
Chapter 5

Are Impulse Responses Gaussian Noises?

Jean-Dominique Polack

Abstract Many years ago, Manfred Schroeder proved that transfer functions in

rooms follow complex Gaussian distributions. This property was extended to

impulse responses by the author, following a suggestion by Moorer for simulating

impulse responses. More recently, several authors have checked again the later

property with modern signal analysis tools. They obtained mixed success, with

results that strongly depend on the length of the analysis window. In order to

understand these unstable results, the present paper takes a closer look at the

statistical distributions of both impulse responses and transfer functions. It shows

that an accurate model of both the impulse response and the transfer function is

necessary in order to test the distributions. Further, it presents several sources of

artefacts that skew the distributions, and show that they can be ascribed to the signal

processing methods used to extract the responses. Finally, the conditions for

obtaining true Gaussian distributions are specified.

5.1 Introduction

In 1954, Manfred Schroeder published two seminal papers [1, 2] on sound distri-

bution in rooms. In the first paper, in refutation of the accepted theory of the time,

he was able to show that resonance frequency in rooms are random if one introduces

in the room small objects of dimensions equivalent to the wave length of interest.

Up to then, practitioners believed that big diffusing objects were necessary to
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randomize the modal distribution. In the second paper, he carried on with statistical

properties of such randomized sound field, using advanced statistics recently

developed by Rice. Thus, he could show that, above a cut-off frequency dependent

of volume and reverberation time, modes overlap and combine so that average

distance between peaks, between troughs, and even the standard deviation, was

predicted by the theory of random noise.

Several years later in 1962, he and his collaborators went one step further

[3]. They simulated the random distribution of sound fields in rooms by means of

a powerful tool of random process theory: Monte-Carlo simulation. In analogy with

the hazard game of roulette, which made Monte-Carlo casino world famous,

Monte-Carlo technique simply simulates complex processes by choosing values

at random, but following a given probability distribution, and combining them

according to the properties of the process to be simulated. Using this powerful

technique, Schroeder and his collaborators were thus able to simulate the frequency

response of a room, showing that it displayed the same characteristics as real

measurements.

The assumptions upon which Schroeder based his simulation are now well

known. They are twofold. Firstly, the resonance frequencies of the modes are

distributed randomly, that is, they locally follow a uniform distribution. Secondly,

the transfer functions of the modes at their resonant frequency follow exponential

distributions with imaginary random arguments. Thus, the transfer function at any

frequency can be obtained by superposition of the different modes that respond at

the frequency. When modes overlap, the transfer function becomes Gauss distrib-

uted by virtue of the Central Limit Theorem of probability. Of course, this is only

valid at high frequencies, when many modes overlap, but the approximation is

considered satisfactory as soon as ten modes respond at a given frequency.

The present paper develop this idea and extend it to the time domain, as was

suggested by Moorer [4] when he wrote that an impulse response is similar to white

noise exponentially decreasing with time. Indeed, the properties of the Fourier

transform ensure that the time domain response, that is, the impulse response of a

room, also is Gauss distributed. Several researchers [5, 6] have independently tried

to check this property on measured impulse responses, with mixed success. We

shall review some attempts, and stress the reason for their failure: the absence of a

proper model of impulse response. Indeed, statistics teaches us that it is almost

impossible to prove statistical properties ex post. Only the existence of a model, that

is, analysis ex ante, can prove the statistical properties of room response.

As a consequence, the next step is a review of Schroeder’s model for the transfer

function, and its translation in the time domain, generalizing Moorer’s model. The

paper then carries on with the analysis of a measured impulse response, arbitrarily

selected among some 200 obtained during a recent campaign in Paris [7]. It stresses

the necessity of compensating for the decay, in order to reconstruct a stationary

signal, before carrying out a detailed statistical analysis in both the time and

frequency domains. It concludes with the necessity of improving the deconvolution

algorithms currently used in room acoustics to obtain impulse response from sine

sweep.
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5.2 Results from Previous Research

In 1989, the present author offered a generalization of Schroeder’s model [8] that

gave the theoretical framework of Jot’s approach to digital reverberation filters

[9]. As a consequence, several authors [5, 6] have tried recently to check the

validity of the model. They used different statistical tests, but all of them rely on

some statistical estimator: the ratio of the kurtosis to the variance [5], or Kolmo-

gorov test [6]. We briefly present the results of Defrance [6].

