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9.1  Introduction

Water is distributed within the earth, on its surface, and also in the atmosphere in 
liquid, solid, and gaseous forms, respectively. Of the total available water on the 
earth, 97 % is saline stored in the oceans and the remaining 3 % is only in the form 
of fresh water. Out of this 3 % of fresh water, groundwater constitutes only 30.1 %. 
The remaining is in the form of icecap and glaciers (68.7 %), liquid surface water 
(0.3 %), and in atmosphere and living being (0.9 %). Of the liquid surface fresh 
water, 87 % is stored in lakes, 11 % in swamps, and only 2 % flows into the rivers 
(source: Wikipedia-a free encyclopedia). Accordingly, groundwater constitutes the 
second largest reserve of fresh water available on the earth. The main source of 
groundwater is precipitation. Precipitated water falls on the ground surface and en-
ters below it. This entering process is known as infiltration. Infiltrated water moves 
downward and gets stored in pores of subsurface geological formations or in geo-
logical structures such as fractures, faults, joints, etc. in the case of hard rocks. This 
leads to the evolution of groundwater regime below the earth’s surface. Geological 
formations capable of storing groundwater and allowing its movement from one 
place to another place under ordinary field conditions are known as aquifers. Sands, 
sandstone, weathered mantle, highly fractured rock, etc. are examples of aquifers. 
On the other hand, there are some geological formations such as massive basalt 
and granite units which can neither store the groundwater nor allow the movement 
of groundwater. Such geological formations are known as aquifuge. There is an-
other category of geological formation such as clay which can store good amount 
of groundwater but does not allow the movement of groundwater because of lack 
of interconnectivity of its pores. Such formations are known as aquiclude. Vertical 
distribution of groundwater is characterized into two zones: unsaturated and satu-
rated. In the unsaturated zone the entire pores contain both water and air, whereas 
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in the saturated zone the entire pore space is filled with water. If the saturated zone 
is bounded by two impermeable formations from top and bottom, it is called a con-
fined aquifer.

In confined aquifer water is stored at more than atmospheric pressure. That is 
why water level in the well penetrating a confined aquifer is at a higher elevation 
than the elevation of the upper boundary of the confined aquifer. Elevation of the 
water level in the well penetrating confined aquifer is called piezometric head and 
is measured from a reference stratum. If the upper boundary of the saturated zone is 
the water table (or phreatic surface), it is called unconfined aquifer. On the water ta-
ble, the pressure is equal to the atmospheric pressure. An unconfined aquifer (or part 
of it) that rests on a semi-pervious layer is a leaky unconfined aquifer. Similarly, a 
confined aquifer (or part of it) that has at least one semi-pervious layer containing 
stratum is called a leaky confined aquifer. A schematic diagram of the aquifer’s type 
and zones of vertical distribution of groundwater are shown in Fig. 9.1.

The advantage of unconfined aquifers over confined aquifers to serve as a sub-
surface reservoir is that the storage of groundwater in large quantity is possible 
only in unconfined aquifer. This is because the storativity of the unconfined aqui-
fer is linked to the porosity and not to the elastic properties of water and the solid 
matrix, as in the case of the confined aquifer [1]. Also, the vast surface area of the 
unconfined aquifer above the water table is available to receive the surface applied 
recharge, whereas in the case of confined aquifer, only a small open area exposed to 
the ground surface or leaky portion of the aquifer boundary is available to receive 
the recharge as shown in Fig. 9.1. Sources of surface water are not available every-
where. Therefore, their use to meet the demand of water supply for irrigation, indus-
trial, and domestic purposes is restricted to those areas where water can be transport-
ed through canals from these sources. Also surface water bodies such as rivers, lakes 
are more vulnerable to contamination. On the other hand, groundwater resources are 
distributed globally and are less vulnerable to contamination compared to surface 
water bodies. Therefore, groundwater plays a major role in augmenting water sup-
ply to meet the ever-increasing demand, especially in developing counties such as 
India, where agriculture sector provides job opportunity to a large rural population 
and is the main source of income to them. Increasing dependence of water supply on 
groundwater resources is resulting in increasing use of aquifers as a source of fresh 
water supply and subsurface reservoir for storing excess surface water.

Natural replenishment of aquifers occurs very slowly. Therefore, withdrawal of 
groundwater at a rate greater than the natural replenishment rate causes declining 
of groundwater level, which may lead to decrease in water supply, contamination 
of fresh water by polluted water from nearby sources, seawater intrusion into the 
aquifer of coastal areas, etc. To increase the natural replenishment, artificial re-
charging of the aquifer is becoming increasingly important in groundwater manage-
ment. In many cases, excess recharging also leads to the growth of water table near 
the ground surface and causes several types of environmental problems, such as 
water logging, soil salinity, etc. In such a situation, proper management of ground-

