Sect. 2.2 applied to the latter cylinders yields that their
automorphisms have a triangular form, see (19)–(20).

For any cylinder X � C over a rigid X we describe in Sect. 3 the special
automorphism group SAut.X �C/, and in Sect. 4 the neutral component Aut0 .X �
C/ of the group Aut .X � C/ and its algebraic subgroups. In Theorem 4.10 we
establish an analog of Theorem 1.2 for cylinders over rigid bases. Besides, in
Sect. 3 we find the locally nilpotent derivations of the structure ring O.X � C/

and its Makar-Limanov invariant subring. In Sect. 4.5 we study the Lie algebra
Lie .Aut0 .X �C//. These results are used in the subsequent sections in the concrete
setting of the varieties Cn, SCn�1, †n�1, and their automorphism groups.

Theorems 1.1 and 1.2 are proven in Sect. 5, see Theorems 5.5 and 5.4, respec-
tively. We provide analogs of our main results for the automorphism groups of
the special configuration space SCn�1, the discriminant variety †n�1, and the pair
.Cn;†n�1/. All these groups are solvable; we also find presentations of their Lie
algebras. In Sect. 6 we show that all these groups are centerless and describe
their commutator series, semisimple and torsion elements. In Sect. 7 we complete
the description of the automorphism group of †n�1. Finally, in Sect. 8, using the
analytic counterpart of Tame Map Theorem, we obtain its analog for the space
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Cn�1
blc , describe the proper holomorphic self-maps of this space and the group of

its biholomorphic automorphisms AutholCn�1
blc .

2 Cylinders over Rigid Bases

2.1 Triangular Automorphisms

(a) Let C be a category of sets admitting direct products X � Y of its objects with
the standard projections to X and Y being morphisms. Every endomorphism
F 2 End.X � Y/ of the form

F.x; y/ D .Sx;A.x/y/ for any .x; y/ 2 X � Y (15)

with some S 2 Aut X and a map AW X ! Aut Y is, in fact, an automorphism
of X � Y , and all such automorphisms form a subgroup AutM.X � Y/ �
Aut .X � Y/. Indeed, for F;F 0 we have F 0F.x; y/ D .S 0Sx;A0.Sx/A.x/y/,
and the inverse F �1 of F corresponds to S 0 D S�1 andA0.x/ D .A.S�1x//�1.
We call such automorphisms F of X � Y triangular (with respect to the given
product structure).

(b) Suppose, in addition, that Aut Y is an object in C. Then Mor.X ;Aut Y/ with
the pointwise multiplication of morphisms can be embedded in AutM.X �Y/ as
a normal subgroup consisting of all F of the form F.x; y/ D .x; A.x/y/, A 2
Mor.X ;Aut Y/. The corresponding quotient group is isomorphic to Aut X . So
we have the exact sequence

1 ! Mor.X ;Aut Y/ i! AutM.X � Y/ ! Aut X ! 1

with the splitting monomorphism Aut X j! AutM.X � Y/, S 7! F , where

F.x; y/
defDD .Sx; y/, and the semi-direct product decomposition

AutM.X � Y/ Š Mor.X ;Aut Y/ Ì Aut X : (16)

The second factor acts on the first one via S:A D A ı S�1, where S 2 Aut X and
A 2 Mor.X ;Aut Y/; this is the action by conjugation in AutM.X � Y/.

2.2 Automorphisms of Cylinders over Rigid Bases

We are interested in the case where C is the category of complex algebraic varieties
and their morphisms, and Y D C. Thus, in the sequel we deal with cylinders X �C.
Since Aut Y D Aff C 2 C, the assumption in (b) above is fulfilled. Let us introduce
the following notions.
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Definition 2.1. Recall that an irreducible variety X is called C-uniruled if for some
variety V there is a dominant morphism V�C ! X non-constant on a general ruling
fvg �C, v 2 V (see [17, Definition 5.2 and Proposition 5.1]). We say that X is rigid
if its smooth locus reg X is non-C-uniruled. For such X , the variety X � C is said
to be a cylinder over a rigid base.

Definition 2.2. For an irreducible X , we call the cylinder X �C tight if its cylinder
structure over X is unique, that is, if for any automorphism F 2 Aut .X � C/ there
is a (unique) automorphism S 2 Aut X that fits in the commutative diagram

X � C
F�����! X � C

pr1

??y
??ypr1

X �����!
S

X
(17)

Thus, X � C is tight if and only if every F 2 Aut .X � C/ is triangular, so that

Aut .X � C/ D AutM.X � C/ : (18)

For a cylinder X � C formula (15) takes the form

F.x; y/ D .Sx;A.x/y/ D .Sx; ay C b/ for any .x; y/ 2 X � C (19)

with a 2 O�.X / and b 2 OC.X /. If X �C is tight, then, by (18) and (19), we have

Aut .X � C/ Š Mor .X ;AffC/ Ì Aut X and

Mor .X ;AffC/ Š OC.X / Ì O�.X / ;
(20)

where O�.X / acts on OC.X / by multiplication b 7! ab for a 2 O�.X / and
b 2 OC.X /. The group Aut .X � C/ of a tight cylinder is solvable as soon as
Aut X is.

The following strong cancellation property of an irreducible X implies the
tightness of X � C: for any m > 0, any variety Y , and any isomorphism

F W X � Cm
'�! Y � Cm there is an isomorphism S W X '�! Y that fits in the

commutative diagram

X � Cm
F�����! Y � Cm

pr1

??y
??ypr1

X �����!
S

Y
(21)
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A priori, the tightness is weaker than the strong cancellation property. In the
following classical example both these properties fail.

Example 2.3. Consider the Danielewski surfaces Sn D fxny � z2 C 1 D 0g in C3,
n 2 N. By Danielewski’s Theorem, the cylinders Sn�C are all isomorphic, whereas
Sn is not isomorphic to Sm for n ¤ m. Thus these surfaces provide counterexamples
to cancellation4. We show that the cylinders over the Danielewski surfaces are not
tight.5

By Theorem 3.1 in [2], the surface S1 is flexible, i.e., the tangent vectors to the
orbits of the CC-actions on S1 generate the tangent space at any point of S1. It
follows easily that the cylinder S1 � C is also flexible. By Theorem 0.1 in [3], the
flexibility implies the k-transitivity of the automorphism group Aut .S1 � C/ for
any k � 1. In particular, for any n � 1, there are automorphisms of the cylinder
Sn�C ' S1�C that do not preserve the cylinder structure, and so send it to another
such structure over the same base Sn. Thus, none of the cylinders Sn � C is tight.

The following theorem is known (see [6, (I)]).

Dryło’s Theorem I. The strong cancellation holds for any rigid affine variety.

For the reader’s convenience, we provide a short argument for the following
corollary.

Corollary 2.4. If X is rigid, then X �C is tight, i.e., Aut .X �C/ D AutM.X �C/.

Proof. Let us show that any F 2 Aut .X � C/ sends the rulings fxg � C into

rulings. Then the same holds for F�1, and so S
defDD pr1 ı F jX �f0g 2 Aut X fits in

diagram (17).
Assuming the contrary, we consider the family fF.fxg � C/gx2reg X . Projecting

it to reg X we get a contradiction with the rigidity assumption. �

Corollary 2.4 and Proposition 2.7 below show that the cylinders (10) are tight.

2.3 Configuration Spaces and Discriminant Levels
as Cylinders over Rigid Bases

In this section we show (see Proposition 2.7) that the bases Cn�1
blc , SCn�2

blc , and †n�2
blc

of the cylinders (10) possess a property, which is stronger than the rigidity and,
consequently, all automorphisms of these cylinders are triangular 6 (Corollary 2.8).

4See [18] for further examples of non-cancellation.
5The authors thank S. Kaliman for a useful discussion, where the latter observation appeared.
6Since Dn is homogeneous, any hypersurface Dn.Q/ D c ¤ 0 is isomorphic to SCn�1.
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Notation 2.5. For any X and any n 2 N, let Cnord.X/ denote the ordered configu-
ration space of X , i.e., Cnord.X/ D f.q1; : : : ; qn/ 2 Xn j qi ¤ qj for all i ¤ j g.
The group S.n/ acts freely on Cnord.X/ and, by definition, Cnord.X/=S.n/ D Cn.X/.
We let

Cnord
defDD Cnord.C/ and Cn�1

ord;blc
defDD fq D fq1; 	 	 	 ; qng 2 Cnord j q1 C : : :Cqn D 0g :

Clearly Cn�1
ord;blc=S.n/ D Cn�1

blc .

Recall (see Sect. 1) that the regular part reg†n�1 of the discriminant variety†n�1
consists of all unordered n-multisets Q D fq1; : : : ; qn�2; u; ug � C with qi ¤ qj
for i ¤ j and qi ¤ u for all i . Since the hyperplane q1 C 	 	 	Cqn D 0 is transversal
to each of the hyperplanes qi D qj , the regular part reg†n�2

blc of †n�2
blc consists of

all multisets Q D fq1; : : : ; qn�2; u; ug as above that satisfy the additional condition
n�2P
iD1

qi C 2u D 0. In the proofs of Proposition 2.7 and Theorem 7.1 below we need

the following lemma.

Lemma 2.6. For n > 2 the regular part reg†n�2
blc of †n�2

blc is isomorphic to the
configuration space Cn�2.C�/. Consequently, Aut .reg†n�2

blc / Š Aut Cn�2.C�/.

Proof. An isomorphism reg†n�2
blc Š Cn�2.C�/ does exist since both these vari-

eties are smooth cross-sections of the CC-action 	 on the cylinder reg†n�2 D
.reg†n�2

blc / � C (see (10)). To construct such an isomorphism explicitly, for every

Q D fq1; : : : ; qn�2; u; ug 2 reg†n�2
blc ; where, of course, u D �1

2

n�2X
iD1

qi ;

we let QQ D fq1 � u; : : : ; qn�2 � ug. Then QQ 2 Cn�2.C�/ and we have an
epimorphism

'W reg†n�2
blc ! Cn�2.C�/ ; '.Q/ D QQ ; (22)

To show that ' is an isomorphism, for anyQ0 D fq0
1; : : : ; q

0
n�2g 2 Cn�2.C�/ take

v D �1
n

n�2X
iD1

q0
i and Q00 D fq0

1 C v; : : : ; q0
n�2 C v; v; vg I

notice that v D u for Q0 D QQ as above. Then Q00 2 reg†n�2
blc and the morphism

 W Cn�2.C�/ ! reg†n�2
blc ;  .Q0/ D Q00 ;

is inverse to '. �
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Proposition 2.7. For n > 2, let X be one of the varieties Cn�1
blc , SCn�2

blc , or †n�2
blc .

Then any morphism C ! reg X is constant. Consequently, Cn�1
blc � C, SCn�2

blc � C,
and †n�2

blc � C in (10) are cylinders over rigid bases.

Proof. Let us show first that any morphism f W C ! Cn�1
blc is constant. Consider

the unramified S.n/-covering pW Cn�1
blc;ord ! Cn�1

blc . By the monodromy theorem f

can be lifted to a morphism g D .g1; : : : ; gn/W C ! Cn�1
blc;ord. For any i ¤ j the

regular function gi � gj on C does not vanish, hence it is constant. In particular,

gi D g1 C ci , where ci 2 C, i D 1; : : : ; n, and so 0 D
nP
iD1

gi D ng1 C c, where

c D
nP
iD1

ci . Thus, g1 D const, and so gi D const for all i D 1; : : : ; n. Hence

f D const and the variety Cn�1
blc is rigid.

Since SCn�2
blc � Cn�1

blc , any morphism C ! SCn�2
blc is constant and SCn�2

blc is rigid.
It remains to show that any morphism C ! reg†n�2

blc is constant. For n D 3 we
have reg†n�2

blc Š C�, hence the claim follows.
For n � 4, by Lemma 2.6, it suffices to show that any morphism f W C !

Cn�2.C�/ is constant. By monodromy theorem f admits a lift gW C ! Cn�2
ord .C

�/ �
.C�/n�2 to the unramified S.n � 2/-covering Cn�2

ord .C
�/ ! Cn�2.C�/. This implies

that both g and f are constant, since any morphism C ! C� is. �

The following important result follows from Corollary 2.4 and Proposition 2.7.

Corollary 2.8. For n > 2, all automorphisms of the cylinders

Cn Š Cn�1
blc � C; SCn�1 Š SCn�2

blc � C; and †n�1 Š †n�2
blc � C

are triangular, and (18)–(20) hold for the corresponding automorphism groups.

3 The Special Automorphism Groups

3.1 CC-Actions and LNDs on Cylinders over Rigid Bases

We start with the following simple lemma.

Lemma 3.1. If X is rigid, then any CC-action on the cylinder X � C preserves
each fiber of the first projection pr1W X � C ! X .

Proof. Indeed, since X is rigid, the induced CC-action on it is trivial. �

We suppose that this lemma is not true any longer for tight cylinders.
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Definition 3.2. Recall that a derivation @ of a ring A is locally nilpotent if @na D 0

for any a 2 A and for some n 2 N depending on a. For any f 2 ker @ the locally
nilpotent derivation f @ 2 DerA is called a replica of @ (see [3]).

Consider the locally nilpotent derivation @=@y on the structure ring O.X �C/ Š
O.X /Œy�. The corresponding CC-action, say 	 , on the cylinder X � C acts via
translations along the second factor. For arbitrary CC-actions on the cylinder X �C

we have the following description.

Proposition 3.3. If X is rigid, then any locally nilpotent derivation @ on the
coordinate ring O.X � C/ is a replica of the derivation @=@y, i.e.,

@ D f @=@y; where f 2 O	 .X � C/ D pr�
1 .O.X // D ker @=@y :

Consequently, any CC-action on X � C is of the form

.x; y/ 7! .x; y C �b.x//; where � 2 C and b 2 O.X / :

Proof. Indeed, both @ and @=@y can be viewed as regular vector fields on X �
C, where the latter field is non-vanishing. By Lemma 3.1, these vector fields are
proportional. That is, there exists a function f 2 O	 .X �C/ such that @ D f @=@y,
which proves the first assertion. Now the second follows. �

3.2 The Group SAut.X � C/

Definition 3.4. Let Z be an irreducible algebraic variety. A subgroup G � Aut Z
is called algebraic if it admits a structure of an algebraic group such that the natural
map G � Z ! Z is a morphism. The special automorphism group SAutZ is the
subgroup of Aut Z generated by all algebraic subgroups of Aut Z isomorphic to
CC (see e.g. [3]). Clearly, SAut Z is a normal subgroup of Aut Z .

Assume that X is rigid. Due to (20) we have the decomposition

Aut .X � C/ Š �OC.X / Ì O�.X /	 Ì Aut X : (23)

In general, the group SAut of an affine variety is not necessarily Abelian. Thus
the following corollary emphasizes a special character of the varieties that we are
dealing with.

Corollary 3.5. If X is rigid, then G D SAut.X � C/ is an Abelian group with Lie
algebra7

7See Sect. 4.5 below.
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L D LieG D O	C.X � C/@=@y D OC.X /@=@y :

Furthermore, the exponential map expW L ! G yields an isomorphism of groups

OC.X / Š�! SAut.X � C/ :

Proof. This follows easily from Proposition 3.3. �

Consider the standard CC-action 	 on X � C by shifts along the second factor,
and let U D exp.C@=@y/ be the corresponding one-parameter unipotent subgroup

of SAut .X � C/. Consider also the subgroup B
defDD U 	 Aut X Š U Ì Aut X of

Aut .X � C/, and let B0 Š U Ì Aut0 X be its neutral component. More generally,
given a character � of Aut X (of Aut0 X , respectively) we let

B.�/ D ˚
F 2 Aut .X �C/ jF W .x; y/ 7! .Sx; �.S/y C b/; S 2 Aut X ; b 2 C



:

The group B0.�/ is defined in a similar way. Thus, B D B.1/ and B0 D
B0.1/. Clearly, B.�/ (B0.�/, respectively) is algebraic as soon as Aut X (Aut0 X ,
respectively) is.

From Proposition 3.3 we deduce the following result.

Corollary 3.6. If X is a rigid affine variety, then the orbits of the automor-
phism group Aut .X � C/ .of Aut0 .X � C/; respectively/ coincide with the
orbits of the group B.�/ .B0.�/; respectively/, whatever is the character � of
Aut X .of Aut0X ; respectively/.

Proof. We give a proof for the group Aut .X �C/; that for Aut0 .X �C/ is similar.
Recall that any automorphism F of the cylinder X � C over a rigid base X can be
written as

F.x; y/ D .Sx;A.x/y/ for any .x; y/ 2 X � C ; (24)

where S 2 Aut X and A 2 Mor.X ;Aff C/. It follows that the B.�/-orbit B.�/Q
of a point Q D .x; y/ in X � C is B.�/Q D Œ.Aut X /x� � C. By virtue of
Proposition 3.3 the SAut .X � C/-orbits in X � C coincide with the 	-orbits,
that is, with the rulings of the cylinder X � C. Now the assertion follows from
decomposition (23) and the isomorphism OC.X / Š SAut.X �C/ of Corollary 3.5.
�

Remarks 3.7. (a) It is known that the group Aut0 X of a rigid affine variety X is an
algebraic torus, see Theorem 4.10(a) below. Hence B0.�/ is a metabelian linear
algebraic group isomorphic to a semi-direct product CC Ì .C�/r , where r � 0

and .C�/r acts on CC via multiplication by the character � of the torus .C�/r .
(b) We have the following assertion in the spirit of Tame Map Theorem: Given a

rigid affine variety X and a character � of Aut X , any automorphism F of the
cylinder X � C admits a unique factorization
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F W X � C
T�fidg�! B.�/ � .X � C/

˛�! X � C ; (25)

where ˛ stands for the B.�/-action on X � C, and T W X � C ! B.�/ is a
morphism with a constant Aut X -component.

Indeed, by Corollary 3.6 for any point Q D .x; y/ 2 X � C there exists an
element T .Q/ 2 B.�/, T .Q/W .x0; y0/ 7! .S.Q/x0; �.S.Q//y0 C f .Q// for some
f .Q/ 2 C, such that

F.Q/ D T .Q/Q D .S.Q/x; �.S.Q//y C f .Q// 2 X � C : (26)

On the other hand, according to (24),

F.Q/ D .Sx; a.x/y C b.x// 2 X � C ; (27)

where S 2 Aut X , a 2 O�.X /, and b 2 OC.X / are uniquely determined by F .
Comparing (26) and (27) yields S.Q/x D Sx and f .Q/ D .a.x/��.S//yCb.x/

for any Q 2 X � C. Vice versa, the latter equalities define unique f 2 O.X � C/

and S 2 Aut X such that T W X � C ! B.�/, Q 7! .S; z 7! �.S/z C f .Q//, fits
in (25) i.e., F D ˛ ı .T � id/, as required. ut

Formula (14) corresponds to the particular case X � C D Cn�1
blc � C Š Cn. In

this case Aut X D Aut Cn�1
blc D C� (see Theorem 5.1(a) below), and the character

� W C� ! C� is the identity.

3.3 The Makar-Limanov Invariant of a Cylinder

The subalgebra of 	-invariants O	 .X � C/ � O.X � C/ admits yet another
interpretation.

Definition 3.8. Let Y be an affine algebraic variety over C. The ring of invariants
O.Y /SAutY is called the Makar-Limanov invariant of Y and is denoted by ML.Y /.
This ring is invariant under the induced action of the group Aut Y on O.Y /.

Any algebraic subgroup H � Aut Y isomorphic to CC can be written as H D
exp.C@/, where the infinitesimal generator @ 2 Der O.Y / is a locally nilpotent
derivation on the coordinate ring O.Y / ([12]). We have O.Y /H D ker @ and so

ML.Y / D
\

ker @ ;

where @ runs over the set LND.O.Y // of all locally nilpotent derivations of the
algebra O.Y /. The next corollary is immediate from Proposition 3.3.
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Corollary 3.9. If an irreducible affine variety X is rigid, then

ML.X � C/ D O	 .X � C/ D O.X / :

Alternatively, this corollary follows from the next more general result (cf. also
[4]).

Dryło’s Theorem II ([7]). Let X and Y be irreducible affine varieties over an
algebraically closed field k. If X is rigid, then ML.X � Y/ D O.X /˝k ML.Y/.

4 Ind-Group Structure and Algebraic Subgroups

4.1 Aut .X � C/ as Ind-Group

Recall the following notions (see [20, 34]).

Definition 4.1. An ind-group is a group G equipped with an increasing filtration
G D S

i2NGi , where the componentsGi are algebraic varieties (and not necessarily
algebraic groups) such that the natural inclusion Gi ,! GiC1, the multiplication
mapGi�Gj ! Gm.i;j /, .gi ; gj / 7! gigj , and the inversionGi ! Gk.i/, gi 7! g�1

i ,
are morphisms for any i; j 2 N with a suitable choice of m.i; j /; k.i/ 2 N.

Examples 4.2 (a) Ind-structure on OC.X /. Given an affine variety X we fix a
closed embedding X ,! CN . For f 2 OC.X / we define its degree degf
as the minimal degree of a polynomial extension of f to CN . Letting

Gi D ff 2 OC.X / j degf � ig (28)

we obtain a filtration of the group OC.X / by an increasing sequence of
connected Abelian algebraic subgroups Gi (i 2 N), hence an ind-structure on
OC.X /.

(b) Ind-structure on Aut X . Given again a closed embedding X ,! C
N , any

automorphism F 2 Aut X can be written as F D .f1; : : : ; fN /, where
fj 2 OC.X /. Letting

degF D max
jD1;:::;N fdegfj g and Gi D fF 2 Aut X j degF � ig

we obtain an ind-group structure Aut X D S
i2NGi compatible with the action

of Aut X on X . The latter means that the maps Gi � X ! X , .F; x/ 7! F.x/,
are morphisms of algebraic varieties. It is well known that any two such ind-
structures on Aut X are equivalent.

(c) Ind-structure on Aut .X � C/. For a cylinder X � C over a rigid base an ind-
structure on the group Aut .X �C/ can be defined via the ind-structures on the
factors OC.X /, O�.X /, and Aut X in decomposition (23).
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4.2 O�.X / as Ind-Group

Any extension of an algebraic group by a countable group is an ind-group. In
particular, the group O�.X / is an ind-group due to the following well-known fact
(see [33, Lemme 1]).

