
Chapter 4

Lobachevsky geometry and
nonlinear equations of
mathematical physics

In this chapter we present a geometric approach to the interpretation of nonlinear
partial differential equations which connects them with special coordinate nets on
the Lobachevsky plane Λ2. We introduce the class of Lobachevsky differential equa-
tions (Λ2-class), which admit the aforementioned interpretation. The development
of this geometric approach to nonlinear equations of contemporary mathematical
physics enables us to apply in their study the rather well developed apparatus and
methods of non-Euclidean hyperbolic geometry. Many known nonlinear equations,
in particular, the sine-Gordon, Korteweg-de Vries, Burgers, Liouville, and other
equations, which form the Λ2-class, are generated by their own coordinate nets
on the Lobachevsky plane Λ2. This allows us to study the equations by means of
net (intrinsic-geometrical) methods on the basis of Lobachevsky geometry. Over-
all, Chapter 4 is devoted to the application of geometric methods of hyperbolic
geometry to the constructive investigation of equations of Λ2-class.

4.1 The Lobachevsky class of equations of mathematical
physics

In this section we introduce the notion of the Lobachevsky class of differential
equations, which enables us to give to many nonlinear equations of contemporary
mathematical physics a universal “net-type” geometric interpretation, based on
Lobachevsky’s non-Euclidean hyperbolic geometry [77, 79, 183–185]. Such an ap-
proach opens avenues for the application of tools and methods of non-Euclidean
geometry to the study of partial differential equations of various types.
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226 Chapter 4. Lobachevsky geometry and nonlinear equations

4.1.1 The Gauss formula as a generalized differential equation

Let us consider in the parameter (x, t)-plane the quadratic differential form

ds2 = E[u(x, t)]dx2 + 2F [u(x, t)]dxdt +G[u(x, t)]dt2, (4.1.1)

whose coefficients,

E = E[u(x, t)], F = F [u(x, t)], G = G[u(x, t)], (4.1.2)

depend on some unknown function u(x, t) and its partial derivatives with respect
to x and t.

Let us calculate the “curvature of the quadratic form” (4.1.1), using the
Gauss formula (2.3.28):

K = − 1

4W 2[u]
· det

⎡⎢⎣ E[u] (E[u])x (E[u])t

F [u] (F [u])x (F [u])t

G[u] (G[u])x (G[u])t

⎤⎥⎦
− 1

2
√
W [u]

{
∂

∂t

(
(E[u])t − (F [u])x√

W [u]

)
− ∂

∂x

(
(F [u])t − (G[u])x√

W [u]

)}
, (4.1.3)

where W [u] = E[u] ·G[u]− F 2[u].
The right-hand side of (4.1.3) is the familiar (for the given form of the co-

efficients (4.1.2)) expression of the curvature K in terms of the coefficients E[u],
F [u], G[u] and their partial derivatives with respect to x and t (of order up to and
including two).

If we assume that the curvature is an a priori given function K = K(x, t),
then the resulting relation (4.1.3) can be interpreted as a differential equation for
u(x, t):

F [u(x, t)] = 0. (4.1.4)

And conversely, if u(x, t) is a solution of the differential equation (4.1.4),
the quadratic form (4.1.1) defines in the parameter (x, t)-plane a metric with the
square of the linear element given by (4.1.1) and with the given curvature K(x, t).
Thus, one can say that the metric (4.1.1) (or the differential form (4.1.1)) with
its a priori prescribed curvature K(x, t)) generates (via (4.1.3)) the differential
equation (4.1.4) for the function u(x, t).

The equations generated in the aforementioned sense for the a priori choice of
the constant negative curvature K(x, t) ≡ −1 (the case of the Lobachevsky plane
Λ2) will be called Λ2-equations. The class of differential equations formed by the
Λ2-equation will be referred to as the Lobachevsky class (or the Λ2-class).

In the more general case, when the curvature function K = K(x, t) is arbi-
trary, we will say that the corresponding differential equation (an equation gener-
ated by a metric of variable curvature) belongs to the G-class (the Gauss class);
such equations will be referred to as G-equations .

Let us clarify the geometric interpretation of equations introduced above on
a number of examples of known nonlinear equations of mathematical physics.
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Example 1. Consider the quadratic form (Chebyshev net metric):

ds2 = dx2 + 2 cosu(x, t)dxdt + dt2. (4.1.5)

In this case the coefficients are

E[u] = 1, F [u] = cosu(x, t), G[u] = 1.

Calculating the curvature K(x, t) of the form (4.1.5) by the Gauss formula
(4.1.3) we get

K(x, t) = − 1

4 sin4 u
det

⎡⎣ 1 0 0
cosu −ux sinu −ut sinu

1 0 0

⎤⎦
− 1

2 sinu

{
∂

∂t

[
ux sinu

sinu

]
+

∂

∂x

[
ut sinu

sinu

]}
,

and so we arrive at the following G-equation:

uxt = −K(x, t) sinu(x, t) (4.1.6)

(the Chebyshev equation).
Equation (4.1.6) is the already familiar to us (see § 2.5) equation that “gov-

erns” the variation of the net angle of the Chebyshev net of lines for the given
curvature K(x, t).

When K ≡ −1, (4.1.6) becomes the sine-Gordon equation1

uxt = sinu. (4.1.7)

Example 2. Let us take a metric of the form

ds2 = η2dx2 + 2η

(
1

2
ηu2 + η3

)
dxdt+

[
η2u2

x +

(
1

2
ηu2 + η3

)2
]
dt2, (4.1.8)

where η = const. In this case

E[u] = η2, F [u] = η

(
1

2
ηu2 + η3

)
,

G[u] = η2u2
x +

(
1

2
ηu2 + η3

)2

.

Setting K ≡ −1 (i.e., working in the Lobachevsky plane Λ2), the Gauss
formula (4.1.3) yields the Λ2-equation

ut =
3

2
u2ux + uxxx (4.1.9)

1In this chapter, following the mathematical physics traditions, we write the sought-for solu-
tion of the differential equation in question as u = u(x, t), where x and t are the independent
variables.
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(the modified Korteweg-de Vries equation).
Hence, the modified Korteweg-de Vries equation (MKdV) (4.1.9) is also de-

fined by a coordinate net on the Lobachevsky plane (given by the form (4.1.8) of
the metric). It is is natural to call such a net an MKdV-net.

Example 3. For the metric

ds2 =
eu

2
(dx2 + dt2), (4.1.10)

with the coefficients

E[u] =
eu

2
, F [u] = 0, G[u] =

eu

2

we obtain for K ≡ −1 the equation

Δ2u = eu, Δ2 =
∂2

∂x2
+

∂2

∂t2
(4.1.11)

(the elliptic Liouville equation).
If u(x, t) is a solution of equation (4.1.11), then in accordance with (4.1.1),

on the Lobachevsky plane there arises a net {(x, t)} (the Liouville net) with the
linear element (4.1.10), namely, the isothermal coordinate net.

The examples given above show how differential equations can be generated
by metrics of a special form. As we will see later, many “concrete” nonlinear
equations of mathematical physics belong to the Λ2-class, i.e., are generated by
pseudospherical metrics (metrics of curvature K ≡ −1). In general, the condition
that the curvature of the generating metric is constant, K ≡ const, is important,
since in this case the curvature acquires the special meaning of an invariant , i.e.,
it is preserved by transformations generated by nets on two-dimensional smooth
manifolds M2, connected with the realization of geometric algorithms for the
integration of equations.

We should remark also that the geometric interpretation of equations in-
troduced above, together with its clear geometric content is universal , since it
“exhaust” all possible types in the standard classification of differential equations
(as this was demonstrated on examples of hyperbolic, parabolic and elliptic equa-
tions, respectively).

It is also important to note that the nonlinearity in the “geometrically”
derived equations of mathematical physics is primarily a result of the nontriviality
of the curvature of the generating metric, as well as of the nonlinearity of its
discriminant W .

The membership of equations in the Λ2-class assumes that they possess cer-
tain general properties of geometric origin, the discussion of which we begin in the
next subsection.

To finish the present subsection, we make an observation connected with the
theory of nets [127]: Giving on the two-dimensional manifold M2 a metric of the
type (4.1.1),

ds2 = gij [u]dx
idxj , gij [u] =

(
E[u] F [u]

F [u] G[u]

)
, (4.1.12)
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is equivalent to giving on M2 a smooth tensor field (gij) of type
(
0
2

)
that has the

symmetry property
gij = gji

and is positive definite.
Every nondegenerate symmetric tensor gij gives rise to a net of lines onM2,

the directing pseudovectors (tangent vectors to the one-parameter families of lines)
of which, vj and wj , are solutions of the equation2 (see [127])

gijx
ixj = 0.

The specification of two fields of independent vectors vj and wj defines onM2

a two-parametric net of coorodinate lines {(x, t)}, x ≡ x1, t ≡ x2.
Therefore, it is totally correct to assert that a differential equation of the type

(4.1.4) is generated not only by the metric (4.1.1) corresponding to it, but also
by its “geometric preimage”, the coordinate net on the two-dimensional smooth
manifold M2 (and, in particular, on the Lobachevsky plane Λ2).

