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4.1  Introduction

4.1.1  Mathematical Modelling

Modelling a system is a Herculean task as the vast majority of systems which are 
studied, are extremely complex. A system may be open, i.e. the factors influenc-
ing it are numerous and are affected by the surroundings. Simpler to simulate are 
closed systems, in which, given justifiable assumptions, all components are pre-
cisely determinable. This type of system can be modelled with confidence and ac-
curacy. This makes the identification of an exact problem more challenging. Hence, 
any attempt to model a system is founded on some inherent physical assumptions 
and some degree of simplification which makes the system theoretically “closed” 
and renders a robust formulation for the processes involved in the system practi-
cable. We, therefore, make attempts to model a particular phenomenon of a sys-
tem by initially ignoring the parameters with less influence on the phenomenon. 
The model is improved by gradually incorporating more and more parameters and 
applying advanced mathematical know-how, reinforced with experimentation and 
observation, where possible. Nevertheless, the parameters with meager effects re-
main neglected. The reliability of a model is dependent on the degree of exactness. 
Modelling is, therefore, a pragmatic attempt to simulate a reduced complexity and 
reality. In biological systems, such as transport processes in the human body [1] 
and external aerodynamics of natural fliers [2], mathematical modelling provides 
insights which may not be realizable with practical experimentation. In conjunction 
with computers, mathematical simulation in biology [3] now provides one of the 
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most challenging, intriguing, and rewarding areas of scientific endeavour. In the 
same way that the twentieth century was the era of nuclear science and high-speed 
transport (aircraft, trains, automobiles and planetary exploration rovers) in which 
engineers mimicked and attempted to improve upon nature [4], the twenty-first cen-
tury has emerged as a new frontier for biological modelling.

There has been a tremendous fusion of biologists, mathematicians, biomechani-
cal engineers, biochemists and biophysicists, collectively focusing on resolving 
many types of problem at different scales [5]. In the same way that engineers mim-
icked biological mechanisms in the twentieth century (e.g. flight, naval propulsion, 
tensile structures), biology is now implementing “smart” technologies developed 
for astronautics, nanotechnology, microelectronics, lubrication technology (tribol-
ogy), seismic bearings for bridge structures, etc. [6]. This transfer of engineering 
and scientific technology into medical and biological simulation has accelerated 
developments in many exciting and critical areas. Paramount among these has been 
the application of fluid mechanics to medical systems [7], i.e. biofluid mechanics. 
Blood is often termed the “fluid of life” and hemodynamics has received most at-
tention from engineering scientists and mathematicians [8–11]. However, “biofluid 
mechanics” has infiltrated into a much wider spectrum of biomechanical problems. 
Excellent examples in this regard are hydroelastic flows mimicking marine swim-
mers [12], fish school group propulsion used to design optimal wind turbine farm 
layouts [13], mimicry of flapping wings for micro-unmanned air vehicles (mUAVs) 
[14], magnetic control of surgical extracorporeal blood flow circuits [15], hydro-
elastic vibration of inner ear membranes [16], peristaltic propulsion in the gastric 
system [17–19] and haemodialysis simulations [20–21]. Further, recent develop-
ments in the application of fluid mechanics to biomedical systems include viscous 
flow analysis of ophthalmic diseases [22], haematological purification devices [23], 
cerebrospinal flows [24], marine plankton dynamics [25], smart magnetic lubrica-
tion for prosthetics [26–27], larynx dynamics [28], biomagnetic response during 
astronaut re-entry [29–30], artificial heart-valve mechanics [31], and flows through 
capillaries and small blood vessels [32] and nasal ventilation aerodynamics [33]. 
Many of these applications have benefited from developments in chemical, aero-
space, civil, mechanical, and computer engineering, and of course mathematics and 
physics. Numerical methods, applied mathematics, theoretical chemistry and phys-
ics, smart mechanics, laser Doppler anemometry (LDA), particle image velocimetry 
(PIV), lasers and computer science (imaging, scanning, simulation) are just some of 
the areas, which although originally developed to solve engineering problems have 
now found their way into the rapidly expanding domain of mathematical biosci-
ences. The use of mathematical simulation in particular has resulted in garnering 
new insights into cerebral cortex formation, cancer spread, cartilage degeneration, 
epidemic disease prediction, pharmacology and even psychology. Many of these 
topics have utilized aspects of bio-fluid mechanics.