S. N. Rai



189

water resources is needed to overcome the shortage of water supply on one hand 
and to prevent the environmental problems on the other hand. In order to address 
the management problem, one must be able to predict the response of the aquifer 
system to any proposed operational policy of groundwater resources development 
such as artificial recharging and pumping. Such problems are referred to as fore-
casting problems. Its solution will provide the new state of the groundwater system. 
Once the new state is known, one can check whether the related recharging and/or 
pumping scheme is feasible to meet the preset objectives of the sustainable devel-
opment and management of groundwater resources. Such problems can be tackled 
by applying mathematical modeling techniques. Mathematical models help in mak-
ing judicious selection of an appropriate development scheme such as designing of 
recharging and pumping schemes out of many proposed development schemes by 
comparing responses of different proposed recharge/pumping schemes in order to 
select the best scheme without resorting to the expensive field works. This chapter 
deals with mathematical modeling of groundwater flow in unconfined aquifer and 
related problems. Mathematical modeling needs simplification of complex geohy-
drological environ and processes based on assumptions to make it amenable to the 
mathematical treatment without compromising the physical characteristics of the 
problem. One such simplification is the hydraulic approach.
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9.2  Hydraulic Approach

In general, flow through a porous medium is 3-D . However, as the geometry of 
most aquifers is such that they are thin relative to their horizontal dimension on re-
gional scale, a simpler approach called hydraulic approach is introduced for model-
ing purpose. According to this approach, it is assumed that the flow in the aquifer is 
essentially horizontal everywhere neglecting its vertical component [1–2]. The ap-
proximation of horizontal flow in unconfined aquifer is the basis of Dupuit assump-
tion which will be discussed later. However, this assumption fails in regions where 
the flow has a large vertical component, for example, in the vicinity of partially 
penetrating wells, or at boundaries with open water bodies such as lakes, rivers, etc.

9.3  Mathematical Modeling

Modeling of groundwater flow begins with a conceptual understanding of the phys-
ical problem. The next step is translating the physical problem into a mathematical 
framework in the form of a set of mathematical equations governing groundwater 
flow, boundary, and initial conditions (in the case of unsteady state flow). Its solu-
tions are used to describe the dynamic behavior of water table in the flow system 
under consideration in response to the hydraulic stresses such as recharging, pump-
ing, leakages, stream aquifer interaction etc. Mathematical model may be deter-
ministic, statistical, or some combination of the two. Deterministic models retain 
a good measure of physical insight while permitting a number of problems of the 
same class to be tackled with the same model. Our discussion is confined to the 
development of governing groundwater flow equations, methods of solutions, and 
related deterministic models used for predicting water table fluctuation induced by 
recharging and/or pumping, which are the essential components of groundwater 
resources development. Formulations of groundwater flow equations are based on 
the conservation principles dealing with mass and momentum. These principles re-
quire that the net quantity of mass (or momentum) entering or leaving a specified 
volume of aquifer during a given time interval be equal to the change in the amount 
of mass (or moment) stored in the volume. Groundwater flow equations for specific 
aquifer systems are formulated by combining the equation of motion in the form of 
Darcy’s law, which follows principle of conservation of momentum with the mass 
balance equation, also known as mass conservation equations or continuity equa-
tions, which follows the principle of conservation of mass.

9.3.1  Darcy’s Law

Consider flow of water under confined condition through a sand filled cylinder of 
cross sectional area A and length L as shown in Fig. 9.2. Cylinder is representing 
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a propos media through which water is flowing from one end to another end under 
gravitational flow because of elevation difference between piezometric heads at 
both ends. According to Darcy’s law, the rate of flow (volume of water per unit 
time), Q, is proportional to the crosssectional area A of the porous media, propor-
tional to the piezometric heads difference between two points (φ1 − φ2),  and in-
versely proportional to the length of the porous media, L as shown in Fig. 9.3. Math-
ematically, it can be expressed as:

Q = KA
φ1 − φ2

L
,

 
(9.1)

in which K is the coefficient of proportionality, called hydraulic conductivity. K de-
pends on the properties of fluid as well as solid matrix and is expressed by K=kρg/µ 
in which k is the solid medium permeability, ρ  is the density of fluid (taken 1 in case 
of water), g is the gravitational acceleration, and µ  is the dynamic viscosity. The 
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piezometric head is expressed as φ = z + p/γ , in which z is the elevation head, p 
is atmospheric pressure, and γ  is specific weight of water [1]. Equation 9.1 can also 
be rewritten as:

q =
Q

A
= K

φ1 − φ2

L
,

 
(9.2)

where q is the specific discharge defined as the volume of water flowing through 
unit crosssectional area of the cylinder. Writing (φ1 − φ2)/L in differential form 
by defining (φ1 − φ2) → dφ and L → dL and introducing a minus sign to indicate 
that flow is in the direction of decreasing φ, Eqs. 9.1 and 9.2 can be expressed as:

Q = −KA
dφ

dL 
(9.3)

and

q = −K
dφ

dL
.

 
(9.4)

In case of unconfined aquifer, Eqs. 9.3 and 9.4 can be written as:

Q = −KA
dh

dL 
(9.5)

q = −K
dh

dL
,

 
(9.6)

where dh is difference of water table heights between two points separated by dis-
tance dl. Eqs. 9.5 and 9.6 are known as the equation of motion. It is evident from 
Eq. 9.6 that for dh/dl = 1, K = q. Groundwater flow equation for an unconfined aqui-
fer is derived by combining the equation of motion modified by the Dupuit assump-
tion with the mass balance equation.

9.3.2  Dupuit Assumption

Consider a vertical cross section of unconfined groundwater flow as shown in 
Fig. 9.4. Dupuit assumption is based on the field observation that the slope of the 
water table, θ , is generally very small on regional scale. It implies that the flow is 
almost horizontal and dL≈dx (Fig. 9.3). Replacing dL by dx, Eq. 9.6 becomes:

q = −Kx

dh

dx
.