4.1.2 Local equivalence of solutions of Λ2-equations

Membership of equations in the Λ2-class assumes that they have a general intrinsic-
geometrical nature. In this subsection we give a theorem on the transformation
of local solutions of Λ2-equations which establishes their local equivalence [77, 79,
185].

Theorem 4.1.1 (Local equivalence of Λ2-equations). Suppose two different analytic
differential equations belong to the Λ2-class. Then from a local analytic solution
of one of these equations one can always construct a local analytic solution of the
other, and conversely.

In the case where one of the Λ2-equations in Theorem 4.1.1 is the sine-Gordon
equation, the content of this the theorem is concretized in Theorem 4.1.2.

Theorem 4.1.2. Suppose an analytic equation of type (4.1.4) belongs to the Λ2-
class. Then for any local analytic solution u(x, t) of this equation one can always

construct a local analytic solution z(x̃, t̃ ) of the sine-Gordon equation

zx̃˜t = sin z(x̃, t̃ ), z = z(x̃, t̃ )

by means of the formula

cos z =

[
∂f1
∂x̃

∂f1

∂t̃
E[u(x, t)] +

(
∂f1
∂x̃

∂f2

∂t̃
+

∂f1

∂t̃

∂f2
∂x̃

)
F [u(x, t)]

+
∂f2
∂x̃

∂f2

∂t̃
G[u(x, t)]

]∣∣∣∣∣ x = f1(x̃,˜t)
t = f2(x̃,˜t)

, (4.1.13)

2This equation gives the pseudovectors of the net, i.e., specifies the ratios x1/x2.
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where E[u], F [u], G[u] are the coefficients of the pseudospherical metric that gen-
erates equation (4.1.4).

The functions f1 and f2 appearing in (4.1.13) satisfy the system

∂2f1

∂x̃∂t̃
+ Γ1

αβ

∂fα
∂x̃

∂fβ

∂t̃
= 0,

∂2f2

∂x̃∂t̃
+ Γ2

αβ

∂fα
∂x̃

∂fβ

∂t̃
= 0,

(α, β = 1, 2), (4.1.14)

where Γ1
αβ, Γ2

αβ are the Christoffel symbols of the pseudospherical metric that

generates the Λ2-equation (4.1.4), written in the variables x ≡ f1, t ≡ f2 (i.e.,
Γγ
αβ = Γγ

αβ(f1, f2), α, β, γ = 1, 2).

Remark. The transformations established in theorems 4.1.1 and 4.1.2 are con-
nected exclusively with a change of the independent variables and geometrically
correspond to passing from one coordinate net to another in the plane Λ2.

The proof of theorems 4.1.1 and 4.1.2 is prepared by § 2.5, which treats in
detail the properties of Chebyshev nets and the conditions for passing to these nets
in a regular domain on a surface, as well as by the methodology of Λ2-equations
introduced in Subsection 4.1.1. Hence, without repeating the arguments that we
already used in the construction of Chebyshev nets, in the proof of the theorems
given here the main attention is paid to the specifics of the corresponding algorithm
in the case we are interested in, when the original given two-dimensional net is
the net associated with a metric that generates a Λ2-equation.

Proof of Theorem 4.1.2. Consider an Λ2-equation of the type (4.1.4), as in the
formulation of Theorem 4.1.2. Then this equation is generated by its corresponding
metric

(ds2)1 = E[u]dx2 + 2F [u]dxdt+G[u]dt2, K ≡ −1. (4.1.15)

Let us determine whether it is possible to reduce the metric (ds2)1 to the
Chebyshev metric

(ds2)2 = dx̃2 + 2 cos z(x̃, t̃)dx̃dt̃+ dt̃2, K ≡ −1, (4.1.16)

i.e., whether it is possible to pass from the existing net T (x, t) that generates

equation (4.1.4) to the Chebyshev net Cheb(x̃, t̃).
Suppose that such a transition

T ((x, t); (ds2)1) �−→ Cheb((x̃, t̃); (ds2)2) (4.1.17)

is effected on the plane Λ2 by means of the transformation

x = x(x̃, t̃), t = t(x̃, t̃), (4.1.18)

and its correctness is guaranteed by the condition

D(x, t)

D(x̃, t̃)
=

∂x

∂x̃

∂t

∂t̃
− ∂x

∂t̃

∂t

∂x̃
�= 0. (4.1.19)
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Let us determine the conditions on the transformation (4.1.18), (4.1.19),

under which it maps the net T (x, t) into the Chebyshev net Cheb(x̃, t̃). In § 2.5 it
was established that a criterion for a net to be a Chebyshev net is the vanishing of
the corresponding two Christoffel symbol (see (2.5.16)), i.e., for the net Cheb(x̃, t̃)
it holds that

Γ̃1
12 = 0, Γ̃2

12 = 0. (4.1.20)

As we have shown, conditions of the type (4.1.20) lead to the Servant-Bianchi
system (2.5.22). Let us write this system for our case (for agreement with the

notation of § 2.5, we re-denote (x, t) by (x1, x2) and (x̃, t̃) by (y1, y2); also, (x, t) ≡
(v1, v2) and (x̃, t̃) ≡ (u1, u2), see (2.5.22)):

Γ1
αβ

∂xα

∂y2
∂xβ

∂y1
+

∂2x1

∂y2∂y1
= 0,

Γ2
αβ

∂xα

∂y2
∂xβ

∂y1
+

∂2x2

∂y2∂y1
= 0.

(4.1.21)

The existence of a solution

x1 = f1(y1, y2), x2 = f2(y1, y2) (4.1.22)

of the system (4.1.21) means that it is possible to reduce the metric (ds2)1 (4.1.15)
to the form (ds2)2 (4.1.16). In general, equations (4.1.21) establish the existence
of a (virtual, in a certain sense) Chebyshev net on an arbitrary two-dimensional
smooth manifold M2 and the degree of arbitrariness with which such a set is
determined.

Now let us address the question of the unique determinacy of the transition
(4.1.22) to a Chebyshev net.

Let x◦1, x◦2 be some fixed values of the variables x1, x2 (and, accordingly, of
some selected point A(x◦1, x

◦
2) ∈ M2 (or, in particular, A(x◦1, x

◦
2) ∈ Λ2). Let us pick

arbitrary values y◦1 , y
◦
2 that correspond in the new variables to x◦1, x

◦
2 (coordinates

of the Chebyshev net Cheb(y1, y2)). In other words, in agreement with (4.1.22),
we require that

x◦1 = f1(y
◦
1 , y

◦
2), x◦2 = f2(y

◦
1 , y

◦
2). (4.1.23)

Let g1(y1) and g2(y1) denote the functions that the sought-for functions
f1(y1, y2) and f2(y1, y2) become when we set y2 = y◦2 :

f1(y1, y
◦
2) = g1(y1), f2(y1, y

◦
2) = g2(y1).

3 (4.1.24)

By (4.1.23), the functions g1 and g2 satisfy the conditions

g1(y
◦
1) = x◦1, g2(y

◦
1) = x◦2. (4.1.25)

In much the same way, let us introduce the functions h1(y2) and h2(y2):

f1(y
◦
1 , y2) = h1(y2), f2(y

◦
1 , y2) = h2(y2), (4.1.26)

3Obviously, the functions g1 and g2 can be given in a sufficiently arbitrary manner.
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h1(y
◦
2) = x◦1, h2(y

◦
2) = x◦2. (4.1.27)

The freedom in the choice of the functions g1(y1), g2(y1), h1(y2), h2(y2) is
restricted only by the natural condition

dg1
dy1

dh2

dy2
− dg2

dy1

dh1

dy2
�= 0, (4.1.28)

the geometric meaning of which will be made clear below.
Further, the substitution

y1 = w1 + w2, y2 = w1 − w2 (4.1.29)

brings (4.1.21) to the form of a normal system of second-order partial differential
equations (a system solved with respect to the highest-order derivatives):

∂2x1

∂w2
1

= P [w1, w2],

∂2x2

∂w2
2

= Q[w1, w2].

(4.1.30)

Thanks to assumption, made in the theorems 4.1.1 and 4.1.2, that the func-
tions u(x, t) (the sought-for solutions of an equation of type (4.1.4)) are analytic,
the Christoffel symbols Γ1

αβ , Γ
2
αβ , as well as the resulting “right-hand sides” in

(4.1.30), that is, the functions P [w1, w2] and Q[w1, w2], will also be analytic func-
tions.

Thus, the system (4.1.30) with the initial data (4.1.23)–(4.1.27) (written in
the variables w1 and w2) satisfies the conditions of the Cauchy-Kovalevskaya theo-
rem for a normal system of differential equations [46]. By the Cauchy-Kovalevskaya
theorem, the posed problem (4.1.30), (4.1.23)–(4.1.27) is always uniquely locally
solvable, i.e., has a unique solution in a neighborhood of the chosen point (w◦1 , w◦2):

y◦1 = w◦1 + w◦2 , y◦2 = w◦1 − w◦2 .