A particularly rich area which has emerged recently is that of nanotechnology, 
of which nano-fluid [34] is an example. Nano-fluids were developed by Choi [34] 
at the Argonne Energy Labs, Illinois in the 1990s. Applications have penetrated al-
most every area of engineering including rocket propellants, solar energy collectors, 
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lubricant design, automotive and electronic cooling systems and medicine [35]. 
Coupled with this, many developments have taken place in micro-electromechani-
cal systems and nano-systems including peristaltic pumps for medical applications 
[36]. In this discussion we, therefore, focus on recent progress in mathematical 
simulation of nano-fluid propulsion by peristaltic mechanisms. This topic has im-
mense applications in surgical exploration [37], drug delivery [38] hyperthermia 
cancer medication deployment [39], wound healing [40] and gastric pharmaco-
logical drug targeting [41, 42]. Recently the leading Swiss medical engineering 
corporation, Levitronix [43] has explored the fabrication of peristaltic nano-fluid 
pumps for a range of pharmaceutical applications where the peristaltic transport 
mechanism has been shown to achieve maximum reliability, long life, and superior 
ability to pump precious fluids in the harshest of environments, compared with 
any other type of micropump. The drawbacks of nanoparticle agglomeration, dilu-
tion and dosing as well as filtration difficulties have now largely been eradicated 
in modern nano-fluid peristaltic devices. This field is, therefore, very promising 
and will doubtlessly stimulate increased attention from the mathematical modelling 
community. We shall briefly review the mechanism of peristalsis, and then review 
the thermophysics and dynamics of nano-fluids. Finally, a new model simulating 
double-diffusive pumping of nano-fluids in peristaltic transport is presented with 
future recommendations for new simulations.

4.1.2  Peristaltic Transport

Peristalsis is a physiological mechanism (pumping process) in which physiologi-
cal fluids are propelled (pumped) within living organs by contraction of circular 
smooth muscle behind the fluids and relaxation of circular smooth muscle ahead 
of it. Bayliss and Starling [44] historically first observed this phenomenon over a 
century ago. This type of pumping was first observed in physiology regarding:

1. Food movement in the digestive tract
2. Frine transportation from the kidney to the bladder through ureters
3. Semen movement in the vas deferens
4. Movement of lymphatic fluids in the lymphatic system
5. Bile flow from the gall bladder into the duodenum
6. Spermatozoa in the ductus efferent of the male reproductive tract
7. Ovum movement in the fallopian tube
8. Blood circulation in small blood vessels

Historically, however, the engineering analysis of peristalsis was initiated much 
later than physiological studies. A lucid summary of developments was present-
ed by the modern “father of biomechanics” Fung in the early 1970s [45]. Latham 
[46] initiated modern fluid mechanics simulations of peristalsis using both theo-
retical and experimental techniques. Significant work was also reported by Shapiro 
and others [47] who delineated different zones for pumping. Fung and Yih [48] 
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presented a model on peristaltic pumping using perturbation techniques. Burns and 
Parkes [49] studied the flow of Newtonian fluid through a channel and a tube by 
considering sinusoidal vibrations in the walls along the length. Barton and Raynor 
[50] studied the peristaltic motion in a circular tube by using long wavelength ap-
proximation for intestinal flow. Chaw [51] reported the solution for axisymmetric 
flow with initially nonstationary flow. Jaffrin [52] studied the effects of inertia and 
curvature on peristaltic pumping. Applications of peristalsis in industrial fluid me-
chanics usually involve peristaltic pumping of extremely hazardous liquids such as 
aggressive chemicals, high solids slurries, noxious fluid (nuclear industries), and 
other materials. Roller pumps, hose pumps, tube pumps, finger pumps, heart–lung 
machines, blood pump machines and dialysis machines are all engineered on the 
basis of peristalsis. In such applications and also medical flows, transport fluids are 
generally non-Newtonian. In recent years, therefore, researchers have developed 
new mathematical models utilizing a variety of viscoelastic rheological and micro-
structural models to simulate physiological fluids more accurately, demonstrating 
better correlation with clinical data than classical Newtonian viscous flow models, 
as examined in [45–52]. Relevant studies in this regard include Bohme and Fridrich 
[53] who employed a Walters-B model. Tsiklauri and Beresnew [54] used a Max-
well viscoelastic model. Tripathi [55] used Stokes’ couple-stress models, and also 
employed fractional Maxwell models [56] and generalized Oldroyd-B viscoelastic 
models [57] to study peristaltic propulsion under various body forces. Hayat and 
others [58] have employed a Johnson–Segalman model to simulate elastic effects in 
peristaltic rheological flow. Tripathi and others [59] have also employed a Jeffery’s 
elasto-viscous model to investigate gastric flow and heat transfer in swallowing. 
Bég and others [60] have used the electrically conducting Williamson non-New-
tonian model and also a differential transform algorithm to study peristaltic flow 
in a tube. Bhargava and others [61] have used a finite element method to study 
peristaltic waves in micropolar flow in a deformable conduit. Peristaltic nano-fluid 
dynamics has also recently received some attention. We shall review works in this 
area in due course.