 
(9.7)
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If groundwater flow takes place through a saturated vertical column of thickness h, 
then Eq. 9.7 can be rewritten as:

Q
′
x = −Kxh

dh

dx
.

 
(9.8)

9.3.3  Mass Balance Equation

To derive the mass balance equation, consider groundwater flow through a 
control box in an unconfined aquifer (Fig. 9.4). The box is bounded by verti-
cal surfaces at (x − δx/2, y) and (x + δx/2, y). parallel to the y-axis and at 
(x, y − δy/2) and (x, y + δy/2)  parallel to the x-axis. The box has a horizontal 
impervious base and the water table forms its upper boundary. The control box 
receives vertical recharges with N( x, y, t) rate. The rate of recharge is the volume of 
water added to the water table in unit time through unit cross-sectional area and has 
the unit of velocity. In principle N( x, y, t) is the sum of all recharge rates from dis-
tributed sources (recharge basins, ponds, streams, etc.) and withdrawal rates from 
distributed sinks (wells, leakage sides, etc.).Here, N( x, y, t) is considered as recharge 
rate only from a single source to simplify the derivation of the mass balance equa-
tion.

Because of the excess mass inflow during time, δt , the water table rises from the 
initial height h( t) to a new height h(t+δt). The mass balance equation based on the 
Dupuit assumption can now be written as:
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(9.9)

where Q′
x and Q

′
y  are discharges per unit width in the x and y directions, respective-

ly; h(t) and h(t+δt) are the water table heights at times t and (t+δt),  respectively, 
ρ  is the density of water which is normally taken as one and Sy is the specific yield 
which is defined as the volume of water added to (or released from) the aquifer per 
unit horizontal area of aquifer and per unit rise (or decline) of water table. Sy is 
dimensionless aquifer parameter. By expanding Q

′
x , Q

′
y and h(t + δt)  about x, y, 

and t, respectively, by Taylor series and dropping all terms containing second and 
higher order derivatives gives:

Q

(
x +

δx

2

)
= Qx +

∂Qx

∂x

δx

2 
(9.10)

Q

(
x −

δx

2

)
= Qx −

∂Qx

∂x

δx

2 
(9.11)

Q
′
y

(
x, y +

δy

2

)
= Qy +

∂Qy

∂y

δy

2 
(9.12)

Q
′
y

(
x, y −

δy

2

)
= Qy −

∂Qy

∂y

δy

2 
(9.13)

h(t + δt) = h(t) +
∂h

∂t

δh

2
.

 
(9.14)

Substituting these values in Eq. 9.9, and thereafter dividing both sides of Eq. 9.9 by 
δx, δy, δt  and letting δx, δy and δt → 0 , we obtain the following mass balance 

equation for an inhomogeneous and anisotropic unconfined aquifer:

−
∂

∂x
(Q

′
x) −

∂

∂y
(Q

′
y) + N (x, y, t) = Sy

∂h

∂t
.

 
(9.15)

Inserting the expressions for Qx’ and Qy’ from Eq. 9.8 into Eq. 9.15 yields:

∂

∂x

(
Kxh

∂h

∂x

)
+

∂

∂y

(
Kyh

∂h

∂y

)
+ N (x, y, t) = Sy

∂h

∂t
.

 
(9.16)
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For an inhomogeneous isotropic aquifer K = K( x, y), Eq. 9.16 becomes:

∂

∂x

(
Kh

∂h

∂x

)
+

∂

∂y

(
Kh

∂h

∂y

)
+ N (x, y, t) = Sy

∂h

∂t
.

 
(9.17)

9.3.4  Groundwater Flow Equation for a Leaky Unconfined Aquifer

In this case, an unconfined aquifer is separated from an underlying confined aquifer 
by a partly semi-pervious layer as shown in Fig. 9.2. The mass balance equation for 
a control box in inhomogeneous anisotropic unconfined aquifer, taking into account 
a leakage of rate qL between the aquifers is given by:

[ ]
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2 2
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2 2
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x x

y y

L y

x x
t y Q x y Q x y
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δ δ δ
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where h is water table height in an unconfined aquifer, φ  is piezometric head in 
underlying confined aquifer. qL for h < φ  is expressed as:

qL =
φ − h

σ
,

 
(9.19)

in which σ=B ′/K ′, B ′  being the thickness and K´ the hydraulic conductivity of 
the semi-pervious layer. For h > φ, qL becomes negative because groundwa-
ter outflows from the unconfined aquifer. For h < φ, groundwater flows into the 
unconfined aquifer and hence qL becomes positive. After simplification, Eq. 9.18 
becomes:

∂

∂x

(
Kxh

∂h

∂x

)
+

∂

∂y

(
Kyh

∂h

∂y

)
+ N (x, y, t) +

φ − h

σ
= Sy

∂h

∂t
.

 
(9.20)

Equation 9.20 is the desired governing equation for groundwater flow in a leak-
ing unconfined aquifer. The equation for an inhomogeneous isotropic aquifer 
( K = K( x, y)) and a homogeneous isotropic aquifer ( K = constant) can be obtained 
from Eq. 9.20 as in the previous cases.