Turning now to the variables y1 and y2, we conclude that in some neighbor-
hood ωA of the point A(x◦1, x

◦
2) ∈ Λ2 there exists a unique solution (4.1.22) of the

system (4.1.21) with the given initial conditions (4.1.23)–(4.1.27).
The arguments above can be interpreted geometrically as follows: the equa-

tions
x1 = g1(y1), x2 = g2(y1)

define on Λ2 a line that passes through the point A(x◦1, x
◦
2) and represents in the

new parametrization the line y2 = y◦2 . Correspondingly, the equations

x1 = h1(y2), x2 = h2(y2)

give the coordinate line y1 = y◦1 of the new net Cheb(y1, y2) that passes through
the point A. Two such lines can be chosen arbitrarily, with the natural constraint
that they must not be tangent to one another at the point A. (This requirement
is ensured by fulfillment of condition (4.1.28).)
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Thus, the solution (4.1.22) of the system (4.1.21) with the initial conditions
(4.1.23)–(4.1.27), exists in some neighborhood ωA and gives the transformation

T (x, t)→ Cheb(x̃, t̃), which leads to the Chebyshev net of coordinate lines on Λ2

(and, in general, on M2). This result has the following geometric explanation: if
through the point A ∈M2 (A ∈ Λ2) one draws two intersecting (but not tangent
to one another) lines l1 and l2, then in a sufficiently small neighborhood ωA of A
there exists a uniquely determined Chebyshev net in which l1 and l2 are included.

Substitution of the already obtained solution (4.1.22) in the metric (4.1.15)
(keeping in mind the transformations performed above) reduces it to the form
(4.1.16). Comparing the coefficients of the metric (4.1.15) that we reduced to the
form (4.1.16) with the coefficients of the (original) metric (4.1.16) itself, we obtain
the formula (4.1.13) for the construction of solutions of the sine-Gordon equation.
Theorem 4.1.2 is proven. �

Let us make a number of comments.

Comment 4.1.1. The arbitrariness in the choice of the initial data (4.1.22)–(4.1.27)
(with condition (4.1.28) in force) enables us to construct an infinite family {z} of
solutions of the sine-Gordon equation for each given solution u of the given Λ2-
equation of the type (4.1.14). Now choosing the same “base” generators for the
net Cheb in the formulation of the problems for two different Λ2-equations,

F1[u1] = 0, F2[u2] = 0

performing the transitions

T1 �−→ Cheb, T2 �−→ Cheb,

and then applying Theorem 4.1.2, we arrive to a solution z of the sine-Gordon
equation

z = Ω1[u1] = Ω2[u2],

that is shared by the two Λ2-equations.
In view of the analyticity of the solutions u1 and u2 (for the corresponding

Λ2-equations), the relations obtained above imply their local equivalence, which
is precisely what Theorem 4.1.1 establishes.

Comment 4.1.2. The method that we used in the proof of Theorem 4.1.1, of pass-
ing to the Chebyshev net (choosing the Chebyshev net as a universal connecting
object) has a general character and, generally speaking, is not related to the curva-
ture of the manifoldM2 under consideration. Hence, if in the case of an arbitrary
curvature K = K(x, t) we argue in much the same way as in the proof of The-
orem 4.1.2, we can obtain an analog of the transformations (4.1.13), (4.1.14) for
the variable-curvature case. However, in this last case the curvature K no longer
retains the meaning of an invariant of the transformation, and consequently in the
formulation of Theorem 4.1.3 we need to “replace” the sine-Gordon equation by
the Chebyshev equation.
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Theorem 4.1.3. For each local analytic solution u(x, t) of any analytic equation
generated by a metric of the type (4.1.1) of curvature K(x, t) (G-equation), one
can always construct a local analytic solution of the Chebyshev equation

zx̃˜t = −K · sin z(x̃, t̃)
by means of relations (4.1.13), (4.1.14), with the function z in them understood as

a solution of the Chebyshev equation with the coefficient K = K(f1(x̃, t̃), f2(x̃, t̃)).

Comment 4.1.3. The transformation established above for the solutions of the Λ2-
and G-equations has a local character. This is due, on the one hand, to the local
character of the Cauchy-Kovalevskaya theorem applied, and on the other, to the
problem of choosing a local Chebyshev net that is completely included in the
global Chebyshev set “on the entire” M2.

The search for a possible transformation of nonlocal solutions should be con-
nected to the search for a universal geometric object, defined ”globally”onM2, or

on the entire surface S that realizes the isometric immersion M2
isom�−→ E3. In the

case of pseudospherical surfaces as such an object it is appropriate to take the net
of asymptotic lines (which is a Chebyshev net), given on entire surface S.

To construct a net of asymptotic lines on S we need to consider the problem
of isometric immersion of of the generating metric of the form (4.1.1) in the space
E3. Namely, given the coefficients E[u], F [u], G[u], the task is to find the coeffi-
cients L[u], M [u], and N [u] of the second fundamental form of the surface. This
in turn is connected with the integration of the system of fundamental equations
of the theory of surfaces in E3 (the Peterson-Codazzi and Gauss equations):

(L[u])t + Γ1
11M [u] + Γ2

11N [u] = (M [u])x + Γ1
12L[u] + Γ2

12M [u],

(M [u])t + Γ1
12M [u] + Γ2

12N [u] = (N [u])x + Γ1
22L[u] + Γ2

22M [u],

L[u]N [u]−M2[u]

E[u]G[u]− F 2[u]
= K(x, t).

(4.1.31)

The vanishing condition for the second fundamental form II(u, v) of the surface,

II(u, v) = L[u]dx2 + 2M [u]dxdt+N [u]dt2 = 0

yields in a unique manner the transition from the variables (x, t) in the Λ2-equation
to the asymptotic Chebyshev coordinate set (xa, ta) on S determined by the sine-
Gordon equation. Therefore, in this case one can talk about obtaining a “global
analogue” of the transformation (4.1.18), which enables us to make the transition
to the “global” Chebyshev net Cheb(xa, ta) of asymptotic lines on the entire sur-
face S. Finding an exact solution of the system (4.1.31) is equivalent to obtaining a
“global” analogue of the substitution (4.1.18), thanks to which the transformation
(4.1.13), (4.1.14) acquires a “global” character.

Comment 4.1.4 (On correctness criteria for the application of approximate meth-
ods for constructing of solutions of the Λ2- and G-equations). In general, the con-
struction of an exact nonlocal solution of the problem (4.1.13), (4.1.14), (4.1.23)–
(4.1.27) has a transcendental character. For this reason we resort to possible cri-
teria for verifying the correctness of the results obtained by the application of
numerical methods.
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Let z∗ = z∗(y1, y2) be an approximate solution of the Chebyshev equation
(or of the sine-Gordon equation, respectively, when K ≡ −1). Given the function
z∗, we extract its initial values

z∗(0, y2) = f∗1 (y2),
z∗(y1, 0) = f∗2 (y1),

f∗1 (0) � f∗2 (0).

Next, from the initial data f∗1 (y2) and f∗2 (y1) we recover the “exact” solution
z(y1, y2) corresponding to them by means of successive approximations for the
Chebyshev equation, written in the integral form (see § 3.6):

zm+1(y1, y2) = f∗1 (y2) + f∗2 (y1)− f∗1 (0)

+

y1∫
0

y2∫
0

[−K(y1, y2)] sin zm(y1, y2)dy1dy2. (4.1.32)

Under the assumption that the curvature is bounded, i.e.,

|K(y1, y2)| ≤ K0, K0 = const > 0,

and choosing as the initial iteration in (4.1.32) z0 ≡ 0, it is not hard to estimate
the modulus of the difference of two successive approximations as

|zm+1 − zm| ≤ (K0)
m (y1y2)

m

(m!)2
,

which established the convergence of the sequence {zm}:
{zm(y1, y2)} → z, m→∞.

The coincidence, within the limits of the admissible accuracy (“residual”) δ,
of the solutions z and z∗:

z � z∗ + δ,

represent the correctness criterion for the numerical algorithm that is being im-
plemented.

In addition to this, one can use for verification the relations obtained simul-
taneously with formula (4.1.13) and stipulated by the intrinsic geometry of the
Chebyshev net:

(E[z∗] · (f1y1 )2 + 2F [z∗] · f1y1f2y1 +G[z∗] · (f2y1 )2)
∣∣∣∣ x = f1(y1, y2),
t = f2(y1, y2)

= 1,

(E[z∗] · (f1y2 )2 + 2F [z∗] · f1y2 f2y2 +G[z∗] · (f2y2 )2)
∣∣∣∣ x = f1(y1, y2)
t = f2(y1, y2)

= 1.
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4.2 The generalized third-order Λ2-equation. A method
for recovering the structure of generating metrics

The recipe introduced in § 4.1 for generating a differential equation (Λ2-equation)
of the type (4.1.4) from a two-dimensional pseudospherical metric of the form
(4.1.1) by means of the Gauss formula (4.1.3) presumes that it yields a “final” Λ2-
equation whose order is two units higher that the order of the metric one starts
with. (By the order of the metric (4.1.1) we will mean the largest order of the
derivatives of the unknown function u(x, t) appearing in the coefficients E[u(x, t)],
F [u(x, t)], and G[u(x, t)] of the metric).