4.1.3  Nano-Fluids

Nano-fluids [34] are fluids containing nanoparticles (nanometer-sized particles 
of metals, oxides, carbides, nitrides or nanotubes). Nano-fluids exhibit enhanced 
thermal properties, notably higher thermal conductivity and convective heat trans-
fer coefficients compared to the base fluid. Nano-fluids are therefore a new class 
of fluids designed by dispersing nanometer-sized materials (nanoparticles, nano-
fibers, nanotubes, nanowires, nano-rods, nano-sheet, or droplets) in base fluids. 
They may also be regarded as nanoscale colloidal suspensions containing con-
densed nanomaterials. They are two-phase systems with one phase (solid phase) 
in another (liquid phase). Nano-fluids have been found to also exhibit enhanced 
thermal diffusivity and viscosity compared to those of base fluids like oil or wa-
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ter. In many engineering simulations, including computational fluid dynamics 
(CFD), nano-fluids can be assumed to be single-phase fluids. The classical theory 
of single-phase fluids can be applied, where physical properties of nano-fluids 
are taken as a function of properties of both constituents and their concentrations. 
In recent years, a number of mathematical models have been proposed for nano-
fluids. These have largely focused on the mechanism for thermal conductivity en-
hancement. A popular model is the Tiwari–Das [62] formulation, which has the 
advantage of not requiring a separate species diffusion equation for the nanopar-
ticle volume fraction. This approach has been successfully utilized in a number 
of recent studies including Rashidi and others [63] for axisymmetric boundary 
layer flow from a cylinder with the homotopy analysis method and Bég and oth-
ers [64] for transport in porous media. Rana and others [65] also very recently 
employed the Tiwari–Das model to simulate nano-fluid convection from an in-
clined cylindrical solar collector. Other models have also been developed aimed 
at further elucidating the properties of nano-fluids. Pre-eminent among these has 
been the Buongiorno model [66] in which multiple mechanisms are identified for 
the convective transport in nano-fluids using a two-phase nonhomogenous ap-
proach. In his two-component four-equation nonhomogeneous equilibrium model 
for mass, momentum, and heat transport in nano-fluids, he emphasized the follow-
ing mechanisms: inertia, Brownian diffusion, thermophoresis, diffusiophoresis, the 
Magnus effect, fluid drainage and gravity. Of all of these mechanisms, however, 
only Brownian diffusion and thermophoresis were found to be important in the 
absence of turbulence effects. It was also suggested that the boundary layer has 
different properties owing to the effect of temperature and thermophoresis. Taking 
Brownian motion and thermophoresis into account, Buongiorno [66] developed 
a correlation for the Nusselt number which was compared to the data from Xuan 
and Li [67] and Pak and Cho [68] and which correlated best with the latter [68] ex-
perimental data. The literature on the thermal conductivity and viscosity of nano-
fluids has been reviewed by Eastman and others [69], Wang and Mujumdar [70] 
and Trisaksri and Wongwises [71]. In addition, a succinct review on applications 
and challenges of nano-fluids has also been provided by Wen and others [72] and 
Saidur and others [73]. Recently, the Buongiorno [66] model has been used by 
Kuznetsov and Nield [74] to study the natural convection flow of nano-fluid over a 
vertical plate and their similarity analysis identified four parameters governing the 
transport process. The Kuznetsov–Nield formulation has proved immensely popu-
lar in computational thermo-sciences. It has been deployed in many subsequent 
studies including double-diffusive free convection [75], Rayleigh–Benard nano-
fluid instability [76–79], tube nano-fluid flows [80], boundary layers on translating 
sheets [81], vertical plate convection [82], nano-convection from a sphere in po-
rous media [83], stagnation-point nano-fluid flow in electronic components [84], 
unsteady radioactive hydromagnetic nano-fluid materials processing [85], nano-
fluid flows in geothermal systems [86] and nano-fluid oxytactic bio-convection in 
hybrid microbial fuel cells [87]. These studies have all considered the nano-fluid to 
be Newtonian. However, recently progress has also been made in non-Newtonian 
nano-fluid convection including simulations with an Ostwald–de Waele power law 

4 Mathematical Modelling of Peristaltic Pumping of Nano-Fluids 



74

model [88]. The present discourse is restricted, however, to Newtonian nano-fluid 
dynamics, i.e. rheological features are discarded.

