
1

E
rdt et al. (E

ds.)
Clinical Im

age-Based Procedures

LNCS
8361

Marius Erdt · Marius George Linguraru
Cristina Oyarzun Laura · Raj Shekhar
Stefan Wesarg · Miguel Angel González Ballester 
Klaus Drechsler (Eds.)

 123

LN
CS

 8
36

1

Second International Workshop, CLIP 2013 
Held in Conjunction with MICCAI 2013 
Nagoya, Japan, September 22, 2013, Revised Selected Papers

Clinical Image-Based 
Procedures
Translational Research in Medical Imaging

CLIP 
2013



Lecture Notes in Computer Science 8361

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

For further volumes:
http://www.springer.com/series/7412

http://www.springer.com/series/7412


Marius Erdt • Marius George Linguraru
Cristina Oyarzun Laura • Raj Shekhar
Stefan Wesarg • Miguel Angel González Ballester
Klaus Drechsler (Eds.)

Clinical Image-Based
Procedures

Translational Research
in Medical Imaging

Second International Workshop, CLIP 2013
Held in Conjunction with MICCAI 2013
Nagoya, Japan, September 22, 2013
Revised Selected Papers

123



Editors
Marius Erdt
Fraunhofer IDM@NTU
Singapore
Singapore

Marius George Linguraru
Raj Shekhar
Children’s National Medical Center
Washington, DC
USA

Cristina Oyarzun Laura
Stefan Wesarg
Klaus Drechsler
Fraunhofer IGD
Darmstadt
Germany

Miguel Angel González Ballester
ICREA – Universitat Pompeu Fabra
Barcelona
Spain

ISSN 0302-9743 ISSN 1611-3349 (electronic)
ISBN 978-3-319-05665-4 ISBN 978-3-319-05666-1 (eBook)
DOI 10.1007/978-3-319-05666-1
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014934687

LNCS Sublibrary: SL6 – Image Processing, Computer Vision, Pattern Recognition, and Graphics

� Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

On September 22, 2013, the Second International Workshop on Clinical Image-based
Procedures: Translational Research in Medical Imaging (CLIP 2013) was held in
Nagoya, Japan, in conjunction with the 16th International Conference on Medical
Image Computing and Computer-Assisted Intervention (MICCAI). This successful
workshop was a productive and exciting forum for the discussion and dissemination of
clinically tested, state-of-the-art methods for image-based planning, monitoring, and
evaluation of medical procedures.

Over the past few years, there has been considerable and growing interest in the
development and evaluation of new translational image-based procedures in the
modern hospital. For a decade or more, a proliferation of meetings dedicated to
medical image computing has created a need for greater study and scrutiny of the
clinical application and validation of such methods. New attention and new strategies
are essential to ensure a smooth and effective translation of computational image-
based techniques into the clinic. For these reasons, the major focus of CLIP 2013 was
on translational research filling the gaps between basic science and clinical
applications.

Members of the medical imaging community were encouraged to submit work
centered on specific clinical applications, including techniques and procedures based
on comprehensive clinical image data. The event brought together some 50 world-
class researchers and clinicians who presented ways to strengthen links between
computer scientists and engineers as well as surgeons, interventional radiologists, and
radiation oncologists.

Thus, CLIP 2013 was a successful forum for the dissemination of emerging image-
based clinical techniques. Specific topics included pre-interventional image segmen-
tation and classification (to support diagnosis and clinical decision making), inter-
ventional and surgical planning and analysis of dynamic images, and evaluation,
visualization, and correction techniques for image-based procedures. Clinical appli-
cations covered orthopedics, the skull and the brain, blood vessels, abdominal organs,
endoscopic interventions, and cancer in adults and children. The presentations and
discussions around the meeting emphasized current challenges and emerging tech-
niques in image-based procedures, strategies for clinical translation of image-based
techniques, the role of computational anatomy and image analysis for surgical plan-
ning and interventions, and the contribution of medical image analysis to open and
minimally invasive surgery. During two keynote sessions, clinical highlights were
presented and discussed by Prof. Makoto Hashizume, MD PhD, from Kyushu Uni-
versity School of Medicine in Japan (minimally invasive robotic surgery), and Prof.
Nobuhiko Sugano, MD PhD, from Osaka University Graduate School of Medicine,
Japan (computer-assisted orthopedic surgery). We are grateful to our keynote speakers
for their compelling presentations. We would also like to acknowledge the European



Commission research project HEAR-EU (grant number HEALTH-F2-2012-304857)
for providing support for the participation of the keynote speakers.

In response to the call for papers, 26 original manuscripts were submitted for
presentation at CLIP 2013. Each of the manuscripts underwent a meticulous double-
blind peer review by a minimum of two members of the Program Committee, all of
them prestigious experts in the field of medical image analysis and clinical translations
of technology. Finally, 50 % of the manuscripts (i.e., 13 papers) were accepted for
oral presentation at the workshop, and an additional six papers were accepted for
poster presentation combined with a short oral summary of their work, bringing the
overall acceptance rate to 73 %. The six papers with the highest review score were
nominated to be considered as best papers. The three best papers were chosen by votes
cast by workshop participants who had attended all six presentations of the nominated
papers (excluding workshop organizers). As a result, three awards were presented.
First place went to Xin Kang, Jihun Oh, Emmanuel Wilson, Timothy Kane, Craig
Peters, and Raj Shekhar from Children’s National Medical Center in Washington, DC,
USA for their work on a novel stereoscopic augmented reality system for laparoscopic
surgery. Second place was presented to Adrian Schneider, Christian Baumberger,
Mathias Griessen, Simon Pezold, Jörg Beinemann, Philipp Jürgens, and Philippe C.
Cattin from Universität Basel, Switzerland, for their work on landmark-based surgical
navigation. Third place was conferred on Carles Sánchez, Jorge Bernal, F. Javier
Sánchez, and Debora Gil from Universitat Autónoma de Barcelona in Spain for their
advancements regarding lumen center detection in gastrointestinal and respiratory
endoscopy. We would like to congratulate warmly all the prize winners for their
outstanding work and exciting presentations and thank our sponsors, EXOCAD and
MedCom, for their support.

We would like to acknowledge the invaluable contributions of our entire Program
Committee without whose assistance CLIP2013 would not have been as successful
and stimulating. Our thanks also go to all the authors in this volume for the high
quality of their work and their commitment of time and effort. Finally, we are grateful
to the MICCAI organizers, and particularly Hongen Liao, Akinobu Shimizu, Pierre
Jannin, and Simon Warfield for supporting the organization of CLIP 2013.

December 2013 Miguel A. González Ballester
Klaus Drechsler

Marius Erdt
Marius George Linguraru

Cristina Oyarzun Laura
Raj Shekhar

Stefan Wesarg
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Statistical Analysis of Relative Pose of the
Thalamus in Preterm Neonates

Yi Lao1,2(B), Jie Shi4, Yalin Wang4, Rafeal Ceschin5, Darryl Hwang2,
M.D. Nelson1, Ashok Panigrahy5, and Natasha Leporé1,2,3

1 Department of Radiology, Children’s Hospital Los Angeles, Los Angeles, CA, USA
yilao1987@gmail.com

2 Department of Biomedical Engineering, University of Southern California,
Los Angeles, CA, USA

3 Department of Radiology, University of Southern California, Los Angeles, CA, USA
4 School of Computing, Informatics, and Decision Systems Engineering,

Arizona State University, Tempe, AZ, USA
5 Department of Radiology, Children’s Hospital of Pittsburgh UPMC,

Pittsburgh, PA, USA

Abstract. Preterm neonates are at higher risk of neurocognitive and
neurosensory abnormalities. While numerous studies have looked at the
effect of prematurity on brain anatomy, none to date have attempted to
understand the relative pose of subcortical structures and to assess its
potential as a biomarker of abnormal growth. Here, we perform the first
relative pose analysis on a point distribution model (PDM) of the thala-
mus between 17 preterm and 19 term-born healthy neonates. Initially, lin-
ear registration and constrained harmonic registration were computed to
remove the irrelevant global pose information and obtain correspondence
in vertices. All the parameters for the relative pose were then obtained
through similarity transformation. Subsequently, all the pose parame-
ters (scale, rotation and translation) were projected into a log-Euclidean
space, where univariate and multivariate statistics were performed. Our
method detected relative pose differences in the preterm birth for the left
thalamus. Our results suggest that relative pose in subcortical structures
is a useful indicator of brain injury, particularly along the anterior sur-
face and the posterior surface. Our study supports the concept that there
are regional thalamic asymmetries in the preterm that may be related
to subtle white matter injury, have prognostic significance, or be related
to preterm birth itself.

1 Introduction

Being born prematurely is a risk factor to lifelong neurocognitive and neurosen-
sory deficits (see e.g. [8,13]). Abnormalities have been detected in several areas
of the brain of premature newborns, including subcortical structures such as the
thalamus [3,12]. The thalamus is a ‘switch board’ structure in the brain which
starts its formation as early as the 15th gestational week [5]. As a result, it is
likely a sensitive indicator of prematurity, and this structure has been the focus of

M. Erdt et al. (Eds.): CLIP 2013, LNCS 8361, pp. 1–9, 2014.
DOI: 10.1007/978-3-319-05666-1 1, c© Springer International Publishing Switzerland 2014



2 Y. Lao et al.

several brain anatomy studies associated with preterm birth. Reduced thalamic
volumes associated with preterm birth have been documented through several
MRI studies [12]. In particular, [14] detected statistically significant morpholog-
ical changes in the left thalamus using multivariate tensor-based morphometry
(mTBM).

While maturity is a continuous process that spans the first few years of
life, the first several months after birth are especially critical since the growth
exhibits an outward expanding trend with evident subcortical structure changes,
in terms of size, shape and relative pose within the brain. Complementary to
size and shape analysis, the relative pose of subcortical structures may help to
indicate the abnormal growth of the brain. This information is especially impor-
tant in depicting the developing or degeneration patterns of the brain, when
shifts of pose in different subcortical structures are more likely to happen. In
brain degeneration studies, [1] successfully detected brain atrophy associated
pose changes in Alzheimer’s disease. However, to our knowledge, few or no pose
information is included in prematurity studies and relative pose has not yet been
studies in relation to brain development. Here, we use similarity transformations
to align the thalamus of each subject, and perform univariate as well as multi-
variate analyses on so-generated pose parameters, thus investigating the effect
of prematurity on the relative pose between preterm and term-born neonates
at term-equivalent age. We tested the hypothesis that we may detect regional
differences in thalamic relative pose in preterms with no visible injury compared
to term controls.

There are two major contributions in this paper. First, we developed a novel
pose analysis system that integrates various brain surface processing techniques
including parametrization and constrained harmonic registration and reports the
subtle pose changes on subcortical structures. The obtained pose information is
complementary to subcortical surface shape analyses, and the combined shape
and pose results form a complete subcortical morphometry system. Secondly, we
applied the system to study prematurity. Our preliminary results indicate that
the pose analysis information is consistent with prior discoveries, so our work
provides a novel tool for brain research in neonates.

2 Subjects and Methodology

2.1 Neonatal Data

T1-weighted MRI scans consisting of 17 preterm neonates (gestational ages 25-
36 weeks, 41.12 ± 5.08 weeks at scan time) and 19 term born infants (gesta-
tional ages 37–40 weeks, 45.51 ± 5.40 weeks at scan time) were acquired using
dedicated neonatal head coils on 1.5T GE scanners, with coronal 3D spoiled
gradient echo (SPGR) sequence. All the subjects in our datasets were classified
into a preterm group and term group by 2 neonatal neuroradiologists. Preterm
neonates included in this study were less than 37 gestational weeks at birth, and
without visible injuries on MR scans. Subjects with abnormal MR scans were
excluded in our datasets.
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Fig. 1. 3D surface model of the left and the right thalamus and their corresponding
mesh grids from one subject.

2.2 Point Distribution Model

All the T1-weighted MRI scans were first registered to a same template space
through linear registration. Alignment quality was validated by superimposing
images from differenct subjects on top of each other. Irrelevant global pose differ-
ence induced by different locations and orientations during scans was factored
out in this step. The thalami were then manually traced on linear registered
T1 images by an experienced pediatric neuroradiologist using Insight Toolkit’s
SNAP program [16]. The intra-rater percentage overlap were 0.93 for the thala-
mus, in four participants at two subsequent times (two preterm and two term
born participants). Based on binary segmentations, 3D surface representations
of the thalamus were constructed and mesh grids were built on the surfaces
by computing surface conformal parameterizations with holomorphic 1-forms,
using our in-house conformal mapping program. Figure 1 shows an example of a
reconstructed surface, and corresponding mesh grids on a thalamus. One-to-one
correspondence between vertices were obtained through a constrained harmonic
registration algorithm [15].

2.3 Similarity Transformation

For each thalamus, the relative pose was obtained by a full Procrustes fit of a
template shape to the PDM. The template shape was selected as the mean shape
that minimized the Procrustes distances, and it was computed iteratively [11].
Full Procrustes alignment means that the similarity transformation is estimated
in terms of a uniform scale, a rotation and a translation in x, y and z direc-
tions [4]. To be more specific, here, the transformations were centered according
to the center of mass of the mean shape. The transformation rule of Procrustes
alignment is defined as [1], T∈X≥ = (sRX, d), where s is the scalar scaling fac-
tor, R is a 3 × 3 rotation matrix and d is the translation vector (x, y, z)T . To
form a Lie group with matrix multiplication, the matrix representation of the
Procrustes transformation can be written as [2]:

T =
(

sRX d
0T 1

)
(1)

To simplify computations, all the parameters of the transformations were
projected onto a log-Euclidean space - the tangent plane at the origin of the
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transformation group manifold. Because these similarity transformations form a
Lie group, projections can be computed as matrix logarithms and exponentials
as explained in [2].

In group studies, it is intuitive to define a mean. Similar to Euclidean space,
here the mean in Lie group was defined as the point which minimized the squared
distance [6], and the mean pose can be calculated iteratively as follow [1,10]:

mk+1 = mkexp(
1
n

n∑
i=1

log(m−1
k Ti)). (2)

After the subtraction of the mean from each subject’s individual pose, specif-
ically using vi = log(m−1Ti), each subject is left with a residual pose. Statistics
are computed on the residual pose which consists of 7 parameters: 1 scale scalar,
3 rotation scalars and 3 translation scalars.

2.4 Statistical Analysis

Although the mean and distribution of age was roughly matched between preterm
and term groups, subjects were scanned over an age range of 36–57 postconcep-
tion weeks. This variation of age is not negligible, especially for neonates, whose

Fig. 2. Distribution of 7 pose parameters in log-Euclidean space for the left thalamus:
logS, (θx, θy, θz), (x, y, z). Stars in the figure represent observed data from Procrustes
alignment, while lines represent their corresponding linear regressions. In all the figures
above, data from preterm group are marked in red, and data from term group are
marked in blue. Note that logS is approximately constant with post-conception age,
indicating that the thalamus volume is near constant in that age range. However, a
downward slope is seen in the preterm group. When very preterm subjects are removed
from the sample (postconception age at birth <31 weeks), the linear regression (shown
in a cyan) for preterm subjects normalizes to a flat line, indicating a similar behavior
to the term born subjects (Color figure online).
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brains change rapidly with age. The distributions of 7 pose parameters are shown
in Fig. 2; to save the space, only the data from the left thalamus are presented.
The growth of the thalamus in neonates in terms of the volumetry and outgo-
ing trajectory is approximately linear, thus we used linear regression to factor
out the influence of age. Subsequent statistical analyses were performed on age-
covariated data. It is important to note that although log S is approximately
steady with age in the term group, the tread in the preterm group is saliently
decreased. This is due to the existence of extremely preterm subjects (born 25–
31 gestational weeks). A linear regression line of preterm data excluding the
extremely preterm cases is also shown in the same panel in cyan color in Fig. 3.
The line is close to constant as in the term born case.

Statistical comparisons between the two groups were performed via two meth-
ods: univariate t-test for logS, ||logR||, ||logd||, θx,θy,θz, x, y, z; Multivariate

Fig. 3. 3D visualization of the pose of mean shapes averaged from preterm group (Red)
and term group (Blue). The relative position of thalamus are presented in a transparent
head, shown in Axial, Sagittal and Coronal views. A close look of the Axial view is
shown in the bottom right corner: areas where the mean shapes of two groups overlaid
appear in purple. Note the borders of these two structures: shift of pose is evident on
the left thalamus, while less visible variants appear on the right thalamus. In addition,
there appears to be more shifting of the anterior and posterior ends of the thalamus
which co-localize to the pulvinar (posterior) and the medial dorsal and anterior nucleus
(anterior) (Color figure online).
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Hotelling’s T 2-test, which is a multivariate generalization of the t-test, for 3
rotation parameters (θx,θy,θz), 3 translation parameters (x, y, z), a combination
of logS, ||logR||, and ||logd||, as well as a combination of all 7 parameters.

Considering the limited size of our dataset (36 subjects), a permutation
test [9] was performed to avoid the normal distribution assumption. To do this,
we randomly permuted the labels of our subjects (preterm vs. term neonates),
and generated t-values (for t-test) or F -values (for T 2-test) for comparison. We
used 10000 permutations for each of the parameters to assemble a null distrib-
ution of nonparametric estimation for t- or F -values.

3 Results

All the p-values from previously described tests are presented in Table 1. As we
can see from the table, for the left thalamus, pose parameters representing scale
and rotation show a significant difference between the preterm and term groups,
while no difference can be seen in translation parameters. It is also important
to note that, apart from the difference detected in individual parameters, a
combination of all 7 parameters also detected significant differences between the
two groups in the left thalamus, indicating a possibility of using multivariate
analysis of all pose parameters as the discriminant between the two populations.
For the right thalamus, neither the individual or combination of parameters
detected any changes.

These results are better visualized in Fig. 3, where mean shapes of preterm
(represented in red) vs. term (represented in blue) groups are overlaid in their
corresponding mean pose. The left thalamus of the preterm group showed a
smaller size as well as an inward tendency compared to the term group, which is
consistent with the differences found in scale and rotation parameters. Compared

Table 1. P-value of statistical analyses on pose parameters: 13 sets of parameters
characterizing relative pose of left thalamus (LTha) and right thalamus (RTha) are
investigated here using univariate and multivariate analyses. Parameters are catego-
rized as logS, ||logR||, ||logd||, θx,θy,θz, x, y, and z for univariate tests, and as (θx, θy,
θz), (x, y, z), (logS, ||logR||, ||logd||), and a combination of 7 parameters for multivari-
ate tests. All the p-values are obtained after permutation testing. Significant p-values
(p < 0.05) are highlighted in light cyan, while p-values that are interestingly low but
failed to reach significance are highlighted in light grey (Color table online).

LTha RTha LTha RTha

logS 2.27e-02 3.43e-01 ||logR|| 5.75e-01 5.73e-01

θx 5.60e-03 6.49e-01 ||logd|| 8.88e-01 4.00e-01

θy 1.94e-01 9.21e-01 (θx, θy, θz) 9.80e-03 7.14e-01

θz 5.29e-02 2.61e-01 (x, y, z) 8.41e-01 8.23e-01

x 4.97e-01 8.85e-01 (logS, ||logR||, ||logd||) 1.76e-01 4.67e-01

y 8.40e-01 4.85e-01 All7paras 2.05e-02 9.17e-01

z 6.35e-01 4.90e-01
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to the obvious differences in size and shape, the shift of position of the left
thalamus in these two groups are less evident, thus further validating the less
significant result from translation parameters. As for the right thalamus, we can
see mean shapes from these 2 groups are mostly overlapped, only a slight size
difference is shown in Fig. 3. These are also consistent with the relatively high
p-value found in the scale, rotation and translation parameters.

4 Discussion

Here, we introduced a relative pose analysis into the prematurity associated brain
anatomy analyses. Our pose computation successfully detected differences in the
left thalamus in preterm neonates, while no difference in terms of relative pose
was detected on the right thalamus between preterm and term neonates. The
two thalami in the brain are not exactly symmetric in terms of functions, and
hemispheric asymmetries in the thalamus have been well-documented via ani-
mal studies [7]. Our results provide additional information about the developing
patterns of the two thalami.

Before our study, a reduction in thalamic volume in preterm infants compared
to term-born controls was shown by manual volumetry study [12]. The reductions
are consistent with the significant differences in the scale parameter we found
here. However, in the volumetry study, the left and right thalami are treated as
a whole, thus failing to localize the differences within the two thalami. A recent
surface morphometry study has found significant regional differences on the sur-
face of the left thalamus [14], while fewer surface changes are detected in the
right thalamus. Complementary to these results, the pose information we found
in our study further confirms that the left thalamus may be more vulnerable
to prematurity. In addition, the relative pose information also revealed regional
differences which co-localize to known nuclear subdivision in the thalamus (i.e.
pulvinar and medial dorsal nucleus) which have been previously shown to be
abnormal in preterm neonates relative to term controls. Here, we demonstrate
for the first time that relative pose can help with delineating regional changes
of the preterm thalamus, with respect to the anterior and posterior poles of the
left thalamus.

Moreover, in very preterm subjects, the scale parameter is reduced with
postconception age. This supports the existence of regional vulnerability of the
preterm thalamus, in the setting of no visible white matter injury. Our data
suggest that even when there are global subtle volumetric difference related to
the degree of prematurity, relative pose (likely in combination with surface TBM)
may assist with delineating regional thalamic changes.

Our work proposes a complete set of relative pose statistics based on more
accurate subcortical structure registrations: Firstly, our study used an accurate
mesh representation consisting of 15,000 surface points, and point correspon-
dences were obtained by a constrained harmonic registration, which outperforms
traditional algorithms in matching the large differences between neonatal brain
volumes, thus yielding higher accuracy. Secondly, post statistics are performed
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using both univariate and multivariate analyses on different combinations of pose
parameters and their norms, to find the most sensitive statistical marker for pre-
maturity associated differences. Finally, this is the first time that the trend of
pose parameters vs. PCA has been computed. There is little research on pose
in brain structure in general, and none in neonates. Our work may lead to new
biomarkers for prematurity.

There are several possible limitations in this study: (1) the effect of age was
removed using linear regression, however, for some of our parameters such as θy
and Ty, Tz (Fig. 2), the linear model may not best describe the age-dependent
changes. Therefore, a more dedicated age-covariant model is needed in future
studies. (2) Our study is limited to a relatively small number of subjects. We
plan to increase our sample size in the future to confirm results found here,
and correlating our findings with neurodevelopmental outcomes. In addition,
we plan to examine the relative pose of different subcortical structures (i.e.
putamen, hippocampus and thalamus) in relation to reach other in preterm
neonates relative to term controls, which may shed light on the global effects of
prematurity on grey matter structures.
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Abstract. In the medical domain, the use of biocompatible materials, such as
titanium or titanium alloys is essential to produce individual implants. As a
result of this development, it is now possible to generate new patient-specific
geometries fitted to the contour. This paper elucidates the process chain to
derive individual design variants and to produce patient-specific bone
replacement implants for the lower jaw-bone regions by using innovative
reverse engineering and manufacturing methods based on CT-data. For this
interdisciplinary project, technical scientists, medical scientists at the university
hospital and engineers from a product development firm work together.

Keywords: Process chain � Planning implants � CT-data

1 Purpose

As a result of ongoing globalisation, the greatly expanding market for medical
implants made of biocompatible high-performance materials is under ever-increasing
pressure from competitors. In this context, the reconstruction of bone defects, in
particular in the oral, jaw and facial region, by means of osteosynthetic plates is
regarded as a great challenge. Here, special advantages may accrue to a new implant
design whose contour and stiffness are tailored to specific geometric and elastic
conditions, since in this way it is possible to reduce complications during ingrowth.
One objective of the research project is aimed at the development of a process chain
that extends all the way from CT layer images of a diseased patient up to the man-
ufacturing of individual bone substitute implants for the patient while taking into
consideration a Rapid Manufacturing technique [1–3].

In this context, manufacturing of individualized medical products supported by
customized software solutions is becoming more and more important. However, these
software tools must be designed so that they are easy to handle and understand. It is
not feasible to assume that the surgeon will devote much time to becoming familiar
with the software. Also a wide variety of functions may be a liability, in that it is often
one reason for the rejection of a product.

M. Erdt et al. (Eds.): CLIP 2013, LNCS 8361, pp. 10–14, 2014.
DOI: 10.1007/978-3-319-05666-1_2, � Springer International Publishing Switzerland 2014



Individualised medical products are created in a series of carefully synchronised
and mutually interlocking process steps. In this process, doctors, designing engineers
and production planners work together in an interdisciplinary team. Consequently,
project work within the process chain has to be supported and optimised through
customised software tools in order to create an immediate interface for communica-
tion and data exchange.

One example that illustrates the need for such special solutions is that of the
creation of patient-specific lower jaw implants. They are designed based on CT data
processed in a CAD system. Therefore auxiliary geometries have to be defined by the
surgeon. Design and manufacture are thus performed on the implant producer’s site.
Our goal is to develop a software tool with which the doctor can define the auxiliary
geometries after recording the CT data and can make these geometries directly
available to the designing engineer.

2 Methods

The design of individualized lower jaw implants made of pure titanium is the subject
of a current project financed by the Saxon Bank for Reconstruction and Development
(SAB). The authors’ partners in this interdisciplinary endeavor are doctors from the
University Clinical Center Dresden and designing engineers from a product devel-
opment firm. New technologies from medical image processing, Direct Manufacturing

Fig. 1. Process chain for the manufacture of an individualized lower jaw implant
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(generative manufacturing) and Reverse Engineering are thus brought together.
Below, we list the principal steps needed to create individualized implants (Fig. 1):

(1) Recording of the lower jaw region by means of computer tomography (CT) and
generation of a surface model by means of the ‘‘marching cubes’’ algorithm

(2) Alignment of the lower jaw model in a defined co-ordinate system and definition
of cutting planes (marking of the damaged area), fixing screws and dental
implants

(3) Geometry reconstruction of removed part from the lower jaw; there are no
limitations in any anatomical situation

(4) Surface representation of the lower jaw contour with follow-up design of implant
and cutting templates (marking of the cutting position during operation)

(5) Preparation for generative production by means of LaserCUSING� [4] with
subsequent manufacture of the implant and the cutting templates (Fig. 2)

(6) Preparation for generative production by means of LaserCUSING� with sub-
sequent manufacture of the implant and the cutting templates.

3 Results

The product developed is the software tool ‘‘Kontito’’ (Fig. 3). Visualisation is based
on XNA technology by Microsoft. This technology makes it possible to develop the
tool quickly and simplifies its extension to applications that might be necessary in the
future.

The functions are activated using a command manager, following a linear
sequence of functions. Patient data are read in from the CT layered images (DICOM)
or image data (TIFF, RAW etc.). Image artifacts of due to preexisting dental pros-
theses in the region of interest can corrupt the results of CT. After processing of the
model data (such as cutting and clearing of triangles), the cutting planes are roughly
aligned using three fixed surface points. Afterwards one can finely align the planes
through shifting and rotation via mouse control. The accuracy depends from the
resolution of the layered images during CT-procedure. In clinical situations the voxel
size is between 1 and 2 mm. The error of design and manufacturing process is less
than 0.01 mm.

Fig. 2. Implant and cutting templates, manufactured with LaserCUSING�
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For the attachment of the mounting screws not only the intrinsic position is varied,
but also the orientation, for instance in order to cover a greater region of the hard bone
bed (corticalis) and thus to achieve better adhesion. Therefore it is possible to cut the
model along the previously defined planes to make the inside area of the bone visible.

For broader functional integration into the lower jaw implant, position and ori-
entation for dental implants that will be inserted are defined using the 3D model. To
guarantee occlusion, orientation is taken from the arch contour of the lower jaw and
the dental position of the upper jaw as well. Screws and tooth implants are shown in a
simplified manner; the surgeon can freely select length and diameter. Thus, the sur-
geon can choose the preferred implant type from the wide variety of products on the
market.

Fig. 3. User interface of the software ‘‘Kontito’’
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4 Conclusion

In the project, we created software for targeted planning of auxiliary geometries. The
software is used by the surgeon and is characterized by easy and user-friendly han-
dling. The software tool is integrated seamlessly into the entire process chain and
makes possible an efficient exchange of design data between surgeon and designing
engineer. The application has already been successfully tested using numerous 3D
models of lower jaws taken from living minipigs, 20 cadavers of young pigs and on
one human lower jaw. A validation of clinical effectiveness of this software-bridge
will be a next step of our work.

In the future, additional auxiliary functions can be integrated. The plan is to
simultaneously fade in both 3D model and CT layered images in the cutting region
and to integrate algorithms to maintain occlusion between the lower- and upper jaws.
Other options for the future are to use this application in the field of Augmented
Reality (AR) or to embed other controls, such as a 3D mouse.
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Abstract. Lung cancer diagnosis requires biopsy of airway tissue, which
is mostly done by bronchoscopy. Although preoperative CT is available,
intraoperatively only 2D information provided by the bronchoscopic cam-
era and fluoroscopy is used. But, guidance of the bronchoscope to the
target site would highly benefit from knowing the exact 3D position of
the instrument inside the airways.

In this paper, we present a system for preoperative planning and
intraoperative navigation during bronchoscopy. The preoperative com-
ponents are automatic bronchial tree segmentation and skeletonization,
semi-automatic tumor segmentation and a virtual fly-through simulation
for planning purposes. During the intervention, we apply C-arm pose esti-
mation using a marker plate on the patient table to align preoperative
CT and intraoperative fluoroscopy. Thus, we can calculate the current
3D position of the bronchoscope inside the bronchial tree. Evaluation of
the system components on patient CT and phantom fluoroscopy images
showed promising results with high accuracy and robustness.

Keywords: Bronchoscopy · Intra-operative navigation · C-arm pose
estimation · Segmentation · Fluoroscopy · CT

1 Introduction

Two steps are necessary to confidentially diagnose lung cancer: image-based
examination of the lungs and biopsies of operatively extracted tissue samples.
The second step is mostly done by bronchoscopy, i.e. guiding an endoscope
through the airways to the targeted tumor site. Intraoperatively, only 2D images
of the airways, endoscopic and fluoroscopic, are available. Obviously, providing
a 3D view and the accurate position of the instrument inside the bronchial tree
will enable faster and more accurate steering. Also, offering a preoperative vir-
tual flight through the bronchial tree to the target lesion can significantly add
value to the physician’s preparation for the operation.

We present a navigational system for bronchoscopic interventions, which
features preoperative simulation of the procedure for planning purposes and
intraoperative guidance by giving the 3D position of the instrument inside the
bronchial tree and, thus, providing orientation during bronchoscopy.

M. Erdt et al. (Eds.): CLIP 2013, LNCS 8361, pp. 15–22, 2014.
DOI: 10.1007/978-3-319-05666-1 3, c© Springer International Publishing Switzerland 2014
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2 Related Work

Endoscopy navigation systems mainly differ in their way to track the operational
instruments during the intervention. For this, optical [1] or electromagnetic [2]
sensors as well as purely image-based methods [3] are used. As optical tracking
systems always come with a line-of-sight problem, they can only be employed
with inflexible endoscopes, e.g. used during ENT-, CMF- and neuro surgery.
Bronchoscopic navigation systems either rely on electromagnetic sensors fixed on
the tip of a flexible bronchoscope [2] or apply image-based registration methods
between the video frames acquired by the bronchoscopic camera and the preop-
erative CT [3]. Whereas the first solution behaves sensitively in the presence of
ferromagnetic materials and needs to take respiratory motion and coughing into
account, the second method is far from real-time capability and its accuracy is
affected by bubbles in the airways, noise on the images and motion blur.

We propose using the C-arm images usually acquired during bronchoscopy
and, thus, refrain from interfering with the physician’s standard procedure. A
similar approach is developed by Xu et al. in [4], where alignment between
fluoroscopy and CT is found by image-based 2D/3D registration. But, this
requires manual prepositioning after every C-arm movement, which can be quite
time-consuming. Therefore, we rather apply C-arm pose estimation using only
a specifically designed marker plate, which is placed on any C-arm patient
table. Thus, our system can easily be integrated into common operation rooms.
Although several marker-based C-arm pose estimation methods exist [5,6], none
is suitable in shape, size and capture range for fluoroscopy images of the thoracic
area acquired during bronchoscopy.

3 Materials and Methods

Our system consists of different parts, which we divide into preoperative and
intraoperative components. Bronchial tree segmentation and skeletonization as
well as tumor segmentation based on a CT are done preoperatively. The result
of these steps enables a virtual “fly-through” through the airways to the target.
Intraoperative components are a one-time patient-to-table image-based regis-
tration and C-arm pose estimation for each new fluoroscopy from a different
pose. We use a specifically designed marker plate for this step. The two transfor-
mations, patient-to-table and table-to-C-arm, are used to estimate the current
location of the bronchoscope inside the bronchial tree, provided the bronchoscope
tip is visible on the fluoroscopy. Afterwards, this position can be visualized inside
the correct bronchus and, thus, enhance the physician’s view and orientation.
Also, the previously segmented bronchial tree is virtually projected onto the
fluoroscopy as a digitally reconstructed radiograph (DRR) to provide a more
evident image of the airways. The following describes the individual components
in detail.
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3.1 Preoperative

Bronchial Tree Segmentation. Before the bronchoscopic intervention, a pre-
operative CT scan of the patient’s lungs is acquired and examined. We provide
a method for automatically extracting the airways from this CT scan in two
steps: First, we find seed points inside the trachea. For this, we use a method
described by Tschirren et al. [7]. The second step is a region growing-based seg-
mentation using these seed points. Figure 1(a) shows an exemplary result of this
segmentation and the utilized trachea seed points.

Skeletonization. The segmented bronchial tree needs to be reduced to a cen-
terline representation. For this, we use our skeletonization method presented
in [8]. Thus, the bronchi and bifurcations are transformed to centerlines (see
Fig. 1(b)), which form the connected virtual guidance paths for the broncho-
scope. These paths are important for the preoperative fly-through simulation
as well as visualizing the intraoperative position of the bronchoscope inside the
airways. For this, each voxel v of the skeleton is marked by a label lv. Start-
ing with labelling the bronchial tree root v0 with lv0 = 1, all neighbors v1 are
labelled with lv1 = lv0 + 1. This is recursively repeated for all skeleton voxels. A
schematic result of this labelling is shown in Fig. 1(c).

Tumor Segmentation. A method published by Steger et al. [9] is applied
for semi-automatic segmentation of lung lesions. Based on manually defining a
single seed point inside the tumor, the surface is automatically segmented. This
is done by a radial ray-based algorithm, which also takes local shape information
into account. Figure 2(a) shows the radial rays starting from a seed point and
the resulting segmentation surface. An exemplary lung lesion segmentation is
shown in Fig. 2(b) in all three anatomical planes.

