Chapter 4

Lobachevsky geometry and
nonlinear equations of
mathematical physics

In this chapter we present a geometric approach to the interpretation of nonlinear
partial differential equations which connects them with special coordinate nets on
the Lobachevsky plane A2. We introduce the class of Lobachevsky differential equa-
tions (A%-class), which admit the aforementioned interpretation. The development
of this geometric approach to nonlinear equations of contemporary mathematical
physics enables us to apply in their study the rather well developed apparatus and
methods of non-Euclidean hyperbolic geometry. Many known nonlinear equations,
in particular, the sine-Gordon, Korteweg-de Vries, Burgers, Liouville, and other
equations, which form the A%-class, are generated by their own coordinate nets
on the Lobachevsky plane A2. This allows us to study the equations by means of
net (intrinsic-geometrical) methods on the basis of Lobachevsky geometry. Over-
all, Chapter 4 is devoted to the application of geometric methods of hyperbolic
geometry to the constructive investigation of equations of A2-class.

4.1 The Lobachevsky class of equations of mathematical
physics

In this section we introduce the notion of the Lobachevsky class of differential
equations, which enables us to give to many nonlinear equations of contemporary
mathematical physics a universal “net-type” geometric interpretation, based on
Lobachevsky’s non-Euclidean hyperbolic geometry [77, 79, 183-185]. Such an ap-
proach opens avenues for the application of tools and methods of non-Euclidean
geometry to the study of partial differential equations of various types.

A. Popov, Lobachevsky Geometry and Modern Nonlinear Problems, 225
DOI 10.1007/978-3-319-05669-2_5, © Springer International Publishing Switzerland 2014



226 Chapter 4. Lobachevsky geometry and nonlinear equations

4.1.1 The Gauss formula as a generalized differential equation

Let us consider in the parameter (z,t)-plane the quadratic differential form
ds* = Elu(z,t)|dz? + 2F[u(x, t)|dzdt + Glu(x,t))dt?, (4.1.1)
whose coefficients,
E = Efu(z,t)], F = Flu(z,t)], G=Glu(z,t)], (4.1.2)

depend on some unknown function u(z,t) and its partial derivatives with respect
to « and ¢.

Let us calculate the “curvature of the quadratic form” (4.1.1), using the
Gauss formula (2.3.28):

o {a <<E[u1>t—<F[u1>m>_ o ((F[unt—(G[qu)} (1.13)
2/ Wlu] | 0t VW/ul Oz VW] ’

where Wu] = Elu] - G[u] — F?[u].

The right-hand side of (4.1.3) is the familiar (for the given form of the co-
efficients (4.1.2)) expression of the curvature K in terms of the coefficients Efu],
Flu], Glu] and their partial derivatives with respect to 2 and ¢ (of order up to and
including two).

If we assume that the curvature is an a priori given function K = K(x,t),
then the resulting relation (4.1.3) can be interpreted as a differential equation for
u(z,t):

Flu(z,t)] = 0. (4.1.4)

And conversely, if u(x,t) is a solution of the differential equation (4.1.4),
the quadratic form (4.1.1) defines in the parameter (x,t)-plane a metric with the
square of the linear element given by (4.1.1) and with the given curvature K (z,t).
Thus, one can say that the metric (4.1.1) (or the differential form (4.1.1)) with
its a priori prescribed curvature K(x,t)) generates (via (4.1.3)) the differential
equation (4.1.4) for the function u(z,t).

The equations generated in the aforementioned sense for the a priori choice of
the constant negative curvature K (z,¢) = —1 (the case of the Lobachevsky plane
A2) will be called A%-equations. The class of differential equations formed by the
A?-equation will be referred to as the Lobachevsky class (or the A%-class).

In the more general case, when the curvature function K = K(z,t) is arbi-
trary, we will say that the corresponding differential equation (an equation gener-
ated by a metric of variable curvature) belongs to the G-class (the Gauss class);
such equations will be referred to as G-equations.

Let us clarify the geometric interpretation of equations introduced above on
a number of examples of known nonlinear equations of mathematical physics.
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Example 1. Consider the quadratic form (Chebyshev net metric):
ds* = da* + 2 cosu(x, t)dwdt + dt*. (4.1.5)
In this case the coefficients are
Elu] =1, Flu]=cosu(z,t), Glu]=1.

Calculating the curvature K (x,t) of the form (4.1.5) by the Gauss formula
(4.1.3) we get

1 1 0 0
K(z,t)=— ~, det| cosu —ugsinu —ussinu
4sin” u 1 0 0

1 0 [ugsinu n 0 [ussinu
2sinu | Ot | sinu Oz | sinu ’

and so we arrive at the following G-equation:
gy = —K (x,t) sinu(z, t) (4.1.6)

(the Chebyshev equation).

Equation (4.1.6) is the already familiar to us (see §2.5) equation that “gov-
erns” the variation of the net angle of the Chebyshev net of lines for the given
curvature K (z,t).

When K = —1, (4.1.6) becomes the sine-Gordon equation®

Uyt = sinwu. (4.1.7)
Example 2. Let us take a metric of the form

1
ds? = n?dz? + 2n (

9 nu? + 773) dxdt +

1 2
nPu2 + (2 nu? + n3> 1 dt?,  (4.1.8)
where 17 = const. In this case

Elu] =n? Flu] =7 (; nu? +n3) ,

1 2
Glu] = n*uj + (2 mu® + 773> :
Setting K = —1 (i.e., working in the Lobachevsky plane A?), the Gauss
formula (4.1.3) yields the A2-equation
3 o
Ut = Ul + Uga (4.1.9)

Hn this chapter, following the mathematical physics traditions, we write the sought-for solu-
tion of the differential equation in question as u = u(x,t), where z and ¢ are the independent
variables.
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(the modified Korteweg-de Vries equation).

Hence, the modified Korteweg-de Vries equation (MKdV) (4.1.9) is also de-
fined by a coordinate net on the Lobachevsky plane (given by the form (4.1.8) of
the metric). It is is natural to call such a net an MKdV-net.

Example 3. For the metric

ds? = 62 (da® + dt?), (4.1.10)
with the coefficients
Blul=",, Flul=0, Glu="
we obtain for K = —1 the equation
u 0? 0?
Agu=c¢e", Ag= 92 + 012 (4.1.11)

(the elliptic Liouville equation).

If u(x,t) is a solution of equation (4.1.11), then in accordance with (4.1.1),
on the Lobachevsky plane there arises a net {(x,t)} (the Liouville net) with the
linear element (4.1.10), namely, the isothermal coordinate net.

The examples given above show how differential equations can be generated
by metrics of a special form. As we will see later, many “concrete” nonlinear
equations of mathematical physics belong to the A2-class, i.e., are generated by
pseudospherical metrics (metrics of curvature K = —1). In general, the condition
that the curvature of the generating metric is constant, K = const, is important,
since in this case the curvature acquires the special meaning of an invariant, i.e.,
it is preserved by transformations generated by nets on two-dimensional smooth
manifolds Mg, connected with the realization of geometric algorithms for the
integration of equations.

We should remark also that the geometric interpretation of equations in-
troduced above, together with its clear geometric content is universal, since it
“exhaust” all possible types in the standard classification of differential equations
(as this was demonstrated on examples of hyperbolic, parabolic and elliptic equa-
tions, respectively).

It is also important to note that the nonlinearity in the “geometrically”
derived equations of mathematical physics is primarily a result of the nontriviality
of the curvature of the generating metric, as well as of the nonlinearity of its
discriminant W.

The membership of equations in the A%-class assumes that they possess cer-
tain general properties of geometric origin, the discussion of which we begin in the
next subsection.

To finish the present subsection, we make an observation connected with the
theory of nets [127]: Giving on the two-dimensional manifold My a metric of the
type (4.1.1),

Blul - Flul ) , (4.1.12)

ds® = gi;[uldz’dx?,  giju] = ( Flu] Glu]



4.1. The Lobachevsky class of equations of mathematical physics 229

is equivalent to giving on My a smooth tensor field (g;;) of type (g) that has the
symmetry property

9i5 = Gji
and is positive definite.
Every nondegenerate symmetric tensor g;; gives rise to a net of lines on Mo,

the directing pseudovectors (tangent vectors to the one-parameter families of lines)
of which, v; and w;, are solutions of the equation? (see [127])

gijx'a? = 0.

The specification of two fields of independent vectors v; and w; defines on M,
a two-parametric net of coorodinate lines {(z,t)}, » = x!, t = 2°.