4.2  Mathematical Modelling

We now consider the peristaltic flow of a nano-fluid with double-diffusive con-
vection in a deformable channel. A number of studies have appeared in the past 
few years on nano-fluid peristaltic fluid mechanics including endoscopic effects 
[89]. These works have generally employed the Kuznetsov–Nield model although 
the boundary conditions employed are debatable. Akbar and others [90] devel-
oped closed-form solutions for stream function and pressure gradient for the 
peristaltic flow of a nano-fluid in an asymmetric channel with wall slip effects, 
under long wavelength and small Reynolds number assumptions. Further studies 
include Akbar and others [91] who used the homotopy perturbation method to 
compute temperature and nanoparticle concentration for the effects of Brown-
ian motion number, thermophoresis, local thermal Grashof number, and local 
nanoparticle Grashof number for five different peristaltic waves. They observed 
that pressure rise is reduced with increasing thermophoresis number whereas an 
increase in the Brownian motion parameter and the thermophoresis parameter en-
hances temperatures. Further studies include Mustafa and others [92] who consid-
ered viscous heating, Akbar and Nadeem [93] who used the Phan-Thien-Tanner 
rheological model for Jeffrey–Hamel nano-fluid peristaltic flow and Mustafa and 
others [94] who considered wall slip in nano-fluid peristaltic transport. In many 
drug-delivery applications [95] double-diffusive convection is significant. Ther-
mal diffusion is the transport of the components of gaseous mixtures or solutions 
when subjected to a temperature gradient. If the temperature difference is held 
constant, thermal diffusion in a mixture will produce a concentration gradient. 
The production of such a gradient causes classical species diffusion. An excel-
lent treatment of double-diffusion phenomena is provided by Gebhart and oth-
ers [96]. These effects are also sometimes known as cross-diffusion effects or 
Soret–Dufour effects [97–99]. Very few investigations have been conducted on 
peristaltic pumping of nano-fluids with double-diffusive (thermal and concen-
tration) convection in nano-fluids. Therefore, this chapter aims to examine the 
peristaltic flow of nano-fluids with Soret–Dufour (double-diffusive) convection 
through a two-dimensional deformable channel. The analysis is performed under 
the well-established long wavelength and low Reynolds number approximations. 
A detailed mathematical formulation is presented and numerical computations re-
ported. Mathematica software is employed to achieve visualization of the stream 
lines and trapping phenomenon. The influence of Brownian motion parameter, 
thermophoresis parameter, thermal Grashof number, concentration Grashof num-
ber, nanoparticle Grashof number, Soret parameter, Dufour parameter and peri-
staltic wave amplitude on nanoparticle fraction, temperature, pressure gradient, 
velocity and trapping are depicted.
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4.2.1  Peristaltic Flow Geometry

The constitutive equation for the peristaltic wall geometry due to propagation of a 
train of waves, considered in the present investigation, takes the form:

2
( , ) sin ( )h t a b ct

πξ ξ
λ

= + −� �� � �
 

(4.1)

Here , , , , , , andh t a b cξ λ�� �  represent transverse vibration of the wall, axial coordi-
nate, time, half width of the channel, amplitude of the wave, wavelength, and wave 
velocity, respectively. The values of temperature ( T), solute concentration ( C) and 
nanoparticle fraction ( F) at the centreline 0η=  and the wall of the channel hη=  
are taken as T C F T C F0 0 0 1 1 1, , , , ,and  respectively.

4.2.2  Governing Equations

Employing the Oberbeck–Boussinesq approximation, the governing equations 
for conservation of mass, momentum, thermal energy, solute concentration, and 
nanoparticle fraction [75] may be formulated thus:
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where , , , , , , , , , , ( ) , ( ) , , , , , , , , andf p T C f p B T S TC CTu v p g c c k T F C D D D D Dρ ρ η µ β β ρ ρ�� � �  
denote the fluid density, nanoparticle mass density, axial velocity, transverse ve-
locity, transverse coordinate, pressure, fluid viscosity, acceleration due to gravity, 
volumetric thermal expansion coefficient of the fluid, volumetric solute expansion 
coefficient of the fluid, heat capacity of fluid, effective heat capacity of nanoparti-
cle, thermal conductivity, temperature, nanoparticle volume fraction, solute concen-
tration, Brownian diffusion coefficient, thermophoretic diffusion coefficient, solute 
diffusivity of the porous medium, Dufour diffusivity and Soret diffusivity.

4.2.3  Non-Dimensionalization and Boundary Conditions

To facilitate analytical solutions, we introduce the following non-dimensional pa-
rameters:
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where 
T C F, , , , , ,Re, , , , , , , ,r b t TC CTGr Gr Gr P N N N and Nδ φ ν θ γ Φ  are wave number, 

amplitude ratio, kinematic viscosity, dimensionless temperature, dimensionless 
solutal (species) concentration, rescaled nanoparticle volume fraction, Reynolds 
number, thermal Grashof number, solutal Grashof number, nanoparticle Grashof 
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number, Prandtl number, Brownian motion parameter, thermophoresis parameter, 
Dufour parameter and Soret parameter, respectively. For low Reynolds number 
( Re→0) and long wavelength aλ >> , Eqs. 4.2–4.7 reduce to:
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The following boundary conditions are prescribed:
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4.2.4  Analytical Solutions

