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Preface

This edited book on “Modeling and Simulation of Diffusive Processes: Methods 
and Applications” contains contributions from authors with a variety of academic 
backgrounds. It is an outgrowth of the International Conference on Simulation and 
Modeling of Diffusive Processes and Applications (ICMSDPA12) organized in 
Banaras Hindu University, India during October 9–12, 2012. There are contributors 
from outside ICMSDPA12 also to make the book more broad-based. This book ad-
dresses some of the issues in simulation modeling and simulation over a number of 
application areas. There are fifteen chapters in the book.

The first chapter is on diffusive processes and modeling: an introduction by 
Naveen Kumar and S. K. Basu. It deals briefly with a number of processes which 
are intimately connected with the diffusion processes, advection–diffusion equa-
tion (ADE) in different coordinate systems, mentioning different transformations 
generally used, different analytical and numerical methods. The effect of fractional 
order space derivative with skewness parameter on the mass transport has been 
explained through simulation using ADE for a simplified wound healing problem. 
Lastly, simulation study about the effect of ionic diffusion on the controlled release 
of nutrients from a coated spherical fertilizer granule is explained.

The second chapter on diffusion and transport of molecules in living cells by 
Ruchi Gaur, Lallan Mishra, and Susanta K. Sen Gupta deals with diffusion and dif-
ferent models of it, and relevance of different transport phenomena in living cells.

The third chapter on modeling diffusion and transport of suspended sediment in 
open channels, using two-phase flow theory by Sanjeev Kumar Jha and Fabián A. 
Bombardelli deals with a general framework of sediment transport in open channels 
as a two-phase flow, composed of mass and momentum equations for both phases 
(water and sediment). The authors discuss two levels of model complexity based 
on the nature of the terms involved in modeling: the complete two-fluid model 
(CTFM), and a partial two-fluid model (PTFM).

The fourth chapter on mathematical modeling of peristaltic transport of nano-
fluids by Dharmendra Tripathi and O. Anwar Bég reviews the challenges and poten-
tial of mathematical modeling in biofluid mechanics. The fundamentals of peristal-
tic transport and nanofluid dynamics have also been described qualitatively. A novel 
mathematical model has additionally been presented by the authors, to simulate 
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the influence of nanofluid and thermo-diffusive/diffuso-thermal characteristics on 
peristaltic heat and mass transfer in a two-dimensional axisymmetric channel for 
simulation of nanofluid peristaltic drug delivery systems.

The fifth chapter on numerical study on isotachophoretic separation of ionic 
samples in microfluidics by Partho P. Gopmandal and S. Bhattacharyya deals with 
a high resolution numerical algorithm to analyze two-dimensional isotachophoresis 
(ITP) of electrolytes of different mobility in a wide micro-channel based on a finite 
volume method over a staggered grid arrangement along with a higher-order up-
wind scheme. The model is based on equations for conservation of mass and charge 
and also electro-neutrality condition.

The sixth chapter on thermal characterization of non-homogeneous media by 
Helcio R. B. Orlande, Carolina P. Naveira-Cotta, Henrique Massard da Fonseca, 
Diego Knupp, Renato M. Cotta, and Olivier Fudym presents application of a Mar-
kov chain Monte Carlo (MCMC) method, within the Bayesian framework, for the 
identification of non-homogeneities or inclusions in a medium through the solution 
of an inverse heat conduction problem. They present two different approaches in 
conjunction with the MCMC method. A nodal approach which locally linearizes 
the inverse problem by using temperature measurements for the computation of 
the sensitivity matrix, and an expansion of unknown spatially-dependent thermo-
physical properties in terms of eigen functions, which is used in conjunction with 
the Generalized Integral Transform Technique (GITT).

The seventh chapter on scale dependent porous dispersion resulting from the 
cumulative effects of velocity fluctuations by Wynand S. Verwoerd deals with semi-
analytical stochastic model of the dispersion effects of macroscopic drift velocity 
fluctuations leading to significant insights like enhancement of intrinsic dispersion 
by a fluctuation, beyond the value associated with flow at the mean drift velocity. 
This enhancement manifests as a factor multiplying the spatial variance of the sol-
ute plume, so that the effects of a sequence of fluctuations accumulate as a product, 
implying an exponential rise of dispersion with the distance travelled as a solute 
plume traverses the fluctuation sequence. This behavior is tempered by an anneal-
ing effect downstream of a velocity step, which has a length scale related to plume 
extension.

The eighth chapter on modeling nitrogen fate and transport at the sediment-water 
interfaceby M. M. Hantush, and L. Kalin deals with analytical models describing 
transport and fate phenomena at media interfaces. The first problem discussed is 
modeling of nitrogen cycling at the sediment-water interface at the bottom of lakes. 
The second is modeling atmospheric input of oxygen into under-saturated lakes. 
The third model describes polychlorinated biphenyl redistribution at the sediment-
water interface.

The ninth chapter on modeling groundwater flow in unconfined aquifers by S. N. 
Rai deals with groundwater flow equations to describe two dimensional groundwa-
ter flows in inhomogeneous anisotropic unconfined aquifer, inhomogeneous, iso-
tropic unconfined aquifer, in leaky unconfined aquifer, in homogeneous isotropic 
sloping aquifer in response to intermittently applied time varying recharge and/or 
pumping from multiple basins of rectangular shapes and wells, respectively along 
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with the initial and boundary conditions and methods of their solutions. The govern-
ing flow equations are used for the development of analytical/numerical models to 
predict water table fluctuations in the flow system under consideration.

The tenth chapter on two-dimensional solute transport from a varying pulse type 
point source by Premlata Singh, Sanjay Kumar Yadav, and Alexander V. Perig deals 
with solute transport originating from a source through a heterogeneous horizontal 
medium assuming temporal dependence of velocity and dispersivity.