In this section we obtain a generalized third-order Λ2-equation (generated
by a corresponding pseudospherical metric (4.1.1) of first order). This equation
will include as partial realizations all possible Λ2-equations of order up to and
including three (among them, for example, the nonlinear evolution equations of
mathematical physics that we considered earlier, as well as other equations). More-
over, the obtained generalized equation will serve as a “support” in the elaboration
of algorithms for recovering generating pseudospherical metrics for the nonlinear
equations under investigation. Overall, the method proposed here offers a funda-
mentally new ”geometric” way of “priming” the method of the inverse scattering
transform (setting the “primer” problem of the form (3.9.3), (3.9.4)) based on the
obtained metric that generates the equation.

4.2.1 The generalized third-order Λ2-equation

Let us turn now to the direct derivation of the generalized third-order Λ2-equation.
We assume that the coefficients of the quadratic differential form (4.1.1) are of the
form

E = E(u, ux), F = F (u, ux), G = G(u, ux), (4.2.1)

and insert them in the Gauss formula (4.1.3).
For coefficients of the form (4.2.1) the determinant appearing in formula

(4.1.3) (in the first right-hand side term) takes on the form

det

⎛⎝ E[u] (E[u])x (E[u])t
F [u] (F [u])x (F [u])t
G[u] (G[u])x (G[u])t

⎞⎠
= det

⎛⎝ E (Euux + Euxuxx) (Euut + Euxuxt)

F (Fuux + Fuxuxx) (Fuut + Fuxuxt)

G (Guux +Guxuxx) (Guut +Guxuxt)

⎞⎠
= det

⎛⎝ E Eu Eux

F Fu Fux

G Gu Gux

⎞⎠ · det( ux ut

uxx uxt

)
. (4.2.2)

In our case, for the coefficients (4.2.1), the second term in the right-hand side
of (4.1.3) becomes
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1

2
√
W

{
∂

∂t

(
(E[u])t − (F [u])x√

W [u]

)
− ∂

∂x

(
(F [u])t − (G[u])x√

W [u]

)}

=
1

4W 2
{2W (Ett −Gxx) + (Ft −Gx)Wx − (Et − Fx)Wt} . (4.2.3)

The “components” figuring in relations (4.2.2) and (4.2.3) are given by

(a) Ex = Euux + Euxuxx, Et = Euut + Euxuxt,

(b) Gx = Guux +Guxuxx, Gt = Guut +Guxuxt,

(c) Fx = Fuux + Fuxuxx, Ft = Fuut + Fuxuxt,

(4.2.4)

(a) Ett = Euuu
2
t+2Euuxutuxt+Euutt+Euxuxu

2
xt+Euxuxtt,

(b) Gxx = Guuu
2
x + 2Guuxuxuxx +Guuxx +Guxuxu

2
xx +Guxuxxx,

(4.2.5)

(a) EtWx = EuWuuxut + EuWuxutuxx + EuxWuuxuxt

+ EuxWuxuxtuxx,

(b) GxWx = GuWuu
2
x +GuWuxuxuxx +GuxWuuxuxx

+ GuxWuxu
2
xx,

(c) EtWt = EuWuu
2
t + EuWuxutuxt + EuxWuutuxt

+ EuxWuxuxxuxt,

(d) FxWt = FuWuuxut + FuWuxuxuxt + FuxWuutuxx

+ FuxWuxuxtuxx.

(4.2.6)

Substitution of expressions (4.2.4)–(4.2.6) in relations (4.2.2) and (4.2.3) (i.e.,
essentially, in the Gauss formula (4.1.3)) allow us to interpret the Gauss formula
as a partial differential equation for the unknown function u(x, t), which appears
in the generating metric of the form (4.2.1). Hence, we arrive at a generalized
Gauss equation of the third order, generated by a first-order metric of arbitrary
Gaussian curvature K(x, t):

2∑
α,β,γ=1

aαβγuαβγ +
2∑

α,β,γ,δ=1

aαβ,γδuαβuγδ +
2∑

α,β,γ=1

bα,βγuαuβγ

+

2∑
α,β=1

cα,βuαuβ +

2∑
α,β=1

dαβuαβ = −4K(x, t) ·W 2 (4.2.7)

(generalized third-order G-equation).
Each of the indices α, β, γ, and δ in (4.2.7) can take only two values: 1 or 2.

An index attached to the function u(x, t) denotes the derivative with respect to
the corresponding variable “x”≡ “1”, “t” ≡ “2”; for example, u1 ≡ ux, u12 ≡ uxt,
and so on. All nontrivial (non-zero) coefficients of the generalized equation (4.2.7)
are given below in Table 4.2.1.
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In the expressions listed in the table we use the notation

D ≡
∣∣∣∣∣ E Eu Eux

F Fu Fux

G Gu Gux

∣∣∣∣∣ .
Table 4.2.1

uxxx a111 2WGux

uxxt a112 −4WFux

uxtt a122 2WEux

u2
xx a11,11 2WGuxux −WuxGux

uxxuxt a11,12 2(WuxFux − 2WFuxux)
u2
xt a12,12 2WEuxux −WuxEux

uxuxx b1,11 4WGuux −GuWux −WuGux

uxuxt b1,12 D + FuxWu +WuxFu − 4WFuux

utuxx b2,11 FuWux +WuFux −D − 4WFuux

utuxt b2,12 4WEuux − EuWux −WuEux

u2
x c1,1 2WGuu −WuGu

uxut c1,2 2(WuFu − 2WFuu)

u2
t c2,2 2WEuu −WuEu

uxx d11 2WGu

uxt d12 −4WFu

utt b22 2WEu

The obtained equation (4.2.7) with the functional coefficients given in Table
4.2.1 is the generalized third-order Gauss equation (G-equation). In the geomet-
rically characteristic case K(x, t) ≡ −1 (Lobachevsky plane), equation (4.2.7)
becomes the generalized third-order Λ2-equation; below we will focus on precisely
this last equation.

4.2.2 The method of structural reconstruction of the generating
metrics for Λ2-equations

Let us formulate a general algorithm of structural reconstruction of the generating
Λ2 metric for nonlinear (1 + 1)-equations4 and exemplify it in detail to construct
a pseudospherical metric for the modified Korteweg-de Vries equation.

The study of the problem of deriving, for a given differential equation, a
geometric interpretation (namely, given the equation, find the corresponding Λ2-
metric that generated it) is connected with subjecting equation (4.2.7) to addi-
tional constraints, which characterize the structure of the equation under study.
Derivatives of the type {u0,n}, defined in the sought-for metric for all solutions
of the equation under study, are taken with respect to the independent variables.

4In a (1 + 1)-equation the unknown function depends on one space variable x and one time
variable t.
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This enables us to associate to each such term containing u0,n the components
with the corresponding terms of the initial equation. This leads to a system of
relations for the coefficients of the sought-for metric. The derivatives of the form
um,0, m = 1, 2, are replaced by expressions determined by the form of the equation
under study (for instance, ut = F [u] or uxt = F [u]).

As promised, we will next implement in detail the method of reconstruction
of a generating pseudospherical metric in the case of the modified Korteweg-de
Vries equation.

Example. Construction of a generating Λ2-metric for the modified Korteweg-de
Vries equation (MKdV equation). We consider the MKdV equation, well known
in mathematical physics:

ut =
3

2
u2ux + uxxx. (4.2.8)

Under the assumption that the pseudospherical metric that generates equa-
tion (4.2.8) is a first-order metric with the coefficients (4.2.1),

ds2 = E(u, ux)dx
2 + 2F (u, ux)dxdt +G(u, ux)dt

2,

let us find under what (detailed) conditions on the coefficients (4.2.1) of this metric
the resulting generalized equation (4.2.7) is precisely the MKdV equation.

Here it is natural to interpret the equation (4.2.8) itself as a constraint on
the unknown function u = u(x, t) and its derivatives.

To begin with, let us write several differential consequences of equation (4.2.8)
that will be needed later in order to perform certain manipulations in the gener-
alized equation (4.2.7):

ut =
3

2
u2ux + uxxx,

uxt = 3uu2
x +

3

2
u2uxx + uxxxx,

uxxt = 3u3
x + 9uuxuxx +

3

2
u2uxxx + uxxxxx,

uxxxt = 18u2
xuxx + 9uu2

xx + 12uuxuxxx +
3

2
u2uxxxx + uxxxxxx,

utt = 9u3u2
x +

9

4
u4uxx + 18u2

xuxx + 9uu2
xx

+ 15uuxuxxx + 3u2uxxxx + uxxxxxx,

uxtt = 27u2u3
x + 27u3uxuxx + 45uxu

2
xx +

9

4
u4uxxx

+ 33u2
xuxxx + 33uuxxuxxx + 21uuxuxxxx + uxxxxxxx.