(a) Trachea seeds (yellow) (b) Skeletonization (red) (c) Skeleton voxel labelling

Fig. 1. Bronchial tree segmentation and skeletonization (Color figure online)
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(a) Radial ray-based segmentation (b) Lung lesion segmentation result

Fig. 2. Tumor segmentation

(a) Endoluminal view of bifurcation (b) Endoluminal view of target site

Fig. 3. Virtual fly-through with bronchoscopic guidance path (green) (Color figure
online)

Virtual Fly-Through. Combining the results of the previous steps, bronchial
tree and tumor segmentation as well as skeletonization, we now can produce
a path from the trachea to the bronchus, which is adjacent to the targeted
tumor. Afterwards, the physician can virtually “fly” alongside the generated
path and view the bronchi and bifurcations on his way to the tumor. This can
serve as a non-invasive examination as well as training or planning before the real
intervention. Figure 3 shows exemplary views during a fly-through simulation at
a bifurcation and at the targeted tumor site.

3.2 Intraoperative

Initial 2D/3D Registration. The transformation from patient to table needs
to be calculated only once at the beginning of the procedure, as the patient
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(a) Input image (b) Reprojected markers (c) After marker removal

Fig. 4. C-arm pose estimation and marker removal on X-ray of turkey cadaver

is sedated during the intervention and his or her position on the table rarely
changes. This registration step is done semi-automatically, i.e. the user needs to
provide a rough manual alignment, which serves as a starting point for the sub-
sequent automatic intensity-based 2D/3D registration between intraoperative
fluoroscopy and preoperative CT. We refrain from executing this step for every
C-arm movement as it needs manual initialization and is by orders of magnitude
slower in comparison to our marker-based C-arm pose estimation method, which
is described in the next section.

C-arm Pose Estimation. Each time the physician acquires a new fluoroscopic
image from a different position or angle, the transformation calculated at the
beginning of the procedure changes. But, as the patient-to-table transformation
stays almost steady, we only need to find the transformation between table and
C-arm. For this purpose, we developed an acrylic marker plate, which can be
easily fixed on any patient table (see Fig. 6(a)). The well-visible steel markers
define a pattern, which allow unambiguous mapping between 3D source points
on the plate and 2D image points on the fluoroscopy even after projection. For
this, the projective invariant cross-ratio is deployed, which is defined on collinear
points and concurrent lines. Details can be found in [10].

Marker Removal. Successful pose estimation enables reprojection of all vis-
ible markers onto the fluoroscopy (see Fig. 4(b)). Given their reprojected posi-
tions, these markers are removed using inpainting, which is exemplarily shown
in Fig. 4(c). Thus, the markers do not disturb the physician’s view. At the same
time, the underlying anatomical structures are preserved for the most part.

Augmented Fluoroscopy. Knowing the non-varying transformation between
patient and table and the varying transformation between table and C-arm, the
relative position of the X-ray source and the patient’s CT is computed. Using
the beforehand segmented bronchial tree, a DRR of this binary volume can be
generated. On this DRR, the airways are more evidently visible than on the real
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Fig. 5. Path calculation: Left: X-ray with overlayed DRR of bronchial tree segmenta-
tion. Middle: Ray from C-arm source through bronchial tree segmentation to point on
fluoroscopy. Right: Calculated bronchoscope path inside bronchial tree.

fluoroscopy, which on the other hand clearly shows the bronchoscope. Overlaying
virtual and real image provides additional information about the bronchoscope’s
position in relation to the airways. An exemplary DRR of a segmented bronchial
tree can be seen in Fig. 5 (left).

Path Calculation. The bronchoscope tip is always well visible on the fluo-
roscopy and is selected manually. Then, a virtual ray from detector source to
the selected pixel on the fluoroscopy image is defined. The intersecting bronchial
tree segmentation voxels give the current 3D position of the bronchoscope tip.
Given this position, we find the corresponding bronchus and the path to the
trachea using the labelled skeleton of the bronchial tree (see Fig. 1(c)). This step
is illustrated in Fig. 5.

4 Results

All preoperative and intraoperative components were integrated into one system
for 3D bronchoscopy navigation, which we evaluated partly on clinical patient
data and partly on phantom images. The following, describes these experiments
and their results.

4.1 Preoperative

Bronchial tree segmentation was tested on the 30 chest CT scans provided by
MICCAI EXACT’09 [11]. 25 bronchial trees were successfully segmented in 18.0 s
on average and in 5 cases manual correction was be required due to leakage. A
few segmentations were also skeletonized and used to generate artificial paths
through the airways without a real tumor. Thus, we successfully tested our vir-
tual fly-through. Tumor segmentation was tested on 10 chest CT scans provided
by LIDC-IDRI [12]1 and the results visually inspected. All tumors were success-
fully segmented in 2.5 s on average.
1 The authors acknowledge the National Cancer Institute and the Foundation for the
National Institutes of Health and their critical role in the creation of the free publicly
available LIDC/IDRI Database used in this study.
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(a) (b) (c)

Fig. 6. Experimental set-up: Left: Airway model on marker plate in C-arm imaging
field. Middle: Fluoroscopy of airway model and marker plate. Right: Fluoroscopy with
removed markers and accurately overlayed DRR of bronchial tree segmentation

4.2 Intraoperative

The intraoperative components were tested with a hollow bronchial tree model
segmented from a thorax CT volume using our method and made of transparent
polyurethane. First, we acquired a high-resolution CT scan of this model. Then,
we placed the bronchial tree on the marker plate, which on its part was placed
on a patient table (see Fig. 6(a)). Using a Ziehm flat-detector C-arm, 41 X-ray
images from typical positions and angles were acquired (see Fig. 6(b)). After
initial patient-to-table alignment on the first image, C-arm pose estimation was
executed on the following images, of which 20 were acquired by translations in
x- ([−20 cm; 20 cm]), y- ([−15 cm; 15 cm]) and z-direction ([67 cm; 52 cm]) and 20
by rotations around the transversal ([−15◦; 15◦]) and longitudinal ([−20◦; 20◦])
axis. Afterwards, all visible markers were removed from the images by inpainting
(see Fig. 6(c)). DRRs using the estimated poses and the initial patient-to-table
transformation were generated and overlayed on the fluoroscopic images (see
Fig. 6(c)). Thus, we were able to visually inspect the quality of the results. All
translated images were correctly reprojected. Only two rotated images resulted
in inaccurate pose estimations. As the overlap between reprojected and original
branches were insufficient, they did not pass visual inspection. On the whole,
our method proved fully satisfying accuracy and robustness for translations and
rotations. On average pose estimation took 1.1 s on each image. Path calculation
using a manually selected point on an imaged bronchus was accomplished in all
cases with successful and accurate pose estimation.

5 Conclusions

A navigation system for preoperative simulation and intraoperative instrument
guidance during bronchoscopy was presented and evaluated. We use C-arm pose
estimation on a marker plate for aligning CT to fluoroscopy and, thus, deter-
mining the instrument’s location inside the airways. Hence, the system does not
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need any optical or electromagnetic tracking devices, which makes it easy to
integrate in typical operation rooms without interfering with the common clin-
ical procedure. It was thoroughly tested on thorax CT scans and real C-arm
images of a bronchial tree model and delivered promising results. The next step
will be clinical trial of the whole system.
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Abstract. Our research project investigates a multi-port minimally-
traumatic approach for lateral skull base surgery, where the surgical tar-
get shall be reached through up to three drill canals. For this purpose, an
accurate path planning is crucial. In the present work, we propose a semi-
automatic path planning approach for multi-port minimally-traumatic
lateral skull base surgery. The best path combinations are automati-
cally determined by optimizing the angles and distance buffers of the
drill canals. We compare the automatically computed path combinations
for 20 data sets to those selected manually by two different clinicians.
The experiments prove that we can adequately reproduce the clinicians’
choice.

Keywords: Path planning · Minimally-traumatic surgery · Multi-port

1 Introduction

Lateral skull base surgery is one of the more complex surgeries due to the small
size and narrow location of the anatomical structures. Possible interventions are
a cochlear implant, drug-delivery or tumor dissection. The main challenge is not
to damage any critical structures such as blood vessels, the cochlea or the facial
nerve. So far the common clinical practice is largely traumatic (see Fig. 1(a)).
The surgeon mills away a huge part of the bone and exposes all critical structures
in order to ensure their intactness.

Our research project investigates a multi-port approach for minimally-
traumatic lateral skull base surgery. The objective of the multi-port technique is
to use up to three drill canals leading from the skull surface to the surgical site:
one for the instrument, one for the endoscope and one for material removal or
for a second instrument. In this case the surgeon will not be able to rely on the
exposed structures for orientation anymore. Hence, an accurate patient-specific
planning based on image data is crucial.

In the following, we present a semi-automatic path planning approach for
multi-port minimally-traumatic lateral skull base surgery. For optimization we
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use an objective function that combines two features: the angles between the
three paths and the remaining distance buffer of each of the three drill canals
(see Fig. 2). Only the target and the center and size of the set of possible entry
points have to be determined by the clinician. In the experiments section, we
automatically compute path combinations for 20 computed tomography (CT)
data sets and compare them to the manual choice of two clinicians.

2 Related Work

There is ongoing research on drilling a single path to a surgical target in the
temporal bone: Several cadaveric studies have shown the feasibility of a single
drill path to the cochlea and the petrous apex [3,11] and Labadie et al. [7] have
conducted a clinical validation study for single-port cochlear implant surgery.
Our research project now investigates a multi-port approach. To the best of our
knowledge, no such technique has yet been described in scientific publications.

Since the structures in the temporal bone are very small, high accuracy is
needed. Therefore, an accurate planning is crucial. Most of the path planning
methods define a set of constraints and classify them into two categories: hard
constraints, which have to be satisfied (e.g. the intactness of critical structures)
and soft constraints, which are optimized (e.g. the distance to critical structures).
In other areas, such as abdominal and neurosurgery, several approaches for plan-
ning a single path do exist. Essert et al. [5] for example presented a geometric
constraint solver for computing the optimal placement of an electrode for deep
brain stimulation. Seitel et al. [10] compute possible insertion zones for needle
placement in radio frequency ablation and use the concept of pareto-optimality
to allow for a weight-independent rating of the trajectories.

In contrast, research in the context of lateral skull base surgery is rare and
focuses on a single port. Al-Marzouqi et al. [1] present an atlas-based approach
where they transfer a manually placed trajectory from an atlas to the CT data of
the current patient using registration. Noble et al. [8] state that this trajectory
is not guaranteed to be safe (i.e. to avoid critical structures) and effective (i.e. to
reach the round window at a certain angle and position). Therefore, they propose
a monte-carlo-simulation based approach to optimize such a given trajectory
with respect to safety and effectiveness while accounting for the drill positioning
error.

Eilers et al. [4] also base their approach on the concept of hard and soft
constraints. First of all, they eliminate all trajectories which would damage a
critical structure or would not reach the cochlea at a certain angle. Then they
optimize the weighted distance to the critical structures. Riechmann et al. [9]
propose to use a drill canal with a user-defined radius which is freely manoeu-
vrable. The movement is blocked if a collision with a critical structure occurs.
Their approach allows to place several of these canals individually but does not
automatically optimize any features.

All of the previous methods are designed for using a single port, with the
sole exception of Riechmann et al. whose method permits manually placing
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Fig. 1. In addition to conventional surgery (a), where planning takes place in the sur-
geon’s mind, we propose a multi-port approach, where planning is computer-aided (b).

several individual canals, but without automatically optimizing any features.
The present work, in contrast, is focused on an automated multi-port approach.

3 Methods

The planning tool we are currently developing is based on the Simulation Open
Framework Architecture [6] and has been partly described in [2].

Preprocessing. Since the planning is patient specific, we first of all have to
extract the critical structures from the image data of the patient. The follow-
ing structures have been declared critical by the clinicians and are visualized
in Fig. 1(b): facial nerve, chorda, semicircular canals, cochlea, ossicles, internal
carotid artery, internal auditory canal, external auditory canal and a safety mar-
gin for the dura, which is the outermost of the three layers surrounding the brain.
The critical structures are currently labeled manually in the CT data. Then the
3D models are extracted and loaded into the planning tool as a 3D scene.

Planning. First, the clinician defines a target point t in the CT data. Then, he
or she roughly selects a set of obvious candidate entry points in the 3D scene
by clicking on the surface of the 3D model of the cranial bone. All triangle
center points of the cranial bone’s mesh within a certain distance to this center
point are chosen as candidate entry points. There is a straight path p from each
candidate entry point s ∈ R

3 to the target point t (see Fig. 2 for illustration).
For each combination of three paths p1, p2 and p3, we have three angles: the
angle α12 = ∠(p1, p2) between path p1 and p2, α23 = ∠(p2, p3) and α31 =
∠(p3, p1) respectively. Further, for each drill canal defined by path p and radius
r, the distance buffer b denotes the remaining minimum distance to the critical
structures.

Our goal is now to determine out of the set of all candidate paths, a combina-
tion c of three paths, where the three angles between the paths and the remaining
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Fig. 2. Illustration of the path planning parameters for two drill canals.

distance buffer b of each drill canal are as large as possible. The two features
have been chosen in agreement with the clinicians. The angles are maximized in
order to minimize the intersection of the drill canals.

For the planning step, we have technical parameters and medical parameters.
The technical process-related parameters include the minimal radius r of the
drill canal, the uncertainty of the drill and the safety distance sd to the critical
structures which has to be absolutely maintained due to uncertainty of image
acquisition and segmentation (see Fig. 2 for illustration). The medical parameters
consist of a global minimum threshold αthresh for the angle between the paths
and a threshold bthresh for the distance buffer to the critical structures.

As in the related work, our approach consists of two steps. First, we eliminate
all paths which would damage a critical structure in regard to the technical
parameters. This is done using exhaustive search. The resulting feasible paths
are then color coded according to the size of the remaining distance buffer b (see
Fig. 3(a)).

Second, we calculate the best combination of three paths out of the set of
feasible paths. This is done by optimizing the angles and the distance buffers
between the three paths as follows: We first normalize the feature values and
then maximize the objective function

f(c) = (1 − wb) · (α12 + α23 + α31) + wb · (b1 + b2 + b3) (1)

over all possible combinations c, where wb ≥ 0 describes the weight for the
distance buffer and α12, α23, α31 ≥ αthresh and b1, b2, b3 ≥ bthresh have to be
satisfied. The way of choosing the parameters wb, αthresh and bthresh will be
explained in Sect. 4. For optimization, we use exhaustive search. Due to the
discretization of the search space the exhaustive search is sufficient.
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(a) Feasible paths (b) wb = 0.5 (c) wb ≈ 1 (d) wb ≈ 0

Fig. 3. Out of a set of feasible paths (a), a combination of three paths is computed.
Examples of different weights are shown in (b) - (d) for the target IAC.

4 Evaluation

Settings. All of our experiments are retrospective and are based on the same
data of 20 CT data sets acquired with a standard CT scanner and an average
resolution of 0.19 ×0.19 ×0.39mm3. Three different target structures have been
considered: the round window (RW), the internal auditory canal (IAC) and the
petrous apex (PA). Since reasonable values for the parameters are still being
researched, the following technical parameters have been fixed in accordance
with the clinicians and without loss of generality: the minimal drill radius r has
been set to 0.5mm, the drill uncertainty and safety distance sd have been set
to 0. The medical parameters αthresh and bthresh are determined empirically as
described below.

Experiments. Since the multi-port technique is not yet in clinical use, we do
not know what the best combination of paths for a multi-port approach is.
Therefore, in a previous work [2], a clinician used the planning tool to manually
select a combination of three paths out of a set of feasible paths. Herefrom, we
have derived first conditions for defining a good combination of paths.

The experiments for the present work were conducted in three steps. First
of all, a second clinician repeated the manual choice of a good combination of
paths based on the same data sets and parameters in order to account for inter-
observer variability. Based on those two manual choices of path combinations,
we dimensioned our system and empirically determined the medical parameters
αthresh and bthresh for the automatic computation. As reported in [2], the feature
values are different for every of the three target structures. For example, the
angles to be applied for surgery of the PA are smaller than those for surgery
of the IAC and the RW. Hence, we assume three different medical parameter
settings which are specific for each of the three target structures.

In a second step, we automatically computed path combinations for the same
20 data sets, using the optimization method as described in Sect. 3. Here, we
considered three different cases: uniform weights (wb = 0.5), weighing only the
distance buffer (wb ≈ 1) and weighing only the angle (wb ≈ 0). We do not use
equality for wb ≈ 1 and wb ≈ 0 in order to be able to differentiate for example
between two combinations having the same angle but different distance buffers,
if the case is wb ≈ 0. One example on how the different weights influence the
result is given in Fig. 3.
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(a) IAC: Clinician 2 (b) IAC: Autom. (wb ≈ 1) (c) IAC: Autom. (wb = 0.5)

(d) PA: Clinician 1 (e) PA: Clinician 2 (f) PA: Automatic

Fig. 4. Examples of path combinations. In the first row, we see that the automatically
computed combination with wb ≈ 1 (b) is similar to the choice of the clinician (a), while
using wb = 0.5 (c) represents a feasible alternative. In the second row, we observe that
variability also exists between the clinicians’ choices.

In a third step, we presented the five combinations (clinician 1, clinician 2,
wb ≈ 0, wb = 0.5 and wb ≈ 1) for all 20 data sets blindly and randomized to a
third clinician for validation, and the clinician rated them all.

Results. Good rates were achieved for the target structure RW, where at least
one automatically computed combination was comparable to the clinicians’
choice. For the targets IAC and PA, it turned out that the empirically com-
puted value αthresh was too low. Hence, we refined the thresholds by excluding
the manually chosen path combinations rated lowest by clinician 3 and recom-
puted the medical parameters from the remaining data sets. Then, we repeated
the automatic calculation of the path combinations for the targets IAC and PA.

We visually assessed the results of the automatic computation for all 20 data
sets and found that in all 20 cases at least one automatically computed combi-
nation was comparable to the clinicians’ manual choices, a fact which has been
confirmed by the third clinician. Examples are shown in Fig. 4. For the given
parameter settings, in some cases the uniform weights performed better and in
other cases weighing the distance buffer led to better results. In most cases,
weighing the angle led to unsatisfying results. At least one of the three automat-
ically computed path combinations show characteristics described in [2]: For the
target IAC, one drill canal goes through the upper semicircular canal. In most
cases, the other two canals pass on the posterior side of the facial nerve, while
in the remaining cases, one passes posterior and one anterior to the facial nerve.
For the RW, all canals pass between the facial nerve and the external auditory
canal. Again, for the target PA it is difficult to find any common characteristics
among the available data sets.
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Table 1. Quantitative results for each target structure for the minimum angle αmin =
min(α12, α23, α31) and minimum distance buffer bmin = min(b1, b2, b3) of the drill path
combinations. Mean, standard deviation (SD) and minimum over the 20 data sets are
shown.

IAC RW PA
αmin (in ◦) Mean Min Mean Min Mean Min

Clinician 1 16 (SD: 6) 9 23 (SD: 9) 8 10 (SD: 5) 4
Clinician 2 14 (SD: 7) 9 21 (SD: 8) 11 10 (SD: 4) 4
Automatic 18 (SD: 7) 10 18 (SD: 16) 9 12 (SD: 5) 6

bmin (in mm) Mean Min Mean Min Mean Min

Clinician 1 0.7 (SD: 0.3) 0.3 0.7 (SD: 0.2) 0.3 0.7 (SD: 0.4) 0.2
Clinician 2 0.8 (SD: 0.2) 0.3 0.9 (SD: 0.3) 0.4 0.8 (SD: 0.4) 0.3
Automatic 0.7 (SD: 0.3) 0.3 1.0 (SD: 0.4) 0.4 0.5 (SD: 0.4) 0.3

As shown in Table 1, the quantitative results for the minimum angle and
distance buffer of the path combinations are also comparable within the standard
deviation.

Discussion. The experiments show that the automatic computation of path
combinations achieves results comparable to the manual choice of the clinicians.
During the experiments, we identified an additional constraint: In CT data, the
facial nerve is indirectly visible due to its bony canal within the temporal bone.
However, the extratemporal part is not visible and hence has not been segmented
for the experiments. As a consequence, the planning tool does not guarantee the
intactness of the extratemporal part of the facial nerve. For each target structure,
there were one to two patients for whom the extratemporal part of the facial
nerve would either be damaged or was not sure to be avoided. Therefore, the
intactness of the extratemporal part of the facial nerve has to be included as an
additional constraint in the future. This may be done by explicitly eliminating
all paths in the risk area between the facial nerve and the external auditory canal
and below the end of the segmentation of the facial nerve. Another possibility
would be to find means to segment the extratemporal part of the facial nerve in
the image data.

Furthermore, we detected a high inter-observer variability in the choice of the
path combinations. Therefore, showing different possibilities, for example using
different weights as we did, is recommendable in order to allow the clinician to
make a choice according to his or her individual preference.

5 Conclusion

In the present work, we introduce an approach for semi-automatic path planning
for multi-port lateral skull base surgery. A combination of up to three drill
canals is determined by optimizing an objective function based on the angles
between the paths and the remaining distance buffer of the drill canals. In our
experiments, we automatically computed path combinations for 20 data sets and
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compared them to the manual choices of two clinicians. The experiments show
that we can adequately reproduce the clinicians’ choice. During the experiments,
we identified a new constraint concerning the protection of the extratemporal
part of the facial nerve which will have to be incorporated in the future. With
our planning tool, we aim at supporting the surgeon concerned with research on
multi-port lateral skull base surgery with the goal of a prospective use.

Acknowledgments. This work has been funded by the German Research Foundation
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Abstract. We present in this paper a novel lumen centre detection
for gastrointestinal and respiratory endoscopic images. The proposed
method is based on the appearance and geometry of the lumen, which
we defined as the darkest image region which centre is a hub of image
gradients. Experimental results validated on the first public annotated
gastro-respiratory database prove the reliability of the method for a wide
range of images (with precision over 95%).

Keywords: Lumen centre detection · Bronchoscopy · Colonoscopy

1 Introduction

Optical endoscopy is used nowadays to examine the interior of hollow organs or
cavities of the body. These methods consist of introducing an instrument called
endoscope which has a light source and a camera mounted on it to observe the
particular organ. There is a recent trend on developing intelligent systems for
endoscopy which aim at providing additional information to the procedure by
analysing image content. The most immediate applications of these systems are:
the on-line assistance in the diagnosis, to provide a complete endoluminal scene
description (intervention time) or quality assessment (post-intervention).

The objective of this work is the characterization of the lumen centre in
bronchoscopy and colonoscopy videos. Lumen centre detection can be useful
for several applications such as: (1) scene description; (2) calculation of the
navigation path or (3) seed of lumen segmentation algorithms.

A main challenge is to cope with the large variability in lumen appearance
across images types and acquisitions. Such variability is related to differences in
acquisition and illumination conditions and make it difficult to define a model
of appearance common to colon and bronchi. Figure 1 shows different lumen
appearances in bronchi (Fig. 1(a,b)) and colon (Fig. 1(c,d)) procedures. The
lumen in bronchoscopy is enclosed by the concentric tracheobronchial rings and
it is usually centred in the image. This is not the case of colon lumen which
might be in any part of the image related on the navigation differences.

The majority of the relevant work in lumen localization and detection is
related to gastrointestinal image analysis. Under the assumptions that the largest
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(a) (b) (c) (d)

Fig. 1. Examples of variability in lumen appearance: single (a) and multiple (b) bron-
choscopy image; centred (c) and biased (d) colonoscopy image.

dark blob of the images usually correspond to lumen [1] and it is always present
in the images [2], there are several works that segment the lumen using a region
growing approach over the image grey level [3]. These approaches are accurate
as far as the initial seed for the region growing is placed inside the luminal
area and their performance decrease in the presence of shadows or low contrast
images. Recent approaches use contrast changes to account for local differences
in image intensity. For instance, the authors in [4] characterize the luminal region
in wireless capsule videos by means of Haar features followed by a supervised
boosting for detecting the probability of having the lumen in a given frame.
A main drawback for its application to standard bronchospcopy procedures is
that its usual central navigation illuminates the luminal area and, thus, reduces
contrast changes (compare images in Fig. 1(a) and (b)).

A common limitation is that most methods can not handle having more
than one lumen in an image, which is quite frequent in bronchoscopy videos.
The recent approach in [5] detects multiple lumen areas by using mean shift.
Although it provides information about multiple lumen, it might fail in the
absence of any luminal area and it has a high computational cost not suitable
for its use in intervention time. Other approaches for multiple lumen detection
in bronchoscopy [6,7] are semi-automatic procedures which are applied off-line.
Finally, up to our knowledge, there is no public annotated database of lumen
regions (for, both, bronchoscopy and colonoscopy videos) allowing the compar-
ison of the performance of different methods. This constitutes a major flaw for
the development of generic algorithms able to achieve accurate results in a wide
range of images.

This paper addresses two main points in the context of lumen characteriza-
tion in endoscopy videos. First, we present a lumen centre detection method that
can be used for a wide range of endoscopic images, covering single and multiple
lumens. The proposed method is inspired on the work in tracheal ring segmen-
tation presented in [8] and combines appearance and geometric features of the
lumen that are present in both bronchoscopy and colonoscopy frames. Second,
we present a manually annotated database, which includes representative cases
of colonoscopy and bronchoscopy videos, along with a validation protocol. The
rest of the paper is structured as follows: our lumen centre detection method is
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Fig. 2. Model of appearance of the lumen based on the illumination.

presented in Sect. 2. We introduce our validation protocol including the descrip-
tion of the annotated database in Sect. 3. Results are reported in Sect. 4 and
conclusions in Sect. 5.

2 Lumen Centre Detection

Our processing scheme consists of three different stages: (1) Image preprocessing;
(2) Calculation of Lumen Energy Maps (LEMs) and (3) Obtention of the centre
points. Specific details about the preprocessing steps can be found in [9]. The
central point of our method, the calculation of LEM maps, is based on a model of
appearance of the lumen and it has been designed to overcome the limitations of
existing approaches. Finally the obtention of the centre point uses unsupervisded
learning over a training set to provide the likelihood of a pixel to be inside the
lumen. The local maxima of such likelihood map are our lumen centres.

2.1 Model of Appearance of the Lumen

In order to build our model of appearance of the lumen we will lean on a graphical
scheme of how endoscopy images are generated, shown in Fig. 2. As illustrated
in Fig. 2, the amount of light that falls on the scene decreases approximately
according to the square of the distance between the light source and each 3D
point. Consequently the farthest parts of the image, such as the lumen, are
poorly lighted. The fact that the amount of light increases from the centre of
the lumen outwards allows to incorporate geometric gradient-based features to
our characterization of the lumen. Our model of appearance for lumen uses the
former cues to characterize the lumen centre as the dark region of the image
which centre is the hub of image gradients. These two cues are used to develop
our two LEM maps algorithms which are described next.

2.2 LEM Maps

We present here two different Lumen Energy Maps. The first one, Directed
Gradient Accumulation (DGA), is based on the idea that the lumen centre
is the source of all image gradients whereas the second, Dark Region Identi-
fication (DRI), exploits the fact that lumen region tends to be the darker part
of the image.
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(a) (b) (c) (d)

Fig. 3. Graphical explanation of DGA algorithm: Original synthetic image (a); Corre-
sponding gradient vectors superimposed to the image (b); Example of the extension of
gradient vector lines (c), and resulting DGA accumulation map (d).

(a) (b) (c) (d) (e)

Fig. 4. Graphical explanation of DRI algorithm: Original bronchoscopy image (a);
Smoothed images with σ: 1/8 (b); 1/16 (c); 1/24 (d); 1/32 (e).

DGA value for each point is calculated as the number of gradient-directed
lines that cross it. These lines have the same direction than the gradient and
they are created by extending gradient lines to cover the whole frame. If a given
image point is at the centre of a tubular structure, by Phong’s illumination
model, image normal lines will accumulate around this point. It follows that
DGA achieves maximum values at either darker (i.e. lumen) or brighter (i.e.
specular highlights, polyps) regions. The synthetic images in Fig. 3 illustrate
how DGA works. In this example all gradient vectors are directed from the
centre of the image (darkest part) to the brightest external part and, thus, DGA
maximum response corresponds to the centre of the image (Fig. 3(d)).

DRI maps are calculated by applying a smoothing using a gaussian kernel
which σ is related to the scale of the lumen and it is determined using a training
set. The response to DRI enhances dark values and, thus, the lumen region.
Figure 4 shows the output of DRI for several scales. Note that as we decrease
the scale we go from having a big dark blob (Fig. 4(b)) to a smaller one which
matches better the lumen region (Fig. 4(e)).

2.3 Centre Point Characterization

The 2D feature space given by (DGA,DRI) characterizes several elements of the
endoluminal scene. In particular, pixels belonging to the lumen have a low value
of DRI and a high DGA value, polyps have high DGA and DRI and structures
like folds and rings (which generate shadows) have low DGA and DRI values. The
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Fig. 5. Adequation of our feature space to bronchoscopy and colonoscopy examples.

partition of the feature space into this three classes is obtained by unsupervised
k-means clustering over a training set. In order to have comparable values, the
output of both LEM maps has been normalized in [0, 1] range. This normalization
has been obtained by means of the maximum and minimum values achieved for
the training set.

The distance of a pixel to the borders given by the clustering defines a like-
lihood map of its belonging to the each of the classes. In our application this
border has been approximated by a linear plane of origin (DRI0,DGA0) and
normal direction (VDRI , VDGA), so, for each feature point (DRI,DGA) its like-
lihood map LK is defined by:

LK(DRI,DGA) = (DRI − DRI0)VDRI + (DGA − DGA0)VDGA (1)

A threshold, ThLK , on LK determines those points having a larger likelihood of
belonging to a given class. We obtain the optimal ThLK value as the maximum
value of the ROC curve [10] corresponding to lumen segmentation for the training
set. This stage has been applied separately for bronchoscopy and colonoscopy
images. Figure 5 shows our feature spaces obtained for each type of images.

Finally to calculate to the lumen centre we proceed as follows: for the case
of colonoscopy videos, as there is only one lumen per image, we take the best
candidate inside the lumen region cluster. On the other hand for bronchoscopy
we take all the local maxima that we may find inside the lumen cluster.
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Table 1. Description of lumen database.

Index Type Resolution

1–100 Bronchoscopya [144× 144, 288× 288, 186× 186]

101–200 Colonoscopyb [500× 577]
201–225 Bronchoscopy(15 multi-lumen

and 10 no lumen)a
[144× 144, 288× 288, 186× 186]

226–250 Colonoscopy (no-lumen)b [144× 144, 288× 288, 186× 186]
aBellvitge Hospital Barcelona

bBeaumont and St. Vincents Hospistal Dublin

(a) (b) (c) (d)

Fig. 6. Examples of images from our database: bronchoscopy image (a) and its ground
truth (b); colonoscopy image (c) and its ground truth (d).

3 The Annotated Database and Validation Protocol

In order to be useful for validating a wide range of algorithms, an annotated
database should fulfill the following requirements: (1) It should contain exam-
ples of frames with lumen from both bronchoscopy and colonoscopy videos; (2)
The selected frames should be different enough in order to have the maximum
variability available of lumen appearance; (3) The database should also con-
tain examples of frames both with multiple lumen (bronchoscopy) and without
lumen. Taking these constraints into account we have built up a database of 250
images1 extracted from 15 and 20 sequences of colonoscopy and bronchoscopy
respectively. Table 1 gives a description of the different groups and Fig. 6 shows
an example with its segmentation.

The lumen detection has been validated in terms of true localizations (TL),
false localizations (FL) and no localizations (NL). We have used Precision,
Prec = #TL/(#TL + #FL), and Recall, Rec = #TL/(#TL + #NL), scores
to summarize the performance.

4 Experimental Results

The complete methodology has been trained using 30 images per endoscopy
type. The optimal parameter values have been chosen to maximize the number
1 http://iam.cvc.uab.es/downloads/

http://iam.cvc.uab.es/downloads/
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Table 2. Precision and recall results on lumen centre detection.

Type of image TL FL NL Prec% Rec%

Bronchoscopy (single lumen) #lumen = 76, 76 3 0 96.20 100
#nolumen = 10

Bronchoscopy (multilumen) #lumen = 30 28 0 2 100 93.33
Colononoscopy #lumen = 77,#nolumen = 18 75 4 2 94.94 97.40

Fig. 7. Qualitative lumen centre detection results. Good detections marked with green
crosses and bad ones with green circles. (Color figure online)

of candidate points inside the ground truth. The final values of the different
parameters are: DRI σ = 1/24, ThLK = 0.12 for bronchoscopy and ThLK = 0.14
for colonoscopy.

Precision and Recall results are given in Table 2. Precision and Recall are
over 93 % regardless of the type of image and lumen multiplicity. We only miss 4
lumens: 2 in colonoscopy and 2 in bronchoscopy (all in multi lumen images). We
also carried out an experiment to assess the potential of our method to detect
lumen presence in the images. It is worth noticing that in the absence of lumen
our algorithm does not detect any centre in 8/10 bronchoscopy images and in
16/18 colonoscopy images.

Figure 7 shows qualitative results including good and bad detections. The
first 3 columns in the image show examples of good lumen centre detection in
single and multi lumen images. Column 4 shows an example of the potential of
our method on detecting lumen presence: we can observe that no centre point is
marked in the image. The erroneous detections are shown in columns 5 (lumen
detection with no lumen presence) and 6. It is worth to mention that in some
cases like the ones shown Fig. 7 it is unclear if our algorithm has not really
performed well due to the fact that when making a ground truth sometimes there
is a great variability on delimiting the lumen region -even the presence/absence
of lumen in certain images depend of the experts’ criteria-.

All the experiments shown in this section have been performed in a PC
with an Intel i7 processor with 16 GB of RAM. The whole processing of one
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frame takes 0.057 s for bronchoscopy videos and 0.4 s for colonoscopy videos.
The difference in computational time is related with the resolution of the image.

5 Conclusions

The detection of the lumen centre is useful for several applications, such as scene
description, 3D reconstruction processes or helping in computer aided diagnosis.
Moreover, by detecting accurately the lumen centre we can potentially obtain
the navigation path inside the organ which could be useful for quality assessment
purposes or the following-up of injured tissues. This paper presents a novel lumen
centre detection based on a model of appearance and geometry valid for the
respiratory and gastrointestinal systems. The presented experimental show a
reliable performance on an extensive database that contains images from two
modalities (bronchoscopy and colonoscopy) and includes images with multiple
lumens and without them.
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Abstract. Patient-specific cerebrovascular modeling provides essential infor-
mation to facilitate the identification of vessel-free trajectories in functional
neurosurgery. However, standard gadolinium models used clinically are often
incomplete due to the extent of manual labor required to segment the vessels and
because gadolinium contrast decreases rapidly with vessel size. In this work, we
propose an automatic method, based on the Markov Random Field (MRF)
theory, to segment venous blood vessels from dense susceptibility-weighted
imaging (SWI) venography datasets. Unlike conventional isotropic auto-logistic
MRF, our MRF design anisotropically favors the neighboring influence of
voxels classified as ‘‘vessels’’ to better preserve thin vessels imaged by SWI.
Results show that MRF segmentation of deep veins compares well with standard
scale-space vesselness analysis. Most importantly, we demonstrate automatic
segmentation of superficial veins on SWI and creation of denser 3D vascular
models that may improve clinical gadolinium-based models.