9.3.5  Linearization of Groundwater Flow Equation

Generally, Eqs. 9.16, 9.17, and 9.20 are used for development of groundwater flow 
models. These are nonlinear second order partial differential equations and their ex-
act solutions are difficult to obtain. The nonlinearity is because of the presence of h 
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as coefficient in the partial derivatives on the left hand side. Therefore, linearization 
of these equations is essential to obtain analytical solutions. We consider Eq. 9.17 to 
describe the linearization procedures an example. For homogenous isotropic aqui-
fers ( K = constant), Eq. 9.17 can be written in the following two forms:

K

[
∂

∂x

(
h

∂h

∂x

)
+

∂

∂y

(
h

∂h

∂y

)]
+ N (x, y, t) = Sy

∂h

∂t 
(9.21)

∂2h2

∂x2
+

∂2h2

∂y2
+

2N (x, y, t)

K
=

Sy

Kh

∂h2

∂t
.

 
(9.22)

Two procedures of linearization are commonly used. According to the first proce-
dure, i.e., the Baumann procedure of linearization, if the variation in h is much less 
than the initial height of the water table h0, then the coefficient h appearing on the 
left hand side of Eq. 9.21 can be replaced by h0. Then Eq. 9.18 can be rewritten as:

T

(
∂2h

∂x2
+

∂2h

∂y2

)
+ N (x, y, t) = Sy

∂h

∂t
,

 
(9.23)

where T = Kh0. Now Eq. 9.23 is linear in h. In the second procedure, i.e., the Han-
tush’s procedure of linearization, h appearing in the denominator on the right hand 
side of Eq. 9.22 is replaced by the weighted mean of the depth of saturation h̄;  a 
constant of linearization which is approximated by 0.5[h0 + h( te)]; te is the period at 
the end of which h̄  is to be approximated. Then Eq. 9.23 becomes:

∂2h2

∂x2
+

∂2h2

∂y2
+

2N (x, y, t)

K
=

Sy

Kh̄

∂h2

∂t
.

 
(9.24)

Now Eq. 9.24 becomes linear in h2. Substitution of a new variable H, defined as 
H=h2 − h2

0,  Eq. 9.24 can be rewritten as:

∂2H 2

∂x2
+

∂2H 2

∂y2
+

2N (x, y, t)

K
=

Sy

Kh̄

∂H

∂t
.

 
(9.25)

Equation 9.25 is being extensively used for development of groundwater flow mod-
els. Here, it should be mentioned that in case of using Eq. 9.25 for development of 
mathematical models, the initial and boundary conditions should be also described 
in the form of H to preserve linearity of the problem.

Now, to make use of Eq. 9.24 (or 9.25) for the development of groundwater flow 
models, one needs to compute the value of h̄ . Marino [3] suggested the method of 
successive approximation for computation of h̄  value. In this method, the weighted 
mean of the depth of saturation is taken as a first approximation equal to the initial 
depth of saturation, h0. The first approximated height of the water table is then cal-
culated by using a solution of Eq. 9.25. In the second trial, the weighted mean of the 
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depth of saturation is approximated by the average of the initial depth of saturation 
h0 and the first approximation of the height of the water table. This procedure is 
repeated until the value of the calculated height of the water table converges. The 
last estimated value of h̄ for which the calculated water table height converges 
at a given time and position is the desired value of h̄ for that particular time and 
position. Thus, for each time and position one has to compute h̄ and the conversed 
value of water table height for this value of h̄ is the desired water table height at the 
given position and time. By comparing results of analytical solutions based on the 
Hantush linearization procedure with the experimental results obtained from Hele-
shaw model, Marino[3] found that for N ≤ 0.2 K and h−h0 ≤ 0.5h0, the maximum 
deviation between both the results was 6 %. Even for h−h0 ≥ 20 h0, the maximum 
deviation was 12.2 %. It shows that the results of analytical model agree reasonably 
well with the experimental results. Rao and Sarma [4] have reported that both the 
linearization methods yield results which have satisfactory agreement with those 
of the experiments (within ± 5 %) for the rise of the water table up to 40 % of its 
initial height. Beyond this limit the Hantush linearization scheme gave a more sat-
isfactory agreement. Thus, Hantush method was found to have wider applicability. 
However, Hantush method involves computation of weighted mean of the depth of 
saturation through successive iteration and hence requires more computation time 
than the Baumann procedure of linearization. However, time is not at all an issue in 
this era of fast computers. Equations 9.23–9.25 are popularly known as linearized 
Boussinesq equations.

9.3.6  Groundwater Flow Equations for Sloping Aquifer

The groundwater flow equation in a sloping 2-D unconfined aquifer is described 
by: [5–6]

∂2s

∂x2
+

∂2s

∂y2
− 2a

∂s

∂t
+

2N (t)

K
=

1

�
∂s

∂t
,

 
(9.26)

where s = h2, h = variable water table height, a = q/2D, q = slope of the base, D =  the 
mean depth of saturation, and � = KD/Sy.

9.3.7  Groundwater Flow Equations in Cylindrical Coordinates

This type of equation is used to describe groundwater flow induced by recharging/
pumping through circular shape recharge basin/well and is given by: [7–8]

S
∂h

∂t
= −

1

r

∂

∂r
(rQ) + N (r , t),

 
(9.27)
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where r is the radial distance measured from the center of recharge basin, and q is 
defined by Darcy law as:

Q = −Kh

(
∂h

∂r

)
.