(4.2.9)

In the case of the MKdV equation and its consequences (4.2.9) considered
here, the generalized Λ2-equation (4.2.7) (for K ≡ −1) reduces to a differential
equations that contains only derivatives of the unknown function u(x, t) with re-
spect to x of order up to and including 7:

4W 2 = 2WEux

(
27u3uxuxx +

9

4
u4uxxx + 27u2u3

x + 21uuxuxxxx
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+ 33u2
xuxxx + 45u2

xxux + 33uuxxuxxx + uxxxxxxx

)
− 4WFux

(
3

2
u2uxxx + 9uuxuxx + 3u3

x + uxxxxx

)
+ 2WuxxxGux + uxuxx(4WGuux −GuWux −WuGux)

+ u2
x(2WGuu −WuGu) + 2WuxxGu + u2

xx(2WGuxux−WuxGux)

+ 2uxx

(3
2
u2uxx + 3uu2

x + uxxxx

)
(WuxFux − 2WFuxux)

+
(3
2
u2ux+uxxx

)(3
2
u2uxx+3uu2

x+uxxxx

)
(4WEuux− EuWux−WuEux)

+
(3
2
u2ux + uxxx

)2
(2WEuu −WuEu) (4.2.10)

+ uxx

(3
2
u2ux + uxxx

)
(FuWux +WuFux −D − 4WFuux) + 2WEu×

×
(9
4
u4uxx+9u3u2

x+3u2uxxxx+15uuxuxxx+18uxxu
2
x+9uu2

xx+uxxxxxx

)
+
(3
2
u2uxx + 3uu2

x + uxxxx

)2
(2WEuxux −WuxEux)

+ ux

(3
2
u2uxx + 3uu2

x + uxxxx

)
(D + FuxWu +WuxFu − 4WFuux)

+ 2ux

(3
2
u2ux+uxxx

)
(WuFu−2WFuu)−4WFu

(3
2
u2uxx+3uu2

x+uxxxx

)
.

The next step in the implementation of the reconstruction algorithm consists
in “ordering” expression (4.2.1) according to groups of terms in front of the deriva-
tives uxxxxxxx, uxxxxxx, . . ., uxxx, . . . (in order of decrease of the order of differen-
tiation). We note again that the indicated derivatives (defined on each solution u
of the MKdV equation) acquire here the meaning of independent “variables”.

The first ordered term, which includes the 7-th order derivative, has the form

2W · Eux · uxxxxxxx + · · · ; (4.2.11)

Since relation (4.2.10) means that equation (4.2.7) holds identically on all
solutions of the MKdV equation (with the constraint (4.2.9) accounted for in
(4.2.7)), all “functional coefficients” in front of the derivatives of the unknown
functions u in (4.2.10) must be equal to zero. An examination of the first three
ordered terms, in front of the derivatives of u with respect to x of order 7, 6, and
5 in (4.2.10) leads, in conjunction with (4.2.11), to the system

2WEux = 0,

2WEu = 0,

−4WFux = 0.

(4.2.12)

From (4.2.12) we obtain (under the natural assumption that W �= 0):

E = η2 = const, F = F (u). (4.2.13)
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Expression (4.2.13) is the first result on the path of finding the precise form of
the coefficients of the generating metric. At the same time, it allows us to simplify
considerably the form of equation (4.2.10), to

4W 2 = 2WuxxxGux + uxuxx(4WGuux −GuWux −WuGux)

+ uxx

(3
2
u2ux + uxxx

)
(FuWux −D)

+ u2
x(2WGuu −WuGu) + 2WuxxGu + u2

xx(2WGuxux −WuxGux)

+ ux

(3
2
u2uxx + 3uu2

x + uxxxx

)
(D +WuxFu)

+ 2ux

(3
2
u2ux + uxxx

)
(WuFu − 2WFuu)

− 4WFu

(3
2
u2uxx + 3uu2

x + uxxxx

)
; (4.2.14)

moreover,

D = η2GuxFu, Wu = η2Gu − 2FFu, Wux = η2Gux .

Continuing the implementation of the algorithm, let us write the conditions
expressing the “vanishing” of the coefficients in front of the derivatives uxxxx and
uxxx in (4.2.14):

for uxxxx:
2Fu · (η2Gux · ux − 2W ) = 0, (4.2.15)

for uxxx:

η2uxGuFu − 2ux(FF 2
u +WFuu) +WGux = 0. (4.2.16)

It is readily verified that the equality Fu = 0 cannot be a consequence of
relation (4.2.15), since otherwise (recalling (4.2.13) and (4.2.16)) all coefficients of
the generating metric of the type (4.2.1) would be constant.

Thus, (4.3.15) yields

W =
1

2
a2Guxux. (4.2.17)

Accordingly, equation (4.2.16) becomes

2η2uxGuFu − 4uxFF 2
u − 2η2uxGuxFuu + η2G2

ux
= 0. (4.2.18)

At this iteration step of the algorithm, if one takes (4.2.17) and (4.2.18) into
account, the generalized Λ2-equation (equation (4.2.7)→ (4.2.10)→ (4.2.14)) can
be simplified further to

2η2G2
ux
u2
x = uxx

(
ux(3uxGuxGuux −Gu(Gux +Guxuxux)

)
+

3

2
u2ux(Fu(Gux +Guxuxux)− 2GuxFu) + 2uxGuxGu)

− u2
xxGux(uxGuxux −Gux)

+ u3
x(2GuxGuu −GuxuGu + 3u2(GuxuFu − 2GuxFuu)). (4.2.19)
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Continuing the algorithmic scheme, now already for equation (4.2.19), we
write the “vanishing coefficients” in the remaining terms:

for uxx:
Gux(uxGuxux −Gux) = 0. (4.2.20)

SinceW �= 0, relation (4.2.17) shows that in (4.2.20) we cannot haveGux = 0.
Setting the expression inside the parentheses in (4.2.20) equal to zero, one can
readily get that

G = λ(u)u2
x + f(u). (4.2.21)

Moreover, for uxx:

3u2
xGuxGuux − uxGuGux − u2

xGuGuxux +
3

2
u2uxFuGux

+
3

2
u2u2

xFuGuxux − 3u2uxGuxFu + 2uxGuxGu = 0. (4.2.22)

Using (4.2.21), equation (4.2.21) can be simplified considerably to

λλuu
4
x = 0, λ = const,

and so
W = λη2u2

x, Gux = 2λux.

The results obtained to this point allow us to rewrite equation (4.2.16) in the
compact form

g1(u) · ux + g2(u) · u2
x = 0, (4.2.23)

where

g1(u) = 2η2GuFu − 4FF 2
u ,

g2(u) = −4λη2Fuu + 4λ2η2.

Since the coefficients (4.2.23) must vanish: g1(u) = 0 and g2(u) = 0, it holds
that

η2Gu = 2FFu

Fuu = λ.
(4.2.24)

The second equation in (4.2.24) immediately yields

F = F (u) =
λ

2
u2 + C1u+ C2, C1, C2 = const. (4.2.25)

Integration of the first equation in (4.2.24) gives

G =
1

η2
F 2 + C, C = C(ux). (4.2.26)

From the calculation of the already obtained determinant of the metric,

W = EG− F 2 = λη2u2
x
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we obtain, using the coefficients E,F,G given by the expressions (4.2.13), (4.2.25),
(4.2.26),

C(ux) = λu2
x, λ = η2 = const. (4.2.27)

Substituting the coefficients E,F,G (4.2.25), (4.2.26), with relation (4.2.27)
accounted for, in the generalized third-order Λ2-equation (4.2.19), transformed to
the form

2λη4 = 2

(
λ
(λ
2
u2 + C1u+ C2

)
+ (λu+ C1)

2

)
− 3λu2η2,

and subsequently comparing the coefficients of like powers of the function u, we
obtain the exact values of the constants involved:

C1 = 0, C2 = η4.

Putting all together, we finally obtain the exact explicit representation for
the coefficients of the sought-for generating metric:

E = η2, F = η2
(u2

2
+ η2

)
, G = η2u2

x + η2
(u2

2
+ η2

)2
, (4.2.28)

and consequently the pseudospherical metric itself that generates the modified
Korteweg-de Vries equation (4.2.8):

ds2 = η2dx2 + 2η2
(u2

2
+ η2

)
dxdt+

[
η2u2

x + η2
(u2

2
+ η2

)2]
dt2. (4.2.29)

Thus, we fully implemented the algorithm of the method of structural recon-
struction of the generating pseudospherical metric for the modified Korteweg-de
Vries equation. Overall, the question whether the proposed algorithm is appli-
cable to a given nonlinear equation is directly connected with the compatibility
(or consistency) problem , as well as with the explicit solvability of the system of
equations , obtained on the basis of the generalized third-order Λ2 equation, which
expresses the vanishing of all the “functional coefficients” in the equation of the
type (4.2.7) (in the equation (4.2.10) in each concrete case).

Let us now formulate the general scheme of the algorithm of the method
of structural reconstruction of the generating metric for a nonlinear third-order
differential equation:

1. Reduce the Λ2-equation (4.2.7), with the differential consequences of the
equation under study accounted for, to a relation whose terms are arranged
according to the order of the derivatives of the unknown function u(x, t). (In
the example considered above, that was equation (4.2.10).)