Therefore, it is totally correct to assert that a differential equation of the type
(4.1.4) is generated not only by the metric (4.1.1) corresponding to it, but also
by its “geometric preimage”, the coordinate net on the two-dimensional smooth
manifold My (and, in particular, on the Lobachevsky plane A?).

4.1.2 Local equivalence of solutions of A2-equations

Membership of equations in the A2-class assumes that they have a general intrinsic-
geometrical nature. In this subsection we give a theorem on the transformation
of local solutions of A%-equations which establishes their local equivalence [77, 79,
185].

Theorem 4.1.1 (Local equivalence of A2-equations). Suppose two different analytic
differential equations belong to the A%-class. Then from a local analytic solution
of one of these equations one can always construct a local analytic solution of the
other, and conversely.

In the case where one of the A2-equations in Theorem 4.1.1 is the sine-Gordon
equation, the content of this the theorem is concretized in Theorem 4.1.2.

Theorem 4.1.2. Suppose an analytic equation of type (4.1.4) belongs to the A2-
class. Then for any local analytic solution u(x,t) of this equation one can always

construct a local analytic solution z(F,t) of the sine-Gordon equation

zy=sinz(z,t), z=2z(T,t)

by means of the formula

_|0f Ofr 0ft 0fs  Of1 Ofa
cosz = | o oF Elu(z,t)] + (35 of T oar 5‘517) Flu(z,t)]
f2 Of2
+ 0% o G[u(w,t)]} o D , (4.1.13)
t= f2(,1t)

2This equation gives the pseudovectors of the net, i.e., specifies the ratios :pl/zz.
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where Elu], Flu], G[u] are the coefficients of the pseudospherical metric that gen-
erates equation (4.1.4).
The functions f1 and fo appearing in (4.1.13) satisfy the system

2
ozot o ot (a, 3
82f2 FQ 8f0£ 8]05 _ O 7

~+ SO ,
oot P oz o1

=1,2), (4.1.14)

where F}lﬂ, Fiﬁ are the Christoffel symbols of the pseudospherical metric that

generates the A%-equation (4.1.4), written in the variables x = f1, t = fo (i.e.,
Fl,ﬁ = Fl,ﬁ(flva)? 05,5,’7 = 172)

Remark. The transformations established in theorems 4.1.1 and 4.1.2 are con-
nected exclusively with a change of the independent variables and geometrically
correspond to passing from one coordinate net to another in the plane AZ.

The proof of theorems 4.1.1 and 4.1.2 is prepared by § 2.5, which treats in
detail the properties of Chebyshev nets and the conditions for passing to these nets
in a regular domain on a surface, as well as by the methodology of A?-equations
introduced in Subsection 4.1.1. Hence, without repeating the arguments that we
already used in the construction of Chebyshev nets, in the proof of the theorems
given here the main attention is paid to the specifics of the corresponding algorithm
in the case we are interested in, when the original given two-dimensional net is
the net associated with a metric that generates a A2-equation.

Proof of Theorem 4.1.2. Consider an A2-equation of the type (4.1.4), as in the
formulation of Theorem 4.1.2. Then this equation is generated by its corresponding
metric

(ds*), = Eu]dz? + 2F[u]dzdt + Glu]dt?, =1 (4.1.15)

Let us determine whether it is possible to reduce the metric (ds?); to the
Chebyshev metric

(ds?)y = dZ® + 2 cos z(T, t)dEdt + dt>, =1, (4.1.16)

i.e., whether it is possible to pass from the existing net T'(z,t) that generates

equation (4.1.4) to the Chebyshev net Cheb(Z,t).
Suppose that such a transition

T((z,t); (ds?)1) — Cheb((Z,1); (ds?)2) (4.1.17)

is effected on the plane A% by means of the transformation

x=ux(x,t), t=ta,t), (4.1.18)
and its correctness is guaranteed by the condition
D(xz,t) Ox ot 0Ox Ot

S=__ ~— . _F0. 4.1.19
D@, ) 0T ot o o5 7 (4.1.19)
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Let us determine the conditions on the transformation (4.1.18), (4.1.19),
under which it maps the net T'(z,t) into the Chebyshev net Cheb(z,t). In §2.5 it
was established that a criterion for a net to be a Chebyshev net is the vanishing of

the corresponding two Christoffel symbol (see (2.5.16)), i.e., for the net Cheb(Z, t)
it holds that _ _
I, =0, I3 =0. (4.1.20)
As we have shown, conditions of the type (4.1.20) lead to the Servant-Bianchi
system (2.5.22). Let us write this system for our case (for agreement with the
notation of § 2.5, we re-denote (z,t) by (z',2?) and (Z,t) by (y*,y?); also, (z,t) =
(v1,v2) and (Z,1) = (u1,us), see (2.5.22)):

L 0x® 0xP O%xt

B g2 Gyl + Oy20yt 0,
, Oz OxP O
aB oy? oy + o2yt

(4.1.21)

The existence of a solution

X1 = fl(y17y2), To = f2(y1,y2) (4-1-22)

of the system (4.1.21) means that it is possible to reduce the metric (ds?); (4.1.15)
to the form (ds?)s (4.1.16). In general, equations (4.1.21) establish the existence
of a (virtual, in a certain sense) Chebyshev net on an arbitrary two-dimensional
smooth manifold My and the degree of arbitrariness with which such a set is
determined.

Now let us address the question of the unique determinacy of the transition
(4.1.22) to a Chebyshev net.

Let 9, 25 be some fixed values of the variables x1, 2 (and, accordingly, of
some selected point A(z9,x3) € My (or, in particular, A(z5,z5) € A?). Let us pick
arbitrary values y{, y5 that correspond in the new variables to =, 5 (coordinates
of the Chebyshev net Cheb(y1,y2)). In other words, in agreement with (4.1.22),
we require that

5= [0 00), 23 = Fayl ug): (4.1.23)

Let g1(y1) and ga(y1) denote the functions that the sought-for functions

fi(y1,y2) and fa(y1,y2) become when we set ya = y3:

Ayys) =g1(n1),  fa(yr,95) = g2(y1).° (4.1.24)
By (4.1.23), the functions ¢; and g satisfy the conditions
g1(y7) = 21, g2(y1) = 5. (4.1.25)
In much the same way, let us introduce the functions hi(y2) and ha(ys2):
fiyt,y2) = Maly2),  fa(u1, y2) = ha(y2), (4.1.26)

3Obviously, the functions g1 and g2 can be given in a sufficiently arbitrary manner.
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hi(ys) = a3, ha(y3) = 25 (4.1.27)

The freedom in the choice of the functions g1(y1), g2(y1), h1(y2), ha(ye) is
restricted only by the natural condition

dg1 dhe  dgs dhy

_ 0, 4.1.28
dyl dyQ dyl dyQ # ( )

the geometric meaning of which will be made clear below.
Further, the substitution

Y1 =wi+ w2, Y2 =wi— W (4.1.29)

brings (4.1.21) to the form of a normal system of second-order partial differential
equations (a system solved with respect to the highest-order derivatives):

0%x
811_)21 = P[U}:[,U)Q],
S (4.1.30)
0 xTo
8’(1}% = Q[wl? 'lUQ].

Thanks to assumption, made in the theorems 4.1.1 and 4.1.2, that the func-
tions u(x,t) (the sought-for solutions of an equation of type (4.1.4)) are analytic,
the Christoffel symbols F(lxﬁv Fiﬁ, as well as the resulting “right-hand sides” in
(4.1.30), that is, the functions Plwy, ws] and Q[wy, we], will also be analytic func-
tions.

Thus, the system (4.1.30) with the initial data (4.1.23)—(4.1.27) (written in
the variables w; and w9) satisfies the conditions of the Cauchy-Kovalevskaya theo-
rem for a normal system of differential equations [46]. By the Cauchy-Kovalevskaya
theorem, the posed problem (4.1.30), (4.1.23)—(4.1.27) is always uniquely locally
solvable, i.e., has a unique solution in a neighborhood of the chosen point (wg, w3):

yP = wf g,y = — us.

Turning now to the variables y; and y2, we conclude that in some neighbor-
hood w4 of the point A(x5,z5) € A? there exists a unique solution (4.1.22) of the
system (4.1.21) with the given initial conditions (4.1.23)—(4.1.27).