Keywords: MR venography � Susceptibility-weighted imaging � Markov
random fields � Image-guided neurosurgery � Deep brain stimulation

1 Introduction

With a reported incidence rate as high as 5 % in recent literature [1], hemorrhagic
complications pose a high risk of devastating post-operative neurological deficits in
functional image-guided neurosurgery. During the pre-surgical planning stage,
patient-specific 3D models of the cerebral vasculature are commonly created to guide
the neurosurgeon in identifying vessel-free insertion trajectories. In many centers, this
task consists of segmenting the cerebral vasculature, either manually or semi-auto-
matically, from a gadolinium-enhanced T1w MRI dataset. However, these models are
often incomplete due to the extent of manual labor required and because gadolinium
enhancement decreases rapidly in smaller vessels. This work describes a new
framework for the automatic segmentation of susceptibility-weighed imaging (SWI)
venography datasets.

M. Erdt et al. (Eds.): CLIP 2013, LNCS 8361, pp. 39–47, 2014.
DOI: 10.1007/978-3-319-05666-1_6, � Springer International Publishing Switzerland 2014



Susceptibility weighted imaging (SWI) [2] is a relatively new T2*-weighted
gradient echo MRI technique that exploits both the magnitude and phase of the
complex MRI signal to increase sensitivity to deoxygenated (venous) blood and to
deep brain structures rich in iron content. SWI already provides useful information in
a variety of clinical applications including traumatic brain injury, vascular malfor-
mations, strokes and neurodegenerative disorders [3]. However, for neurosurgical
planning purposes, the reversed vessel contrast imaged by SWI poses new segmen-
tation challenges.

Although several automatic vessel segmentation methods have been proposed in
the computer-vision literature [4], techniques that were successfully applied to SWI
most often fall under the categories of scale-space analysis or statistical models [5].
Multi-scale ‘‘vesselness’’ filtering methods [6, 7] were shown to produce acceptable
results on SWI for deep veins [5, 8], but not for superficial veins [9]. This is due to the
absence of a fully defined ‘‘tubular-like’’ 3D contrast between surface veins and
surrounding skull. However, surface vein avoidance is essential in functional neuro-
surgery [10]. Alternatively, statistical methods using local intensity thresholds were
investigated [5] but they tend to necessitate post-processing to improve the results.

This paper presents a new statistical segmentation framework based on the Mar-
kov Random Field (MRF) theory, and extends the previous work of Hassouna et al.
[11] originally applied to time-of-flight (TOF) angiography. MRFs are a key step in
many segmentation applications to incorporate spatial dependencies among neigh-
boring voxels. For simplicity, the influence of neighboring voxels is often considered
isotropic. While this assumption holds for blob-like regions and may hold for the
segmentation of major arteries imaged by TOF, an isotropic assumption does not
suffice for preserving thinner vessels imaged by SWI. In this work, we describe the
implementation of an anisotropic MRF with spatially varying neighborhood influence.

2 Methods

SWI segmentation is implemented as a labeling problem. Each site in the dataset (i.e.
the voxels) is labeled as either vessel (V) or tissue (T). Let S ¼ f1; . . . ; Ng denote
the sites and L ¼ fV ; Tg the possible labels. Let Y ¼ f y1 ; . . .y2; . . .; yNg; X ¼
f x1 ; . . .x2; . . .; xNg denote respectively the observed voxel intensity and the output
classification at each site in S. The segmentation is performed in three steps:

1. An initial labeling X is found based on the observed intensities Y by expectation
maximization (EM).

2. This initial segmentation is further refined with an auto-logistic MRF model to
integrate spatial dependencies about the classification of neighboring sites.

3. A skull stripping procedure is computed to distinguish between surface veins and
dark-appearing skull.
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2.1 Statistical Model

Vessel and brain tissue classes are modeled as a mixture of two normal distributions
with parameters hl ¼ fwl; ul; r2

l g; l 2 fV ; Tg, where wl represents the proportions
between the two classes. An EM algorithm is applied iteratively for finding the
maximum-likelihood estimate of the parameters hv ¼ fwv; uv; r2

vgand hT ¼
fwT ; uT ; r2

Tg. During the E step, the model parameters fhv; hTgare held fixed and the
posterior probability f k ljyið Þ of voxel i belonging to class l given its intensity yi is
calculated. During the M step, the model parameters fhv; hTg are updated for the next
iteration (k þ 1). The EM algorithm is applied to brain voxels only (an approximate
brain mask is estimated using a co-registered T1w dataset). Proportions w0

v and w0
T are

initialized to 0.05 and 0.95 since blood vessels occupy less than 5 % of the whole
brain volume. A simple Otsu threshold is sufficient to estimate initial fl0

l ; r0
l g values

for the V and T classes. Upon EM convergence, the labeling X for all sites in S is
assigned to maximize f ljyið Þ:

xi ¼ arg maxl2fV; Tg f ljyið Þ; 8i 2 S; ð1Þ

with f ljyið Þ ¼ wlf yijlð Þ
PL

j¼1 wjf yijlð Þ
; and f yijlð Þ ¼ 1

ffiffiffiffiffiffiffiffiffiffi
2pr2

l

p

 !

exp
� yi � llð Þ2

ffiffiffiffiffiffiffi
2r2

l

p

 !

: ð2Þ

2.2 Anisotropic Auto-logistic MRF Model

We implemented an auto-logistic MRF model to refine the initial EM classification by
taking into account the classification of neighboring voxels xj 2 gi. In our case, gi is
defined to contain all sites xj within a 3 9 3 9 3 neighborhood of xi. In the MRF
theory, the unknown classification X is modeled as a random process that, according to
the Hammersley-Clifford theorem, must obey a Gibbs distribution of the form:
P Xð Þ ¼ Z�1exp �U Xð Þð Þ, where Z ¼

P
exp �U Xð Þð Þ is a normalizing constant called

the partition function containing all possible configurations of X. Clearly, exact com-
putation of the partition function on 3D volumetric data is an intractable combinatorial
problem. However, it can be avoided if all parameters defining U(X) are properly
estimated. In the auto-logistic MRF case, the energy function U(X) is expressed as the
sum of clique potential over all possible cliques (a clique is a subset of sites S). When
only up to pair-site interactions are considered, the energy function takes the form:

U Xð Þ ¼
X

i2S
log f ljyið Þð Þ þ

X

i2S;j2gi
bijxixj: ð3Þ

In (3), the first summation describes the unary association between voxel intensity yi

and class probabilities (see Sect. 2.1). The second summation describes the interaction
between classification of voxel xi and neighboring voxel xj. bij is a clique potential
parameter that encodes the specific interaction between each voxel pair. Similarity
between neighboring voxels is favored when bij [ 0. In the isotropic case, bij is either
proportional to distance between sites i and j, or constant (bij = b) to reduce the
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number of estimated parameters. However, an isotropic MRF configuration applied to
SWI will eliminate many thin veins simply because a majority of neighboring voxels
would be classified as tissue. Instead, we implemented an anisotropic MRF where
potential values bij are configured to favor the influence of neighboring voxels clas-
sified as vessel over those classified as tissue. Since the blood vessels in the dataset do
not have the same orientation, the MRF is non-homogeneous, meaning the potential
values bij vary with the spatial location of xi. Since it is impractical to estimate bij for
all possible voxel pairs in the dataset, we limit the potential bij to take a constant value
of either bV or bT such that:

bij ¼ bxj
¼

bV ; xj ¼ V

bT ; xj ¼ T

(

: ð4Þ

When bV [bT, it takes fewer neighboring voxels xj classified as V, within the local
neighborhood gi, to change the classification of voxel xi from T to V then in the iso-
tropic case. Reciprocally, it takes more voxels xj classified as T to change the clas-
sification of voxel xi from V to T then in the isotropic case. The relationship between
bV and bT was estimated using the maximum pseudo-likelihood (PL) estimation
method: PL Xð Þ ¼

Q
xi2S P xijxgi

� �
, with

P xijxgi

� �
¼

exp
P

j2gi
bxj

xixj

� �

1 þ exp
P

j2gi
bxj

xj

� � : ð5Þ

Thus a ratio bV=bT of 3.45 was estimated and used. With bV and bT terms described,
the MRF is then solved using the iterated conditional mode method (ICM).

2.3 Surface Veins Extraction

Intensity-based classification does not permit separation between surface veins and
skull, both labeled as V due to their similar intensities. As a final step, we model surface
vasculature as concavities within the tissue surface. A skull-stripping mask that pre-
serves brain tissue and surface veins is first computed via a binary majority filter
applied iteratively to the T class. This filter approximates the convex hull of the T class.
Then, vessel concavities are detected using a modified ball filter [12] that measures the
local widening within a large neighborhood Ri for all surface voxels xi classified as V.

ER ið Þ ¼ E
0

R ið Þ þ xj

X

j2Ri
E
0

R jð Þ; with E
0

R ið Þ ¼
X

j2Ri
v xj

� �
; v xj

� �
¼

0xj ¼ T

1xj ¼ V
:

�

ð6Þ

Vessel concavities are detected by computing the ball measure twice, once with
Ri = sphere (a standard sphere shape centered at xi) and once with Ri ¼ sheet(a local
3D sheet-like shape of the brain surface also centered at xi), to verify that
ER = ball(i) � ER = sheet(i).
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3 Results and Discussion

SWI acquisitions were performed on a 3T Siemens TIM Trio scanner with a 32-channel
head coil and we used a multi-echo acquisition strategy to increase signal-to-noise ratio
[13]. Thus, magnitude and phase datasets were acquired from a 3D gradient echo
sequence with transverse orientation, 0.5 9 0.5 9 1-mm resolution, 5 equally spaced
echo times (TE) within the range 13–41 ms, a repetition time (TR) of 48 ms and a flip
angle (a) of 17� for a total acquisition time of 10:24 min using GRAPPA acceleration
(factor of 2). The first echo is fully flow compensated. The third and fifth echoes are flow
compensated in the readout direction. Magnitude and phase images from each echo are
combined by standard SWI reconstruction [2]. SWI reconstructed images are then
averaged. The average dataset is resampled to 0.5-mm isotropic resolution, denoised
with a non local means algorithm [14] and corrected for intensity non-uniformity [15].

3.1 Qualitative Evaluation

An example of MRF-based SWI segmentation is illustrated in Fig. 1. Figure 1a shows
a 10-mm minimum intensity projection (mIP) slab of raw SWI data taken at the level of
the lateral ventricles (deep venous system). Figure 1b show the MRF segmentation
output and Fig. 1c shows the output of conventional multi-scale vesselness filtering
using Frangi et al.’s [6] method with typical parameters: r = [0.5-2.5], Dr = 0.25;
a = 0.5, b = 0.5, c = half the maximal Hessian norm. MRF segmentation provides a
good fit to the raw SWI data, even for smaller lower-contrast septal and subependymal
veins, and compares well with the vesselness output. Good agreement between the two
vessel extraction techniques is observed up to voxels with very low vesselness value.

The key advantage of MRF segmentation over conventional vesselness filtering is
illustrated in Fig. 2. Figure 2a shows a single SWI slice taken at the brain surface level.
Figure 2b, c respectively show the output of EM (Sect. 2.1) and MRF/skull-stripping

Fig. 1. Illustrative example of MRF-based segmentation at the level of the lateral ventricles.
(a) A 10-mm minimum intensity projection (minIP) transverse slab from a raw SWI dataset (b)
MRF segmentation. (c) Comparison to scale-space vesselness filtering. (red boxes) ROIs of the
deep venous system and left/right sub-cortical veins used for validation of Sect. 3.2. (Color
figure online)
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(Sects. 2.2 and 2.3), in comparison to vesselness segmentation (Fig. 2d). At the brain
surface, the MRF method achieves proper segmentation of the superior sagittal sinus
(SSS) and of smaller superficial vessels. These vessels are not detected by vesselness
filtering (see white circles) because they do not fit the tubular assumption. Furthermore,
the SSS is particularly challenging to segment on SWI because of the lower contrast.
Consequently, after the EM stage, several voxels belonging to the SSS are misclassified
as ‘‘tissue’’. The integration of spatial dependencies (MRF stage) improves the SSS
segmentation (see blue arrow). This regularization is achieved without eliminating
thin, transversely oriented, vessels (see green arrows).

3.2 Quantitative Evaluation

We also quantitatively compared our MRF segmentation against 16 manually seg-
mented SWI ROIs across 4 subjects. For each subject, these ROIs consist of one
10-mm mIP slab of the deep venous system (medial region of Fig. 1a), two 10-mm
mIP slabs of the sub-cortical veins on the left and right hemispheres (e.g. lateral
regions of Fig. 1a) and one whole slice taken at the brain surface level (e.g. Fig. 2).
The kappa index was computed between the MRF and expert-based segmentations
(MRF-manual kappa), and between conventional vesselness (t) and expert-based
segmentations (t-manual kappa). Since the vesselness segmentation is non-binary, we
considered the maximal t-manual kappa index on a range of possible thresholds.
Results of the comparison are shown in Table 1. For sub-cortical and deep veins, the
MRF-manual kappa index falls in the range [0.70–0.90] with and median kappa of
0.86. Furthermore, the MRF-manual is higher then the maximal t-manual kappa index
for 11 out of 12 slabs. At brain surface, the maximal t-manual kappa index drops to
the range [0.36–0.56] while the MRF-manual kappa index stays in the range
[0.77–0.84].

Fig. 2. Automatic segmentation of the surface vasculature. (a) A raw SWI slice at native
resolution. (b) Output of EM segmentation. (c) Output of MRF segmentation and skull stripping
(white contour) (d) Comparison with scale-space vesselness filtering. Vesselness filtering does
not segment the SSS and the superficial cerebral veins (see white circles). (blue arrow) MRF
regularization of SSS (Green arrows) Examples of thin, transversely oriented, vessels
preserved during the MRF stage. (Color figure online)
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3.3 Application to Neurosurgical Planning

As stated in introduction, patient-specific 3D models of the cerebral vasculature (and
surface vasculature in particular) are often used to identify vessel-free insertion tra-
jectories in minimally invasive functional neurosurgery. Figure 3 shows some
examples of cerebrovascular models created from SWI and Gadolinium-enhanced
MRI. Four patients who underwent deep brain stimulation (DBS) surgery were
scanned with both MRI protocols. The SWI datasets (top row) were segmented using
the automatic MRF method. The gadolinium-enhanced datasets (bottom row) were
manually segmented on the Medtronic StealthStation� platform by the clinical neu-
ronavigation team and used for planning the actual DBS intervention. The manually
processed clinical models may qualitatively appear smoother but are limited to the
main vasculature only and the clinical model for subject 4 is particularly incomplete.
Automatically processed SWI datasets result in denser models of the surface veins and
more side branches can be observed.

Table 1. Comparison between MRF-manual and maximal (t)esselness-manual kappa indexes
for 16 ROIs accross four subjects.

ROI Subject 1 Subject 2 Subject 3 Subject 4

MRF t MRF t MRF t MRF t

Deep venous system 0.85 0.76 0.85 0.79 0.83 0.76 0.80 0.77
Left subcortical veins 0.87 0.82 0.70 0.81 0.89 0.74 0.88 0.80
Right subcortical veins 0.90 0.81 0.86 0.79 0.86 0.78 0.86 0.81
Surface veins 0.80 0.48 0.84 0.36 0.77 0.51 0.82 0.56

Fig. 3 (top row) Automatic reconstruction of surface veins by MRF on SWI. (bottom row)
Comparison to manual segmentation on gadolinium enhanced MRI, created using the Medtronic
StealthStation

�
platform, and used clinically for DBS planning.
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4 Conclusion

Avoiding the cerebral vasculature is essential in functional neurosurgery to minimize
risks of post-operative neurological deficits. Due to the high inter-subject variability,
the cerebral vasculature must be imaged and segmented for each patient individually.
For this purpose, SWI provides more detailed imaging of cerebral veins in comparison
to conventional gadolinium protocols without requiring injection of contrast agent.
However, automatic segmentation of SWI vasculature is challenging, especially at
brain surface, due to the reversed venous contrast. In this work, we presented an
anisotropic MRF framework to segment both sub-cortical and the surface vasculature
on SWI data. To our knowledge, this is the first method that applies MRF for SWI
segmentation and, most importantly, to demonstrate adequate SWI segmentation of
the surface vasculature. Future work will concentrate on extending this MRF approach
for segmenting SWI veins at the basal ganglia level and distinguishing them from
other hypo-intense (iron-rich) nuclei present in this area.
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Abstract. In the last years, the use of magnetic resonance enterogra-
phy to evaluate inflammatory bowel diseases has become a mainstay,
thanks to its non-ionizing nature, and to the advent of faster sequences
that are less sensitive to motion artifacts. In this work we present a novel
multimodal image merging framework able to combine the detailed struc-
tural information, and the small bowel motility provided by the SSFSE
and the FIESTA sequence, respectively. Once the breathing motion has
been eliminated via non-rigid B-spline based registration, we create a
personalized peristaltic activity map from the FIESTA sequence using
optical flow analysis. Defining a new multimodal similarity measure, the
two nearest sets of FIESTA frames are projected over the SSFSE slices,
leading to a new image that provides specific structural and functional
information of the patient simultaneously. The practical utility of these
new images has been successfully evaluated in a preliminary study with
13 cases, showing its potential for planning small bowel interventions,
and patients’ diagnosis and follow up.

Keywords: Small bowel · Crohn’s disease · MR enterography · SSFSE ·
FIESTA · Optical flow · Multimodal similarity

1 Introduction

According to recent studies, there has been an increase in the incidence of
inflammatory bowel diseases at a global level [1]. In particular, Crohn’s disease
affects between 3.1 and 14.6 cases per 100,000 person-years in North America.
The disease typically manifests in the lower part of the small bowel and the
colon, with the former involved in the 80 % of the diagnosed cases. While tra-
ditional colonoscopy allows access and diagnosis to the colon, the small bowel
is especially difficult to diagnose due to poor access and complex anatomy [3].
Thanks to advances in the field of diagnostic imaging, the interest in small
bowel imaging has increased in the last years and new techniques were intro-
duced, not only in the diagnosis, but also to guide the treatment of patients
with established Crohn’s disease. These technological advances have led to the
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Fig. 1. MRE data. (a) Example of a case diagnosed with Crohn’s disease. The SSFSE
image allows to appreciate the wall thickness in the terminal ileum. (b) Three different
frames of a FIESTA sequence showing the peristalsis of the small bowel (see the seg-
ments pointed by the colored arrows). For clarity, images in (b) don’t show respiratory
motion.

development and clinical implementation of optimized MR imaging protocols,
where magnetic resonance enterography (MRE) has become a mainstay in the
evaluation of small bowel disease. Its non-invasive nature, and the absence of
ionizing radiation, make it especially useful in the pediatric population and for
patients who require serial imaging [2]. High resolution ultra-fast sequences are
particularly suitable in the study of the small bowel by MRE, providing sharp
images of the anatomy of the intestine. Fast Imaging Employing Steady-State
Acquisition (FIESTA) sequence is a free-breathing sequence in which a single
volume of the abdomen is continuously imaged over a period of seconds to allow
monitoring and quantifying the small bowel peristalsis (Fig. 1(b)). Though the
use of this cine sequence improves lesion detection, the presence of black bound-
ary artifacts along the bowel wall may mask small lesions or abnormalities. This
problem does not occur in the Single-Shot Fast Spin Echo (SSFSE) sequence,
an ultrafast sequence that enables to acquire whole MR data in a single radio
frequency excitation. This static image allows to identify areas with increased
mural thickness (Fig. 1(a)), frequently associated with bowel sections affected by
Crohn’s disease.

To the best of our knowledge, very few works in the field of medical image
processing have tried to address the characterization or modeling of the small
intestine. Holmes et al. [3] present an interactive region growing based seg-
mentation framework of the small bowel area for MRE imaging. However, the
inherent problems associated with the intestine make it difficult to extract con-
clusive topological information from the set of voxels obtained (location of small
bowel), which limits its practical applicability. Alternatively, Zhang et al. [4] seg-
mented the small bowel from high resolution contrast-enhanced CT images using
information from the surrounding mesenteric arterial vasculature; however, the
technique is based on images acquired under high radiation.
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From a completely different perspective, this work presents a new tool for the
diagnosis, treatment, and follow up of patients with Crohn’s disease. By merging
the information provided by the two MRE sequences presented above (FIESTA
and SSFSE), we create a new set of images that allows the specialist to simulta-
neously analyze the patient’s structural details provided by the SSFSE sequence,
and the particular peristaltic activity extracted from the FIESTA sequence.
First, we create a personalized intestinal peristaltic activity maps of the patient
from the FIESTA set of frames by means of the optical flow field. Defining a
multimodal similarity measure between both sequences, the two nearest sets of
FIESTA frames are combined to obtain the estimated peristaltic activity for
every SSFSE image. The multi-sequence information is then combined via mul-
timodal image registration.

2 Methods

2.1 Breathing Compensation and Peristalsis Map

In the study of the small bowel, the FIESTA sequence is used to create a coronal
cine sequence of images that reflects the temporal evolution of the area, i.e.,
monitoring the small bowel peristaltic motion. As image acquisition is relatively
slow (> 100 s. per sequence), both respiratory and peristaltic motions are present
in these images. Since the clinical interest is only the peristalsis, the respiratory
component must be corrected.

Let {Xi,t}, represents the set of frames of the FIESTA sequence acquired at
position i = 1, . . . , N over time t = 1, · · · , T (i.e., i defines the location in the
sagittal axis in which the coronal images are acquired), where the time instants
t have been discretized for simplicity of notation. The effects of the respiratory
cycle can be graphically observed by concatenating the horizontal intensity pro-
jection of each frame, [xi,1, . . . ,xi,T ], where T is the number of frames (Fig. 2(a)).
Though the main effect of the respiratory cycle is a vertical displacement of the
abdominal organs in the FIESTA sequence, its effects cannot be accurately com-
pensated by means of simple rigid registration. Instead, we perform a non-rigid
linear B-spline based registration over each i − th set of frames, using a least-
square cost function, and the tref − th frame, Xi,tref , as reference (Fig. 2(b)). In
particular, tref −th is a frame in the middle of the breathing cycle (Fig. 2(c)-(e)).
The use of first order B-splines allows us to compensate these respiratory effects
that affect the entire abdomen without introducing spurious local deformations
that could alter the actual peristalsis.

Suppose now
{
X̂i,t

}
represents the set of registered frames using Xi,tref as

a reference. Once the breathing motion has been compensated, we extract the
remaining pattern of apparent motion (i.e., the peristalsis of the small bowel)
from this sequence of ordered images. Optical flow theory allows us to model
these deformations in the small bowel as flow patterns, that is a vector field whose
components, u and v, represent the local image flow (velocity) at each pixel.
In this work we use the widely known differential-based optical flow approach
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Fig. 2. Respiratory motion correction for FIESTA data. (a)(b) Pre- and post-
registration horizontal intensity projection over time, respectively. (c) Difference
between two frames of the original unregistered sequence (gray regions show where
the two frames have the same intensities, while colored areas show where the intensi-
ties are different). (d) Registration to a frame at the end of the exhalation phase (�).
(e) Registration to a frame in the middle of the respiratory cycle (�). Note that the
correction of respiratory motion should not eliminate peristalsis (the residual motion
in (e)).

presented by Horn and Schunk [5]. This method uses the typical optical flow
constraint equation, imposing an additional global smoothness constraint. Thus,
the global energy function to minimize is

E =
∫ ∫ (

∈Xi,t · Vi +
αXi,t

αt

)2

+ α2
(≥∈ui≥2 + ≥∈vi≥2

)
dxdy (1)

where Vi = [ui,vi] is the optical flow field, and α is the regularization con-
stant. Equation (1) can be minimized by solving the associated Lagrange equa-
tion (see [5] for details). Figure 3 illustrates how ≥Vi≥ can be used to represent
graphically the peristaltic activity of the intestine.

Fig. 3. Peristalsis motion analysis. Three consecutive registered frames from the
FIESTA sequence showing the peristalsis of a particular small bowel section are pre-
sented from left. The average optical flow magnitude is shown in the right image and
provides a compact graphical representation of the activity in each bowel area.
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2.2 Frame Sets Selection and Image Fusion

Before merging the images provided by the SSFSE sequence with the peristaltic
activity field extracted from the FIESTA sequence, it is necessary to register
both sources of information. Though the MRE protocol could be theoretically
configured to acquire both sets of images at the same locations (i.e., at the
same positions of the sagittal axis), this is not always possible in practice (i.e.,
the MRE protocol was not configured with this purpose and thus the spacing
between SSFSE and FIESTA images is not the same). In this work, the most
general situation is assumed: for each SSFSE image it is necessary to identify
the closest sets of FIESTA frames.

Suppose Yj represents a SSFSE image acquired at position j = 1, . . . , M ,
and that D (I1, I2) defines a multimodal similarity measure between two images
I1 and I2. For each Yj it is necessary to find the pair of consecutive FIESTA

frame sets that maximize Dj,i = E
[
D

(
Yj , X̂i,t

)]
. To define the multimodal

similarity, D(·, ·), the regularized normalized gradient field (NGF) proposed by
Haber and Modersitzki [6] is used. Given an image I, its NGF, N (I), is defined as
N (I) = ∈I/≥∈I≥ε. The normalization term is ≥∈I≥ε =

(∑
l=1...θ ∈I2l + ε2

)1/2
,

where γ = 2 for 2D images, and ε is a measure for boundary jumps (i.e., locations
with a high gradient) which can be defined as ε =

∫ |∈I|. Given a certain point
in the image domain, p = (x, y), the vectors N (Yj)(x,y) and N (Xi)(x,y) form
an angle η(p). Since the gradient fields are normalized, the inner product of the
vectors is related to the cosine of this angle, i.e., the higher the inner product,
the higher the similarity between both locations. Thus, we can define the global
similarity measure between Yj and Xi,t as

D
(
Yj , X̂i,t

)
= E

[
≈N (Yj) ,N

(
X̂i,t

)
≤2

]
= E

[
Wj,i,t (p)2

]
(2)

where ≈·, ·≤, and Wi,j,t, represents the inner product operator, and the similarity
matrix between both images, respectively. Figure 4 illustrates the FIESTA set
selection for a particular SSFSE image.

Fig. 4. Multi-sequence MRE fusion. From left we present an example of a SSFSE

image, Yj , and the two closest FIESTA frame sets,
{
X̂6,t

}
, and

{
X̂7,t

}
. The graph

on the right shows the multimodal similarity between Yj and each FIESTA frame.
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Once the corresponding sets of FIESTA frames have been defined, it is pos-
sible to estimate the peristaltic activity field for Yj , PAFj , as a weighted sum
of ≥Vi≥ and ≥Vi+1≥. Suppose Ŷj,i is the registered version of Yj obtained via
multimodal registration to Xi,tref . Assuming that the reference frame belongs
to the same phase of the respiratory cycle (see Sect. 2.1), we can approximate
Ŷj,i ∼ Ŷj,i+1. Thus, PAFj can be defined as

PAFj =
Ŵj,i · ≥Vi≥ + Ŵj,i+1 · ≥Vi+1≥

Ŵj,i + Ŵj,i+1

(3)

where Ŵj,i = 1
T

∑
t Ŵj,i,t, and Ŵj,i,t = ≈N

(
Ŷj

)
,N

(
X̂i,t

)
≤.

3 Results

The utility of this new MRE-image merging framework was evaluated in 13 stud-
ies: 7 healthy cases with no evidence of inflammatory bowel disease, and 6 cases
in which the experts detected intestinal pathology. The scans were obtained
using two systems, an Optima MR450 1.5T MR GE system, and a Discovery
MR750 3.0T MR GE device, which provided 512 × 512 pixels images with reso-
lutions from 0.82 to 0.94 mm per pixel. The FIESTA sequences were composed
by 18 locations/slices with 15 frames per location, and a slice thickness of 8 mm.
The SSFSE sequences were formed by 30 slices with one frame per location and
6 mm slice thickness. A new set of images was generated according to the image
fusion method described in Sect. 2 (α = 0.5). These images were evaluated by
an expert radiologist to assess their potential for the diagnosis of inflammatory
bowel disease, treatment, and patient follow up. In particular, the expert is pre-
sented a map of the bowel motility that identifies an highlights the regions with
reduced motility that require attention (structural analysis).

Figures 5(a) and (b) show the SSFSE-FIESTA fusion images of two healthy
patients. Though the peristaltic activity seems to be normal, some areas with
reduced motility (< 0.5 mm/s) can be appreciated. However, the subsequent
structural analysis of these areas did not reveal any evidence of small bowel
abnormality. Figure 5(c) shows the SSFSE-FIESTA fusion image of a patient
diagnosed with Crohn’s disease, whose terminal ileum exhibits a markedly
reduced peristalsis (0.4 mm/s). In the case depicted in Fig. 5(d) and (e) there is
no sign of thickened walls and most of the small bowel seems to move normally
(≥ 0.8 mm/s). However, the last 5 cm of the ileum is narrowed with a proximally
dilated bowel, indicative of a possible bowel stricture. The images also indicate
correctly how the reduced motility of the involved areas (marked with arrow in
the image). The case depicted in Fig. 5(e) belongs to the same patient shown in
Fig. 1(a). Using the new combined image, it is possible to observe simultaneously
the wall thickness of the localized segment of the bowel (from SSFSE), and the
reduced motility of this area (from the analysis of FIESTA), below 0.6 mm/s.
These findings are indicative imaging biomarkers of Crohn’s disease.
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Fig. 5. SSFSE-FIESTA fusion images. (a)(b) Fusion images of two healthy patients.
(c) Patient with reduced peristalsis localized in the terminal ileum. (d,e) Different slices
of the same patient. The terminal ileum is narrowed with proximal dilatation (marked
with arrows). (d) Patient with significant bowel wall thickening (marked with arrows)
and reduced motility.

We quantified that healthy small bowel motility can go up to 3 mm/s, while
in the areas of reduced motility the motion of the bowel was less than 0.6 mm/s.
However, the inter- and intraindividual variability of small bowel motility [7]
must be considered when abnormalities are being sought.

Merging SSFSE and the FIESTA sequences, in combination with the quan-
titative analysis of small bowel motility, offers a new tool for diagnosis and
personalized treatment planning of intestinal diseases. These new images allow
to simultaneously study the structural information along with the peristaltic
activity in a single image, making it easier and faster to identify problematic
areas that require clinical attention. The peristaltic activity map created is also
very useful in patient follow up, such as response to treatment, allowing the
quantitative comparison of the motility of specific areas of the small bowel in
different studies of the same patient.

4 Conclusion

It is critical for gastroenterologists managing patients with inflammatory bowel
disease to accurately identify affected areas of small bowel and to monitor dis-
ease progression as they adjust their therapy over time. Worsening of small bowel
disease will prompt escalation of medical therapy. In severe cases, portions of
the bowel may have to be resected surgically and accurate localization of the
abnormal small bowel may come largely from MR enterography. Because the
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implications for treatment and prognosis are high, the ability to better iden-
tify and visualize areas of abnormal bowel motility may improve detection and
have significant implications for treatment decisions. A combination of FIESTA
and the SSFSE sequences is particularly essential in this context. While the
former provides information about the motility, the second reveals structural
details, like the thickness of the bowel wall. Merging the information from both
sequences, the new framework presented in this work allows to create a new set
of images of clinical utility for the fast and accurate assessment of inflammatory
bowel diseases. Once the respiratory movement in the FIESTA sequence has
been eliminated, a peristaltic activity map is generated via optical flow analysis.
The projection of these activity maps on the SSFSE images gives rise to a new
set of images that provides personalized structural and functional information
of the patient simultaneously.

In cases where there are only subtle changes from one MR enterography to
the next, the ability to quantify and localize abnormal areas of motility may
serve as an important new tool for radiologists when communicating disease
burden to their gastroenterology and surgery colleagues. Currently, the lack of
visualization or quantification of such abnormal areas leads to high interobserver
variability in the interpretation of small bowel disease on MR enterography.
A preliminary study with 13 cases revealed the practical utility of these new
data in real clinical studies, and their potential for patients’ diagnosis and follow
up. In the future work, we will develop an automated structural analysis of
the bowel and define quantitative measures of inflammatory bowel disease from
our new imaging biomarkers. We hypothesize that the improved visualization
of abnormal motility in small bowel will improve detection of such areas and
reduced interobserver variability. Further evaluation of these techniques will be
necessary to determine their ability to affect clinical outcomes.
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Abstract. Navigational support is a widely adopted technique in surgery
that has become a part of the clinical routine. This navigation support
either comes in the form of an abstract display that shows for exam-
ple the distance and direction to the target position or in the form of
augmented reality where segmented anatomical structures of interest are
overlaid onto a visual image sequence in real-time.

In this paper we propose a cost-effective real-time augmented reality
approach using an off-the-shelf tablet PC in combination with a novel
2D/3D point correspondence mapping technique. The proposed point
pattern matching algorithm is tailored towards moderate projective dis-
tortions and suitable for computational low-power devices. Experiments
and comparisons were done on synthetic images and accuracy was mea-
sured on real scenes. The excellent performance is demonstrated by an
Android 3D guidance application for a relevant medical intervention.

Keywords: Augmented reality · Point pattern matching · Navigation

1 Introduction

According to the World Health Organization, there are more than one million
surgery-related deaths world-wide per year [12]. One of the reasons is that per-
forming surgical interventions poses very high demands on the spatial sense of
the surgeons. As has been documented by several studies [6,9] intraoperative
3D navigation greatly supports the surgeon in complex interventions and signifi-
cantly reduces the risk for the patients. However, the currently available systems
for 3D navigation are bulky, complex to operate and expensive.

In this paper, we focus on the development of an image-guided 3D navi-
gation system that can be quickly brought in place, requires minimal training
and is affordable. We show that an off-the-shelf tablet computer can bridge
this gap although certain challenges appear. A common tablet has only one
built-in CMOS camera. Therefore, our 3D navigation system is restricted to
operate in single view mode. Furthermore, a tablet is a computational low-power
environment and thus computationally expensive image processing routines are
inapplicable for real-time applications.
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To increase usability and allow a seamless integration into the surgical work-
flow, an intuitive augmented reality (AR) visualization technique is used. In
the proposed navigation system, virtual anatomical objects are rendered and
superimposed onto the image stream from the camera and shown on the tablet.
This requires the determination of the exact 3D position and orientation of the
tablet’s camera with respect to the patient and handing over these parameters
to the virtual camera of the renderer. This brings us to the essential challenge
and core contribution of this work, namely the development of an accurate but
computationally cheap camera pose estimation.