The eleventh chapter on the problems of futile cycles in metabolic flux model-
ing: flux space characterization and practical approaches to its solution by Wynand 
S. Verwoerd and Longfei Mao deals with metabolic capabilities and behaviours 
of an organism by development of flux models of genome scale with flux balance 
analysis (FBA). For elimination of futile cycles in the FBA results, the authors 
introduce a simple notion to cut off the circulating flux layer while obtaining the 
same objective value. To comprehensively elucidate the alternate optimal solutions 
without the interference of futile values, they present flux variability analysis with 
target flux minimization, a combined pipeline approach based on FBA and flux 
variability analysis.

The twelfth chapter on contaminant concentration prediction along unsteady 
groundwater flow by Mritunjay Kumar Singh and Priyanka Kumari deals with the 
contaminant concentration pattern of one-dimensional advection-dispersion equa-
tion along a homogeneous semi-infinite aquifer with pulse type boundary condition 
for different forms of velocity expressions.

The thirteenth chapter on wavelet-multigrid method for solving modified Reyn-
olds equation modeling synovial fluid flow in a normal human knee joint by S. C. 
Salimath deals with modified Reynolds equation, incorporating surface roughness 
and poroelastic nature of articular cartilage enabling bio-medical engineers in se-
lecting suitable design parameters, giving deeper understanding of the lubrication 
of knee. The results obtained could guide the new material experimentation for knee 
replacement with mechanical characteristics.

The fourteenth chapter on a basic concept on modeling soil organic carbon by 
Nimai Senapati, Subhadip Ghosh, Heiko Daniel, and Amitava Rakshit discusses 
SOC models as important means of improving our understanding of C turnover pro-
cess as well as underlying C stabilization mechanisms in soil. The SOC models of-
ten simulate the dynamics of different macro- and micro-nutrients along with SOC 
dynamics inadequately. They also often do not account soil pH and do not simulate 
the whole process of soil aggregation and the dynamics of soil biota explicitly. In-
clusion of all these process/factors/parameters in the SOC models could represent 
the complex real life systems in a better way and might improve the overall model 
performance.

The fifteenth chapter on crop growth simulation modeling by Avnish Kumar 
Bhatia deals with crop growth models emphasizing crop physiology, weather pa-
rameters, soil parameters, and management practices to simulate growth and yield 
of crops. Crop simulation models compute growth values on a day to day basis using 
the relations among values of crop growth and weather parameters. A generic model 
can be developed using common crop physiological processes. Validating and fine 
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tuning of crop model is an important step before using it for actual prediction tasks. 
The author opines that future crop models should rely on improving the mechanism 
of interacting with environment and society.

The editors have attempted, through these chapters from different contributors, 
to put in one place wide ranging areas where simulation-modeling techniques are 
being used for better understanding of the underlying processes. The editors feel 
that this volume would be quite useful for researchers and advance graduate stu-
dents from multiple disciplines where simulation-modeling is of major interest.

S. K. Basu
Banaras Hindu University 	 Naveen Kumar
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Chapter 1
Diffusive Processes and Modelling: 
An Introduction

Naveen Kumar and S. K. Basu

S. K. Basu, Naveen Kumar (eds.), Modelling and Simulation of Diffusive Processes, 
Simulation Foundations, Methods and Applications, DOI 10.1007/978-3-319-05657-9_1, 
© Springer International Publishing Switzerland 2014

N. Kumar ()
Department of Mathematics, Banaras Hindu University, 221005 Varanasi, India
e-mail: navkumar50s@gmail.com

S. K. Basu
Department of Computer Science, Banaras Hindu University, 221005 Varanasi, India
e-mail: swapankb@gmail.com

1.1 � Introduction

Diffusion is a very common natural process occurring everywhere in physical, 
chemical, biological, geological systems. Considering the centrality of the diffusive 
process, understanding the effects of diffusion on different systems are of outmost 
importance. Assessment and management control of the degradation of our environ-
ment due to solute mass transport from a variety of sources of pollutants is a grow-
ing discipline. Mathematical modelling and computer simulation of these processes 
is nowadays one of the important approaches in quantitative analysis of different 
aspects of the discipline. One of the important analytical tools in this regard is the 
use of the advection–diffusion equation.

When a certain mass of solute is introduced in a medium, experience shows 
that the solute particles gradually spreads and occupies an increasing portion of the 
domain. If the medium is advective then this spreading is faster. This mixing and 
spreading is known as diffusive phenomenon (if there is no flow in the domain) or 
advective–diffusive phenomenon in the presence of advection. When a blob of ink 
is dropped in a glass of water, the water becomes coloured eventually; spreading of 
gas from the leakage point in the direction of wind, these are simple examples of 
diffusive and advective–diffusive processes, respectively.

Pollution can be classified on the basis of the medium in which it is occurring, 
such as air pollution, soil pollution, surface water pollution, and groundwater pollu-
tion, etc. Its source may be natural or anthropogenic. There are varieties of sources 
of pollution due to human activities [1–4]. One type of the source of these pollu-
tions is a point source. Stationary point sources include volcanoes, factories, elec-
tric power plants, mineral smelters, petroleum refineries, and different small scale 
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industries; while mobile point sources include all sorts of transport vehicles moving 
on road, rail, or in the air. A point source is a specific site in a medium (air, water, 
or soil) where the discharge of pollutant’s solute particles in the form of effluents or 
particulate matters from such a source, enters the environment, and is transported 
away from the source due to diffusion and advection.

Groundwater pollution occurs due to infiltration of wastes from garbage disposal 
sites, septic tanks, mines, discharge from surface water bodies polluted due to in-
dustrial and municipal wastes [5–6]. Medium of advective–diffusive transport may 
be porous (soil field, aquifer, oil reservoir) or open medium (air, surface water bod-
ies). In the real cases, medium is seldom homogeneous. Instead, it is heterogeneous. 
In the former case, the transport properties (porosity in porous medium), hydraulic 
conductivity, permeability remain uniform with position. In the latter case, these 
become position dependent or spatially dependent. Similarly, if these do not depend 
upon direction, the medium is isotropic, otherwise the medium is anisotropic. The 
source of advective–diffusive transport may be a point source (for example, garbage 
disposal sites, mines, etc.), or line source (for example, interface of sea water in 
aquifer), or surface source (for example, along agriculture field with high doses of 
chemical fertilizers) [7].

