
Chapter 6

Recent Applications of Number-Theoretic

Sequences in Audio and Acoustics

Ning Xiang, Bosun Xie, and Trevor J. Cox

Abstract Manfred R. Schroeder made influential contributions to acoustics by

applying number theory. He introduced number-theory sequences in room impulse

response measurements, applied number-theoretical sequences to shape wall

surfaces for diffuse sound reflections. Another area Manfred Schroeder made

broad impact is invention of an artificial reverberator using all-pass transfer-

function properties to create colorless reverberation using a simple algorithm.

Vast research activities and engineering developments over past decades have

extended Schroeder’s work involving artificial reverberators, artificial stereo and

applications of maximum-length sequences. This chapter briefs a number of

recent applications of maximum-length and quadratic-residue sequences, such as

simultaneous dual/multiple sources measurements in acoustical tomography, in

artificial pseudo-binaural reverberation, in decorrelation for spatial audio signals,

and room acoustic diffuser design.

6.1 Introduction

In 1961, Manfred R. Schroeder, along with Ben Logan [1, 2] invented an artificial

reverberator using all-pass transfer-function properties while having an exponen-

tially decaying impulse response, thereby creating colorless reverberation using a

simple algorithm. It has been widely accepted both in analog and digital audio

devices for processing audio signals. One can now find colorless reverberators and

artificial stereo, including simulations of virtual sound sources and auditory
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environments in various stereophonic and surround sound reproduction formats, in

practically all electronic music instruments (See Schroeder’s Memoirs in Part II).

In the 1970s, Manfred Schroeder made another influential contribution to

acoustics with the introduction of number-theory sequences, applying bipolar,

binary maximum-length sequences (MLSs) to applications such as shaping wall

surfaces for diffuse sound reflections [3], and acoustics system identification to

enable room impulse response measurements based on correlation techniques

[4]. Extending the wall surface work to exploit nonbinary sequences, led to

Schroeder devising the quadratic residue diffuser [5] and other designs widely

used in studios and performance spaces to improve acoustics [6] (see also Chap. 9).

Vast research activities and engineering developments over past decades have

extended Schroeder’s work involving artificial reverberators, artificial stereo and

applications of MLSs. This chapter is dedicated to the memory of Manfred Robert

Schroeder in briefing a number of recent applications of maximum-length

and quadratic residue sequences, such as simultaneous dual/multiple sources

measurements in acoustical tomography, in artificial pseudo-binaural reverberation,

in decorrelation for spatial audio signals, and room acoustic diffuser design.

6.2 Properties of Maximum-Length Related Sequences

MLSs, also termed pseudorandom sequences/noises, offer excellent pseudorandom

properties. Therefore, they are used in communication, acoustics, and many other

relevant applications. They possess properties similar to those of random noise, but

are periodically deterministic and have a strict time structure within their periods.

In the following, a brief review of some basic properties pertaining to acoustic

applications is given. Detailed description and definitions can be found in [7–9].

In particular, Xiang [9] has most recently summarized these properties succinctly.

An n-stage linear shift-register device with proper feedback taps can generate

periodic binary MLSs {ai} with ai ∈ (0, 1). Binary MLSs can also be generated

numerically using a simple recurrence in the digital domain

ai ¼
Xn
k¼1

ckai�k, 0 � i < L, ð6:1Þ

with ck ∈ (0, 1) and c0¼ cn¼ 1, where the summation and indices are calculated,

modulo 2 and the positive integer n is said to be the degree of the linear feedback
registers or of the corresponding MLS. Both analog generation using linear

feedback registers and numerical generation using the linear recurrence are subject

to a nonzero initial state {a� n, a� n+ 1, a� n+ 2, . . . a� 2, a� 1} denoted as

f a( ig 6¼ 0f g. The proper feedbacks are expressed by feedback coefficients

ck ∈ (0, 1); when resulting in a periodic sequence of length L¼ 2n� 1, the

sequence arrives at its maximum possible length, therefore, termed MLS. Under
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this MLS condition, the proper set of feedback coefficients can also be expressed in

polynomial form, f(x)¼∑ n
k¼ 0ckx

k, termed the primitive polynomial. One primitive

polynomial given degree n corresponds uniquely to one MLS. The feedback

coefficients ck and the binary sequence element ai are defined over Galois field

GF(2) while the sequence {ai} is defined over Galois field GF(2n). The underlying
mathematical calculus is a substantial subject of number theory [7].