In applications with only one tracking camera, a reliable camera pose esti-
mation method uses 3D/2D point correspondences, where the 2D coordinates
represent the pixel locations of detected landmarks and the corresponding 3D
coordinates are known with respect to an MR or CT data set of the patient. Hav-
ing several of these 3D/2D point correspondences, one can compute the camera
pose transformation relative to the 3D coordinate system of the landmarks and
therefore render anatomical structures from the right perspective.

Extracting these landmarks from an image has to be efficient and reliable.
Fast texture-based methods [4] are prone to perspective distortion [10] and likely
to fail on smooth surfaces such as teeth or bone. Therefore we decided to use
small, uniformly colored stickers as markers, which can be segmented efficiently
by color channel thresholding. In addition, we treat each new image completely
separately from the previous frames, i.e. a tracking-by-detection approach was
chosen. The advantage of tracking-by-detection is that fast movements do not
distract the tracking and there is no accumulation of error or drift over time. The
complete segmentation of the landmarks is performed on the GPU of the tablet
and results in a binary image. The centers of the circles are then determined by
using the blob detector of OpenCV.

Because the proposed landmarks are not accompanied by any unique iden-
tifier, such as distinctive colors or unique texture descriptors, there is no direct
way to assign the corresponding 3D coordinates to each detected 2D position
landmark. What might look like a simple operation at first, turns out to be a
challenging task known as point pattern matching (PPM) [3]. In our context, a
PPM method is required which matches two point patterns (the detected 2D
landmarks to the set of known 3D coordinates) related by a projective transfor-
mation. Such algorithms exist, but they are computationally too expensive [1] or
are restricted to coplanar point patterns [2,3,11]. Optimized SLAM methods [5]
might be an option, but their structure-from-motion approach does not match
our tracking-by-detection requirement.

A computationally feasible approach is to simplify the problem and match
the segmented 2D point set vS with an initially generated reference 2D point
pattern vR, which is the virtual projection of the 3D landmarks from a reference
direction (Fig. 1). With that step, projective characteristics are banished from
the model but return in the form of projective distortions.

A robust method to handle such distortions is to approximate a complex geo-
metric behavior by multiple local low-order transformations [8]. On the basis of
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Fig. 1. Simplification of the 3D/2D to a 2D/2D correspondence problem. The blue
points denote the 3D object points, the red points the 2D reference pattern projected
from the reference direction, and the green points on the tablet the 2D sensed pattern.

this idea, we developed a computationally lightweight algorithm used for rather
small point patterns. The newly proposed method is called Point Recursive
Matching (PRM).

2 Method

The PRM algorithm is based on a recursive structure with an early stopping
criterion. Before the algorithm can be applied to find correspondences, point
set descriptors QR of vR and QS of vS needs to be computed. The descriptors
themselves serve as a look-up table during the recursion and therefore do not
need to be recomputed after each iteration. The algorithm is able to handle
multiple occlusions since it tries to establish correspondences by locally finding
corresponding points and does not try to match the complete pattern at once. By
changing the number of nearest point neighbors Nnb, among which the solution
finding process continues, one can adjust how locally the algorithm operates.

Point Set Descriptor. The first step of building the point set descriptor
involves the definition of an arbitrarily chosen base direction. Subsequently, a
descriptor for every point in the point set is computed as follows: compute the
connecting vector to every other point in the point set, and compute the angle
of this vector with respect to the base direction. The angle of a point to itself
is defined as −1. Figure 2 shows two example point descriptors for point a and
b. Finally, all the point descriptors are appended in row-direction into a matrix,
which forms the complete point set descriptor Q (Fig. 3). Once the two point set
descriptors QR of vR and QS of vS are computed, point correspondences can be
established with the recursive approach described in the next paragraph.
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Fig. 2. Two example point descriptors.

Angles
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a -1 θb θc θd θe

b βa -1 βc βd βe

c γa γb -1 γd γe

d δa δb δc -1 δe
e εa εb εc εd -1

Fig. 3. Point set descriptor Q in matrix
form.

Matching Algorithm. For practical reasons, we demonstrate the matching
algorithm on two example point sets vR and vS (Fig. 4, 5, 6 and 7). The set vS
results from the segmentation and therefore has an arbitrary point order. The
algorithm starts with the first point of each point set and assumes that these
two points correspond to each other. In the example point sets, this corresponds
to a ↔ a◦ and is shown in Fig. 4.

Next, the algorithm chooses the next point pair among the Nnb nearest neigh-
bors of the last assigned correspondence, a respective a◦. In this case, the algo-
rithm assigns b ↔ b◦ to each other, and reads the angles φab and φa′b′ from the
pre-computed point set descriptors QR and QS . In particular these correspond
to the entries αb (Fig. 3) in both QR and QS . This step is shown in Fig. 5.

The difference of these two angles is kept as the offset between the two point
sets φoffset = φab − φa′b′ . This offset is subtracted in the following from every
angle in the sensed point set descriptor QS , in order to make it rotation invariant.

The third corresponding point pair is chosen among the not yet assigned Nnb

nearest neighbor points of b and b◦, for example the point pair c ↔ c◦ (Fig. 6).
With the obtained φoffset from the former two correspondences, the algorithm
can efficiently validate further point correspondences by comparing the angles
between each already assigned point correspondence with the candidate point
pair in both descriptors QR and QS . The assignment is rejected if a predefined
angular difference λth is exceeded.

With regard to the example, the angles φac and φa′c′ , and φbc and φb′c′

are compared. If one of the differences φdiffα
= |(φa′c′ − φoffset) − φac| or

φdiffβ
= |(φb′c′ −φoffset)−φbc| is larger than the threshold λth, the assignment

c ↔ c◦ is rejected and the next correspondence pair d ↔ c◦ is tested. Otherwise
the algorithm tries to establish further point correspondences by following the
same routine.

The PRM algorithm in this way can be formulated very compactly in a
recursive manner. With every recursive step, one new point pair is tested and
potentially rejected. The current best solution is the one which could determine
most point correspondences. If several solutions have an equal number of corre-
spondences, the one with the lowest accumulated angular difference is chosen.
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Fig. 7. Final solution to the correspon-
dence problem.

With the angular threshold λth ≥ 360∗ and number of nearest neighbors
Nnb = number of all points, the PRM algorithm corresponds to an exhaustive
brute-force search of the best possible combination. The parameters λth and
Nnb help pruning the exhaustive search tree significantly by removing branches
with an unreasonably high error early in the recursive search and by limiting
the search space. The final assigned solution for the given example can be seen
in Fig. 7.

The bottom-up approach of PRM handles occluded points in a natural way.
Since the algorithm tries to find corresponding point pairs locally, it will simply
skip any occluded points and try to assign the next point in the list. The com-
parison of angles is facilitated with the use of the point set descriptors QR and
QS as look-up tables. The only arithmetic computations during the recursion
process are the subtraction of the angle offset φoffset and accumulation of the
angular error, the rest are just comparisons.

3 Experiments and Results

In all the experiments, the PRM uses an angular threshold λth = 30∗ and con-
siders Nnb = 4 neighbors.
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PRM: Varying Camera Viewing Angle. In order to benchmark the PRM
algorithm, we evaluated it on synthetic data in a MATLAB environment and
compared it against a recently published method based on shape context and
minimum spanning trees [7], denoted as SC.

The goal of this experiment was to assess the performance of the PPM algo-
rithms with respect to the camera direction, thus varying projective distortion.
The camera direction is always measured relative to the reference direction. For
every sample camera direction, denoted as θcap, 5000 randomly selected camera
positions within the range from 0∗ to θcap (Fig. 8) are generated and for each
camera position a random point pattern consisting of nine 3D points is projected
and tested. Whenever the sample θcap produces a correspondence match with
at least 6 correct matches (minimum number of points required to compute the
camera pose) with no mismatched points, the sample is considered as correct.
The random point pattern is constrained to be in a rectangular volume of the
same size as the points located on our real objects: 75 mm × 45 mm and 15 mm
in depth relative to the reference direction.

The results are shown in Fig. 9. Between 0∗ and 5.5∗, SC shows better results.
For larger viewing angles, PRM performs better.
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Fig. 8. Two different θcap. The refer-
ence direction is shown in blue, the red
crosses on the spherical cap denote the
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Fig. 9. Success rate with varying cam-
era viewing angle.

Computational Performance of the Android Implementation. The mea-
surements were taken on an Asus Transformer Prime TF 201, Tegra 3 1400MHz.
The average times were determined using natural images as seen in the med-
ical application described below. The mean time elapsed for reading an image
from the camera required 10 ms whereas the segmentation on the GPU and
CPU required 45 ms. Together with an average of 3 ms required for the PRM (C
implementation) and some additional overhead to render the 3D object into the
image, this resulted in an average framerate of 15 frames per second. A significant
amount of time is required to pass data through the Java Native Interface.
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Accuracy of the AR Navigation System. The accuracy was determined by
measuring the distance between a real point and its augmented location. The
measurement was performed in the image and converted to metric units. From
six different camera positions, one measurement for each was done. A mean error
of 0.8 mm between the real and the augmented position could be evaluated. The
standard deviation was 1.0 mm with a maximum error of 2.6 mm.

4 Medical Application

Together with the surgeons, the applicability of the proposed technique was
shown in-vitro for tumor surgeries in the head and neck area. The surgeon placed
the markers in locations well identifiable in the MR/CT scan as well as on the
anatomical models. Figures 10 and 11 show our Android navigation solution at
execution with the tumor and other critical structures overlaid onto the image.

Fig. 10. A tumor in mandibulae region
and the alveolaris nerve.

Fig. 11. A tumor in zygomaticum
region and a missing tooth.

5 Discussion

The main conclusions that can be drawn from these experiments is that the
PRM algorithm is more robust in comparison to the state-of-the-art in finding
corresponding point pairs and is suitable for mobile real-time applications. Fur-
thermore, the algorithm is based on a simple concept and can be implemented
rather easily. The improved insensitivity, as compared to the state-of-the-art, to
perspective changes, PRM lends itself to practical applications for example in
clinical navigation tasks.

Although, the monte-carlo simulations showed a small disadvantage of PRM
over SC for small perspective distortions, no such effect could be observed for
real scenes.

A limitation common to all optical navigation solutions is the line of sight
problem. During a surgical intervention landmarks can get covered for example
by a surgical instrument or the hand of the surgeon. Once less than six landmarks
can be seen no camera pose estimation is possible anymore. A further restric-
tion is the rigid body assumption that is not valid in every case. Putting the
landmarks on soft-tissue, for example skin, could thus pose additional challenges.
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6 Conclusion

In this paper we proposed a single-view 3D navigation system applicable for
general guidance tasks during surgeries. The achieved accuracy combined with its
low cost opens a whole new field of easily deployable surgical navigation systems
that could also find their application in third-world countries or in remote areas.

Beyond its clinical use, the introduced PPM algorithm performs well under
perspective distortion and may contribute in general to AR applications on com-
putational low-powered devices such as tablet computers or smartphones.
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Abstract. Multimodal registration of CT and MR scans is a required
step in leading edge adaptive MR-based image guided radiation therapy
protocols. Yet, anatomical changes limit the precision of the registration
process and therefore that of the whole intervention. In prostate radia-
tion therapy, the difference in bladder and rectum filling can significantly
displace both the targeted area and the organs at risk. Here, we describe
a method that integrates an image-based similarity criterion with the
anatomical information from manual contours to guide the registration
process toward an accurate solution. Whole pelvis CT and MR scans of
33 patients have been nonrigidly registered, and the proposed method
leads to an average improvement of 0.17 DSC when compared to a base-
line nonrigid registrations. The increased accuracy will thus enhance an
MR-based prostate radiation therapy protocol.

1 Introduction

The field of image guided radiation therapy (IMRT) is currently undergoing a
strong push toward the establishment of MR-based clinical protocols. In prostate
radiation therapy, in particular, the good soft tissue contrast of MRI brings clear
clinical advantages: the prostate is much easier to identify and contour [11],
which can result in reduced toxicity and improved treatment outcome. However,
the problem of estimating the megavoltage attenuation coefficients from the
MR images is a major hurdle preventing a widespread acceptance of MR-based
protocols. This problem is also of the foremost importance in what concerns the
assessment of toxicity following radiation therapy and in PET-MR imaging.

Currently, atlas-based methods are generally considered as the most accurate
approaches [2] for the estimation of attenuation coefficient from MR. While
atlas-based methods were first defined in the context of brain imaging [2], some
authors recently reported promising result on pelvis imaging [5]. These methods
rely on the availability of a multi-patient atlas composed of accurately registered
CT and MR volumes in order to estimate an electron density mapping. However,
CT–MRI co-registration of pelvis imaging remains a challenging task, even when
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considering only the simpler rigid and affine cases [4]. Moreover, the maximal
accuracy achievable by atlas-based method is directly linked to the accuracy of
the registration process in use. When rigid or affine registration is relied upon,
any potentially large deformation of the anatomy — for example bladder filling
or gas movement in the bowel — happening between the two imaging sessions
will significantly limit the precision of the method. Hence, nonrigid registration
is required to align CT and MR scans of the pelvis with high accuracy.

The large CT–MR image intensity discrepancy makes nonrigid registration
challenging. For such multimodal problems, the mutual information (MI) crite-
rion [10] is generally considered as the standard image similarity metric, but,
in our experience, has too many local minima to drive the registration process
to the optimal solution on its own. Several attempts to overcome this difficulty
have been presented. For example, Andronache et al.[1] consider using a combi-
nation of both MI and CC and some intensity mapping function to solve various
CT–MR registration problem, however they do not address directly the prob-
lem of large deformations. A semi-automatic method is considered by Fei et al.
[6] which overcomes the challenge associated with large deformations by using
a small number of fiducial points selected by an operator. Methods allowing
a higher level of anatomical-prior integration were also proposed. The method
recently presented by [8] uses the output of the automatic segmentation com-
puted by FreeSurfer to guide a brain registration process. The method is designed
to be very accurate for inter-subject registration, but its computational cost is
currently prohibitive for our application, which is mostly focused on adaptive
MR-based radiation therapy. In addition, no results on intermodal datasets are
presented. In [7], the authors present a method for the registration of full body
CT and MR scans that incorporates anatomical guidance by using prior knowl-
edge on class probabilities. They use a Bayesian Approach to derive class prob-
abilities from the MR intensity, and then use a Kullback-Leibler metric in the
energy function to take this prior into account. However, they do not consider
the integration prior information from previously defined automatic or manual
contours.

This paper presents a new methodology that allows integrating the geomet-
rical information provided by the different structure contours into the nonrigid
registration process. Background information on nonrigid registration is provided
in Sect. 2. Section 3 discusses the performance of classic nonrigid schemes and
describes the proposed structure-guided nonrigid registration framework. The
results of experiments conducted on a 33 patients CT–MR dataset are reported
in Sect. 4. Finally, Sect. 5 holds a discussion and the conclusion.

2 Diffeomorphic CT–MR Nonrigid Registration

Nonrigid registration generally involves the optimization of some objective func-
tion composed of (1) an image similarity term, and (2) a regularization term.
The former is a certain measure of how close the two images to be registered are,
and the latter represents certain a priori concerning the form of the estimated
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deformation field. Formally, we have

E(I1, I2,T) = ESim(I1,T(I2)) − αEReg(T) (1)

where T is a nonrigid transformation operation. Various transformation models
were proposed in the literature each having different trade-off. The B-Spline
based free-form transformation model presented by Rueckert et al. [13] was
selected in this work since it is generally considered accurate, can be computed
efficiently [9], and can be constrained to diffeomorphic mappings [14]. In CT–
MR registration, there is no straightforward relation between the image intensi-
ties. The Mutual Information (MI) criterion and its normalized version (NMI)
only assume that there is some sort of statistical relationship between the two
images, and are now de facto standard in nonrigid multimodal registration. For
an enlightening discussion of the subject, we refer the reader to [10]. In this work,
we used ESim = NMI. In what concerns regularization, we propose using the
classic bending energy [13] term in conjunction with a term that ensures that
the deformation field is diffeomorphic [9], as follows:

EReg =
1
V

∫
Ω

∈H(x)∈F dx + ε

∫
Ω

log |J(x)|dx (2)

where V denotes the volume of the image domain ε, x = (x, y, z), |J(x)| is
the determinant of the Jacobian matrix, and ∈H(x)∈F is the Frobenius norm
of the Hessian matrix. The first part favours smooth deformations. The second
part penalizes the log of the Jacobian of the transformation. A Jacobian |J |
greater than 1 indicates an area of expansion in the deformation field, |J | < 1
indicates contraction, and |J | <= 0 indicates lost of information or folding and
is a pathological case. The term log |J | goes to infinity as |J | goes to 0, and, in
fact, ensures that the deformation field is diffeomorphic. The final registration
transformation T is computed by maximizing (1) using a pyramid approach [13].

3 Methodology

The nonrigid registration method discussed above has been demonstrated suit-
able for a large range of problems and can also be applied to CT–MR pelvis

Fig. 1. Sample nonrigid registration using (1), sagittal planes. From left to right : CT
scan, registered MR scan, and blended image. Note the difference in bladder size.
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Fig. 2. Sample nonrigid contour registration for the following tissue: bladder, prostate,
rectum, and bones using (3), sagittal planes. From left to right : reference CT contour,
input MR contour, and MR contour after registration and resampling. Note how the
registered MR bladder contours better matches that from the CT contours images.

registration with some success. However, as depicted in Fig. 1, the computed
deformation is somewhat too local to allow to compensate for large deforma-
tion — in this case the change in bladder volume. This is a serious problem
in prostate radiation therapy since the bladder volume can change significantly
within a few minutes, thereby displacing the target (prostate) by several mil-
limetres, and presumably reducing the efficiency of the treatment as well as
augmenting toxicity.

3.1 Anatomical Prior

Tissue contours, either obtained as part of the standard clinical protocol, using
an automatic method [3], or otherwise, can be used as strong geometric cues to
guide the registration process. Given a collection of N pairs of CT–MR contours,
a deformation field can be computed that maps the MR contours to the CT
contours by optimizing the energy function

E(C1, C2,T) = EStruc(C1,T(C2)) − γEReg(T) (3)

with

EStruc(C1,T(C2)) =
1
N

N∑
i=1

S(C1,i,T(C2,i)) (4)

where S(Ci, Cj) is some similarity measure. In this work, the contours are rep-
resented using binary volume where 0 indicates the background and 1 indicate
the contoured tissues. Different similarity measures are suitable to register such
binary image, but NMI appears to have good performance characteristics and
was selected for its ease of implementation.

Following a successful optimization, the computed transformation T (Fig. 2)
is a good approximation of the true deformation field, but cannot be expected
to be highly accurate due to unavoidable variability in the contouring process or
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imaging characteristics. In particular, in prostate radiation therapy the CT will
generally be contoured with the goal of radiation planning in mind. As such, some
tissue classes might be voluntary oversegmented to account for some presumed
microscopic spreads or simply in reason of the poor soft tissue contrast. The MR
contours are generally closer to the true soft tissue anatomy, but bone contours
are necessary inaccurate on T2 scans due to the very low signal. In addition,
intra- or inter-rater variability will affect the results.

3.2 Structure-Guided Nonrigid Registration

Here, we propose an integrated method that allows for anatomical-guidance
while taking into account the image intensity in the registration process. The
main hypothesis in this method is that the contour can provide an initial solution,
but that the maximization of the image similarity criterion will allow finding the
best transformation. Using (1), (2), and (3), we define

E(I1, I2, C1, C2,T) =(1 − η)ESim(I1,T(I2)) + ηEStruc(C1,T(C2))
− (α(1 − η) + ηγ)EReg(T). (5)

The parameter η ≥ [0, 1] adjusts the trade-off between anatomical guidance and
the image similarity criterion, and might vary during the registration. Intuitively,
we propose using η should be close to 1 at the beginning of the process, and
reducing it to 0 at the final stage. Hence, at the end of the process, (5) reduces
to (1), and the proposed method has not changed the optimization problem,
but only the initial solution and search direction. As T as been selected to
remain diffeomorphic throughout the registration process, no loss of information
or unrealistic folding of the space occur at any step. It is worth noting that the
factor (α(1 − η) + ηγ) might be reduced to a constant, but this form is more
explicit about the different numerical scales of ESim and EStruc.

4 Experiments

A dataset of 33 CT–MR scans were acquired during the course of a study involv-
ing prostate cancer patients that have been prescribed hypofractionated radia-
tion therapy. The CT scans were acquired with either a GE LightSpeed scanner
with 2.0 mm slices or a Toshiba Acquilion scanner with 2.5 mm slices. MRIs were
FSE-x1 T2 scans with a field of view encompassing the whole pelvis with 3.0 mm
slices. A group of radiation oncologists and experience radiation therapists con-
toured the prostate, bladder, rectum and bones on all CT and MR scans. Before
applying the presented nonrigid registration method, each MR scan has been
preprocessed with the N3 algorithm [15] and aligned with the corresponding CT
scan using a robust inverse-consistent affine registration algorithm [12].

Same-patient CT and MR scans were registered using the proposed structure-
guided registration method corresponding to (5), and also with the NiftyReg
[9] registration tool (adjusted according to (1)) for comparison purpose. The
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parameters of the method permit to adjust the smoothness of the registra-
tion transformation. Selecting the best parameters is non-trivial and problem
dependant. Here, we selected the following set of parameters by trial and error:
ε = 0.2, α = 0.01, γ = 0.00125. The last parameter, η balance the weight of
the contour term. In this study, we decided to perform a two step optimization,
first with η = 1, and then with η = 0. Hence, the final solution depends only
on the image-based term. Evaluating the results is difficult as no ground-truth
exist for this kind of problem. Still, we consider here three types of performance
indicator: (1) qualitative result images, (2) the residual NMI, and (3) the Dice
Similarity Criterion (DSC), as computed using the CT and MR manual con-
tours. The last method is attractive since it relies on expert knowledge of the
anatomy. However, it must be stressed that although the contours are not used
at the last stage of the registration, they are still used at an earlier stage to pro-
vide structure-guidance. Therefore, this measure is biased toward the proposed
method, and must be interpreted carefully. Nonetheless, we present it here since
the position of those very structures is critical in radiation therapy. Sample result
images are presented in Fig. 3, and quantitative results are in Table 1. Compu-
tational time for the structure-guided method was about 15 min per scan, which
is reasonable for off-line CT-MR atlas construction.

5 Discussion and conclusion

The results presented in Table 1 and in Fig. 3 indicate that the proposed method
leads to substantial improvements in the nonrigid registration of CT-MR images
with potentially large deformations. However, as presented in Table 1, our method
does not lead to a large improvement in the NMI between the CT and MR
image. This constitutes an interesting manifestation of the multimodal nature
of the NMI optimization surface: although the final registration transformation
computed by the two methods might differ vastly, they both achieve a similar
level in term of the similarity metric. Thus, the proposed method allows finding
potentially more accurate local minima than the more traditional method. In
the future, different values for alpha will also be explored, to see if the accuracy
of the method can be improved. In addition, using multiple contours created by
different observers will enable us to perform a fairer evaluation of the algorithms.

Table 1. Quantitative comparison of registration methods. Average values, 33 patients.

Tissue Affine [12] NiftyReg [9] Proposed

Dice Bladder 0.6606 0.6559 0.8883
Prostate 0.6196 0.6249 0.8212
Rectum 0.5776 0.6020 0.8090
Bones 0.7539 0.7682 0.8800
Average 0.6529 0.6627 0.8496
NMI 1.8977 1.8998 1.9015
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NiftyReg CT Proposed

Fig. 3. Sample results, axial view. Each row corresponds to a different patient. Note the
improvements in bladder and rectum size and position (arrows). The MR images were
resampled in the CT images space. From left to right : results obtained with NiftyReg,
reference CT images, and results obtained with the proposed method.
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To summarize, in this paper, we have presented a new methodology that
allows integrating the geometrical information provided by different structure
contours into the nonrigid registration process. The nonrigid transformation
mapping an MR image to a CT image is estimated by optimizing an energy
function that takes into account both image-based and contour-based similar-
ity measures. Future work will include the integration of this structure-guided
nonrigid registration scheme into an atlas-based method for electron density
estimation from MR images.
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Abstract. Purpose: Freehand placement of external ventricular drain-
age is not sufficiently accurate and precise. In the absence of high qual-
ity pre-operative 3D images, we propose the use of an average model for
guidance of ventricular catheters. Methods: The model was segmented
to extract the ventricles and registered to five normal volunteers. The
proposed method was validated by comparing the trajectory resulting
from the use of the average model to the use of volunteer-specific images.
Results: The distances between the target points in the model and the
volunteer-specific images at the left and right foramen of Monroe were
computed (Mean±std: 5.74±1.39 mm and 6.00±1.17 mm for the left and
right side respectively). We also compared the angles between the tra-
jectories resulting from the use of volunteer specific data and the average
model and the engagement of the trajectories with the frontal horn of
the ipsilateral ventricle. Conclusions: Although an average model for
guidance of a surgical procedure has a number of limitations, our initial
experiments show that the use of a model might provide sufficient guid-
ance for determination of the angle of insertion. Future work will include
further clinical testing and possible refinement of the model.

Keywords: Image guided surgery · Neurosurgery · External ventricular
drains

1 Introduction

Insertion of an external ventricular drain (EVD) is one of the most common
procedures in neurosurgery. A small plastic catheter is placed inside the frontal
horn of the lateral ventricle in order to relieve increased intracranial pressure or
as part of a cerebral shunt in the treatment of hydrocephalus. The placement
of an EDV is regarded as a fast and uncomplicated procedure often performed
under emergency conditions either in the operating room or in the intensive care
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unit without rigid head fixation or three-dimensional pre-operative images. In
general, only a few 2D CT images of the patient are available before surgery.
The standard surgical technique is a freehand pass through a burr hole in the
skull. The point of entry, called Kocher’s point, is located approximately 1.5 cm
anterior to the coronal suture and 2.5 cm lateral to the midline. The choice of
trajectory to reach the frontal horn of the lateral ventricle is based on external
landmarks such as the canthus of the eye and the tragus. Free flow of cere-
brospinal fluid (CSF) from the distal end of the catheter is considered an indi-
cation of satisfactory placement. Unfortunately, occlusion of the catheter due to
incorrect or sub-optimal placement is a major cause of re-operations and com-
plications related to the procedure. Toma et al. [1] reported that only about
40 % of the 183 ventricular catheters in their retrospective study were correctly
placed within the frontal horn of the lateral ventricle. Huyette et al. [2] retro-
spectively evaluated post-operative CT scans from 97 patients and found that
only 56.1 % of the catheters were placed in the ipsi-lateral ventricle. They also
found that 22.4 % of the catheters were placed in non-ventricular spaces. Even
the successfully placed catheters were on average 16 mm from the target just
above the foramen of Monroe. On average, two passes were needed for successful
placement.

As the fraction of catheters incorrectly or sub-optimally placed remains high,
different image guidance techniques have been developed. Hayhust et al. [3] devel-
oped and evaluated a system based on an electromagnetic positioning system.
They concluded that image guidance reduced poor placement of the catheter
and resulted in a significant decrease in the early shunt revision rate. Levitt
et al. [4] also found that the accuracy of catheter placement was significantly
improved with image guidance in a retrospective study of 102 shunt surgeries in
89 patients.

Even though image guidance seems to improve the accuracy of the catheter
placement, the need for additional imaging and rigid head fixation makes the
solution unattractive or even unfeasible in many cases, as pointed out by Kestle
[5]. In this paper, we therefore investigate the use of a pre-defined model to
guide the placement of ventricular catheters in the absence of patient-specific 3D
images suited for traditional image guidance. The model is an adapted version
of the ICBM152 non-linear symmetric average model [6]. Atlases and average
models have traditionally been used in neurosurgery to guide procedures such as
electrode placement for deep brain stimulation [7,8]. The atlas is then registered
to a patient specific image in order to identify regions that are unresolved by
conventional MRI imaging such as the nuclei of the basal ganglia and thalamus.
In this paper, however, we use the average model directly to guide the place-
ment of ventricular catheters. The model is registered to the patient using a
set of anatomical landmarks in addition to a surface trajectory acquired with a
computer tracked pointer on the patient’s head. The registered model can then
be used to plan the trajectory toward the ipsi-lateral ventricle and the foramen
of Monroe. We have validated this approach using data from five normal volun-
teers, and we compare two trajectories starting from Kocher’s point: (I) image
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guidance using volunteer specific data and (II) image guidance using model data,
which is the new method proposed in this paper. The new model-based method
and the validation experiments are detailed in the following sections.

2 Methods

2.1 Model Segmentation and Image-to-Volunteer Registration

The ICBM-152 average brain model was segmented using the Freesurfer package,
which is documented and freely available for download online (http://surfer.nmr.
mgh.harvard.edu/). The automatic segmentation of brain structures is described
in Fischl et al. [9]. Following the full brain segmentation, we extracted the labels
corresponding to the left and right lateral ventricles and the third ventricle. The
third ventricle is important in order to clearly see the foramen of Monroe which
is the target point for the placement of ventricular catheters. We then segmented
the skin surface from the model using the foreground filter that is part of 3DSlicer
[10] (http://www.slicer.org/). This method uses the Otsu threshold algorithm
[11] and morphological operators to achieve segmentation.

For validation purposes, we obtained T1-weighted MR images of the five nor-
mal volunteers that participated in the study. The MR images of the volunteers
were also segmented using the Freesurfer package. The ventricles were extracted
from the label dataset and the skin surfaces were segmented using the foreground
filter in 3DSlicer. We also manually identified seven anatomical landmarks (lat-
eral and medial canthus of both eyes, the nasion and tragus on each side) in each
volunteers image volume.

2.2 Identification of Skin Landmarks in the Average Model

The use of anatomical landmarks for model-to-patient registration requires iden-
tification of anatomical skin landmarks in the ICBM-152 average brain. When
the ICBM-152 average brain was generated [6], the optimization of the registra-
tion parameters was performed only on the brain. The skin, skull, eyes, muscles
etc. were excluded from the registration algorithm using a brain mask. Conse-
quently, the skin surface in the ICBM-152 average brain is blurry and reliable
identification of anatomical skin landmarks in this volume is associated with con-
siderable uncertainty. We therefore identified the seven anatomical landmarks in
the MR images of the five volunteers. The MR images of the volunteers were then
registered to the ICBM-152 average brain using the elastix software [12] built
on top the InsightToolkit (ITK) [13]. In a first step, we performed a rigid body
registration and then in a second step a full 12 parameters affine registration. In
both steps we used the mutual information similarity measure and a standard
gradient descent optimization technique. In general, non-linear registration is
needed to accurately register an individual brain to the ICBM-152 average. In
this case, we were mainly interested in registration of non-brain features such
as the eyes and ears. We therefore considered an affine transformation to be
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sufficient for this purpose. The resulting transforms were then applied to the
anatomical landmarks identified for the five volunteers bringing the landmarks
into the ICBM-152 space. The landmarks corresponding to each anatomical loca-
tion from the five volunteers were then averaged to generate seven landmarks
in ICBM-152 space. The fact that the skin surface in the ICBM-152 average
brain is blurry obviously represents a source of uncertainty in the segmentation
of the skin surface. Therefore, we optimized the parameters of the skin surface
segmentation in order to minimize the distance between the segmented surface
and the anatomical landmarks. The mean distance between the points and the
surface is 1.14 ± 0.53 mm.

2.3 Registration and Identification of Entry Point

Following skin surface segmentation and identification of anatomical landmarks,
registration of the ICBM-152 average brain to the volunteer could be performed.
In a first step, we used a tracked pointer (Northern Digital Inc., Waterloo, ON) to
identify the seven anatomical points on the volunteer. We then continuously sam-
pled points with the tracked pointer by moving the pointer tip over the available
skin surface (face and scalp). For surface based registration, we use a modified
version of the ICP [14] algorithm incorporating the least trimmed squares (LTS)
estimator [15] to reduce the influence of possible outliers. More details can be
found in [16]. In order to improve the accuracy we measured the maximum dis-
tance between the frontal horns of the ventricles in the volunteer-specific data
and applied the corresponding scaling factor to the ventricles segmented from the
model. This measurement is routinely performed by the neurosurgeons before
the procedure in order to characterize the size of the ventricular system.

The standard entry point for EDV, called Kocher’s point is located approx-
imately 1.5 cm anterior to the coronal suture and 2.5 cm lateral to the midline.
Definitions of this point may vary slightly, but we believe this definition is widely
used among neurosurgeons. In order to construct the catheter trajectories we
needed to locate this point in the volunteer datasets. Unfortunately, the coronal
suture is not easily detected in T1-weighted MR images. Therefore, we used a
result from Sarmento et al. [17] who investigated the relationship between the
central lobe and the coronal suture in 32 cadavers. They found that the coro-
nal suture was, on average, located 5.91 cm anterior to the central sulcus in the
midline. We thus identified Kocher’s point 5.91 cm + 1.5 cm = 7.41 cm anterior
to the top of the central sulcus and 2.5 cm lateral to the midline on the right
side in standard stereotactic space using the ICBM-152 average brain. As part
of the segmentation using Freesurfer, the five datasets were registered to stereo-
tactic space. It was therefore straightforward to invert these transforms in order
to obtain Kocher’s point in the native space of each dataset. Finally, the five
Kocher’s points were transformed using the image-to-volunteer registration in
order to bring the entry points into the coordinate system of each volunteer.
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2.4 Trajectories

In this paper, we compare two different trajectories starting at Kocher’s point:
(I) This is the trajectory from Kocher’s point to the target defined at the fora-
men of Monroe in the volunteer-specific data registered to he volunteer. This
trajectory does not represent the absolute truth as we do not take into account
the registration error between the image and the volunteer. Consequently, this
trajectory represents the use of traditional neuronavigation for placement of ven-
tricular catheters. (II) Second, the model-based trajectory is the trajectory from
Kocher’s point to the target defined at the foramen of Monroe in the average
model registered to the volunteer. This is the new trajectory we propose in this
paper.

3 Experiments

We validated the method on five normal volunteers. The volunteers were placed
in a supine position. The head was immobilized using a vacuum pillow routinely
used for shunt patients. Using our in-house navigation system with an optical
tracking system (Polaris, Northern Digital Inc., Waterloo, ON), we acquired the
position of the seven anatomical landmarks using a tracked pointer: lateral and
medial canthus of both eyes, the nasion and tragus on each side. We finally
acquired a set of surface points by continuously sampling a trajectory on the
skin surface.