A point source may be of continuous type or pulse type. In either case, the point 
source may be uniform or of varying nature. In the presence of the source of pol-
lution, the input concentration may be uniform or of increasing nature. As soon as 
the source of pollution is eliminated, the input concentration becomes zero or starts 
decreasing. Solution of a dispersion problem for a pulse type point source is use-
ful in predicting the rehabilitation time period of a polluted domain once its source 
is eliminated. Smokes coming out of a chimney, wastes from a drainage system 
reaching a particular location in rivers, lakes, etc. are examples of uniform pulse-
type point sources. As soon as the source is eliminated, the input becomes zero. 
Infiltration from surface point sources reaches groundwater level or oil reservoirs, 
degrading their quality (an example of varying pulse-type point source). As soon as 
the source is eliminated, the input starts decreasing, instead of becoming zero. The 
pollutant’s solute transport from a source along the flow field through a medium of 
air or soil or water is described by a partial differential equation of parabolic type 
derived on the principle of conservation of mass, and is known as the advection–dif-
fusion equation, also written as ADE in abbreviated form [8–11].

This chapter discusses various diffusive processes, develops the ADE equation 
and illustrates the use of this equation with fractional derivatives and skewness 
parameter for wound healing, and ionic diffusion of nitrogen phosphorus potassium 
(NPK) release from coated fertilizer granules.

1.2 � Diffusive Processes

There are a number of processes which are intimately connected with the diffu-
sion processes. These are Brownian motion, chemotaxis, osmosis, random walk. 
We briefly describe these processes in this section.
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1.2.1 � Brownian Motion

In the early 1800s, Robert Brown a botanist, studied pollen samples with a mi-
croscope and noted that the pollen grains exhibited movement. The phenomenon 
recorded by Brown is known as the Brownian motion. In essence, all atoms, ions, 
and molecules are in constant random motion, even those within a solid. The 
molecular motion in solids is not very much; the molecules simply vibrate in 
place. This movement is due to the collision of invisible water molecules with 
those particles. For example, a sphere of 1 μm in diameter in air is subjected to 
1016 collisions per second. The distance of the particle from its initial position in-
creases with time, although at any given moment the displacement may be either 
forward or backward with equal probability. This result was derived by Einstein 
in 1906. The diffusion coefficient ( D) for a spherical particle in a liquid is related 
to its root mean squared displacement ( xrms) from the initial position at time t by 
x Dtrms = 2 . Suspended particles undergo Brownian motion and so these particles 
tend to move from regions of high concentration to ones with low concentration 
(diffusion) and this makes the concentration of suspended particles uniform over 
a long time.

1.2.2 � Diffusion

Diffusion is the passage of particles from a region of higher concentration to a 
region of lower concentration. Unless physically blocked, diffusion will always 
occur. More technically, diffusion can be defined by chemical potential. Chemi-
cal potential is the measure of free energy available to do work to move a mole of 
particles from one location to another. Another way of stating diffusion is molecu-
lar movement from regions of higher chemical potential to areas of less chemical 
potential.

A continuous time stochastic process with (almost surely) continuous sample 
paths having the Markovian property is called diffusion. The simplest and most 
fundamental diffusion process is Brownian motion B( t) (which is sometimes called 
the Wiener process W( t)). B( t) is Brownian motion if it is a diffusion process satisfy-
ing (i) B( ) ( ),0 0=  (ii) expected value of variance B t( ) ,= 0  variance 2( ) ,B t tσ= ×   
(iii) B( t) has stationary, independent increments.

1.2.3 � Chemotaxis

Chemotaxis is the process where cells, bacteria, and other single-cell or multicel-
lular organisms direct their movements according to certain chemicals in their en-
vironment. This is important for bacteria to find food by moving towards the high-
est concentration of food or to go away from harmful molecules. In multicellular 
organisms, chemotaxis is crucial for early and subsequent phases of development as 
well as in normal function. Leukocytes in blood move towards a region of bacterial 
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infection. The movement is up a chemical gradient caused by infection. There are 
numerous examples in biology for this chemotactic movement. In diffusion, the 
movement is down a concentration gradient, while in chemotaxis the movement is 
up a concentration gradient.

1.2.4 � Osmosis

Osmosis is the movement of water molecules from a region of higher water poten-
tial to a region of lower water potential through a semipermeable membrane. Semi-
permeable membranes allow the passage of some materials but block the passage 
of others. Water potential is a measure of chemical potential of water molecules. 
Pure water under atmospheric pressure has potential zero. When solute is added 
to water, its potential becomes negative. The direction of water flow is then from 
greater water potential to less water potential, that is, from pure water side to the 
side with solutes.

Biological membranes in many cases are semipermeable allowing passage of 
some molecules/ions and blocking passage of others. Transport of molecules/ions 
across the membrane is controlled by many factors such as particle size (smaller-
sized molecules/ions have greater chance of crossing the membrane), concentration 
of molecules/ions (the more the concentration, the greater the chance), tempera-
ture (higher temperature gives higher energy to the molecules/ions for crossing the 
membrane), electrical charge, pressure on the particles.