The arguments above can be interpreted geometrically as follows: the equa-
tions

r1=g1(y1), 22 =g2(y1)

define on A? a line that passes through the point A(x$,x3) and represents in the
new parametrization the line yo = y5. Correspondingly, the equations

1 =hi(y2), 22 = h2(y2)

give the coordinate line y; = y§ of the new net Cheb(y1,y2) that passes through
the point A. Two such lines can be chosen arbitrarily, with the natural constraint
that they must not be tangent to one another at the point A. (This requirement
is ensured by fulfillment of condition (4.1.28).)
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Thus, the solution (4.1.22) of the system (4.1.21) with the initial conditions
(4.1.23)—(4.1.27), exists in some neighborhood w4 and gives the transformation
T(z,t) — Cheb(Z, ), which leads to the Chebyshev net of coordinate lines on A2
(and, in general, on My). This result has the following geometric explanation: if
through the point A € My (A € A?) one draws two intersecting (but not tangent
to one another) lines I3 and I3, then in a sufficiently small neighborhood w4 of A
there exists a uniquely determined Chebyshev net in which /; and l2 are included.

Substitution of the already obtained solution (4.1.22) in the metric (4.1.15)
(keeping in mind the transformations performed above) reduces it to the form
(4.1.16). Comparing the coefficients of the metric (4.1.15) that we reduced to the
form (4.1.16) with the coefficients of the (original) metric (4.1.16) itself, we obtain
the formula (4.1.13) for the construction of solutions of the sine-Gordon equation.
Theorem 4.1.2 is proven. O

Let us make a number of comments.

Comment 4.1.1. The arbitrariness in the choice of the initial data (4.1.22)—(4.1.27)
(with condition (4.1.28) in force) enables us to construct an infinite family {z} of
solutions of the sine-Gordon equation for each given solution u of the given A2-
equation of the type (4.1.14). Now choosing the same “base” generators for the
net Cheb in the formulation of the problems for two different A%-equations,

]:1 [ul] = 0, .FQ[UQ] =0
performing the transitions
T, — Cheb, T+ Cheb,

and then applying Theorem 4.1.2, we arrive to a solution z of the sine-Gordon
equation
z =M [u1] = Qafug),

that is shared by the two A2-equations.

In view of the analyticity of the solutions u; and ug (for the corresponding
A2-equations), the relations obtained above imply their local equivalence, which
is precisely what Theorem 4.1.1 establishes.

Comment 4.1.2. The method that we used in the proof of Theorem 4.1.1, of pass-
ing to the Chebyshev net (choosing the Chebyshev net as a universal connecting
object) has a general character and, generally speaking, is not related to the curva-
ture of the manifold My under consideration. Hence, if in the case of an arbitrary
curvature K = K(xz,t) we argue in much the same way as in the proof of The-
orem 4.1.2, we can obtain an analog of the transformations (4.1.13), (4.1.14) for
the variable-curvature case. However, in this last case the curvature K no longer
retains the meaning of an invariant of the transformation, and consequently in the
formulation of Theorem 4.1.3 we need to “replace” the sine-Gordon equation by
the Chebyshev equation.
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Theorem 4.1.3. For each local analytic solution u(x,t) of any analytic equation
generated by a metric of the type (4.1.1) of curvature K (z,t) (G-equation), one
can always construct a local analytic solution of the Chebyshev equation

zzy = —K -sinz(z,t)

by means of relations (4.1.13), (4.1.14), with the function z in them understood as

a solution of the Chebyshev equation with the coefficient K = K (f1(Z,1), fo(Z,1)).
Comment 4.1.3. The transformation established above for the solutions of the A2-
and G-equations has a local character. This is due, on the one hand, to the local
character of the Cauchy-Kovalevskaya theorem applied, and on the other, to the
problem of choosing a local Chebyshev net that is completely included in the
global Chebyshev set “on the entire” Ma.

The search for a possible transformation of nonlocal solutions should be con-
nected to the search for a universal geometric object, defined ” globally” on M, or
on the entire surface S that realizes the isometric immersion Mo % E3. In the
case of pseudospherical surfaces as such an object it is appropriate to take the net
of asymptotic lines (which is a Chebyshev net), given on entire surface S.

To construct a net of asymptotic lines on S we need to consider the problem
of isometric immersion of of the generating metric of the form (4.1.1) in the space
E3. Namely, given the coefficients E[u], F[u], G[u], the task is to find the coeffi-
cients L[u], M[u], and N|u] of the second fundamental form of the surface. This
in turn is connected with the integration of the system of fundamental equations
of the theory of surfaces in E® (the Peterson-Codazzi and Gauss equations):

(Llul)e + Ty M{u] + %, N{u] = (M[u])z + T3, Lu] + ¥, Mful,

(Mlu))e +Ti5Mlu] + T3, Nu] = (N [u))o + Ty Llu] + T35, M[u],

L{u]N [u] — M?[u]

ElulGlu] - F2[u]

The vanishing condition for the second fundamental form IT(u, v) of the surface,
(u,v) = L[u]de* + 2M [u]dzdt + N|u]dt* = 0

yields in a unique manner the transition from the variables (x, ) in the A2-equation
to the asymptotic Chebyshev coordinate set (x,,t,) on S determined by the sine-
Gordon equation. Therefore, in this case one can talk about obtaining a “global
analogue” of the transformation (4.1.18), which enables us to make the transition
to the “global” Chebyshev net Cheb(z,,t,) of asymptotic lines on the entire sur-
face S. Finding an exact solution of the system (4.1.31) is equivalent to obtaining a
“global” analogue of the substitution (4.1.18), thanks to which the transformation
(4.1.13), (4.1.14) acquires a “global” character.

Comment 4.1.4 (On correctness criteria for the application of approximate meth-
ods for constructing of solutions of the A2- and G-equations). In general, the con-
struction of an exact nonlocal solution of the problem (4.1.13), (4.1.14), (4.1.23)—
(4.1.27) has a transcendental character. For this reason we resort to possible cri-
teria for verifying the correctness of the results obtained by the application of
numerical methods.

u (4.1.31)

= K(x,t).
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Let 2* = z*(y1,y2) be an approximate solution of the Chebyshev equation
(or of the sine-Gordon equation, respectively, when K = —1). Given the function
z*, we extract its initial values

Next, from the initial data f;(y2) and f5(y1) we recover the “exact” solution
2(y1,y2) corresponding to them by means of successive approximations for the
Chebyshev equation, written in the integral form (see §3.6):

Zm+1(y1,Y2) = f1(y2) + f5(y1) — f1(0)
Y1 Y2

+// (y1,y2)] sin zm (y1, y2)dy1dys. (4.1.32)
00

Under the assumption that the curvature is bounded, i.e.,
|K (y1,92)] < Ko, Ko =const >0,

and choosing as the initial iteration in (4.1.32) zo = 0, it is not hard to estimate
the modulus of the difference of two successive approximations as

m (Y1y2)™
(ml)2

which established the convergence of the sequence {z, }:

|Zm+1 - Zm| S (KO)

{Zm(ylva)}_)Zv m — o0.

The coincidence, within the limits of the admissible accuracy (“residual”) 4,
of the solutions z and z*:
z2 2"+,

represent the correctness criterion for the numerical algorithm that is being im-
plemented.

In addition to this, one can use for verification the relations obtained simul-
taneously with formula (4.1.13) and stipulated by the intrinsic geometry of the
Chebyshev net:

(E[Z*] : (f1y1 )2 + 2F[Z*] ’ f1y1 f2y1 + G[Z*] ’ (f2yl )2) z = f1(y1 )
t= f2(1‘/177522) 7

(B[z"] - (f1,,)* + 2F["] - fu,, fo,, + G[2"] - (fa,, )2)
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4.2 The generalized third-order A?-equation. A method
for recovering the structure of generating metrics

The recipe introduced in §4.1 for generating a differential equation (A2-equation)
of the type (4.1.4) from a two-dimensional pseudospherical metric of the form
(4.1.1) by means of the Gauss formula (4.1.3) presumes that it yields a “final” A%-
equation whose order is two units higher that the order of the metric one starts
with. (By the order of the metric (4.1.1) we will mean the largest order of the
derivatives of the unknown function u(z, t) appearing in the coefficients E[u(z,t)],
Flu(x,t)], and Gu(zx,t)] of the metric).

In this section we obtain a generalized third-order A%-equation (generated
by a corresponding pseudospherical metric (4.1.1) of first order). This equation
will include as partial realizations all possible A”-equations of order up to and
including three (among them, for example, the nonlinear evolution equations of
mathematical physics that we considered earlier, as well as other equations). More-
over, the obtained generalized equation will serve as a “support” in the elaboration
of algorithms for recovering generating pseudospherical metrics for the nonlinear
equations under investigation. Overall, the method proposed here offers a funda-
mentally new ”geometric” way of “priming” the method of the inverse scattering
transform (setting the “primer” problem of the form (3.9.3), (3.9.4)) based on the
obtained metric that generates the equation.