Using the image-to-patient registration method described in Sect. 2.3, we
retrospectively registered the ICBM-152 average brain to the volunteer. We
used a seven parameters linear transformation (3 translations, 3 rotations and
isotropic scaling). The landmarks corresponding to the volunteer in question were
excluded from the average point set in model space in order to avoid any bias.
The resulting transformation was also applied to the segmented ventricles. In
order to validate the position and orientation of the resulting ventricles, we used
the T1-weighted MR image of the volunteer. We registered the volunteer-specific
dataset to the volunteer in a similar manner. For this registration, we used a rigid
body transformation. The resulting transformation was finally applied to the seg-
mented volunteer-specific ventricles. Following image-to-volunteer registration
we determined the position of Kocher’s point in each dataset and constructed
the two trajectories starting at this point for each volunteer. We also identified
the target points for a ventricular catheter in each lateral ventricle immediately
above the foramen of Monroe and computed the distances between the target
points in the average model and the volunteer-specific datasets.

4 Results

To evaluate the accuracy of the average model we measured the distance between
the target points in the average model and in the volunteer-specific dataset.
The results are presented in Table 1. In order to compare the two trajectories,
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Table 1. Distances between the target points (left and right foramen of Monroe) in
the average model and the volunteer-specific datasets

Volunteer Distance left targets (mm) Distance right targets(mm)

1 4.67 5.23
2 7.06 6.71
3 6.13 6.67
4 3.91 4.32
5 6.92 7.08

Mean±std (mm) 5.74±1.39 6.00±1.17

Table 2. Angles between volunteer specific and model based trajectories for five vol-
unteers.

Volunteer Angle (degree)

1 3.77
2 4.47
3 4.00
4 2.14
5 3.53

Mean±std 3.58±0.88

Table 3. The length of the different trajectories (mm) inside the frontal horn of the
right lateral ventricle

Volunteer Volunteer specific Model

1 14.65 10.63
2 13.40 10.90
3 25.00 23.15
4 16.80 14.66
5 19.90 15.50

Mean±std 17.9±4.64 14.97±5.07

Fig. 1. The different trajectories constructed for one of the volunteers: Volunteer-
specific ventricles in orange, model ventricles in blue, Kocher’s point in green, volunteer
specific trajectory in green and model based trajectory in yellow (Color figure online).
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Fig. 2. The different trajectories for all five volunteers: Volunteer-specific ventricles in
orange, model ventricles in blue, Kocher’s point in green, volunteer specific trajectory
in green and model-based trajectory in yellow (Color figure online).

we computed the angle between the volunteer specific trajectory and the model-
based trajectory. The results are given in Table 2. We also computed the length
of each trajectory inside the frontal horn of the volunteer-specific right lateral
ventricle in mm. These results are presented in Table 3. The model-based trajec-
tory intersects with the frontal horn of the lateral ventricle in all five cases. An
example of the two trajectories in one volunteer is shown in Fig. 1 and a closer
view of the trajectories and ventricles in all five datasets is shown in Fig. 2.

5 Discussion and Conclusions

In this paper, we have presented the use of an average model to guide the place-
ment of ventricular catheters in the brain. We have validated the method using
data from five normal volunteers and compared guidance using the ICBM-152
average brain to the use of volunteer specific data. In this limited and prelimi-
nary study, we have shown that it is possible to obtain a registration error on the
order of 6 mm at the foramen of Monroe and a deviation in the angle compared
to the use of patient specific data below 4◦. These results suggest that the aver-
age model could provide sufficiently accurate guidance for this procedure. In the
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placement of EVDs a placement is often considered successful if the tip of the
catheter is free-floating inside the frontal horn of the ventricle. The engagement
of the trajectory with the ventricle is therefore important to ensure a free-floating
catheter tip. The results presented here show that the engagement of the model
based trajectory will ensure an engagement similar to the trajectory based on
volunteer specific data. Volunteer-specific data in this context do not represent
the absolute truth, but rather the use of a conventional neuro-navigation system
with associated registration errors.

Compared to the freehand method, almost any means of guidance will improve
the accuracy and precision of the procedure. The challenge will be to keep the
solution simple and fast in order to avoid the introduction of perceived obstacles
in an otherwise quick and simple procedure. Obviously, the use of an average
model present a number of limitations, but in the absence of 3D pre-operative
images, this study suggest that a model might be sufficiently accurate for plan-
ning the entry point and the trajectory of the catheter. Further development of
the model and more extensive validation are required in order to evaluate the
accuracy and precision of the method when applied to clinical datasets. Most
EVDs are performed on patients with enlarged ventricles. Normal sized ventricles
therefore represent relatively challenging cases in this context. Still, the accuracy
of the model could be further improved by incorporating other patient-specific
parameters routinely used such as midline shift. An additional possibility is to
combine the use of an average model with intra-operative ultrasound as sug-
gested in [18] in order to have even more patient specific information about the
size, shape, position and orientation of the ventricles.
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Abstract. Ultrasound provides the physical capabilities for a fast and
save disease diagnosis in various medical scenarios including renal exams
and patient trauma assessment. However, the experience of the ultra-
sound operator is the key element in performing ultrasound diagnosis.
Thus, we like to introduce our automatic kidney detection and segmen-
tation algorithm for 3D ultrasound. The approach utilizes basic kidney
shape information to detect the kidney position. Following, the Level
Set algorithm is applied to segment the detection result. In combination
this method may help physicians and inexperienced trainees to achieve
kidney detection and segmentation for diagnostic purposes.

Keywords: Ultrasound · Image analysis · Kidney · Shape prior ·
Detection · Segmentation

1 Introduction

Ultrasound is a widespread medical imaging system that provides a fast, non-
invasive and non-hazardous way to obtain patient anatomy information. Despite
its importance in medicine there are some challenges that have to be addressed
when dealing with ultrasound images. Speckle, artifacts and generally a poor
signal-to-noise ratio highly influence the image quality [7] and are therefore the
hardest challenges to overcome. Additionally, the specific ultrasound intensity
values fluctuate between consecutive recordings and vary even strongly between
miscellaneous ultrasound devices. Thus, physicians or medical technicians are
given multiple ways to manipulate the imaging output to their individual pref-
erences. All these factors have to be addressed when designing automatic ultra-
sound image analysis algorithms.

Currently, most ultrasound diagnosis are still performed using 2D ultrasound
technology. This is because physicians are accustomed to the standard ultra-
sound modality. If 3D ultrasound is available, it is often only used to acquire
patient recordings for later review. All 3D datasets including CT and MRI are
commonly presented using cross section views with sliced volume information,
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Fig. 1. eFAST recording of the right kindey. The image also includes the liver, the
hepatorenal recess and a rib shadow extension (right).

which is hard to apply and work with in a live imaging systems like ultrasound [1].
A computer algorithm however can work directly on the 3D data.

The goal of this study was to design an automated kidney detection and
segmentation method that utilizes the more and more available 3D ultrasound
capability of ultrasound devices. The kidney is the target structure in this study,
because it is frequently examined using ultrasound. Also, it has a unique bean-
shape structure that is reasonably well recognizable by the human eye.

The kidneys are retroperitoneal organs that are protected by the lower ribs.
Depending which kidney is the examination target, a recording is performed by
placing the ultrasound transducer between the 5th to 9th intercostal space. Dur-
ing the exam the ultrasonographer must adhere the ribs, because they cause large
shadow artifacts in the ultrasound that cannot be compensated during image
processing. The right kidney is located just below the liver (see Fig. 1). Similar,
the left kidney lies just below the spleen. Each kidney has a tough fibrous outer
cortex that appears dark in the ultrasound. The inner renal sinus containing the
renal pelvis with larger blood vessels, lymphatics and fatty tissue generates a
brighter ultrasound echo, giving a good contrast to the outer cortex. Detecting
and segmenting the kidney in ultrasound images could help in automating med-
ical examination protocols like renal exams and eFAST. Also, this could help in
creating an automated abdominal ultrasound diagnostic system.

2 Image Processing

2.1 Data Preparation and Pre-processing

Addressing the challenges mentioned in the introduction and generally enhance
algorithm reproducibility, the influence of the image quality to the detection and
segmentation is reduced [3]. We apply a multi-scale image pyramid (Fig. 2(a))
to the ultrasound, thereby reducing speckle and smoothing the image while pre-
serving important larger abdominal structures [10]. Additionally, we adjust the
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Fig. 2. (a) Downscaling of the input image. (b) Histogram equalized image with dis-
tinctive kidney shape

global image contrast through histogram equalization [8] (cf. Fig. 2(b)). This step
is very time consuming and should be replaced with a more efficient alternative.
We apply histogram equalization to decrease the image intensity fluctuations
between different ultrasound recordings. For a kidney recording, the equaliza-
tion result will usually contain the distinctive kidney shape composed of low
intensity values.

After pre-processing we assume a bi-modal histogram composition for the
equalization result. Applying Otsu’s method to the equalized image calculates
the optimum image threshold by minimizing the intra-class variance, thereby
automatically reducing the gray level intensity image to a binary representa-
tion [6]. As a result, we obtain a “kidney candidate image” (Fig. 3), containing
all possible kidney locations. The dark kidneys outer cortex is represented with
a binary one, while the inner sinus receives a binary zero value.

We generalize the algorithm further, by applying additional information
about the segmentation target e.g. the kidney shape. Here, we chose a 3D ellip-
soid structure element, that represents a rough shape approximation of the kid-
neys inner sinus (Fig. 4). The structure element size is 20 × 10 × 10 mm, so it

Fig. 3. Kidney candidate image showing the kidney location with the kidneys outer
cortex (red) and inner sinus (black). Also visible on the right a recorded rib shadow
creating a candidate artifact (Color figure online).
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Fig. 4. Kidney structure element (shape prior). For simplicity the emitted rays (black)
are illustrated for just two image directions.

will fit inside the kidney and especially inside the average renal pelvis. This is
beneficial for the graph based search that is performed in the kidney detection
step described in the next section. After the “structure element” selection we
are able to utilize both signal and shape information during the image analysis.
Advancing the algorithm in future implementations the simple structure ele-
ment can be substituted by e.g. a model of the kidney sinus to gain specific
shape information [9].

2.2 Detection

After the image pre-processing the kidney location is identified as follows. Ini-
tially, a search graph is constructed and applied to the kidney candidate image
(Fig. 5(a)). The inter graph node step size is derived from the structure elements
extent. The kidney structure element is then placed at each graph node. This way
all possible kidney locations are investigated. In each step the structure element
emits radial rays to each of the three image coordinate planes (see Fig. 5(b)).
For a travel distance of 1.5× the structure elements diameter in emission direc-
tion and using m discrete detection steps, each emitted ray rj ascertains the
presence of zero-one crossings in the binary kidney candidate image. Here, we

Fig. 5. (a) Graph-based searching using the kidney shape element on the kidney can-
didate image. (b) Detection of zero-crossings at the kidney position illustrated for the
xy-image axis
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utilize the differences in echogenicity between the inner and outer kidney fiber
structures to detect the crossing from the renal pelvis to the outer cortex. Using
the chosen structure element and the eFAST acquisition protocol, slight kid-
ney rotations can be neglected. Strong rotations however will require an initial
volume alignment. Each ray rj with a detected zero-one crossing receives a ray
score f(i, j) = 1, whereas the remaining rays receive a score of f(i, j) = 0. The
kidney candidate with a score

Sc =

∑
1<i≤n
1<j≤n

f(i, j)

n
, f(i, j) ∈ [0, 1] (1)

of 80% or more corresponds to the kidney position (cf. Fig. 6). A candidate score
Sc < 80% lead in some of the available test data to a false kidney detection at
the ultrasound boundary. The score threshold parameter might be ultrasound
device related and might need adjustment for other devices. Our tests showed
further, that a number of n = 12 rays per image coordinate plane is sufficient
to successfully detect the kidney location. Using more rays is always possible
but ultimately will increases algorithm computation time. The candidate score
would need adjustment. For recordings containing a rib shadow, using less than
12 rays lead to a false kidney detection. If more than one candidate achieves a
score of 80% or more, the candidate with the highest valid ray count is selected as
the valid kidney position. Hence, the presented detection method will generate
at most one kidney position. A successful graph search directly triggers the
automated segmentation on the detection result.

2.3 Segmentation

For the remaining kidney candidate, each valid ray generates a seed point for
the kidney segmentation. Here, the seed points are placed with an offset d to
the detected crossing point along the rays direction. The offset d was chosen to
be approximately haft the diameter of the kidneys outer cortex. Following, the
fast marching algorithm [4] is applied to the collection of seed points to generate
an intermediate kidney segmentation. The fast marching algorithm is a basic
segmentation algorithm that uses a constant segmentation propagation speed
and predefined iteration steps. It also requires a speed function to restrict the

Fig. 6. Candidate search removes all invalid kidney candidates.
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Fig. 7. Figure (a) shows the utilized speed function image (sigmoid) with indicated
seed point placements. Figure (b) shows the intermediate segmentation result of the
fast marching algorithm. The final segmentation result (b) was achieved by applying
the Level Set algorithm.

segmentation propagation. We utilized a sigmoid computation of the histogram
equalized input as the speed function (see Fig. 7(a)).

Because of this, the segmentation results are not always connected for all seed
point areas (Fig. 7(b)). To achieve full segmentation connectivity we additionally
apply the Level Set algorithm [2] to the intermediate fast marching segmentation
result. The sigmoid image is once again used as the restricting speed function.
The Level Set algorithm improved the segmentation result for most of the avail-
able test cases by connecting separated areas (cf. Fig. 7(c)). The output of the
Level Set algorithm is the final segmentation result.

3 Results

We performed our experiments on 62 three-dimensional ultrasound data sets of
8 healthy male and female volunteers. The images were acquired using the right
upper quadrant view of the eFAST exam. The kidney detection rate on the avail-
able data was above 90 %. The kidney could not be automatically detected in six
data sets due to strong rib shadows, that cut through the kidney location. Here,
no kidney candidate achieved the necessary 80 % valid rays criterion, because
the shadow area included a large amount of image information about the inner
kidney structure. The connection of kidney candidates to shadow artifacts (see
Fig. 3) did not influence the detection result in the available test cases. However,
avoiding rib shadows is still the most important task in acquiring data for the
presented method. Due to this, we also implemented a shadow detection algo-
rithm based on [5] to indicate the viability of an ultrasound recording for kidney
detection.

The segmentation method was applied to the remaining 56 data sets, after the
kidney detection generated a valid candidate. Some of the results are shown in
(Fig. 8). However, the segmentation algorithm currently does not work properly
in all of the available cases. In some images the Level Set leaked the kidney
because of weak boundary gradients at the kidneys renal capsule. Here, the
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Fig. 8. Two example results of the proposed automated detection and segmentation
method. In figure (b) a minor segmentation leak can be observed.

Fig. 9. Leaking Level Set results. Most commonly a leaking occurs at the threshold of
a rib shadow (a). Figure (b) shows the worst leakage example of all 62 test data sets.

applied speed function did not generate the necessary restriction parameters to
keep the algorithm from propagating the segmentation to the liver and other
surrounding tissue. In (Fig. 9) we can see examples of the Level Set leaking the
kidney with (Fig. 9(b)) being the worst result we achieved using the presented
segmentation approach. Overall we are satisfied with the so far achieved results
and we will continue working to improve the segmentation algorithm.

4 Conclusion

A method for automated kidney detection and segmentation in 3D ultrasound
has been proposed. Both ultrasound image intensities and kidney shape priors
in form of a structure element have been used in the process. The automated
kidney detection was possible in all available data sets with no rib shadows.
The kidney segmentation based on the detection results is feasible but has to be
improved using more sophisticated algorithms before automatic diagnosis based
on the segmentation result is achievable. We also believe, that the presence of
a kidney can be excluded, if the number candidate score Sc does not exceed
a certain threshold. We will investigate this possibility in further experiments
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with a greater variety of test data sets. We further need to investigate kidney
pathologies because the assumption of finding the bright inner sinus versus the
dark outer cortex might not hold.
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Abstract. Endoscopic interventions in the abdominal and thoracic cavity are
often hampered by the difficulty to orient in the endoscopic view. This is due to
the small field of view and the inhomogeneous illumination, but also because
abdominal organs are highly deformable and subject to complex movements.
The use of flexible endoscopes further complicates these issues. In the context
of a multidisciplinary project involving clinical and technical teams, we report
the definition of clinical requirements and surgical workflow of abdominal
endoscopic interventions, and present the design and implementation of a
planning and navigation system. Some of the implemented features include:
segmentation, tracking, landmark-based navigation, and combined surface and
volume rendering. Our system is based on open source libraries, and is flexible
and applicable to other types of interventions.

Keywords: Endoscopy � Navigation � Surgical planning � Tracking � Open
source

1 Purpose

It is generally acknowledged that one of the foremost challenges of endoscopy is the
difficulty to orient in the small and inhomogeneous field of view of the endoscope.
The use of flexible endoscopes has led to unprecedented access to the abdominal
cavity, enabling numerous procedures in a minimally invasive manner (such as natural
orifice transluminal endoscopic surgery - NOTES). Conversely, the use of such
flexible endoscopes, in the context of highly deformable organs exposed to constant
motion, as is the case of the abdominal cavity, poses severe difficulties for the ori-
entation and localization of target structures.

In this paper we present our work towards the development of a surgical
navigation system for abdominal interventions performed using flexible endoscopes.

M. Erdt et al. (Eds.): CLIP 2013, LNCS 8361, pp. 91–98, 2014.
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In particular, Sect. 2 reports the analysis and modelling of clinical requirements and
surgical workflows. Section 3 focuses on the design and implementation of the dif-
ferent elements of the system. This image-registered navigation system is based in
electromagnetic tracking and built using open-source libraries, such as IGSTK and
ITK, and it is modularized and fully extensible to cover multiple surgical applications.
Section 4 shows results and Sect. 5 closes the paper with perspectives for future work.

This project is made possible by means of a close collaboration between clinical
and technical teams, in a multi-disciplinary approach, focusing on the development of
a practical system to be used in routine interventions.

2 Clinical Requirements and Surgical Workflow

The rationale for the system is to provide the endoscopist with the most adequate
visual feedback of the location and the orientation of the endoscope, in order to
improve instrument navigation and facilitating the recognition of anatomical struc-
tures. This has proven to have statistically significant benefits in enabling a better
smoothness of motion [1–3].

A fundamental component of the system is a pre-operative CT scan of the subject,
which is used to extract (segment) the relevant structures to the intervention, including
bones, main vessels, skin, etc. As a result of these semi-automatic segmentation
procedures a set of meshes are generated, which will be shown in the navigation
views, to assist the endoscopist increasing their spatial awareness inside the subject.

Notice that although these segmentations are computed from the pre-operative CT,
they still will provide valuable spatial context to the operator through a simulated
virtual endoscopic view (automatically updated) and an ‘‘external’’ 3D view (handled
by the operator). A set of 2D multi-planar reconstruction views provide further
guidance by showing the current endoscope tip position.

The structures to be segmented depend on the protocol. For thoracic and
abdominal interventions they may include bones, lungs, gallbladder, aortic trunk,
celiac and superior mesenteric artery branches, kidneys and bladder, heart, trachea,
and skin. The skin model of the subject is very important since it is used for the
registration stage in the operating room.

Two procedures take place in the operating room: Calibration (including ICP-
based registration—ICP standing for Iterative Closest Point), and Image-Guided
Navigation (Fig. 1).

The workflow of the calibration phase consists of 3 steps. First, the operator
launches the electromagnetic device, attaching two electromagnetic sensors (a free
‘‘pointer,’’ and another tied to the endoscope, ‘‘endoscope sensor’’). After checking
that the signal level from the sensors is accurate, the patient is registered with the
pointer, by touching with it a set of fiducials (anatomical landmarks). Next, a con-
tinuous tracking is performed to retrieve the anterior surface of the subject, and the
application saves the locations of the ‘‘point cloud.’’ The application computes a
registration using ICP, and applies the obtained transformation to the retrieved cloud,
visualizing the resulting points on top of the pre-segmented models, for the operator to
decide if they match. The endoscope is activated and the operator places the
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endoscope on top of subject’s belly, and rotates the camera for the external 3D view to
match the real endoscopic view/orientation with the endoscopic video to capture the
relative roll of the camera. Finally, the endoscope’s electromagnetic sensor fixation is
calibrated with respect to the endoscope camera by touching the tip of the endoscope
with the pointer.

At this moment, the endoscopic procedure and the navigation phase start (Fig. 2),
the endoscopic 3D view appears, and the FOV of the endoscope is shown in the
external 3D view. The application starts tracking the endoscope sensor and updates the
views continuously—the operator can choose the visibility of the surface models
shown in the virtual views, the MPRs in the External 3D view, and can manipulate the
camera for the External 3D view at their convenience.

3 System Design and Implementation

In this section we describe technical aspects of the image-guided support system we are
developing to aid during the endoscopy navigation. It is meant to be a modular system
that reuses software components as much as possible. The ultimate goal is to be able to
use different kinds of input systems to aid in the interventions (for therapies, or sur-
geries) in the operating room, as depicted in Fig. 3. The system is implemented in C++

Fig. 1. Global system architecture (gray: hardware, blue: software/method, green: model/view)
(Color figure online)

Fig. 2. The set of navigation views
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using well-known and standard open-source toolkits. The Visualization Toolkit (VTK,
www.vtk.org) is used for the user interaction and visualization purposes (rendering in
the 2D and 3D views, annotations, and performing volume rendering). In addition, it
provides methods for manipulation of points, meshes and images, including the ICP
algorithm that we have employed to align the data. Communication between devices
(concretely, between the EM tracker and the navigation application) is built on top of
the IGSTK toolkit (www.igstk.org), a high-level, component-based framework which
provides a common functionality for image-guided surgery application. Finally, we
also use OpenIGTLink (www.openigtlink.org), an open network interface for image
guided therapy, to send data to the navigation part of the system.

We are currently tackling endoscopy-based procedures, such as NOTES (natural
orifice transluminal endoscopy surgery)—a challenging task because of the com-
plexities of the procedures (such as the breathing of the subject, and the flexibility of
the endoscopic tube). In our preliminary implementation of the prototype we used
what we call a ‘‘phony’’ tracker (that is, there was not an actual tracker attached to the
system), consisting on a simple 2D visualization viewer that uses the keyboard to
navigate through the axial slices of a pre-operative image (CT)—see Fig. 4. We used
the position of the cursor within the current rendered axial slice to derive the phony
location of the sensor. In addition, we provided the viewer with functionalities to
change the orientation of the ‘‘endoscope’’ (yaw, pitch and roll) by means of key

Fig. 3. General architecture of the system for a number of possible trackers and interventions
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strokes. All this information was packed and sent using OpenIGTLink messages
(igtl::PositionMessage, with its methods SetPosition and SetQuaternion). There was
no need of computing any kind of registration since the ‘‘phony’’ space and the pre-
operative image were the same space, since we used the same CT. The application
also incorporates the functionality to capture snapshots of the current views for
reporting.

Next, we successfully incorporated a real electromagnetic device (in our case, the
Ascension 3D Guidance trakSTARTM, Milton, VT, USA) to substitute the phony
tracker. As shown in Fig. 3, since there is no need to visualize CT slices there is no
dependency on VTK; instead we used IGSTK first to establish communication with
the device and then to gather the readings of their sensors. This setting also required
performing an actual registration between the spaces of the operating room and the
pre-operative image, to send consistent data to the navigation system. The transfor-
mation was computed by using the iterative closest point (ICP) algorithm.

Additionally, we have added GPU-based volume rendering capabilities to show
non-segmented structures (see Fig. 5, where bones and vessels with contrast are drawn
with volume rendering in the endoscopic view) that leads to an enhanced augmented
reality environment with respect to previous systems [4]. Also, during the navigation,
if the endoscopist locates a new landmark of interest (for example, a lesion), the

Fig. 4. Simple setting for the ‘‘phony’’ tracker (top) and their corresponding views (bottom),
using a swine, including the external 3D view, the endoscope view, and the MPR views
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software application allows tagging it for further study in the form of annotations (see
Fig. 6). Finally, the system has been extended to allow storing captured poses into a
file, which permits re-creating the virtual visualization for planning interventions
(Fig. 7).

4 Results and Other Applications

The images above show the functionalities implemented in the current system. In
addition, we have explored other uses of the navigation system, which include: cardiac

Fig. 5. Virtual navigation views using a CT scan of a swine as example—notice that volume
rendering is used for the endoscopic view

Fig. 6. 3D views with example annotations (left), and volume rendering including small
vessels (right)
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surgery, cochlear implantation, virtual colonoscopies and bronchoscopy, as exem-
plified in Fig. 8.

Our preliminary experiences show that the system is very versatile, and allows
seamless integration in the surgical workflow of different surgical interventions.

5 Conclusion and Future Work

This paper has reported the design and development of a software tool for image-
based navigation in endoscopic abdominal interventions. The modular system is
written in C++, and is based on common and well-established open source libraries:
VTK, IGSTK, OpenIGTKLink. Integration in the operating room is realised, and
cases have been scheduled in order to validate the use of our system.

Fig. 7. Schema for the recreation of a path in the navigation system by using a planned path file

Fig. 8. Examples of usage of the navigation system: pig case, cochlear navigation, virtual
colonoscopy, and virtual bronchoscopy
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Work in progress includes integration with NDI Aurora electromagnetic trackers
(NDI, Waterloo, Ontario, Canada), reusing most of the code and modules, as depicted
in Fig. 3. Also, for laparoscopic interventions we plan to use optical trackers such as
webcams (using the ArUco library—a minimal library for Augmented reality appli-
cations based on OpenCV, www.uco.es/investiga/grupos/ava/no-de/26) or the Polaris
System (also by NDI) to derive the location and pose of the surgery tools within the
patient—again sharing most of the code. We also plan to improve and validate the
navigation system using Lego phantoms along the lines of the Image-Guided tutorial
[5], and perform its actual integration in the in the operating room.
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Abstract. This paper presents a fully automatic procedure for optimization of
depth electrode implantation planning in epilepsy. To record intracranial EEG
in some patients with intractable epilepsy, depth electrodes are implanted
through holes in the skull. The proposed fully automatic procedure maximizes
recording coverage of the target volume by estimating the EEG recorded from
each contact, while minimizing the risk of approaching vessels and other
critical structures. All structures, including the hippocampus and amygdala
were automatically segmented. We retrospectively validated the procedure for
mesial temporal lobe implantations in 11 hemispheres. The automatic trajec-
tories recorded from a larger volume of interest than the original manually
selected trajectories while better avoiding the segmented structures. The pro-
cedure is integrated into a neuronavigation system enabling the surgeon to
visualize the selected trajectories from an ordered list and, if necessary, enables
re-planning a trajectory in near real time.

Keywords: Depth electrode implantation � Trajectory optimization � EEG
recording maximization � Automatic target segmentation � Image guided
neurosurgery

1 Introduction

Epilepsy affects 5–6/1000 of the population, 30 % of whom are refractory to medi-
cation. Mesial temporal lobe epilepsy is the most common type of refractory epilepsy,
accounting for 70 % of the cases [1]. Some of these patients are candidates for surgery
which, when successful, leads to seizure freedom. As part of the pre-surgical evalu-
ation, intracranial EEG is sometimes recorded to precisely localize the region
responsible of seizure generation. Multiple depth electrodes are surgically implanted
through holes in the skull, each with 8–10 equally spaced contacts. Current implan-
tation planning strategy consists of visual inspection of the patient’s MRI (with
segmented vessels) to manually search for a path that reaches the target while
avoiding vessels. The procedure is time-consuming, potentially error prone and sub-
optimal as the location of each contact is not considered. Considering the precise
contact location is paramount to accurately identify the epileptic focus based on
intracranial EEG.

M. Erdt et al. (Eds.): CLIP 2013, LNCS 8361, pp. 99–107, 2014.
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Automatic trajectory planning in minimally invasive neurosurgery is an area of
active research, in particular for deep brain stimulation (DBS) [2–5] and abdominal
surgery (e.g. [6]). In these frameworks the optimal trajectory is obtained by mini-
mizing the risk of passing through vessels or other relevant structures. Importantly in
[2, 3] a list of trajectories, ordered in terms of risk, enables the surgeon to select the
most suitable trajectory during the intervention. Specifically for epilepsy, De Momi
presented a procedure that considers the optimization of multiple electrodes [7].
Target and entry points were visually identified and search spaces defined as a sphere
around these points. As in the case of DBS, optimization only considered minimizing
risk. In all these cases, the target is a point visually defined by the surgeon or it is
obtained based on atlas [4]. While this approach is reasonable for DBS, the goal of
depth electrode implantation in epilepsy is to maximally record EEG from a given
volume (e.g. hippocampus). Thus, optimal placement of electrodes to maximize
coverage of the region of interest is important, but has not been addressed.

In some patients with a suspected mesial temporal focus the question is whether
the seizures originate from the hippocampus (HC), the amygdala (AG) or the temporal
neocortex. Thus, it is important not only to accurately record from deep structures, but
also to obtain good coverage of the surrounding neocortex. Although electrodes are
implanted through the temporal neocortex and EEG recordings analyzed, with manual
planning it is not feasible to consider each contact’s location during planning.

In this study, we propose a novel fully automatic planning procedure that maximizes
recording from the volume of interest and surrounding gray matter, while constraining
trajectories to safe paths. To this end, we modeled each trajectory as a cylinder, esti-
mated the recording capability of individual contacts, automatically segmented MRI
data, and computed a final score by aggregating a weighted set of surgical constraints.
To allow its clinical use during surgery, the automatically generated trajectory list,
ordered in terms of an aggregated score based on estimated risks and recording volumes,
is integrated into a locally developed neuronavigation system [8].

2 Methods

2.1 Patient Selection and Electrode Information

Six patients with medically intractable epilepsy and a presumed temporal generator,
had depth electrodes implanted in the mesial temporal lobe, a pre-implantation MRI
with gadolinium injection that allowed for vessel segmentation, and an MRI imme-
diately after depth electrodes explantation that allowed for the identification of the
electrode’s position after the investigation. MRIs could not be obtained during the
invasive investigation because of electrode-MRI incompatibility. Five patients had
bilateral implantation. We considered each hemisphere independently for a total of 11
hemispheres and a grand total of 27 electrodes. All patients gave informed consent in
agreement with the Research Ethics Board of our center.

Each electrode had a diameter of 0.4 mm and comprised nine contacts (surface
area 0.8 mm2) separated by 5 mm. The deepest contact consisted of the tip of the steel
core stripped of insulation. This contact had a length of 1 mm, while all other contacts
were formed from stripped sections of the marginal wire to create 0.5 mm long coils.
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2.2 MRI Acquisition and Image Processing

Acquisition and Pre-processing. Pre-implantation, before (T1w-Pre) and after gad-
olinium injection (T1w-Gd), and post-explantation (T1w-Post) clinical MRIs were
acquired on a clinical 1.5 Tesla GE Signa EXCITE (General Electric, Milwaukee, WI,
USA) with T1-weighted sequences (180 slices, 0.5 9 0.5 9 1 mm resolution,
TE = 8 ms, TR = 23 ms, flip angle 20�). Image intensity non-uniformity was cor-
rected (N3 default parameters; [9]), followed by linear image intensity normalization
[10] and non-rigid transformation to the ICBM152 model [11]. A patient-specific
brain mask was created (BEaST; [12]). T1w-Gd and T1w-Post were rigidly registered
to T1w-Pre.

Segmentation of Critical Structures. AG and HC (the target structures) were seg-
mented on the pre-processed T1w-Pre, with a fully automated method based on a
template library and label fusion [13] (Fig. 1A). Segmentations were visually vali-
dated by an expert neurosurgeon. The HC was divided in anterior and posterior
sections at the plane perpendicular to the main axis at its centroid since independent
electrodes are aimed at each section. T1w-Pre was processed with tissue classification
[14] to segment gray matter (GM), white matter, ventricles, and the different lobes. In
particular, GM in the temporal lobe (Fig. 1B) and sulci patterns were extracted.
Angiographic data (T1w-Gd) was rescaled to 0.5 mm isotropic resolution, denoised
with a non local means filter [15], and processed with Frangi’s 3D multi-scale vess-
elness filter [16]. This filter is sensitive to tubular structures and returns a voxel
likelihood [0.0–1.0] of blood vessel presence (Fig. 1C). To compare the automatic
trajectories with the original implantations, implanted electrodes were segmented by
visually localizing the tracks on T1w-Post (Fig. 1D).

2.3 Surgical Constraints for Optimization

Optimization was performed in three steps. First, trajectories intersecting vessels or
the ventricles were rejected. Second, the risk with respect to the constraints detailed
below was computed. Finally, the ‘‘reward’’ of recording from a large volume in the

Fig. 1. Segmented critical structures and true implanted electrode in patient 3. (A) Automatically
segmented HC and AG overlaid on T1w-Pre. (B) Automatically segmented GM of the left
temporal lobe on T1w-Pre. (C) Vessels obtained from T1w-Gd. (D) Visually segmented true
implanted electrodes on T1w-Post. In blue, electrode targeting the anterior HC (Color figure
online).
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target structures and surrounding GM was computed. Trajectories were constrained to
safe paths by minimizing these constraints:

1. Avoidance of blood vessels. Summed and maximum distance to vessels was
maximized. Vessel avoidance is the major surgical constraint.

2. Avoidance of sulci. Trajectories that may cross a sulcus were discarded. Distance
from sulci was maximized since small vessels may lie at the fundus of the sulcus.

3. Avoidance of lateral ventricle. This constraint is particularly important for tra-
jectories targeting the anterior HC, since the lateral ventricles should be avoided.
Trajectories that were too close to the ventricles were discarded.

4. Avoidance of other electrodes. We checked that the cohort of best trajectories did
not cross. If so, the best cohort without overlap was chosen.

The volume recorded was maximized by integrating the recordings from each
contact on the following structures:

5. Recording of Target Volume. In depth electrode implantations with a suspected
mesial temporal generator, three targets are of interest: AG, anterior HC and
posterior HC. We maximized the combined coverage from contacts within them.

6. Recording of Gray Matter. Only the first 2 or 3 contacts of each electrode are
implanted within the target. Remaining contacts are useful to record from sur-
rounding GM, to understand seizure propagation or to differentiate between pure
temporal and neocortical epilepsy. We maximized the recording from each
contact in GM.

2.4 Automatic Depth Electrode Trajectory Planning

The trajectory planning algorithm maximizes the recorded EEG by considering the
contacts that lie within the structure of interest, while constraining to safe trajectories.
Possible entry points defining the allowed search space were selected once by the head
of the neuronavigation unit on the left temporal lobe of the ICBM152 model by
identifying a broad possible region of entry (e.g. secondary temporal gyrus for anterior
HC). These areas were warped to each hemisphere’s surface. Target search spaces
were obtained from the segmented deep structures. One thousand possible trajectories
were uniformly randomly selected for evaluation by the algorithm.