The osmotic pressure ascribed to the suspended particles is given by 
pV RTz V z= , / ,where  is sufficiently large, z is gram molecule of a nonelectrolyte 
dissolved in a volume V  at temperature T  [12]. Suspended particles undergo ir-
regular movement on account of the molecular movement of the liquid according 
to molecular–kinetic theory of heat. The solvent exerts pressure on the suspended 
particles as given by:

p
RT

V

n

N

RT

V
C= = ,

�
(1.1)

where n  is the number of suspended particles present in volume V ,  N  is the 
actual number of molecules contained in a gram molecule, and C  is the concen-
tration. Let the suspended particles of spherical shape with average radius a  be 
in a liquid with viscosity , and ,Dµ  denotes the coefficient of diffusion of the 
suspended particles. As a result of diffusion, − ∂ ∂D C x( / )  particles pass across 
unit area in unit time, where D satisfies the diffusion equation. In dynamic equi-
librium D is given by:

1
.

6

RT
D

N aπ µ
=

�
(1.2)

N. Kumar and S. K. Basu
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1.2.5 � Random Walk

A drunken person comes out of a bar and takes discrete steps of equal lengths on the 
street in front of the bar. The person may take a step towards left or right randomly 
with equal probability. Decision for moving left or right is taken independently. The 
total number of different paths that a drunken person can take, given the condition 
that the first return be at the 2k th step is:

TP =
−
−







2 2 2

1k

k

k
.

�
(1.3)

The probability that the drunken man reaches the bar for the first time after 2k th  
steps is TP/ 22k . Given that the drunken man is at the bar at step 2k,  the probability 
that this is his first return visit is 1 2 1/ ( ).k −

Diffusion processes are intimately related to random walks. Let us consider the 
random walk on R (a set of real numbers). Let the initial position of a particle be 
x0 0= .  Tossing a fair coin, if we get heads then we set x xi i+ = −1 1 ,  otherwise we 
set x xi i+ = +1 1 .  This can be seen to be associated with a partial difference equa-
tion satisfied by the distributions of positions that the random walk passes at suc-
cessive time steps:

Prob[ Prob[ Prob[

Prob[

x k x k x k

x k

i i i

i

= − = = = −

+ = + −

− −

−

] ] { ]

]

1 1

1

1

2
1

1 2 ×× =−Prob[x ki 1 ]}.

This is a discrete diffusion process. The heat or diffusion equation

∂
∂

=
∂

∂
p x

t

p x

x
t t( ) ( )

( )

2

22�
(1.4)

causes suitable functions from R to R to evolve as a function of time [13]. The op-
erator ∂ ∂2 22/ ( )x  is the infinitesimal generator of one-dimensional Brownian mo-
tion. If p x0 ( )  is a density function, the distribution p xt ( )  obtained by solving the 
heat equation is also the probability density of the Brownian motion witnessed at 
time t, if its position at zero time was chosen according to the density p x0 ( ).  Thus, 
Brownian motions are related to continuous time diffusions.

1.3 � Advection–Diffusion Equation (ADE)

Let us consider a small cubical element of volume dxdydz of sides, 
PQ dx PS dy dz= = =, , ,PA  surrounding a position P x y z( , , )  in a Cartesian 
three-dimensional frame of reference as shown in Fig. 1.1 in a moving fluid contain-
ing solute. Let the concentration of solute at this position be denoted by c x y z( , , ). 

1  Diffusive Processes and Modelling: An Introduction�
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Solute mass entering the elemental volume through the face PADS is J dydz Jx x, ,  
is the flux along the x-axis. Solute mass leaving the elemental volume through the 
face QBCR is J dydzx dx( ) .+  Net gain inside the elemental volume along the x-axis is:

dydz J J dydz J J dxJ dxdydz J xx x dx x x x x( ) [ ( )] ( / ).( )− = − + +… = −∂ ∂+
′

In the Taylor series expansion, the infinite series is truncated after the 
first order derivative term. Similarly, that along the y - and z -axes are 
dxdydz J y dxdydz J zy z( / ) ( / ),−∂ ∂ −∂ ∂, and  respectively. Total gain inside the el-
emental volume is:

−
∂
∂

+
∂
∂

+
∂
∂







dxdydz

J

x

J

y

J

z
x y z .

By Fick’s first law of diffusion, the flux Jx
 is proportional to the concentration 

gradient, J c xx ∝ − ∂ ∂( / ),  where negative sign occurs because the positive x -axis 
direction is from higher concentration to lower concentration. Similarly, we have in 
the other two directions, J c y J c zy z∝ − ∂ ∂ ∝ − ∂ ∂( / ) ( / ),and  respectively. The dif-
fusive current densities J J J Jdiff x y z( , , ) and convective current density Jconv through 
the elemental volume are given as follows:

J D
c

x
J D

c

y
J D

c

z
J vcx x y y z z conv= −

∂
∂

= −
∂
∂

= −
∂
∂

=; ; ,.and
�

(1.5)

respectively, where Dx ,  Dy ,  Dz
 are the proportionality constants, known as dif-

fusion or dispersion parameters along the x -, y -, and z -axes, respectively and 

Fig. 1.1   Mass gain inside an elementary volume
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v u v w( , , )  is the flow velocity. Total current density through the elemental volume 
is given by:

J J Jdiff conv= + .
�

(1.6)

According to conservation of mass, net rate of change of solute mass inside the 
elemental volume is equal to the net gain in the mass inside the volume, that is:

dxdydz
C

t
dxdydz

J

x

J

y

J

z
x y z∂

∂
= −

∂
∂

+
∂
∂

+
∂
∂







�
(1.7)

or
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=
C

t

J

x

J

y

J

z
x y z 0.