Integrating Eq. 4.13 twice, with respect to η  and using the first and second bound-
ary conditions of Eq. 4.15, the nanoparticle fraction field is obtained as follows:
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Double integrating Eq. 4.14 with respect to η  and using the third and fourth bound-
ary conditions of Eq. 4.15, the solute concentration field is obtained as:
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(4.17)

Using Eqs. 4.16 and 4.17 in Eq. 4.12 and integrating it twice with respect to η  and 
using the fifth and sixth boundary conditions of Eq. 4.15, the temperature field is 
obtained as follows:
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Using Eqs. 4.16–4.18 in Eq. 4.10 and integrating it with respect to η  and using the 
seventh boundary condition of Eq. 4.15, the axial velocity gradient is obtained as 
follows:
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Integrating Eq. 4.19, and deploying the eighth boundary condition of Eq. 4.15, the 
axial velocity is then obtained as:

 

(4.23)

4.2.5  Volumetric Flow Rate

The volumetric flow rate is given by integrating across the channel width:
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Using Eq. 4.23 in Eq. 4.24 and solving the integral yields:
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Manipulating Eq. 4.25, the pressure gradient is obtained as:
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The transformations between a wave frame ( � �X Y, ) moving with velocity c  and the 
fixed frame ( , )ξ η� �  are now introduced as follows:
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where ( , )U V� �  and ( , )� �u v  are the velocity components in the wave and fixed frame, 
respectively.

The volumetric flow rate in the fixed frame is given by:
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which, on integration, yields:
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Averaging volumetric flow rate along one time period, we have:
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Equation 4.30 yields:
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From Eq. 4.26 and Eq. 4.31, the pressure gradient is expressed in term of averaged 
flow rate as:
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nhh n hξ

−∂ − +  = − − + − + − + ∂   
(4.32)
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The pressure difference across one wavelength (Δp) is computed using:

1

0

,
p

p dξ
ξ

∂
∆ =

∂∫
 

(4.33)

Using Eq. 4.23 and the transformations of Eq. 4.27, the stream function in the wave 

frame (Cauchy–Riemann equations, that is, U ψ
η

∂
=

∂
 and V ψ

ξ
∂

= −
∂

) is obtained as 
follows:

3 3 2
2 2

2

4
3

1 1 1 1 1
( , )

2 3 2 3 2

.
6 4

n
nhp e

h A e h h
n n nn

B
h

ηη η ηψ ξ η η η η η
ξ

η η η

−
−        ∂  = − − + + + − − −        ∂          

 
− − −   

(4.34)

4.3  Numerical Results and Discussion

Numerical and computational results of the mathematical model are discussed in 
this section. Mathematica is used to integrate the solutions due to the complicated 
definite integrals and plot (Figs. 4.1–4.7). The influences of the thermo-physical 
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Fig. 4.1  Nanoparticle fraction profiles ϕ( η) at φ = 0.5, x = 1.0 for: a Nt  = 1.0, NTC = 0.1, NCT = 0.1, 
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parameters characterizing double-diffusive convection in nano-fluids on the peri-
staltic flow patterns are also depicted.

The effects of Brownian motion parameter ( Nb), thermophoresis parameter ( Nt), 
Soret parameter ( NCT) and Dufour parameter ( NCT) on nanoparticle fraction profile 
( ( )Φ η ) are presented through the Figs. 4.1a–d. Nb arises in both the dimension-
less temperature and nanoparticle fraction conservation equations, i.e. Eqs. 4.12 
and 4.14 in the mixed derivative term, Nb(∂θ/∂η)(∂Φ/∂η) in the former, and the 
second order temperature derivative, 2 2( / )( / )t bN N θ η∂ ∂ , in the latter. Nb is a key 
parameter dictating the diffusion of nanoparticles. With an increase in Brownian 
motion parameter ( Nb), there is a strong reduction initially in nanoparticle fraction 
profile, Φ (η). This effect is shown in Fig. 4.1a. The nano-fluid is a two-phase fluid 
in nature and random movement of the suspended nanoparticles enhances energy 
exchange rates in the fluid but initially decreases nanoparticle concentrations in 
the flow regime. As dimensionless transverse coordinate, η, is increased there is 
change in the effect of the Brownian motion parameter-nanoparticle fraction (Φ) is 
distinctly increased with a divergence in profiles. Thermophoretic parameter ( Nt) 
effects are depicted in Fig. 4.1b. A slight increase in Φ (η) values is caused as Nt 
from 1 to 4, for some distance from the channel centre line ( η = 0); however, as η is 
further increased, there is a switch and thermophoresis is found to depress fraction 
ϕ values. As with the Brownian motion parameter, Nt also features in both energy 
and nanoparticle fraction conservation Eqs. 4.12 and 4.14, respectively. Although it 
features in the same term in the latter as the Nb parameter, in the former (Eq. 4.12) it 
appears in a separate term, consistent with the original formulation of Buongiornio 
[66] and Kuznetsov and Nield [74], viz 2( / ) .tN θ η∂ ∂  Hence, nanoparticle fraction 
diffusion is found to be initially assisted by thermophoresis but subsequently op-
posed by it. This pattern is also consistent with macroscopic convection flows (non-
nano-fluids). The influence of Soret parameter ( NCT) and Dufour parameter ( NTC) 
on nanoparticle fraction ( ϕ) are provided in Figs. 4.1c and d.