Let tri(ep, tp) be each possible trajectory, with ep an entry point and tp a target
point. Each tri is modeled as a central line (the electrode) where the contacts are
located surrounded by a cylinder of radius 5 mm, since being at 5 mm or further away
from a critical structure could be considered of equivalent risk. The risk score (neg-
ative score, fneg(tri)) is similar to the one proposed in [2]. It is defined as the aggre-
gation of all possible risks:

fneg trið Þ ¼
X

j
½wj

max�riskmax tri; jð Þ þ wj
sum:risksum tri; jð Þ� ð1Þ

where riskmax tri; jð Þ is the maximum encountered risk and risksum tri; jð Þ is the sum of
all risks along each trajectory, weighted by the distance to the center of the cylinder.
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Wj
max and wj

sum are the weights for each of the j surgical constraints described in the
previous section (wvessel

max ¼ 0:6, wvessel
sum ¼ 0:3, wsulci

max ¼ 0:5, wventr
max ¼ 0:5). Weights were

defined together with the neurosurgeons and then normalized to sum one.
The risk was computed based on the trajectory since it is important to avoid

critical structures along the implantation. On the other hand, the reward score (positive
score, fpos(tri)) was computed based on the EEG that can be recorded by each contact
of the electrode within the volume of interest. The volume recorded by a particular
contact was estimated to decay as the square of the distance from the center of the
contact. The distance map from the edges of each structure was computed [17]. We
integrated the structure’s distance map with the combined recording volume of the
electrode. In this way we considered that it is more relevant to record from the center
of the target, but even more so to record with multiple contacts. Figure 2 illustrates
this method.

To understand seizure propagation, not only optimizing coverage of the target is
important, but also recording from the surrounding neocortex. Thus, the reward score
is the weighted sum of volume recorded (recVolk) from the target and temporal GM:

fpos trið Þ ¼ wtarget�recVoltarget trið Þ þ wGM:recVolGM trið Þ ð2Þ

where wtarget is the weight corresponding to recording from the target and wGM cor-
responds to recording from GM in the temporal lobe (wtarget ¼ 0:8, wGM ¼ 0:2).

A list of trajectories was than obtained by ordering the cost function F(tri), which
aggregates risk (wneg ¼ 0:75) and reward (wpos ¼ 0:25) scores:

F trið Þ ¼ wpos 1� fpos trið Þ
ffi �

þ wneg:fneg trið Þ ð3Þ

The procedure was integrated into a locally developed neuronavigation system
(IBIS; [8] ). The list of ordered trajectories is presented to the surgeons to visualize
trajectories overlaid on the MRI images. Segmented structures were included. The
best cohort of trajectories (AG, anterior HC and posterior HC) was checked to avoid
crossing of electrodes (min distance: 5 mm). Thus, the best 3-electrode cohort had the
smallest combined score out of the non-intersecting trajectories. Weights could be
modified in the GUI, which updates scores and trajectory order.

Fig. 2. (A) Estimation of recording from each electrode’s contact in axial view. (B) Distance
map of anterior HC in hemisphere 9. (C) Overlay of A and B indicating recording region.
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2.5 Validation

Since this is a retrospective study, we quantitatively compared the best cohort of fully
automatic trajectories to the true implanted trajectories. To this end, the original
trajectories, obtained from electrodes segmented on T1w-Post, were scored using the
same cost function described above. Wilcoxon test was used for statistical compari-
son. Significance level was set at p \ 0.01. In addition, to evaluate clinical feasibility,
as a 2nd validation, the head of the neuronavigation unit qualitatively evaluated if
trajectories in the best cohort could be clinically used in reality. This was visually
reviewed in a similar way as in the operating room: navigating in 3D (with brain
surface, vessels and segmented targets), bird’s eye view, trajectory view, and 2D
views.

3 Results

We compared a total of 27 trajectories in 11 hemispheres. The automatic trajectories
recorded from a significantly larger target volume (p \ 0.01) and from more temporal
GM (p \ 0.001) than the original manual trajectories, while staying significantly
further away from segmented vessels (median minimum distance AUTO = 4.03 mm,
MANUAL = 1.59 mm; p \ 0.01). Figure 3 shows box plots for volume recorded and
vessel comparisons.

Figure 4 shows an example of automatic trajectories for the three structures and
the avoidance of vessels in hemisphere 9. This and the next figure show typical
examples.

Figure 5 shows a comparison of automatic and manual trajectories in hemisphere
10. In particular the zoom in Fig. 5B illustrates that the automatic trajectory finds a
target closer to the center of the AG volume than the original manual trajectory. Thus,
the EEG recordings are likely to represent a better sampling of AG activity.

The qualitative validation showed that 25/27 trajectories (92.5 %) satisfied the
proposed surgical constraints and were feasible from a clinical stand point. For the 2
rejected trajectories, others in the list were also inspected and found suitable.

Fig. 3. Box plots comparing automatic and manual trajectories for all 27 trajectories pooled
together. In each plot: left automatic (A), right manual (M) plan. (A) Sum score for vessels risk.
(B) Minimum distance to vessel. (C) Recorded target volume. (D) Recorded temporal GM.
Significant difference was found in all comparisons (* indicates p \ 0.01; ** indicates
p \ 0.001).
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Processing time was 2 min per hemisphere. This step is processed prior to surgery,
and thus it is not critical. Re-estimation of best trajectories (by modifying the weights)
took less than 1 s. By dividing the procedure in a pre-surgical processing used for
planning and allowing for a rapid modification of the surgical weights in almost real
time in the operation room, our system could be useful for planning before surgery
and for adjusting the trajectories during depth electrode surgical implantations.

4 Discussion

In this study, we presented a computer assisted procedure that automatically optimizes
trajectories for depth electrode implantation in mesial temporal structures. This pro-
cedure is the first to maximize the recording volume by modeling the contribution of
each contact, while maximizing avoidance of critical structures. Our analysis is fully
automatic, from the segmentation of the volume of interest to the optimization of the
trajectories. A list of ordered trajectories is presented, enabling surgeons to select the
best cohort before implantation, validate trajectories during surgery and, if necessary,
re-plan in near real time. Based on the same clinical data, we showed that the auto-
matic procedure is safer and records more information than the original manual tra-
jectories. However, this validation was based on the same assumptions and segmented
tissue used for the automatic method. Even though these assumptions were discussed
with the neurosurgeons and could therefore be considered similar for automatic and

Fig. 4. Example of automatically optimized trajectories aiming at the AG (blue), anterior HC
(magenta) and posterior HC (orange) in hemisphere 9. (A) 3D view with vessels. (B) Axial view
showing the target for AG and anterior HC. (C) Trajectory view for AG and (D) anterior HC
(Color figure online).

Fig. 5. Example of an automatic and the original manual trajectory in hemisphere 10. (A) 3D
view with all electrodes. Original plans are shown in green, automatic plans in cyan. (B)
Automatic and the manual target for the AG (displayed with AG distance map). Note that the
automatic target reaches the center. (C) Trajectory view of manual and (D) automatic plans for
AG.
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manual planning, they could have biased the validation. Errors in the segmentation
could be another source of bias. The qualitative confirmation by an expert indicates
that the procedure could be useful for clinical use. Future development includes
implementing a margin of uncertainty to account for inaccuracy in segmentation,
prospective evaluation of the procedure during planning and intervention and
implementation to implantation in other regions, considering particular constraints.

In summary, the presented automatic procedure increases the accuracy and the
amount of information obtained with implanted depth electrodes while reducing the
risk of crossing critical structures comparing to manual planning. This procedure will
improve the outcome of invasive investigation of patients with refractory epilepsy,
leading to better surgical planning and patient outcomes.
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Abstract. We describe our development of a complete real-time stereoscopic
augmented reality system that overlays laparoscopic ultrasound (LUS) images
on stereoscopic laparoscopic video for conventional laparoscopic surgery. The
system was designed and developed to achieve near-term clinical evaluation as
a primary goal. Special consideration was paid to system interactivity, accuracy
and easy integration within the existing clinical workflow. Custom-designed
fixtures for the two imaging devices were created to avoid their recalibration in
the operating room and thus to minimize setup time. The system was assembled
on a rolling cart to make it portable for the use in the operating room. Utilizing
our optimized design and hardware-accelerated implementation, the system
achieved a low system latency of approximately 150 ms. The LUS image-to-
video registration accuracy, measured in terms of target registration accuracy
and recorded separately for the left and right eye channels of the stereoscopic
camera, was 3.34±0.59 mm and 2.76±0.68 mm.

Keywords: Stereoscopic augmented reality (AR) � Real-time AR � Clinical
prototype � Laparoscopic surgery

1 Introduction

In minimally invasive laparoscopic surgery, the laparoscopic camera is currently the
primary means to provide real-time visual information on the surgical field. However,
conventional laparoscopes have two significant limitations. First, they provide only a
flat 2D representation of the 3D surgical field, introducing ambiguity in depth per-
ception. Second, they are incapable of providing information on internal structures
and cannot visualize surgical targets located beneath the exposed organ surfaces.

Several research groups have developed systems and methods to provide com-
bined surface and internal anatomy information by overlaying pre- and intra-operative
tomographic images on the laparoscopic video. These augmented reality (AR) efforts
have been reported for both robotic surgery [1, 2] and conventional surgery [3–7].

The systems and methods using pre- and intra-operative CT and MR images have
many limitations that make them less robust and reliable and thus less desirable for
operating room (OR) use. These limitations arise from (1) the inability of

M. Erdt et al. (Eds.): CLIP 2013, LNCS 8361, pp. 108–116, 2014.
DOI: 10.1007/978-3-319-05666-1_14, � Springer International Publishing Switzerland 2014



pre-operative imaging to properly and accurately describe the ever-deforming anat-
omy during surgery, (2) the fact that the currently employed registration procedures
are mostly rigid when the soft-tissue organs deform non-rigidly throughout the sur-
gery; and (3) the subjective and non-reproducible accuracy of manual or semi-auto-
matic registration.

For continuous and automatic updates of the surgical field, Shekhar et al. [7]
acquired low-dose non-contrast CT continuously throughout a surgical procedure. The
investigators also acquired a standard contrast CT scan immediately before starting
surgery. Applying high-speed deformable registration, the vasculature data was
transferred from the initial contrast CT to intra-operative non-contrast CT. Although
the method does track continuous deformation of the surgical anatomy and provides
accurate CT-to-video registration, the risk of high radiation exposure to the patient
and the surgical team renders this approach clinically impractical in the foreseeable
future.

Laparoscopic ultrasound (LUS) can provide real-time intra-operative images
without any ionizing radiation. An advantage of using LUS in combination with live
laparoscopic video is that soft-tissue deformation does not need to be modeled, and
accurate image-to-video registration can be achieved with standard tracking tech-
niques. Leven et al. [1] took this approach to create a module for the da Vinci robotic
surgical system (Intuitive Surgical, Sunnyvale, CA) that superimposes LUS images on
stereoscopic laparoscopic video. The rigid LUS probe is tracked by means of a vision-
based method that localizes a distinctive pattern situated close to the LUS transducer.

Cheung et al. [3] have developed a platform that uses a stereoscopic laparoscope
and a flexible-tip LUS. The two devices were tracked using an electromagnetic (EM)
tracking system. The wired EM sensors were affixed to the LUS transducer and the
laparoscope. A phantom study was performed to mimic minimally invasive partial
nephrectomy [4] in the laboratory. The platform may not be suitable for clinical use
since it was designed mainly for feasibility study and its usability was not reported.

In this paper, we describe our development of a complete stereoscopic AR system
for conventional laparoscopic surgery. The system overlays LUS images on stereo
laparoscopic video in real time. Unlike prior developments that were limited to
research prototypes and laboratory testing, our system has been designed and devel-
oped by a team of biomedical engineers and minimally invasive surgeons with near-
term clinical demonstration as a primary goal. Tested thus far in the laboratory and in
animal studies, the system offers acceptable accuracy, low latency, minimal setup
time, and minimal changes to the existing surgical workflow for clinical use.

2 Method

2.1 System Design

Our stereoscopic AR system uses two FDA-approved imaging devices: a vision
system (VSII, Visionsense Corp., New York, NY) with a stereo laparoscope and an
LUS scanner (flex Focus 700, BK Medical, Herlev, Denmark). The stereo laparoscope
has a 70-degree field of view, a fixed focal length of 2.95 mm, and an interpupillary
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distance (IPD) of 1.04 mm. It further features an integrated light source and automatic
white balance. The LUS transducer has an operating frequency range from 5 MHz to
10 MHz with a maximum allowable scan depth of 13 cm. The LUS system is capable
of gray-scale B-mode and color Doppler mode scanning. An optical tracker (Polaris,
Northern Digital Inc., Waterloo, Canada) is used to track the pose (location and
orientation) of the stereo laparoscope and the LUS transducer in real time.

Utilizing the optical tracking data, the LUS images are registered and then
overlaid on the stereoscopic video through hardware-accelerated image processing
and image fusion. Consequently, two ultrasound-augmented video streams, one for the
left eye and the other for the right eye, are generated. Finally, the composite AR
streams are rendered for interlaced 3D display. These functions were accomplished in
the fusion module. Figure 1 depicts the architecture of this module. The module is
implemented on a 64-bit Windows 7 PC with an 8-core 3.2 GHz Intel CPU, 12 GB
memory, and an NVidia Quadro 4000 graphics card.

To acquire images from the two imaging devices in a fast manner, the stereoscopic
video and LUS images are streamed to the fusion module over gigabyte Ethernet from
the two imaging devices. A custom software library, based on OEM Ethernet com-
munication protocol, was developed to communicate with the LUS scanner. Using this
library, our system can fetch LUS images and query imaging parameters (image size,
pixel size, imaging mode, and imaging depth). Stereoscopic video images are simi-
larly streamed from the vision system using its Ethernet OEM interface.

2.2 System Calibration

For a successful clinical AR system, the two types of images must be spatially reg-
istered with sufficient accuracy. This necessitates accurate calibration of the two
imaging devices because any calibration errors will lead to misalignment in the ste-
reoscopic AR visualization.

For stereo laparoscope calibration, a custom-designed calibration phantom was
used. It consists of a checkerboard of alternating 5-mm black and white squares in the
central region surrounded by a border that is 1 mm higher than the central region
(Fig. 2). Four divots (in red and green in Fig. 2) with a depth of 1 mm were created
near the four corners of the border. The size of the squares was chosen to ensure that
the entire checkerboard stayed within the stereo laparoscope’s field of view at the

Fig. 1. Architecture of the fusion module.
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working distance of 5 cm–10 cm. The phantom was printed using a 3D printer
(Objet500 Connex, Stratasys, Eden Prairie, MN) with sub-millimeter accuracy. The
method proposed by Zhang [8] was used for intrinsic parameters estimation. The
transformation from the laparoscope to the reference frame attached to it was deter-
mined from the coordinates of the corners of the checkerboard. By locating the four
divots using a tracked stylus, the locations of the checkerboard corners with respect to
the reference frame were determined. Furthermore, although the laparoscope can be
treated as a stereoscopic camera pair, it was treated as two standalone cameras, each
of which was calibrated separately.

For LUS calibration, we extended the ultrasound imaging research library PLUS
[9] by incorporating our data streaming library. Thus, streamed LUS images rather
than screenshots of the scanner display formed the input for calibration. A calibration
phantom with known geometry for PLUS was 3D printed with sub-millimeter accu-
racy. Two wires forming two ‘‘N’’ shapes (called N-wires) with known geometry
related to the phantom reference frame were made. The intersecting points of the two
N-wires with the LUS imaging plane were used for calibration. We used 0.2 mm
suturing wires since it produced clear intersecting points with little artifacts in the
LUS images.

2.3 Easy Setup for Clinical Use

To track the stereo laparoscope and the LUS transducer optically, reference frames
with reflective spheres need to be affixed on them. Because sterilization must precede
OR use, an easy mechanism to detach the reference frames from the imaging devices
and then re-attach in the OR is desirable. System calibration could be repeated in the
OR after re-attaching the reference frames, however, doing so would consume
expensive OR time and require an extra technician in the surgical team.

We avoid performing calibration in the OR by re-using laboratory calibration
results. This is achieved using our custom-designed mechanical fixtures (see Fig. 2)
that are attached to the stereo laparoscope and the LUS transducer uniquely and serve
as mounts for the reference frames. In this manner, the reference frames are connected

Fig. 2. The system on a rolling cart, the camera calibration phantom, the ultrasound calibration
phantom and the custom-designed fixtures for optical tracking (Color figure online).
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to the devices in exactly the same position as they were before dismounting. This
strategy maintains a fixed geometric relationship between the reference frames (and
reflecting markers) and the imaging devices before and after sterilization. The fixture
for the stereo laparoscope was printed on a 3D printer and made of a synthetic resin.
The fixture for the LUS transducer was machined from an aluminum alloy. Both
fixtures can withstand the standard sterilization process.

To make the system portable for OR use, all the components were assembled on a
custom-designed rolling cart with an articulated arm for mounting the optical tracker.

3 Experiments and Results

3.1 System Latency

The processing time of the fusion module was measured by imaging a high-resolution
digital clock. The difference between the actual time and the time seen in the output
image of our fusion module is the processing latency. Note that this measurement
included the time of streaming video data from the vision system. The fusion module
ran in full-operation mode when measuring the processing latency. The processing
latency was 144±19 ms. Independently, we also estimated the latency of streaming
LUS images using PLUS and found it to be 230±12 ms.

3.2 System Accuracy

The LUS image-to-video registration accuracy and calibration accuracies of the two
imaging devices were measured. The standard target registration error (TRE) metric
was used to quantify these accuracies. To measure the LUS image-to-video regis-
tration TRE, a target point was imaged using the LUS and its pixel location was
identified in the overlaid LUS images. Aiming the laparoscope to the target point from
different viewpoints, the 3D location of the target point was calculated using trian-
gulation and compared with its actual location obtained from a tracked pointer. In our
experiments, the LUS image-to-video registration TREs were 3.34±0.59 mm and
2.76±0.68 mm for the left- and right-eye channels, respectively.

For the stereo laparoscope calibration TRE, images of the calibration pattern were
acquired from different viewpoints. Then, the 3D location of the pattern corners were
computed using triangulation and compared with their actual locations. Treating the
stereo laparoscope as two standalone cameras, the calibration TREs were
0.93±0.18 mm and 0.93±0.19 mm for the left- and right-eye channels, respectively.

For the LUS calibration TRE, a target point was imaged using the LUS. Its 3D
location was estimated using the calibration result and compared with the actual
location obtained from a tracked pointer. The TRE of the LUS calibration was
1.51±0.39 mm. The error was larger than what is previously reported in the literature
using PLUS. This is mainly due to the long shaft of the LUS (Fig. 2). The distance
from the reference frame to the LUS transducer is approximately 287 mm. This is
considerably larger when compared to non-laparoscopic probes.

112 X. Kang et al.



3.3 Phantom and Animal Studies

The system was tested in a phantom study and two animal studies involving swine. In
the phantom study, an intraoperative abdominal ultrasound phantom (IOUSFAN,
Kyoto Kagaku Co. Ltd., Kyoto, Japan), created specifically for laparoscopic appli-
cations, was used. It includes realistic models of the liver, spleen, kidneys, pancreas,
biliary tract, and detailed vascular structures, and simulated lesions such as biliary
stones cysts, and solid tumors. A stereoscopic AR video snapshot (left-eye channel)
recorded during the phantom study is shown in the top row of Fig. 3.

The animal studies were performed on two 40-kg Yorkshire swine by minimally
invasive laparoscopic surgeons. Using the stereoscopic AR system, right kidney, liver,
and biliary structures were examined by the surgeons with the real-time LUS images
superimposed on the stereo laparoscopic video to provide internal anatomical details
of the organs. Stereoscopic AR video snapshots (left-eye channel) recorded during the
animal studies are shown in the bottom row of Fig. 3.

4 Discussion

Developing an AR system ready for clinical evaluation requires that the system be
interactive, accurate, and integrate easily within the existing clinical workflow. In the
present work, in addition to carrying out technical development, we paid considerable
attentions to these design criteria and obtained acceptable performance for each.

The processing time including stereoscopic video streaming and stereoscopic AR
processing was approximately 144 ms. This low latency comes from optimized sys-
tem design and hardware-accelerated implementation. In our system, data streaming
via Ethernet OEM interfaces significantly reduced communication overhead. Addi-
tionally, texture mapping, alpha blending and interlaced display were performed using

Fig. 3. Two stereoscopic AR video snapshots (left-eye channel) recorded during the phantom
(top) and animal (bottom) studies. Each row shows the original stereo laparoscopic camera
image (left column), the original LUS image (middle column), and the stereoscopic AR image
generated by our system (right column).
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OpenGL on a quad-buffered graphics processing unit (GPU), which significantly
reduced the AR processing time. As for the latency of LUS image streaming, our
experiments attribute it to data acquisition and transformation on the LUS scanner
side. To improve the transformation performance, a more powerful backend processor
on the scanner side may be needed.

Due to different delays in streaming data from the two imaging devices, attention
needs to be placed to data synchronization for AR visualization. One could syn-
chronize the two data streams before performing the stereoscopic AR processing. If
using this scheme, the system would have to delay video frames and the net latency
would be 374 ms (sum of the three processing times in Fig. 4). The overall result
would be a noticeable delay and visual disconnect between AR visualization and the
real action related to the surgical procedure. Our system processes the two streaming
data in a parallel manner (Fig. 4), i.e., the stereoscopic video is acquired and pro-
cessed while acquiring the LUS data. In the final step of AR processing, the latest LUS
image is overlaid on the prepared stereoscopic video and the video is rendered for 3D
display. In this scheme, an 86-ms time lag results between the video and LUS imaging
data but it is not noticeable. Our stereoscopic AR system thus uses the most up-to-date
video and LUS images to produce real-time stereoscopic AR visualization.

The LUS image-to-video registration accuracy is critical from the standpoint of
surgical safety. In our system, the primary determinant of accuracy is: how accurately
the two imaging devices are calibrated. The stereo laparoscope calibration gave
desirable result with a TRE of approximately 1 mm. It is intuitive to treat the stereo
laparoscope as a stereo-camera system. However, this led to larger TRE than when
treating it as two standalone cameras. The large TRE in the stereo-camera mode can
be attributed to small separation between the left-eye and right-eye channel (1.04-mm
IPD). Hence, a small error in camera calibration or localization of an image feature
leads to a large TRE for the target point far from the reference frame. In our clinical
applications, the desired LUS image-to-video registration accuracy is 2.5 mm. Future
developments will attempt to further improve the accuracy.

The LUS calibration accuracy, TRE of approximately 1.5 mm, was acceptable
using the current design. The long shaft of the LUS (Fig. 2) reduces calibration
accuracy using optical tracking because, compared with traditional non-laparoscopic
ultrasound probes, the LUS transducer is much farther from the reference frame
affixed on its handle. Embedding an EM sensor close to the LUS transducer and
replacing optical tracking with EM tracking may improve the accuracy of LUS cal-
ibration. No line-of-sight requirement of EM tracking is advantageous in the surgical
setting as well.

Fig. 4. The scheme for performing temporal synchronization.
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In clinical practice, easy setup of the system in the OR is desirable to lower
adoption barrier and to improve eventual success. The custom-designed fixtures can
be easily snapped on to the two imaging devices by the current surgical team. These
eliminated system recalibration as described. The rolling cart makes the system
portable without the need for separately setting up the optical tracking system in the
OR. These simplify the system setup and hence save expensive OR time.

5 Conclusion

Aiming to bring the stereoscopic AR technology into the clinic, we have developed a
complete real-time stereoscopic AR visualization system for conventional laparo-
scopic surgery. Our ongoing work has addressed key issues of system latency,
accuracy and portability. Our future work will include replacing optical tracking with
EM tracking and further reducing the size and footprint of the system.

It is expected that the full development and clinical adoption of real-time ste-
reoscopic AR visualization will make minimally invasive laparoscopic surgeries more
precise and safer.

References

1. Leven, J., Burschka, D., Kumar, R., Zhang, G., Blumenkranz, S., Dai, X.D., Awad, M.,
Hager, G.D., Marohn, M., Choti, M., Hasser, C., Taylor, R.H.: DaVinci canvas: a telerobotic
surgical system with integrated, robot-assisted, laparoscopic ultrasound capability. In:
Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 811–818. Springer,
Heidelberg (2005)

2. Su, L.-M., Vagvolgyi, B.P., Agarwal, R., Reiley, C.E., Taylor, R.H., Hager, G.D.: Aug-
mented reality during robot-assisted laparoscopic partial nephrectomy: toward real-time 3D-
CT to stereoscopic video registration. Urology 73(4), 896–900 (2009)

3. Cheung, C.L., Wedlake, C., Moore, J., Pautler, S.E., Ahmad, A., Peters, T.M.: Fusion of
stereoscopic video and laparoscopic ultrasound for minimally invasive partial nephrectomy.
Proc. SPIE 7261, 726109–726110 (2009)

4. Cheung, C.L., Wedlake, C., Moore, J., Pautler, S.E., Peters, T.M.: Fused video and ultra-
sound images for minimally invasive partial nephrectomy: a phantom study. In: Jiang, T.,
Navab, N., Pluim, J.P., Viergever, M.A. (eds.) MICCAI 2010, Part III. LNCS, vol. 6363,
pp. 408–415. Springer, Heidelberg (2010)

5. Teber, D., Guven, S., Simpfendörfer, T., Baumhauer, M., Güven, E.O., Yencilek, F., Gözen,
A.S., Rassweiler, J.: Augmented reality: a new tool to improve surgical accuracy during
laparoscopic partial nephrectomy? Preliminary in vitro and in vivo results. Eur. Urol. 56(2),
332–338 (2009)

6. Simpfendörfer, T., Baumhauer, M., Müller, M., Gutt, C.N., Meinzer, H.P., Rassweiler, J.J.,
Guven, S., Teber, D.: Augmented reality visualization during laparoscopic radical prosta-
tectomy. J. Endourol. 25(12), 1841–1845 (2011)

7. Shekhar, R., Dandekar, O., Bhat, V., Philip, M., Lei, P., Godinez, C., Sutton, E., George, I.,
Kavic, S., Mezrich, R., Park, A.: Live augmented reality: a new visualization method for
laparoscopic surgery using continuous volumetric computed tomography. Surg. Endosc.
24(8), 1976–1985 (2010)

Towards a Clinical Stereoscopic Augmented Reality System 115



8. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach.
Intell. 22(11), 1330–1334 (2000)

9. Lasso, A., Heffter, T., Pinter, C., Ungi, T., Fichtinger, G.: Implementation of the PLUS open-
source toolkit for translational research of ultrasound-guided intervention systems. In:
MICCAI - Systems and Architectures for Computer Assisted Interventions, pp. 1–12 (2012)

116 X. Kang et al.



Automatic Detection of Misalignment
in Rigid 3D-2D Registration
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Abstract. Fusion of pre-interventional three-dimensional (3D) image to live
two-dimensional (2D) image can facilitate minimally invasive image-guided
interventions. For this purpose a number of 3D-2D registration methods related
to different clinical contexts were proposed, however, their translation into
clinical theater is still limited by lack of reliable and automatic detection of 3D-
2D misalignment. In this paper, we presented a novel approach for verifying
3D-2D misalignment based on learned a priori knowledge using arbitrary
similarity measure (SM) and single synthetic image (DRR). First, positions of
local optima of SM using DRR image were found and characterized. On live
2D image, the local optima of SM were comparatively examined at the
expected, previously learned positions. The approach was tested on publicly
available image database of lumbar spine using state-of-the-art back-projection
gradient-based SM. The results indicate that proposed approach successfully
discriminated the ‘‘correct’’ from ‘‘poor’’ and ‘‘wrong’’ 3D-2D alignments in
100 % of cases.

Keywords: 3D-2D registration � Image guided surgery � Misalignment
detection

1 Introduction

Minimally invasive, image-guided interventions (IGIs) are constantly replacing the
invasive open surgery procedures and render the already minimally invasive proce-
dures more accurate. Advantages of IGIs include shorter patient recovery times,
greater patient comfort, lower risk of complications, and faster patient throughput. For
diagnostic, intervention planning and simulation purposes a high quality three
dimensional (3D) computed tomography (CT) or magnetic resonance (MR) image is
typically acquired prior to the intervention. During the IGI, the interventional radi-
ologist navigates his tools to the site of pathology relying only on one or at most two
simultaneously acquired live two-dimensional (2D) fluoroscopic images. Due to
overlapping of 3D structures and lack of depth information, navigation relying only on
2D images is a non-trivial task. An emerging solution is to exploit the positive aspects
of 3D and 2D images by fusing the static 3D information with the temporal infor-
mation of the live 2D fluoroscopic images [1]. The key step of data fusion is 3D-2D
image registration.
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Over the last two decades, a large number of 3D-2D registration methods were
proposed for different clinical contexts [2]. However, before introducing 3D-2D
registration technology into clinical routine two key aspects must be fulfilled. First,
the performance of 3D-2D registration method in terms of registration accuracy,
robustness and computational complexity must meet clinical requirements. These
should be validated on a large number of clinical image datasets. Second, a reliable
method is required for automatically detecting misregistrations during IGI. For the
validation of 3D-2D registration methods several publicly available image databases
and protocols exist [3–5]. Even though that the automatic detection of image mis-
alignment presents a crucial step for the translation of 3D-2D registration technology
into clinical routine, it has not yet received much attention in the research community.

Crum et al. [6] estimated the image misalignment from the most significant voxel-
scale present in scale-space residual image. Fedorov et al. [7] proposed a method for
estimating registration error in mono-modal non-rigid image registration of MRI brain
images using robust modification of Hausdorff distance measure. Möller and Posch [8]
presented a hierarchical approach for automatic detection of registration error and
underlying error sources based on robust analysis of difference image. Method for
estimating translational errors for registration of binary 2D images is presented in [9].
Muenzing et al. [10] presented a supervised learning-based method for assessment of
local image alignment at distinctive landmark points. The alignment was classified as
‘‘correct’’, ‘‘poor’’ or ‘‘wrong’’ based on a multi-feature classification scheme. An
interesting approach for estimation of rigid-body registration quality using registration
networks was proposed by Datteri and Dawant [11]. They demonstrated that regis-
tration networks can identify registration error better than several popular similarity
measures (SMs). In [12] the same authors extended their work for estimation of
magnitude and location of error in non-rigid registration. The methods reviewed so far
are limited to registration of images having the same dimensionality. Recently,
Varnavas et al. [13] introduced a concept of virtual fiducial marker (VFM) and a
gradient-difference based classification method for verifying the alignment quality in
3D-2D registration of images of vertebrae. Inserting the VFM requires the use of radio
opaque ruler and acquisition of two additional 2D views which may present a limi-
tation for some clinical contexts. On the other hand, estimation of alignment based on
proposed gradient-difference based classification method seems to be suitable only for
images of vertebrae and it is not immediately clear how to adopt the approach to other
clinical contexts.

In this paper, we propose a new approach for assessment of 3D-2D registration
alignment using a priori knowledge obtained from the pre-IGI 3D image and a single
digitally reconstructed radiograph (DRR). The proposed approach is independent of
the object of registration and of the selection of SM. The evaluation was performed
using publicly available image database of spine phantom [3] and back-projection
gradient-based (BGB) SM [14]. The results indicate that the proposed approach
successfully discriminated between ‘‘correct’’, ‘‘poor’’ and ‘‘wrong’’ 3D-2D align-
ments and achieved a 100 % rate of classification.
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2 Method

The main idea of our approach is to estimate the behavior of 3D-2D registration SM
on live 2D image (SM2D) by observing the SM on DRR (SMDRR). First, the positions
of distinctive optima on SMDRR and their relations to ‘‘gold standard’’ position are
established, which we refer to as SM mapping. If the DRR and live 2D image depict
the same anatomical structures in a similar way, then the distinctive optima on
respective SMDRR and SM2D should have the same positions with respect to ‘‘gold
standard’’ position. Finally, the quality of 3D-2D alignment is measured by similarity
of SMDRR and SM2D at expected distinctive optima positions, referred to as SM
matching. In the following, we describe SM mapping and matching.

SM Mapping. In this step, characteristic patterns on SMDRR are found and their
relations to the ‘‘gold standard’’ are established. By assuming coordinate system of 2D
image as world coordinate system, the SMDRR is then defined as function of six rigid
body parameters X = (tx, ty, tz, xx, xy, xz) where tx, ty, xz represent in-plane
parameters and tz, xx, xy are out-of-plane parameters. According to [15] the SMDRR is
sampled on six-dimensional hypersphere of radius Rp and with center at ‘‘gold stan-
dard’’ position XDRR

GS using NLp sampling lines (Fig. 1 left). From the highest optimum
per sampling line (besides ‘‘gold standard’’) Powell optimization method is ran and
optimum candidate is obtained. Around each optimum candidate SMDRR is then
sampled on hypersphere of radius R using NL sampling lines and distinctiveness of
optimum (DO) is calculated [15]. Np optima with highest DOs and mutual distance
greater than certain threshold Rpp are then selected as distinctive optima XDRR

Pi , i =
1,2,…,Np. Finally, transformations TDRR

Pi , i = 1,2,…,Np which relate the ‘‘gold stan-
dard’’ position to the positions of distinctive optima are defined by (Dtx, Dty, Dtz, Dxx,
Dxy, Dxz) ¼ XDRR

Pi � XDRR
GS . However, these transformations cannot be directly

Fig. 1. Main steps of the proposed approach. Finding distinctive optima and associated
transformations TDRR

Pi , i=1,2,…,Np on DRR image (left). Observing SM2D at registered and
positions defined by T2D

Pi (right).
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applied to real 2D image. Due to projective nature of 2D image, in-plane translations
Dtxi and Dtyi are dependent on out-of-plane translation tz (zoom). Knowing that 3D-2D
registration methods in single view scenario are insensitive to zoom, Dtxi and Dtyi are
typically under- or overestimated. By knowing zooms in ‘‘gold standard’’ and regis-
tered positions kGS and kreg, respectively, the Dtxi and Dtyi can be corrected as:

Dt0xi ¼
kGS

kreg

Dtxi ð1Þ

Dt0yi ¼
kGS

kreg

Dtyi ð2Þ

where Dt0xi and Dt0yi are corrected in-plane translations, which are used to calculate

initial transformations T2D0
Pi , i = 1,2,…,Np. As optima on SM2D are not necessarily at

exact position defined by T2D0
Pi , Powell method is used to find closest distinctive

optimum. Finally, if the distance between optimized position and initial position is
smaller than some threshold Ropt, the optimized position is used to define final
transformation T2D

Pi , otherwise T2D
Pi ¼ T2D0

Pi .