Among a number of number-theoretic properties, the most important property of

MLS is that the normalized periodic autocorrelation function of a bipolar MLS

within one period is a two-valued function [8]

ϕ ið Þ ¼ Lþ 1

L
δ ið Þ � 1

L
: ð6:2Þ

With large enough period length L¼ 2n� 1, the periodic autocorrelation

function approximates the unit sample sequence ϕ(i)� δ(i). Therefore the power

spectrum of any MLS is flat, expect for a “dip” at zero-frequency.

An MLS {bi} can always be derived from a given one {ai} in terms of a circular

phase shift such that bi¼ ai + τ so that an invariant decimation bi¼ b2i can be

satisfied. Here all the indices are calculated modulo L. This specific MLS {bi} is

designated as characteristic MLS and self-similar MLS [9]. This invariant

decimation holds only for characteristic MLSs with decimation factors of 2m with

m being a positive integer [9]. There exists a unique characteristic MLS for any

given primitive polynomial and a unique initial state f a
(

ig of the shift register to

generate it. An algorithm deriving the required initial statef a
(

iggiven the primitive

polynomial for generating the characteristic MLS has recently been described by

Xiang [10]. The characteristic MLSs with the invariant decimation are of practical

significance, they are also relevant to the following applications.

Furthermore, a variant decimation is also of practical significance. When the

decimation factor d is properly chosen, the decimation will lead to a pair of MLSs

({ai}, {bi}) with {bi}¼ {adi}, whose periodic cross-correlation function (PCCF) is

of clearly lower value than the peak of the periodic autocorrelation function of

either sequence. In this context, all the indices are calculated modulo L. One
of the straightforward variant-decimation factors is d¼ L� 1. This decimation

{bi}¼ {a(L� 1)i}¼ {a� i} simply indicates that a time reversal of MLS {ai} always
leads to another MLS {bi}. This pair of MLSs ({ai}, {bi}) derived from decimating

{ai} using factor d¼ L� 1 or equivalently from time reversing {ai} is termed

reciprocal MLSs due to the fact that their corresponding primitive polynomials

are reciprocal to each other [10]. The most relevant correlation properties

pertaining to the applications described in this chapter are that one can find MLS

pairs or sets of sequences such that the PCCFs between them are of lower values,

and the absolute bounds of these low values are deterministically predictable.

For example, the bound value of the reciprocal MLS pair of degree n has been

reported [8, 11]
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lr nð Þ ¼ 2 nþ2ð Þ=2 � 1

2n � 1
: ð6:3Þ

For MLSs whose degrees are not a multiple of 4, some decimation factors are of

the form d¼ 2k+ 1 or d¼ 22k� 2k+ 1, where k is chosen such that n/gcd(n, k) is odd,
with gcd(,) being the greatest common divider. A decimation using these factors

leads to an MLS pair ({ai}, {bi}), with {bi}¼ {adi}. For MLSs whose degrees are

a multiple of 4, a decimation factor d¼ 2(n+ 2)/2� 1 leads to a MLS pair. The cross-

correlation between the original MLS {ai}, and the decimated one {bi} results in

small values bounded [8] by

lp nð Þ ¼ 2 nþ2ð Þ=2b c � 1

2n � 1
, ð6:4Þ

where bαc denotes the integer part of the real number α.
Besides the reciprocal MLS pairs, this chapter will refer to MLS pairs derived

from above-mentioned decimation factors with low-valued PCCFs as preferred
MLS pairs (see Xiang [8] for a detailed summary). In addition, one can derive a

large number of sequences by combining the preferred or reciprocal MLS pairs

({ai}, {bi}), as Gτ(i)¼ ai� bi + τ with � denoting addition modulo 2, so-called Gold

sequences {Gτ(i)}, whose correlation bound values between each other are the

same as those of either preferred MLS pairs or reciprocal pairs [8]. Similarly a

decimation from an MLS {ai} of even-numbered degree with a decimation

factor d¼ 2n/2 + 1 leads to a pair ({ai}, {ei}), with ei¼ adi. The combination

Kτ(i)¼ ai� ei+ τ leads to a binary Kasami sequence {Kτ(i)}, and their low-valued

PCCFs represent even lower bounds,

lK nð Þ ¼ 2n=2 þ 1

2n � 1
, ð6:5Þ

approximately half of those of preferred pairs and Gold sequences.