When heat and mass transfer occur simultaneously in a moving fluid, an en-
ergy flux can be generated not only by temperature gradients but by composition 
gradients also. The energy flux caused by a composition gradient is termed the 
Dufour or diffusion-thermo effect. On the other hand, mass fluxes can also be cre-
ated by temperature gradients and this embodies the Soret or thermal-diffusion ef-
fect. Such effects are significant when density differences exist in the flow regime. 
For example, when species are introduced at a surface in a fluid domain, with a 
different (lower) density than the surrounding fluid, both Soret (thermo-diffusion) 
and Dufour (diffuso-thermal) effects can become influential. Soret and Dufour ef-
fects are important for intermediate molecular weight fluids in coupled heat and 
mass transfer in fluid binary systems, often encountered in biophysical processes. 
NCT (Soret number) represents the effect of temperature gradients on mass (spe-
cies) diffusion. NTC (Dufour number) simulates the effect of concentration gradients 
on thermal energy flux in the peristaltic flow domain. These parameters arise in 
the energy and species conservation equations, Eqs. 4.12 and 4.13, in the terms 

2 2 2 2( / ) ( / ),TC CTN and Nγ η θ η∂ ∂ ∂ ∂  respectively.
However, they do not arise in the nanoparticle volume fraction (Eq. 4.14). As 

such both parameters will exert a minor role on ϕ  distributions. Inspection of 
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Fig. 4.1c shows that a small decrease is induced in ϕ by a strong increase in NCT 
from 0.1 to 3; subsequently there is, however, a marginal increase in ϕ. An almost 
identical response is sustained by the nanoparticle volume fraction profiles with an 
increase in the Dufour number ( NTC).

Figures 4.2a–d show the concentration profile ( ( )γ η ) for the effects of Brown-
ian motion parameter ( Nb), thermophoresis parameter ( Nt), Soret parameter ( NCT) 
and Dufour parameter ( NTC). With increasing Nb and Nt, species concentration val-
ues are significantly reduced. A much more potent response is, however, observed 
with a change in Soret ( NCT) and Dufour ( NTC) parameters. Species concentration 
is found to be very strongly reduced with increasing Soret number (Fig. 4.2c) for 
some distance from the channel centre; with further distance from the channel cen-
tre, as we approach the periphery of the channel, this trend is noticeably reversed 
and thermo-diffusion is observed to accentuate concentration, i.e. enhance diffusion 
of the species. Figure 4.2d also confirms that Dufour number exerts a much weaker 
effect on species diffusion than the Soret effect, a slight reduction in concentration 
values is caused, and there is no significant alteration in the effect of Dufour number 
with transverse distance.

Figures 4.3a–d illustrate the evolution of the temperature profile ( ( )θ η ) under the 
effects of Brownian motion parameter ( Nb), thermophoresis parameter ( Nt), Soret 
parameter ( NCT), and Dufour parameter ( NTC). A very different distribution of pro-
files is observed compared with the concentration profiles. Increasing Brownian 
motion parameter initially strongly elevates temperatures in the vicinity of the chan-
nel centreline; further away this effect is reversed. It is also apparent that with strong 
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Brownian motion ( Nb = 4.0) effects, temperature profile stabilizes and becomes ap-
proximately parallel, i.e. eventually becomes invariant with transverse distance; this 
effect is clearly visible in Fig. 4.3a. Parabolic trends are only retained at large η 
values for weak Brownian diffusion ( Nb = 1.0). A similar evolution in temperature 
profiles is computed for the influence of thermophoresis parameter, Nt, in Fig. 4.3b. 
With increasing Soret and Dufour numbers, the profiles for temperature are similar 
to those in Figs. 4.3a and b; however, they ascend more smoothly. The temperature 
is found to be enhanced both with Soret and Dufour numbers, initially; with further 
distance from the channel centre, both effects serve to reduce temperatures.