SM Matching. Based on SM mapping, SM2D is sampled on registered position X2D
reg

and positions defined by T2D
Pi , using the same sampling points as for SMDRR (Fig. 1

right). If the registered position X2D
reg is close to the ‘‘gold standard’’, the distinctive

optima on SM2D will be at positions defined by T2D
Pi and thus difference between

SMDRR and SM2D will be small. Similarly, for larger registration errors T2D
Pi will point

to random behavior of SM2D and thus the difference will be higher (Fig. 2). To
quantify the degree of 3D-2D alignment we employ two measures. First, is the
average absolute difference between SMDRR and SM2D at Np+1 optima positions
defined as:

DSM ¼ 1
Np þ 1

XNpþ1

i¼1

SMDRR
pi � SM2D

pi

ffi
ffi
ffi

ffi
ffi
ffi ð3Þ

where SMDRR
Pi and SM2D

Pi are values of SM at i-th optimum position using either DRR
or 2D image, respectively. Second, is average value of DO calculated at registered and
positions defined by T2D

Pi referred to as DOavg. Note, that according to [15] the values
of SMDRR

Pi and SM2D
Pi used for calculation of DSM and DOavg are normalized to [0, 1]

interval.

Parameter Values. The values of NLp = 50 and Rp = 30 mm were used to sample
SMDRR in the SM mapping step. Each optima was sampled with NL = 25 lines on R =
5 mm hypersphere. Distance between two sample points in all our calculations was set
to 0.2 mm. Minimal mutual distance between two optima Rpp was set to 5 mm of
mean reprojection distance (mRPD). The maximal allowed distance between initial
and optimized position Ropt was set to 2 mm of mRPD.
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3 Experiments and Results

The BGB 3D-2D registration method proposed by Tomaževič et al. [14] was used to
demonstrate proof of our proposed concept. It was applied to the 3D and two 2D
images of cadaveric lumbar spine using single 2D image a time [3]. In the following,
the BGB method, evaluation database, evaluation methodology and the results of the
proposed approach are presented.

Gradient-Based Back-Projection Method (BGB). The BGB method is based on
matching 3D gradient vectors representing surface normals and back-projected gra-
dient vectors defined in 2D image by the position of the X-ray source and current
position of 3D surface normals. In the pre-processing step, the 3D volume and 2D
image were blurred with a Gaussian filter and the resulting 3D image was isotropically
resampled. For calculation of volume gradients, the 3D Canny edge detector was
applied, while the 2D gradients were calculated using a simple central-differences
kernel. For each 3D gradient, its corresponding back-projected 2D gradient was
defined and their magnitudes and angles were used to calculate the similarity measure.
The six parameters, defining the optimal rigid transformation between the volume
gradients and the back-projected 2D gradients, were searched for by optimizing the
SM with the Powell’s method.

Evaluation Database and Methodology. For testing of our approach, CT and two X-
ray images acquired at approximately lateral (LAT) and anterior-posterior (AP) views
from publicly available cadaveric lumbar spine image database were used [3] (Fig. 3).
The CT image, was divided into five sub volumes comprising only single L1-L5
vertebra.

Each sub volume was 100 time randomly displaced from the ‘‘gold standard’’
position in the range of [-20, 20] mm and [-10, 10] degrees, respectively. This

DO = 135.56  DO = 60.47  DO = 133.03 

Fig. 2. From left to right: SM2D for ‘‘correct’’, ‘‘wrong’’ registration and SMDRR of the same
distinctive optima. Associated DO values are given below.
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resulted in initial displacements ranged from 0 to 20 mm of mean target registration
error (mTRE), with 5 displacements per 1 mm subinterval [4]. Besides, additional six
initial displacements were generated by registering each sub volume to non-corre-
sponding vertebra on 2D image, which represent the most difficult 3D-2D registration
cases. The sub volumes were registered to a single 2D image a time, resulting in 1060
registrations in total. The registrations were divided into three classes ‘‘correct’’,
‘‘poor’’ and ‘‘wrong’’ depending on mRPD. mRPD below 1 mm denotes to ‘‘correct’’,
mRPD between 1 and 2 mm denotes to ‘‘poor’’, while mRPD above 2 mm denotes to
‘‘wrong’’ registration. The classification performance was measured by area under the
receiver operator characteristic (ROC) curve.

Results. The results were obtained using Np = 5 distinctive optima (besides ‘‘gold
standard’’), with BGB SMDRR mapped on DRRs generated using ‘‘gold standard’’
position of pre-IGI CT image (Fig. 3). The scatter plots and classification perfor-
mances using DSM and DOavg are given in Fig. 4 and Table 1, respectively. Besides,
results using value of SM2D and DO solely at registered position are also given in the
same figure and table.

Fig. 3. From left to right: the LAT and AP X-ray views and the LAT and AP DRR.

Fig. 4. Scatter plots of registration results using solely registered position (left) and with
proposed approach (right).
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4 Discussion and Conclusion

A large number of 3D-2D registration methods were proposed for the purposes of
application in IGI. Usually, the performance of these methods was evaluated against
‘‘gold standard’’ registration, and then their accuracy and capture range were deter-
mined by generating random displacements from the ‘‘gold standard’’ position.
However, in reality, pre-IGI 3D image can be displaced significantly out of range of
3D-2D registration method, which can thus get easily trapped in local optima.
Therefore, a reliable automatic verification of the registration alignment is required,
before introducing the 3D-2D registration technology into clinical theater.

In the proposed automatic registration verification approach, we exploited the
information about the position of local optima and the behavior of SM about the local
optima yielding a locally characterized SM. This was carried out by generating a single
DRR from a pre-IGI 3D image and establishing relations between the positions of local
optima and the ‘‘gold standard’’ position. Moreover, as the DRR image should
resemble the live 2D image, similar behavior of SM is expected on both images about
the positions of local optima and their relation to the ‘‘gold standard’’ position. To
prove our concept we employed state-of-the-art BGB 3D-2D registration method and
applied it to publicly available image database of cadaveric lumbar spine phantom. The
CT images of L1-L5 vertebra were registered to two live 2D images using single 2D
image a time. In total 1060 registrations were performed and divided into three classes:
‘‘correct’’, ‘‘poor’’ and ‘‘wrong’’. Obtained results showed that using solely the value of
SM is not sufficient to discriminate between ‘‘correct’’ and ‘‘wrong’’ registrations. On
the other hand, the measures based on a priori knowledge, DSM and DOavg successfully
discriminated ‘‘correct’’ from ‘‘wrong’’ registration in 100 % of cases (Table 1).
Besides, DOavg seemed to be more sensitive to the misalignment as it also successfully
discriminated ‘‘correct’’ from ‘‘poor’’ registrations in 100 % of cases.

The performance of the proposed approach depends mainly on similarity between
DRR and live 2D image, and knowledge about the zoom of 3D object in ‘‘gold standard’’,
which can usually be acquired from the DICOM header. The DRR and live 2D image
should depict those anatomical structures and features, which will guide the registration
in a comparable way, and furthermore that both 2D images are acquired with a com-
parable pose of the pre-IGI 3D image. The advantage of the proposed approach is that
transformations TDRR

Pi are inherently invariant on selection of translations tx, ty, tz and
in-plane rotation xz of pre-IGI 3D image used for generating the DRR. However, the
proposed approach is sensitive to the error in the out-of-plane rotations xx, xy which
we will carefully examine in our future work. Finally, the proposed approach can be
used with arbitrary SM and object of registration, therefore, we plan to investigate its
performance using different SMs and different image databases.

Table 1. Area under ROC curve of DSM, DOavg, SM2D and DO for classification ‘‘correct’’ vs.
‘‘poor’’ and ‘‘correct’’ vs. ‘‘wrong’’ registration.

DSM DOavg SM2D DO

‘‘correct’’ vs. ‘‘poor’’ 97.04 100 62.94 82.10
‘‘correct’’ vs. ‘‘wrong’’ 100 100 99.49 99.76
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Abstract. Magnetic Resonance Imaging (MRI) and transrectal Ultra-
sound (TRUS) are both used in imaging interventions in men suspected
of having and with prostate cancer for diagnosis as well as treatment.
Due to the widespread availability and ease of use of TRUS, it is widely
acknowledged that availability of spatially registered MRI/TRUS data
could provide the optimal combination for characterization of prostate
tissue and interventional guidance. To provide such spatially aligned
data, we propose a device to support co-registered acquisition of MRI
and TRUS data while maintaining a stable configuration (shape) of the
prostate. We present the design and evaluation of a custom sleeve that
can be introduced transrectally, and can accommodate both TRUS and
endorectal MRI probes. Our experiments on a phantom have demon-
strated that imaging with this sleeve did not compromise differentiation
of internal structures and did not affect the quality of the MR acquisi-
tion. Reduction of the signal and contrast were however observed and
quantified in the TRUS data. Further evaluation and modification of the
device necessary for possible patient studies are discussed.

Keywords: Prostate cancer · Image-guided interventions · Magnetic
resonance imaging · Transrectal ultrasound · Image registration · Tissue
characterization · Phantom evaluation

1 Introduction

Prostate cancer (PCa) is the most common non-cutaneous malignancy in men in
the USA [1]. Imaging has a unique role in the clinical management of this disease.
Transrectal ultrasound (TRUS) is the most commonly used method for image
guided biopsy of the prostate gland; it is widely used for collection of core biopsy
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samples in sextant approaches, and for guiding treatment procedures. The use
of TRUS has expanded beyond routine clinical B-mode acquisitions to guide
treatment, to research in US elastography and analysis of radiofrequency (RF)
signal for tissue characterization [2]. Meanwhile, Magnetic Resonance Imaging
(MRI) is most commonly used for detection, localization and staging of PCa [3,
4]. The complementary utility of these two imaging approaches is recognized and
has motivated the development of systems that augment intra-procedural TRUS
for real-time imaging of the gland with pre-procedural MRI clearly showing
the confirmed or suspected cancer regions. In practice, development of such
systems is challenging due to lack of spatial alignment between the MR and
US modalities. To alleviate this problem, we report our initial experience in the
development of a device to reduce deformation of the prostate by providing a
fixed physical setup during the acquisition of MRI and TRUS data.

One of the challenges in supporting joint MRI/US visualization is the differ-
ence in the spatial configuration, i.e. shape, of the prostate between the TRUS
and MRI imaging sessions. Each imaging modality is associated with its own
unique deformation of the gland tissues. As a result, some form of registration
between the MRI and TRUS imaging is typically required to provide meaningful
joint visualization. Due to the significant differences between the MRI and TRUS
images, practical registration approaches are often augmented by the use of var-
ious forms of tracking and segmentation of the prostate gland to simplify the
registration problem. Early approaches to MRI/TRUS registration were based
on rigid alignment using anatomical landmarks [5]. More commonly, the regis-
tration is based on aligning boundaries of the prostate segmented in MRI and
TRUS. Several surface-based registration approaches have been proposed [6,7].
Hu et al. developed a model-to-image registration method that relies on bio-
mechanical simulation to estimate the most likely deformation in the planning
stage of the procedure [8]. Over the last years, several systems have become
available commercially to support MRI/TRUS image fusion [9]. Most of these
commercial systems rely on the segmentation of the prostate gland to provide
non-rigid deformation between MRI and TRUS. While there is strong evidence
that MRI/TRUS fusion improves accuracy of biopsy guidance for PCa detection,
the targeting accuracy of the fusion systems is difficult to assess. Commonly used
error quantification approaches only utilize manually identified corresponding
features that are consistent in MRI and TRUS. Due to the differences between
the MR and US modalities, localization of the corresponding features is chal-
lenging and time-consuming, limiting the applicability of the approach.

In this article we propose an alternative to commonly used registration of
images obtained from MRI and TRUS. Our method relies on a custom device
that can maintain the spatial arrangement of the prostate between the MRI and
TRUS imaging sessions. As an expected result, deformable registration of the
two imaging modalities can be eliminated, thus, a rigid coordinate system trans-
formation between the two images collected by the respective modalities should
be sufficient for spatial alignment. Such a device can facilitate intra-procedural
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tracking of the target, providing valuable data for joint characterization of the
MRI/TRUS and for validation of image-based deformable registration.

The goals of this paper are twofold. First, we present the technical considera-
tions and the initial design of a device to maintain consistent spatial arrangement
of the prostate gland. Second, we report a phantom study that we performed,
using this device, to establish the feasibility of MRI and TRUS imaging, and to
evaluate the quality of the collected images.

2 Methods

Our initial design of the Adjustable Sleeve Template Assembly (ASTA) device
was conceived to support consistent spatial arrangement of the prostate and
interchangeable MRI/TRUS imaging during two targeted transperineal interven-
tions – template-based biopsy, and implantation of low-dose radioactive seeds in
prostate brachytherapy. To achieve this goal, the complete ASTA device would
include (1) a sleeve, constructed to be MR safe and US-transparent, to inter-
changeably accommodate both the MRI endorectal coil and the TRUS probe,
(2) the biopsy/brachytherapy grid template rigidly attached to the sleeve, and
(3) a calibration device, such as Z-frame [10]. Consistent position of the ASTA
would be maintained by semi-rigid mechanical coupling to the procedure table.
In this article, we focus on the development of the sleeve component of ASTA,
and evaluation of the image quality when such a sleeve is used.

Design of the ASTA Sleeve. Our design was intended to accommodate two
imaging probes interchangeably: a rigid transrectal MR coil (Hologic Endo MRI
Coil, Hologic Inc, Bedford, MA), measuring 25 mm at its widest cross-section,
and a transrectal ultrasound probe (BK 8848, BK Medical, Peabody, MA) mea-
suring 20 mm at its widest cross-section. A sleeve was fabricated from poly-
methylpentene (TPX), a material with acoustic impedance similar to tissue [11].
Sleeve thickness was set to 1.8 mm, resulting in sleeve outer diameter of 29 mm
(25.4 mm inside diameter to accommodate the coil). To account for the differ-
ences in the outer diameter between the MR coil and US transducer, a saline-
filled endocavity balloon (Civco Medical Solutions, Kalona, IA) was used during
TRUS imaging through the sleeve. As an FDA-approved clinical device, the
endocavity balloon serves a dual purpose: it improves acoustic coupling between
the tissue and the transducer surface, and, when necessary, pushes the prostate
gland to match the coverage field of the brachytherapy template. In our scenario,
the balloon was used to ensure acoustic coupling between the transducer and the
sleeve. The components involved in the experimental setup are shown in Fig. 1.

Image Acquisition. Ultrasound imaging Our experiments for evaluating the
feasibility imaging, and the quality of resulting images, utilized a standard multi-
modality prostate phantom (model 053-MM, CIRS, Norfolk, VA). The phantom is
constructed with different types of materials to emulate imaging contrast between
anatomical structures, including the prostate gland, urethra and lesions. TRUS
imaging was performed using the BK ProFocus system and the transverse array of
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Fig. 1. Components used in the experimental setup. From top to bottom shown are
(1) a syringe connected with the endocavity balloon (Civco); (2) rigid transrectal MRI
coil (Hologic); (3) transrectal ultrasound probe (BK Medical); (4) custom fabricated
TPX sleeve.

the 8848 transrectal probe with the endocavity balloon mounted according to the
manufacturer instructions. The experiments were performed with and without the
sleeve to compare image quality. Each of the experiments was repeated 10 times,
with the transducer reinserted during each experiment to evaluate the repeatabil-
ity of the measurements. Ultrasound gel (Aquasonic, Parker Labs, Farfield, NJ)
was used to enhance acoustic coupling of the surfaces. Identical acquisition set-
tings were used for the imaging experiments with and without the sleeve (gain
80 %, dynamic range 79 dB, frequency 12 MHz, depth 5.4 cm, identical range and
depth of the focal interval). Image collection was facilitated by the open source
Public Library for UltraSound research (PLUS)1 [12].

MR Imaging. MR imaging experiments were conducted in a 3 Tesla scanner
(Siemens Magnetom Verio, Erlangen, Germany). Imaging was performed using
the commercially available tabletop attachment (Hologic Inc, Bedford, MA) to
the scanner table. Two pelvic array coils were placed above and below the phan-
tom, and the rigid endorectal coil was placed in the phantom rectum. Imaging
was performed using multi-slice Turbo Spin Echo T2-weighted sequence (TR/TE
= 2700 ms/106 ms; acquisition matrix = 280×280; flip angle = 48◦; field of view
= 200 × 200mm2; slice thickness = 3 mm; receiver bandwidth = 252 Hz/pixel;
imaging time: 1 min). MR imaging was repeated 5 times both with and without
ASTA sleeve, with the endorectal coil reinserted for each imaging session.

Image Quality Assessment. Images of the phantom corresponding to approx-
imately the same transverse plane were assessed. A consistent transverse location
was selected such that the slice covered the widest cross-section of the specific
lesion implanted in the phantom. To quantitatively measure the degradation in
image quality caused by the ASTA sleeve, we used two measures:

1. Average signal value in the regions of interest (TRUS only). For US images,
signal intensity relates to the energy of the returning ultrasound waves. There-

1 Public Library for UltraSound research (PLUS), http://plustoolkit.org.

http://plustoolkit.org
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fore, reduction in grayscale values is a measure of signal loss due to the intro-
duction of extra layers between the scanned object and transducer surface.

2. Pairwise contrast to noise (CNR) measure:

CNR =
2(μ1 − μ2)2

(σ2
1 + σ2

2)
, (1)

where μ1 and μ2 are the mean intensity values, and σ1 and σ2 are standard
deviation values for the two regions. CNR was measured pairwise between
the prostate, urethra and lesion in the phantom.

3 Results

Using visual examination of the acquired images, we confirmed that MRI and
TRUS imaging through the ASTA sleeve was feasible. Acoustic coupling dur-
ing US imaging was established in all experiments and no gross artifacts were
observed. Image contrast was sufficient to differentiate all the phantom structures
considered in the evaluation (prostate, urethra and lesions regions). Representa-
tive images are shown in Fig. 2. US images collected through the balloon/sleeve
assembly had noticeably reduced signal, were noisier and had reduced sharpness
of the boundary between the distinctive phantom structures, based on visual
inspection, as can be observed in Fig. 2 (top row). A bright double halo sur-
rounding the region corresponding to the probe location was apparent in the
MR images, however no noticeable degradation of the MR image quality was
observed by introducing the sleeve.

The results of the quantitative assessment of the collected data are sum-
marized in Fig. 3 and Table 1. Measurements of the signal strength agreed with

Fig. 2. Representative US and MR images of the multimodality prostate phantom. The
slice shown corresponds to approximately the same transverse position relative to the
phantom geometry. CNR measurements were performed pairwise between the lesion
(red arrow), urethra (green arrow) and prostate regions (structure enclosing lesion and
urethra). Strong reflection artifact near the surface of the TRUS probe (white arrow)
corresponds to the saline-filled endocavity balloon, TPX sleeve and the layers of gel that
were used to ensure acoustic coupling between the surfaces. Single and double bright
circles observed in MRI (white arrowhead) are due to the signal from the acoustic gel
surrounding the coil and the sleeve (Color figure online).
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Fig. 3. Average signal measured from the regions of interest defined in lesion (square
marker), prostate (triangle) and urethra (circle) areas. Colors correspond to the images
acquires using transducer without introducing any additional layers (black), using endo-
cavity balloon alone (blue), and together with the TPX sleeve (red). Reduction of signal
introduced by addition of extra layers is apparent (Color figure online).

Table 1. Quantitative assessment of the US and MR image contrast between the lesion
(region 1), urethra (2) and prostate (3) phantom tissue types. Mean and standard
deviation reported for the pairwise combinations of the considered regions.

Modality Summary CNR, no sleeve CNR, sleeve
statistics 1–2 1–3 2–3 1–2 1–3 2–3

US mean 144 0.2 182 47 0.5 71
US STD 29 0.4 40 9 0.3 10
MR mean 952 0.7 1004 804 1.8 826
MR STD 397 0.5 420 215 2.8 217

the visual assessment of US images, as we observed reduction of the signal that
was reproducible across the experiments. Averaged over 10 experiments, the
mean grayscale values measured in the TRUS images were (for the three regions
of interest considered) 136, 37 and 139 when the transducer was used without
extra attachments, 109, 25 and 114 units when endocavity balloon was used,
and 75, 36 and 87 units when we added the TPX sleeve. Differences between
the signal values for the MR images were minimal. CNR measurements showed
reduction of CNR when balloon/TPX sleeve were introduced.

4 Discussion and Conclusions

In this study we introduced a prototype of a simple sleeve-based device to facili-
tate co-registered acquisition of endorectal MRI/TRUS imaging of the prostate.
The motivation for this device is to maintain the prostate in a consistent position
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and shape so that there is minimal or no effect on the prostate configuration due
to removal or introduction of imaging probes. Our study focused on the pre-
liminary evaluation of technical feasibility of the prototype and assessment of
the image quality. We confirmed experimentally that imaging of the phantom
with the sleeve assembly was feasible using both MR and US, does not introduce
severe artifacts, and does not compromise the ability of the operator to differ-
entiate the structures of interest in the phantom. This was confirmed even for
the lesion structure of the phantom, which has rather low contrast relative to its
surrounding.

Our experimental evaluation also showed that introduction of the extra lay-
ers, even when those layers are fabricated from materials with acoustic properties
similar to tissue, resulted in reduction of signal strength and contrast in the US
images. Such signal loss is not only due to the presence of the extra TPX/saline
layers, but also due to the intermediate layers of gel used for acoustic coupling.
There are several observations related to this reduction of signal and image con-
trast. First, we note that the loss of signal strength due to the presence of a TPX
sleeve appears to be comparable with that caused by the saline-filled endocavity
balloon (as can be seen in Fig. 3), an FDA-approved product for our clinical
scenario. This leads us to conjecture that the signal loss we are introducing with
the TPX is comparable to what is considered acceptable clinically. Second, we
used identical setup and image acquisition parameters for the experiments with
and without the sleeve. An increase in the TRUS gain settings in the experi-
ments that used the sleeve can potentially improve CNR. Finally, we note that
while the phantom experiments reported in this study allow us to understand
and quantify some of the technical issues related to image acquisition, further
investigations are needed in order to understand the applicability of the device
in the patient studies.

There are several specific clinical usage scenarios where a sleeve-based device
such as the one presented can be used. For example, an MRI scan with the
device in place can be obtained at the beginning of a procedure, followed by an
US scan. After that the device can be removed, and targets identified in MRI
can be tracked by registration between the initial, possibly 3D reconstructed,
US, with the intra-procedural US data. Alternatively, volumetric TRUS study
can be performed immediately after the MRI scan at the time of the diagnostic
exam, in advance of the intervention. As a second example, RF TRUS data that is
acquired in near-perfect alignment with mpMRI can be used for characterization
of the prostate tissue. To implement such scenarios, further engineering efforts
are underway. For instance, ASTA design must be able to maintain the sleeve at
a fixed position while imaging probes are exchanged. A multi-modality operating
room, such as AMIGO at BWH2, would be ideal for evaluation of the setup, as
the patient lithotomy position needs to be maintained while the patient is moved
out of the scanner bore.
2 The Advanced Multimodality Image-Guided Operating (AMIGO) Suite, Brigham

and Women’s Hospital, Boston, USA, http://www.ncigt.org/pages/AMIGO.

http://www.ncigt.org/pages/AMIGO
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The design evaluated in this study represents only one of the prototypes we
have considered. Alternative designs that do not introduce extra layers between
the ultrasound transducer and the tissue have been tested and will be included
in future evaluations. The US imaging experiments were performed utilizing only
the transverse array of the probe. Additional experiments may be performed to
evaluate the feasibility of the sagittal array scanning and the quality of the 3D
reconstructed TRUS volumes.

In conclusion, we have presented initial results in developing and evaluating a
device for co-registered MR/TRUS prostate imaging. The images of the phantom
obtained while using the sleeve have reasonable quality. Further evaluation and
modification of the device are planned prior to clinical use. ASTA can provide
MR/US data with minimal misalignment and it can be valuable for improved
understanding of prostate tissue characterization, development of joint MR/US
appearance models of prostate, and improved accuracy of image-guided prostate
interventions.

Acknowledgments. This work was supported in part by NIH grants R01 CA111288
and P41 EB015898. We thank Iris Elliott for her contribution to the discussions related
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Abstract. The putamen, one of the deep grey matter structures in the brain, is
unusual in that MRI intensities vary smoothly within the structure. We develop
a geometric and intensity model of the putamen, and in averaged images from
60 CJD patients and non-CJD clinical controls we show these smooth changes
clearly. In the axial plane, there is a linear decrease of T2 intensity from
anterior to posterior in the central part of the putamen. The gradient is sig-
nificantly higher in sporadic CJD, but not in variant CJD, than controls. We
show that gradient quantification would give good sensitivity and specificity,
making this suitable as a simple screening test for sporadic CJD. However, the
data are preliminary; a wider database of patients and further statistical anal-
yses are needed for a robust definition of the clinical role of the test.

Keywords: Putamen � Gradient � MRI � Sporadic CJD diagnosis � Variant
CJD

1 Introduction

Creutzfeldt-Jakob disease (CJD) is a rare fatal neurological disease in which an
abnormal prion protein accumulates in the brain. The commonest form occurs
worldwide, with no identifiable environmental or genetic explanation, and is referred
to as sporadic CJD (sCJD). However, CJD can also be transmitted like an infection
from one individual to another, and transmission of the related disease of cattle (BSE)
to man is known to have occurred to cause variant CJD (vCJD). CJD usually presents
with cognitive deficits that can mimic common forms of dementia and clinical sus-
picion of the diagnosis can be delayed. By the time of diagnosis, extensive infective
tissue has accumulated in the individual, and to enable precautionary measures to be
taken to reduce risk of transmission through contact with infective tissue, there is a
strong public health requirement to improve early diagnosis with non-invasive tests.

MRI is an important diagnostic tool in suspected cases. In vCJD, increased signal
intensity in the posterior thalamus (the pulvinar sign) is seen in a high proportion of
cases and is both sensitive and specific. In sCJD, high signal occurs in the cortex,

M. Erdt et al. (Eds.): CLIP 2013, LNCS 8361, pp. 134–142, 2014.
DOI: 10.1007/978-3-319-05666-1_17, � Springer International Publishing Switzerland 2014



caudate nucleus and putamen more than in the thalamus, but the findings vary con-
siderably in different cases [1]. Most publications describe visual appearances
(e.g. [2]); very few have explored the potential of intensity quantification [3, 4].
An important study of a small number of sCJD and vCJD patients segmented the deep
nuclei by co-registration with an atlas and evaluated different approaches to intensity
normalisation and detection of intensity abnormalities, with good results [5]. A lim-
itation of this study was the use of normal subjects as controls, whereas in a clinical
context the question is whether patients with CJD can be distinguished from those
with a similar initial presentation (such as a rapidly progressive dementia) but who do
not have CJD. Another study reported a gradient of intensity change within the
putamen in sCJD patients, which was estimated by averaging intensities in the anterior
putamen and comparing this with the more posterior part; this had good performance
against non-CJD dementia controls [6]. Despite the promise of improving diagnostic
accuracy, quantitative MRI methods so far have not been adopted in clinical practice.

The challenges for quantification include the substantial variability of MRI
intensities between different scanners, the lack of consistent MRI protocols across
hospitals, and the frequent artefacts arising in scans from patients who are often
restless and confused. Looking at published results, we concluded that improved
methods for quantifying intensity changes within the putamen had good potential for
development into a clinical tool. However, the apparent gradual reduction in intensity
from front to back along the putamen needs to be verified and an appropriate
framework for quantifying this validated. In the present study we develop a geometric
and intensity model of the putamen with these aims in mind.

2 Methods

2.1 Patients and MRI Scans

27 scans from 20 patients with sCJD, 17 scans from 15 patients with vCJD and 21
scans from 16 non-CJD dementia controls were studied. The diagnosis of CJD was
based on international guidelines as definite (with biopsy or autopsy confirmation) or
probable (highly likely diagnosis and alternatives excluded). In the controls, further
tests and the clinical course of the illness excluded CJD.

The MRI scans were obtained in 16 different hospitals using local clinical pro-
tocols. Signal changes within the putamen are best seen in conventional T2 images.
Abnormal signal in deep nuclei in CJD may be more conspicuous in diffusion-
weighted images [7, 8] and/ or T2 images that are modified to render free fluid dark
(often referred to as ‘‘FLAIR’’, fluid-attenuated inversion-recovery T2) [9]. However,
there is great variation in acquisition protocols for the latter sequences; for example,
FLAIR images are often acquired in the coronal plane, which is unfavourable for
analysis of most of the deep nuclei, and diffusion images are often not included at all
in routine clinical scans. Furthermore, neither demonstrates the anatomical boundary
of the putamen well. T1 weighted images potentially provide the best spatial reso-
lution, but do not show signal abnormalities in CJD, and often do not provide suffi-
cient contrast to show the boundary of the putamen clearly. Therefore, we develop our
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model of the putamen using T2. In the plane of acquisition, spatial resolution is good
(usually about 1 9 1 mm) but slice thickness is large (usually 5 mm) and our model
represents the signal gradient in the axial plane only. The best axial slice passing
through the whole putamen was manually selected, so that superior and inferior slices
that might be affected by partial volume errors were excluded.

2.2 Segmentation and Within-Patient Co-registration

Most automated intensity-based segmentation methods perform poorly with the
putamen, reflecting the changing intensities within the structure in normals as well as
CJD patients. Atlas-based segmentation has produced promising results [14, 15], but
close inspection of boundary localisation shows significant inaccuracies. With clinical
MRI scans, we found different MRI sequences were needed to allow confident
localisation of different parts of the boundary of one putamen. We therefore performed
rigid co-registration of all scans from a single patient to each other and displayed T2,
proton density (Fig. 1(a) and (b)) and T1 sequences simultaneously with a linked
cursor. Boundaries were drawn manually using MeVisLab [10] (Fig. 1(c)). Quadratic
curves were then fitted to the lateral and medial boundaries, and straight lines to the
anterior and short posterior borders (Fig. 1(d)). Key landmarks were defined as the
intersections of these lines, and the midpoints of the anterior and medial borders.
Intermediate landmarks were added at equal arc length along the medial and lateral
borders. A skeleton representing the curved long axis of the putamen was derived
from the lateral and medial borders and also fitted by a quadratic curve.

Fig 1. Axial images from one patient. Standard display convention, with anterior at top, patient
right on image left etc. Left, (a): T2 weighted, showing gradient most clearly. Centre left, (b):
proton density, giving best view of boundary in this patient. Centre right upper, (c): segmented
putamen with T2 intensities. Centre right lower, (d): fitted lines and curves for boundaries. The
posterior boundary is constrained to be horizontal. Intersections give the main landmarks for co-
registration. Right, (e): right putamen warped to geometric model shape; medial and lateral
boundaries and skeleton are straightened, and skeleton becomes vertical; grey values are T2
intensities from original image
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2.3 The Putamen Model: Spatial and Intensity Normalisation

Preliminary analyses of the intensity changes within the putamen confirmed the visual
impression that the main intensity gradient follows the skeleton. We therefore defined
the geometry of the model shape so that the skeleton and medial and lateral bound-
aries were straightened. For some putamens, the posterior part tapers to a tip and a
triangle would be a good model. However, in some cases there is a posterior border of
significant width, and we truncated the posterior corner of the triangle to define a
quadrilateral model shape as shown in Figs. 1(e) and 2. All putamens were co-reg-
istered by warping using a thin-plate spline algorithm so that the landmarks exactly
corresponded [11, 12].

There is a wide range of absolute intensities between scanners. Intensities were
normalised by calculating the within-patient average of the pixel values (left and right
putamens combined), and then offsetting each pixel value by the difference between
the within-patient average and the global averages across all patients. Note that this
linear offset does not affect the gradient magnitude or direction of changes within the
putamen.

3 Results

Figure 3 shows images of the model for all patients combined, sCJD, vCJD and
controls. Each pixel is the average normalised intensity in the specific group, with left
and right putamens combined after reflecting the left model. A gradient of reducing
intensity from front to back can be seen clearly in the middle part of the putamen, and
appears greater in sCJD than in vCJD or controls. At the posterior end there is a
distinct brighter section again. Visually, the main changes were in the longitudinal
direction. This was confirmed by analysis of the principal direction of intensity
changes, by fitting a plane to the intensity values and projecting the parameters to a
sphere; the transverse (i.e. medial-to-lateral changes were inconsistent and the main
discrimination was in the longitudinal direction. To reduce dimensions, further

Fig. 2. Putamen model geometry
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analyses were carried out by averaging intensities along each line orthogonal to the
skeleton and the one-dimensional variation of this mean intensity along the putamen
from anterior to posterior was examined.

The variability in different parts of the putamen was examined within groups, and
all were similar to the average across all patients shown in Fig. 3, right side.
The intensities around the border show a wide variation in values that mainly reflect
partial volume effects, and a 2-pixel shell was removed for the further intensity
analyses. The bright section at the posterior end of the putamen, which is not arte-
factual, is very variable between patients; the posterior 25 % was excluded from the
gradient analyses.

The intensities around the border show increased variation in values (Fig. 3(e))
that reflects partial volume effects and a 2-pixel shell was removed for intensity
analyses. As mentioned earlier, the largest component of the gradient of intensity
change was longitudinal, so further analyses were carried out by averaging the
intensities along lines orthogonal to the skeleton i.e. along horizontal lines in the
model, generating a single intensity value at each point along the skeleton. Results are
presented in the following graphs.

Figure 4 summarises the findings. At the front, there is a rise to an initial peak at
10–15 % along the putamen. Further back, from about 15 % to 70 %, there is a long
smooth section, giving way to a brighter section at the posterior end, confirming the
visual appearances shown in Fig. 3. To quantify the smooth changes we analysed
the central section from 10 % to 65 % and fitted a straight line as shown in Fig. 5.
The slopes are highly significant. Furthermore, analysis of covariance showed that
there is a highly significant difference in gradient magnitude between sCJD and non-
CJD dementia controls (p \ 0.0098), while the difference between vCJD and controls
was not significant.
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Fig. 3. Images of the model, combining left and right putamens. Grey scale shows group
averages. Four images to left of figure use same grey scale of image intensities; from left to
right: (a): all patients; (b): sCJD; (c): vCJD; (d): controls. Images to right of figure: (e) standard
deviation of intensity values across all patients. (f) standard deviation of intensity values across
all patients with 2 pixels boundary removed. (g) standard deviation scale
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Fig. 4. Graphs of intensity as a function of distance along the skeleton. Each value is the
average of intensities along a line orthogonal to the skeleton. Red: average of sCJD group; blue:
average of vCJD group; green: average of non-CJD dementia controls (Color figure online)
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Fig. 5. Graphs of intensity as a function of distance along the skeleton for the middle (10 % to
65 %) section

Modelling Smooth Intensity Changes in the Putamen for Diagnosis 139



3.1 Non-parametric Classification

For discrimination between sCJD on the one hand and controls or vCJD on the other, a
gradient threshold must be defined; the lower the threshold (in magnitude), the more
sensitive the test will be for sCJD but the lower the specificity. For each gradient
threshold, we run the test such that for each scan if the magnitude of either the left or
right putamen gradient is higher than the gradient threshold, it is a diagnosis of sCJD;
otherwise it is a diagnosis of non-CJD dementia. And then we calculated the corre-
sponding sensitivity and specificity. We show this as a graph in Fig. 6. A threshold of
-0.8 gives equal sensitivity and specificity values (79 %) and confirms good per-
formance of the test in discriminating between sCJD on the one hand and non-CJD
dementia controls or vCJD on the other.