�
(1.8)

Using the appropriate expressions from above, we have:

�
(1.9)

Equation 1.9 is known as the ADE in general form in three dimensions. The coef-
ficients D D Dx y z, , ,and  may be the function of position, time as well as concen-
tration. If it is not so, then these components are called dispersion coefficients. In 
case any one of the six coefficients is function of independent variables, the partial 
differential equation (Eq. 1.9) remains linear. In case any one of the coefficients de-
pends upon the dependent variable, c,  the partial differential equation is nonlinear. 
If the velocity depends upon time at a particular position, it is said to be unsteady 
or temporally dependent. If it varies with position at a particular time, the velocity 
is said to be nonuniform or spatially dependent. If the medium is porous, velocity 
vector v  in the ADE satisfies Darcy’s law. If the medium is not porous, it satisfies 
the laminar conditions of flow. In case all the coefficients in Eq. 1.9 are constants, 
the ADE becomes:

∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

−
∂
∂

−
∂
∂

−
∂
∂

c

t
D

c

x
D

c

y
D

c

z
u

c

x
v

c

y
w

c

zx y z

2

2

2

2

2

2 .
�

(1.10)

The advection–diffusion Eq.  1.9 in one dimension along the x -axis, in general 
form, may be written as:

0 1 0 2 1 2

1
( , ) ( , ) ,e

e

nc S c
D f x t u f x t c c

t n t x x
µ µ−∂ ∂ ∂ ∂ + = − − +  ∂ ∂ ∂ ∂�

(1.11)

where c  is the solute concentration at a position x  at time t,  in liquid/air phase 
of the medium, S  is the adsorbed concentration on the solid matrix of the porous 
medium, D0  represents the solute diffusivity parameter, u0  is the velocity of the 

∂
∂

=
∂
∂

∂
∂







+
∂
∂

∂
∂







+
∂
∂

∂
∂







−
∂
∂

c

t x
D

c

x y
D

c

y z
D

c

z x
ux y z ( cc

y
vc

z
wc) ( ) ( ).−

∂
∂

−
∂
∂
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medium transporting the solute particles, ne
 is the porosity of the medium. The first 

and second terms on the left hand side represent the rate of change in concentration 
in the elementary volume of the liquid and solid phases, respectively, and the terms 
on the right hand side represent transport due to diffusion, that due to advection, 
decay in concentration of first order, and growth in concentration in liquid phase 
of zero order, respectively. The two concentrations c  and S  may be related by an 
isotherm:

S k c k pp= + =1 2 1, , represents a linear isotherm.� (1.12)

The partial differential equation (1.11) is of parabolic type [14]. To solve it analyti-
cally or numerically three conditions are required. The partial derivative with re-
spect to the time variable is of first order, so we need only one condition in the time 
domain, which is defined at only one point of the time domain. Hence, it is called an 
initial condition. It may be of homogeneous or nonhomogeneous types. The condi-
tion is defined usually at t = 0 . If it is of homogeneous type, it means the domain is 
initially solute free; otherwise the domain is not solute free. The partial differential 
Eq. 1.11 has second-order derivative in space variable, so two conditions in the x −
domain are needed to get the particular solution. Both the conditions are usually 
defined at two different points, hence are termed as the boundary conditions. The 
first condition is usually introduced at the origin, x = 0  of the domain. This condi-
tion is called input condition. It is of first type (solution type) and of inhomogeneous 
nature in case the input is of uniform nature. The input condition may be of continu-
ous nature or of pulse type. It is of the third type (mixed type) in case the input is of 
varying nature. In the uniform pulse-type input, the input concentration at the origin 
of the domain is considered uniform up to certain time period, beyond which it is 
assumed zero. It may also happen that the source of the input remains uniform up to 
certain time and after its elimination forever, the input concentration becomes zero. 
Such situations occur in the case of pollution sources in air and surface water bod-
ies. The smoke coming out of a chimney may be uniform up to certain time, but as 
soon as the source of the smoke stops working, the input becomes zero. It may also 
happen that the input increases in a certain time domain due to a variety of reasons 
and once the source is eliminated, the input starts decreasing instead of becoming 
zero at once. This type of input source may occur in groundwater reservoirs, whose 
source of pollution is on the earth’s surface and the pollutants infiltrate through the 
soil to reach the groundwater. This situation may be described by varying pulse-
type input. The second boundary condition is introduced at the other end of the 
domain. It may be of the first, second (flux type), or of the third type.

The term ‘free-boundary value problem’ is commonly used when the boundary is 
stationary. Moving boundaries, on the other hand, are associated with time-depen-
dent problems and the position of the boundary has to be determined as a function 
of time and space. Moving boundary problems are often called Stefan problems, 
with reference to the early work of J. Stefan who, around 1890, was interested in 
the melting of the polar ice cap [15]. Alloy solidification problems differ from the 
classical Stefan problems in that the melting temperature is not known in advance; 
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it depends on the composition of the alloy. Typically, an alloy is considered to com-
prise a pure substance containing small concentrations of one or more impurities. 
The solidification of an alloy calls for a simultaneous study of the processes of the 
heat flow and the diffusion of impurities.

1.3.1 � Transformation Equations

To solve the ADE with constant coefficients, some transformations are used. Mov-
ing coordinate transformation equations

X x ut T t= − =,� (1.13)

reduce the one-dimensional advection–diffusion equation

∂
∂

=
∂
∂

−
∂
∂

c

t
D

c

x
u

c

xx

2

2
�

(1.14)

into the diffusion equation

∂
∂

=
∂
∂

K

T
D

K

Xx

2

2 .
�

(1.15)

where K X T( , )  is the new dependent variable in the new space and time variables. 
The same diffusion equation in the same independent variables may also be ob-
tained by applying another transformation

c x t K x t
ux

D

u t

D
( , ) ( , ) exp ,= −





2 4

2

�
(1.16)

on the ADE (Eq.  1.14). A transformation X x tλ= −  (similar to that given in 
Eq. 1.13) reduces the ADE (Eq. 1.14) into an ordinary differential equation [16]

2

2 ( ) 0.x

d c dc
D u

dXdX
λ− − =

�
(1.17)

A transformation known as similarity transformation

X
x

t
=

�
(1.18)

reduces the diffusion equation (Eq. 1.15) into an ordinary differential equation

D
d K

dX
X

dK

dXx

2

2 0+ =
�

(1.19)
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for D Dx y= , the two-dimensional diffusion equation in Cartesian system of coor-
dinates