Figure 6.1 illustrates the bounds of the PCCF of preferred pair, reciprocal pairs,

and Kasami sequences. Gold sequences have the same bound values as those of

preferred pairs and reciprocal pairs for even-numbered degrees. The preferred pairs

possess approx. 3 dB lower bound values than those of reciprocal pairs for

odd-numbered degrees. And the bound values of Kasami sequences, existing only

for even-numbered degrees, are as 6 ~ dB lower than those of the others. Figure 6.2

shows auto- and cross-correlation functions of Kasami sequences of degree 14 to

illustrate the excellent correlation properties of MLS-related sequences.
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6.3 Acoustical Measurements Using Simultaneous Sound

Sources

Recent research in outdoor sound propagation for acoustic atmospheric tomography

[12] calls for a critical measurement exploiting these correlation properties of

MLSs and related coded signals. In tomographical applications, a number of

sound sources have to be excited at the same time, within the same frequency

range. This simultaneous multiple acoustic source measurement (SMASM) can be

used in acoustic delay-time tomography to investigate temperature distributions

and wind profiles near the ground surface in outdoor environments. With simul-

taneous excitations of multiple sound sources and one or multiple sound receivers,

the SMASM considers the acoustic system under test as a linear time-invariant

multiple-inputs and multiple-outputs (MIMO) system, at least approximately

during the excitation period. Using the excellent correlation properties of the

coded signals (sequences) briefly discussed above, a large number of coded signals

can be straightforwardly derived for the SMASM technique.

Figure 6.3 illustrates a SMASM scheme, where the vector s¼ [s1, . . . sn]
T stands

for the multiple coded signals used as system excitations, and r¼ [r1, . . . rp]
T

denotes the system’s responses to these excitations, with [,]T standing for matrix

transpose; n is the number of simultaneous sources, while p is the number of

receivers.

With properly designed excitations, the system identification task is to determine

the impulse response matrix h¼ [hij] for 1� i� p, 1� j� n, determined by

Fig. 6.1 Bound values of the cross-correlation functions of preferred, reciprocal MLS pairs and of

Kasami sequences. The bound values are expressed in dB relative to the peak value of their

normalized autocorrelation function [11]. [Reproduced from Xiang, N., Daigle, J. N., and Kleiner,

M.: Simultaneous acoustic channel measurement via maximal-length-related sequences, J. Acoust.
Soc. Am., 117, 2005, pp. 1889–1894. Copyright 2005, Acoustical Society of America.]
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h � r� sT , ð6:6Þ

with � denoting periodic cross-correlation and the correlation properties discussed

above leading to this concise form [11]. The physical meaning of Eq. (6.6) is that

the cross-correlation between the receiver (column) vector r¼ [r1, . . . rp]
T and the

source (row) vector sT¼ [s1, . . . sn] approximately results in the channel impulse

Fig. 6.2 Normalized correlation functions of 14-degree Kasami sequences [9]. (a) Periodic auto-

correlation function (PACF) of individual sequences. (b) Periodic cross-correlation function

(PCCF) between two Kasami sequences (shifted downwards beneath the autocorrelation function

for a convenient comparison). The peak value of the PCCF is 42.1 dB lower than that of the delta-

like PACF. (c) Magnified presentation of a segment from (a). Their peak values in the side-lobe of

the PACF are the same as those of the PCCF in (b). [Reproduced from Xiang, N., Daigle, J. N., and

Kleiner, M.: Simultaneous acoustic channel measurement via maximal-length-related sequences,

J. Acoust. Soc. Am., 117, 2005, pp. 1889–1894. Copyright 2005, Acoustical Society of America.]

Fig. 6.3 An acoustical linear time-invariant system under investigation with n number of sound

sources and p number of sound receivers. An p� n impulse response matrix h describes the entire

system under investigation

98 N. Xiang et al.



response matrix h. The approximation is due to the fact that the cross-correlation

functions among individual source signals in the form of coded sequences (Kasami

sequences, preferred and reciprocal MLS pairs) are of finite low-values rather than

zeros. In calculating the individual cross-correlations as expressed in Eq. (6.6),

particularly for n> 2, a specialized algorithm [13] can be used for efficient calcu-

lations. In the case of n¼ 2, reciprocal MLS pairs can be exploited with a dedicated

fast MLS transform algorithm recently published by Xiang and Schroeder [10].