Figures 4.4a–g illustrate the influence of Brownian motion parameter ( Nb), 
thermophoresis parameter ( Nt), Soret number ( NCT) Dufour number ( NTC) thermal 
Grashof number ( GrT), concentration Grashof number ( GrC), and nanoparticle 
Grashof number ( GrF) on the axial velocity profile ( u( η)) across the channel semi-
width. Axial velocity, u, is generally negative for all Brownian motion parame-
ters throughout the channel half-space defined by 0 ≤ η ≤ 1; flow reversal that is 
strong backflow is therefore taking place. Maximum velocities are always located 
at the channel centre, decaying smoothly to zero at the periphery (channel wall). 
Figure 4.4a indicates that an increase in Brownian motion parameter, Nb,  decreases 
magnitudes of the axial velocity, i.e. opposes backflow u values, therefore, become 
more positive. The flow is, therefore, actually decelerated with Brownian motion. 
A substantially different response is computed for the effect of thermophoresis pa-
rameter in Fig. 4.4b. At low Nt value (= 1.0) negative axial velocity is observed; 
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however, as Nt is increased to 2 and then 3 and the maximum value of 4.0, ve-
locity becomes positive, i.e. backflow is completely eliminated across the channel 
half-space. The profiles also descend for Nt > 1, from a maximum at the channel 
centre to a minimum at the channel wall. The rate of descent is also enhanced with 
greater thermophoresis parameter. There is an order of magnitude difference also 
in the values of axial velocity between Figs. 4.4a and b; velocities are much large 
in Fig. 4.4b. With increasing Soret number, velocities are caused to become more 
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negative in Fig. 4.4c, i.e. flow deceleration is induced and backflow is accentu-
ated. The contrary response is computed for increasing Dufour number in Fig. 4.4d, 
where velocities are found to become less negative, i.e. flow reversal is inhibit-
ed. The velocity magnitudes in Fig. 4.4c are evidently much greater than those in 
Fig. 4.4d. Figure 4.4e shows the effect of thermal Grashof number ( GrT) on axial 
velocity distribution. This parameter arises in the momentum conservation equation 
(4.10), in the term, ( GrTθ). This parameter signifies the relative influence of thermal 
buoyancy force and viscous hydrodynamic force. For GrT < 1, the peristaltic regime 
is dominated by viscous forces and vice versa for GrT > 1. For the intermediate case 
of GrT = 1 both thermal buoyancy and viscous forces are of the same order of mag-
nitude, as described by Gebhart and others [96]. Velocity magnitudes are generally 
reduced with increasing thermal Grashof number. At low GrT velocities are nega-
tive, i.e. back flow exists. However, for GrT > 1, backflow is negated and a strong 
acceleration induced in the peristaltic axial flow. Figure 4.4f reveals that a similar 
response is induced by the concentration Grashof number, GrC however, there is 
still some minor backflow at GrC = 2; with larger concentration Grashof number as 
with thermal Grashof number, the backflow is completely eliminated and a strong 
acceleration achieved in the axial flow. GrC represents the ratio of species buoy-
ancy force to the viscous hydrodynamic force; it is the species diffusion analogy 
to thermal diffusion Grashof number. For the case where both forces are the same, 
i.e. GrC = 1, axial velocity magnitude is minimized. The same response is observed 
for thermal Grashof number. Figure 4.4g shows that increasing the nanoparticle 
Grashof number ( GrF) exacerbates the axial velocity back flow, i.e. increases nega-
tive values.

Figures 4.5a–g present the variation of pressure gradient ( / )p ξ∂ ∂  with axial co-
ordinate (ξ) under the influence of Brownian motion parameter ( Nb), thermophore-
sis parameter ( Nt), thermal Grashof number ( GrT), concentration Grashof number 
( GrC), nanoparticle Grashof number ( GrF). In all cases we have prescribed the wave 
amplitude and averaged volumetric flow rate as φ = 0.5, Q  = 0.5 respectively, which 
is characteristic of the actual physiological regimes as expounded in benchmark 
peristaltic studies by Shapiro and others [47]. In all profiles the strong periodic 
behaviour and fluctuations in pressure gradient caused by peristaltic motion are 
clearly visible. Effectively, Brownian motion is found to slightly enhance pressure 
gradient (Fig. 4.5a). A significantly greater accentuation in pressure gradient is 
generated with increasing thermophoresis parameter (Fig. 4.5b). Conversely, Soret 
number acts to strongly depress pressure gradient values, whereas there is a slight 
enhancement in them with increasing Dufour number. Thermal Grashof number is 
observed to depress pressure gradients, whereas the species (concentration) Grashof 
number and nanoparticle Grashof number distinctly enhance pressure gradients in 
the peristaltic flow regime in the channel. In all profiles the respective trends indi-
cated above are consistent across all axial coordinate values.