Lemma 4.3 (Samuel’s Lemma). For any irreducible algebraic variety X defined
over an algebraically closed field k we have

O�.X / Š k� � Z
m for some m � 0 :

If k D C, thenm � rankH1.X ;Z/.
We provide an argument for k D C, which follows the sheaf-theoretic proofs

of the topological Bruschlinsky [5] and Eilenberg [8, 9] theorems; see also [11,
Lemma 1.1] for a proof in the general case and further references.

Proof. The sheaves ZX , CX , and C�
X of germs of continuous functions with values

in Z, C, and C�, respectively, form the exact sequence 0 ! ZX
� 2�i�! CX

exp�! C�
X !

1 : As X is connected and paracompact, and the sheaf CX is fine, H1.X ; CX / D 0

and the corresponding exact cohomology sequence takes the form

0 ! Z
� 2�i�! C.X / exp�! C �.X / ��! H1.X ;Z/ ! 0 :

Restricting the homomorphism � to O�.X / � C�.X / and taking into account that
the conditions ' 2 O.X / and e' 2 O�.X / imply ' D const, we obtain the exact
sequence

C
exp�! O�.X / ��! H1.X ;Z/ :

Since H1.X ;Z/ is a free Abelian group of finite rank, the image of � is isomorphic
to Zm with some m � rankH1.X ;Z/. This implies that the Abelian group O�.X /
admits the desired direct decomposition. �

Examples 4.4 (The Groups of Units on the Balanced Spaces) (a) The discrimi-
nant Dn is the restriction to Cn D Cn.z/ n fz j dn.z/ D 0g of the irreducible

discriminant polynomial dn. Since Cn D Cn�1
blc � C, the group H1.Cn�1

blc ;Z/ D
H1.Cn;Z/ Š Z is generated by the cohomology class of Dn, all elements of
O�.Cn�1

blc / are of the form sDk
n with s 2 C� and k 2 Z, and O�.Cn�1

blc / Š C��Z.
(b) The projection DnW Cn�1

blc ! C�, Q 7! Dn.Q/, is a locally trivial fiber bundle
with fibers isomorphic to SCn�2

blc . Since �2.C�/ D 0, the final segment of the
corresponding homotopical exact sequence looks as follows:

1 ! �1.SCn�2
blc / ! �1.Cn�1

blc / ! �1.C
�/ ! 1 :
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Now, �1.Cn�1
blc / is the Artin braid group Bn and we can rewrite this sequence as

1 ! �1.SCn�2
blc / ! Bn ! Z ! 1 ;

so that the commutator subgroupB 0
n is contained in �1.SCn�2

blc /. SinceBn=B 0
n Š

Z and the torsion of any nontrivial quotient group of Z is nontrivial, it follows
that �1.SCn�2

blc / Š B 0
n. By [13, Lemma 2.2], B 00

n D B 0
n for any n > 4,

and so Hom.B 0
n;Z/ D 0. Finally, H1.SCn�2

blc ;Z/ Š Hom.�1.SCn�2
blc /;Z/ D

Hom.B 0
n;Z/ D 0 and O�.SCn�2

blc / Š C�.
(c) The discriminant dn and its restriction dnjz1D0 to the hyperplane z1 D 0 are

quasi-homogeneous. So, the zero level sets †n�1 D fdn D 0g and †n�2
blc D

†n�1\fz1 D 0g are contractible, and henceH1.†n�2
blc ;Z/ D 0. By Lemma 4.3,

O�.†n�2
blc / Š C�.

4.3 The Neutral Component Aut0 .X � C/

Definition 4.5. The neutral componentG0 of an ind-groupG D S
i2NGi is defined

as union of those connected components of the Gi that contain the unity eG of G.
In other words, G0 is the union of all connected algebraic subvarieties of G passing
through eG . Recall that a subset V � G is an algebraic subvariety if it is a subvariety
of a piece Gi . Clearly, G0 is a normal ind-subgroup of G.

For an irreducible affine variety X , the neutral component Aut0 X is the union
of all connected algebraic subvarieties of Aut X which contain the identity. Thus
Aut0 X is as well the neutral component of Aut X in the sense of [32].

From Corollary 2.4, Lemma 4.3, and decomposition (23) we derive the follow-
ing.

Theorem 4.6. For a cylinder X � C over a rigid base we have

Aut0 .X � C/ Š OC.X / Ì .C� � Aut0 X / : (29)

Proof. For a semi-direct product of two ind-groupsH andH 0 we have .HÌH 0/0 D
H0 ÌH 0

0. Thus, from (23) we get a decomposition

Aut0 .X � C/ Š .OC.X / Ì C
�/ Ì Aut0 X :

It suffices to show that the factors C� and Aut0 .X / in this decomposition commute.
That is, that FF 0 D F 0F for any two automorphisms F;F 0 2 Aut0 .X � C/ of
the form F W .x; y/ 7! .x; ty/ and F 0 W .x; y/ 7! .Sx; y/, where S 2 Aut X and
t 2 C�, see (19). However, the latter equality is evident. �

Remark 4.7 (The unipotent radical of Aut0 .X � C/). A rigid variety X does not
admit any nontrivial action of a unipotent linear algebraic group. Thus, any such
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subgroup of Aut0 .X � C/ is contained in the subgroup SAut.X � C/ Š OC.X /,
see (29), and so it is Abelian. Due to Corollary 3.5, the normal Abelian subgroup
SAut.X � C/ can be regarded as the unipotent radical of Aut0 .X � C/. Notice that
SAut.X �C/ is a union of an increasing sequence of connected algebraic subgroups,
see Example 4.2 (a). We need the following slightly stronger result.

Lemma 4.8. Let X � C be a cylinder over a rigid base. Then the special
automorphism group SAut.X �C/ � Aut0 .X �C/ is a countable increasing union
of connected unipotent algebraic subgroups Ui � SAut.X � C/, which are normal
in Aut0 .X � C/.

Proof. The action of Aut0 X on the normal subgroup OC.X / C Aut0 .X � C/

in (29) is given by b 7! b ı S for b 2 OC.X / and S 2 Aut0 X , cf. the proof of
Theorem 4.6. The C�-subgroup in (29) acts on OC.X / via homotheties b 7! t�1b,
where b 2 OC.X / and t 2 C�. Therefore, the linear representation of the product
C� � Aut0 X on OC.X / is locally finite. In particular, the subspace Gi D ff 2
OC.X / j degf � ig as in (28) is of finite dimension and is contained in another
finite dimensional subspace, say Ui , which is stable under the action of C� �Aut0 X
and hence normal when regarded as a subgroup of Aut0 .X �C/. Since the sequence
.Gi /i2N is increasing, we can choose the sequence .Ui/i2N being also increasing. �

Corollary 4.9. Let X be a rigid affine variety such that the group Aut0 X is
algebraic.8 Then Aut0 .X �C/ D S

i2NBi , where .Bi /i2N is an increasing sequence
of connected algebraic subgroups.

Proof. It is enough to let Bi D Ui Ì .C� � Aut0 X /. �

4.4 Algebraic Subgroups of Aut0 .X � C/

In this subsection we keep the assumptions of Corollary 4.9. By this corollary the
group Aut0 .X � C/ is a union of connected affine algebraic subgroups. Hence the
notions of semisimple and unipotent elements, and as well of Jordan decomposition
are well defined in Aut0 .X � C/ due to their invariance. Moreover, by virtue of
Remark 4.7 for any connected affine algebraic subgroup G of Aut0 .X � C/ the
unipotent radical of G equals G \ SAut.X � C/. So SAut.X � C/ is the set
of all unipotent elements of Aut0 .X � C/. The next result shows that, under the
assumptions of Corollary 4.9, decomposition (29) can be viewed as an analog of
the Mostow decomposition for algebraic groups. Recall that Mostow’s version of
the Levi–Malcev Theorem [29] (see also [14] or [31, Chap. 2, Sect. 1, Theorem 3])
states that any connected algebraic group over a field of characteristic zero admits

8Due to a result of Iitaka [16, Proposition 5] the latter assumption holds if the regular locus reg X
is of non-negative logarithmic Kodaira dimension. Moreover, in this case Aut0 X is an algebraic
torus.
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a decomposition into a semidirect product of its unipotent radical and a maximal
reductive subgroup. Any two such maximal reductive subgroups are conjugated via
an element of the unipotent radical.

Theorem 4.10. Let X be a rigid affine variety such that Aut0 X is an algebraic
group. Then the following hold.

(a) The group Aut0 X is isomorphic to the algebraic torus .C�/r , r D dim Aut0 X .
(b) The group Aut0 .X � C/ Š OC.X / Ì .C�/rC1 is metabelian.
(c) Any connected algebraic subgroup G of Aut .X � C/ is either Abelian or

metabelian of rank � r C 1.
(d) Any algebraic torus in Aut0 .X � C/ is contained in a maximal torus of rank

r C 1. Any two maximal tori are conjugated via an element of SAut.X � C/.
(e) Any semisimple element of Aut0 .X � C/ is contained in a maximal torus. Any

finite subgroup of Aut0 .X � C/ is Abelian and contained in a maximal torus.

Proof. By our assumptions Aut0 X is a connected linear algebraic group without
any unipotent subgroup. Hence by Lemma 3 in [16] this group is an algebraic torus.
This proves (a).

By virtue of (29) and (a) we have

Aut0 .X � C/ Š OC.X / Ì .C�/rC1 : (30)

This proves (b).
By Corollary 4.9 the group Aut0 .X �C/ is covered by an increasing sequence of

connected algebraic subgroups .Bi /i2N. Any algebraic subgroupG � Aut0 .X �C/

is contained in one of them, say G � Bi , where Bi D Ui Ì .C�/rC1 is metabelian.
This proves (c).

Now (d) follows by the classical Mostow Theorem applied to an appropriate
subgroup Bi , which contains the tori under consideration.

The same argument proves (e). Indeed, both assertions of (e) hold for connected
solvable affine algebraic groups due to Proposition 19.4(a) in [15, Chap. 7]. �

Remark 4.11. The assertion of (c) holds with r D dim X even without the
assumption that Aut0 X is an algebraic group. We wonder whether (a) also holds
in this generality.

4.5 The Lie Algebra of Aut0 .X � C/

The Lie algebra of an ind-group is defined in [34], see also [20]. For an ind-group
G of type G D lim�!iGi , where .Gi /i2N is an increasing sequence of connected

algebraic subgroups ofG, the Lie algebra Lie .G/ coincides with the inductive limit
lim�!iLie .Gi / : From Corollary 4.9 and decomposition (29) we deduce the following
presentation.
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Theorem 4.12. Under the assumptions of Theorem 4.10 we have

Lie .Aut0 .X � C// D I Ì L ; (31)

where

I
defDD fb.x/@=@y j b 2 OC.X /g D OC.X /@=@y (32)

is the Abelian ideal consisting of all locally nilpotent derivations of the algebra
O.X � C/, and the Lie subalgebra

L Š Lie
�
C

� � Aut0 X 	 (33)

corresponding to the second factor in (29) is a Cartan subalgebra, i.e., a maximal
Abelian subalgebra of Lie .Aut0 .X � C// consisting of semisimple elements.
Furthermore, we have the presentation

Lie .Aut0 .X � C// D hb.x/@=@y; y@=@y; @ j b 2 OC.X /; @ 2 Lie .Aut0 X /i
(34)

and relations

Œ@; y@=@y� D 0; Œ@; b@=@y� D .@b/@=@y; and Œb@=@y; y@=@y� D b@=@y (35)

for any b 2 OC.X / and any @ 2 Lie .Aut0 X /.
Proof. Decomposition (31) is a direct consequence of (29), and (34) follows
from (29) and (31). The first relation in (35) follows from the fact that the factors
C� and Aut0 X in (29) commute. To show the other two relations it suffices to verify
these on the functions of the form f .x/yk 2 O.X � C/ D O.X /Œy�, where k � 0.
The latter computation is easy, and so we omit it. �

5 Automorphisms of Configuration Spaces and Discriminant
Levels

5.1 Automorphisms of Balanced Spaces

In view of Corollary 2.8, to compute the automorphism groups of the varieties Cn,
SCn�1, and †n�1 we need to know the automorphism groups of the corresponding
balanced spaces Cn�1

blc , SCn�2
blc , and †n�2

blc . The latter groups have been already
described in the literature. We formulate the corresponding results and provide
necessary references. Then we give a short argument for (a) based on Tame Map
Theorem. The proof of (c) will be done in Sect. 7.
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Theorem 5.1. (a) Aut Cn�1
blc Š C� for n > 2. Any automorphism S 2 Aut Cn�1

blc is
of the form Qı 7! sQı, where Qı 2 Cn�1

blc and s 2 C�.
(b) Aut SCn�2

blc Š Z=n.n � 1/Z for n > 4. Any automorphism S 2 Aut SCn�2
blc is

of the form Qı 7! sQı, where Qı 2 SCn�2
blc , s 2 C�, and sn.n�1/ D 1.

(c) Aut†n�2
blc Š C� for n > 6. Any automorphism S 2 Aut†n�2

blc is of the form
Qı 7! sQı, where s 2 C� and every point Qı 2 †n�2

blc is considered as an
unordered multiset Qı D fq1; : : : ; qng � C with at least one repetition.

Statement (a) is a simple consequence of Tame Map Theorem. It was stated in
[21] and [22, Sect. 8.2.1]; we reproduce a short argument below. In Theorem 8.3(c)
we give a more general result in the analytic setting.

A proof of (b) is sketched in [19]. Actually, a theorem of Kaliman ([19]) says that
every non-constant holomorphic self-map of SCn�2

blc is a biregular automorphism of
the above form. A complete proof can be found in [26, Theorem 12.13]. This proof
exploits the following property of the Artin braid groupBn (see [23, Theorem 7.7] or
[25, Theorem 8.9]): For n > 4, the intersection Jn D B 0

n \PBn of the commutator
subgroup B 0

n of Bn with the pure braid group PBn is a completely characteristic
subgroup of B 0

n.
Our proof of (c) is based on a part of Tame Map Theorem due to Zinde ([35,

Theorems 7 and 8]), which describes the automorphisms of the configuration space
Cn.C�/. Since by Lemma 2.6 reg†n�2

blc Š Cn�2.C�/, from results in [loc. cit.] it
follows that for n > 6

Aut.reg†n�2
blc / Š Aut Cn�2.C�/ Š .Aut C�/ � Z Š .C� � Z/ Ì .Z=2Z/ :

In Theorem 7.1 below we show that only the elements of the connected component
C

� of Aut.reg†n�2
blc / can be extended to automorphisms of the whole variety†n�2

blc .
This implies both assertions in (c).

Proof of (a). The extension F of S to Cn defined by F.Q/ D S.Q� bc.Q// for all
Q 2 Cn is a non-Abelian endomorphism of Cn such that F.Cn/ � Cn�1

blc . By Tame
Map Theorem and Remark 1.3 (b), there is a unique morphism T W Cn ! Aff C such
that F D FT . Since F preserves Cn�1

blc , we have T .Q/.0/ D 0 for anyQ 2 Cn�1
blc and

hence also for any Q 2 Cn. So, T .Q/� D a.Q/� for all � 2 C and Q 2 Cn, where
a 2 O�.Cn/. According to Example 4.4 (a), a D sDk

n for some s 2 C� and k 2 Z,
so that S.Q/ D sDk

n .Q/ 	Q on Cn�1
blc . Similarly, for the inverse automorphism S�1

we obtain that S�1.Q/ D tDl
n 	Q on Cn�1

blc with some t 2 C� and l 2 Z. Since Dn

is a homogeneous function on Cn (namely,Dn.sQ/ D sn.n�1/Q for all Q 2 Cn and
s 2 C�), from the identity S ı S�1 D id we deduce that k D l D 0 and t D s�1, as
required. �

By Theorem 5.1 in all three cases the automorphism groups of the corresponding
balanced spaces are algebraic groups. Hence Theorem 4.10 applies and leads to the
following corollary.
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Corollary 5.2. The conclusions (b)–(e) of Theorem 4.10 hold for the groups
Aut0 Cn .n > 2/ and Aut0 †n�1 .n > 6/ with r D 1 and for Aut0 SCn�1 .n > 4/

with r D 0, where these varieties are viewed as cylinders over the corresponding
balanced spaces.

Remark 5.3. Recall (see Sect. 1) that Symn
C viewed as the space of all unordered

multisetsQ D fq1; : : : ; qng � C is a disjoint union of Cn and†n�1. The tautological
.Aff C/-action on C induces the diagonal .Aff C/-action on Symn

C; both the
spaces Cn and †n�1 are invariant under the latter action. It follows from Tame Map
Theorem and Remark 1.3 (d) that for n > 2 the .Aut Cn/-orbits coincide with the
orbits of the diagonal .Aff C/-action on Cn (see [27, Sect. 2.2]). Corollaries 3.6, 5.2
and Theorems 4.10, 5.1 imply that for n > 6 the (Aut†n�1)-orbits coincide with the
orbits of the above diagonal .Aff C/-action on †n�1. For n > 4 the (Aut SCn�1)-
orbits coincide with the orbits of the subgroup C Ì .Z=n.n � 1/Z/ � Aff C acting
on SCn�1.

5.2 The Groups Aut Cn, Aut SCn�1, and Aut†n�1

For our favorite varieties Cn, SCn�1, and †n�1 we dispose at present all necessary
ingredients in decomposition (23). Gathering this information we obtain the follow-
ing description.

Theorem 5.4. For n > 2,

Aut Cn Š �OC.Cn�1
blc / Ì .C�/2

	
Ì Z : (36)

For n > 4,

Aut SCn�1 Š OC.SCn�2
blc / Ì

�
C

� � .Z=n.n � 1/Z/	 : (37)

For n > 6,

Aut†n�1 Š OC.†n�1
blc / Ì .C�/2 : (38)

So, the group Aut Cn is solvable, whereas Aut SCn�1 and Aut†n�1 are metabelian.
Furthermore, any finite subgroup of each of these automorphism groups is Abelian.

Proof. As in the proof of Theorem 4.6, one can show that the factor C� of the
group of units on the corresponding balanced space commutes with the last factor
in (23). Taking this into account, the isomorphisms in (36)–(38) are obtained after
substitution of the factors in (23) using Examples 4.4 and Theorem 5.1.

For the connected group Aut†n�1 in (38) the last assertion holds due to
Theorem 4.10. The same argument applies in the case of Aut Cn. Indeed, the
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decomposition in (36) provides a surjection � W Aut Cn ! Z, and any finite
subgroup of Aut Cn is contained in the kernel ker � D Aut0 Cn.

The isomorphism in (37) yields a surjection Aut SCn�1 ! C� � .Z=n.n� 1/Z/
with a torsion free kernel SAutSCn�1 Š OC.SCn�2

blc /. Since any finite subgroup of
Aut SCn�1 meets this kernel just in the neutral element, it injects into the Abelian
group C� � .Z=n.n� 1/Z/ and so is Abelian. �

5.3 Automorphisms of Cn, SCn�1, and †n�1

All three varieties can be viewed as subspaces of the nth symmetric power
Symn

C D Cn.q/=S.n/ Š Cn.z/. Elements Q of one of the spaces Cn or SCn�1 � Cn
are, as before, n-point configurations in C, whereas the discriminant variety†n�1 D
.Symn

C/ n Cn consists of all unordered multisets Q D fq1; : : : ; qng � C with at
least one repetition (see Sect. 1).

Theorem 5.5. Let Z be one of the varieties Cn .n > 2/, SCn�1 .n > 4/, or †n�1
.n > 6/, and let Zblc be the corresponding balanced space (see (8)). A map F W Z !
Z is an automorphism if and only if

F.Q/ D sQı C a.Qı/ bc.Q/C b.Qı/ for all Q 2 Z ; (39)

where Qı D Q � bc.Q/ 2 Zblc, s 2 C�, b 2 OC.Zblc/, and

(a) a D tDk
n with t 2 C� and k 2 Z, if Z D Cn;

(b) a 2 C� and sn.n�1/ D 1, if Z D SCn�1;
(c) a 2 C�, if Z D †n�1.

Proof. LetF be an automorphism of the cylinder Z D Zblc�C (cf. (10)). According
to Corollary 2.8, Theorem 5.1, and Example 4.4, F is triangular of the form

F.Q/ D .sQı; a.Qı/ bc.Q/C b.Qı// D sQı C a.Qı/ bc.Q/C b.Qı/ ;

where in each of the cases (a), (b), (c) data s, a, and b are as stated above.
Conversely, such F with s, a, and b as in one of the cases (a), (b), (c) is a (triangular)
automorphism of Zblc �C D Z corresponding to the automorphism S W Qı 7! sQı
of Zblc and the morphismAW Zblc ! Aff C, A.Qı/W � 7! a� C b for allQı 2 Zblc

and � 2 C. �

Remarks 5.6. (a) Consider the algebraic torus T of rank 2 consisting of all
transformations

�.s; t/WQ 7! s 	 .Q � bc.Q//C t bc.Q/ ; (40)

where .s; t/ 2 .C�/2 andQ 2 Symn
C.



Configuration Spaces of the Affine Line and their Automorphism Groups 453

Both subspaces Cn;†n�1 � Symn
C are invariant under this action. In fact,

T is a maximal torus in each of the corresponding automorphism groups. The
subgroup of T given by sn.n�1/ D 1 and isomorphic to .Z=n.n � 1/Z/ � C�
acts on SCn�1.

(b) As in Theorem 5.5, let Z be one of the varieties Cn .n > 2/, SCn�1 .n >

4/, or †n�1 .n > 6/, and Zblc be the corresponding balanced space. Using
Proposition 3.3 one can deduce the following: Any CC-action on Z is of the
form

Q 7! Q C �b.Q � bc.Q// ; where Q 2 Z ; � 2 CC ; b 2 O.Zblc/ : (41)

The case b D 1 corresponds to the 	-action.
(c) It follows from (39) that F D FT with T as in (14) for any F in one of the

above groups.

5.4 The Group Aut .Cn; †n�1/

The space Symn
C Š Cn[†n�1 of all unorderedn-multisetsQ D fq1; : : : ; qng � C

can be identified with the space Cn.z/ Š Cn of all polynomials (1). The corresponding

balanced space Cn�1
blc [ †n�2

blc Š Cn�1 consists of all polynomials �n C z2�n�2 C
	 	 	 C zn. An automorphism F of Cn as in (39) extends to an endomorphism of the
ambient affine spaceCn if and only if the rational functions a.Q�bc.Q// and b.Q�
bc.Q// on Cn in (39) are regular, i.e., a; b 2 O.Cnblc/ Š CŒz2; : : : ; zn�. Such an
endomorphism F admits an inverse, say F 0, on Cn if and only if the corresponding
functions a0 and b0 are also regular i.e. a0; b0 2 O.Cnblc/. In particular a D const 2
C�. This leads to the following description.