Defrance used a set of impulse responses measured in Salle Pleyel with pistol

shots (Fig. 5.1), and checked whether it was distributed according to a Gaussian

distribution of same variance and mean value (null hypothesis). He used

Kolmogorov-Smirnov test, that is, he compared the distribution of the experimental

values to the empirical distribution of data obtained with a Gaussian random

generator fed with the same mean value and the same variance. Most of the time,

the impulse response passes the test (probability P(t)> 0.05, black values in

Fig. 5.1), although the probability remains low, but every now and then the null

hypothesis is rejected, meaning that the two distributions are not the same. A

striking feature of Fig. 5.1 is the fact that the results of the test depend on the

length of the window used (200 or 120 samples), with slightly better results for

longer windows. Other tests give similar results [6], leading to the rejection of the

hypothesis that impulse responses are distributed according to Gaussian laws (see

also [5]).

In order to check the correctness of the procedure, Defrance also evaluated

simulated impulse responses constructed by weighting Gaussian random noise

with an exponential window. The results of Kolmogorov-Smirnov test are given

in Fig. 5.2. This time, the impulse response passes the test most of the time, with

Fig. 5.1 Impulse response from Salle Pleyel (top) and the probability that samples are distributed

according to Gaussian law of same variance and mean value (Kolmogorov-Smirnov test)—middle
curve: using 200 samples; bottom curve: using 120 samples—gray values correspond to intervals

where the test fails
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rather high probability. But every now and then, it fails the test. Once again, the

results depend on the length of the analysis window used for the test.

The conclusion of this survey of previous research is that the methodology they

use is not appropriate. Indeed, they are not constructed on a theoretical framework,

like Schroeder’s model, but only attempt to test a property: that impulse responses

are Gaussian. In other words, they want to prove statistical properties ex post,

whereas an analysis ex ante, making use of the properties of a model, is necessary to

prove the statistical properties of room responses.

5.3 Generalizing Schroeder’s Model to Time Domain

As stressed in the previous section, no proof of the statistical properties of impulse

responses can be achieved without a proper model of impulse responses. This

model relies on Schroeder assumptions:

• The resonance frequencies of the modes locally follow a uniform distribution.

• The transfer functions of the modes at their resonant frequency follow exponen-

tial distributions with imaginary random arguments.

At arbitrary frequencies, therefore, one must take into account the bandwidth of

each mode, and superpose the modes accordingly (Fig. 5.3). The result is a random

walk.

As shown in Fig. 5.3, it results in a complex transfer function, which is best

decomposed into its real part X(ω) and its imaginary part Y(ω):

H ωð Þ ¼ X ωð Þ þ jY ωð Þ ð5:1Þ

Fig. 5.2 Gaussian impulse response (top) and the probability that samples are distributed

according to Gaussian law of same variance and mean value (Kolmogorov-Smirnov test)—middle
curve: using 200 samples; bottom curve: using 120 samples—gray values correspond to intervals

where the test fails
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The theory of random walk then predicts that both the real and imaginary parts

follow centered Gaussian distribution of same variance:

X ωð Þh i ¼ Y
�
ω
�� � ¼ 0

X2 ωð Þ� � ¼ Y2
�
ω
�� � ð5:2Þ

In other words, the real and imaginary parts are equidistributed. Further, they are

decorrelated [3]:

X ωð ÞY ωð Þh i ¼ 0 ð5:3Þ

Now, Schroeder model is defined in the frequency domain, and applies to modes

taken individually, with due consideration of their bandwidth, that is, of their

decaying nature. As a consequence, when translated into the time domain, it

means that each mode will be exponentially decaying with random initial phase.

By summing up all the modal contributions, one obtains an exponentially decaying

random noise. However, since modes last the whole duration of the impulse

responses, the random distribution of their superposition must be checked over

the whole duration of the impulse response. Locally at some instant, nothing stops

the impulse response from deviating from a Gaussian distribution.

In the following, we keep in mind the long-term characteristics of room impulse

responses. As a consequence, we compensate for time variation, using the property

of exponential decay. In a similar way, we must take into account the spectrum of

the source when checking the Gaussian distribution of the transfer function; there-

fore, the next section is devoted to the presentation of room impulse responses.