6.4 Artificial Reverberations Using Reciprocal MLS Pairs

and Related Sequences

Following Schroeder [1, 2], there have been many developments of all-pass filter

type artificial reverberators. The most recent overviews on all-pass-filter artificial

reverberators can be found in [14, 15]. Another line of development is reverberators

using finite-impulse-response (FIR) filters, probably due to Moorer [16]. He

proposed the use of exponentially decaying random noise for the late part of

room impulse responses, so that when convolved with anechoic sound materials,

artificial reverberation with a desirable degree of reverberance is created. With the

rapid advent of digital audio processing on personal-computer and DSP platforms,

FIR filtering via linear convolutions have reached multiples of real-time speed at

low cost, so that even a large number of multiple audio channels can be filtered in

real-time with sufficiently long FIR-filter coefficients (room impulse responses).

FIR-filtering algorithms have also emerged that ensure sufficiently short latency for

long room impulse responses [17].

There is a need for rendering the FIR-filter-based artificial reverberations

binaurally, such as in binaural room-acoustic simulations [18], where the tails of

binaural room impulse responses (see Fig. 6.4) are replaced by exponentially

decaying random noise. The decay rates (reverberation times) are determined via

statistical room-acoustic principles. Alternately, other room-acoustic information is

first extracted from the early part of detailed room-acoustic simulations, such as

ray-tracing, image-source approaches, or hybrid approaches [18]. Such schemes

have recently been used for psychoacoustics studies investigating speech

intelligibility, as well as perceptual aspects of acoustically coupled-volume

systems [19].

In principle, an artificial reverberation for a binaural rendering can be achieved

with a spatial envelopment, so-called listening envelopment when the two random-

noise late reverberation tails are incoherent. This avoids using geometrical room-

acoustic simulation (e.g., ray-tracing) to simulate the late reverberation tails, saving

extremely time-consuming processing given the current technology in numerical

simulations. Reciprocal MLS pairs have been used [19, 20] for this purpose, since

the cross-correlation between pairs, given the MLS degree, is of low-value (see

Fig. 6.2). The intriguing aspect of using MLS pairs, in contrast with other methods
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used in previous work [18] are that MLS pairs (and their related coded sequences)

possess deterministically predictable, low values of cross-correlation. Hardly any

other random noise signals can be found as low as these, Kasami sequences being the

lowest. Lower values correspond to a high degree of enveloping spaciousness in the

reverberance. In addition to the highest achievable degrees of spatial envelopment,

one can use mix-networks [20] to control the cross-correlation values of the mixed

MLS pairs for binaural channels, so that the degree of spatial envelopment can also

be adjusted. This is of practical value, since different enclosure conditions will

provide different spaciousness, in addition to the reverberance. As recent

psychoacoustical investigations [21, 22] have demonstrated, simply shaping the

decaying slopes of random noise in the late reverberation tails for achieving artificial

reverberations using FIR-filtering technique is not sufficient in terms of naturalness

and spatial envelopment of the artificial reverberation. Our recent work [21, 22]

adjusts the decay slope (for controlled reverberance) in individual octave/third-

octave bands. For each band, the target-reverberation time shapes the exponentially

decaying envelope of the reciprocal MLS pair. In addition, interaural decorrelation

coefficients which are complimentary to interaural cross-correlation coefficients

(IACC) of the binaural reverberation tails

IADC ¼ 1� IACC, ð6:7Þ

in the individual bands also need to be adjusted accordingly in order to achieve

targeted degrees of spatial envelopment. Adjusting only the decay slopes and the

interaural decorrelation coefficients so that they are similar to those often observed

in experimentally measured binaural room impulse responses creates natural

sounding, artificial reverberance with the desired (or targeted) spatial envelopment.