Theorem 5.7. For any n > 2 we have

Aut .Cn;†n�1/ Š CŒz2; : : : ; zn� Ì .C�/2 ;

where the 2-torus .C�/2 and the group CŒz2; : : : ; zn� Š OC.Cn�1/ act on Cn Š
Symn

C via (40) and (41) with � D 1, respectively. �

5.5 The Lie Algebras Lie .Aut0 Cn/, Lie .Aut0 SCn�1/,
and Lie .Aut0 †n�1/

5.5.1 The Lie Algebra Lie .Aut0 Cn/

Let @	 2 LND.O.Cn// be the infinitesimal generator of the CC-action 	 on
Cn � Cn.z/. By (31) and Remark 5.6 (b) for n > 2 there is the Levi–Malcev–Mostow
decomposition
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Lie .Aut0 Cn/ D I ˚ LieT

with Abelian summands, where I D O.Cn�1
blc /@	 is as in (32) and the 2-torus

T � Aut0 Cn as in Remark 5.6 (b) consists of all transformations �.s; t/ as in (40)
with .s; t/ 2 .C�/2 and Q 2 Cn. Thus T is the direct product of two its 1-subtori
with infinitesimal generators, say @s and @t , respectively. These derivations are
locally finite and locally bounded on O.Cn/ and their sum @sC@t is the infinitesimal
generator of the C�-action Q 7! �Q (� 2 C�) on Cn. With this notation we have
the following description.

Proposition 5.8. For n > 2 the Lie algebra

Lie .Aut0 Cn/ D hI; @s; @t i ; where I D O.Cn�1
blc /@	 ; (42)

is uniquely determined by the commutator relations

Œ@s ; @t � D 0; Œ@s; b@	 � D .@sb/@	 ; and Œb@	 ; @t � D b@	 ; (43)

where b runs over O.Cn�1
blc /. Furthermore, in the coordinates z1; : : : ; zn in Cn D C

n
.z/

the derivations @	 , @t , and @s are given by

@	 D
nX
iD1
.n � i C 1/zi�1

@

@zi
; @t D .�z1=n/@	 ; and @s D

nX
kD1

kzk
@

@zk
� @t ;

(44)

where z0
defDD 1.

Proof. From (34) and (35) in Theorem 4.12 we obtain (42) and (43), respectively.
The diagonal CC-action .q1; : : : ; qn/ 7! .q1 C �; : : : ; qn C �/; � 2 CC ; on the
affine space Cn.q/ has for infinitesimal generator the derivation

@.n/ D
nX
iD1

@

@qi
2 LND.CŒq1; : : : ; qn�/ :

This CC-action on C
n
.q/ descends to the CC-action 	 on the base of the Vieta

covering

pW Cn.q/ ! C
n
.q/=S.n/ D C

n
.z/; .q1; : : : ; qn/ 7! .z1; : : : ; zn/ ;

where zi D .�1/i�i .q1; : : : ; qn/ with �i being the elementary symmetric polyno-
mial of degree i . We have @.n/.�i / D .n � i C 1/�i�1. Hence in the coordinates
z1; : : : ; zn on Cn.z/ the infinitesimal generator @	 of 	 is given by the first equality
in (44).

The derivations @s; @t , and @	 preserve the subring CŒz1; : : : ; zn� � O.Cn/ and
admit natural extensions from CŒz1; : : : ; zn� to CŒq1; : : : ; qn� denoted by the same
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symbols, where

@	 W qi 7! 1; @t W qi 7! 1

n

nX
kD1

qk; and @s W qi 7! qi � 1

n

nX
kD1

qk; i D 1; : : : ; n :

It follows that @t D .�z1=n/@t , which yields the second equality in (44). Applying
these derivations to the coordinate functions zi D .�1/i�i .q1; : : : ; qn/ the last
equality in (44) follows as well. �

5.5.2 The Lie Algebra Lie .Aut0 †n�1/

We have seen in the proof of Proposition 5.8 that the CC-action 	 and the action
of the 2-torus T on Cn extend regularly to the ambient affine space Cn.z/, along
with the derivations @	 , @t , and @s given by (44). The discriminant dn on Cn.z/ is
invariant under 	 . Hence @	dn D 0 and so the complete vector field @	 is tangent
along the level hypersurfaces of dn, in particular, along SCn�1 D fdn D 1g and
†n�1 D fdn D 0g. The induced locally nilpotent derivations of the structure rings
O.SCn�1/ and O.†n�1/ will be still denoted by @	 .

The action of the 2-torus T on Cn.z/ stabilizes †n�1. Hence @t and @s generate

commuting semisimple derivations of O.†n�1/ denoted by the same symbols.
Using these observations and notation we can deduce from Theorem 4.12 and
Corollary 5.2 the following description (cf. [28]).

Proposition 5.9. For n > 6 the Lie algebra

Lie .Aut0 †n�1/ D hI; @s; @t i ; where I D OC.†n�2
blc /@	 ;

is uniquely determined by relations (43), where b runs over OC.†n�2
blc /.

Proof. The proof goes along the same lines as that of Proposition 5.8, and so we
leave it to the reader. �

5.5.3 The Lie Algebra Lie .Aut0 SCn�1/

Since @	dn D 0, for the derivation @t D .�z1=n/@	 (see (44)) we have @tdn D 0.
Hence the vector field @t is tangent as well to each of the level hypersurfaces of dn.
In particular, @t induces a semisimple derivation of O.SCn�1/ (denoted again by @t )
and generates a C�-action T on SCn�1. So we arrive at the following description.

Proposition 5.10. For n > 4 the Lie algebra

Lie .Aut0 SCn�1/ D hI; @t i ; where I D OC.SCn�2
blc /@	 ;



456 V. Lin and M. Zaidenberg

is uniquely determined by the relations Œb@	 ; @t � D b@	 , where b runs over
OC.SCn�2

blc /.

Proof. This follows from Theorem 4.12 and Corollary 5.2 in the same way as
before. We leave the details to the reader. �

6 More on the Group Aut .X � C/

6.1 The Center of Aut .X � C/

The following lemma provides a formula for the commutator of two triangular
automorphisms of a product X � C. We let

F D F.S;A/W .x; y/ 7! .Sx;A.x/y/ ;

where .x; y/ 2 X � C, S 2 Aut X , and A W X ! Aff C (cf. (24)).

Lemma 6.1. If the group Aut X is Abelian, then for any F D F.S;A/ and F 0 D
F.S 0; A0/ in AutM .X � C/ and any .x; y/ 2 X � C we have

ŒF 0; F �.x; y/ D .x; .A0.x//�1.A.S 0x//�1A0.Sx/A.x//y/ : (45)

Consequently, F and F 0 commute if and only if

A.S 0x/A0.x/ D A0.Sx/A.x/ for any x 2 X : (46)

Proof. The proof is straightforward. �

Applying this lemma to general cylinders we deduce the following facts.

Proposition 6.2. Let X be an affine variety. If the group Aut X is Abelian, then
the center of the group AutM .X � C/ is trivial. The same conclusion holds for the
groups Aut Cn .n > 2/, Aut SCn�1 .n > 4/, and Aut†n�1 .n > 6/.

Proof. Consider two elements F D F.S;A/ and F 0 D F.S 0; A0/ in AutM .X �C/,
where S; S 0 2 Aut X and AWy 7! ay C b, A0Wy 7! a0y C b0 with a; a0 2 O�.X /
and b; b0 2 OC.X /. If F and F 0 commute then (46) is equivalent to the system

.a ıS 0/ 	a0 D a 	 .a0 ıS/ and .a0 ıS/ 	bCb0 ıS D .a ıS 0/ 	b0 Cb ıS 0 : (47)

Assume that F is a central element, i.e. (47) holds for any F 0. Letting in the second
relation S 0 D id, a0 D 2, and b0 D 0 yields b D 0. Now this relation reduces to

b0 ı S D .a ı S 0/ 	 b0 :
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Letting b0 D 1 yields a D 1 and so A D id and b0 ı S D b0 for any b0 2 OC.X /. If
S ¤ id this leads to a contradiction, provided that b0 is non-constant on an S -orbit
in X . Hence S D id and so F D id, as claimed.

The last assertion follows now from Corollary 2.4, since the bases of the
cylinders Cn; SCn�1, and †n�1 are rigid varieties with Abelian automorphism
groups, see (10), Proposition 2.7, and Theorem 5.1. �

6.2 Commutator Series

Let us introduce the following notation.

Notation. Let X be a rigid variety, and let D 
 Aut .X � C/ be the subgroup
consisting of all automorphisms of the form F D F.id; A/, where AWy 7!ty C b

with t 2 C� and b 2 OC.X /. It is easily seen that

SAut .X � C/ C D C Aut0 .X � C/ :

Furthermore, D Š OC.X /ÌC� under the isomorphism in (29), with quotient group
Aut0 .X � C/=D Š Aut0 X . In particular, for X � C Š SCn�1, n > 4, we have
D D Aut0 .X � C/, see Corollary 2.4 and Theorem 5.4.

It is known ([15, Chap. 7, Theorem 19.3(a)]) that for any connected solvable
affine algebraic group G the commutator subgroup ŒG;G� is contained in the
unipotent radical Gu of G. In our setting a similar result holds.

Theorem 6.3. Let X be a rigid affine variety. If the group Aut0 X is Abelian, then

ŒAut0 .X � C/; Aut0 .X � C/� D ŒD;D� D SAut .X � C/ : (48)

Consequently, the commutator series of the group Aut0 .X � C/ is

1 C SAut.X � C/ C Aut0 .X � C/ : (49)

The same conclusions hold for the groups Aut0 Cn .n > 2/, Aut0 SCn�1 .n > 4/,
and Aut †n�1 D Aut0 †n�1 .n > 6/.

Proof. By (29), SAut .X � C/ C Aut0 .X � C/ is a normal subgroup with the
Abelian quotient

Aut0 .X � C/=SAut .X � C/ Š C
� � Aut X :

Hence ŒAut0 .X � C/; Aut0 .X � C/� � SAut .X � C/. To show (48) it suffices
to establish the inclusion SAut .X � C/ � ŒD;D�. However, by virtue of (45) any
F D F.id; A/ 2 SAut .X � C/, where A W y 7! y C b with b 2 OC.X /, can be
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written as commutator F D ŒF 0; F 00�, where F 0 D F.id; A0/ and F 00 D F.id; A00/
with A0 W y 7! �y � b=2 and A00 W y 7! y C b=2 (in fact, A D ŒA0; A00�).

Now (49) follows from (48), since the group SAut .X �C/ Š OC.X / is Abelian.
By Theorem 5.1, the groups Aut0 Cn .n > 2/, Aut0 SCn�1 .n > 4/, and

Aut †n�1 D Aut0†n�1 .n > 6/ satisfy our assumptions. So, the conclusions hold
also for these groups. �

For the group Aut SCn�1 the following hold.

Theorem 6.4. For n > 4 we have ŒAut SCn�1;Aut SCn�1� D SAutSCn�1. Hence
the commutator series of Aut SCn�1 is

1 C SAutSCn�1 C Aut SCn�1

with the Abelian normal subgroup SAutSCn�1 Š OC.SCn�2
blc / and the Abelian

quotient group

Aut SCn�1=SAutSCn�1 Š C
� � .Z=n.n � 1/Z/ : (50)

Proof. Theorem 6.3 yields the inclusion SAutSCn�1 � ŒAut SCn�1;Aut SCn�1�.
The opposite inclusion follows from (50), which is in turn a consequence of
Theorem 5.4. Hence the assertions follow. �

Consider further the group Aut Cn. Notice that the quotient groups

.Aut Cn/=D Š C
� � Z and D=SAutCn Š C

� (51)

are Abelian, see Theorem 5.4. Hence

ŒAut Cn;Aut Cn� 
 D; where ŒD;D� D SAutCn ; (52)

see Theorem 6.3. More precisely, the following holds.

Theorem 6.5. For n > 2 we have ŒAut Cn;Aut Cn� D D. Hence the commutator
series of the group Aut Cn is

1 C SAutCn C D C Aut Cn

with Abelian quotient groups, see (51).

Proof. By virtue of (52) to establish the first equality it suffices to prove the
inclusion D 
 ŒAut Cn;Aut Cn�. We show below that, moreover, any element
F0 2 D is a product of two commutators in Aut Cn.

Indeed, choosing as before F and F 0 in D such that ŒF 0; F �WQ !Q C b.Q/

and replacing F0 by ŒF 0; F ��1F0 we may suppose that F0 D F.id; A0/, where
A0Wy 7!ty with t 2 C�.
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Let QF D F.S;A/ and QF 0 D F.S 0; A0/, where

S WQı 7! sQı; S 0WQı 7! s0Qı; and

A.Qı/Wy 7! sDk
n.Q

ı/y; A0.Qı/Wy 7! s0Dk0

n .Q
ı/y

forQı 2 Cn�1
blc and y 2 C. By (45) we obtain

Œ QF 0; QF �.Q/ D F.id; A00/; where A00 W y 7! .sk
0

s0�k/n.n�1/y

does not depend on Qı 2 Cn�1
blc . Given t 2 C� we can find s; s0 2 C� and k; k0 2 Z

such that .sk
0

s0�k/n.n�1/ D t . With this choice, F0 D Œ QF 0; QF � and we are done. �

6.3 Torsion in Aut0 .X � C/

We let T denote the maximal torus in Aut0 .X � C/ which corresponds to the
factor C� � Aut0 X Š .C�/rC1 under the isomorphisms as in (29) and (30). From
Theorem 4.10 ((d) and (e)) we deduce the following proposition.

Proposition 6.6. Under the assumptions of Theorem 4.10 any semisimple .in
particular, any torsion/ element of the group Aut0 .X �C/ is conjugate to an element
of the maximal torus T via an element of the unipotent radical SAut.X � C/. The
same conclusion holds for any finite subgroup of Aut0 .X � C/.

Using this proposition we arrive at the following description of the semisimple
and torsion elements in the automorphism group of a cylinder over a rigid base.

Corollary 6.7. Under the assumptions of Theorem 4.10 an element F 2 Aut0 .X �
C/ is semisimple if and only if it can be written as

F W .x; y/ 7! .Sx; ty C tb.x/ � b.Sx// ; where .x; y/ 2 X � C ; (53)

for some triplet .S; t; b/ with S 2 Aut0 X , t 2 C�, and b 2 O.X /. Such an element
F is torsion with Fm D id if and only if Sm D id and tm D 1.

Let Z be one of the varieties Cn .n > 2/, SCn�1 .n > 4/, or†n�1 .n > 6/, and let
Zblc be the corresponding balanced variety. Denote byGZ one of the groups Aut Cn,
Aut0 SCn�1, and Aut†n�1. With this notation we have the following results.

Theorem 6.8. The semisimple elements of the groupGZ are precisely the automor-
phisms of the form

F WQ 7! sQı C t 	 bc.Q/C t 	 b.Qı/� b.sQı/ for all Q 2 Z ; (54)

where Qı D Q � bc.Q/ 2 Zblc, b 2 OC.Zblc/, and s; t 2 C
�, with s D 1 when

Z D SCn�1. Such an element F is torsion with Fm D id if and only if, in addition,
sm D tm D 1.
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Proof. Since Aut Cn=Aut0 Cn Š Z, the torsion elements of Aut Cn are that of the
neutral component Aut0 Cn. Taking into account that the group Aut†n�1 .n > 6/ is
connected, in all three cases Corollary 6.7 applies and yields the result after a simple
calculation using the description in (40) and (41). �

In Example 6.11 below we construct some particular torsion elements of the
group Aut Cn. We show that for any b 2 OC.Cn�1

blc / there is an element F 2
Tors.Aut Cn/ of the form

F W Q 7! sQı C t bc.Q/C b.Qı/; where Qı D Q � bc.Q/: (55)

We use the following lemma. Its proof proceeds by induction on m; we leave the
details to the reader.

Lemma 6.9. Let n > 2, and let F 2 Aut0 Cn be given by (55). Letting Qı D
Q � bc.Q/ for any m 2 N we have

Fm.Q/ D smQı C tm bc.Q/C
m�1X
jD0

tm�j�1b.sjQı/:

Consequently, Fm D id if and only if sm D tm D 1 and the function b satisfies the
equation

m�1X
jD0

tm�j�1b.sjQı/ D 0 for any Qı 2 Cn�1
blc : (56)

Remark 6.10. It follows from Lemma 6.9 and Theorem 6.8 that for m � 2 a
function b 2 O.Cn�1

blc / satisfies (56) for a given pair .s; t/ of mth roots of unity if
and only if it can be written as b.Qı/ D t Qb.Qı/ � Qb.sQı/ for some Qb 2 O.Cn�1

blc /.
The inversion formula

Qb.Qı/ D
m�1X
jD0

m � j
m

tm�j b.sj�1Qı/ for any Qı 2 Cn�1
blc (57)

allows to find such a function Qb 2 O.Cn�1
blc / for a given solution b 2 O.Cn�1

blc /

of (56).

Examples 6.11 (Automorphisms of Finite Order) (a) For m > 1, pick any b 2
O.Cn�1

blc / and any mth root of unity t ¤ 1. Then the automorphism F W Q 7!
.Q � bc.Q//C t bc.Q/C b.Q � bc.Q// satisfies F ¤ id and Fm D id.

(b) Let b 2 O.Cn/ be invariant under the diagonal .Aff C/-action on Cn. For
instance, b.Q/ D cD�k

n .Q/
X

q0; q002Q
.q0 � q00/kn.n�1/ is such a function for any

k 2 N and c 2 C. Take any m > 2, and let s and t be two distinct mth roots of
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unity, where t ¤ 1. Then the automorphism F as in (55) satisfies F ¤ id and
Fm D id.

(c) Any automorphism F of Cn of the form F W Q 7! �Q C b.Q � bc.Q// with
b 2 O.Cn�1

blc / is an involution. For instance, one can take

b.Q/ D cDr
n.Q/

X
fq0; q00g�Q

.q0 � q00/2m ;

where r;m 2 Z, jr j C jmj > 0, and c 2 C.

7 The Group Aut †n�2
blc

In this section we prove part (c) of Theorem 5.1. Let us recall this assertion.

Theorem 7.1. For n > 6 we have

Aut†n�2
blc Š C

� ;

where s 2 C
� acts on Q 2 †n�2

blc via Q 7! sQ.

For the proof we need some preparation.

The function hn 2 O�.Cn.C�//, hn.Q/
defDD Dn.Q/=.q1 	 : : : 	 qn/n�1, is

invariant under the diagonal action of Aut C� on Cn.C�/. For " D ˙1 and

Q D fq1; : : : ; qng 2 Cn.C�/, we set Q" defDD fq"1; : : : ; q"ng. With this notation, we
have the following description of the group Aut Cn.C�/.

Zinde’s Theorem ([35, Theorem 8]9). Let n > 4. A map F W Cn.C�/ ! Cn.C�/ is
an automorphism if and only if there exist " 2 f1;�1g, s 2 C�, and k 2 Z such that

F.Q/ D shkn.Q/Q
" for all Q 2 Cn.C�/: (58)

Hence, Aut Cn.C�/ Š .C� � Z/ Ì .Z=2Z/.
Recall (see e.g. [1, 30]) that for n � 4 the singular locus sing†n�1 D †n�1 n

reg†n�1 of †n�1 is the union10 of the Maxwell stratum †n�2
Maxw and the Arnold

caustic †n�2
cau defined by

˙n�2
Maxw D p.fqn�2 D qn�1 D qng/ and

˙n�2
cau D p.fqn�3 D qn�2; qn�1 D qng/ ;

(59)

9In the Arxive version of this paper we provide a proof of this theorem conformal to our notation.
10This is not a stratification of sing†n�1 since †n�2

Maxw \†n�2
cau ¤ ¿.
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where p is the projection (6). So, †n�2
Maxw and †cau consist, respectively, of all

unordered n-multisets Q � C that can be written as Q D fq1; : : : ; qn�3; u; u; ug
andQ D fq1; : : : ; qn�4; u; u; v; vg.

Proof of Theorem 7.1. Let an isomorphism 'W reg†n�2
blc

'�! Cn�2.C�/ be defined
as in (22). Any automorphismF 2 Aut Cn�2.C�/ as in (58) yields an automorphism
QF D '�1 ı F ı ' 2 Aut .reg†n�2

blc /. In particular, the C�-actionQ 7! sQ (s 2 C�,
Q 2 Cn�2.C�/) on Cn�2.C�/ induces a C�-action on reg†n�2

blc given again byQ 7!
sQ (s 2 C�). The latter C�-action extends to †n�2

blc so that the origin N0 2 †n�2
blc

is a unique fixed point. This fixed point lies in the closure of any one-dimensional
C�-orbit.

We have to show that, for F as in (58), the automorphism QF extends to an
automorphism of †n�2

blc if and only if k D 0 and " D 1, that is, iff F 2
Aut .Cn�2.C�// belongs to the identity component Aut0.Cn�2.C�// Š C�. Since
in the latter case QF does admit an extension, we may restrict to the case, where
s D 1 in (58), and so, F WQ 7! hkn�2Q".

The (Aut C�)-invariant function hn�2 2 O�.Cn�2.C�// lifts to an invertible

regular function g
defDD hn�2 ı' on reg†n�2

blc . An automorphism Fk WQ 7! hkn�2Q of
Cn�2.C�/ (k 2 Z) induces the automorphism QFk WQ 7! gkQ of reg†n�2

blc .
The subgroup Aut0.Cn�2.C�// Š C� of Aut .Cn�2.C�// being normal, any

automorphismF 2 Aut .Cn�2.C�// sends the C�-orbits in Cn�2.C�/ into C�-orbits
of the same dimension. Since the function hn�2 is constant along the C�-orbits,
the multiplication Q 7! hkn�2Q preserves each C�-orbit. Hence the automorphism
F WQ 7! hkn�2Q" sends the C�-orbits in Cn�2.C�/ into C�-orbits. It follows that QF
also sends the C�-orbits in reg†n�2

blc into C�-orbits.
The involution Q 7! Q�1 on Cn�2.C�/ sends any C�-orbit into another such

orbit interchanging the punctures, while the multiplication Q 7! hkn�2Q preserves
the punctures. Hence QF interchanges as well the punctures of the C�-orbits in
reg†n�2

blc as soon as " D �1.
On the other hand, if QF 2 Aut .reg†n�2

blc / admits an extension, say NF , to an
automorphism of †n�2

blc , then NF should fix the origin. Indeed, NF normalizes the C�-
action on †n�2

blc , hence it preserves the only C�-fixed point 0 2 †n�2
blc . The origin

is a unique common point of the C�-orbit closures. Hence QF cannot interchange
the punctures of the C�-orbits in reg†n�2

blc . This proves that " D 1 for such an
extendable QF .