4.2.1 The generalized third-order A%-equation

Let us turn now to the direct derivation of the generalized third-order A2-equation.
We assume that the coefficients of the quadratic differential form (4.1.1) are of the
form

E =E(u,u,), F=F(uu), G=Gu,uy,), (4.2.1)

and insert them in the Gauss formula (4.1.3).
For coefficients of the form (4.2.1) the determinant appearing in formula
(4.1.3) (in the first right-hand side term) takes on the form

Elu] (Efu]).  (Elul):
Flu] (Flul)e  (Flu]):

det [
Glu] (Glu))a (Glul):
E (Byuz+ Ey tuzy) (FByus+ Ey ugt)
=det | F (Fuugy+ Fu uze) (Fuue+ Fu ug)
G (Guuz + Gy uzr) (Guug + Gu,tgt)
E E, E,
Uy Ut
=det | F F, F., - det ( ) . (4.2.2)
G Gu Gux Ugx Ut

In our case, for the coefficients (4.2.1), the second term in the right-hand side
of (4.1.3) becomes
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1 O ((Blul)e— (Flu])e Y\ 0 [ (Flul): — (Glu])s
2VW | Ot VW] ox VW]
= 4;/2 {2W(Ett - GM) + (Ft - Gw)Ww - (Et - Fg;)Wt} (4.2.3)

The “components” figuring in relations (4.2.2) and (4.2.3) are given by

—~
o o
=

Ez = LUy + Euz Uga, Et = Euut + Euzumta
GI = Guum + G’LLIUII7 Gt = Guut + Guzurty (424)
Fw:Fuux'i_Futuww» Ft:Fuut'i_Fuzuwta

—
o
~

(a) Ett = -Euuu%""2-Euumutuact'i_E‘uutt'i_-Eumum uit—’—Euqutt?

4.2.5
(a) EtWr = EuWuumUt + EuWuI Uty + Euz Wuuzuzt
+ E‘um Wut UgtUza,
(b) G W, = G Wyu2 + G W, tgtize + Gy Wo izt
Gu Wu 2 ’
T G W i (4.2.6)

(c)  EW, = EW,u?+ E,Wy, g + By, Wytiit,

+ By, W, UgaUat,
(d) F,Wy=F,Wyuzuy + FuWy, gt + Foy, Wytiitig,

+ Fu, W, Ugttgy.

Substitution of expressions (4.2.4)—(4.2.6) in relations (4.2.2) and (4.2.3) (i.e.,
essentially, in the Gauss formula (4.1.3)) allow us to interpret the Gauss formula
as a partial differential equation for the unknown function u(z,t), which appears
in the generating metric of the form (4.2.1). Hence, we arrive at a generalized
Gauss equation of the third order, generated by a first-order metric of arbitrary
Gaussian curvature K (z,t):

2 2 2
D Gapylapy T Y Gapastiapling D bagylatisy

a,B,y=1 a,B,v,0=1 a,B,y=1
2 2
+ Y Captiaus+ Y daptiap = —4K (x,t) - W (4.2.7)
a,f=1 a,f=1

(generalized third-order G-equation).

Each of the indices «, 3, 7, and § in (4.2.7) can take only two values: 1 or 2.
An index attached to the function u(z,t) denotes the derivative with respect to
the corresponding variable “z” = “17, “t” = “27; for example, u1 = Uy, U12 = Uy,
and so on. All nontrivial (non-zero) coefficients of the generalized equation (4.2.7)
are given below in Table 4.2.1.
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In the expressions listed in the table we use the notation

E E, E,,
D=|F F, F, ‘
G Gy G
Table 4.2.1

Uy aill 2WGux

Uzt ai12 _4WFuI

Ugtt ai22 2WE,,

’U/iw aiini 2WGutut - Wut Gut
UgzUgt aii,12 2(Wut Fux - 2WFuxux)

u2, a12,12 2WEyu, — Wu, By,

UpUgy bl,ll 4WGuuz - GuWuI - WuGuI
UgUgr  br12 D+ Fy W, + W, F,—4WFE,,,
UtUgy b2,11 FuWuI + WuFuI — D — 4WFqu
UtUgt b2,12 4WEqu — EuWuI — WuEuI

Uy 01,1 QWGUU — WUGU
Uy Ut €1,2 2(WyF, — 2WFEy,)
’LL% C2.2 QWEuu - WuEu
Uzz dll 2WGu
Uzt d12 —4WFu
Utt b22 2WEu

The obtained equation (4.2.7) with the functional coefficients given in Table
4.2.1 is the generalized third-order Gauss equation (G-equation). In the geomet-
rically characteristic case K(z,t) = —1 (Lobachevsky plane), equation (4.2.7)

becomes the generalized third-order A2-equation; below we will focus on precisely
this last equation.

4.2.2 The method of structural reconstruction of the generating
metrics for A%-equations

Let us formulate a general algorithm of structural reconstruction of the generating
A? metric for nonlinear (1 + 1)-equations* and exemplify it in detail to construct
a pseudospherical metric for the modified Korteweg-de Vries equation.

The study of the problem of deriving, for a given differential equation, a
geometric interpretation (namely, given the equation, find the corresponding A2-
metric that generated it) is connected with subjecting equation (4.2.7) to addi-
tional constraints, which characterize the structure of the equation under study.
Derivatives of the type {ug .}, defined in the sought-for metric for all solutions
of the equation under study, are taken with respect to the independent variables.

4In a (1 + 1)-equation the unknown function depends on one space variable = and one time
variable t.
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This enables us to associate to each such term containing ug , the components
with the corresponding terms of the initial equation. This leads to a system of
relations for the coefficients of the sought-for metric. The derivatives of the form
Um,0, M = 1,2, are replaced by expressions determined by the form of the equation
under study (for instance, u; = Flu] or uye = Flul).

As promised, we will next implement in detail the method of reconstruction
of a generating pseudospherical metric in the case of the modified Korteweg-de
Vries equation.

Example. Construction of a generating A*-metric for the modified Korteweg-de
Vries equation (MKdV equation). We consider the MKdV equation, well known
in mathematical physics:
3
ur =, wuy + Upp. (4.2.8)
Under the assumption that the pseudospherical metric that generates equa-
tion (4.2.8) is a first-order metric with the coefficients (4.2.1),

ds* = BE(u,uy)dx? + 2F (u, ug )dzdt + G (u, u, )dt?,

let us find under what (detailed) conditions on the coefficients (4.2.1) of this metric
the resulting generalized equation (4.2.7) is precisely the MKdV equation.

Here it is natural to interpret the equation (4.2.8) itself as a constraint on
the unknown function u = u(z,t) and its derivatives.

To begin with, let us write several differential consequences of equation (4.2.8)
that will be needed later in order to perform certain manipulations in the gener-
alized equation (4.2.7):

_ 2
Ut = U Uy + Ugxx,

2

2 3 2
Uzt = 3““@ + UuTUge + Ugzze,

2

3 2
Uggt = Uy, + MULUze + U Uprr + Usgozs,

2

3

9
4u4um + 18uium + 9uug2m

2
+ 15ulzUzee + 3U Uzzar + Uzzzazas

Upp = 9u3ug25 +

9
4
U Ugze

4
+ 33Ul Uans + 33Ullgalices + 21U Usaze + Uszzoaze-

Ugptt = 27u2ui + 27wl Uty + 45uggu92mC +

In the case of the MKdV equation and its consequences (4.2.9) considered
here, the generalized A?-equation (4.2.7) (for K = —1) reduces to a differential
equations that contains only derivatives of the unknown function u(x,t) with re-
spect to = of order up to and including 7:

9
4W? = 2WE,, (27u3umum + 4u4umm + 27u2u2 + 21Ut Uprre
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3

— 4WEF,
(5
+ 2WigysGu, + Uptizy (AW Gyu, — GuWo, — Wy Gl,)

+ U2 2W Gy — WuGl) + 2Wuee Gy + 02, 2WGyyu, — W, Gu,)

2 3
U Ugzr + UL Uz + Uy, + ummmmm)

3
+ 2um( Wigy + 3uui + umm) (W, Fu, —2WFy u,)

2
3 3
+ ( 5 wluy +uwww> ( 5 U U+ Suu? +umm>(4WEuuz — E,W,, —W.E,,)

3, 2

+ (2 wPug + um> QW By — WoEy) (4.2.10)
3

+ g ( S + um> (FuWo, + WoFy, — D — AW Fyy. ) + 2W Eyx

9
X ( 4 u4um + 9u3ui + 3u2umm +15uUpUgpn + 18umui + 9uu32w +ummm)

3 2
+ <2u2um + 3uug2C + umm) W Ey v, — Wy, Ey,)

3
+oug ( 2t + Bu + umm) (D + Fy Wy + W, Fy — AW E,,.)
3 3
+ 2uy (2u2u$+u$m)(WuFu—2WFuu) —4AWF, (2u2um+3uui+umm>.