2. Derive the system of differential equations for the coefficients of the sought-
for generating metric, E(u, ux), F (u, ux), G(u, ux), from the condition that
all the “functional cofficients” in front of the terms with the derivatives of
the unknown function u of different orders vanish.

3. Investigate of the compatibility of the aforementioned system of differential
relations. Construct exact solutions of this system.
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4.3 Orthogonal nets and the nonlinear equations they
generate

As one can see from the discussion above (see § 4.2), given some nonlinear equation,
the recovery of its generating Λ2- or G-metric takes a rather large amount of work.
For that reason, one of the approaches that allows one, to a certain extent, to
“optimize” the problem of associating to Λ2- and G-equations the Λ2- and G-
metrics that generate them, consists in cleverly describing those equations that
are generated by two-dimensional metrics that have certain specific geometric
properties, namely, metrics associated with certain classes of coordinate nets on
two-dimensional smooth manifolds that have intuitive geometric features. As it
turns out, such nets define a considerable number of nonlinear equations of current
interest in mathematical physics.

A rich class of metrics that generate a sufficient number of well-known non-
linear equations is associated with the orthogonal nets . Such nets are given by the
condition that the second coefficient of the metric of type (4.1.1) vanishes:

F [u(x, t)] ≡ 0, (x, t) ∈ R2. (4.3.1)

Accordingly, the metric itself, written in the orthogonal coordinate system,
reads

ds2 = E[u]dx2 +G[u]dt2. (4.3.2)

Let us study the problem of finding the G-equations generated by metrics of
the form (4.3.2) (the curvature K(x, t) is assumed to be arbitrary).

Setting

E[u] = a2[u], G[u] = b2[u],

(and then W = a2[u]b2[u] > 0), we rewrite the metric (4.3.2) as

ds2 = a2[u]dx2 + b2[u]dt2. (4.3.3)

Let us substitute (4.3.3) in the Gauss formula (4.1.3). This yields the equation{(au
b

ut

)
t
+
(bu
a

ux

)
x

}
= −2K(x, t) ·W 1/2. (4.3.4)

It is convenient to recast (4.3.4) as[(bu
a

)
uxx +

(au
b

)
utt

]
+
[(bu

a

)
u
u2
x +
(au

b

)
u
u2
t

]
= −2K(x, t) ·W 1/2. (4.3.5)

Equation (4.3.5) is the general G-equation generated by metrics of the form
(4.3.3), written in an orthogonal net parametrization. Let us determine under what
conditions on a[u] and b[u] the left-hand side of (4.3.5) expresses the action of one
of the standard operators of mathematical physics: the Laplace operator, the wave
operator, etc.
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1) Equation (4.3.5) will be elliptic if, in particular, its left-hand side repre-
sents the Laplacian of the function u, which is the case whenever the following
system of conditions are satisfied:⎧⎪⎨⎪⎩

au
b

= η,

bu
a

= η,
η = const. (4.3.6)

Notice that fulfillment of conditions (4.3.6) automatically implies that the terms
inside the second pair of brackets in the left-hand side of (4.3.5) vanish.

Integrating the system (4.3.6), we find for a[u] and b[u] the expressions

a[u] = A1 · eηu +A2 · e−ηu,

b[u] = A1 · eηu −A2 · e−ηu, A1, A2 = const.

Therefore, if conditions (4.3.6) are satisfied, then the metric (4.3.3) takes on
the form

ds2 =
(
A1 · eηu +A2 · e−ηu

)2
dx2 +

(
A1 · eηu −A2 · e−ηu

)2
dt2. (4.3.7)

The metric (4.3.7) thus obtained, written in orthogonal coordinates, gener-
ates a general elliptic G-equation of the form

Δ2u = −1

η
·K(x, t) · (A2

1 · e2ηu −A2
2 · e−2ηu

)
, (4.3.8)

where Δ2 =
∂2

∂x2
+

∂2

∂t2
is the Laplace operator.

By suitably choosing the constants A1 and A2 appropriately we can obtain
as particular cases of the general equation well-known nonlinear equations en-
countered in mathematical physics. Let us give such examples of metrics and the
equations they generate.

a) A1 = 1√
2
, A2 = 0, η = 1

2 .

Generating metric:

ds2 =
eu

2
dx2 +

eu

2
dt2. (4.3.9)

G-equation generated – the elliptic Liouville equation:

Δ2u = −K(x, t) · eu. (4.3.10)

When K ≡ −1 (the case of the Lobachevsky plane Λ2) we obtain an impor-
tant subcase of equation (4.3.10):

Δ2u = eu. (4.3.11)
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b) A1 = A2 = 1
2 , η = 1

2 .
Generating metric:

ds2 = cosh2
u

2
dx2 + sinh2

u

2
dt2. (4.3.12)

The G-equation corresponding to the metric (4.3.12):

Δ2u = −K(x, t) · sinhu, (4.3.13)

and its “Λ2-analogue”, the elliptic sinh-Gordon equation:

Δ2u = sinhu. (4.3.14)

2) Now let us study the hyperbolic G-equations, which are “included” in
(4.3.5) and are generated by a metric of the general form (4.3.3). Indeed, if the
conditions ⎧⎪⎨⎪⎩

bu
a

= η,

au
b

= −η,
η = const. (4.3.15)

are satisfied, then in the left-hand side of (4.3.5) one obtains the Laplace operator.
The system (4.3.15) has the solutions

a[u] = C1 sin ηu− C2 cos ηu,

b[u] = −C2 sin ηu− C1 cos ηu,
η = const, C1, C2 = const. (4.3.16)

Using (4.3.16), let us write the generating metric of general form (4.3.3) for
the case at hand:

ds2 = (C1 sin ηu− C2 cos ηu)
2
dx2 + (C2 sin ηu+ C1 cos ηu)

2
dt2. (4.3.17)

The metric (4.3.17) generates the general hyperbolic G-equation

uxx − utt = −K · [C1C2 · cos(2ηu)− (C2
1 − C2

2 ) · sin ηu · cos ηu]. (4.3.18)

Upon choosing for the constant parameters in (4.3.18) the values

C1 = 0, C2 = 1, η =
1

2
,

we obtain the classical Chebyshev equation (see § 2.5):
Uxx − Utt = −K(x, t) sinU, U = 2u, (4.3.19)

in the variables x, t, relative to an orthogonal coordinate system.
Let us give additional examples that demonstrates how orthogonal coordinate

nets can be applied in the analysis of nonlinear equations.
Let us consider the metric (4.3.2) with coefficients of the form

E = E(ux), G = G(u), under the condition K ≡ −1.
Here are two examples.
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a) Taking the pseudospherical metric

ds2 = u2
xdx

2 + sinh2u dt2 (4.3.20)

as the generating metric yields as Λ2-equation the hyperbolic cosh-Gordon
equation

uxt = coshu. (4.3.21)

b) The pseudospherical metric

ds2 = u2
xdx

2 + cosh2u dt2 (4.3.22)

generates the hyperbolic Λ2-equation called the sinh-Gordon equation,

uxt = sinhu. (4.3.23)

The fact that is possible to associate nonlinear equations to orthogonal gen-
erating nets on the Lobachevsky plane Λ2 enables one to propose geometric algo-
rythms for their integration. Such methods are treated in the next section.

4.4 Net methods for constructing solutions of
Λ2-equations

The geometric interpretation of differential equations presented in this chapter
assigns to each Λ2-equation a pseudospherical metric that generates it (or a gen-
erating coordinate net on the Lobachevsky plane Λ2). This geometric “view” allows
one to pass from the investigation of the equations themselves to the analysis of
their geometric preimages – the generating coordinates nets, and thus to enlist in
the study of equations the tools of non-Euclidean differential geometry. In the re-
alization of this approach it is expedient to use sufficiently well studied integrable
Λ2-equations (for example, the sine-Gordon equation) and the corresponding coor-
dinate nets as canonical (supporting) information for constructing transformations
that connect them with geometric objects (nets) that characterize other equations
under study. A classical example of canonical (supporting) net is the “Chebyshev”
net. As we will show below, an important role is played also by the semigeodesic
net, used to construct transformations between solutions of elliptic equations.