The function hn�2 2 O�.Cn�2.C�// can be regarded as the rational function
dn�2.z/=zn�3

n�2 on C
n�2
.z/ , where zn�2 D .�1/n�2Qn�2

iD1 qi . It has pole along the

coordinate hyperplane zn�2 D 0, and h�1
n�2 has pole along the discriminant

hypersurface †n�3 D fdn�2 D 0g. It follows by (22) that g regarded as a rational
function on †n�2

blc has pole along the caustic †n�2
cau \ †n�2

blc , and g�1 has pole
along the Maxwell stratum †n�2

Maxw \ †n�2
blc , see (59). Anyhow, the automorphism

QFk WQ 7! gknQ of reg†n�2
blc does not admit an extension to an automorphism of†n�2

blc
unless k D 0 in (58). Thus, k D 0 in the case that " D 1 and QF 2 Aut .reg†n�2

blc /

admits an extension to an automorphism of †n�2
blc , as stated. ut
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8 Holomorphic Endomorphisms of the Balanced
Configuration Space

In this section, O�
hol.Z/ stands for the multiplicative group of the algebra Ohol.Z/

of all holomorphic functions on a complex space Z , and Ohol;C.Z/ for its additive
group.

Any holomorphic endomorphism f of Cn�1
blc extends to a holomorphic endomor-

phism of Cn. Such an extension is non-Abelian whenever f is non-Abelian (see
the definition in the Introduction). The minimal extension F given by F.Q/ D
f .Q � bc.Q// for all Q 2 Cn maps Cn to Cn�1

blc � Cn, see (9).
Among affine transformations of C acting diagonally on Cn, only the elements

of the multiplicative subgroup C� � Aff C fixing the origin 0 2 C preserve the
balanced configuration space Cn�1

blc � Cn. Let S denote this C�-action on each of the
spaces Cn and Cn�1

blc , and let OS
hol.Cn�1

blc / be the subalgebra of Ohol.Cn�1
blc / consisting

of all S-invariant functions.
For any configuration Qı 2 Cn�1

blc its C�-stabilizer StC�.Qı/ D f� 2 C� j � 	
Qı D Qıg is a cyclic rotation subgroup in C� of order � n permuting elements of
Qı. If n � 3, it follows that the set fQı 2 Cn�1

blc j StC�.Qı/ ¤ f1gg is a Zariski
closed subset in Cn�1

blc of dimension 1 and fQı 2 Cn�1
blc j StC�.Qı/ D f1gg is a

Zariski open dense subset of Cn�1
blc .

Definition 8.1. We say that a holomorphic self-map f of Cn�1
blc is C�-tame, if there

is a holomorphic function hW Cn�1
blc ! C� such that f .Qı/ D h.Qı/ 	 Qı for all

Qı 2 Cn�1
blc .

Notice that the cohomology groupH1.Cn�1
blc ;Z/ Š Z of the Stein manifold Cn�1

blc
is generated by the cohomology class of the discriminantDnjCn�1

blc
(see (2)) restricted

to Cn�1
blc . Hence any function h 2 O�.Cn�1

blc / can be written as h D e�Dm
n with some

� 2 Ohol.Cn�1
blc / and m 2 Z.

The results below, stated in [21] and [22, Sect. 8.2.1], are simple consequences
of the analytic counterpart of Tame Map Theorem (see [26] or [27] for the proof)
and the facts mentioned above.

Theorem 8.2. For n > 4 every non-Abelian holomorphic self-map f of Cn�1
blc is

C�-tame, i.e., it can be given by

f .Qı/ D Se�.Qı/Dm
n .Q

ı/Q
ı D e�.Q

ı/Dm
n .Q

ı/ 	Qı for all Qı 2 Cn�1
blc ; (60)

where � 2 Ohol.Cn�1
blc / andm 2 Z.

Proof. The map f admits a holomorphic non-Abelian extension F W Cn ! Cn�1
blc �

Cn defined by F.Q/ D f .Q � bc.Q// for all Q 2 Cn. By the analytic version of
Tame Map Theorem, F.Q/ D A.Q/QC B.Q/ for all Q 2 Cn with A 2 O�

hol.Cn/
and B 2 Ohol.Cn/. Since Cn�1

blc � Cn and bc.Qı/ D 0 for any Qı 2 Cn�1
blc , we see

that
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f .Qı/D a.Qı/QıCb.Qı/ for allQı 2 Cn�1
blc ; where a D AjCn�1

blc
and b D BjCn�1

blc
:

Moreover, b D 0, since the condition bc.f .Qı// D bc.Qı/ D 0 implies that

b.Qı/ D a.Qı/ bc.Qı/C b.Qı/ D bc.a.Qı/Qı C b.Qı// D bc.f .Qı// D 0

for all Qı 2 Cn�1
blc and

a D e�Dm
n for some m 2 Z and � 2 Ohol.Cn�1

blc /:

This proves (60). �

Theorem 8.3. Let n � 3 and let f D f�;mW Cn�1
blc ! Cn�1

blc be a holomorphic map
of the form (60). Then the following hold.

(a) The map f is surjective ,11 and the set f �1.Qı/ is discrete for anyQı 2 Cn�1
blc .

This set consists of all points ! 	Qı, where ! 2 C� is any root of the system of
equations

!mn.n�1/C1e�.!	Qı/Dm
n .Q

ı/ 	Qı D Qı ; (61)

which always has solutions.
(b) The map f is proper .in the complex topology/ if and only if � 2 OS

hol.Cn�1
blc /. In

this case f W Cn�1
blc ! Cn�1

blc is a finite unramified cyclic holomorphic covering of
degreeN D mn.n�1/C1. The corresponding normal subgroup f�.�1.Cn�1

blc //

of index N in the Artin braid group Bn D �1.Cn�1
blc / consists of all g D �

m1
i1

	
: : : 	 �mqiq 2 Bn such that N divides m1 C : : : C mq , where f�1; : : : ; �n�1g is
the standard system of generators in Bn. Every two such coverings of the same
degree are equivalent.

(c) The map f is a biholomorphic automorphism of Cn�1
blc if and only if it is of the

form f .Qı/ D e�.Q
ı/ 	Qı for anyQı 2 Cn�1

blc and some � 2 OS
hol.Cn�1

blc /. Every
automorphism is isotopic to the identity and AutholCn�1

blc Š OS
hol;C.Cn�1

blc /=2�iZ.
(d) If f is regular, then � D const and so f .Qı/ D cDm

n .Q
ı/ 	 Qı for all Qı 2

Cn�1
blc , where c 2 C� andm 2 Z. Every biregular automorphism f of Cn�1

blc is of
the form f .Qı/ D s 	Qı, Qı 2 Cn�1

blc , where s 2 C�. In particular, the group
of all biregular automorphisms Aut Cn�1

blc is isomorphic to C�.

Proof. (a) Given a configurationQı 2 Cn�1
blc , we set

 Qı.!/
defDD !mn.n�1/C1e�.!	Qı/Dm

n .Q
ı/ for any ! 2 C

�: (62)

11In view of Theorem 8.2, for n > 4 any non-Abelian holomorphic endomorphism of Cn�1
blc is

surjective.
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Clearly  Qı 2 O�
hol.Cn�1

blc / and  Qı ¤ const, since mn.n � 1/ C 1 ¤ 0 and
e�.!	Qı/ cannot be a non-constant rational function of ! 2 C�. Hence, by the
Picard theorem,  Qı.C�/ D C�. According to (60), we have

f .! 	Qı/ D !mn.n�1/C1e�.!	Qı/Dm
n .Q

ı/ 	Qı D  Qı.!/ 	Qı :

Thus, taking ! 2 C� such that  Qı.!/ D 1, we see thatQı 2 f .Cn�1
blc /. Hence

f is surjective. Furthermore, all such ! satisfy the system of equations (61).
Since the stabilizer StC�.Qı/ is finite, all solutions ! of (61) form a finite union
of countable discrete subsets of C�. Thus the set f �1.Qı/ is countable and
discrete.

(b) If f as in (60) is proper, then f �1.Qı/ is finite for any Qı 2 Cn�1
blc . This is

possible only when the exponent �.! 	 Qı/ in (61) and (62) does not depend
on ! 2 C�, i.e., the function � is S-invariant. Then, for any fixed Qı, the
function (62) takes the form

 Qı.!/ D Q Qı.!/
defDD !mn.n�1/C1e�.Qı/Dm

n .Q
ı/ :

The latter function is homogeneous of degree N D mn.n � 1/ C 1 and
the equation Q Qı.!/ D 1 has precisely N distinct solutions !1; : : : ; !N . If
the stabilizer StC�.Qı/ is trivial, then f �1.Qı/ consists on N distinct points
!1Q

ı; : : : ; !NQı. If StC�.Qı/ ¤ f1g, then, to find the preimage f �1.Qı/,
we have to solve the inclusion Q Qı.!/ 2 StC�.Qı/. Fix some !0 such that
Q Qı.!0/ D 1, take any solution ! 2 C� of the above inclusion, and set
� D !=!0. Then

�N D
�
!

!0

�N
D

Q Qı.!/

Q Qı.!0/
D Q Qı.!/ 2 StC�.Qı/ : (63)

The preimage f �1.Qı/ of Qı consists of all configurations !Qı D !0�Q
ı,

where � runs over all solutions of the inclusion (63). All such configurations
!0�Q

ı form a periodic sequence !0�kQı, k 2 Z� 0, with periodN ; therefore,
this sequence contains precisely N distinct elements. It follows easily from
these facts that f W Cn�1

blc ! Cn�1
blc is an unramified cyclic covering of degree N .

The proof of the other assertions in (b) is easy and we leave it to the reader.
(c) First, let � 2 OS

hol.Cn�1
blc /; f1.Q

ı/ D e�.Q
ı/Qı ; and f2.Q

ı/ D e��.Qı/Qı.
It follows from the S-invariance of � that f1.f2.Qı// D f2.f1.Q

ı// D Qı
for every Qı 2 Cn�1

blc . Thus f1 and f2 are mutually inverse biholomorphic
automorphisms of Cn�1

blc . To prove the converse notice that any automorphism
is a proper map. According to Theorem 8.2 (formula (60)) and part (b), such
a map is of the form Qı 7! e�.Q

ı/Qı with � 2 OS
hol.Cn�1

blc /. The other two
assertions of part (c) are clear.

(d) A map as in (60) is regular if and only if � D const, i.e.,
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f .Qı/ D sDm
n .Q

ı/ 	Qı for all Qı 2 Cn�1
blc ; where s 2 C

� and m 2 Z :

It is a biregular automorphism of Cn�1
blc if and only ifm D 0. Hence Aut Cn�1

blc Š
C�.

�

Remark 8.4 (Dimension of the Image). In what follows we assume that n > 4.
According to [27, Theorem 14], forX D C or P1 and any non-Abelian holomorphic
endomorphism F of Cn.X/ we have dimC F.Cn.X// � n � dimC.AutX/C 1.
Moreover, by [27, Remark 7] or Theorems 8.2 and 8.3 (a) above, the composition
� ı F of any non-Abelian holomorphic endomorphism F of Cn with the projection
�W Cn ! Cn�1

blc is surjective, so that dimC F.Cn/ � n � 1. Clearly, this bound cannot
be improved. Seemingly, no examples of F with dimC F.Cn.P1// < n are known.
Zinde [35] proved that any non-Abelian holomorphic endomorphism of Cn.C�/ is
surjective.
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On the Newton Polygon of a Jacobian Mate

Leonid Makar-Limanov

To the memory of Shreeram Abhyankar one of the champions of
the Jacobian Conjecture

Abstract This note contains an up-to-date description of the “minimal” Newton
polygons of the polynomials satisfying the Jacobian condition.

Mathematics Subject Classification (2000): Primary 14R15, 12E05; Secondary
12E12.

1 Introduction

Consider two polynomials f; g 2 CŒx; y� where C is the field of complex numbers
with the Jacobian J.f; g/ D 1 and CŒf; g� ¤ CŒx; y�, i.e., a counterexample to the
JC (Jacobian conjecture) which states that J.f; g/ D 1 implies CŒf; g� D CŒx; y�

(see [9]). This conjecture occasionally becomes a theorem even for many years but
today it is a problem.

One of the approaches to this problem which is still popular is through obtaining
information about the Newton polygons of polynomials f and g. It is known for
many years that there exists an automorphism � of CŒx; y� such that the Newton
polygon N .�.f // of �.f / contains a vertex v D .m; n/ where n > m > 0 and
is included in a trapezoid with the vertex v, edges parallel to the y axes and to
the bisectrix of the first quadrant adjacent to v, and two edges belonging to the
coordinate axes (see [1,2,7,10,12–15,17–19,21]). This was improved quite recently
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by Pierrette Cassou-Noguès who showed that N .f / does not have an edge parallel
to the bisectrix (see [3]). Here a shorter (and more elementary) version of the proof
of this fact is suggested. A proof of the “trapezoid” part based on the work [5] of
Dixmier published in 1968 is also included to have all the information on N .f / in
one place with streamlined proofs.

As a byproduct we’ll get a proof of the Jung theorem that any automorphism of
CŒx; y� is a composition of linear and “triangular” automorphisms.

2 Trapezoidal Shape

In this section, using technique developed by Dixmier in [5], we will check the
claim that if f 2 CŒx; y� is a Jacobian mate, i.e., when J.f; g/ D @f

@x

@g

@y
� @f

@y

@g

@x
D 1

for some g 2 CŒx; y�, then there exists an automorphism � of CŒx; y� such that
the Newton polygon N .�.f // of �.f / is contained in a trapezoid described in the
introduction.

Recall that if p 2 CŒx; y� is a polynomial in two variables and each monomial
of p is represented by a lattice point on the plane with the coordinate vector equal
to the degree vector of this monomial, then the convex hull N .p/ of the points
so obtained is called the Newton polygon. For reasons which are not clear to me
Newton included the origin (a nonzero constant term) in his definition.

Define a weight degree function onCŒx; y� as follows. First, take weights w.x/ D
˛; w.y/ D ˇ where ˛; ˇ 2 Z and put w.xiyj / D i˛Cjˇ. For a p 2 CŒx; y� denote
the support of p, i.e., the collection of all monomials appearing in p with nonzero
coefficients by supp.p/ and define w.p/ D max.w.xiyj /jxiyj 2 supp.p//.
Polynomialp can be written as p D P

pi wherepi are forms homogeneous relative
to w. The leading form pw of p according to w is the form of the maximal weight in
this presentation.

2.1 Lemma on Independence

Take any two algebraically independent polynomials a; b 2 CŒx; y� and a nonzero
weight degree function w on CŒx; y�. Then there exists an h 2 CŒa; b� for which
J.aw; hw/ ¤ 0, i.e., hw and aw are algebraically independent.

Proof. A standard proof of this fact would be based on the notion of Gelfand-
Kirillov dimension (see [6]) and is rather well known. The proof below uses a
deficiency function

defw.a; h/ D w.J.a; h//� w.h/

(somewhat similar to the one introduced in [11]) and is more question specific.
This function is defined and has values in Z when J.a; h/ ¤ 0, i.e., defw is
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defined for any h 2 CŒa; b� which is algebraically independent with a. Observe
that defw.a; hr.a// D defw.a; h/; r.a/ 2 CŒa�n0I defw.a; h/ � w.a/� w.xy/; and
that defw.a; h

k/ D defw.a; h/ since J.a; hk/ D khk�1J.a; h/.
If aw and bw are algebraically dependent, then there exists an irreducible nonzero

polynomial q D Pk
iD0 qi .x/yi 2 F Œx; y� for which q.aw; bw/ D 0 and all

monomials with nonzero coefficients have the same degree relative to the weight
W.x/ D w.a/; W.y/ D w.b/. Elements a; b0 D q.a; b/ are algebraically
independent since a and b are algebraically independent but there is a drop in
weight, i.e., w.b0/ < w.qk.a/bk/.

We have defw.a; b
0/ D w.J.a; b0// � w.b0/ D w.

P
i J.a; qi .a/b

i // �
w.b0/ > w.J.a; qk.a/bk// � w.qk.a/bk/ D defw.a; b

k/ D defw.a; b/

since w.b0/ < w.qk.a/bk/ while w.J.a; qk.a/bk// D w.kqk.a/bk�1/ C
w.J.a; b// D w.

P
i iqi .a/ b

i�1/ C w.J.a; b// D w.
P

i J.a; qi .a/b
i // becauseP

i iqi .aw/ b
i�1
w ¤ 0 since q is irreducible. If aw; b

0
w are algebraically dependent,

we repeat the procedure and obtain a pair a; b00 with defw.a; b
00/ > defw.a; b

0/,
etc.. Since defw.a; h/ � w.a/ � w.xy/ for any h and defw.a; h/ 2 Z, the process
will stop after a finite number of steps and we will get an element h 2 CŒa; b� for
which hw is algebraically independent with aw. ut

Now back to our polynomials f; g with J.f; g/ D 1. These two polynomials are
algebraically independent. To prove it consider a derivation @ given on CŒx; y� by
@.h/ D J.f; h/. When @ is restricted to CŒf; g� this is the ordinary partial derivative
relative to g. Hence if p.f; g/ D 0, then pg.f; g/ D 0 and a contradiction is reached
if we assume that p is an irreducible dependence.

This derivation is locally nilpotent on CŒf; g�, i.e., @d .h/ D 0 for h 2 CŒf; g�

and d D degg.h/C 1. Therefore @w which is given by @w.h/ D J.fw; h/ on the ring
CŒf; g�w generated by the leading w forms of elements in CŒf; g� is also a locally
nilpotent derivation. Indeed a straightforward computation shows that J.a; b/w D
J.aw; bw/ if J.aw; bw/ ¤ 0.

Take a weight degree function for which w.f / ¤ 0 and a w-homogenous form
� 2 CŒx; y� for which fw D �d where d is maximal possible. Then by Lemma on
independence there exists a  2 CŒf; g�w which is algebraically independent with
�, i.e., @w. / ¤ 0. Take k for which @kw. / ¤ 0 and @kC1

w . / D 0 and denote
@k�1

w . / by !. Then @2w.!/ D 0; @w.!/ ¤ 0 and @w.!/ D c1�
d1 since � and

@w.!/ are homogeneous. Therefore J.�d ; !/ D c1�
d1 and J.�; !/ D c2�

d1�dC1.
For computational purposes it is convenient to introduce & D !

c2�
d1�d 2 C.x; y/;

then J.�; &/ D � and w.&/ D w.xy/.
If w.x/ D 0, then � D yj p.z/; & D yq.z/ where z D x; if w.x/ ¤ 0 we can

write � D xrp.z/; & D xsq.z/ where z D x
ˇ

�˛ y. In both cases p.z/ 2 CŒz�; q.z/ 2
C.z/. In the second case r; s 2 Q and w.�/ D r˛; w.&/ D s˛. (Recall that
w.x/ D ˛; w.y/ D ˇ.) In any case the relation J.�; &/ D � is equivalent to

	p0q � �pq0 D cp (1)

where � D w.�/; 	 D w.&/ D w.xy/, and c 2 C�.
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(1) can be rewritten as ln.p	q��/0 D c
q

or

p	 D q� exp.c
Z
d z

q
/: (2)

If �	 > 0, then q.z/ must be a polynomial since a pole of q.z/ would induce a pole
of p.z/ in the same point.

Now we are ready to discuss the shape of N .f /. Let m D degx.f /; n D
degy.f /. Assume that f does not contain a monomial cxmyn. Then N .f / has
a vertex .m; k/ where k < n (and maximal possible) and an edge e with the vertex
.m; k/ and a negative slope. We can find a weight degree function w so that the
Newton polygon of the leading form fw of f relative to w is e. Since the slope
of e is negative �	 is positive and & D xsq.z/ is a homogeneous polynomial.
Indeed, w.x/ ¤ 0 and we checked above that & is a polynomial in z and therefore a
polynomial in y. Since w.y/ ¤ 0 similar considerations show that & is a polynomial
in x.

There are just four options for N .&/ because w.&/ D w.xy/. Here is the list of
all possibilities: (1) & D cxy; (2) & D cx.y C c1x

k/; k > 0; (3) & D c.x C
c1y

k/y; k > 0; (4) & D c.x C c1y/.y C c2x/; c1c2 ¤ 0. In each case there is an
automorphism of CŒx; y� which transforms & into cxy and then the image of � D fe
under this automorphism is also a monomial (J.�; cxy/ D � is satisfied only by
monomials xiyj where c.i � j / D 1 and these monomials have different weights).
Hence in the first case � is a monomial, in the second case � D c3x

a.yC c1x
k/b , in

the third case � D c3.x C c1y
k/ayb , and in the fourth case � D c3.x C c1y/

a.y C
c2x/

b .
Define A.f / D degx.f / degy.f /. In each case there is an automorphism �

such that A.�.f // < A.f /: in the second and the forth cases we can take �.x/ D
x; �.y/ D y � c1x

k (indeed, �.xa.y C c1x
k/b/ D xa.y � c1x

k C c1x
k/b D xayb

and degx.�.f // < degx.f /; degy.�.f // D degy.f // and in the third and the
forth cases we can take �.x/ D x � c1y

k; �.y/ D y (then degx.�.f // D
degx.f /; degy.�.f // < degy.f //.