Figure 6.5 illustrates the procedure of the binaural artificial reverberation with

controllable spatial envelopment and reverberance. A reciprocal MLS pair is first

octave-band filtered. Two channels of band-pass filtered pseudorandom noise are

mixed with an attenuation factor αk with 0� αk� 1 and k being the octave-band

index running from 63 Hz to 8 kHz at each octave-band step.

In Fig. 6.5 between “A” and “B” the two channels of the band-pass filtered,

reciprocal MLS-pair are mixed to obtain the desired “interaural decorrelation.” The

band-pass filtered pseudorandom noise is then multiplied by an exponentially

decaying function E¼ exp(�6.9 � t/Tk), with the desired reverberation time Tk
within octave band k. For broadband resulting “binaural” reverberation tails (late

portion of room impulse responses)

Fig. 6.4 Conceptual

echogram containing the

direct sound, early

reflections, and the late

reverberation tail
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hL,R ¼
XM
k¼1

hL,R kð Þ, ð6:8Þ

with k¼ 1 for octave band 63 Hz, k¼M for octave band 8 kHz, other k values

correspond octave bands between 125 Hz and 4 kHz. In order to create naturally

sounding, enveloping reverberance, in addition to the desired reverberation time

profile, the interaural decorrelation profile also has to be adjusted. Figure 6.6a

illustrates two different profiles of interaural decorrelation obtained using

Fig. 6.5, inspired from analysis of experimentally measured binaural room impulse

responses in existing real concert halls. Figure 6.6b illustrates one (binaural) pair of

late-portion artificial “reverberation tails.”

Advantages of this artificial enveloping reverberation scheme using reciprocal

MLS-pairs are

• MLSs of degree 16–19 with a length between 216� 1 and 219� 1 are typical

lengths used for the artificial reverberation application. At standard audio

sampling frequency, the reciprocal MLS pairs are easily generated, and they

Fig. 6.5 Generation of single-band “binaural” reverberation tails with controllable interaural

decorrelation coefficients and the reverberation times within octave band (k)

a b

Fig. 6.6 Spatial profiles and the reverberation tails. (a) Two spatial profiles (large spaciousness,

middle spaciousness) adjusted for two different degrees of listening envelopment. Interaural

decorrelation is defined as 1� IACC. (b) “Binaural” reverberation tails, properly scaled in terms

of amplitude, it will be appended to the early portion of a pair of “binaural room impulse responses

at time instance at 90 ms
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provide sufficient reverberation density when sampled using standard audio

sampling frequency.

• Spectral flatness of each individual MLS ensures a colorless reverberance.

• Low cross-correlation values of reciprocal MLS pairs (see Fig. 6.2) ensure a high

degree of listener envelopment. Reduced degrees of listener envelopment can be

straightforwardly achieved using a mixing network [20].

6.5 Decorrelation of Audio Signals Using Reciprocal MLS

Pairs [23]

Audio signal decorrelation is a technique that creates two or more replicas of an

input signal, which have different waveforms but are perceived similarly to the

original signals in most aspects except in some spatial auditory effects [24]. This is

applicable to a variety of spatial audio processing effects, such as broadening the

auditory source width, enhancing the listener envelopment in surround

sound reproduction, and the externalization of auditory events in headphone

representation, among others.

In order to create decorrelated audio signals without altering perceived timbre,

decorrelation processing should change the signal waveform but leave the

magnitude or power spectra of signals intact. A straightforward method is to filter

the input signal with a pair of all-pass digital filters with unit magnitude and random

phase responses ranging from�180	 to 180	 at every discrete frequency. However,
the degree of decorrelation resulting from this method is uncontrollable and

unrepeatable.

As stated above, bipolar MLSs are pseudorandom sequences with deterministic

and periodic structures, but possess characteristics similar to random noise.

In particular, the favorable characteristics of nearly uniform power spectra and

deterministic, low-valued cross-correlation functions between each reciprocal MLS

pair make it an excellent candidate for the design of all-pass digital filters for audio

signal decorrelation. In addition, taking advantage of the deterministic and periodic

characteristics of MLS, the design of MLS-based decorrelation filters is control-

lable and repeatable. This is the advantage of MLS-based decorrelation filters over

conventional all-pass filter with random phase. We can also use Kasami sequences

or other coded pairs for the decorrelation algorithm, but reciprocal MLS pairs are

easier to generate.