5.4 Raw Analysis of Impulse Responses

For the purpose of illustrating the properties of room impulse responses, we

arbitrarily chose an impulse response measured at Opéra Garnier in Paris during a

recent campaign in 16 Parisian theaters and concert halls [7]. This response,

Fig. 5.3 Superposition of modes with random initial phases, taking into account their bandwidth

(right)—it results in a random walk (right)
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sampled at 44.1 kHz, is presented in Fig. 5.4. It was obtained by deconvolution of a

logarithmic sine sweep of 30 s duration, using the Aurora suite developed by

Farina [10].

From this response, we computed the transfer function by Fourier transforma-

tion, and estimated the running variances and cross-correlation according to

Eqs. (5.2) and (5.3). These estimates were obtained by averaging 44 adjacent values

of the squared real part, of the squared imaginary part, and of the product of the two.

These estimates are presented in Fig. 5.5, where the real part is traced in blue, the

imaginary part in red, and the cross-correlation in green. It is evident from Fig. 5.5

that the averaged squared real and imaginary parts coincide, since the blue curve is

almost completely hidden behind the red one. On the other hand, the cross-

correlation does not vanish, as predicted by Eq. (5.3). Proper estimation of the

empirical process corresponding to averaging 44 adjacent values of the product of

the real and imaginary parts leads to the prediction that the green curve should lay

16.5 dB below the two others [8], a value which agrees with Fig. 5.5.

Fig. 5.4 Impulse response

measured at Opéra Garnier

in Paris

Fig. 5.5 Transfer function

measured at Opéra Garnier.

Blue: real part; red:
imaginary part; green:
cross-correlation
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It is also instructive to have a look at the logarithmic display of the impulse

response. Once again, we estimated the running variance and the running average

on 44 adjacent values. They are displayed in Fig. 5.6, where the running average is

traced in blue, and the running variance in red. This time, due to correlation

between successive values, the difference between the two curves is much less

than 16 dB [8].

It can be seen from Figs. 5.5 and 5.6 that Schroeder’s model needs adaptation

before any Gaussian distribution can be checked. First, the decay in time must be

compensated, so that the impulse response approximates a stationary signal; then

the spectrummust be compensated, to account for the spectrum of the source. These

two issues are successively addressed in the next sections.

5.5 Compensating for Decay

The compensation procedure for the decay is illustrated in Fig. 5.7. Firstly, it is

necessary to detect the background noise, or noise floor to which the impulse decays

at larger times. This background noise is traced in dark blue for the mean square

value, and in red for the mean value. Only the mean square value is of interest, and

the noise floor is estimated by linear fit (green line in Fig. 5.7). By convention,

any value within 10 dB of the noise floor is considered as background noise [11].

Therefore, the impulse response is reduced to the light blue part for its mean square,

and the brown part for its mean.

The next step consists in estimating the decay by a linear fit of the mean

square—magenta line in Fig. 5.7. Notice that the linear fit of the mean decay

(yellow line) does not run parallel to the magenta line. This difference will come

to light later on.

Fig. 5.6 Logarithmic plot

of the impulse response.

Blue: mean value; red:
quadratic value
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Once the mean decay is obtained by linear fit, it is straightforward to compensate

for the decay by multiplying the impulse response by the exponential of the

logarithmic decay, while windowing it from 0.04 to 0.96 s. However, inspection

of the compensated mean square (Fig. 5.8) reveals that the procedure is not

sufficient. There remain abnormal values at the onset of the response,

corresponding to coherent reflections. In a similar fashion, the mean square value

increases toward the end of the window, revealing that some background noise is

influencing the response. A shorter window must be used.

Figure 5.9 presents the mean compensated decay over the same window

extending from 0.04 to 0.96 s. Now, the trend is different, with a positive mean

slope of the curve. This corresponds to the fact that the yellow fit curve is not

parallel to the magenta one in Fig. 5.7, having a smaller slope. In fact, it simply

traduces the fact that computing mean values amount to low-pass filtering, albeit a

very rough one, and that reverberation times at low frequencies usually are longer

than at higher frequencies.

As a consequence, it is not sufficient to look at mean and mean square values to

check for that compensated impulse responses follow Gaussian distribution, as was

originally proposed in [8]. One must refine the analysis.