The next step in the implementation of the reconstruction algorithm consists
in “ordering” expression (4.2.1) according to groups of terms in front of the deriva-
tives Ugppwrass Yssszws - - - Uz, - - - (11 order of decrease of the order of differen-
tiation). We note again that the indicated derivatives (defined on each solution u
of the MKdV equation) acquire here the meaning of independent “variables”.

The first ordered term, which includes the 7-th order derivative, has the form

Since relation (4.2.10) means that equation (4.2.7) holds identically on all
solutions of the MKdV equation (with the constraint (4.2.9) accounted for in
(4.2.7)), all “functional coefficients” in front of the derivatives of the unknown
functions u in (4.2.10) must be equal to zero. An examination of the first three
ordered terms, in front of the derivatives of u with respect to x of order 7, 6, and
5 in (4.2.10) leads, in conjunction with (4.2.11), to the system

QWE,, =0,
GWE, =0, (4.2.12)
—AWF,, =0.

From (4.2.12) we obtain (under the natural assumption that W # 0):

E =n%=const, F=F(u). (4.2.13)
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Expression (4.2.13) is the first result on the path of finding the precise form of
the coefficients of the generating metric. At the same time, it allows us to simplify
considerably the form of equation (4.2.10), to

AW? = 2W itz G, + Ugting (AW Gy, — GuWo, — WouGl,)

+ Uz <3u2um + Umzz) (FuWuI - D)

2
+ U2 (2W Gy — WuGy) + 2Wiyo Gy + v, (2W Gy — Wy, Gu,)

3

+ 2u, (21}% n um) (WoFy — 2W F,)
3 2 2
— 4WF, (2u Up + U + umm); (4.2.14)

moreover,
D =1°Gy,Fu, W.=1°Gy,—2FF,, Wy, =1°G.,,.

Continuing the implementation of the algorithm, let us write the conditions
expressing the “vanishing” of the coefficients in front of the derivatives ., and
Ugpy i (4.2.14):

for Upppe:

2F, - ("G, - ug —2W) =0, (4.2.15)

for ugpy:
Gy Fy — 2uy(FF2 + WFy,) + WG, =0. (4.2.16)

It is readily verified that the equality F,, = 0 cannot be a consequence of
relation (4.2.15), since otherwise (recalling (4.2.13) and (4.2.16)) all coefficients of
the generating metric of the type (4.2.1) would be constant.

Thus, (4.3.15) yields

1
W=, a*Gly, Uy (4.2.17)

Accordingly, equation (4.2.16) becomes
20°us G Fy — Qu, FE, — 20°uy Gy, Fuw + 1°Go = 0. (4.2.18)

At this iteration step of the algorithm, if one takes (4.2.17) and (4.2.18) into
account, the generalized A%-equation (equation (4.2.7) — (4.2.10) — (4.2.14)) can
be simplified further to

207Gl = g (Ug (BuaGu, Guu, — Gul(Guy + Gy, Ua))

+ ‘;’U%I(Fu(aul + Guyu, tz) — 2Go0, Fy) + 2up Gy, Gy

- UizGuI (umGquz - Guz)
+ w2 (2Gw, Guu — GuyuGu + 30 (Gupu Fu — 2Go, Fu)).  (4.2.19)
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Continuing the algorithmic scheme, now already for equation (4.2.19), we
write the “vanishing coefficients” in the remaining terms:
for ugy:

Since W # 0, relation (4.2.17) shows that in (4.2.20) we cannot have G, = 0.
Setting the expression inside the parentheses in (4.2.20) equal to zero, one can
readily get that

G = Mu)uZ + f(u). (4.2.21)
Moreover, for wuz:
2 2 3 9
3uy G, Gun, — Uz GuGu, —ueGuGuyu, + 2u Uy Fy Gy,
3
+ WUl F,Gyy o, — 30PunGy, Fy + 2u,Goy, Gy = 0. (4.2.22)

2
Using (4.2.21), equation (4.2.21) can be simplified considerably to

)\)\uui =0, A\ = const,

and so
W = )\7721@, Gu, = 2\uyg.

The results obtained to this point allow us to rewrite equation (4.2.16) in the
compact form

g1(u) - uz + ga(u) ui =0, (4.2.23)
where

g1(u) = 20*GF, — AFF?,

g2(u) = — AP F + AN 2.

Since the coefficients (4.2.23) must vanish: g1 (v) = 0 and g2(u) = 0, it holds
that

2
n2G, = 2FF,
4.2.24
Fo.= M\ ( )
The second equation in (4.2.24) immediately yields
A
F=F(u= 2u2 + Ciu+ Cy, Cy,C = const. (4.2.25)
Integration of the first equation in (4.2.24) gives
J
G= . F-+C, C=C(ug)- (4.2.26)

From the calculation of the already obtained determinant of the metric,

W = EG — F? = \p*u?
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we obtain, using the coefficients E, F, G given by the expressions (4.2.13), (4.2.25),
(4.2.26),
C(ug) = M2, A =n® = const. (4.2.27)

Substituting the coefficients F, F, G (4.2.25), (4.2.26), with relation (4.2.27)
accounted for, in the generalized third-order A%-equation (4.2.19), transformed to
the form

A
22t =2 ()\<2u2 + Cru + Cg) + (Au+ 01)2) — 3\u’n?,
and subsequently comparing the coefficients of like powers of the function u, we
obtain the exact values of the constants involved:
Cl = O, 02 = 7’]4.

Putting all together, we finally obtain the exact explicit representation for
the coefficients of the sought-for generating metric:

u? 2 2 2 2 u? 2\ 2
2+n>, G:nuI+n<2+n>, (4.2.28)

and consequently the pseudospherical metric itself that generates the modified
Korteweg-de Vries equation (4.2.8):

E =, F:772<

2 2 2
ds? = n?dz?® + 2n? <u2 + 1]2> dzdt + {7721%20 +n? <u2 + 772> }dtQ. (4.2.29)

Thus, we fully implemented the algorithm of the method of structural recon-
struction of the generating pseudospherical metric for the modified Korteweg-de
Vries equation. Overall, the question whether the proposed algorithm is appli-
cable to a given nonlinear equation is directly connected with the compatibility
(or consistency) problem , as well as with the explicit solvability of the system of
equations, obtained on the basis of the generalized third-order A? equation, which
expresses the vanishing of all the “functional coefficients” in the equation of the
type (4.2.7) (in the equation (4.2.10) in each concrete case).

Let us now formulate the general scheme of the algorithm of the method
of structural reconstruction of the generating metric for a nonlinear third-order
differential equation:

1. Reduce the A2-equation (4.2.7), with the differential consequences of the
equation under study accounted for, to a relation whose terms are arranged
according to the order of the derivatives of the unknown function u(z,t). (In
the example considered above, that was equation (4.2.10).)

2. Derive the system of differential equations for the coeflicients of the sought-
for generating metric, E(u,u,), F(u,u;), G(u,u,), from the condition that
all the “functional cofficients” in front of the terms with the derivatives of
the unknown function w of different orders vanish.

3. Investigate of the compatibility of the aforementioned system of differential
relations. Construct exact solutions of this system.
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4.3 Orthogonal nets and the nonlinear equations they
generate

As one can see from the discussion above (see §4.2), given some nonlinear equation,
the recovery of its generating A?- or G-metric takes a rather large amount of work.
For that reason, one of the approaches that allows one, to a certain extent, to
“optimize” the problem of associating to A%- and G-equations the A%- and G-
metrics that generate them, consists in cleverly describing those equations that
are generated by two-dimensional metrics that have certain specific geometric
properties, namely, metrics associated with certain classes of coordinate nets on
two-dimensional smooth manifolds that have intuitive geometric features. As it
turns out, such nets define a considerable number of nonlinear equations of current
interest in mathematical physics.