∂
∂

=
∂
∂

+
∂
∂







c

t
D

c

x

c

y

2

2

2

2

�
(1.20)

reduces into the radially symmetric polar system

∂
∂

=
∂
∂

+
∂
∂







c

t
D

c

r r

c

r

2

2

1

�
(1.21)

by using the transformation x y r2 2 2+ = . Similarly, a transformation 
x y z r2 2 2 2+ + =  reduces the three-dimensional diffusion equation

∂
∂

=
∂
∂

+
∂
∂

+
∂
∂







c

t
D

c

x

c

y

c

z

2

2

2

2

2

2

�
(1.22)

into radially symmetric diffusion equation in spherical system of coordinates

∂
∂

=
∂
∂

+
∂
∂







c

t
D

c

r r

c

r

2

2

2

�
(1.23)

A new independent variable X  is introduced, using an operator:

∂
∂

=
∂
∂

−
X

f x t
x

f x t1 2( , ) ( , ).
�

(1.24)

Operating it on a dependent variable ,φ  we get a linear first order partial differential 
equation as:

1 2( , ) ( , ) .f x t f x t
x X

φ φ φ∂ ∂
− =

∂ ∂�
(1.25)

It is equivalent to a system of three ordinary differential equations:

1 2

.
( , ) 1 ( , )

dx dX d

f x t f x t

φ
= =

−�
(1.26)

One solution of it is:

X
dx

f x t

dX

dx f x t
= − = −∫

1 1

1

( , ) ( , )
.or

�
(1.27)

Introduction of this transformation with a suitable form of f x t1( , )  helps to reduce 
the variable coefficients of ADE (Eq. 1.3) into constant coefficients; hence enables 
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us to use the Laplace integral transformation technique (LITT), which is the sim-
plest and most useful among the analytical methods being used. The transformation 
may be modified according to the need, for example, negative sign may be omitted 
[17–18].

In another diffusive process, known as chemotaxis in which the mass movement 
is from lower concentration towards higher concentration, the flux components in 
Eq. 1.5 will be positive, and may be referred to as chemotactic flux. Hence, the 
mass conservation Eq. 1.15, in the presence of both diffusion and chemotaxis, may 
be derived as:

2 2

2 2 ,x x

c c c
D

t x x
ρ∂ ∂ ∂

= −
∂ ∂ ∂� (1.28)

where the dependent variable c  and the coefficient xρ  may be termed as the cell 
density and chemotactic coefficient, respectively.

1.3.2 � Dispersion Theories

There are three theories which relate the dispersivity and velocity parameters oc-
curring as the two coefficients in the one-dimensional ADE (Eq. 1.11), mostly ap-
plicable in porous medium. These are as follows:

i.	 Ebach and White [19], Bear [8] in their one-dimensional analysis suggested that 
D is proportional to u.

ii.	 Taylor [20] in his one-dimensional analysis obtained D proportional to u2 . 
Scheidegger [21] summarized his analysis on the two possible relationships 
between D  and u  according to the role played by molecular diffusion: (a) 

2 ,D uα≈  where ,α  a constant of the porous medium alone (dynamic disper-
sivity), is derived by a dynamic procedure applicable if there is enough time 
in each flow channel for appreciable mixing to take place by molecular trans-
verse diffusion; (b) ,D uβ≈  where ,β  another constant of the porous medium 
(geometric dispersivity), is derived by a geometric procedure applicable where 
there is no appreciable molecular transverse diffusion from one streamline into 
another. Thus, in all the models in which the combined effect of a velocity distri-
bution across a channel and transverse molecular diffusion are considered [20], 
the coefficient of dispersion is proportional to u2 .  Disregarding molecular dif-
fusion for the situation where only mean motion in a channel is considered and 
mixing occurs at junctions connecting different channels, one obtains D u≈ . 
Later, Freeze and Cherry [22] modified these dispersion theories and considered 
dispersion parameter proportional to the velocity raised to a power n, where n 
ranges between 1 and 2.

iii.	 According to Matheron and de-Marsily [23], some large subsurface formations 
exhibit variable dispersivity properties described by a variable D as a function 
of position or time variables, while the flow domain remains uniform. Such 
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variations may be caused, for example, by multiple length scales in these for-
mations. Such formations are often modelled by a scale-dependent dispersion 
coefficient in the diffusive flux term in the transport equation. This theory was 
fully supported in the later works [23–26].

1.3.3 � Why Modelling?

The idea of simulating real system or process on a computer rapidly spread among 
researchers since 1960s. It is accepted as one of the powerful tools for understand-
ing processes and systems for predicting functional or operative conditions. The 
standard approach is numerically solving a mathematical model that governs a cho-
sen process or system. Generally, the analytical solution is not known or difficult 
to reach for such situations. Solving mathematical models strongly depends on the 
used computational techniques and resources.

Shannon defined model as a representation of an object, a system, or an idea in 
some form other than that of the entity itself. We generally distinguish between two 
types of models: physical such as scale models, prototype plants, etc., and math-
ematical models such as partial differential equations (PDE), queuing models, etc. 
Simulation of a system is the operation of a model, which is a representation of 
that system. The model is amenable to manipulation which would be impossible, 
too expensive, or too impractical to perform on the system which it portrays. The 
operation of the model can be studied, and, from this, properties concerning the be-
haviour of the actual system can be inferred. Simulation is imitation of the operation 
of a real-world process or system over time. It generates an artificial history of a 
system; based on the observation of that artificial history, inferences concerning the 
operating characteristics of the real system can be drawn. A simulation can be only 
as good as the simulation model is. A simulation model makes a set of assumptions 
concerning the operation of the system and is expressed as mathematical, logical, or 
symbolic expressions between the entities (objects of interest) of the system. From 
the simulation, data are collected as if a real system was being observed. There are 
many applications such as designing and analysing manufacturing systems, deter-
mining ordering policies for an inventory system, designing communications sys-
tems and message protocols, drug design, analysing financial systems, and many 
more.