Figures 4.6a–g display the variation of pressure difference across one wave-
length (Δp) with averaged flow rate ( Q ) under the respective influences of Brown-
ian motion parameter ( Nb), thermophoresis parameter ( Nt), thermal Grashof number 
( GrT), concentration Grashof number ( GrC), nanoparticle Grashof number ( GrF). 
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Invariably linear distributions are observed. Three ranges of pumping are possible 
namely (a) Δp > 0, i.e. pumping region (b) Δp = 0 i.e. free pumping region, (c) Δp < 0, 
i.e. co-pumping region, and we have considered all three. Increasing Brownian 
motion parameter ( Nb) reduces pressure difference, an effect which is clearly of 
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 significance in nano-fluid drug-delivery systems. Conversely, increasing thermo-
phoretic parameter ( Nt) strongly increases the pressure difference. In both the cases 
this pattern is sustained for all values of averaged volume flow rate, Q . In other 
words, in nano-peristaltic pumps, a pressure difference drop or rise can be main-
tained with increasing Brownian diffusion effect or increasing thermophoretic effect 
at all operating flow rates. Figures 4.6c and d show that increasing Soret number 
strongly decreases the pressure difference, whereas increasing Dufour number acts 
to slightly increase it. Figures 4.6e–g demonstrate that increasing thermal Grashof 
number, pressure gradient is curtailed, whereas it is strongly elevated with increas-
ing species (concentration) Grashof number and nanoparticle Grashof number, for 
all flow rates. In all Figs. 4.6a–g, at higher volumetric flow rates pressure difference 
becomes negative.

Trapping is an inherent phenomenon of peristaltic motion in which an inter-
nally circulating bolus of fluid is formed by closed streamlines and this trapped 
bolus is pushed ahead along with the peristaltic wave. The effects of Brownian 
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motion parameter ( Nb), thermophoresis parameter ( Nt), thermal Grashof number 
( GrT), concentration Grashof number ( GrC), nanoparticle Grashof number ( GrF) on 
streamlines and trapping phenomenon are therefore also depicted in Figs. 4.7(a–i). 
Nine streamline distributions are illustrated. A single parameter has been varied for 
each pair. In all cases, amplitude ratio ( φ) is fixed at 0.5 and averaged volume flow 
rate, Q  constrained at 0.6. The streamlines on the centerline in the wave frame are 
found to compartmentalize under specific conditions in order to enclose a bolus of 
fluid particles circulating along closed streamlines. This phenomenon is known as 
trapping, which is a characteristic of peristaltic motion. Since this bolus appear to 
be trapped by the wave, the bolus moves with the same speed as that of the wave 
(celerity). Comparison of the appropriate figures shows that magnitude of trapped 
bolus clearly reduces with increasing the magnitude of different Grashof num-
bers. Brownian motion parameter decreasing acts to reduce the number of trapped 
boluses. With decreasing thermophoretic parameter, the magnitude of boluses is 
slightly enhanced. With decreasing thermal Grashof number, the bolus size is am-
plified. Increasing species Grashof number reduces the multiple bolus structure to 
a single bolus. Increasing species Grashof number, therefore, exerts a similar effect 
on streamlines and trapping to decreasing Brownian motion parameter (Figs. 7b 
and d). Nano-fluid characteristics, therefore, undeniably exert a significant influ-
ence on peristaltic flow patterns. Where numbers of boluses are unchanged, the 
magnitudes are clearly affected by nano-fluid dynamic characteristics. Conversely, 
there is very little influence detected for a change in Soret and Dufour parameters. 
Comparing Figs. 4.7b and 4.7h, where the Dufour parameter is increased from 1 to 
3, or Figs. 4.7b and 4.7i, where the Soret parameter is increased, the streamline pat-
terns are almost indistinguishable.

4.4  Summary

In this chapter we have briefly reviewed the challenges and potential of mathemati-
cal modelling biofluid mechanics. The fundamentals of peristaltic transport and 
nano-fluid dynamics have also been described qualitatively. A novel mathemati-
cal model has additionally been presented to simulate the influence of nano-fluid 
and thermo-diffusive/diffuso-thermal characteristics on peristaltic heat and mass 
transfer in a two-dimensional axisymmetric channel, as a simulation of nano-fluid 
peristaltic drug-delivery systems. The study has been motivated by applications in 
novel nano-fluid pharmacological delivery. Numerical computations have shown 
that:

a. Brownian and thermophoresis parameters exert a strong influence on nanopar-
ticle fraction profile, Φ( η) and temperature profile, θ( η).

b. Axial velocity is strongly affected by Soret and Dufour parameters as is the spe-
cies concentration distribution and temperature evolution through the channel.

c. Pressure difference is increased weakly with Brownian motion, whereas it is 
very strongly enhanced with increasing thermophoresis parameter.
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d. Increasing Soret number considerably reduces the pressure gradient values, 
whereas increasing Dufour number slightly elevates pressure difference.

e. Thermal Grashof number is observed to depress pressure gradients, whereas the 
species (concentration) Grashof number and nanoparticle Grashof number mark-
edly elevate pressure gradients in the peristaltic flow regime.

f. Streamline patterns illustrating the trapping of boluses are also found to be more 
strongly affected with Brownian and thermophoretic parameters and also all 
Grashof numbers (thermal, species, nanoparticle) than Soret and Dufour effects 
which exert almost a negligible influence on streamline profiles.
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