A rich class of metrics that generate a sufficient number of well-known non-
linear equations is associated with the orthogonal nets. Such nets are given by the
condition that the second coefficient of the metric of type (4.1.1) vanishes:

Flu(z,t)] =0, (x,t) € R% (4.3.1)

Accordingly, the metric itself, written in the orthogonal coordinate system,
reads

ds* = Elu]dz? + Glu]dt?. (4.3.2)

Let us study the problem of finding the G-equations generated by metrics of
the form (4.3.2) (the curvature K (x,t) is assumed to be arbitrary).
Setting
Blu] = a’[u], Glu] = b?[u],

(and then W = a?[u}b?[u] > 0), we rewrite the metric (4.3.2) as
ds* = a*[u]dx? + b*[u]dt?. (4.3.3)

Let us substitute (4.3.3) in the Gauss formula (4.1.3). This yields the equation

{(abu “t>t + (b; “x>z} = —2K(x,1) - W'/, (4.3.4)

It is convenient to recast (4.3.4) as

[ (] [() g () o8] = =2y w02, aa

Equation (4.3.5) is the general G-equation generated by metrics of the form
(4.3.3), written in an orthogonal net parametrization. Let us determine under what
conditions on a[u] and b[u] the left-hand side of (4.3.5) expresses the action of one
of the standard operators of mathematical physics: the Laplace operator, the wave
operator, etc.
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1) Equation (4.3.5) will be elliptic if, in particular, its left-hand side repre-
sents the Laplacian of the function w, which is the case whenever the following
system of conditions are satisfied:

Ay

b n,

b 7 = const. (4.3.6)
a 5

Notice that fulfillment of conditions (4.3.6) automatically implies that the terms
inside the second pair of brackets in the left-hand side of (4.3.5) vanish.
Integrating the system (4.3.6), we find for a[u] and b[u] the expressions

alu] = Ay - e™ 4+ Ag-e” M
blul = Ay - €™ — Ay - e, Ay, Ay = const.

Therefore, if conditions (4.3.6) are satisfied, then the metric (4.3.3) takes on
the form

ds® = (A1 ce™ 4 Ag - e_"“)2 dz? + (A1 ce™ — Ag - e_”“)2 dt2. (4.3.7)

The metric (4.3.7) thus obtained, written in orthogonal coordinates, gener-
ates a general elliptic G-equation of the form

1
Aou=—-K(z,t) (A7 - ™ — A - e7?™), (4.3.8)
n
2 2
where Ay = D2 + 912 is the Laplace operator.

By suitably choosing the constants A; and A, appropriately we can obtain
as particular cases of the general equation well-known nonlinear equations en-
countered in mathematical physics. Let us give such examples of metrics and the
equations they generate.

a)AIZ\}27 A2:07 77:1

5
Generating metric:

eu

2

G-equation generated — the elliptic Liouville equation:

ds? = 62 do? + < dt?. (4.3.9)
Aou = —K(z,t) - e*. (4.3.10)

When K = —1 (the case of the Lobachevsky plane A?) we obtain an impor-
tant subcase of equation (4.3.10):

Aqu = e". (4.3.11)
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b)A1:A2:1 T]Zé

27
Generating metric:

ds? = cosh? ; da? + sinh? ; dt?. (4.3.12)

The G-equation corresponding to the metric (4.3.12):
Agu = —K(x,t) - sinhu, (4.3.13)
and its “AZ%-analogue”, the elliptic sinh-Gordon equation:
Agu = sinhu. (4.3.14)

2) Now let us study the hyperbolic G-equations, which are “included” in
(4.3.5) and are generated by a metric of the general form (4.3.3). Indeed, if the
conditions

a 1 = const. (4.3.15)

N

b =1,

are satisfied, then in the left-hand side of (4.3.5) one obtains the Laplace operator.
The system (4.3.15) has the solutions

= () si — C3 cosnu,
alu] 1 1n.7]u 2 nu n = const, C7,Cy = const. (4.3.16)
blu] = —Cssinnu — Cy cos nu,

Using (4.3.16), let us write the generating metric of general form (4.3.3) for
the case at hand:

ds?® = (Cy sinnu — Cy cosnu)® dz? + (Cy sinnu + Cy cosnu)® dt2. (4.3.17)

The metric (4.3.17) generates the general hyperbolic G-equation

Upy — Upy = —K - [C1Cy - cos(2nu) — (CF — CF) - sinnu - cos nu. (4.3.18)
Upon choosing for the constant parameters in (4.3.18) the values
1
CVl = Oa C? = 17 n= 4
2
we obtain the classical Chebyshev equation (see §2.5):
Upr — Uyt = —K(z,t)sinU, U = 2u, (4.3.19)

in the variables x, t, relative to an orthogonal coordinate system.

Let us give additional examples that demonstrates how orthogonal coordinate
nets can be applied in the analysis of nonlinear equations.

Let us consider the metric (4.3.2) with coefficients of the form

E =E(uz), G=G(u), under the condition K = —1.

Here are two examples.
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a) Taking the pseudospherical metric

ds? = u?da? 4 sinh?u dt? (4.3.20)
as the generating metric yields as A%-equation the hyperbolic cosh-Gordon
equation

Uy = coshu. (4.3.21)
b) The pseudospherical metric
ds* = u2da?® + cosh®u dt? (4.3.22)

generates the hyperbolic A?-equation called the sinh-Gordon equation,

Uz = sinh u. (4.3.23)

The fact that is possible to associate nonlinear equations to orthogonal gen-
erating nets on the Lobachevsky plane A? enables one to propose geometric algo-
rythms for their integration. Such methods are treated in the next section.

4.4 Net methods for constructing solutions of
A?%-equations

The geometric interpretation of differential equations presented in this chapter
assigns to each A%-equation a pseudospherical metric that generates it (or a gen-
erating coordinate net on the Lobachevsky plane A?). This geometric “view” allows
one to pass from the investigation of the equations themselves to the analysis of
their geometric preimages — the generating coordinates nets, and thus to enlist in
the study of equations the tools of non-Euclidean differential geometry. In the re-
alization of this approach it is expedient to use sufficiently well studied integrable
A2-equations (for example, the sine-Gordon equation) and the corresponding coor-
dinate nets as canonical (supporting) information for constructing transformations
that connect them with geometric objects (nets) that characterize other equations
under study. A classical example of canonical (supporting) net is the “Chebyshev”
net. As we will show below, an important role is played also by the semigeodesic
net, used to construct transformations between solutions of elliptic equations.

It is important to emphasize that the transformations obtained connect so-
lutions of various A2-equations and arise “at the level” of the transformation of
the preimages of the equations studied — the generating nets on the Lobachevsky
plane A%, and they do not “touch upon” the equations themselves. That is to say,
the transformations obtained are the result of transformations between various
generating nets on A% and the associated transformation of solutions, but not of
transformations of the equations. Here the constant negative curvature K = —1
of the generating pseudospherical metrics has the meaning of an invariant of the
transformations performed. The diagram in Figure 4.4.1 explains the general al-
gorithm and the sequence of links in of the net approach to the construction of
solutions of A2-equations.



248 Chapter 4. Lobachevsky geometry and nonlinear equations

! !

Generating Generating
metric (1) metric (2)

A? - equation A? - equation
(1) 2)

Solution Solution
of equation (1) of equation (2)

ofequaton(d)

Figure 4.4.1

4.4.1 On mutual transformations of solutions of the Laplace equa-
tion and the elliptic Liouville equation

In this subsection we obtain exact explicit formulas for the construction of exact
solutions of the elliptic Liouville equation [77, 90]

Aou =e", u=u(x,t) (4.4.1)
from solutions of the Laplace equation
Agv =0, v=0v(z,t). (4.4.2)

To construct solutions of the A%-equation (4.1.1) we involve another (auxil-
iary) A%-equation, namely

Yrr —y =0, y=y(7), (4.4.3)
i.e., the ordinary differential equation generated by the pseudospherical metric
ds* = y*(1)dx* +dr*, K(zx,t)= -1, (4.4.4)

which plays the role of the supporting metric in our approach.