3.2 Logistic Regression Based Classification

The calculated right and left putamen gradients (PGR and PGL) were input as two
separate variables to the logistic regression procedure to calculate the probability, p, of
sCJD diagnosis.

logit(p) ¼ ln
p

1� p

� �

; and logit(p) ¼ b0þ b1 � PGRþ b2 � PGL

For the 50 % probability cut-off threshold, the sensitivity was 84 % and specificity
70 %, with an overall accuracy of 78 %.
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4 Discussion

We have developed a model framework to represent the putamen, one of the basal
ganglia (deep grey matter nuclei) in the cerebrum, which is known to show abnormal
signal intensities in a high proportion of sCJD patients. Most previous work on
analysis of intensity abnormalities has focused on average intensities in a region of
interest. By dividing the putamen into (arbitrary) parts, significant differences have
been confirmed. However, the putamen is unusual in that visually there appears to be a
smooth gradient of intensity change within the structure, and in the present work we
developed a framework for analysing this systematically. We chose a simple geo-
metric shape to represent the putamen as a straightened object with its skeleton
vertical, which is convenient because the main intensity changes occur along this
direction. Because the gradient uses within-structure variation, there is an implicit
intensity normalisation which helps to overcome the problems of wide variation in
intensity values obtained from different scanners.

The averaged model reveals interesting changes of intensity within the putamen
that are visible in all patient groups. The smoothly decreasing central part of the
putamen is well described by a linear fit (Fig. 5), and the gradient of the line enables
good discrimination between sCJD and controls, and also between sCJD and variant
CJD. While more complex algebraic models to cover more of the putamen could be
designed, individual patient data are very noisy and we suspect that the increased
number of parameters to be fitted will limit the usefulness of a more complex
approach.

In diagnostic tests where a threshold has to be set to discriminate between groups,
there is naturally a pay-off between sensitivity and specificity. An ROC curve can be
used to show the relationship between sensitivity and specificity but does not make the
changing threshold values explicit. Our plot (Fig. 6) shows the threshold values used
and also provides all the information contained in a conventional ROC curve.
Depending on the clinical context, the threshold can be adjusted to prioritise either
sensitivity or specificity.

There have been advances in other types of diagnostic test in CJD, particularly in
the cerebrospinal fluid [13]. However, obtaining the fluid is slightly invasive and is not
carried out as an early part of investigation of this type of patient. MRI on the other
hand should be obtained in all patients, and more robust methods of flagging possible
CJD would have wide clinical applicability. As a screening test our approach could
use a lower threshold which would give a higher sensitivity to indicate the need for
more invasive tests; the lower specificity would be perfectly acceptable in such a
context. In this paper our clinical data are preliminary, and the stated figures are
examples rather than definite clinical advice. We are preparing a larger database of
patients which will allow fuller clinical evaluation and we will compare the gradient
method with other MRI indices.

Acknowledgements. This work was supported by an NHS R&D grant [East Kent Hospitals
University Trust].
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Abstract. This paper reports on a new computational methodology,
inter-slice correspondence (ISC), for robustly aligning sets of 2D ultra-
sound (US) slices during image-guided medical procedures. Correspon-
dences are derived from distinctive, local scale-invariant features, which
are used in one-to-many matching of US slices in near real-time despite
out-of-plane rotation, in addition to global in-plane similarity transforms,
occlusion, missing tissue, US plane mirroring, changes in US probe depth
settings. Experiments demonstrate that ISC can align manually-acquired
US slices without probe tracking information in the context of image-
guided neurosurgery, with an accuracy of 1.3mm. A novel reconstruction-
without-calibration application based on ISC is proposed, where 3D US
reconstruction results are very similar to those obtained via traditional
phantom-based calibration.

1 Introduction

Freehand ultrasound is a cheap, safe and portable imaging modality for intra-
operative guidance and visualization. Although 3D ultrasound sensors exist, 2D
probes remain widely used in clinical practice due to their relatively high image
quality and low cost [1]. Intraoperative guidance and visualization frequently
require relating 2D US slices acquired from a hand-held probe to the 3D patient
anatomy. Most published techniques rely heavily on external tracking systems,
e.g. optical or electromagnetic, which provide the rigid location and orientation
of a tracking target fixed to the US probe for each US image frame [1–4].

Although useful, probe tracking systems have important limitations. Calibra-
tion procedures are typically required to transform the US image geometry to
that of the tracked probe [2], which involve scanning a specialized phantom every
time the image-to-probe geometry may have changed, e.g. following instrument
sterilization. Even relatively simple calibration methods [3] require additional
equipment, procedures and expertise, complicating the clinical work flow. Loss
of calibration or tracking (e.g. due changing US probe depth settings, physical
accidents [4], loss of line-of-sight) during a medical procedure result in image-
guidance failure. Tracker-free matching of US data [5] offers a potential online
solution, however current systems do not address out-of-plane alignment. Speckle
decorrelation techniques can potentially measure out-of-plane motion [6–8], how-
ever practical applications based on manually-acquired data in a clinical setting
remain challenging.
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This paper proposes a new computational methodology in order to reduce
the reliance of US-guidance on probe tracking systems: inter-slice correspondence
(ISC). ISC identifies local image correspondences between 2D US slices acquired
from different probe positions, robustly and in near real-time, despite out-of-
plane rotations, in-plane translation, orientation and scale changes. Experiments
demonstrate that ISCs can be accurately computed between manually acquired
US slices during neurosurgery without probe tracking. A novel application of ISC
is proposed: US volume reconstruction without calibration, where reconstruction
results are similar to those obtained via phantom-based calibration.

2 Inter-slice Correspondence

Inter-slice correspondence (ISC) aims to map image structure from a US slice
to homologous structure in a sequence of previously acquired 2D US slices.
Although ISC can be used in conjunction with probe tracking information, for
example in the 3D reconstruction method proposed in the following section, it
is achieved without probe tracking information. To be effective in an arbitrary
interventional setting, ISC must account for a significant degree of deformed or
missing tissue, e.g. in the case of resection, in addition to in-plane geometrical
variations such as such as translation, rotation and scaling, e.g. in case of vari-
ation in probe position or depth settings. Most importantly, ISC must account
for out-of-plane geometrical variations, as US data are generally acquired from
different 3D slices through the patient anatomy. To this end, ISC operates by
identifying correspondences between informative local patterns or features that
can be reliably localized in multiple, approximately intersecting US planes.

ISC makes use of local scale-invariant image features, distinctive image pat-
terns that can be automatically extracted in each US slice in a manner inde-
pendent of in-plane translation, orientation and scale changes [9,10]. A feature
f = {ū, α, σ, ā} is an oriented image patch described geometrically by 2D pixel
location ū = {u, v}, orientation α and scale σ, along with a local intensity descrip-
tor ā used for computing correspondence. A number of scale-invariant feature
extractors exist, we adopt the computationally efficient ‘SURF’ algorithm [10].
Briefly, salient image regions (ū, α, σ) are identified based on the local Hessian
determinant, and local intensity is encoded via a 64-element descriptor of ā of
Haar wavelet responses.

Robust feature correspondence has been the focus of extensive research in
the context of computer vision, where techniques such RANSAC and the Hough
transform are commonly used to identify correct feature matches between pairs
of projective images, for example [9–11]. The context of US data bears distinct
challenges, however, and these techniques cannot be applied directly. To illus-
trate, in the context of projective image data, the same 3D point is generally
observable in images acquired from different sensor geometrical configurations,
i.e. camera viewpoints, and relatively dense correspondences can be identified
via pair-wise image matching. In contrast, US data are not formed via pro-
jection but rather as slices through 3D space, and the same 3D point cannot
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generally be observed as slices generally do not pass through precisely the same
point. Thus whereas relatively dense correspondences can be identified between
an arbitrary pair of projective images, e.g. photographs of the same scene, valid
correspondences generally do not exist between an arbitrary pair of US images.

ISC thus adopts a novel robust one-to-many correspondence technique, that
aims to identify approximately correct matches between a new US image and an
entire sequence of previously acquired US slices, as illustrated in Fig. 1. Let I
and Ī ◦ represent sets of features extracted in a new US image and in a sequence
of previously acquired (i.e. prior or training) US slices, respectively. ISC identi-
fies correspondences (f, f ◦) between all features f ∈ I and some feature f ◦ ∈ Ī ◦,
by pairing each f with a nearest neighbor (NN) f ◦ based on the Euclidean
distance of local feature intensity descriptors ≥ā, ā◦≥. Fast approximate NN tech-
niques operate in O(N log N) computation complexity in the number of training
features N = |Ī ◦|, e.g. using the k-d tree data structure [12]. An additional US-
related consideration is the case of mirrored image correspondence due to lateral
probe flipping, this can be accounted for efficiently by mirroring the geometry
and appearance descriptor elements of f ∈ I prior to correspondence.

Many ISCs are spurious and noisy, and robust estimation is required to iden-
tify a reduced set of valid correspondences. The geometrical mapping between
ISC arising from multiple US slices is modeled as a global in-plane similarity
transform followed by local feature-specific variations. Intuitively, the similarity
transform coarsely approximates global image pattern variation between nearby
slices in the 3D world, about which variations due to out-of-plane rotation, non-
linear tissue deformation, occlusion, etc., are approximated as locally linear via
individual correspondences. The Hough transform is used to identify a globally
optimal similarity transform, as follows. Let ε = {dū, dα, dσ} represent the 2D
translation, rotation and scaling parameters of an in-plane similarity transform
mapping the geometry of f ◦ to that of f . The set C(ε) = { (f, f ◦) :

NN(a, a◦) ≈ ≥ū, ū◦ + dū≥/σ ≤ γu ≈ | log σ◦dσ/σ| ≤ γσ ≈ |α − α◦ + dα| ≤ γθ

} contains the inliers of ε , i.e. all nearest neighbor correspondences NN(f, f ◦)
such that the differences in scale-normalized location, scale and orientation of
feature f and f ◦ transformed by ε are within thresholds (γu, γσ, γθ). An opti-
mal transform ε∗ = argmax

Ψ
|C(ε)| maximizing the cardinality or inlier count

of C(ε) is identified by testing candidate transforms generated by each corre-
spondence, and the final set of ISC inliers is C(ε∗). Thresholds are set empiri-
cally, higher values allow a high degree of ISC deformation while increasing the
incorrect ISC rate. Values of (γu = 3/4, γσ = log 1.5, γθ = 20◦) are used here
for all experiments. A final constraint requires correspondences to occur within
sequential frames of Ī ◦, under the assumption of a smoothly varying US probe
acquisition trajectory.

The accuracy of ISC with respect to ground truth is evaluated in the context
of neurosurgery, with two freehand US sweeps of the same human brain acquired
prior to major resection. The BITE data set is used [4], where a calibrated probe
tracking system provides a ground truth mapping between US pixel coordinates
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Fig. 1. Illustrating inter-slice correspondences via scale-invariant feature (green circles)
from a new US slice (upper right) to multiple US slices in a prior sequence (left). A
graph of 3D ISC error vs. ISC inlier count (lower right) reveals low error for inlier
counts greater than 4, with the exception of a small number of 3D outliers.

to 3D anatomical locations. Images are 640 × 480 with 0.2 mm resolution, each
producing ∼ 800 features. One sweep is arbitrarily chosen as the prior sequence Ī ◦

(240 slices), and ISC is performed to each slice I of a second sweep (144 slices).
Figure 1 graphs the error (Euclidean distance) for ground truth 3D locations
of ISC correspondences. Error is high for slices where |C(ε∗) < 5|, these are
generally incorrectly aligned due to insufficient overlap of US content. This is
expected, since the volumetric overlap of sweep 2 with sweep 1 here is ∼ 78%.
Error is low for slices where |C(ε∗)| ≥ 5, with the exception of a small number
(2.2 %) of 3D Outliers, i.e. coincidental correspondences that are in-plane inliers
but incorrect outliers in 3D. In total, 41 % of testing slices I result |C(ε∗)| ≥ 5,
with an average ISC error of 1.3 mm. Note that the number of ISC inliers can
be used to identify US frames with no valid correspondence. 3D outliers have a
negligible impact on volume reconstruction in the following section.

3 US Volume Reconstruction Without Calibration

US Volume reconstruction is commonly used for visualizing 3D patient anatomy
from a set of tracked, freehand 2D US frames. Reconstruction typically requires
estimating the US image-to-probe transform via a specialized calibration pro-
cedure and apparatus [2]. Calibration-free methods for computing the image-
to-probe transform have been proposed, however they come with limitations
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(e.g. no recovery of out-of-plane rotation [13] or scaling parameters [14]), or
require a specific US acquisition protocol (e.g. two image sequences separated
by a 90◦ out-of-plane rotation about a fixed 3D point [14]).

ISC allows calibration-free reconstruction from relatively unconstrained US
sweeps through arbitrary, textured tissues. Let x̄i = [xi, yi, zi, 1]T represent the
location of a 3D point in the world in homogenous coordinates, and let ūi =
[ui, vi, 0, 1]T represent the pixel location of the same point within a 2D US image.
Points ūi and x̄i are related by the following equation:

x̄i = TwTpTsūi, (1)

where Tw, Tp and Ts are 4 × 4 homogenous transform matrices. Tw is a rigid
transform from the US probe to the 3D world, typically provided for each US
image by the tracking mechanism. Ts = diag[su, sv, 1, 1] is a diagonal scaling
matrix converting US spatial units (pixels) to world distance units (mm). Scaling
parameters (su, sv) may in principle be provided by the US system, however they
vary with changes in US settings such as depth, and are treated as unknown here.
Finally, Tp is the unknown rigid transform from the US image plane to the US
probe, with six intrinsic parameters: three rotation angles and three coordinate
translations. For simplicity, let Tps = TpTs represent the unknown image-to-
probe transform matrix.

The goal of 3D reconstruction here is to determine the unknown Tps from
ISCs identified between US slices. Let (ūi, ūi

◦) represent corresponding US image
points, i.e. the locations of the same 3D point xi observed in two different
US images. From Eq. (1), corresponding points ūi and ūi

◦ are related via the
following equation:

T ◦
wTpsūi

◦ = TwTpsūi + ηi, (2)

where ηi is assumed to be zero-mean Gaussian noise. Thus given a set of N
correspondences {(ū1, ū1

◦), . . . , (ūi, ūi
◦), . . . , (ūN , ūN

◦)}, the optimal matrix T ∗
ps

minimizing the squared reconstruction error of corresponding points in the 3D
world becomes:

T ∗
ps = argmin

Tps

{
N∑

i=1

||T ◦
wTpsūi

◦ − TwTpsūi||2
}

, (3)

Tps is a scaled rigid transform defined by eight intrinsic parameters: a 3D
displacement vector d̄ = {d1, d2, d3}, two positive scaling factors (su, sv) treated
here as unconstrained values in the log domain (log(su), log(sv)), and three rota-
tion parameters constrained by the orthonormality requirements of a 3× 3 rota-
tion matrix. Rotation parameter constraints complicate optimization of Eq. (3),
here we adopt a Rodrigues parameterization in which a 3D rotation is repre-
sented as scalar angular rotation about a 3D axis. Specifically, a 3D vector of
unconstrained values ω̄ = {ω1, ω2, ω3} is adopted, where the unit vector ω̄

‖ω̄‖
defines the rotation axis and the the norm ||ω̄|| defines the rotation angle.
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Optimization thus seeks to identify a parameter vector {log(su), log(sv), d̄, ω̄}
minimizing Eq. (3). A variety of non-linear optimization methods could be
brought to bear, here we adopt the Nelder-Mead simplex method [15] which
does not require explicit gradient computation and converges reliably in opti-
mization scenarios involving small numbers of parameters. Additionally, rather
than minimize the squared error over all correspondences, optimization considers
the squared error of the 75% of correspondences with minimum error, in order
to reduce the influence of potential 3D outlier ISCs.

Reconstruction is tested using two 900-slice tracked US sequences of the
brain, acquired prior to major resection in the context of neurosurgery. The
sequences are acquired via arbitrary sweeps along similar trajectories, consisting
of translation and minor 3D rotations. ISCs are identified between slices in differ-
ent sequences as in Sect. 2, then used to estimate Tps via optimization of Eq. (3).
An important note is that ISCs must be identified over a degree of out-of-plane
rotation in order avoid degeneracy in estimating Tps. For comparison purposes,
Tps is also estimated via a standard wire phantom-based calibration procedure
(see PLUS perk.cs.queensu.ca). The discrepancy between Tps parameters for the
two methods is low: scale parameters (isotropic here) differ by 0.1045 − 0.1064
or ∼ 1.8%, rotation direction cosines differ by 2.8◦, 2.4◦, 1.6◦. The reconstruction
error for 3D correspondences following estimation of Tps is 0.35 mm. Volumes
are reconstructed from one tracked 900-frame sequence using a simple trilinear
interpolation method, using Tps obtained via the calibration-free ISC method
and standard calibration. These are shown in Fig. 2, note the high degree of
visual similarity.

Fig. 2. Axial, sagittal and coronal cross sections of reconstructed US volumes:
(a) calibration-free ISC and (b) standard calibration-based. Note the visual similarity.
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4 Discussion

Inter-slice correspondence (ISC) is presented as a novel method for aligning 2D
ultrasound data without external probe tracking. Correspondences can be identi-
fied across a wide range of variations, including out-of-plane rotation, and exhibit
relatively low error (1.3 mm) with respect to ground truth. Correspondence fail-
ure can be detected, e.g. in the case where no valid correspondence exists, by
the number of ISC inliers. ISC is efficient; an unoptimized C++ implementation
runs at approximately 3 frames per second on a 2.5 GHz processor for 640×480
pixel US slices. Computation time is largely due to feature extraction and could
be reduced via parallelized GPU processing.

The primary potential for ISC is in increasing the robustness of 2D US-
guidance by reducing the dependency on external tracking. This is demonstrated
in a novel calibration-free US volume reconstruction formulation based on ICSs,
where results are similar to those obtained by a phantom-based calibration pro-
cedure with an average reconstruction error of 0.35 mm. Other potential appli-
cations could include automatic verification of calibration during a procedure or
navigation and visualization in the case of tracking or calibration failure, these
are left for future work.

Several considerations regarding ISC should be noted. The anatomy of inter-
est must contain distinctive, localizable image structure from which distinctive
features can be extracted. Qualitatively, we have noted ISC to be effective in
US of various organs, including muscle. ISCs cannot be computed if the degree
out-of-plane rotation between slices is too great, this breakdown point will be
investigated. Future work will include quantifying ground-truth ISC accuracy in
intraoperative data, investigating ISC for the purpose of online navigation for
image guidance in neurosurgery and in other domains (e.g. abdomen), improve-
ments to tracker-less visualization (e.g. deformable tumor contour alignment)
and developing a probabilistic model of ISC.

Acknowledgements. This work was supported by NIH grants R01CA138419 and
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Abstract. Dual-energy CT (DECT) can be performed with state-of-
the-art dual-source CT (DSCT) scanners and allows for assessing bone
mineral density (BMD). In this work, we present first clinical experience
with in vivo BMD assessment of vertebrae based on DECT data which
has been acquired with a state-of-the-art DSCT scanner in the clinical
routine. In contrast to previous work where we did in vitro tests of our
method, we apply it her for the first time to in vivo data and prove the
feasibility of our technique in a clinical setting. For 25 patients, DXA
as well as DECT data have been acquired and BMD of vertebrae was
assessed. Advantages of DECT are its 3D capabilities allowing to com-
pute the spatial BMD distribution and to focus the examination on the
trabecular bone. Correlation between both imaging techniques regarding
the averaged BMD values per vertebra are only moderate.

Keywords: Bone mineral density · Dual-energy CT · Osteoporosis

1 Introduction

Lowered bone mineral density (BMD) is an indicator for reduced bone stabil-
ity [11]. This might lead to osteoporosis where the fracture risk is increased due
to a deterioration of the micro-structure of the trabecular bone. This constituent
is the inner part of many bony structures like vertebrae who have an additional
outer shell – the cortical bone. Having a higher metabolic activity [3], the trabec-
ular bone of vertebrae is more affected by a decrease of BMD than the cortical
bone. The latter sometimes compensates this lowered BMD to some extent by
becoming locally more dense.

Thus, from the clinical point of view it is desirable to have a means to examine
both, trabecular and cortical bone independently. However, the currently used

M. Erdt et al. (Eds.): CLIP 2013, LNCS 8361, pp. 151–159, 2014.
DOI: 10.1007/978-3-319-05666-1 19, c© Springer International Publishing Switzerland 2014



152 S. Wesarg et al.

standard imaging modality for BMD assessment is dual-energy X-ray absorp-
tiometry (DXA) which provides 2D projection images of the bone - e.g., ver-
tebrae [2,8]. There, the measured intensity represents the combined absorption
of both vertebral constituents. And a separation of both contributions is not
possible. A method for a localized assessment of BMD is quantitative computed
tomography (qCT) [1]. This 3D imaging modality allows for a regional analysis
of the bone and directly delivers BMD values. This is achieved by placing a
calibration phantom in the field-of-view of the CT scanner. The phantom con-
tains substances with known density allowing for a direct determination of BMD
values based on the measured intensity in qCT.

In the past years, dual-source computed tomography (DSCT) technology has
become available in the clinics. These scanners contain two pairs of X-ray source
and detector, respectively [5]. Since both sources can be operated with different
energies, dual-energy computed tomography (DECT) can be performed easily.
Even though the use of DECT for BMD assessment has been already proposed
in the last century [6,7], it has not gained attraction yet despite the availability
of DSCT technology.

In a previous publication [10], we presented a method for BMD assessment
in vertebrae employing 3D DECT image data. Besides the presentation of our
approach, the focus of that work was an in vitro evaluation using cadaver spec-
imens. The computed BMD values for the trabecular bone were compared with
measurements of pull-out forces applied to screws which have been drilled into
the pedicles of the individual vertebrae. We could show that there is a relatively
strong correlation between the BMD values and the bone stability derived from
the force measurements. In this work, we present the outcome of a first clini-
cal study focusing on BMD assessment based on DECT and using our method.
For this, 25 patients underwent DXA and DECT imaging, respectively. Purpose
of the study was to investigate the clinical practicability of DECT based BMD
assessment doing in vivo tests for the first time and to analyze the data regarding
any potential correlation between DXA and DECT measurements.

2 Methods

2.1 Biophysical Model of the Trabecular Bone

As mentioned above, methods for assessing BMD based on DECT have already
been proposed in the last century. In a comparative study [9], the approach of
Nickoloff et al. [7] performed best. Therefore, it was integrated into our solution.
The underlying biophysical model expresses the normalized overall volume of the
trabecular bone as the sum of the partial volumes of its constituents – trabecular
bone VTB , adipose tissue VF , and non-adipose tissue VT :

VTB + VF + VT = 1. (1)
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(a) (b)

Fig. 1. By deforming the template mesh it is adapted to the individual shape of each
vertebra. Its adjustable stiffness affects the influence of this deformation to the interac-
tion point’s vicinity (a). Subdivision of the trabecular bone mask into 12 segments (b).

The relationship between the measured Hounsfield values αlow
HU and αhigh

HU and
the fractional volumes VTB and VF is given by the following two (manufacturer
independent) equations:

αlow
HU = (μlow − γlowg) · VTB + (εlowt − γlowg) · VF + γlowg + γ + η, (2)

αhigh
HU = (μhigh − γhighg) · VTB + (εhight − γhighg) · VF + γhighg + γ + η. (3)

here, low and high stand for the two energies of the DSCT scanner’s sources.
Typical values are 80 kV and 140 kV . Altogether, these are three equations for
three unknowns allowing to compute the three fractional volumes. The value
of VTB is directly proportional to the BMD of the trabecular bone ωBM and
given as

ωBM =
l · VTB

1 + λ
. (4)

The variables in the Eqs. 2 to 4 are energy dependent constants. Their values for
different energies can be found in reference [7].

2.2 Labeling of the Trabecular Bone

Since we are interested in the BMD of the trabecular bone, this region has to be
delineated in the DECT image data first. Afterwards, the computation of ωBM

can be restricted to these areas considering the intensity values in the low and
high energy data sets. In reference [10], we presented two different methods for
this labeling – an interactive one as well as an automatic one. For the clinical
study presented here, we selected the interactive one [4]. Initial feedback given
by the clinical users was that they want to maintain full control over the labeling
step, thus favoring the interactive method. Furthermore, our automatic method
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employing an Active Shape Model segmentation was trained with a rather limited
number of shapes. Therefore, we could not fully guarantee its robustness and
accuracy.

Initially, a mesh representation of a manually segmented trabecular bone
region was created using the Marching Cubes algorithm. This mesh was further
processed in order to distribute the vertices evenly. It served as a template for
the segmentation of an arbitrary vertebra. For this, the clinician has to roughly
align the mesh with the image data through translation, rotation, and scaling.
Afterwards, the mesh can be locally deformed by pulling the boundaries of the
mesh towards the desired position (Fig. 1, left). The exerted force at a specific
vertex is always propagated to adjacent nodes using a 3D Gaussian. Switching
between different scales of the standard deviation σ allows for a variation of the
mesh’s stiffness. For ensuring that no distortion artifacts occur, an optimization
of the point distribution is immediately performed during the adaptation of the
mesh. If the user is satisfied with the delineation of the trabecular region, a mask
image is created where all voxels inside the resulting mesh are labeled.

2.3 BMD Computation

In order to assess the BMD values inside the defined volume-of-interest (VOI),
the two DECT data sets (low and high energy) as well as the generated label
volume have to be loaded into our BMD processing tool. There, the user also
has to set the energy values for the DECT data and select the basic type of the
vertebra (lumbar, thoracic, or cervical) to be analyzed. The latter is necessary
for a correct color-coding of the computed BMD values. Reference [12] gives
typical BMD values for the different vertebrae obtained through qCT based
measurements over a large cohort. The there given average and variance values
define the range for the coloring in our software.

Our software performs two different BMD computations. In any case, the
computation is always restricted to the labeled region. The first variant is a
voxel-wise computation providing the spatial BMD distribution in the consid-
ered VOI. For each voxel and its close 3D neighborhood, a Gaussian-weighted
intensity value is computed from low and high energy image data (the αHU in
Eqs. 2 and 3). Thus, we obtain a ωBM value for every voxel in the VOI. For the
second variant, we first subdivide the trabecular bone into 12 segments (Fig. 1,
right). Along the direction of the vertebral column, the vertebra is divided into
3 regions, and each of them further into 4 parts. This segmentation is clinically
justified: the left and right part of the vertebra may be regions where during
therapy pedicle screws will be drilled in; the BMD distribution close to the
vertebral endplates is expected to be different from that of the central region;
and ventral as well as dorsal regions should be examined separately. For each
segment, the intensity values αHU are averaged. And one value ωBM is com-
puted per segment. These 12 values are written to a file for further statistical
analysis.
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(a) (b)

Fig. 2. Visualization of the spatial BMD distribution for a lumbar vertebra employing
three orthogonal slices. The density values are mapped to color where the minimum
and maximum values depend on the type of vertebra. Direct probing at the position
indicated by the cross-hair provides the corresponding BMD value (a). The vertebral
body is subdivided into 12 segments. For each of them, a single BMD value is computed
and mapped to color. In addition, these values are displayed employing an elliptical
plot (b).

2.4 Visualization

For the display of the computed values, we provide the BMD values and show
their spatial relationship to other parts of the vertebra. Therefore, we generate
an output image IBMD based on the input image data. For voxels lying outside
the VOI, we simply copy the intensity values from the low energy image and
shift them above 4095, i.e., IBMD = I0 + 4096. The voxels inside the VOI are
set to the BMD values. That way, a color transfer function can be defined that
provides a standard gray level visualization for the unchanged voxel intensities
above 4095 and a color mapping for values ranging from 0 to 4095. Depending
on the type of the vertebra, the BMD values are mapped to color employing
a perceptually based red-to-blue color map1. Here, low density regions appear
reddish, areas of normal density white, and high density regions bluish.

The spatial BMD distribution is displayed using three orthogonal planes
which can be interactively moved through the image data set. In addition to
the color coding of the trabecular bone region, single voxel positions can be
probed which causes that the corresponding BMD value is displayed on the
screen (Fig. 2, left). The values of the 12 segments are displayed employing an
elliptical 2D plot. This provides a comprehensive overview over the BMD values
in the 12 segments (Fig. 2, right). This type of visualization is inspired from
cardiology, where a so-called bull’s-eye display is employed for the display of
cardiac parameters. Due to the fact that the vertebral body’s cross sectional
area is rather elliptical, we adapt the display in our case to an elliptical shape.
1 The color map is taken from http://colorbrewer2.org

http://colorbrewer2.org
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2.5 Patients and Image Data

This study included patients who were scheduled for BMD assessment using
DXA and an additional CT scan of the abdomen or lumbar spine. Both exami-
nations were performed within an interval of 48 h. Patients with metallic imple-
ments after spinal surgery or hip replacements were excluded in this study. A
total of 100 lumbar vertebrae in 25 patients were evaluated. Of all 25 patients
in this study, nine patients (36%) had a known history of osteoporosis.

DXA was performed using a GE Healthcare Lunar Prodigy Advance bone
densitometer (Madison, WI, USA). Images of the lumbar spine (L1-L4) were
obtained in anterior-posterior acquisition. For each vertebra, the manufacturer’s
software automatically calculated BMD values. The DECT examinations in
this study were performed using a second generation 128-slice DSCT in dual-
energy mode (Somatom Definition Flash, Siemens Healthcare, Forchheim, Ger-
many). Both X-ray tubes were operated at different kilo voltage settings (tube
A: 140 kV p with Sn filter, 105mAs per rotation; tube B: 100 kV p, 165mAs
per rotation). Image series were acquired in the craniocaudal direction with
patients in a supine position and both arms extended above the head. Images
were reconstructed with a dedicated dual-energy bone kernel (D70f) and the
recorded information of the full gantry rotation (temporal resolution of 280ms)
with a slice thickness of 1.5mm and an increment of 1.0mm.

3 Results

The developed software could easily be used by the clinicians participating in
this study. After a short training period, the labeling of the trabecular region
employing the interactive template mesh deformation method could be done
autonomously. The time needed for the labeling ranged from 2 to 5min per
vertebra. Once the VOI had been defined, the BMD assessment itself run
autonomously. On a standard notebook PC, the time needed for processing a
complete DECT data set was below 10 s. Afterwards, the clinician was presented
with the eliptical 12 segments plot and could interactively examine the spatial
BMD distribution using the orthogonal plane visualization and probing.

The average DECT-based BMD value computed from all 25 subjects was
0.215 g/cm3 ± 0.049 g/cm3, ranging from 0.131 g/cm3 up to 0.395 g/cm3. Thus,
these values correspond well to other studies where BMD was assessed based
on qCT data [12]. Regarding DXA, calculated average bone density of L1-L4
was 0.951 g/cm2 ± 0.234 g/cm2, ranging from 0.643 g/cm2 up to 1.641 g/cm2.
According to the WHO guidelines, DXA measurements identified seventeen ver-
tebrae (17%) as osteopenic. Fifty-four (54%) vertebrae showed an osteoporotic
BMD measured by DXA. The correlation between the computed BMD values
based on DECT and DXA, respectively, was only moderate (Fig. 3).
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Fig. 3. Correlation between DECT and DXA values. A linear regression has been
applied leading to a coefficient of determination r2 = 0.3764.

4 Discussion

We have successfully performed a first clinical study with a novel method for
BMD assessment based on DECT. Initially, the software had been tested only
in vitro using cadaver specimens [10]. Here, a pilot clinical study showed that
DECT-based in vivo BMD assessment is feasible and allows for segmented dis-
play of 3D trabecular BMD distribution of the lumbar spine. In addition, the
clinicians involved in this work stated that an advantage of DECT derived BMD
analysis is 3D visualization of BMD distribution. For this, qCT would be an
alternative scanning technology, but qCT scanners are less common, expose the
patient to a higher radiation dose and require cross-manufacturer-calibration
using suitable phantoms. Since a calibration phantom is necessary for every
qCT scan, retrospective analysis of BMD cannot be performed.

An increasing number of CT examinations are performed with DECT due to
the various possible applications in abdominal, cardiac, musculoskeletal, and vas-
cular imaging. Patients and physicians would benefit from a technique that allows
BMD assessment in all diagnostic DECT examinations virtually as a byprod-
uct and that does not require phantom calibration or additional scan series.
Automated BMD assessment when performing CT scans would also improve the
hospital work flow and reduce medical costs.

A strong correlation between DECT and DXA could not be found. The
main reason for this is the fact that DXA is a 2D projection technique. Thus,
DXA images of vertebrae represent a mixture of cortical and trabecular bone
absorption values. Given the fact that the cortical bone is able to compensate
to some extent a lowered BMD of the trabecular bone, DXA is not sensitive
enough for predicting fracture risks [11]. For this, DECT has a clear advantage
since it allows for a separate examination of the trabecular bone. In a previous
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publication [10], we have demonstrated the strong correlation between our DECT-
based BMD computation and measured pull-out forces. Since these local force
measurements cannot be conducted in vivo, an additional qCT scanning would
be desirable. Unfortunately, this would result in additional radiation exposure
for the patient and is consequently hardly feasible.

There are limitations to this study. As usual, the inclusion of more patients
would represent a stronger foundation for a statistical analysis. But, since we
focused on demonstrating that DECT-based assessment of BMD is feasible in a
clinical setting, this study was limited to 25 patients using the same DSCT scan-
ner. A multi-center approach with a larger patient group and implementation
of DSCT from various vendors is required to reassess the practicability of this
technique in the clinical routine. Second, correlation studies with additional indi-
cators of bone stability are necessary to demonstrate the potential advantage of
sub-segmental BMD distribution analysis using DECT over conventional DXA.

In conclusion, we demonstrated that in vivo DECT-based BMD assessment of
the lumbar spine in a clinical setting is feasible. As an advantage over DXA, this
technique allows for computation of 3D spatial BMD distribution and therefore
evaluation of regional stability of the trabecular bone of all osseous anatomic
regions. Our technique allows for prospective as well as retrospective analysis
of DECT data and therefore might further reduce the number of performed
imaging examinations per patient, decrease radiation exposure for the patient
and reduce medical costs.
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