5.6 Detailed Analysis

The Artefact (cf. Oxford Dictionary) observed in the previous section led us to

slightly amend the compensation procedure by selecting a more conservative time

window in its last step. Figure 5.10 presents the thus selected portion of the impulse

response used in this section.

Fig. 5.7 The different

linear fits used in the decay

compensation process
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5.6.1 Impulse Response

Visual inspection of Fig. 5.10 reveals that the selected portion of the compensated

impulse response looks indeed like white noise. It is therefore meaningful to

compare its properties to the properties of white noise, for example by looking at

the histogram of the values it takes (Fig. 5.11).

Figure 5.11 compares the histogram of the compensated impulse response, traced

in red, to the theoretical histogram of a Gaussian distribution with zero mean and the

same variance, traced in blue, computed for the same number of samples as contained

in the impulse response. The two traces look similar. Therefore, we decided to check

the distribution with statistical test. We used the Kolmogorov-Smirnov test, which

compares the empirical distribution to a sample of the same number of random values

that follow the theoretical distribution. We repeated the test several times with

different simulated samples of the Gaussian distribution, and the compensated

impulse response always passed Kolmogorov-Smirnov test.

However, a zoom on the histogram around the peak of the distribution reveals a

slight skew of the impulse response. Indeed, its distribution does not top at zero value,

as expected, but slightly below it (Fig. 5.12). We interpret it as a misalignment of the

deconvolution filter that recovers the impulse response from the sine sweep mea-

surement. Great care must be taken in the alignment of the filter in order to ensure

Gaussian distribution, as well as the right amount of background noise.

5.6.2 Transfer Function

In order to check the distribution of the transfer function, it is also necessary to carry

out some compensation of the source spectrum. Indeed, the transfer function

Fig. 5.8 Mean square of

compensated impulse

response

Fig. 5.9 Mean

compensated impulse

response
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Fig. 5.11 Histogram of

compensated impulse

response

Fig. 5.10 Selected portion

of compensated impulse

response

Fig. 5.12 Zoom on the

histogram revealing

misalignment of the

deconvolution filter
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computed from the impulse response by Fourier transformation is far from being

flat, as shown in Fig. 5.5, but only the compensated part of the impulse response

must be taken into account.

Figure 5.13 presents the raw spectrum of the compensated part of the impulse

response (red). This estimate of the transfer function is far from being flat, and need

smoothing before any compensation can be envisaged. Therefore, Fig. 5.13 also

display several methods for smoothing the spectrum, from Welch spectrum com-

puted with window lengths of 64 samples and 50 % overlap (green), to Burg

spectral estimation based on 32nd order autoregressive process (light blue), and

Yule-Walker spectral estimator with the order of the autoregressive model set to

16 (dark blue).

As little difference subsists between the Burg and Yule-Walker estimators, we

decided to carry out the spectral compensation using the 16th order Yule-Walker

estimator. In a similar way to the decay compensation of the impulse response, the

complex spectrum computed from the compensated impulse response is then

divided by the Yule-Walker estimator, yielding real and imaginary parts of the

spectrum (Fig. 5.14) that look very similar after truncation of the central part of the

spectrum—between 200 Hz and 14 kHz—and once again similar to white noise.

Thus, proper distribution analysis can now be carried out.

Figure 5.15 presents the histogram of the real part of the compensated transfer

function, traced in blue, and compares it to the theoretical histogram of a Gaussian

distribution with zero mean and the same variance, traced in red, computed for the

same number of samples as contained in the transfer function. The two traces look

similar. Therefore, we decided to check the distribution with statistical test. Once

again, we used the Kolmogorov-Smirnov test, and repeated the test several times

with different simulated samples of the Gaussian distribution, and the compensated

transfer function only passed Kolmogorov-Smirnov test some of the times.

This time, a zoom on the histogram around the peak of the distribution reveals a

skew of both the empirical and theoretical distributions. None of them tops at zero

value, as expected, but slightly below it for the empirical distribution, and slightly

above it for the theoretical distribution (Fig. 5.16). But this time, an interpretation of

this discrepancy is less evident, although it is obvious from Fig. 5.14 that the

variance of the distribution slightly decreases with frequency, probably explaining

why the Kolmogorov-Smirnov test sometimes fails.