1.3.4 � Review of Modelling Efforts in Diffusive Processes

Pollutants originating from a variety of natural and anthropogenic sources (volcano, 
industries, factories, refineries, sewage system, garbage disposal sites, mines, etc.) 
are major causes of degradation of the environment, air, surface water, soil and 
groundwater. Mathematical modellers use the ADE to describe the concentration 
levels at different positions and time, away from its source, through its analytical 
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and numerical solutions. It is possible to solve this equation analytically only in 
some particular cases. In a more general situation, numerical techniques are re-
quired. A number of analytical methods are reviewed in [27]. Most of the analyti-
cal solutions for advective–diffusive transport problems in ideal conditions with 
growth and decay terms, subject to various initial and boundary conditions in semi-
infinite or finite media have been compiled in [28–30].

The mechanisms of solute transport and reaction have been studied for many 
years, and a wide variety of numerical techniques have been developed and success-
fully applied in many settings. Most of these studies are based on the application 
of the advection–dispersion–reaction equation (ADRE). Many researchers, recog-
nizing the importance of appropriately treating the hyperbolic part of the ADRE, 
have utilized various types of characteristic-based solution techniques that do not 
suffer from nonphysical behaviour such as oscillations at the sharp fronts [31–34]. 
The two-dimensional multispecies reactive transport in saturated and unsaturated 
porous media was simulated using Eulerian–Lagrangian localized adjoint methods 
(ELLAM) [35]. Its applicability and efficiency were assessed by comparing the 
results with those obtained using a numerical model based on the combination of 
discontinuous Galerkin and multipoint flux approximation methods.

Following the theories in [20–22] relating D  and u  in one-dimensional ADE, 
the number of mass transport studies has increased considerably. Many such mod-
els concern homogeneous media, but in reality the ability of the mass to permeate 
though the medium of air, soil or groundwater varies with position, which is re-
ferred to as heterogeneity. Early efforts to describe heterogeneity were achieved by 
making use of stratification and defining porosity–distance relationship [36–40]. In 
the former situation, the larger number of layers makes it difficult to get the desired 
analytical solution. In the latter situation, a numerical method is the only option to 
deal with the dispersion problems with most of the porosity–distance relationships. 
Later scale-dependent dispersion has been attributed to heterogeneity. According to 
the theory [41], some large subsurface heterogeneous formations exhibit variable 
dispersivity as a function of position or time variable. Based on such observations, 
analytical solutions to solute transport problems in a semi-infinite medium were ob-
tained [42–45], where the dispersion parameter depends on distance and increases 
up a limited value. In the third problem, first order reaction coefficient was con-
sidered space dependent in the one-dimensional transport of solute through soil. 
Later an integral expression for a similar problem without using the modified Bes-
sel functions was proposed [45]. Other authors have used simplified one- and two-
dimensional models that incorporate variable coefficients to some extent [46–49].

A numerical ADE model with a hyperbolic asymptotic distance-dependent func-
tion (HAD) for the dispersion coefficient was proposed and used [50–51]. In a latter 
study, HAD is adopted and incorporated into the general ADE for describing scale-
dependent solute transport in porous media. The problem is solved analytically by 
applying extended power series method coupled with Laplace transform. The quad-
rupole method was implemented in order to simulate the effects of heterogeneities 
on one-dimensional ADE of a passive solute in porous media [52]. Exact solu-
tions of the linear advection–diffusion transport equation with constant and variable 
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coefficients with different forms for both, transient and steady-state regimes was 
presented by Guerrero and colleagues [27] by using the generalized integral trans-
form technique (GITT). In approximate solutions [53–54], a time-dependent dis-
persion coefficient was used. Usually, solute transport models assume a constant 
dispersion coefficient that is calibrated separately for each different downstream 
sample location, resulting in different dispersion coefficients for the same flow 
problem. In an attempt to overcome this, the dispersion coefficient as a function of 
the mean travel distance was used successfully [55]. Another approach is to model 
dispersivity as a time-dependent function. Based on the numerical results [56], dis-
persivity has been suggested to have a time-dependent behaviour which reaches 
asymptotic values after a long time. Analytical solution for time-varying dispersion 
coefficients have been presented in one dimension [57–58], in two dimensions [59–
60], and in three dimensions [61–62]. Presently, the fractional advection–diffusion 
equation (FADE) is being used to model anomalous transport [63–66].

The importance of ADE is not confined to hydrology and soil sciences only. It 
has equal importance in other fields as well, some of which are mentioned below:

i.	 Petroleum engineering: Displacement of oil with gas; petroleum and natural gas 
production [67].

ii.	 Chemical engineering: Flow in packed columns involving chemical reactions or 
separation of chemical components; pore diffusion of gases, chromatography, 
ion-exchange [68–69].

iii.	 Modelling of flood waves: Modelling of flood waves in free-flowing rivers, 
which are more commonly bulk waves. Ferrick [70] classified these waves into 
(a) diffusion wave and (b) kinetic wave. A diffusion wave is governed by ADE 
(Eq. 1.11), where dependent variable, c  may be replaced by a suitable variable 
y  representing depth of flow; u =  wave celerity ; D =  diffusion coefficient. 
In case, ( / ) ( / )∂ ∂ ≈ ∂ ∂ >2 2 0 1y x y xbut  but, Eq. 1.11 reduces to kinetic wave 
governed by the kinetic equation [71]. It is to be noted that presence of ( / )∂ ∂y x  
is responsible of inducing diffusion, thus leading to attenuation of a flood wave.

iv.	 Wound Healing: In case of dermal wound, the variables in ADE (Eq. 1.11) will 
be: c =  cell density, or chemical concentration at position x, and time t , u = 
convection due to formation of extra cellular matrix (ECM). Readers can find 
mathematical models using ADE for wound healing in [72–73].