The design steps of reciprocal MLS decorrelation filters are outlined as follows:

1. Create a pair of n-degree or L¼ 2n� 1 points reciprocal bipolar MLSs {ai}¼
{a0, a1, . . . aL�2, aL�1} and {bi}¼ {b0, b1, . . . bL�2, bL�1}¼ {aL�1, aL�2, . . . a1,
a0}.

2. Sequences {ai} and {bi} are respectively used as the coefficients of a

decorrelation FIR-filters pair.

102 N. Xiang et al.



As shown in Eq. (6.3) and Fig. 6.1, the bounds of the normalized periodic cross-

correlation value of a reciprocal MLS pair, and thereby that of the reciprocal

MLS-based filter coefficients, decreases with increasing degree or length of the

MLS. A high degree or long length leads to nearly zero cross-correlation between

the filter coefficients. The normalized cross-correlation between two filtered output

signals is related to the normalized cross-correlation of filter coefficients and

normalized autocorrelation Φ0(n) of the input signal by:

Φout ¼ Φab nð Þ 
 Φ0 nð Þ, ð6:9Þ

where Φab(n) is the normalized PCCF of the reciprocal MLS pair. Therefore, the

lower the values of normalized cross-correlation between filter coefficients, the

more obvious the decorrelation effect will be. For a better decorrelation effect, a

pair of high degree or long length reciprocal MLS filters is preferred. This makes

design of real-time devices complicated, however. In implementing real-time

devices, the specialized convolution algorithm discussed in Daigle and Xiang is

of highly practical significance [25]. Moreover, filters with excessive length may

distort the transient properties of signals. In practice, the length of reciprocal MLS

filters is selected as a compromise between decorrelation effect and simplicity.

Because the perceived effect of decorrelation is greater for frequencies below

1 kHz than for high frequency above 3 kHz, the perceived performance of

decorrelation filters at a given length can be optimized or improved by properly

adjusting the filter coefficients. In fact, a cyclic time shift of inverse-order MLS

{aL�1, aL�2, . . . a1, a0} yields L new sequences {a0, aL�1, aL�2, . . . a1), {a1, a0,
aL�1, aL�2, . . . a2}, and so on. The cyclic time shift of an inverse-order MLS is

equivalent to adjusting its phase characteristics. The original sequence {a0, a1, . . .
aL�2, aL�1} and each of these time-shifted inverse-order MLS exhibit auto- and

cross-correlation characters similar to those in Eq. (6.3) and Fig. 6.1. We can select

the one from these time-shifted MLSs that makes the cross-correlation of filters

output lowest for low-pass input signal (such as below 1.5 kHz).

Similar to the case of artificial reverberation, a pair of output signals with

controllable but higher values of cross-correlation can be approximately obtained

by an appropriate mixture of the reciprocal MLS pair.

The algorithm of reciprocal MLS-based audio signal decorrelation is applicable

to broadening or controlling the auditory source width (ASW) in spatial sound

reproduction. The ASW is an important attribute of hall spatial auditory perception

and closely related to early lateral reflections in the hall [26]. The early IACC,

which is derived from the interaural cross-correlation within the first 80 ms, can be

used as an objective index to evaluate ASW. In stereophonic or multichannel

surround reproduction, the cross-correlation between/among the loudspeaker

signals can also be used to evaluate the degree of the decorrelation effect. Taking

conventional stereophonic reproduction as an example, results from psychoacoustic

experiments show that a pair of 2,047-point reciprocal MLS filters (at 44.1 kHz

sampling frequency) yields a relatively natural decorrelation effect in terms of left-

right symmetry of broadened auditory events as well as less timbre coloration.
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The perceived performance of 511-point filters can be improved using the optimiz-

ing scheme mentioned above so that it is perceptually better than the original

1,023-point filters.

Another application of the algorithm of reciprocal MLS-based audio

signal decorrelation is enhancing the listener envelopment in surround sound

reproduction. It is well known that reproducing decorrelated signals via a series

of surround loudspeakers results in the experience of better listener envelopment.

An example is converting the 5.1 channel surround sound (music) signals to 7.1

channel reproduction. Figure 6.7 shows the block diagram of such an application.