Hence if xmyn 62 supp.f / one of the automorphisms �.x/ D x; �.y/ D y �
c1x

k I �.x/ D x � c1y
k; �.y/ D y (usually automorphisms �.x/ D x; �.y/ D

y C �.x/ and �.x/ D x C �.y/; �.y/ D y are called triangular) decreases A.f /.
Since A is a nonnegative integer there is an automorphism � which is a composition
of triangular automorphisms for which A.�.f // is minimal possible and N .�.f //

contains a vertex .degx.�.f //; degy.�.f ///.
Replace f by �.f / for which A.�.f // is minimal. The leading form of f , say

for a weight w.x/ D 1; w.y/ D 1 is xmyn. The corresponding & D cxy. Since
J.xmyn; cxy/ D c1x

myn where c1 ¤ 0 we cannot have m D n and an assumption
that n > m is not restrictive (if m > n apply an automorphism ˛.x/ D y; ˛.y/ D
x).

If m D 0, then f D f .y/. Since then J.f; g/ D �fygx this implies that
degy.f / D 1; g D g0.y/C cx where c 2 C� and CŒf; g� D CŒx; y�.
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Consider again a weight given by w.x/ D 1; w.y/ D 1. Then fw D xmyn. As
we observed above @w defined by @w.h/ D J.fw; h/ is locally nilpotent on CŒf; g�w .
If CŒf; g� D CŒx; y�, then CŒf; g�w D CŒx; y�w D CŒx; y�. Hence if CŒf; g� D
CŒx; y�, then @.h/ D J.xmyn; h/ is a locally nilpotent derivation on CŒx; y�. If
m > 0, then @j .y/ D m.mCd/:::.mC.j�1/d/

j Š
xj.m�1/yj.n�1/C1 where d D n �m > 0

is never zero and CŒf; g� ¤ CŒx; y�.
These observations prove a theorem of Jung (see [8]) that any automorphism is

a composition of triangular and linear automorphisms. If ˛ is an automorphism of
CŒx; y�, then f D ˛.x/ is a Jacobian mate since by the chain rule J.˛.x/; ˛.y// D
c 2 C�. As we saw we can apply several triangular automorphisms after which the
image of f is a polynomial which is linear in either x or y (since both cases n > m
and m > n are possible). After that an additional triangular automorphism reduce
.f; g/ to either .c1x; c2y C g1.x// or .c1y; c2x C g1.y// and another triangular
automorphism to .c1x; c2y/ or .c1y; c2x/. Finally a linear automorphism reduces
the images to .x; y/.

From now on assume that m > 0. Then there are two edges containing v D
.m; n/ as a vertex, the edge e which is either horizontal or below the horizontal line
and the edge e0 which is either vertical or to the left of the vertical line.

Consider the edge e and the weight w for which N .fw/ D e. If the slope of
e is less than 1, then �	 > 0; & is a polynomial and w.&/ D w.xy/. In the case
e is horizontal & D yq.x/ where q.x/ is a polynomial and after an appropriate
automorphism x ! x � c; y ! y we may assume that q.0/ D 0. If w.x/ ¤ 0

and w.y/ ¤ 0, then &.0; 0/ D 0 because of the shape of N .&/. If & D cxy, then e
is a vertex contrary to our assumption. If & D c1xy C 	 	 	 C c2x

iyj where c2 ¤ 0

and i > 1, then j D 
.i � 1/ C 1 where 
 is the slope and J.xmyn; xiyj / D
.mj � ni/xmCi�1ynCj�1 ¤ 0 since mj � ni D .m
 � n/.i � 1/ C m � n < 0

(recall that n > m and 0 � 
 < 1). But then degx.J.fw; &// > degx.fw/ and
J.fw; &/ ¤ cfw, a contradiction.

Therefore the slope of e is at least 1. If slope is 1 we cannot get a contradiction
using only J.fw; &/ D fw since J.ykh.xy/; xy/ D �kykh.xy/.

2.2 Edge with Slope One

Newton introduced the polygon which we call the Newton polygon in order to find a
solution y of f .x; y/ D 0 in terms of x (see [16]). Here is the process of obtaining
such a solution. Consider an edge e of N .f / which is not parallel to the x axes
and take a weight w.x/ D ˛; w.y/ D ˇ which corresponds to e (the choice of
weight is unique if we assume that ˛; ˇ 2 Z; ˛ > 0 and .˛; ˇ/ D 1 ). Then the
leading form fw allows to determine the first summand of the solution as follows.
Consider an equation fw D 0. Since fw is a homogeneous form and ˛ ¤ 0 solutions

of this equation are y D cix
ˇ
˛ where ci 2 C. Choose any ci and replace f .x; y/

by f1.x; y/ D f .x; ci x
ˇ
˛ C y/ which is not necessarily a polynomial in x but is
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a polynomial in y, and consider the Newton polygon of f1. This polygon contains
the degree vertex v of e, i.e., the vertex with y coordinate equal to degy.fw/ and an
edge e0 which is a modification of e (e0 may collapse to v). Take the other vertex v1
of e0 (if e0 D v take v1 D v). Use the edge e1 for which v1 is the degree vertex to
determine the next summand and so on. After possibly a countable number of steps
we obtain a vertex v
 and the edge e
 for which v
 is not the degree vertex, i.e.,
either e
 is horizontal or the degree vertex of e
 has a larger y coordinate than the
y coordinate of v
. It is possible only if N .f
/ does not have any vertices on the x
axis. Therefore f
.x; 0/ D 0 and a solution is obtained.

The process of obtaining a solution is more straightforward then it may seem
from this description. The denominators of fractional powers of x (if denominators
and numerators of these rational numbers are assumed to be relatively prime) do not
exceed degy.f /. Indeed, for any initial weight there are at most degy.f / solutions

while a summand cx
M
N can be replaced by c"Mx

M
N where "N D 1 and hence at least

N solutions can be obtained (also see [20] for a more elaborate explanation).
If N .f / has an edge which is parallel to the bisectrix of the first quadrant, i.e.,

the edge with the slope 1we can start the resolution process with the weight w.x/ D
1; w.y/ D �1. If we choose a nonzero root of the equation fw D 0, then a solution
y D cx�1 CP1

iD1 cix
ri
N where c 2 C� and �1 < r1

N
< r2

N
< : : : will be obtained.

It is time to recall our particular situation. We have two polynomials f; g 2
CŒx; y� with J.f; g/ D 1 and the Newton polygon of f supposedly contains
an edge with slope 1. David Wright observed in [24] that the differential form
ydx � g.x; y/df .x; y/ is exact if and only if J.f; g/ D 1 (a calculus exercise)
and therefore

ydx � g.x; y/df .x; y/ D dH.x; y/ (3)

where H 2 CŒx; y� (see the proof of Theorem 3.3 in [24]). By the chain rule
dH.x; �.x// D �.x/dx�g.x; �.x//df .x; �.x// for any expression�.x/ for which
the derivative d

dx
is defined.

Take for �.x/ a solution y D cx�1 CP1
iD1 cix

ri
N for f .x; y/ D 0.

Then f .x; �.x// D 0 and dH.x; �.x// D �.x/dx or

dH.x; �.x//

dx
D �.x/: (4)

Since � contains x�1 with a nonzero coefficient H.x; �.x// should contain lnx
with a nonzero coefficient which is clearly not possible. ut

We see that on a smooth curve � given by f .x; y/ D 0 the differential form ydx

is exact. This is a very strong restriction on � . If � is a rational curve and we do
not mind logarithms ydx on � is exact but the exactness of the restriction of ydx
on � does not imply that the genus of � is zero (even if logarithms are forbidden).
E.g. for ' D xky2k.yk � 1/k�1;  D xy.yk � 1/ we have J.';  / D k' and
ydx �  

k'
d' D dŒxy.2 � yk/�. Hence ydx D dŒxy.2 � yk/� on ' D 1. This curve
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is birationally equivalent to the kth Fermat curve: xky2k.yk � 1/k�1 D 1, hence
xky2k.yk � 1/k D yk � 1 and Œxy2.yk � 1/�k D yk � 1.

Apparently a description of curves on which the form ydx is exact is not known
and possibly is rather complicated. I do not have a conjectural description of these
curves but to find one seems to be very interesting.

3 Conclusion

A reader may ask if it is possible to extract more information from (1) and (2). For
example when �	 > 0 it is easy to observe that all roots of q must be of multiplicity
1; that all roots of p are also roots of q; that & D xyh.xayb/where a; b are relatively
prime integers and h is a polynomial and hence m D l.1 C ka/; n D l.1 C kb/

(e.g., when the right leading edge is vertical, then a D 0 and m divides n); that
there is a root of p with multiplicity larger than �

	
, this observation was made by

Nagata in [14] and Vinberg (private communication); and possibly something else
which eludes me. The problem is that there are plenty of polynomial solutions even
for a more restrictive Davenport equation ap0r � bpr 0 D 1 where a; b are positive
relatively prime integers both larger than 1 (see [4, 22, 23, 25]). Similarly there are
plenty of forms which satisfy the Dixmier equation (2) when � and 	 have different
signs. So we cannot eliminate additional edges of N .f / using only this approach. It
is not very surprising, everybody who thought about JC knows of its slippery nature!
Clearly a description of curves on which ydx is exact will help, but this question is
possibly harder than JC.
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Abstract For a finite field Fq , the set of polynomial endomorphisms of Fnq of
degree d is bounded when n and d are fixed. This makes it possible to compute
the set of all polynomial automorphisms of degree d or less (while it is still an
open problem to determine generators of the group of polynomial automorphisms).
In this chapter, we do exactly that: we compute the set of all automorphisms for
the dimensions and degrees for which it is computationally feasible. In addition,
we study a slightly larger class of endomorphisms, the “mock automorphisms,”
which are Keller maps inducing bijections of the space Fnq (essentially characteristic
p counterexamples to the Jacobian Conjecture which are injective) and determine
some of their equivalence classes. We also determine equivalence classes of locally
finite polynomial endomorphisms of low degree. The results of this chapter are
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1 Introduction

1.1 Notations and Definitions

The following notations are mostly standard: throughout this paper, Fq will be a
finite field of characteristic p where q D pr for some r 2 N�. When F1; : : : ; Fn 2
kŒx1; : : : ; xn� (k a field), then F WD .F1; : : : ; Fn/ is a polynomial endomorphism
over k. If there exists a polynomial endomorphism G such that F.G/ D G.F / D
.x1; : : : ; xn/, then F is a polynomial automorphism (which is stronger than stating
that F induces a bijection on kn). The polynomial automorphisms in n variables
over k form a group, denoted GAn.k/ (compare the notation GLn.k/), while
the set of polynomial endomorphisms is denoted by MEn.k/ (the monoid of
endomorphisms). If F 2 GAn.k/ such that deg.Fi / D 1 for all 1 � i � n, then
F is called affine. The affine automorphisms form a subgroup of GAn.k/ denoted
by Affn.k/. In case F 2 GAn.k/ such that Fi 2 kŒxi ; : : : ; xn� for each 1 � i � n,
then F is called triangular, or Jonquière. The triangular automorphisms form a
subgroup of GAn.k/, denoted by Jn.k/. The subgroup of GAn.k/ generated by
Affn.k/ and Jn.k/ is called the tame automorphism group, denoted by TAn.k/.
By deg.F / we will denote the maximum of deg.Fi /.

If F;G 2 MEn.k/, then F and G are called equivalent (tamely equivalent)
if there exist N;M 2 GAn.k/ (N;M 2 TAn.k/) such that NFM D G. If F 2
MEn.k/ then we say that .F; xnC1; : : : ; xnCm/ 2 MEnCm.k/ is a stabilization of
F . We hence introduce the terms stably equivalent and stably tamely equivalent
meaning that a stabilization of F and G are equivalent or tamely equivalent.

We now introduce some notations which are more specific to this chapter.

MEdn .k/ D fF 2 MEn.k/ j deg.F / � d g;
MEn.k/ D fF 2 MEn.k/ j affine part of F is identity.g;
ME

d

n .k/ D MEdn .k/ \ MEn.k/;

and of course the corresponding intersections with GAn.k/:

GAd
n .k/ WD MEdn .k/\ GAn.k/;

GAn.k/ WD MEn.k/\ GAn.k/;

GA
d

n .k/ WD ME
d

n .k/\ GAn.k/ D GAn.k/\ GAd
n .k/:

1.2 Background

The automorphism group GAn.k/ is one of the basic objects in (affine) algebraic
geometry, and the understanding of its structure a much studied question. If n D 1

then GA1.k/ D Aff1.k/, and if n D 2 then one has the Jung–van der Kulk theorem
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[7, 16], stating among others that GA2.k/ D TA2.k/. However, in dimension 3 the
structure of GA3.k/ is almost completely unknown. The only strong result is in fact
a negative result by Umirbaev and Shestakov [13, 14], stating that if char k D 0,
then TA3.k/ 6D GA3.k/.

It might be that all types of automorphisms known in GA3.k/ have already
surfaced, but the possibility exists that there are some strange automorphisms that
have eluded common knowledge so far. (See [9–11].) But, in the case k D Fq , we
have an opportunity: one could simply check the finite set of endomorphisms up to a
certain degree d , i.e., MEdn .Fq/, and determine which ones are automorphisms. Any
“new” type of automorphisms have to surface in this way. (In this respect, also note
the paper [5], which classifies the polynomial automorphisms in GA3.C/ of degree
2.)

Unfortunately, the computations rapidly become unfeasible if the degree d , the
number of variables n, or the size of the finite field Fq , are too large. We didn’t find
any significant shortcuts except the ones mentioned in Sect. 3. In the end, for us
scanning through lists of 230 D 810 endomorphisms was feasible, but 320 D 910 >

231 was barely out of reach.
Nevertheless—these are computations that have to be done at some point, and

we did it. In fact, with a negligible additional effort we could study special sets of
interesting Keller maps:

2 Mock Automorphisms: Keller Maps in Characteristic p

We remind the reader that a Keller map is a polynomial map F 2 MEn.R/
(R a commutative ring) such that det.Jac.F // 2 R�. A useful criterion is that if
F is invertible, then det.Jac.F // 2 R�. The converse is a notorious problem in
characteristic zero:

Jacobian Conjecture. (Short JC) Let k be a field of characteristic zero, F 2
MEn.k/, and det.Jac.F // 2 k�, then F is a polynomial automorphism.

The JC in char.k/ D p is not true in general, as already in one variable,F.x1/ WD
x1 � xp1 has Jacobian 1, but F.0/ D F.1/ and so F is not a bijection.

Definition 2.1. Let F 2 MEn.Fq/. We say that F is a mock polynomial
automorphism if F is a Keller map and F W Fnq �! Fnq is a bijection. (Polynomial
automorphisms are also mock polynomial automorphisms.)

There are two reasons to study mock polynomial automorphisms:
One reason is that such maps are interesting for cryptography: they are “multi-

variate permutation polynomials,” but in a completely nontrivial way. (For example,
in dimension 1 permutation polynomials are important tools—the multivariate
versions show equal promise.)

The second reason is that they are counterexamples to the Jacobian Conjecture
in characteristic p and can help shed insight in this problem in characteristic zero.
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Related to this, we want to discuss the connection between algebraic independence
of F1; : : : ; Fn, the determinant of the Jacobian nonzero or even constant, and F
being a bijection. These discussions point out why mock automorphisms are the
“best” objects to consider over Fq when searching for Keller maps in characteristic
zero (in particular over Q or Z).

Theorem 2.2. SupposeF 2 MEn.Z/ is a Keller map (i.e., det.Jac.F // D ˙1), and
that F mod p is a mock automorphism for infinitely many p. Then F 2 GAn.Z/.

Proof. This follows directly from Theorem 10.3.8 of [15], which we recall in our
notation: “Let F 2 MEn.Z/. If F mod p is injective for all but finitely many
primes p, then d WD det.Jac.F // 2 Znf0g and F 2 GAn.ZŒd

�1�/.” Since here we
assume that d D det.Jac.F // D ˙1, F 2 GAn.Z/. �

We also want to point out here that injectivity over other fields has far stretching
consequences:

1. If the field K is algebraically closed, then any injective polynomial map F W
Kn �! Kn is surjective.

2. Any injective polynomial map F W Rn �! Rn is surjective.
3. Any injective polynomial map F W Cn �! Cn is an automorphism.

We refer to [2, 3, 8, 12] for these results.

Conjecture 2.3. Suppose F D .F1; : : : ; Fn/ 2 MEn.Fq/ and F induces a bijection
Fnq �! Fnq . Then F1; : : : ; Fn are algebraically independent.

The point of Conjecture 2.3 is to emphasize that it is reasonable to assume
algebraic independence of the elements.

Lemma 2.4. Let F1; : : : ; Fn 2 kŒn� where char.k/ D p. Assume that F1; : : : ; Fn
are algebraically dependent. If Q 6D 0 is of lowest possible degree such that
Q.F1; : : : ; Fn/ D 0, then Q 2 kŒx1; : : : ; xn�nkŒxp1 ; : : : ; xpn �.
Proof. LetQ be a lowest degree nonzero polynomial such thatQ.F1; : : : ; Fn/ D 0.
Assume that Q 2 kŒx

p
1 ; : : : ; x

p
n �, i.e., Q D QQ.xp1 ; : : : ; xpn / for some QQ 2 kŒn�.

Denote x˛ D x
˛1
1 	 	 	x˛nn if ˛ 2 Nn and write QQ.x1; : : : ; xn/ D P

�˛x
˛ , i.e., the �˛

are the coefficients of QQ. Then

QQ.xp1 ; : : : ; xpn / D
X

�˛.x
˛/p D

�X

˛x

˛
�p

where 
p˛ D �˛ (and thus 
˛ is in a finite extension k0 of k). Define G D P

˛x

˛ .
Note that deg.G/ D 1

p
degQ < deg.Q/. We can define L to be a finite extension

of k such that 
˛ 2 L for all ˛ 2 Nn. Let l1; : : : ; lm be a k-basis of L. Then there
exist 
˛;i 2 k such that

Pm
iD1 
˛;i li D 
˛ . Thus, there exist Gi 2 kŒx1; : : : ; xn�

satisfying deg.Gi / � deg.G/ such that G D Pm
iD1 Gi li and
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mX
iD1

Gi li

!p
D
�X


˛x
˛
�p D QQ.xp1 ; : : : ; xpn / D Q:

Now 0 D Q.F1; : : : ; Fn/ D �Pm
iD1 Gi .F1; : : : ; Fn/li

	p
and thus

Pm
iD1 Gi .F1; : : : ;

Fn/li D 0. Since l1; : : : ; lm form a k-basis ofL, they also form a k.x1; : : : ; xn/-basis
of L.x1; : : : ; xn/. Hence,

Pm
iD1 Gi .F1; : : : ; Fn/li D 0 implies Gi.F1; : : : ; Fn/ D 0

for all 1 � i � m. Not all Gi are zero, and since all Gi are of lower degree than Q,
we get a contradiction. ThusQ 62 kŒxp1 ; : : : ; xpn �. �

Lemma 2.5. Let F D .F1; : : : ; Fn/ 2 MEn.k/ where char.k/ D p. Assume
F1; : : : ; Fn algebraically dependent. Then det.Jac.F // D 0.

Proof. Let Q 6D 0 be of lowest degree such thatQ.F1; : : : ; Fn/ D 0. By lemma 2.4
we know that Q 62 kŒxp1 ; : : : ; xpn �, which implies that at least one of the derivatives
@iQ 6D 0, or in other words rQ 6D 0. Now 0 D Q.F /, hence 0 D Jac.F / 	
.rQ/.F / D 0. Note that if @iQ 6D 0 then .@iQ/.F / 6D 0 since Q is assumed
to be of lowest degree such that Q.F / D 0. Thus, the vector .rQ/.F / 6D 0, and
hence Jac.F / is not invertible over the field k.x1; : : : ; xn/, meaning its determinant
is zero. �

Of course, the converse of the above lemma is not true—but conjecture 2.3 would
be a sort-of converse.

We now want to point out that having det.Jac.F // constant is even better:

Example 2.6. Let F D .xCy.xp �x/; yCy.xp �x//. Then F induces a bijection
of F2p but does not induce a bijection of K2 for any field extension ŒK W Fp� < 1.

Proof. Note that F induces the identity map F2p �! F2p and thus indeed is bijective.
LetK be any extension of Fp and pick s 2 KnFp. Then sp�s 6D 0 and we can define
t D �s

sp�s . Then F.s; t/ D .sC t.sp � s/; t C t.sp � s// D .0; t � s/ D F.0; t � s/
and thus the map K2 �! K2 induced by F is not injective. �

The above example is not a mock automorphism, and in fact, we conjecture:

Conjecture 2.7. Let F 2 MEn.Fq/ be a mock automorphism. Then there exist
infinitely many finite extensions ŒK W Fq� < 1 such thatF is a mock automorphism
overK , i.e., F induces a bijection Kn �! Kn.

The above conjecture is already challenging in dimension 1, we will only give a
proof for a special case (as we need it later in the chapter):

Lemma 2.8. Let f .x/ 2 FqxCFqx
pCFqx

p2 CFqx
p3 C	 	 	 : If f W Fq �! Fq is a

bijection, then there exist infinitely many extensionsK of Fq such that f W K �! K

is a bijection.
More precisely, if f .x/ D xf1.x/ 	 	 	fk.x/ where fi 2 FqŒx� irreducible, and

di D deg.fi /, and ŒK W Fq� D m < 1, then f W K �! K is a bijection if and only
if d1; : : : ; dk all do not divide m.
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Proof. Assume that K is some extension of Fq and a; b 2 K such that f .a/ D
f .b/. Since ap

k � bp
k D .a � b/p

k
for any k 2 N, we get 0 D f .a/ � f .b/ D

f .a � b/. Hence, a � b is a root of f .x/, and a 6D b is equivalent to having a
nonzero root of f .x/. Thus:K is an extension of Fq for which f .x/ only has x D 0

as root, if and only if f is injective on Fq . Factoring f .x/ D xf1.x/ 	 	 	fd .x/, we
see that we find a nonzero root if and only if fi .x/ has a root inK for some i , which
is equivalent to K containing FqŒx�=.fi .x// Š Fqdi . If ŒK W Fq� D m < 1, this is
equivalent to di dividingm. �

See [1] for other interesting results related to polynomials as in the above
Lemma 2.8.

In this chapter, we compute (some of) the (mock) automorphisms for n D 3,
d � 3, and q � 5. In particular, we compute classes up to (tame) equivalence. Note
that the set of mock automorphisms over a field Fq form a monoid (being closed
under composition), and that a mock automorphism over Fqr is obviously a mock
automorphism over Fq .