 
(9.28)

Equations 9.23–9.25 describe 2-D groundwater flow. Equation for 1-D flow, for ex-
ample in the x direction, can be obtained by simply substituting zero for the deriva-
tive of y. Groundwater flow equations for a steady-state condition can be obtained 
by substituting zero for time derivatives.

Groundwater flow equations presented here are in the form of partial differential 
equations having infinite numbers of solutions. To obtain a unique solution for a 
particular problem, some more information about the problem under consideration 
is needed, such as the values of aquifer parameters, geometry of the flow domain, 
leakage rate, recharge rate, pumping rate, initial conditions, boundary conditions, 
etc. depending on the physical condition of the problem under consideration. Aqui-
fer parameters can be deduced from field as well as experimental methods [1, 9]. 
A brief description about the initial and boundary conditions commonly used in 
groundwater flow problems are discussed below.

9.3.8  Initial Conditions

Initial conditions describe the distribution of h at all points of the flow domain at the 
beginning of the investigation, i.e., at t = 0. This is expressed as:

h = h0(x, y, 0), (9.29)

where h0 is a known value of h for all points of the flow domain at t = 0. Now, to 
make use of initial condition for the solution of Eq. 9.25, Eq. 9.29 can be written as:

H (x, y, 0) = 0, (9.30)

in which H = h2 − h2
0.

9.3.9  Boundary Conditions

These conditions describe the nature of interaction of the aquifer along its boundar-
ies with its surrounding environs such as reservoir, rivers, groundwater divide, etc. 
Three types of boundary conditions are generally encountered in groundwater flow 
problems.

Dirichlet boundary condition: In this case, h is prescribed for all points of the 
boundary for the entire period of investigation. This is expressed as:
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0 ( , , ),h h x y t= (9.31)

where h0(x, y, t)  are known values of h at all points on the boundary.
Neumann boundary condition: This type of boundary condition prescribes the 

flux across the boundary of the flow system and can be expressed as:

1
( , , ),q x y t= ψ

 (9.32)

where 
1
( , , )x y tψ  are the known values of flux at boundaries. A special case of this 

boundary condition is the no-flow boundary condition in which flux is zero. This 
condition occurs at impermeable surfaces or at the groundwater divide, a surface 
across which no flow takes place.

Cauchy boundary condition: This boundary condition is encountered at the semi-
pervious boundary layer between the aquifer and an open water body such as river. 
Because of the resistance to the flow offered by the semi-pervious boundary that 
lies between the aquifer and the river, the water level in the river differs from that 
in the aquifer on the other side of the semi-pervious boundary. In this case, the flux 
is defined by:

q = K
′ h − h0

b
,

 
(9.33)

where h  is the head at x = 0, h0 is the water level in the river, b and K’ are the thick-
ness and hydraulic conductivity, respectively, of the semi-pervious boundary layer.

9.3.10  Estimation of Rate of Recharge and Pumping

Recharging and pumping are the essential components of groundwater development 
schemes. The purpose of groundwater recharging is to store groundwater in order to 
reduce, stop, or even reverse the declining trend of water table. On the other hand, 
pumping is used for water supply. Thus, recharging and pumping have significant 
effects on the dynamics of water table. Therefore, accurate estimation of recharge 
and pumping rates are very crucial for prediction of water table fluctuation. Many 
mathematical models have been developed to predict water table fluctuations in 
response to recharge from basins of different geometrical shapes [3, 10–15]. Most 
of the models are based on the assumption of constant rate of recharge applied con-
tinuously. However, rate of recharge largely depends on the infiltration rate which is 
influenced by several factors. The infiltration rate decreases initially mainly due to 
dispersion and swelling of soil particles at the bottom of the basin. After some time, 
it increases owing to displacement of the entrapped air from pores. After attaining a 
maximum value, it again decreases owing to clogging of the soil pores [1, 16–17].

Clogging is caused by silt and clay deposition over and immediately below the 
base of basin. The rate of recharge follows almost a similar pattern of variation of 
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infiltration rate with comparatively less intensity and with some time lag due to 
the time taken by the infiltrated water to reach the water table. When the rate of 
recharge decreases to a minimum prescribed level, the recharge operation is dis-
continued for some time and after drying, cleaning, and if necessary, scrapping 
of the silted bottom of the basin, recharge rate is brought back almost to its initial 
value and the basin is again put back to use for the next phase of recharge operation. 
Zomorodi [18] has demonstrated with the help of field examples that the solutions 
based on the assumption of constant rate of recharge are unable to predict the rise 
and subsequent decline of the water table which is due to decrease in the rate of 
recharge. He suggested that the recharge rate should be treated as a variable in time 
in order to simulate actual field conditions. Several schemes have been proposed to 
approximate time varying recharge rate in order to develop predictive groundwater 
flow models. Rai and Singh [19] have used two linear elements to approximate 
exponentially decaying recharge rates applied from a strip basin to a semi-infinite 
aquifer. Some workers [20–22] used exponential function to approximate one cycle 
of time varying recharge applied from a single basin. Yue-zan and others [23] have 
used a scheme in which the duration of time varying recharge is divided into several 
time zones according to the actual variation in the recharge rate. In each time zone, 
the variation range of recharge rate should be considered so small that it can be 
represented by the constant average value of recharge rate of that particular zone. 
Yue-zan and colleagues referred this recharge rate approximation as stepped vari-
able scheme.