Figure 5.17 presents the histogram of the imaginary part of the compensated

transfer function, traced in blue, and compares it to the theoretical histogram of a

Gaussian distribution with zero mean and the same variance, traced in red, computed

for the same number of samples. The two traces look similar, except around the center

of the distribution where the empirical distribution visibly has a higher peak than the

theoretical one. As a consequence, several repetitions of the Kolmogorov-Smirnov

test with different simulated samples of the Gaussian distribution always failed.

A zoom on the histogram around the peak of the distribution confirmed that the

empirical distribution has a higher, and simultaneously narrower, peak than the

theoretical one. Further, they both top at the same slightly negative value, but not at

zero as expected (Fig. 5.18). This behavior points to a non-constant variance over

5 Are Impulse Responses Gaussian Noises? 87



Fig. 5.13 Spectrum of compensated part of impulse response, and its estimation according to

several procedures

Fig. 5.14 Compensated complex spectrum. Blue: real part; red: imaginary part

Fig. 5.15 Histogram of real part of compensated transfer function
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the whole frequency range, as is visible in Fig. 5.14: the variance of the distribution

decreases with frequency. This is why the Kolmogorov-Smirnov test always fails.

Indeed, complete analysis of the impulse response [8] reveals that the variance of

the frequency response at a given frequency is proportional to the reverberation

time at that frequency. Since reverberation times at high frequencies are always

shorter, this is why the variance at high frequency is also smaller. Proper compen-

sation of the spectrum should therefore take this property into account.

5.7 Conclusion

In this paper, we hope to have convinced the reader that, despite some unsuccessful

previous attempts to prove it, impulse responses are Gaussian process, provided that
global analysis is carried out on hand of a proper model of impulse responses. In

Fig. 5.16 Zoom on the histogram revealing abnormal values of both curves

Fig. 5.17 Histogram of imaginary part of compensated transfer function

Fig. 5.18 Zoom on the histogram revealing abnormal peak of empirical distribution
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this process, three points are essential: discard the early part with strong reflections,

and the late part which simply is background noise; accurately compensate for the

decay; and compensate for the source spectrum. Further, we have shown that such

an analysis can reveal the shortcomings of the measurement procedure, especially

of the inverse filtering used to recover the impulse from the measurement signal:

care must be taken that it accurately provides zero mean.

Moreover, the analysis has also revealed that Schroeder’s simple model is not

sufficient, especially in the frequency domain. There remains a frequency depen-

dent variance which Schroeder’s model does not account for. As a consequence, a

more complex time-frequency compensation is needed to improve the model so that

it passes the statistical tests. This sets the goal for further research in the domain.
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Maine, Le Mans (1988)

9. Jot, J.M.: Etude et realisation d’un spatialisateur de sons par modeles physiques et perceptifs.

Ph.D. thesis, Telecom Paris (1992)

10. Farina, A.: Advancements in impulse response measurements by sine sweeps. In: AES 122nd

Convention, Vienna, Austria (2007)

11. ISO 3382: Acoustics - Measurement of the reverberation time of rooms with reference to other

acoustical parameters, (1997)

***

90 J.-D. Polack



Biography

Dr. Jean-Dominique Polack received his Ph.D. in

1882 in Göttingen. He joined CNRS as Research

Fellow in 1983, then was elected Professor of

Acoustics at University Pierre et Marie Curie in

Paris in 1997. From 1999 to 2001, he was

appointed Professor of Electroacoustics at the

Technical University of Denmark. From 2002 to

2006, he was head of the Laboratoire

d’Acoustique Musicale, now merged into Institut

d’Alembert. He is presently in charge of the

Graduate School at UPMC. Dr. Polack’s areas

of expertise cover loudspeaker models, room-

acoustic measurements, ergodic theory of sound

fields, and sound quality of soundscapes.

5 Are Impulse Responses Gaussian Noises? 91


	Chapter 5: Are Impulse Responses Gaussian Noises?
	5.1 Introduction
	5.2 Results from Previous Research
	5.3 Generalizing Schroeder´s Model to Time Domain
	5.4 Raw Analysis of Impulse Responses
	5.5 Compensating for Decay
	5.6 Detailed Analysis
	5.6.1 Impulse Response
	5.6.2 Transfer Function

	5.7 Conclusion
	References