3 Generalities on Polynomial Automorphisms

The following trivial lemma explains why we only study polynomial maps having
affine part identity:

Lemma 3.1. Let F 2 GAd
n .k/. Then there exists a unique ˛; ˇ 2 Affn.k/ and

F 0; F 00 2 GA
d

n .k/ such that

F D ˛F 0 D F 00ˇ:

Proof. The first equality is trivial (take ˛ to be the inverse of the affine part of F ).
The second equation follows by considering F�1 D ˛G, and then F D F 00ˇ where
F 00 D G�1; ˇ D ˛�1. The fact that F 00 2 GAd

n .k/ is easy to check by comparing
the highest degrees of F 00 and F . �

However, the following two (well-known) lemmas show that the Jacobian
conjecture is true for the special case where deg.F / D 2 and char.k/ � 3.

Lemma 3.2. Let F W kn ! kn be a polynomial endomorphism of degree 2 with
det.Jac.F // nowhere zero. If char.k/ D p 6D 2, then F is injective. In particular, if
k is a finite field, then F is bijective.

Proof. The Proof of Proposition 4.3.1 of [15] works as long as the characteristic of
k is not 2, even though it is only written for the case that k is algebraically closed
and of characteristic zero. �

Corollary 3.3. Let F W kn ! kn be a polynomial endomorphism of degree 2 with
det.Jac.F // D 1. If char.k/ 6D 2, then F is an automorphism.
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Proof. Let K be the algebraic closure of k, and consider F as a polynomial
endomorphism of Kn. For every finite extension L of k, we have F W Ln ! Ln

is a bijection, by the above lemma. Hence, F W Kn ! Kn is a bijection (as K
is the infinite union of all finite extensions of k). But K is algebraically closed so
a bijection of Kn is a polynomial automorphism, so it has an inverse F�1. Now
Lemma 1.1.8 in [15] states that F�1 has coefficients in k, which means that F �1 is
defined over k, which means that F is a polynomial automorphism over k. �

One remark on the previous result about the difference between det.Jac.F // D 1

and det.Jac.F // is nowhere zero. If det.Jac.F // is nowhere zero over k this does
not imply that det.Jac.F // overK is nowhere zero, consider the following example
(see the warning after Corollary 1.1.35 in [15]):

Example 3.4. Let F D .x; y C axz; z C bxy/ 2 kŒx; y; z�3 with k a finite field of
characteristic p and a; b 6D 0 2 k, such that ab is not a square. Then det.Jac.F // D
1 � abx2 is nowhere zero, but obviously F not invertible.

In this chapter we also consider so-called locally finite polynomial automor-
phisms. A motivation for studying these automorphisms is that they might generate
the automorphism group in a natural way (see [6] for a more elaborate motivation of
studying these maps). The reason that we make computations and classifications
on them in this chapter is to have some examples on hand to work with in the
future: they can be examples of complicated polynomial automorphisms having nice
properties.

Definition 3.5. Let F 2 MEn.k/. Then F is called locally finite (short LFPE) if
fdeg.F n/ j n 2 Ng is bounded, or equivalently, there exists n 2 N and ai 2 k such
that F n C an�1F n�1 C 	 	 	 C a1F C a0I D 0. We say that T n C an�1T n�1 C 	 	 	 C
a1T C a0 is a vanishing polynomial for F . In [6], Theorem 1.1, it is shown that
these vanishing polynomials form an ideal of kŒT �, and that there exists a minimal
polynomial, denoted mF .T /.

When trying to classify LFPEs and their minimal polynomials (i.e., using
computer calculations) one can use the following lemmas to reduce computations:

Lemma 3.6. Let F 2 GAn.k/ and L 2 GLn.k/ then F is locally finite iff L�1FL
is locally finite. In this case, mF .T / D mL�1FL.T /.

Proof. It is not that hard to prove that P.T / is a vanishing polynomial for F if
and only if it is a vanishing polynomial of L�1FL. (Note that the linearity of L is
essential!) �

When classifying LFPEs, one cannot simply restrict to GAn.k/, as it is very well
possible that F 2 GAn.k/ is not an LFPE, but ˛F is where ˛ 2 Affn.k/. However,
we can of course restrict to the conjugacy classes of affine parts under linear maps.
So in order to classify the locally finite automorphisms (up to some degree d ), it
suffices to compute the conjugacy classes of Affn.k/ under conjugacy by GLn.k/,
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and compose a representative of each class with all the elements of GA
d

n .k/ and
check if the result is locally finite.

When considering LFPEs over finite fields, we have the additional following
lemma:

Lemma 3.7. Let F 2 GAn.Fq/ be an LFPE. Then F has finite order (as element
of GAn.Fq/).

Proof. If F is an LFPE, then there exists a minimum polynomial mF .T / generating
the ideal of vanishing polynomials for F . There exists some r 2 N such that
mF .T / j T qr � T , yielding the result. �

Another concept that surfaces is the following:

Definition 3.8. Let F D I C H 2 MEn.k/ where H D .H1; : : : ;Hn/ is the
nonlinear part. Then F is said to satisfy the dependence criterion if .H1; : : : ;Hn/

are linearly dependent.

Notice that F 2 MEn.k/ satisfying the dependence criterion is equivalent to
being able to apply a linear conjugation to isolate one variable, i.e., L�1FL D
.x1; x2 CH2; : : : ; xn CHn/ for some linear map L.

4 Computations on Endomorphisms of Low Degree

Why dimension 3 and not dimension 2? Our original motivation to study
solely dimension 3 is that there are no non-tame automorphisms in dimension
2. Also, we note also the result of Drensky–Yu in [4], which counts the
number of automorphisms in dimension 2 up to a certain degree. However,
we realize that since our interest shifted from automorphisms to mock
automorphisms, that the dimension 2 case should be researched more in detail in
future research.

Note that GAd
n .k/ D Affn.k/GA

d

n .k/, which allows us to restrict to finding

all elements in GA
d

n .k/. We will consider mock automorphisms of the following
form:

• F 2 ME
2

3.Fp/ where p D 2; 3,

• I CH 2 ME
3

3.F2/ whereH is homogeneous of degree 3,

• I CH 2 ME
2

3.Fq/ where q D 4; 5 but where H D .H1;H2;H3/ satisfying the
dependence criterion.

We explicitly mention that the following cases were computationally out of

reach: Determining GA
3

3.F2/ in full, determining GA
2

4.Fq/ for any q, determining

GA
2

3.Fq/ in full if q > 2. For example, it is unknown if there exist any I C H 2
GA

2

3.F3/ not satisfying the dependence criterion. In essence, this points out the
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limits of current computing power—or perhaps better, shows the sheer impressive
size of these sets even for low n; q.1

For the rest of the chapter, as we stay in 3 dimensions, we will rename our
variables x; y; z.

4.1 The Finite Field of Two Elements: F2

Note that there are .23 � 1/.23 � 2/.23 � 22/ D 168 elements of GL3.F2/, and
23 	 168 D 1344 elements in Aff3.F2/.

4.1.1 Degree 2 over F2

Over F2, Corollary 3.3 does not hold so there do exist mock automorphisms which
are not automorphisms in ME23.F2/.

Theorem 4.1. If F 2 ME23.F2/ is a mock automorphism, then F is in one of the
following four classes:

(1) The 176 tame automorphisms, equivalent to .x; y; z/.
(2) 48 endomorphisms tamely equivalent to .x4 C x2 C x; y; z/.
(3) 56 endomorphisms tamely equivalent to .x8 C x2 C x; y; z/.
(4) 56 endomorphisms tamely equivalent to .x8 C x4 C x; y; z/.

In particular, all automorphisms of this type are tame, i.e., GA2
3.F2/ D TA2

3.F2/

Furthermore, the equivalence classes are all distinct, except possibly class (3) and
(4) (see Conjecture 4.3).

There are in total 1344 	 176 D 236; 544 automorphisms of F32 of degree less or
equal to 2.

Proof. The classification is done by computer, see [17] Chap. 5. We can show how
for example .x8Cx4 Cx; y; z/ is tamely equivalent to a polynomial endomorphism
of degree 2:

.x C y2; y C z2; z/.x8 C x4 C x; y; z/.x; y C x4 C x2; z C x2/ D

.x C y2; y C x2 C z2; z C x2/

What is left is to show that the classes (1), (2), and (3)C(4) are different.
Class (1) consists of automorphisms while (2), (3), (4) are not. Using the below
Lemma 4.2, the endomorphisms of type (2) are all bijections of F32m if 3=jm, and

1Even with many extra factors of computing power, the sets grow in size so fast, that the gain will
be minimal.
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the endomorphisms of type (3) and (4) are all bijections of F32m if 7=jm. The last
sentence follows since # Aff3.F2/ D 1344. �

Corollary 4.2 (of Lemma 2.8). x4 C x2 C x is a bijection of F2r if 3=j r , and x8 C
x4 C x and x8 C x2 C x are bijections of F2r if 7=j r .

Question 4.3. 1. Are x8 C x2 C x and x8 C x4 C x stably (tamely) equivalent?
2. Are F D .x8 C x2 C x; y/ and G D .x8 C x4 C x; y/ tamely equivalent?
3. Let P;Q 2 kŒx� where k is a field of characteristic p 6D 0. Does P;Q stably

(tamely) equivalent imply that P;Q are equivalent?

The above question is particular to characteristic p, to consider the following:

Lemma 4.4. Let P;Q 2 kŒx�. Assume that F WD .P.x/; y; z/ is equivalent to
G WD .Q.x/; y; z/. Then P 0 andQ0 are equivalent, in particularQ0.axCb/ D cP 0
for some a; b; c 2 k, ac 6D 0.

Proof. Equivalent means there exist S; T 2 GA3.k/ such that SF D GT . Write J
for det.Jac/. Now J.S/ D �; J.T / D 
 for some �;
 2 k�. Using the chain rule
we have

J.SF/ D J.F / 	 .J.S/ ı .F // D @P
@x

	 .� ı .F // D �@P
@x

D J.GT/ D J.T / 	 .J.G/ ı .T // D 
 	 . @Q
@x

ı T /
so

Q0.T / D �



P 0.x/

which means that T D .T1; T2; T3/, T1 must be a polynomial in x, and thus T1 D
ax C b where a 2 k�; b 2 k. �

Corollary 4.5. Assume char.k/ D 0. Let P;Q 2 kŒx�. Assume that F WD
.P.x/; y; z/ is equivalent to G WD .Q.x/; y; z/. Then P and Q are equivalent.

Proof. Lemma 4.4 shows that P 0.ax C b/ D cQ0 for some a; b; c 2 k, ac 6D 0. In
characteristic zero we can now integrate both sides and get a�1P.ax C b/ D cQ

proving the corollary. �

Note that in the “integrate both sides” part the characteristic zero is used, as
.x C x2 C x8/0 D .x C x4 C x8/0 in characteristic 2.

Note that all the above one-variable polynomials x8 C x2 C x; x4 C x2 C x

have a stabilization which is tamely equivalent to a polynomial endomorphism
of degree 2. (In this respect, note that any polynomial endomorphism is stably
equivalent to a polynomial endomorphism of degree 3 or less, see Lemma 6.2.5
from [15].)
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4.1.2 Locally Finite in Degree 2 over F2

We now want to classify the locally finite automorphisms among the 236,544
automorphisms overF2 of degree 2 (or less), and we want to determine the minimum
polynomial of each. Using Lemma 3.6, we may classify up to conjugation by
a linear map. We found 262 locally finite classes under linear conjugation, with
the following minimum polynomials: In the above table, # denotes the number of

Minimumpolynomial # t

F 5 C F 4 C F C I 16 8

F 4 C F 3 C F 2 C I 8 7

F 4 C F 3 C F C I 26 6

F 4 C I 12 4

F 4 C F 2 C F C I 8 7

F 3 C F 2 C F C I 139 4

F 3 C F 2 C I 2 7

F 3 C F C I 2 7

F 3 C I 14 3

F 2 C I 34 2

F C I 1 1

conjugacy classes (i.e., not elements) having this minimum polynomial, while t
denotes the order of the automorphism (see Lemma 3.7). Furthermore, observe that
# displayed is the number of conjugacy classes that satisfy this relation, not the total
number of automorphisms.

4.1.3 Degree 3 over F2

We only considered the endomorphisms of the form F D I C H , where H is
homogeneous of degree 3. The below table describes the set ofF 2 ME33.F2/ having
the following criteria:

• F is a mock automorphism,
• F D I CH , H homogeneous of degree 3.

We found 1; 520 endomorphisms satisfying the above requirements. The table lists
them in 20 classes up to conjugation by linear maps:
The first column gives a representative up to linear conjugation, and the one with
bold font gives a representative under tamely equivalence for the classes listed
beneath it. The second column lists for which field extensions (from F2r where
1 � r � 5) the map is also a bijection of F32r Class 1 are the 400 automorphisms,
all of them are tame and satisfy the dependence conjecture. All classes are tamely
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Representative Bijection over #

1. .x; y; z/
1a. .x; y; z/ all 1
1b. .x; y; z C x2y C xy2/ all 7
1c. .x; y; z C x3 C x2y C y3/ all 14
1d. .x; y C x3; z C x3/ all 21
1e. .x; y; z C x3 C x2y C xy2/ all 21
1f. .x; y; z C x2y/ all 42
1g. .x; y C x3; z C xy2/ all 42
1h. .x; y C x3; z C x2y C xy2/ all 42
1i. .x; y C z3; z C x2y/ all 42
1j. .x; y C x3; z C x2y C y3/ all 84
1k. .x; y C x3; z C y3/ all 84
2. .x; y; z C x3z4 C xz2/

2 .x; y C x3 C xz2; z C xy2 C xz2/ F2;F4;F16;F32 56
3. .x; y; z C x3z2 C x3z4/

3a. .x; y C xz2; z C x2y C xy2/ F2;F4 84
3b. .x; y C xz2; z C x3 C x2y C xy2/ F2;F4 84
4. .x; y; z C xz2 C xz6/

4a. .x; y C x3 C z3; z C x3 C xy2 C xz2/ F2 168
4b. .x; y C z3; z C xy2 C xz2/ F2 168
5. .x; y; z C x3z2 C xy2z4 C x2yz4 C x3z6/

5a. .x; y C xz2; z C xy2 C y3/ F2 168
5b. .x; y C xz2; z C x3 C x2y C y3/ F2 168
6. .x; y; z C x3z2 C xy2z2 C x2yz4 C x3z6/

6. .x; y C xy2 C xz2; z C x3 C x2y/ F2 168
7. .x C y2z; y C x2z C y2z; z C x3 C xy2 C y3/

7. .x C y2z; y C x2z C y2z; z C x3 C xy2 C y3/ F2 56

equivalent to a map of the form .x; y; P.x; y; z//, except the last class 7—these
maps do not satisfy the Dependence Criterion, which makes them very interesting!

The above table might make one think that any mock automorphism
in ME3.F2/ of the form F D .x; y C H2; z C H3/ where H2;H3 are
homogeneous of the same degree, then one can tamely change the map
into one of the form .x; y; z C K/, but the below conjecture might give a
counterexample:

Conjecture 4.6. Let F D .x; yCy8z2Cy2z8; z Cy6z4Cy4z6/ 2 ME3.F2/, which
is a mock polynomial automorphism. Then F is not tamely equivalent to a map of
the form .x; y; z CK/ .

Due to our lack of knowledge of the automorphism group TA3.F2/, this
conjecture is a hard one unless one finds a good invariant of maps of the form
.x; y; z CK/.
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4.2 The Finite Field of Three Elements: F3

4.2.1 Degree 2 over F3

Over F3, there are .27 � 1/.27 � 3/.27 � 9/ D 11;232 elements of GL3.F3/ and
27 	 11;232 D 303;264 elements of Aff3.F3/.

From corollary 3.3 it follows that if det.Jac.F // D 1 and deg.F / � 2, then F is
an automorphism—so we will not encounter any mock automorphisms which aren’t
an automorphism in this class. There are 2;835 automorphisms of degree less or
equal to 2 having affine part identity, so there are 2;835 	 303;264 D automorphisms
of degree 2 or less. They all turned out to be tame.

4.2.2 Locally Finite

We computed all conjugacy classes under linear maps of locally finite auto-
morphisms of F33. There are 80 orbits of affine automorphisms, composing a
representative of each class with all of the 2;835 tame automorphisms, gives us
226;800 representatives of “conjugacy classes.” We checked for each of them
whether it was locally finite or not. It turns out that 25;872 of these conjugacy classes
are locally finite. And there are exactly a 100 different minimum polynomials
that can appear. On the next page, we have put a selected list of ten minimum
polynomials (of a total of 100 different ones).

Of the appearing minimal polynomials in this list, all polynomials of degree 3
appear in this list. The highest minimum polynomials are of degree 10. In the table
on the previous page, we have put their order (which is determined by the minimum
polynomial), number of conjugacy classes with this minimum polynomial, and one
example. The reader interested in the complete list we refer to Chap. 6 of the Ph.D.
thesis of the second author [17].

4.2.3 Degree 3 over F3

The number of elements in ME3.F3/ of the form .x; y; z/ C .0;H2;H3/ (i.e.,
satisfying the dependency criterion) where H2;H3 are homogeneous of degree 3
is too large: this set has 320 elements which was too large for our system to scan
through; however, we think that this case is feasible for someone having a stronger,
dedicated system and a little more time.

Note that in the next section we do attack this case for the larger fields F4;F5,
but here the det.Jac.F // D 1 criterion is much stronger—the degree 3 part in
characteristic 3 plays its part here.
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Minimum
polynomial Order ] Example

F 2 C 2I 2 509
0
@
2x2 C xy C xz C 2x C y2 C z2

2x2 C xy C xz C y2 C 2y C z2

2x2 C xy C xz C y2 C z2 C 2z

1
A

F 3 CF 2 C2F C2I 6 5084
0
@
x2 C xy C 2x C y2

x2 C xy C y2 C 2y

2x2 C 2y2 C 2z

1
A

F 4C2F 2C2FC2I 24 2
0
@
x2 C xz C 2x C y2 C 2y C z2

2x C y C z
x2 C xz C x C y2 C y C z2 C z

1
A

F 4 C2F 3 C2F CI 9 3804
0
@
2x2 C 2xy C x C 2y2 C 1

2x2 C 2xy C 2y2 C y C 1

2x2 C xy C 2x C 2y2 C z C 1

1
A

F 4 C F 3 C F 2 C
2F C I

8 38
0
@
x2 C 2xy C xz C x C y2 C yz C z2 C 2z C 2

x2 C 2xy C xz C y2 C yz C z2 C 2z
2x2 C xy C 2xz C 2x C 2y2 C 2yz C 2y C 2z2 C 2

1
A

F 5 C 2F 3 C 2F 2 C
F C 2I

8 8
0
@
2x2 C xy C xz C y2 C 2y C z2

2x2 C xy C xz C 2x C y2 C 2y C z2 C z
2x2 C xy C xz C x C y2 C z2 C z

1
A

F 6 C F 5 C 2F 4 C
F 3 C 2I

24 16
0
@
y2 C yz C 2y C z2

2x C y2 C yz C 2y C z2 C z
x C y2 C yz C z2 C z

1
A

F 7 CF 6 C2F C2I 18 396
0
@
2x2 C 2xz C 2y2 C 2y C 2z2 C 2z C 1

x2 C xz C 2y C z2

2x2 C 2xz C 2x C 2y2 C 2y C 2z2 C 2

1
A

F 10 C F 8 C 2F 5 C
F 2 C 2F C 2I

26 40
0
@
y C 2z2 C z C 1

x2 C 2xz C x C z2 C 1

x C z C 1

1
A

F 10 C F 9 C 2F 8 C
F 7CF 6CF 5C
2F 3 C 2F C I

13 48
0
@
2x2 C 2xy C 2xz C y2 C yz C y C 2z2 C 2z C 1

2x C y C z C 2

2x2 C 2xy C 2xz C 2x C yz C y C 2z2 C 2z C 1

1
A

4.3 The Finite Fields F4 and F5

In this section we will only restrict to degree 2, and to the maps which satisfy the
dependency conjecture. Thus, in this section we restrict to maps F of the form
.x CH1; y CH2; z/ where H1;H2 are of degree 2.

4.3.1 The Finite Field F4

There are .64 � 1/.64 � 4/.64 � 16/ D 181;440 elements in GL3.F4/ and 64 	
181;440 D 11;612;160 elements in Aff3.F4/. We considered the following maps:
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• F 2 ME
2

3.F4/,
• F is a mock automorphism,
• F is of the form .x C H1.x; y; z/; y C H2.x; y; z/; z/ (i.e. F satisfies the

dependency criterion).

and we counted 40; 384 such maps. Under tame equivalence, we have the following
classes:

1 .x; y; z/ (tame automorphisms)
2 .x C x2 C x4; y; z/

So, surprisingly, we only find a subset of the classes we found over F2. Well,
not really surprising—the dependency criterion removes the classes 3 and 4 of
theorem 4.1 from the list. We conjecture that the four classes of theorem 4.1 are
the same for F4:

Conjecture 4.7. (i) Suppose F 2 ME23.F4/ is a mock automorphism of F4. Then
F is tamely equivalent to .P.x/; y; z/ where

P D x; P D x4 C x2 C x; P D x8 C x4 C x; or P D x8 C x2 C x:

(ii) Suppose F 2 ME23.L/ is a mock automorphism of L, where ŒL W F2� < 1.
Then F is tamely equivalent to .P.x/; y; z/ where

P D x; P D x4 C x2 C x; P D x8 C x4 C x; or P D x8 C x2 C x:

If 3jŒL W F2� then one should remove the class of P D x4 C x2 C x, and
if 7jŒL W F2� then one should remove the classes of P D x8 C x4 C x and
P D x8 C x2 C x.

It would be interesting to see a proof of this conjecture by theoretical means—or
a counterexample of course.

4.3.2 The Finite Field F5

There are .125 � 1/.125 � 5/.125 � 25/ D 1;488;000 elements in GL3.F5/ and
125 	 1;488;000 D 1;186;000; 000 elements in Aff3.F5/. We consider maps of the
following form: There are 3;625 endomorphisms satisfying the following:

• F 2 ME
2

3.F5/,
• F is a mock automorphism of F5,
• F satisfies the dependency criterion (i.e. F D .x C H1.x; y; z/; y C
H2.x; y; z/; z/).

We counted 3;625 such maps—and because of Corollary 3.3, they are all automor-
phisms. They all turned out to be tame maps.
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5 Conclusions

We can gather some of the results in the below theorem:

Theorem 5.1. Let F 2 GAd
3 .Fq/. If one of the below conditions is met, then F is

tame:

• d D 3, q D 2,
• d D 2, q D 3,
• d D 2, q D 4 or 5, and F satisfies the dependency criterion.