Manglik and others [24] have proposed a new scheme for approximation of time 
varying recharge rate. In this scheme, time varying recharge rate is approximated 
by a series of line elements of different lengths and slopes. The number, lengths, 
and slopes of the line elements depend on the nature of variation of recharge rate. 
Advantage of this approximation scheme is that any complex nature of recharge 
rate variation can be approximated with more accuracy. This scheme was extended 
for the recharge operation from multiple basins [25] and combination of recharging 
and pumping from a number of basins and wells [26]. In a real field condition, ar-
tificial recharging and pumping operations are carried out intermittently from more 
than one site according to necessity. In groundwater flow equations, for example in 
Eq. 9.25, N( x, y, t) is the sum of all recharge and withdrawal rates from distributed 
sources (recharge basins, ponds, streams, etc.) and from distributed sinks (wells, 
leakage sides, etc.). According to the scheme considered in [26], N( x, y, t) is repre-
sented by:

1 2 1 2
1

( ) for ,
( , , ) ,

0 elsewhere                           

n

i i i i i
i

N t x x x y y y
N x y t =


≤ ≤ ≤ ≤= 



∑

 

(9.34)

where n is the total number of basins and/or well, Ni(t)  is the time-varying recharge 
(or pumping) rate for the ith basin (or well, respectively) and xi1, xi2, yi1, yi2  are 
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the coordinates of ith basin (or well). Ni(t)  is positive for recharge to the aquifer 
and negative for pumping and leakage out of the aquifer.

For demonstration purpose, Fig. 9.5 illustrates approximation of two cycles of 
time varying recharge and pumping rates by using this scheme. In this example, 
two cycles of recharge operations each of 20 days duration with 20 days gap are 
considered. In each cycle the rate of recharge decreases from 0.8 to 0.7 m/d during 
the first 2 days and again reaches maximum value of 0.9 m/d during the next 2-day 
period. Thereafter, it continuously decreases to 0.2 m/d during the next 14 days pe-
riod. After that recharge operation is discontinued. As a result, the rate of recharge 
decreases to zero in the next 2 days (Fig. 9.5a). The second cycle of recharge starts 
after a gap of 20 days. In the second cycle also variation of the rate of recharge is 
considered in the same way. This kind of time varying recharge rate is approximated 
by using 11 linear elements of different lengths and slopes. In this example two 
cycles of pumping each of 10 days duration with a gap of 20 days is considered at a 
rate of 80 m3/d. The first cycle of pumping begins after 10th day from the beginning 
of the first cycle of recharge and continues till the 20th day, i.e., the last day of the 
first cycle of recharging. After a gap of 20 days, the second cycle of pumping starts 
on the 40th day and continues till the 50th day (Fig. 9.5b). This time varying pump-
ing rate is approximated by nine linear elements [27–30] used the same scheme to 
approximate time-dependent recharge, pumping and/or leakage to develop analyti-
cal models to predict water table fluctuation. Results of analytical models are veri-
fied by comparing with the numerical results obtained by using MODFLOW.
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Fig. 9.5  Approximation of two cycles of time varying recharge and pumping. [27]
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9.4  Analytical Methods of Solution

The purpose of solving a groundwater flow equation is to obtain the values of water 
table height, h( x, y, t). Generally two types of methods, namely analytical methods 
and numerical methods are used for this purpose. Most of the field problems are of 
complex nature because of the inhomogeneous anisotropic nature of flow systems 
and irregular shape of their boundaries. Such problems are not easily amenable to 
analytical methods and can be solved by using numerical methods. Development of 
numerical methods is based on two schemes: finite difference and finite elements. 
Accordingly, these methods are called finite difference and finite elements. These 
methods are described in detail in many published works [1, 31–36]. Based on these 
numerical methods, many computer programs such as SUTRA, MODFLOW, POR-
FLOW, etc. are being developed and widely used to solve actual field problems of 
groundwater flow.

Although the application of analytical solutions is restricted to the relatively ho-
mogeneous isotropic flow system having boundaries of simple geometrical shapes, 
their application is fast and simple compared with that of the numerical methods. 
Analytical solutions are also useful for other purposes such as sensitivity analysis 
of the effects of various controlling parameters such as aquifers properties, initial 
and boundary conditions, intensity and duration of recharge rate, shape, size, and 
location of the recharge basin, etc. on water table fluctuation. Such information is 
very essential for making judicious selection of an appropriate development scheme 
out of many proposed schemes to achieve the preset objectives of groundwater re-
sources management. Besides these applications, analytical solutions are also used 
for checking validity and calibration of numerical models under development by 
comparing results obtained from both the approaches. Analytical methods common-
ly used for the solution of groundwater problems include the Laplace transforms, 
integral balance methods, method of separation of variables, approximate analytic 
methods, Fourier transforms, etc. Details about these methods and their applica-
tions in the solution of groundwater flow problems or in heat conduction problems 
can be found in many books [1, 37–42]. A review of analytical solutions has been 
presented in [43]. Some commonly used analytical methods are discussed in the 
following subsections.