Recall that the Liouville equation (4.4.1) itself is generated by a A%-metric
of the form (see §4.1)

ds* = ¢

2
The metric (4.4.5) generating the Liouville equation (4.4.1) is associated with the
isothermal coordinate net on the Lobachevsky plane A2, while the metric (4.4.4)
that generates the Laplace equation (4.4.2) is associated with the semigeodesic
coordinate net on A2

(da® + dt?). (4.4.5)
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In the plane A?, let us pass from the semigeodesic coordinate net T8 (x, )
to the isothermal net T'(x,t) (the Liouville net) via

w(z,t) =X,
d 4.4.6
v(z,t) :/ i ( )
y(7)
Substitution of (4.4.6) in the metric (4.4.4) reduces the latter to a metric
(4.4.5), provided the following conditions are satisfied:
v2 +w? = v+ w?,
ele (4.4.7)

VeV + wewy = 0.

Then the solution u(x,t) of the Liouville equation (4.4.1) is given by the
formula

u(z,t) = In [2y%(7(z,1)) - (v2 + w2)]. (4.4.8)

It is easy to see that the system (4.4.7) connects two arbitrary harmonically

conjugate functions v(x,t) and w(z,t), which satisfy the classical Cauchy-Riemann
conditions [105]

Vg = W,

4.4.9
UVt = —Wg, ( )
and hence also the Laplace equation:
AQ'U = O,
4.4.1
Ag’w =0. ( O)

Let us turn now to the construction of a solution u(x,t) of equation (4.4.1)
by means of formula (4.4.8). To this end, using the general solution

y(r) = Cre” + Coe™ ", C1,Cz = const (4.4.11)
of equation (4.4.3), we write the metric (4.4.4):
ds® = (Cre” + Coe™7)%dx? + dr? (4.4.12)

Now let us substitute the solution (4.4.11) in the second relation in (4.4.6).
This yields the representation
T =7(v(z,1)),

which is necessary for (4.4.8).
Depending on the signs of the constants C; and Cy chosen in the solution
(4.4.11), the second relation in (4.4.6) yields three possible variants:

D PE) =y,
2) y3(r(v)) = Sin;v’ (4.4.13)
) P =,
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Formula (4.4.8) in conjunction with (4.4.13) yields three formulas for constructing
solutions of the elliptic Liouville equation (4.4.1) from an arbitrary solution v(z, t),
v(x,t) # const, of the Laplace equation (4.4.2) [77, 90]:

[2(0F +v7) ]
u(z,t) =In _ )2 |
o2 .
w(at) =1 | 202 T 0| (4.4.14)
sinh v
o2 .
u(z,t) =In (vm —; vi) .
sin® v

It goes without saying that the validity of the geometrically derived trans-
formations (4.4.14) can be verified by their direct substitution in the Liouville
equation (4.4.1). To this end, the following assertion proves useful.

k
If (U)(x,t) % counst is a solution of the Laplace equation (4.4.2), then the

k+1
function e )(x,t), defined as
k+1 k k
&% )(x,t) =In ((vzf + (v22>, (4.4.15)

is also a solution of the Laplace equation (4.4.2).

Formula (4.4.15) expresses a transformation (or self-transformation) for the
Laplace equation that is analogous to the Backlund transformation. The trans-
formation (4.4.15) is the natural result of applying the obtained transformation
(4.4.14) to the Laplace and Liouville equations.

From the point of view of the theory of functions of a complex variables, the
result obtained above implies that, given any analytic function f(z) = v(z,t) +
iw(x,t), one can always construct (by means of formulas (4.4.14)) solutions of the
three types of the elliptic Liouville equation.

Let us give the “gradient” form of the solutions u(z,t) in (4.4.14):
u(z,t) =1n —Q(grad(lnv))Q] ,
i a2
u(x,t) =1n _2 (grad(ln (tanh 2))) ] , (4.4.16)

u(x,t) =1n :2<grad<ln (tané)))? .

For work connected with the study of the Liouville equation (4.4.1) we refer
the reader also to [15].
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*

4.4.2 On the equation Ayu* =¢e¢™"

Side by side with the Liouville equation (4.4.1), in applications [16, 33] one en-
counters also the equation of close form

Agu* = e (4.4.17)
which is taken by the simple “reflection” u** = —u* into the equation
Agu* = —e¥. (4.4.18)

Like equation (4.4.1), equation (4.4.18) can be interpreted as a relation that
generates a metric of the form (4.4.5), but in the case of an a priori given constant
positive curvature K = +1.5

The construction of solutions of equation (4.4.18) will be carried out by the
general geometric algorithm discussed in Subsection 4.4.1. Namely, to construct
the solution u**(z,t) of (4.4.18) we take as supporting metric the metric (4.4.4),
but with prescribed constant positive curvature K = +1. Then such a metric will
generate, instead of (4.4.3), the related auxiliary equation

W )rr +y™ =0, Yy =y (7). (4.4.19)

Let us use the substitution (4.4.6) to pass from the metric (4.4.4) (the semi-
geodesic net T°8(x, 1), curvature K = +1) to the metric (4.4.5) (respectively, the
isothermal net T%(z, t), curvature K = +1).

Starting from the general solution of the equation (4.4.19),

Yy (1) = CisinT 4+ Cycos, C4,Cy = const, (4.4.20)

we make the transition )
T%(x,7) — T%(x,t).

Note that the relations (4.4.7) retain their form also in the case of curvature
K = +1 (up to the transformation of y(7) into y**(7)). Moreover, the function
[y**(7)]? is defined in terms of the solution y** of equation (4.4.17), via the second

relation in (4.4.6), as

=,

Substituting this expression in (4.4.8) we finally construct the solution u*(x,t) (or
the solution u**(x,t)) from the solution v(z,t) of the Laplace equation as

h2
costt v ] (4.4.21)

(x,t) =1
QR vl

We will next discuss some important related issues arising in the study of
the equation of Liouville type (4.4.1), (4.4.17), (4.4.18) at hand and the derived
transformations (4.4.14)—(4.4.16) and (4.4.21).

5The Gaussian curvature K = +1 is an “indicator” of spherical geometry.
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4.4.3 Some applications connected with equations of Liouville type

1)

Centrally-symmetric metrics. The well-known theoretical physics problem® of
finding centrally-symmetric forms of two-dimensional metrics of constant cur-
vature is connected with the search for “radial” solutions u(r), r = \/x2 + 92,
of the Liouville equation (4.4.1) (for K = const < 0) and of equation (4.4.17)
(for K = const > 0). The transformations (4.4.14) and (4.4.21) established
above indicate that the search for such metrics relies on finding fundamental
solutions v(r) of the Laplace equation (4.4.2). Therefore, one can assert that
for K = const < 0 there exists three forms of centrally-symmetric metrics,
while for K = const > 0 there is only one such metric. It is interesting to
note that the Bécklund self-transformation (4.4.15) for the Laplace equation
is the identity transformation on the “radial” solutions v(r) of this equation.

On problems of combustion theory. The mathematical modeling of a number
of problems of combustion theory, such as thermal explosion, forced auto-
ignition, and others (which consider the thermal action of the surrounding
medium on the reaction domain Q) is connected with the study of initial-
boundary value problems for the heat balance equation [16, 33|

o9 1
= Ay e’
T
where the quantity 9 represents the temperature field in Q). In particular, the
fundamental problem of stationary theory (for ¥ = 0), which is “governed”
by the Liouville-type equation of

Asst + 5619$T =0,

is the investigation of the critical conditions, under which the problem under
study is no longer solvable in the natural class of regular functions, which
from the physical point of view corresponds to a forced explosion or auto-
ignition (i.e., to a discontinuity (jump) of the solution dsr).

In this connection we remark that the relations (4.4.14)—(4.4.16) and
(4.4.21) discussed above leave unchanged the domain € in which the prob-
lem for the Liouville-type equation (4.4.1), (4.4.17) and the corresponding
problem for the Laplace equation (4.4.2) (with the corresponding nonlin-
ear boundary conditions) are posed. For this reason, the possible singulari-
ties of the solution YT come from the singularities of the right-hand sides
in (4.4.14)—(4.4.16), (4.4.21). For example, the solution ¥gt, computed by
means of the third formula in (4.4.14), is regular in the domain

Qo: kr <w(z,t) < (k+1)m, Kk an integer.

That is to say, there are geometric constraints on the configuration of the
domain Q: Q = Qg that must be satisfied in order for the evolution of
the process to be regular. This agrees with the known results of physical

SEncountered, first of all, in the general theory of relativity.
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investigations [16]. Moreover, the blow-up regime |fgt| > M, for all M > 0,
corresponds exactly to the degeneration of the metric (4.4.5) that generates
the Liouville-type equation when the discriminant W[0] vanishes: W1[4] = 0,
and to the singularities that arise in the Liouville net on Ms (K = +£1).