There are five independent full audio bandwidth channels in a 5.1-channel surround

sound system, including left (L), center (C), right (R), left-surround (LS), and right-

surround (RS), plus an optional low frequency effect channel (called .1 channel,

which has been omitted in the figure). In the figure, the original L, C, and R signals

are directly reproduced by three corresponding loudspeakers. The original LS and

RS signals are filtered by two pairs of reciprocal MLS filters to yield four

decorrelated surround signals LS1, LS2, LS3, and LS4, respectively, and then

reproduced by four surround loudspeakers. The two reciprocal MLS pairs are

derived from one pair of preferred MLSs. The length of reciprocal MLS filters is

511 points at a 48-kHz sampling frequency, and the optimizing scheme has been

incorporated in the filter design. Here, a left-right symmetric decorrelation

processing is adopted. That is, the reciprocal MLS filter 1 for signal LS is identical

to that for signal RS, and so is the reciprocal MLS filter 2. For two pairs of resultant

signals, LS1 and RS1 as well as LS2 and RS2, when the original signals LS and RS

Fig. 6.7 Block diagram of converting 5.1 channel surround sound signals to 7.1 channel surround

sound signals
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are decorrelated, the four signals are also decorrelated. While original LS and RS

are correlated to each other, the signals within each pair are correlated, and the

signals among different pairs are decorrelated. A preliminary subjective experiment

shows that the algorithm of reciprocal MLS filter-based decorrelation improves

listener envelopment in surround reproduction.

6.6 Diffuser Sequences

Figure 6.8 shows a diffuser applied to the rear wall of a studio, a fractal design

which exploited the devices invented by Schroeder in the 1970s. Schroeder

originally devised slatted wall surfaces based on MLSs [3], but these devices

only operate across about an octave centered around the design frequency.

Consequently, Schroeder sought out nonbinary number sequences such as the

quadratic residue and primitive root sequences to form diffusers that had wells

with many different depths that then operate over a wider bandwidth.

A quadratic residue sequence ai is given by:

ai ¼ i2 mod N; 0 � i < N ð6:10Þ

where mod indicates the least nonnegative remainder; N is the number generator

that must be an odd prime number and is also the number of wells per period.

For example, one period of an N¼ 7 sequence is {0,1,4,2,2,4,1}.

Fig. 6.8 Gateway Mastering, Portland, ME showing a fractal diffusing rear wall (Diffractal®).

(Photo courtesy of Gateway Mastering +DVD)
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For room diffusers, it is a complex exponential Ri incorporating the sequence

that is crucial to how the structure reflects sound:

Ri ¼ exp
2πjai
N

� �
ð6:11Þ

where j is
ffiffiffiffiffiffiffi�1

p
. Schroeder noted that Ri had an “astounding property” [5]. He was

referring to the fact that the magnitude of the discrete Fourier Transform was

constant and consequently the periodic autocorrelation function is the unit sample

sequence.

The diffuser shown in Fig. 6.8 causes scattering in the horizontal plane. To

diffuse sound vertically requires two-dimensional number sequences. To do this for

a quadratic residue diffuser requires two number sequences, one for the horizontal

(x-direction), one for the vertical (z-direction). Then the z-sequence is used to

amplitude modulate the x sequence. For a quadratic residue sequence, this can be

expressed as [5]:

ai,k ¼ i2 þ k2
� �

mod N; 0 � i < N; 0 � k < N ð6:12Þ

where i and k are the integers that index the sequence in the x and z direction

respectively.

Another common method for making multidimensional phase grating diffusers is

to use the Chinese remainder theorem [27]. This folds a one-dimensional sequence of

length N �M into a two-dimensional array of size N�M while preserving the ideal

autocorrelation and Fourier properties of the one-dimensional sequence. To use this

method N and M must be co-prime. By co-prime, it is meant that the only common

factor for the two numbers is 1. A quadratic residue sequence cannot be folded using

the Chinese remainder theorem because it has a prime number of elements, and so an

alternative sequence is needed, and the primitive root sequence is one possibility.

A primitive root sequence ai is defined as:

ai ¼ ri mod N; 1 � i < N ð6:13Þ

where N is an odd prime, r is the primitive root of N, and the sequence has N� 1

elements per period. A primitive root is an integer that yields a sequence ai for i¼ 1,

2, . . . N� 1 that are all unique. For example, N¼ 13 has a primitive root of 2, so

ai¼ {2,4,8,3,6,12,11,9,5,10,7,1}, which generates every integer from 1 to N� 1.