9.4.1  Laplace Transform

The technique of the Laplace transformation is widely used for solving diffusion 
type differential equation that contains a first order differential in time. By using 
the Laplace transform the partial derivative with respect to time variable is removed 
from the second order partial differential equation (in this case groundwater flow). 
As a result, the original second order partial differential equation is reduced in sec-
ond order ordinary differential equation. When the ordinary differential equation is 
solved and this solution is inverted by using inversion of the associated the Laplace 
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transform; the desired solution of the unknown variable such as water table height 
is obtained. The Laplace transform of a function h( t) is defined as:

0
[ ( )] ( ) ( ) ,ptL h t h p e h t dt

∞ −− = ′ ′∫ 
(9.35)

and its inversion is:

1
( ) ( ) ,

2

y i
pt

y i

h t e h p dp
iπ

+ ∞

− ∞

≡ ∫
 

(9.36)

where y is a constant so large that all the singularities lie to the left of the line (y − i∞, 
y + i∞) on the complex p-plane. Generally, the Laplace transform of a function and 
its inverse are given in several books [38, 44–45]. Application of the Laplace trans-
form in the solution of groundwater flow problems can be found in [19, 46–49].

9.4.2  The Integral Balance Method

This method is applicable to both linear and nonlinear 1-D transient boundary value 
problem for certain boundary conditions. The results are approximate. But several 
solutions obtained by applying this method when compared with the exact solutions 
have confirmed that the accuracy is generally acceptable. The following steps are 
followed in the application of this method:

(i) The differential equation describing 1-D groundwater flow is integrated over 
the length of the aquifer in order to remove the derivative with respect to space 
coordinate.

(ii) A suitable profile is chosen for the distribution of water table height. A polyno-
mial profile is generally preferred for this purpose. Experience has shown that 
there is no significant improvement in the accuracy of the solution by choosing 
a polynomial greater than the fourth degree. Coefficients in the polynomial are 
determined by applying boundary conditions.

(iii) When the expression of the polynomial profile is introduced into the integrated 
groundwater flow equation and the indicated operations are performed, a first 
order ordinary equation is obtained for the average height of the water table 
with time as the independent variable. The solution of this differential equation 
subject to the initial condition gives an expression of the initial condition for 
average height of the water table.

(iv) Now the first order differential equation for the average water table height is 
solved subject to the initial condition for the average height to get the desired 
solution of the water table height.

Singh and Rai [50–51] have used this method in the solution of ditch-drainage prob-
lems in the presence of time varying recharge rate.
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9.4.3  Approximate Analytic Methods

Approximate analytic methods are attempted in solving groundwater flow govern-
ing equation in its nonlinear form. One example of such a method is presented by 
Basak [52] in solving a ditch-drainage problem based on the assumption that the 
first derivative of the water table height with respect to time is independent of the 
space coordinate, i.e., dh/dt ≠ f( x) and is a function of time only. This approximation 
is valid when the successive water table profiles are almost parallel. This condition 
is satisfied almost in the entire region except near the drains. The accuracy of ap-
proximate solution is verified by comparing the results with the results of known 
exact solutions. Basak’s solution is found to be in close agreement with an exact 
solution of the same problem. Singh and Rai, [50, 53] used this method to obtain 
a model to describe water table fluctuation induced by exponentially decaying re-
charge rates.

9.4.4  Method of Separation of Variables

In this method groundwater flow equation is separated into ordinary differential 
equations for each independent variable. The resulting ordinary differential equa-
tions are solved and the complete solution is constructed by the linear superposition 
of all separated solutions. Examples of application of this method can be found in 
[54] for 1-D sloping aquifer, in [6] for 2-D sloping aquifer, and in [55] for radial 
flow.

9.4.5  Finite Fourier Transforms

These transforms are useful in solving boundary value problems in which at least 
two of the boundaries are parallel and separated by a finite distance.

 1-D Finite Fourier Sine Transform

This transform is used when value of a variable is specified at the boundaries. For 
1-D case, the finite Fourier sine transform S( m, t) with respect to x of a function 
H( x, t), 0 < x < A is defined as:

Fs[H (x, t)] = S(m, t) =
A∫

0

H (x, t) sin
(mπx

A

)
dx,

 

(9.37)

its inversion is given by:
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H (x, t) =
2

A

∞∑

m=1

S(m, t) sin
(mπx

A

)
,

 
(9.38)

in which m is integer representing the number of Fourier coefficients and A is the 
length of the aquifer. Application of this transform in the solution of groundwater 
flow problem can be found in [21, 56, 57].

 2-D Finite Fourier Sine Transform

Finite Fourier sine transform, S( m, n, t) with respect to x and y of a function H( x, y, t), 
0 < x < A and 0 < y < B is given by:

 
(9.39)

in which m and n are integers representing number of Fourier coefficients and A 
and B are length and width of the aquifer in the x and y directions, respectively. Its 
inversion formula is given by:

H (x, y, t) =
4

AB

∞∑

m=0

∞∑

n=0

S(m, n, t) sin
(mπx

A

)
sin

(nπy

B

)
.

 
(9.40)

Example of application of this transform in the solution of groundwater flow equa-
tion can be found in [27, 58]. Recently, [29] have used this transform to develop a 
model to describe water table fluctuation in anisotropic aquifer.