It is important to emphasize that the transformations obtained connect so-
lutions of various Λ2-equations and arise “at the level” of the transformation of
the preimages of the equations studied – the generating nets on the Lobachevsky
plane Λ2, and they do not “touch upon” the equations themselves. That is to say,
the transformations obtained are the result of transformations between various
generating nets on Λ2 and the associated transformation of solutions, but not of
transformations of the equations. Here the constant negative curvature K ≡ −1
of the generating pseudospherical metrics has the meaning of an invariant of the
transformations performed. The diagram in Figure 4.4.1 explains the general al-
gorithm and the sequence of links in of the net approach to the construction of
solutions of Λ2-equations.
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Generating
  metric (1)

Generating
  metric (2)

equation equation

     Solution 
of equation (1)

     Solution 
of equation (2)

(1) (2)

Figure 4.4.1

4.4.1 On mutual transformations of solutions of the Laplace equa-
tion and the elliptic Liouville equation

In this subsection we obtain exact explicit formulas for the construction of exact
solutions of the elliptic Liouville equation [77, 90]

Δ2u = eu, u = u(x, t) (4.4.1)

from solutions of the Laplace equation

Δ2v = 0, v = v(x, t). (4.4.2)

To construct solutions of the Λ2-equation (4.1.1) we involve another (auxil-
iary) Λ2-equation, namely

yττ − y = 0, y = y(τ), (4.4.3)

i.e., the ordinary differential equation generated by the pseudospherical metric

ds2 = y2(τ)dχ2 + dτ2, K(x, t) ≡ −1, (4.4.4)

which plays the role of the supporting metric in our approach.
Recall that the Liouville equation (4.4.1) itself is generated by a Λ2-metric

of the form (see § 4.1)
ds2 =

eu

2
(dx2 + dt2). (4.4.5)

The metric (4.4.5) generating the Liouville equation (4.4.1) is associated with the
isothermal coordinate net on the Lobachevsky plane Λ2, while the metric (4.4.4)
that generates the Laplace equation (4.4.2) is associated with the semigeodesic
coordinate net on Λ2.
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In the plane Λ2, let us pass from the semigeodesic coordinate net T sg(χ, τ)
to the isothermal net T is(x, t) (the Liouville net) via

w(x, t) = χ,

v(x, t) =

∫
dτ

y(τ)
.

(4.4.6)

Substitution of (4.4.6) in the metric (4.4.4) reduces the latter to a metric
(4.4.5), provided the following conditions are satisfied:

v2x + w2
x = v2t + w2

t ,

vxvt + wxwt = 0.
(4.4.7)

Then the solution u(x, t) of the Liouville equation (4.4.1) is given by the
formula

u(x, t) = ln
[
2y2(τ(x, t)) · (v2x + w2

x)
]
. (4.4.8)

It is easy to see that the system (4.4.7) connects two arbitrary harmonically
conjugate functions v(x, t) and w(x, t), which satisfy the classical Cauchy-Riemann
conditions [105]

vx = wt,

vt = −wx,
(4.4.9)

and hence also the Laplace equation:

Δ2v = 0,

Δ2w = 0.
(4.4.10)

Let us turn now to the construction of a solution u(x, t) of equation (4.4.1)
by means of formula (4.4.8). To this end, using the general solution

y(τ) = C1e
τ + C2e

−τ , C1, C2 = const (4.4.11)

of equation (4.4.3), we write the metric (4.4.4):

ds2 = (C1e
τ + C2e

−τ )2dχ2 + dτ2 (4.4.12)

Now let us substitute the solution (4.4.11) in the second relation in (4.4.6).
This yields the representation

τ = τ(v(x, t)),

which is necessary for (4.4.8).
Depending on the signs of the constants C1 and C2 chosen in the solution

(4.4.11), the second relation in (4.4.6) yields three possible variants:

1) y2(τ(v)) =
1

v2
,

2) y2(τ(v)) =
1

sinh2 v
,

3) y2(τ(v)) =
1

sin2 v
.

(4.4.13)
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Formula (4.4.8) in conjunction with (4.4.13) yields three formulas for constructing
solutions of the elliptic Liouville equation (4.4.1) from an arbitrary solution v(x, t),
v(x, t) �≡ const, of the Laplace equation (4.4.2) [77, 90]:

u(x, t) = ln

[
2(v2x + v2t )

v2

]
,

u(x, t) = ln

[
2(v2x + v2t )

sinh2 v

]
,

u(x, t) = ln

[
2(v2x + v2t )

sin2 v

]
.

(4.4.14)

It goes without saying that the validity of the geometrically derived trans-
formations (4.4.14) can be verified by their direct substitution in the Liouville
equation (4.4.1). To this end, the following assertion proves useful.

If
(k)
v (x, t) �≡ const is a solution of the Laplace equation (4.4.2), then the

function
(k+1)
v (x, t), defined as

(k+1)
v (x, t) = ln

(
(k)
vx

2 +
(k)
vt

2
)
, (4.4.15)

is also a solution of the Laplace equation (4.4.2).

Formula (4.4.15) expresses a transformation (or self-transformation) for the
Laplace equation that is analogous to the Bäcklund transformation. The trans-
formation (4.4.15) is the natural result of applying the obtained transformation
(4.4.14) to the Laplace and Liouville equations.

From the point of view of the theory of functions of a complex variables, the
result obtained above implies that, given any analytic function f(z) = v(x, t) +
iw(x, t), one can always construct (by means of formulas (4.4.14)) solutions of the
three types of the elliptic Liouville equation.

Let us give the “gradient” form of the solutions u(x, t) in (4.4.14):

u(x, t) = ln
[
2
(
grad

(
ln v
))2]

,

u(x, t) = ln

[
2
(
grad

(
ln
(
tanh

v

2

)))2]
,

u(x, t) = ln

[
2
(
grad

(
ln
(
tan

v

2

)))2]
.

(4.4.16)

For work connected with the study of the Liouville equation (4.4.1) we refer
the reader also to [15].
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4.4.2 On the equation Δ2u
∗ = e−u∗

Side by side with the Liouville equation (4.4.1), in applications [16, 33] one en-
counters also the equation of close form

Δ2u
∗ = e−u∗

, (4.4.17)

which is taken by the simple “reflection” u∗∗ = −u∗ into the equation

Δ2u
∗∗ = −eu∗

. (4.4.18)

Like equation (4.4.1), equation (4.4.18) can be interpreted as a relation that
generates a metric of the form (4.4.5), but in the case of an a priori given constant
positive curvature K ≡ +1.5

The construction of solutions of equation (4.4.18) will be carried out by the
general geometric algorithm discussed in Subsection 4.4.1. Namely, to construct
the solution u∗∗(x, t) of (4.4.18) we take as supporting metric the metric (4.4.4),
but with prescribed constant positive curvature K ≡ +1. Then such a metric will
generate, instead of (4.4.3), the related auxiliary equation

(y∗∗)ττ + y∗∗ = 0, y∗∗ = y∗∗(τ). (4.4.19)

Let us use the substitution (4.4.6) to pass from the metric (4.4.4) (the semi-
geodesic net T sg(χ, τ), curvature K ≡ +1) to the metric (4.4.5) (respectively, the
isothermal net T is(x, t), curvature K ≡ +1).

Starting from the general solution of the equation (4.4.19),

y∗∗(τ) = C1 sin τ + C2 cos τ, C1, C2 = const, (4.4.20)

we make the transition
T sg(χ, τ) �−→ T is(x, t).

Note that the relations (4.4.7) retain their form also in the case of curvature
K ≡ +1 (up to the transformation of y(τ) into y∗∗(τ)). Moreover, the function
[y∗∗(τ)]2 is defined in terms of the solution y∗∗ of equation (4.4.17), via the second
relation in (4.4.6), as

[y∗∗(τ(v))]2 =
1

cosh2 v
.

Substituting this expression in (4.4.8) we finally construct the solution u∗(x, t) (or
the solution u∗∗(x, t)) from the solution v(x, t) of the Laplace equation as

u∗(x, t) = ln

[
cosh2 v

2(v2x + v2t )

]
. (4.4.21)

We will next discuss some important related issues arising in the study of
the equation of Liouville type (4.4.1), (4.4.17), (4.4.18) at hand and the derived
transformations (4.4.14)–(4.4.16) and (4.4.21).

5The Gaussian curvature K ≡ +1 is an “indicator” of spherical geometry.
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4.4.3 Some applications connected with equations of Liouville type

1) Centrally-symmetric metrics . The well-known theoretical physics problem6 of
finding centrally-symmetric forms of two-dimensional metrics of constant cur-

vature is connected with the search for “radial” solutions u(r), r =
√
x2 + y2,

of the Liouville equation (4.4.1) (for K ≡ const < 0) and of equation (4.4.17)
(for K ≡ const > 0). The transformations (4.4.14) and (4.4.21) established
above indicate that the search for such metrics relies on finding fundamental
solutions v(r) of the Laplace equation (4.4.2). Therefore, one can assert that
for K ≡ const < 0 there exists three forms of centrally-symmetric metrics,
while for K ≡ const > 0 there is only one such metric. It is interesting to
note that the Bäcklund self-transformation (4.4.15) for the Laplace equation
is the identity transformation on the “radial” solutions v(r) of this equation.

2) On problems of combustion theory. The mathematical modeling of a number
of problems of combustion theory, such as thermal explosion, forced auto-
ignition, and others (which consider the thermal action of the surrounding
medium on the reaction domain Ω) is connected with the study of initial-
boundary value problems for the heat balance equation [16, 33]

∂ϑ

∂t
=

1

δ
Δ2ϑ+ eϑ,

where the quantity ϑ represents the temperature field in Ω. In particular, the
fundamental problem of stationary theory (for ϑt ≡ 0), which is “governed”
by the Liouville-type equation of

Δ2ϑST + δeϑST = 0,

is the investigation of the critical conditions, under which the problem under
study is no longer solvable in the natural class of regular functions, which
from the physical point of view corresponds to a forced explosion or auto-
ignition (i.e., to a discontinuity (jump) of the solution ϑST).