This gives rise to the following conjecture:

Conjecture 5.2. If F D I C H 2 GAn.k/ where H is homogeneous of degree 2,
then F is tame.

This natural conjecture might have been posed before, but we are unaware. (This
chapter proves this conjecture for n D 3 and k D F2;F3.) We expect that for n D 3

and a generic field a solution is within reach.
Unfortunately, the computations did not allow us to go as far as finding some

candidate non-tame automorphisms (though the Nagata automorphism is one,
however it is of too high degree). However, one of the interesting conclusions is
that the set of classes (under tame automorphisms) of mock automorphisms seems
to be much smaller than we originally expected. In particular, we are puzzled by the
interesting two-dimensional question whether the two endomorphisms in ME2.F2/
described by .x8 C x4 C x; y/ and .x8 C x2 C x; y/ are not equivalent, as stated in
question 4.3.

Computations. For computations we used the MAGMA computer algebra pro-
gram. The reader interested in the routines we refer to Chap. 6 of the thesis of
the second author, [17]. Also, we possess databases usable in MAGMA, which we
freely share upon request.
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Cancellation

Peter Russell

Abstract What follows is a slightly expanded and updated version of lectures I
gave in May 2011 during a workshop on “Group actions, generalized cohomology
theories and affine algebraic geometry” at the University of Ottawa. Among the
participants were young beginning mathematicians as well as seasoned experts in
diverse aspects of algebra and geometry. The aim (by order of the organizers) was
to give all of them a taste of “cancellation for affine algebraic varieties.”

As much as possible I have tried in these notes to maintain the informal style
of the lectures. They are a very selective and far from an exhaustive treatment of
the subject. Should the reader note a tendency to frequently switch between the
algebraic and geometric point of view: this is by design.
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1 General Cancellation

In a category,

if A � C ' B � C; is A ' B ‹

If yes, we say

A has the cancellation property for C:
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Fig. 1 An example of
non-cancellation in topology

Counterexamples exist in the category of topological spaces. The nicest, and
simplest, example I know (as far as I can remember I learned it from Pavaman
Murthy) has C D I D Œ0; 1�, the closed unit interval, A is an annulus in the plane
with one puncture on each of the two boundary circles and B an annulus with two
punctures on just one of them. That A � C ' B � C is obvious by play-dough
topology (both are a solid torus with two disjoint scratches). That A 6' B is not
entirely trivial, but follows from the well-known theorem on invariance of domain.
See Fig. 1.

A bit harder to come by are counterexamples with C an open interval, or C D R,
but that they exist will be clear from what we do later. It is known to topologists that
they exist even with A a contractible open manifold (in dimension � 3).

2 Examples of Cancellation in Algebra

2.1 Uniqueness of the Coefficient Ring

As a first cancellation type question in algebra, we consider the problem of the
uniqueness of the coefficient ring in a polynomial ring.

LetAŒn� denote the polynomial ring in n variables over the ring A. The following
is a basic

Question 2.1.1. IfA andB are rings andAŒn� ' BŒn�, isA ' B? This could depend
on n.

If the answer is yes with n D 1, we say that A is invariant.
To fix the ideas let us agree that if nothing is said to the contrary we will be talking

about finitely generated commutative algebras over a field k. We can reformulate the
question as:

does A˝ kŒn� ' B ˝ kŒn� imply A ' B‹

Using “Spec” we can turn this into a geometric statement: Let Ank , or just An if k is
understood, denote affine n-space Spec.kŒn�/. Then the question is:

if X D Spec.A/; Y D Spec.B/ are affine varieties and X �A
n 'Y �A

n; is X'Y ‹
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The most intriguing case here is that of B D kŒm�; i:e:; Y D Am, and n D 1:

if X � A
1 ' A

mC1; is X ' A
m‹

This is the cancellation problem. It is open for m � 3 if char.k/ D 0. We will
discuss the yes-answer form D 1; 2 and a very recently discovered counterexample
[19] form D 3 in positive characteristic further below.

More generally we can ask: Does A˝C ' B˝C imply A ' B , or, for general
algebraic varieties X; Y;Z, does X �Z ' Y �Z imply X ' Y ?

A very interesting variant of the cancellation problem for affine spaces is the
original Zariski cancellation problem: if K  k is a field (say k algebraically
closed of characteristic 0), and

if K.m/ ' k.n/; is K ' k.n�m/‹

Here, for a field L, L.n/ dentes the purely transcendental extension of degree n.
The answer is no, a counterexample with m D 3; n D 6 is given in [5].

Let me make some comments here on isomorphic versus equal. Consider

D D kŒx; y� D kŒ2� D AŒ1� D BŒ1�; A D kŒx�; B D kŒy�:

We have A ' B , but A ¤ B as subsets of D. We will have to distinguish these
two concepts.

Definition 2.1.2. We say that the ring A is strongly invariant if

whenever AŒ1� D D D BŒ1�; then A D B (as subsets of D):

An equivalent formulation is:

Any isomorphismˆ W AŒ1� ! BŒ1� is induced by an isomorphism � W A ! B:

Note that it would be sufficient to requireˆ.A/ � B .

Example. Let A be a domain, D D AŒn�. Then the units of D are in A, so if A is
generated by its units, for instance if A D kŒt; t�1�, it is uniquely determined as
coefficient ring and A is strongly invariant.

The geometric version of this is

Definition 2.1.3. X has strong cancellation for Z if

any isomorphismX �Z ! Y �Z is induced by an isomorphismX ! Y:

A note of caution: When trying to prove cancellation, one should avoid any
argument that in disguise implies strong cancellation. Such a mistake is usually
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made by about half the students when I give the problem as an assignment in a
topology class.

Here is one of the main theorems of the subject, see [3]. I will assume tacitly in
the arguments that k is algebraically closed (it is not always necessary), and that the
rings are finitely generated k-algebras.

Theorem 2.1.4. A domain A of dimension 1 is strongly invariant unless it is kŒ1�,
or, an affine curve X has strong cancellation for A1 unless X D A1. Moreover,
A D kŒ1� is invariant, or, X D A1 has cancellation for A1.

We first make some general observations. Let D D AŒn�, X D Spec.A/;Z D
Spec.D/.

(1) D is a domain ” A is a domain.
(2) D is factorial ” A is a factorial.
(3) D is regular, i.e., Z is non-singular, ” A is regular, i.e., X is non-singular.
(4) The same for normal.
(5) A� D D�.

Proof of theorem 2.1.4. I will quite intentionally mix geometric and algebraic
language in the arguments.

We have the fibrations

�X W Z D Spec.AŒ1�/ ! X D Spec.A/ and �Y W Z D Spec.BŒ1�/ ! Y D Spec.B/

with all fibers isomorphic to A1 D Spec.kŒ1�/. The strategy now is to show that if
A ¤ B , then X ' A1 and Y ' A1.

So suppose A ¤ B . Then there is a fiber x0 � A
1 of �X that is not a fiber of �Y

and the morphism

� W A1 ! X � A
1 D Y � A

1 ! Y;

t 7! .x0; t/ D .y.t/; s.t// 7! y.t/

is not constant and hence dominant, i.e., given by an injective homomorphism Q� W
B ! kŒ1�. It follows that the invertible functions on Y are constant.

Now the normalization QB of B is isomorphic to a normal subalgebra R �
kŒ1�; R ¥ k. One can make a quite elementary algebraic argument for an “affine
Lüroth theorem” (exercise, or see [3]), namely thatR ' kŒ1�. One can also appeal to
the usual Lüroth theorem to conclude that Spec.R/ is a rational curve, i.e., the field
of quotients of R is k.1/. Also, Spec.R/ is non-singular and all invertible functions
are constant. Hence Spec.R/ ' A

1. It follows that Yns, the non-singular locus of Y ,
is isomorphic to an open subset of A1. If Y is normal, we find Y ' A

1. Moreover,
X is normal by observation (4) above, and by symmetryX ' A

1.
If Y is not normal, then the non-normal locus of Z consists of the fibers y1 �A

1

of �Y with y1 2 Y a non-normal point. This must also be the set of the fibers x1�A
1

of �X , where x1 2 X is a non-normal point. Since distinct fibers of �X are disjoint,
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Fig. 2 Non-unique
coefficients in a one variable
polynomial ring

there is an x0 as above such that A1 ' �.A1/ � Yns . Since Yns ¤ A1, kŒ1� would
have nontrivial units and we get a contradiction. See Fig. 2.

There is a considerable literature on the invariance problem for one-dimensional
rings, and more generally on cancellation with curves as base. These could be
complete curves. Fujita and Iitaka [18] give a very general result applicable here
that we discuss below. See also [7, 16]. There are examples of elliptic curves
E;E1;E2 so that E1 � E ' E2 � E and E1 © E2. It turns out that in the category
of abelian varieties the good notion, giving cancellation, is isogenous instead of
isomorphic. See [8, 35].

2.2 Projective Modules

As a second algebraic cancellation situation we consider finitely generated projec-
tive modules over an algebra R.

Recall that an R-module P is projective if it is a direct summand of a free
module, i.e., if there is a moduleQ so that P ˚Q is a free module,

P ˚Q D Rn:

If we can chooseQ to be free, we say P is stably free. Then if P is not free, of rank
m, say, we have an example of non-cancellation (with “product” the direct sum) in
the category of R-modules:

P ˚Rn�m ' Rm ˚Rn�m:

We will see shortly that by taking symmetric algebras this can sometimes be
transformed into an example of non-cancellation for rings.

There is a vast literature on projective modules. Good examples can be con-
structed from unimodular rows:

Let R be a domain. .x1; : : : ; xm/ 2 Rm is a unimodular row if .x1; : : : ; xm/R is
the unit ideal, i.e., if

� W Rm ! R; .y1; : : : ; ym/ 7! y1x1 C : : : ymxm
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is surjective. Write

1 D x0
1x1 C 	 	 	x0

mxm:

Then � has a section defined by

1 7! .x0
1; : : : ; x

0
m/;

and Rm ' P ˚R.x0
1; : : : ; x

0
m/; P D Ker.�/; R.x0

1; : : : ; x
0
m/ ' R.

A favorite special case is

R D kŒx0; : : : ; xn� D kŒX0; : : : ; Xn�=.X
2
0 C 	 	 	 CX2

n � 1/; xi D Xi :

We obtain the unimodular row .x0; : : : ; xn/ 2 RnC1 and 1 7! .x0; : : : ; xn/ defines
a section as above (with x0

i D xi ). Let P be the corresponding projective module.
If k D R, we obtain the real n-sphere Sn embedded in RnC1 and P is the sheaf
of sections of the tangent bundle of Sn: at each point of the sphere the ambient
RnC1 splits into vectors along the position vector and those perpendicular to
it, so lying in the hyperplane tangent to the sphere. It is a famous theorem of
topology about the parallelizability of spheres (see [6] for instance) that says P is
free precisely for n D 1; 3; 7. For n D 2, I learned this in my undergraduate curves
and surfaces course under the heading:“One can’t comb the hair on a billiard ball.”
Anyway, in all other cases, for instance for the two-sphere, you have an example of
a stably free, non-free projective module. Let me remark that such examples exist
also over algebraically closed fields.

Let R be a ring (commutative) and M an R-module (finitely generated). Let me
recall that the symmetric algebra SR.M/ is a commutativeR-algebra together with
a R-module homomorphism

i W M ! SR.M/

that is universal for module homomorphisms M ! A, where A is a commutative
R-algebra. We write S.M/ for SR.M/ if R is understood.

Here are some easy facts.

1. S.M/ is a graded algebra.
2. i is injective and identifiesM with the elements of degree 1 in S.M/.
3. S.M/ is generated by i.M/ D M .
4. S.R/ D RŒ1�.
5. S.M ˚N/ D S.M/˝R S.N /, in particular S.Rn/ D RŒn�.

An only slightly harder fact, coming from the graded structure and the
universal property, is

6. S.M/ is isomorphic to S.N / as R-algebra ” M;N are isomorphic R-
modules.
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Now let R be the coordinate ring of the real n-sphere (so we work over k D R)
and P the “tangent bundle module” defined above.

Theorem 2.2.1 ([21], see also [13]). For n ¤ 1; 3; 7 the rings S.P / and RŒn� are
non-isomorphic and stably equivalent.

Proof. We have already established that S.P / and RŒn� are stably equivalent and
not isomorphic as R-algebras. To finish the proof, i.e., to see that they can not be
isomorphic in some other way, we establish

Lemma 2.2.2. If D is a subalgebra of RŒm� such that RŒm� D DŒy� ' DŒ1�, then
R � D.

An immediate consequence, which proves the theorem, is

Corollary 2.2.3. R is strongly invariant.

The key to the proof of the lemma is that RŒm� is formally real, i.e., if a sum of
squares vanishes, then each summand vanishes. Let e D max.degy.xj //. Write
each xi as a polynomial in y formally of degree e with highest coefficient ai . If
e > 0;†x2i D 1 gives†a2i D 0, so all ai D 0, and we have a contradiction.

Remark 2.2.4. In case n D 2 we have

(i) R is strongly invariant.
(ii) RŒ1� is invariant.

(iii) RŒ2� is not invariant.

For the proof of (ii) use the lemma and the following two facts:

(a) R is factorial.
(b) ([3]) Let B � D � BŒm� be domains andD factorial of transcendence degree 1

over B . ThenD ' BŒ1�.

Remark. The situation changes considerably if we pass to k D C from k D R

in 2.2.4. The module PC, or its dual, the module of differentials of RC, is free. We
leave this as a not entirely trivial exercise. It is best done by writingRC D CŒx; y; z�
with xy D z2�1. Note that, in the notation of the next section, S2

C
is the Danielewski

surface Z1. Hence, as shown there, RC is not invariant.

2.3 The Danielewski Examples

LetZn D Spec.kŒx; y; z�/; xny D z2�1; n � 1. These are surfaces of a type known
as Danielewski surfaces.

Theorem 2.3.1 (Danielewski). For n ¤ m, Zn 6' Zm. HoweverZn �A1 ' Zm �
A1.
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Fig. 3 The line with double
origin

Proof. Consider the projection

�n W Zn ! X D A
1 D Spec.kŒx�/;

.x; y; z/ 7! x:

We have ��1
n .fx ¤ 0g/ D Spec.kŒx; x�1; z�/ (since y D z2�1

xn
) and ��1

n .fx D 0g/
is the disjoint union of two affine lines A1 D Spec.kŒy�/ distinguished by z D 1

and z D �1. They have multiplicity 1 in the fiber. We can factor �n as ı ı � 0
n,

� 0
n W Zn ! X 0; ı W X 0 ! X;

where X 0 is a non-separated scheme, the

affine line with origin 0 doubled into 0C and 0�:

We can think of X 0 as the union of open sets UC D Spec.kŒxC�/; U� D
Spec.kŒx��/ with intersection U D Spec.kŒx; x�1�/. Here both xC and x� are
identified with x on U , not one with x and the other with x�1 as in the construction
of P1. See Fig. 3.

Every fiber of � 0
n W Zn ! X 0 and � 0

m W Zm ! X 0 is a line. It will now be
clear to the experts that we can make Zn;Zm into a principal homogeneous spaces
for the additive group Ga over X 0. They are then defined by elements )n; )m 2
H1.X 0;OX 0/.

We form the fiber product over X 0

Z D Zn �X 0 Zm:

The pullback

…m W Z ! Zn

of � 0
m by � 0

n makes Z into a principal homogeneous space for Ga over Zn defined
by the pullback of )m. Since Zn is affine,H1.Zn;OZn/ D 0 and

Z ' Zn � A
1:

Similarly

Z ' Zm � A
1:



Cancellation 503

Concretely, Zm (resp. Zn) is defined by a co-cycle ‡m (resp. ‡n) on X 0 that
becomes a co-boundary after base extension to Zn (resp.Zm).

Consider Zn. Let vC D y

z�1 D zC1
xn
; v� D y

zC1 D z�1
xn

. Note

kŒx; y; z� � kŒx; vC� � kŒx; x�1; z�;

kŒx; y; z� � kŒx; v�� � kŒx; x�1; z�:

The sets � 0�1
n .UC/ D Spec.kŒx; vC�/; � 0�1

n .U�/ D Spec.kŒx; v��/ give an open
cover of Zn, their intersection is � 0�1

n .U /. We have

vC � v� D 2

xn
2 H0.U;OX 0/ � H0.��1

n .U /;OZn/;

so assigning 2
xn

to U gives a Čech co-cycle‡n defining )n on X 0.
It is a nice exercise to determine explicitly how ‡m becomes a co-boundary on

Zn and thereby to explicit construct an isomorphism betweenZn�A1 andZm�A1.
See [36] if you don’t succeed on your own.

It is important to be aware that the fiber productsZn �X 0 Zm and Zn �X Zm are
quite different.

We discuss two approaches to non-isomorphism of Zn and Zm.

1. Foreshadowing his later introduction of the Makar-Limanov invariant (see
Sect. 6 below), Makar-Limanov shows in [28] that Z1 and Zm;m > 1; have
different automorphism groups. Specifically,Zm essentially admits a unique Ga-
action (its general orbits are fibers of the x-fibration). More precisely,

x is fixed by any action of Ga on Zm.

This is clearly not the case for Z1 because of the automorphism interchanging x
and y.

2. Let us work over k D C. Then
the topology at infinity, that is the topology of the complements of large

compact subsets, is different forZn andZm. To be precise (see [14,38]), the first
homology group at infinity of Zn has order 2n. See Sect. 5.3 below.

Hence Zm;Zn are not homeomorphic if m ¤ n. We also obtain an example
of topological non-cancellation with R as factor: Either Zm � R; Zn � R are
homeomorphic, or, if not, then .Zm � R/ � R; .Zn � R/ � R are homeomorphic.

3 Some (Very Intuitive) Algebraic Geometry

This section is a lightning sprint through about a semester’s worth of classical
algebraic geometry. At the end we offer some exciting (I think) applications of
algebraic geometry to algebra that were developed over the last 40 years or so, but
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that as far as the geometry is concerned fit very well into the classical framework.
I hope that the rewards offered will inspire the non-expert to make a run for the
nearest algebraic geometry textbook.

3.1 Divisors and Differentials

LetX be a complete (e.g., projective, compact if over C) and non-singular algebraic
variety of dimension n.

1. A divisor D D †niDi onX is a formal linear combination of closed irreducible
co-dimension 1 subvarietiesDi . It is effective if all ni � 0.

2. If D is effective and q 2 D, then there is a rational function f on X (element of
the function field k.X/) that is a local equation forD at q,

i.e., f is defined at q, i.e., is in the local ring of q, and in a neighborhood of
q, D is defined (including multiplicities) by the vanishing of f .

This comes from the fact that the local ring of X at q is factorial. Splitting a
divisor into its positive and negative part we can extend this concept to general
divisors.

3. Given 0 ¤ f 2 k.X/, there is a unique divisor .f /, called the divisor of f , such
that, at each q 2 X , f is a local equation for .f /. Divisors D1;D2 are linearly
equivalent ifD1�D2 is the divisor of a rational function. The group of divisors
modulo linear equivalence

Pic.X/ D Divisors=Divisors of rational functions

is central in the study of X .
4. For a divisorD we define the vector space (it is finite dimensional over k)

L.D/ D ff 2 k.X/j.f /CD � 0g [ .0/

and put

l.D/ D dim.L.D//:

If l.D/ > 0 we obtain a rational map (with a basis of L.D/ as components)

ˆD W X ! P D P
l.D/�1:

We define

jDj D linear system defined byDD feffective divisors linearly equivalent to Dg:
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If l.D/ > 0, then jDj is the projective space associated to L.D/ and its elements
are the pullbacks by ˆD of the hypersurfaces in P. If l.D/ D 0, then jDj D ;.

6. If f is a rational function we take the engineering point of view that we know
what its differential df is. (There is, of course, a well-developed algebraic way
to introduce differentials into algebraic geometry. Consult a textbook!) Let D be
an effective divisor, q 2 D and f a local equation at q. Then

D is reduced and non-singular at q ” df ¤ 0 at q:

7. Rational functions x1; : : : ; xn form a system of parameters at q provided they
are defined at q and the dxi are linearly independent at q. They then are a
separating transcendence base for k.X/=k. Then k-derivations of k.x1; 	 	 	 ; xn/,
in particular the partial derivatives @=@xi , extend uniquely to k.X/. So it makes
sense to take partial derivatives w.r.t. the xi on all of k.X/. Recall that x1; : : : ; xn
is a separating transcendence base if and only if @=@x1; : : : ; @=@xn is a basis of
the k.X/-vectorspace of k-derivations of k.X/, if and only if dx1; : : : ; dxn is a
basis of the k.X/-vectorspace V of rational differential 1-forms

†gidfi ; fi ; gi 2 k.X/:

Transition from one transcendence basis to another is, at the level of differential
1-forms, given by the usual Jacobian matrix.

8. A rational differential 1-form ! is regular at q 2 X if it can be expressed as
! D †fidxi ;, where x1; : : : ; xn is a system of parameters at q and the fi are
regular at q.

3.2 Plurigenera and Kodaira Dimension

1. We form the OX module� by assigning to each open set U the OX.U /-module
of one-differentials regular at each point of U . It is locally free of rank n. With�
we can perform various standard linear algebra constructions (open set by open
set), in particular take exterior and symmetric powers in various combinations.
This leads to a host of new OX -modules �|. The numbers dim.�|.X//, they
are all finite, are collectively known as plurigenera.

2. If we apply the highest exterior power operator ƒn, we obtain the rank one-
module�n of differential n-forms. For these the ideas of 1) can be translated into
the language of divisors. If! is a nonzero n-differential, we define its divisor .!/
by: at q 2 X write

! D fdx1 ^ 	 	 	 ^ dxn;

where x1; : : : ; xn is a system of parameters at q, and decree f to be a local
equation of .!/ at q. The usual rules of calculus apply: Transition from one
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system of parameters to another changes the local equation by a Jacobian
determinant which is a nonzero constant at q. All divisors of the form .!/ are
linearly equivalent. Any one of them is called a

canonical divisor; usually denotedKX; or just K:

We observe that if we followƒn by the symmetric power operation Sm we obtain
the divisorsmK .