1-D Finite Fourier Cosine Transform

This transform is used to solve 1-D flow equation where flux is defined at the bound-
aries. The finite Fourier cosine transform in the interval 0 < x < A  is defined as:

C(m, t) =
A∫

0

H (x, t) cos
(mπx

A

)
dx,

 

(9.41)

and its inverse is given by:

H (x, t) =
1

A
C(0, t) +

2

A

∞∑

m=1

C(m, t) cos
(mπx

A

)
.

 
(9.42)

Examples of application of this transform can be found in [21, 59].

Fs[H (x, y, t)] = S(m, n, t) =
B∫

0

A∫

0

H (x, y, t) sin
mπx

A
sin

nπy

B
dxdy,
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 2-D Finite Fourier Cosine Transform

This transform is used for the solution of those problems in which the boundary 
conditions are characterized by flux across the two parallel boundaries. For 2-D 
problem, the finite Fourier cosine transform C( m, n, t) with respect to x and y of a 
function H( x, y, t) in the intervals 0 < x < A and 0 < y < B  is defined as:

C(m, n, t) =
A∫

0

B∫

0

H (x, y, t) cos
(mπx

A

)
cos

(nπy

B

)
dydx,

 

(9.43)

and its inverse is given by:

H (x, y, t) = 1
AB

C(0, 0, t) + 2
AB

∞∑
m=1

C(m, 0, t) cos
(

mπx
B

)

+ 2
AB

∞∑
m=1

C(0, n, t) cos
(

nπy

A

)
+ 4

AB

∞∑
m=1

∞∑
n=1

C(m, n, t) cos
(

mπx
B

)
cos

(
nπy

A

)
.

 
(9.44)

Example of application of this transform is in [20, 28].

 1-D Extended Finite Fourier Cosine Transform

This transform is used when the flow problem is characterized with mixed bound-
ary conditions, i.e., at one boundary flux is defined and at its parallel boundary head 
is defined. This transform in the interval 0 < x < A  is defined as:

Ce[m, t] =
A∫

0

H (x, t) cos
(2m + 1)πx

2A
dx,

 

(9.45)

and its inverse is given by:

H (x, t) =
2

A

∞∑

m=0

Ce(m, t) cos

(
(2m + 1)πx

2A

)
.

 
(9.46)

Application of this transform in the solution of 1-D groundwater flow can be found 
in [55].

2-D Extended Finite Fourier Cosine Transform

For 2-D flow problem, the transform C( m, n, t) with respect to x and y in the interval 
0 < x < A and 0 < y < B of a function H( x, y, t) is defined as:



207

Ce(m, n, t) =
B∫

0

A∫

0

H (x, y, t) cos
(2m + 1)π x

2A
cos

(2n + 1)πy

2B
dxdy,

 

(9.47)

its inversion formula is given by:

H (x, y, t) =
4

AB

∞∑

m=0

∞∑

n=0

Ce(m, n, t) cos

(
(2m + 1)πx

2A

)
cos

(
(2n + 1)πy

2B

)
.

 (9.48)

This transform has been used in [25] to develop a groundwater flow model.

9.5  Summary

Recharging and pumping are the essential components of water resources devel-
opment. Therefore, prediction of water table fluctuations in response to proposed 
schemes of recharging and pumping are essential to make judicious selection of an 
appropriate development scheme out of many to achieve the preset objectives of sus-
tainable management. This is accomplished by carrying out sensitivity analysis of 
the effects of changes in the controlling parameters on the dynamic behavior of the 
water table. Controlling parameters include shape, size, and location of recharge ba-
sins and wells, intensity of recharge and pumping rates, duration and number of cy-
cles of recharge and pumping operations, etc. Solution of the prediction problem lies 
in the solution of the governing flow equations subject to the initial and boundary 
conditions associated with the physical problems under consideration. In this chap-
ter groundwater flow equations have been presented to describe 2-D groundwater 
flows in inhomogeneous anisotropic unconfined aquifer (Eq. 9.16), inhomogeneous, 
isotropic unconfined aquifer (Eq. 9.17), in leaky unconfined aquifer (Eq. 9.20) in 
sloping homogeneous isotropic sloping aquifer (Eq. 9.26) in response to intermit-
tently applied time varying recharge and/or pumping from multiple basins of rectan-
gular shapes and wells, respectively, along with the initial and boundary conditions 
and methods of their solutions. Groundwater flow equations to describe 1-D flow 
can be obtained by substituting zero for the derivative of one space coordinate.

Governing flow equation in cylindrical coordinate system (Eq. 9.27) is also pre-
sented to describe groundwater flow induced by time varying recharge from circular 
basin. Groundwater flow equations for steady state can be obtained by substituting 
zero for the time derivative. The above mentioned governing flow equations are used 
for the development of analytical/numerical models to predict water table fluctuations 
in the flow system under consideration. Examples of the analytical models have been 
cited from the papers published in reputed journals which can be easily accessible to 
the interested readers. Though the application of analytical models are restricted to the 
flow system having boundaries of simple geometrical shapes, their application is fast 
and simple compared to numerical methods. Analytical models are also used to check 
the validity of numerical models under development, because of the assured accuracy 
of the results of analytical models.

9 Modeling Groundwater Flow in Unconfined Aquifers
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