In this connection we remark that the relations (4.4.14)–(4.4.16) and
(4.4.21) discussed above leave unchanged the domain Ω in which the prob-
lem for the Liouville-type equation (4.4.1), (4.4.17) and the corresponding
problem for the Laplace equation (4.4.2) (with the corresponding nonlin-
ear boundary conditions) are posed. For this reason, the possible singulari-
ties of the solution ϑST come from the singularities of the right-hand sides
in (4.4.14)–(4.4.16), (4.4.21). For example, the solution ϑST, computed by
means of the third formula in (4.4.14), is regular in the domain

Ω0 : kπ < v(x, t) < (k + 1)π, k an integer.

That is to say, there are geometric constraints on the configuration of the
domain Ω : Ω = Ω0 that must be satisfied in order for the evolution of
the process to be regular. This agrees with the known results of physical

6Encountered, first of all, in the general theory of relativity.
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investigations [16]. Moreover, the blow-up regime |θST| > M , for all M > 0,
corresponds exactly to the degeneration of the metric (4.4.5) that generates
the Liouville-type equation when the discriminant W [θ] vanishes: W [θ] = 0,
and to the singularities that arise in the Liouville net on M2 (K ≡ ±1).

3) The multidimensional Liouville equation. A formal generalization of the
structure of the transformations (4.4.14), (4.4.21) allows us to guess a class of
self-similar solutions (of a linear argument) for the multidimensional Liouville-
type equation:

Δnu = eu, (4.4.22)

Δnũ = e−ũ, (4.4.23)

where Δn =
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
n

, x̄ = (x1, . . . , xn).

The solutions of this class are given as follows:

for equation (4.4.22):

u(x̄) = ln

(
2

α2(x̄)

)
,

u(x̄) = ln

(
2

sinh2 α(x̄)

)
,

u(x̄) = ln

(
2

sin2 α(x̄)

)
;

(4.4.24)

for equation (4.4.23):

ũ(x̄) = ln

(
cosh2 α(x̄)

2

)
, (4.4.25)

where α(x̄) = a1x1 + · · ·+ anxn,
n∑

i=1

a2i = 1.

4.4.4 Example of “net-based” construction of “kink” type solutions
of the sine-Gordon equation

Let us construct, applying the net method, a solution u(x, t) of the sine-Gordon
equation (4.1.7). The symmetry transformation

(x, t) �→ (x,−t)
takes (4.1.7) into an equation of the form

ūxt = − sin ū, (4.4.26)
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with
ū(x, t) = u(x,−t),
u(x, t) = ū(x,−t).

Equations (4.1.7) and (4.4.26) represent particular realizations of the Cheby-
shev equation (4.1.6) that is generated by the metric of the Chebyshev net. Specif-
ically, equation (4.1.7) is generated by a pseudospherical metric of the form (4.1.5)
(curvature K ≡ −1), while equation (4.4.26) is generated by a metric of the same
form (4.1.5), but with an a priori prescribed constant positive curvature K ≡ +1.

To construct a solution ū(x, t) of the equation (4.4.26) we turn to the auxiliary
metric of curvature K ≡ +1, written in the semigeodesic coordinates (χ, τ):

ds2 = (y∗∗)2(τ)dχ2 + dτ2, K(x, t) ≡ +1. (4.4.27)

The metric (4.4.27) generates again equation (4.4.19), which has a general
solution of the form

y∗∗(τ) = A1 sin τ +A2 cos τ, A1, A2 = const. (4.4.28)

Setting A1 = 0 and A2 = 1 in (4.4.28), we select the particular solution

Y ∗∗(τ) = cos τ

and rewrite with it the metric (4.4.27):

ds2 = cos2 τdχ2 + dτ2. (4.4.29)

The quadratic form (4.4.29) with curvature K ≡ +1 is reduced to a metric
of the form (4.1.5), written in the coordinates of the Chebyshev net Cheb(x, t) of
the same curvature, by means of the substitution

x+ t = χ,

x− t =

∫
dτ

sin τ
.

(4.4.30)

In this way we arrive at the metric

ds2 = dx2 + 2 cos 2τ(x, t)dxdt + dt2. (4.4.31)

Comparing (4.4.31) with the classical Chebyshev metric (4.1.5), we find the
solution ū(x, t) of equation (4.4.26):

ū(x, t) = 2τ(x, t). (4.4.32)

The function τ(x, t) is calculated from the second relation in (4.4.30):

τ(x, t) = 2 arctan ex−t. (4.4.33)

Correspondingly, turning to the original solution u(x, t) of the sine-Gordon
equation and using (4.4.32), (4.4.31), and (4.4.26), we obtain from (4.4.33) the
expression

u(x, t) = 4 arctan ex+t. (4.4.34)
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The solution (4.4.34) is a “kink”-type solution or one-soliton solution of the
form (3.2.11) (of unit amplitude).

The examples given above show how the method of mutual transformation of
nets on manifolds of constant curvature can be used to construct exact solutions
of nonlinear differential equations.

4.5 Geometric generalizations of a series of model
equations of mathematical physics

In this section we provide a list of G-equations that generalize a series of important
– from the point of view of mathematical physics and applications – nonlinear equa-
tions , together with the metrics that generate them. Usually, partial differential
equations are generalized by increasing the dimension of the differential operators
they involve (Laplacians, d’Alembertians and so on), which essentially means that
one considers physical models of higher dimensions. In our treatment here, the
generalization of known (1+1)-equations will be done by means of introducing in
the “process of generating” the equation (see § 4.1) an arbitrary curvature K(x, t),
which will be a priori prescribed for the generating metric. Such an approach al-
lows us to preserve the form of the generating metric for the resulting G-equation
(the same metric as for the original Λ2-equation), and hence preserve the very type
of the generating coordinate net onM2 associated with this equation. Overall, the
approach relies on the application of unified methods of geometric investigation to
the Λ2-equation at hand (a nonlinear equation with constant coefficients), as well
as to its generalization, the G-equation (a generalized analog with functional coef-
ficients). On the other hand, the presence of an“additional” functional coefficient
in the G-equation enables us, in the construction of the corresponding models, to
exploit supplementary properties of the physical processes under study “governed”
by that equation.

We next list a number of physically important generalized equations of con-
temporary mathematical physics and the metrics (of arbitrary curvature K(x, t))
that generate them. For each metric we indicated the type of the generating coordi-
nate net – the unified geometric preimage of the Λ2-equation and of the generalized
G-equation corrresponding to it.

I. Chebyshev equation (generalized sine-Gordon equation):

uxt = −K(x, t) sinu(x, t),

generating metric:

ds2 = dx2 + 2 cosu(x, t)dxdt + dt2

(Chebyshev net).

II. Generalized Korteweg-de Vries equation (KdV G-equation):

ut = ux + (1 +K(x, t) + 6u)ux + uxxx,
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generalized metric:

ds2 = [(1 − u)2 + η2]dx2

+ 2[(1− u)(−uxx+ ηux− η2u− 2u2+ η2+ 2u) + η(η3+ 2ηu− 2ux)]dxdt

+[(−uxx+ηux−η2u− 2u2+ η2+ 2u)2 + (η3+ 2ηu− 2ux)
2]dt2, η = const.

III. Generalized modified Korteweg-de Vries equation (MKdV G-equation):

ut =
(
1 +K(x, t) +

3

2
u2
)
ux + uxxx,

generating metric:

ds2 = η2dx2 + 2η
(
η
u2

2
+ η3

)
dxdt+

[
η2u2

x +
(
η
u2

2
+ η3

)2]
dt2, η = const

(MKdV net).

IV. Generalized Burgers equation (Burgers G-equation):

ut = (1 +K(x, t) + u) · ux + uxx,

generating metric:

ds2 =
(u2

4
+ η2

)
dx2 + 2

[
η2

u

2
+

u

4

(u2

2
+ ux

)]
dxdt

+

[(u2

4
+

ux

2

)2
+ η2

u2

4

]
dt2, η = const

(Burgers net).

V. Generalized Liouville equation (G-Liouville equation):

a) elliptic:
Δ2u = −K(x, t) eu,

generating metric:

ds2 =
eu

2
(dx2 + dt2)

(elliptic Liouville net – isothermal coordinate net).

b) hyperbolic:
uxt = −K(x, t) eu,

generating metric:

ds2 = (u2
x + η2)dx2 + 2ηeudxdt+ e2udt2

(hyperbolic Liouville set).
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VI. Generalized sinh-Gordon equation (sinh-Gordon G-equation):

a) elliptic:
Δ2u = −K(x, t) sinhu,

generating metric:

ds2 = cosh2
u

2
dx2 + sinh2

u

2
dt2.

b) hyperbolic:
uxt = −K(x, t) sinhu,

generating metric:

ds2 = (u2
x + η2)dx2 + 2η coshu dxdt+ cosh2 u dt2.

VII. Generalized equation generated by a “semi-geodesic” metric:

yxx +K(x, t)y(x) = 0,

generating metric:
ds2 = dx2 + y2(x)dt2

(semi-geodesic coordinate net).

The geometric class of the equations listed above awaits addition of new
model equations of mathematical physics together with the generating metrics
recovered for them.
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