Primitive roots can be found by a process of trial and error, alternatively, tables can

be found in texts such as [28]. The autocorrelation of the primitive root sequence

placed in an exponential using Eq. (6.11) is a two-valued function.

Consider taking the length 12 primitive root sequence and wrapping it into a

3� 4 array. The one-dimensional sequence is written down the diagonal of the

array, and as it is periodic, every time the edge of the array is reached, the position is

folded back into the base period. The process is illustrated in Fig. 6.9.
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This sequence folding technique still maintains the good autocorrelation

properties of the original one-dimensional sequence. In the case of the primitive

root sequence, the two-dimensional autocorrelation will be two-valued and the

power spectrum is flat, expect for a decrease at zero-frequency.

6.7 Diffusers

The sequences with good autocorrelation properties were turned into wall corru-

gations by Schroeder. When sound encounters a phase grating diffuser (see

Fig. 6.10), provided that half a wavelength is larger than the width between the

dividers, then plane waves will result within the wells. Plane waves propagate down

each well, reflect from the bottom and return to the mouth of the diffuser. For the ith
well with depth di, for sound with a wavelength of λ, the sound undergoes a phase

change of 2jdi(2π/λ) while propagating in the wells and the pressure reflection

coefficient of the well at the front face of the diffuser is:

Ri ¼ exp
4πjdi
λ

� �
: ð6:14Þ

Comparing Eqs. (6.14) and (6.11) shows that when:

2di
λ

¼ ai
N
: ð6:15Þ

ai mod 4

a i
m

od
 3

2 3

4

8

ai mod 4
a i

m
od

 3

2 10 11 3

6 4 7 9

5 12 8 1

Fig. 6.9 Top: The first four
elements of the length

12 primitive root sequence

{2,4,8,3,6,12,11,9,5,10,7,1}

placed in a 4� 3 array using

the Chinese Remainder

Theorem. Bottom: the final
complete table for one

period
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The sequence of sound waves reflected from the diffuser surface has the same

astounding Fourier property that Schroeder identified. A rearranged version of

Eq. (6.15) is therefore used to turn the number sequences into physical depths for

a particular design wavelength.

What is heard some distance from the diffuser is a complicated interference

pattern caused by the waves that emerged from each well before propagating to the

listener. It is well-known from classical optics, that a Fourier transform of a

wavefront passing through an aperture gives the far field diffraction pattern. Trans-

lating this rule for acoustic diffusers, it can be shown that the Fourier transform of the

surface reflection coefficients gives the sound distribution in the far field. When there

are many diffusers stacked side-by-side, the spatial periodicity causes energy to be

preferentially reflected in certain directions creating so-called grating lobes. When a

diffuser is formed from a quadratic residue sequence, at the design frequency these

grating lobes all have the same energy. (See Fig. 9.11 in Chap. 9) This happens

because the autocorrelation of the reflection coefficients is ideal.

In the 40 years since Schroeder pioneered modern diffusers for performance

spaces, designs have been refined and improved as detailed in [6]. The autocorre-

lation of a quadratic residue sequence might be ideal at most multiples of the design

frequency, but when translated into a real diffuser operating over many octaves,

there are weaknesses in performance that allow room for further improvement.

Researchers tried new number sequences, sequences were used in combination to

Fig. 6.10 Cylindrical wave reflected from a Schroeder diffuser calculated using a Finite Differ-

ence Time Domain (FDTD) model (after Cox and D’Antonio [6])
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remove periodicity and fractal constructions were developed. All these designs are

still, however, recognizable descendants of Schroeder’s original diffusers.

One of the most ingenious features of Schroeder’s work was the concept of using

wells to create a set of known surface reflection coefficients. But this locked

diffusers into a geometry that gave an appearance that was not liked by all

architects. This drove researchers to come up with new shapes, like curves,

designed using numerical optimization. While numerical optimization allows

diffusers to be designed with a visual appearance to better match an architect’s

concept, the design method lacks the elegant simplicity of Schroeder’s original

ideas. Despite the complex underpinning of Schroeder’s designs with number

theory, the end design process was just a case of applying a few simple equations

on a calculator.
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