3) The multidimensional Liowville equation. A formal generalization of the
structure of the transformations (4.4.14), (4.4.21) allows us to guess a class of
self-similar solutions (of a linear argument) for the multidimensional Liouville-

type equation:

62

whereAn:ax%—l—---—i—

The solutions of this class are given as follows:

for equation (4.4.22):

for equation (4.4.23):

u
Apu=c¢e",

~ —Uu
Ayu=e™",

82
81727:2.: (LL'l,...,:,En).
n

() = In (COShZO‘(@> ,

n
where a(Z) = a121 + - 4 apn, 3. a? = 1.

=1

(4.4.22)
(4.4.23)

(4.4.24)

(4.4.25)

4.4.4 Example of “net-based” construction of “kink” type solutions
of the sine-Gordon equation

Let us construct, applying the net method, a solution u(z,t) of the sine-Gordon
equation (4.1.7). The symmetry transformation

(z,t) = (x,—t)

takes (4.1.7) into an equation of the form

Ugpt = — Sin’lj,

(4.4.26)
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with
ﬂ(xv t) = U(I, _t)v

u(z,t) = u(x, —t).

Equations (4.1.7) and (4.4.26) represent particular realizations of the Cheby-
shev equation (4.1.6) that is generated by the metric of the Chebyshev net. Specif-
ically, equation (4.1.7) is generated by a pseudospherical metric of the form (4.1.5)
(curvature K = —1), while equation (4.4.26) is generated by a metric of the same
form (4.1.5), but with an a priori prescribed constant positive curvature K = +1.

To construct a solution @(z, t) of the equation (4.4.26) we turn to the auxiliary
metric of curvature K = +1, written in the semigeodesic coordinates (x, 7):

ds® = (y** )’ (1)dx® + dr*,  K(z,t) = +1. (4.4.27)

The metric (4.4.27) generates again equation (4.4.19), which has a general
solution of the form

Yy (1) = AysinT + Az cosT, Aj, As = const. (4.4.28)
Setting A; = 0 and Az =1 in (4.4.28), we select the particular solution
Y**(1) =cosT
and rewrite with it the metric (4.4.27):
ds* = cos® Tdx* + dr°. (4.4.29)

The quadratic form (4.4.29) with curvature K = +1 is reduced to a metric
of the form (4.1.5), written in the coordinates of the Chebyshev net Cheb(z,t) of
the same curvature, by means of the substitution

T+t =X,
dr (4.4.30)
r—t= / X .
sinT
In this way we arrive at the metric
ds® = dx? + 2 cos 27 (x, t)dxdt + dt*. (4.4.31)

Comparing (4.4.31) with the classical Chebyshev metric (4.1.5), we find the
solution @(x,t) of equation (4.4.26):

a(z,t) = 27(x,t). (4.4.32)
The function 7(z,t) is calculated from the second relation in (4.4.30):
7(x,t) = 2arctane® " (4.4.33)

Correspondingly, turning to the original solution wu(z,t) of the sine-Gordon
equation and using (4.4.32), (4.4.31), and (4.4.26), we obtain from (4.4.33) the
expression

u(z,t) = 4arctane” . (4.4.34)
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The solution (4.4.34) is a “kink”-type solution or one-soliton solution of the
form (3.2.11) (of unit amplitude).

The examples given above show how the method of mutual transformation of
nets on manifolds of constant curvature can be used to construct exact solutions
of nonlinear differential equations.

4.5 Geometric generalizations of a series of model
equations of mathematical physics

In this section we provide a list of G-equations that generalize a series of important
— from the point of view of mathematical physics and applications — nonlinear equa-
tions, together with the metrics that generate them. Usually, partial differential
equations are generalized by increasing the dimension of the differential operators
they involve (Laplacians, d’Alembertians and so on), which essentially means that
one considers physical models of higher dimensions. In our treatment here, the
generalization of known (1 + 1)-equations will be done by means of introducing in
the “process of generating” the equation (see §4.1) an arbitrary curvature K (x,t),
which will be a priori prescribed for the generating metric. Such an approach al-
lows us to preserve the form of the generating metric for the resulting G-equation
(the same metric as for the original A%-equation), and hence preserve the very type
of the generating coordinate net on M associated with this equation. Overall, the
approach relies on the application of unified methods of geometric investigation to
the A2-equation at hand (a nonlinear equation with constant coefficients), as well
as to its generalization, the G-equation (a generalized analog with functional coef-
ficients). On the other hand, the presence of an“additional” functional coefficient
in the G-equation enables us, in the construction of the corresponding models, to
exploit supplementary properties of the physical processes under study “governed”
by that equation.

We next list a number of physically important generalized equations of con-
temporary mathematical physics and the metrics (of arbitrary curvature K (z,t))
that generate them. For each metric we indicated the type of the generating coordi-
nate net — the unified geometric preimage of the A%2-equation and of the generalized
G-equation corrresponding to it.

I. Chebyshev equation (generalized sine-Gordon equation):
Uyt = —K(x,t) sinu(z, t),
generating metric:
ds* = da* + 2 cosu(x, t)dxdt + dt?

(Chebyshev net).
II. Generalized Korteweg-de Vries equation (KAV G-equation):

ur = uy + (1 + K(x,t) + 6u)us + tgea,
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generalized metric:
ds® = [(1 — u)? + n?]da?
+2[(1 — u) (—Uge+ Mg — n°u — 202+ 4 2u) + n(n+ 2nu — 2u,)|dzdt
+[(~tpr +nus—n*u — 2u®+ 0%+ 2u)? + (1 + 2nu — 2u,)?]dt%, n = const.

III. Generalized modified Korteweg-de Vries equation (MKdAV G-equation):

3
Uy = (1 + K(z,t) + 5 u2>uw + Ugzw,

generating metric:

2 2

2
ds? = n*dz® + 2n (1]u2 + 1]3> dxdt + {7721%20 + (771; + 1]3> }dtZ, 7 = const

(MKAV net).
IV. Generalized Burgers equation (Burgers G-equation):
up = (1+ K(z,t) + u) - ug + Uy,

generating metric:
u? u o uu?
ds? — ( 2) da? 4+ 9 | n? (
] 4 +n)ax” +2(n°  + A\ 9

2
+ (u2+uI>2+ 2 W
1 2) Ty

+ uz>] dxdt
] dt?, 1 = const

(Burgers net).
V. Generalized Liouville equation (G-Liouville equation):

a) elliptic:
Aqu = —K(z,t) e,

generating metric:
u

ds® = 62 (da? + dt?)

(elliptic Liouwville net — isothermal coordinate net).

b) hyperbolic:
Uyt = —K(I, t) €u7

generating metric:
ds® = (u2 +n?)da? 4 2nedxdt + e*dt?

(hyperbolic Liowville set).
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VI. Generalized sinh-Gordon equation (sinh-Gordon G-equation):

a) elliptic:
Aqu = —K(z,t) sinh u,

generating metric:
ds? = cosh? ;‘ dz? + sinh’ ;‘ dt?.
b) hyperbolic:
Uz = —K(x,t) sinhu,
generating metric:
ds® = (u? + n?)dz? + 21 coshu dadt + cosh? u dt?.
VII. Generalized equation generated by a “semi-geodesic” metric:

generating metric:
ds® = da?* + y*(z)dt?
(semi-geodesic coordinate net).
The geometric class of the equations listed above awaits addition of new

model equations of mathematical physics together with the generating metrics
recovered for them.



	Chapter 4 Lobachevsky geometry and nonlinear equations of mathematical physics
	4.1 The Lobachevsky class of equations of mathematical physics
	4.1.1 The Gauss formula as a generalized differential equation
	4.1.2 Local equivalence of solutions of Λ2- equations

	4.2 The generalized third-order Λ2 equation. A method for recovering the structure of generating metrics
	4.2.1 The generalized third-order Λ2-equation
	4.2.2 The method of structural reconstruction of the generating metrics for Λ2-equations

	4.3 Orthogonal nets and the nonlinear equations they generate
	4.4 Net methods for constructing solutions of Λ2-equations
	4.4.1 On mutual transformations of solutions of the Laplace equation and the elliptic Liouville equation
	4.4.2 On the equation ∆2=u*=e-u*
	4.4.3 Some applications connected with equations of Liouville type
	4.4.4 Example of “net-based” construction of “kink” type solutions of the sine-Gordon equation

	4.5 Geometric generalizations of a series of model equations of mathematical physics