3. The number l.D/, e.g., l.K/, is usually hard to compute. We define a more robust
number by observing:

for large m the numbers l.mD/ are the values of a polynomial of degree
� � n D dim.X/.

We call � D �.D/ the Kodaira dimension of D.
We write �.KX/ D �.X/ and call it the Kodaira dimension of X .

Note: �.D/ � 0 if and only if some multiple mD, m � 1, is linearly equivalent
to an effective divisor. In that case �.D/ D dim.ˆmD.X// form large. If no such
multiple is effective, then the above polynomial is 0 and one puts �.D/ D �1.

4. So far all this is very classical algebraic geometry. Here come the crucial new
definitions ([22]).

(a) A divisor � is a divisor with strong normal crossing, or in brief a SNC-
divisor, if at each q 2 X we can find a system of parameters x1; : : : ; xn such
that for some s � n, f D x1 	 	 	 xs is a local equation for �.

(b) We modify the ideas of (1) by allowing logarithmic singularities along �.
To be precise:

We define an OX -module�.log�/ by decreeing that a one-differential!
is in �.log�/.U / if at each q 2 U it can, with notation as in (a), be written
as

! D f1
dx1

x1
C 	 	 	 C fn

dxs

xs
C fsC1dxsC1 C 	 	 	 C fndxn;

with f1; : : : ; fn regular at q.
(c) As above, but working with �|.log�/, we define now logarithmic pluri-

genera of the pair .X;�/. The wonderful fact is:

they are invariants of U D X n�:

This takes some work with resolution of singularities, so we assume
char.k/ D 0 or restrict the dimension in positive characteristic.

(d) The role of the canonical divisor is taken on byKX C� and we can define:

the logarithmic Kodaira dimension of U is �.U / D �.KX C�/:
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(e) Let U D Spec.A/ be a non-singular affine variety. We can embed U as an
open subset in a complete non-singular variety X such that � D X n U is
a SNC-divisor. (We again need resolution of singularities.) We will call � a
divisor at infinity for U . I am repeating myself, but would like to emphasize:
If we make sure that � is a SNC -divisor, then

the logarithmic plurigenera, so in particular the logarithmic Kodaira
dimension, of the pair .X;�/ are invariants of A.

4 Some Cancellation Rewards

It is known (see [10] for an argument and references) that
a smooth contractible affine variety V over C of dimension n � 3 is homeomor-

phic to R2n.
If such a variety is not isomorphic to Cn we call it an exotic affine space.
The above statement is no longer true in dimension 2. C. P. Ramanujam in a

famous paper [32] constructed the first example in 1971. Let us call it R. This is a
smooth, contractible affine surface that is not simply connected at infinity, so it is
not isomorphic to C2. See Sect. 5.4 below. Now “not simply connected at infinity” is
destroyed by passing from V to V �C, and it was not known in 1971 whether R�C

is exotic, in fact whether exotic affine spaces exist at all. Here Kodaira dimension
came to the rescue.

We need some easy facts. Let V be non-singular affine of dimension n.

1. Suppose V is affine ruled, i.e., contains an open subvarietyU of the formU 0�A1

(a cylinderlike open set). Then �.V / D �1. See Fig. 4.
2. We always have �.V � A1/ D �1, but a nonzero logarithmic plurigenus of V

survives on V � A1. In particular, if �.V / � 0, then some plurigenus coming
from n-differentials is nonzero on the .nC 1/-dimensional variety V � A1.

3. All logarithmic plurigenera of An are 0.
4. If dim.V / D dim.V 0/ and V ! V 0 is a dominant separable morphism, then
�.V 0/ � �.V /.

5. Suppose dim.V / D 2 and �.V / D �1. Then any SNC-divisor at infinity for V
is a tree of non-singular rational curves. See [33].

Let again dim.V / D 2. A hard fact is the following powerful result of Fujita
[15]. It is known as adjunction terminates in the classical (� D ;) situation.

6. Suppose �.K C �/ D �1 and let B be an effective divisor. Then there exists
m � 0 such that jB Cm.K C�/j ¤ ; and jB C .mC 1/.K C�/j D ;.

It turns out that effective divisors D so that D C .K C �/ (adding K C � is
adjunction in the logarithmic case) is not linearly equivalent to an effective divisor
have very special properties, see [33]. So (6) is a very strong existence theorem. It
is used in many arguments, the proof of Theorem 4.3 below, for instance. See also
[27].
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Fig. 4 An affine ruling

Theorem 4.1. We have �.R/ D 2 and hence R �C is an exotic affine three-space.

We will give more details in Sect. 5.4 below.
Ramanujam also gave this topological characterization of C2 D A2

C
.

Theorem 4.2. A smooth contractible surface over C that is simply connected at
infinity is isomorphic to C2.

This, however, did not solve the cancellation question in dimension 2. For this
we need a converse to (1) above.

Theorem 4.3 ([15, 30, 33]). Let V be a smooth affine surface with �.V / D �1.
Then V is affine ruled.

It is fairly easy to show

Proposition 4.4. If V D Spec.A/ is a smooth affine surface and

(i) V is affine-ruled and
(ii) A� D k� and A is factorial,

then V ' A2.
Over C we can replace (ii) by

(ii’) V is contractible. (See [17].)

From this we finally get the cancellation theorem in dimension 2.

Theorem 4.5. V � A1 ' A3 H) V ' A2, or, kŒ2� is invariant.

In fact, for a sufficiently general A2 � A3 the projection A3 ! V induces a
separable dominant morphism A2 ! V and we have �.V / D �1 by (4) above.

Not so long ago a completely algebraic proof of the theorem based on the
Makar-Limanov invariant was found by Crachiola and Makar-Limanov [9]. See
Sect. 6 below.

Let me mention one more far reaching result. (I am not stating the most general
version.)

Theorem 4.6 ([18]). Let X be an algebraic variety and suppose �.Xns/ � 0. Let
Z be a non-singular algebraic variety with vanishing logarithmic plurigenera, e.g.,
Z D An. Then X has strong cancellation for Z.

By now the zoo of known exotic affine spaces is quite extensive, and a very active
area of research, see the survey paper [39] in particular. They are, of course, prime
candidates for testing cancellation questions. For instance, with methods inspired
by those of the Danielwski example and using fibrations over algebraic spaces,
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Dubouloz, Moser-Jauslin, and Poloni [12] recently established non-cancellation (for
A1) for certain exotic threefolds that turned up in the quest of linearizing C�-actions
on C3. (See [24].)

However, the cancellation problem in dimension 3 is open in characteristic 0.
This is a main roadblock at present in settling the question whether .C�/2-actions
on C4 are linearizable. We will discuss more details and positive characteristic in
Sect. 6 below.

5 Some Kodaira Dimension Calculations

5.1 Kodaira Dimension of Non-singular Curves

• � D �1 W P1 (KP1 D �2p), A1 D P1 n fpg (p one point, KP1 C p D �p/.
• � D 0: Complete non-singular curves C of genus 1 (KC D 0), .A1/� D P1 n

fq1; q2g (q1; q2 distinct points,KP1 C q1 C q2 D 0).
• � D 1: the rest, e.g. curves C of genus 1 minus a point, P1 n fq1; q2; q3g (three

distinct points).

5.2 Some Very Rudimentary Kodaira Dimension on Affine
Surfaces

5.2.1 The Blow-Up

We need preparatory information on producing SNC-divisors at infinity.

(a) The blow-up

X 0 ! X

of a non-singular surface in a point q is a process that replaces q by a curve

E ' P
1

(to be thought of as parametrizing the set of directions at q), and that induces an
isomorphism

X 0 nE ! X n fqg:

You get a very good picture of this if you study the blow-up of A2 D
Spec.kŒx; y�/ in the origin, which is

Spec.kŒx;
y

x
�/[ Spec.kŒ

x

y
; y�/:
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For points .a; b/ ¤ .0; 0/ we can use a and the slope b=a as coordinates if
a ¤ 0, and of course b and the other slope a=b if b ¤ 0. We can use either if
a ¤ 0 and b ¤ 0. This gives the gluing information.

(b) IfD is a reduced divisor (a sum of irreducible curves taken with multiplicity 1)
and q 2 D, let
D0 D reduced inverse image of D in X 0.
It has E as an irreducible component. We call D0 � E the strict transform

of D. Let
D� = total inverse image of D in X 0.
D� is the same as D0 except that it contains E with multiplicity 
 =

multiplicity of q on D. The definition of D� extends in an obvious way to
general divisors.

(c) A basic fact is

KX 0 D K�
X C E:

It follows that if D is a reduced divisor and q a point of multiplicity 
 on D,
then

KX 0 CD0 D .KX CD/� � .
 � 2/E: (*)

We can repeat this process with a point onD0 � X 0, and so on. This is called
“blowing up infinitely near points”.

The fundamental theorem about embedded resolution of curves says that
by blowing up repeatedly over X (ordinary and infinitely near points) we can
find a tower

X.m/ ! 	 	 	 ! X.1/ ! X.0/ D X: (**)

so that

D.m/; the reduced inverse image of D on X.m/; is a SNC-divisor:

5.2.2 The Complement of a Curve D � P2

Let X D P2. Note that Pic.X/ is generated by (the class of) a line L and that
KX D �3L.

(a) Consider D D Q = non-singular conic. Then K CQ D �L and �.X nQ/ D
�1. As we said above, this implies that U D X n Q is affine-ruled. This is
easily seen directly here. Given q 2 Q, there is a pencil of conics four times
tangent to Q at q, so meeting Q in q only. This gives a pencil of parallel affine
lines A1 in U D P2 n Q which gives an affine ruling of U . It has the tangent
to Q at q as a fiber of multiplicity 2. Different q give different affine rulings,
members of two different rulings meet four times.
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Fig. 5 The pencil of conics
tangent in a point

Fig. 6 Normal crossing
resolution of a cubic with a
node

Fig. 7 Normal crossing
resolution of a cubic with a
cusp

Exercise. Show that X n Q 6' A2. You may also want to show that X n Q is not
isomorphic to a Danielewski surface. See Fig. 5.

(b.1) ConsiderD D C = non-singular cubic. ThenKCD D 0 and �.X nC/ D 0.
(b.2) Consider D D C = cubic with a node q. We blow up at q to achieve normal

crossing. We have K0 CD.0/ D 0 to begin with, and after the blow up K1 C
D.1/ D .K0 CD.0//� D 0 by (*) above. So again �.X n C/ D 0. See Fig. 6.

(b.3) Consider D D C= cubic with a cusp q. We now have to blow up three
times to achieve normal crossing, twice with multiplicity 2 onD.i/, then with
multiplicity 3.

We find KiC1 CD.iC1/ D .Ki CD.i//� D 0; i D 0; 1 and K3 CD.3/ D
�E3. Hence �.P2 nC/ D �1. So the Kodaira dimension is very sensitive to
the nature of the singularities we have to resolve. See Fig. 7.

5.2.3 Interlude on the Intersection Pairing

On a complete non-singular surface X we have the intersection pairing

Pic.X/ � Pic.X/ ! Z;

.D;E/ 7! D 	E:
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For two distinct irreducible curves, D 	 E is the number of intersection points,
counted with multiplicity. We extend the definition linearly to divisors without
common component. One finds that

1. D 	E D 0 if E is linearly equivalent to 0,
2. given a curve C it is possible to find a divisor C 0 linearly equivalent to C and not

having C as a component.

So we can define the pairing unambiguously on Pic.X/. In particular, self-
intersection numbers are defined for irreducible curves in X .

Exercise. Find E 	 E for the exceptional locus in the blow-up of a point on a non-
singular surface.

The intersection pairing has a central role in the study of surfaces. In our context,
if

� D †�i

is a SNC-divisor with irreducible components�i , then the intersection matrix

I.�/ D .��i 	�j /

gives a lot of information on the topology at infinity of U D X n�. In particular, if
� is a tree of P1’s (so simply connected), then

jdet.I.�/j

is the order of the homology at infinity. There also is a way to get a presentation
of the fundamental group at infinity [31, 32]. (The topology at infinity is that of the
boundary of a “small” tubular neighborhood of �.)

5.3 More on the Danielewski Surfaces

It is clear from what we said earlier that the Danielewski surface Zn is affine ruled.
So �.Zn/ D �1. The graph below represents a SNC-divisor� completingZn. The
components are P

1’s meeting normally (if at all), and the labels on the components
are the self-intersections. It is not difficult to compute

det.I.�// D 2n:

(See [17], for instance, for relevant formulas and tricks.) See Fig. 8.
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Fig. 8 Divisor at infinity of a
Danielewski surface

Fig. 9 Divisor at infinity of
the Ramanujam surface

5.4 The Ramanujam Surface R

In P2 take a cubic C with a cusp at q, say. Let Q be an irreducible conic meeting
C with multiplicity 5 at a point p and transversally at a point r . (That such a conic
exists can be deduced from the group law on the non-singular part of C . It can also
be seen directly. One just has to avoid choosing for p a flex-point of C .) Let X be
the blow-up of P2 at r and C1;Q1 the strict transforms of C;Q. Then

R D X n C1 [Q1:

Note that (an open subset of) the exceptional curveE above r becomes part of R.
To obtain a SNC-completion .X 0; �/ of R we have to resolve the singularities of

�1 D C1[Q1 at p and q. We have to blow up over q as in 5.2.2(b.3) and five times
over p to separate C and Q. See Fig. 9.

One finds that the intersection matrix of � is unimodular and, using [31], that
the fundamental group at infinity is an infinite group with trivial abelianization. To
calculate the Kodaira dimension we write (on P2) 2.KCC CQ/ D LCL1C2L2,
where L1 is the line tangent to C at q, L2 is the line joining p and r , and L is
some line (think of it as not passing through any interesting point). We leave it as
an exercise to show that 2.KX 0 C �/ D L� C F , where F is an effective divisor.
(Use (*) above.) Hence �.R/ � �.L�/ D �.L/ D 2.
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6 Automorphisms

It will have become apparent by now that it can be a delicate task to decide on
isomorphism or non-isomorphism of two algebraic varieties, or algebras, and that
one always is on the lookout for new invariants that might help. It is clear that the
automorphism group can be such an invariant, but it most of the time is not easy
to compute. A more subtle, and it turns out very successful, strategy is to study the
way the automorphism groupG of a varietyX , or certain subgroups ofG, act onX .
One of the most fertile ideas in this direction, initiated by L. Makar-Limanov, was
to measure the abundance, or non-abundance, of actions of the additive group Ga.
He made the following

Definition 6.1. Let X D Spec.A/ be an affine variety. Then the Makar-Limanov
Invariant ML.X/, or ML.A/, of X , or A, is the subalgebra of A consisting of the
regular functions f onX invariant under all actions of the additive group Ga on X .

He also developed techniques to actually compute this invariant, see [9, 23, 29]
for details.

Algebraically, an action Ga � X ! X is given by a k-algebra homomorphism
ı W A ! AŒt� ' AŒ1�. Write

ı.a/ D
X
i�0

ı.i/.a/t i

for a 2 A. Since ı is a k-homomorphism,

(i) each ı.i/ is k-linear,
(ii) for given a we have ı.a/ ¤ 0 for only finitely many i , and

(iii) we have the Leibniz rule ı.n/.ab/ D P
iCjDn ı.i/.a/ı.j /.b/.

The properties of a group action give in addition
(iv) ı.0/ is the identity map, and
(v) the “iteration rule” ı.i/ı.j / D �

iCj
i

	
ı.iCj /:

The algebra of functions on X invariant under the action corresponding to ı is

Aı D fa 2 Ajı.a/ D ag D fa 2 Ajı.i/.a/ D 0; i D 1; 2; : : :g:

If char.k/ D 0, then ı.i/ D 1
iŠ
.ı.1//i . Hence ı is completely determined by ı.1/,

in fact ı D exp.tı.1//. It has therefore become customary to call a ı satisfying (i)
through (v) above an

exponential map on A

even if char.k/ > 0. It is called nontrivial if Aı ¤ A, i. e., if ı.i/ ¤ 0 for some
i > 0.
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Note that ı.1/ is a k-derivation of A by (iii). If char.k/ D 0, then given a 2 A

there exists n � 0 such that ı.n/.a/ D 0. We say that

ı.1/ is a locally nilpotent derivation (LND) on A: Note that Aı D Ker.ı.1//:

We denote by EXP.A/ the set of exponential maps of A. Then

ML.A/ D
\

ı2EXP.A/

A.ı/:

If char.k/ D 0, we denote by LND.A/ the set of locally nilpotent derivations of A.
Then also

ML.A/ D
\

ı.1/2LND.A/

Ker.ı.1//:

It is clear that

“ML.X/ D A” if and only if “there is no nontrivial action of Ga on X”:

In contrast, ML.X/ D k indicates that there is a rich abundance of Ga-actions.
It is easily seen that ML.An/ D k. One can verify that for the Danielewski surfaces
discussed above one has ML.Z1/ D k and ML.Zn/ D kŒx� if n > 1. As an exercise
show that ML.X nQ/ D k for the example in 5.2.2(a).

Here is a remarkable result proved recently by Neena Gupta [20] using the
ML-invariant and generalizing techniques developed in [29]. A somewhat more
restricted result was proved earlier in [19]. A key point is that there is no restriction
on the characteristic of k. With the complex numbers C as base field, similar and in
some instances more far reaching results can be found in [25].

Theorem 6.2. Let k be a field and A an integral domain defined by

AD kŒU; Y;Z; T �=.UmY�F.U;Z; T // with F.U;Z; T / 2 kŒU;Z; T � and m>1:

Then the following conditions are equivalent:

(i) f .Z; T / WD F.0;Z; T / is a variable in kŒZ; T �.
(ii) A ' kŒ3�.

As an application of this result we obtain a counter example to the cancellation
problem in dimension 3. We have to backtrack a bit. We call f 2 kŒZ; T � a line if
kŒZ; T �=.f / ' kŒ1� and a variable if kŒZ; T � D kŒf �Œ1�, i.e., if kŒZ; T � D kŒf; g�

for some g 2 kŒZ; T �. Clearly a variable is a line, and by the famous AMS-theorem
[4, 37], the converse is true if char.k/ D 0. On the other hand, if char.k/ D p > 0,
then there exist exotic lines, i.e., lines that are not variables. An example, due to B.
Segre [34], is
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s.Z; T / D Zp2 � T � T p.pC1/:

In fact, a part of the AMS-theorem asserts that if s is a variable, then one of
degZ.s/; degT .s/ divides the other. So the s above is not a variable. We leave it
as an exercise to find a polynomial parametrization that exhibits it as a line.

Let u; y; z; t be the images of U; Y;Z; T in A. Gupta shows that ML.A/ � kŒu�,
even ifm D 1 (this is seen easily by exhibiting suitable exponential maps). She also
shows that ML.A/ D kŒu� if m > 1 and f .Z; T / is an exotic line. This is not an
easy argument, beginning with the results of [28]. On the other hand, if m D 1, it
follows that ML.A/ � kŒu� \ kŒy� D k since we can interchange the role of u and
y. So in that case the Makar-Limanov invariant and related techniques do not seem
to shed any light on the nature of X D Spec.A/ and cancellation. This is an open
problem.

Assume for simplicity that k is algebraically closed and consider what we will
call an Asanuma threefold, that is, an affine threefoldX D Spec.A/ with

a morphism X ! A
1 such that every fiber, including the generic fiber, is an affine plane.

Algebraically this means that we are given kŒu� � A such that

1. for each � 2 k we have A=.u � �/A ' kŒ2�, and
2. A˝kŒu� k.u/ ' k.u/Œ2�.

Interest in these algebras actually dates back quite some time, see [11].
The following is a very special case of a quite sweeping theorem of Asanuma [1]

on the stability of quasi polynomial algebras, roughly algebras that are fiber-wise
polynomial algebras over a subalgebra.

Theorem 6.3. If Spec.A/ is an Asanuma threefold, then AŒ1� ' kŒ4�.

It is clear that kŒu� � A in Theorem 6.2 gives an Asanuma threefold if and only if
f .Z; T / is a line. Let us take F.U; Y;Z; T / D s.Z; T /, where s.Z; T / is an exotic
line. We obtain the promised counter example to cancellation for affine three-space.
To be specific:

Theorem 6.4 ([19]). Let char.k/ D p > 0 and m > 1. Let A D
kŒU; Y;Z; T �=.UmY � .Zp2 � T � T p.p�1///. Then A 6' kŒ3� and AŒ1� ' kŒ4�.

The program to study the linearizability of G D C�-actions onX D C3 outlined
in [24] has two quite distinct parts:

1. Determine the quotient X==G. It parametrizes the closed orbits. See [27].
2. Determine how the space X is put together from the quotient and the orbits.

The second part, see [26], produced a large family F of topologically contractible
smooth affine threefolds X with a C�-action. The X in this family are potentially
exotic affine spaces. It was a difficult problem, crucial for the linearizability
question, to determine whether those not equivariantly isomorphic to C3 with
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a linear action are actually exotic, i.e., not isomorphic to C3. It is fair to say that
the Makar-Limanov invariant was invented to provide the solution [23]. The best
studied example is the threefold

u2y D u C z2 C t3:

It was first proved in [29] that it is not isomorphic to C
3. Note that it is exotic also by

Gupta’s result. The C
�-action is defined by giving u; y; z; t the weights 6;�6; 3; 2.

Note thatX here is an Asanuma threefold topologically, every fiber of the u-fibration
is homeomorphic to an affine plane.

The X in the family F are by definition the contractible smooth affine C
�-

threefolds with unique fixpoint q and two-dimensional quotient isomorphic to that
for the induced action on the tangent space at q. Can such an X 6' A

3 appear as the
quotient of C4 by a C

�-action? More specifically, can we have X � A
1 isomorphic

to A
4? These are central sub-questions in the investigation of C�- and .C�/2-actions

on C
4.

The alert reader will have noted that in positive characteristic the exam-
ple in Theorem 6.4 provides us with a nonlinearizable Gm-action on A

4. (The
action is along the added variable). See [2]. Also, should it turn out that some
Spec.kŒU; Y; T;Z�=.UY � s.Z; T ///, s an exotic line, is isomorphic to A

3, then
we obtain a non-linearizable Gm-action on A

3. The action is by 	 	 .u; y; z; t/ D
.	u; 	�1y; z; t/. Then the quotient is Spec.kŒz; t �/ ' A

2 and the part of the
quotient corresponding to fixpoints is the exotic line s.z; t/ D 0. If the action were
linearizable, it would be a coordinate line.
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