1.4 � Adevection-Diffusion with Fractional Derivatives

In order to simulate the memory formalism [74], the partial differential equation of 
fractional order space derivatives may be more useful. Skewness in diffusion may 
also be considered through a suitable parameter. For example, in wound-healing 
process, the density of cells and the chemical concentration at the centre and at 
a position close to the centre of the wound are decided by those at the preceding 
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adjacent position towards the wound margin. Also, a cell may take a skewed path 
instead of curvilinear path, and it may be captured through a distinct parameter. 
Following the work in [75–80], we may use fractional order derivative in place of 
integer order derivative as:

1 1

1 1

2 1

2 1

1 1

2 2( ) ( )

1 1 ( )
So

2 2 ( ) ( )( ) ( )

x x x

d x

x d xx x x

α α

α α

α α

α α

β β

β β

− −

− −

−

−

 ∂ + ∂ − ∂
≈ − ∂ ∂ ∂ − 

 ∂ + ∂ − ∂ ∂ −
≈ − ∂ −∂ ∂ ∂ − �

(1.29)
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2 2( ) ( )x x x

α α
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β β ∂ + ∂ − ∂

≈ + ∂ ∂ ∂ − �
(1.30)

where α is the fractional order of the derivative, and β  is the skewness param-
eter. For the nth integer order, α  is in the range 1 . For 2 and 0n nα α β− ≤ ≤ = =  
(no skewness), approximation sign (≈) may be replaced by equality sign. As α  
decreases from 2, the Leύy probability distribution (LPD) deviates from the Gauss-
ian distribution and the tail of the Leύy distribution becomes heavier. If β  is less 
than zero, the dispersion is skewed backward representing a slowly evolving con-
taminant plume followed by a heavy tail. For β  greater than zero, the dispersion is 
skewed forward describing a fast evolving contaminant plume followed by a light 
tail. Many other works on space-fractional partial differential equations refer to 
the same equation with minor changes. The finite difference approximations of the 
fractional order derivatives [81–82] are:
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(1.31)

where ( 1)
,

( 1) ( 1)kg
k k

α
α

Γ +
=

Γ + Γ − +
 Γ  is the gamma function, and h  is the uniform 

size of the intervals into which the spatial axis is divided.
The classical advection–diffusion equation is mathematically identical to the dif-

fusion equation with drift, and furthermore, the same random walk model underlies 
both. The mean jump size determines the velocity v of the advective drift. This con-
nection between random walk and diffusion is due to Einstein. When the variance 
of the particle jumps is infinite, the resulting plume follows a stable concentration 
curve, the solution to an ADE with space derivatives having fractional order. This 
plume has skewness and a power law leading edge. Random waiting times do not 
affect the eventual shape of the plume as long as the waiting times have finite mean. 
When the mean waiting time is infinite, the time derivative has fractional order in 
the ADE.
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1.4.1 � Application of Fractional Order Derivative 
in Wound Healing

We demonstrate the effect of fractional order space derivative and skewness pa-
rameter on the dependent variable of the ADE. For this, we consider the problem of 
epidermal wound healing. The epidermal wound area is assumed to be circular. The 
healing takes place due to convective and diffusive cell migration. The source is at 
the boundary of the circular wound region. The growth factors (chemicals) infuse 
inside the wound region, as a result of which one annular domain, ECM scaffolding, 
takes place adjacent to the wound boundary. The convection is due to movement 
of the ECM front towards the centre. As the wound is supposed to be confined to 
epidermis, the role of blood vessels, oxygen, chemotaxis, etc. is not taken into ac-
count. The production term in the convective diffusive equation is assumed to be a 
function of chemical concentration, while that in the diffusive equation is supposed 
to be a function of cell density. The loss terms in both the equations are supposed to 
depend upon the respective dependent variables. The partial differential equations 
for the diffusion of chemicals (concentration c ) and the cells (density n) in polar 
coordinate system and in nondimensional form are

2

1 22 ( ) ( ) ( ), 1 0,c c n

c c D c
D f c f n f c R

T R RR
λ µ∂ ∂ ∂

= + + − > >
∂ ∂∂�

(1.32)

and

�
(1.33)

The nondimensional variables used in above equations are (the asterisks are omitted 
in the PDEs):

* * 2
0 0 0 0 0 0 0

* 2 * 2 * 2 * 2
0 0 0 0

/ , / , / , / , / , / ,

/ , / , / , / ,
n n c n

n n n c c n n n n c c n

n n n c c c R r a T D t a Pe au D D D D

a D a D a D a Dλ λ λ λ µ µ µ µ
= = = = = =

= = = =

where n0 is the cell density at the unwounded state, c0
 is the chemical concentra-

tion at a position adjacent to the wound boundary just after the inflammatory phase 
(which is at t0 ), D Dc n0 0and  are the uniform diffusion parameters of chemicals and 
the cells, λ  and µ  with appropriately suffixed, are scalars controlling the produc-
tion and the loss of cell density and growth factor, respectively, r  is the radial direc-
tion from the centre ( r = 0 ) towards the boundary ( r a= ) of the circular wound 
of radius a. Cell density and chemical concentration inside the wound region are 
zero just after the occurrence of wound ( )t = 0 . At the boundary, cell density is the 
same as if there was no wound. As soon as the wound has occurred, chemicals start 
infusing inside the region, its level being the maximum adjacent to the boundary 
by the end of the inflammatory phase. With the progress in the healing process, 

2

3 42

1
( ) ( ) ( ), 1 0.n n n

n n n n
Pe Pe f n f c f n R

T R R RR
λ µ∂ ∂ ∂ = − − − + − > >  ∂ ∂∂
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chemical concentration level lowers down at the boundary and at the interior posi-
tions. The input chemical concentration is formulated in this way. At the other end 
(at the centre), the gradients in both the concentrations will be zero. During the time 
0 0< <t t , chemical concentration level at the boundary attains a value higher than 
c0 . This chemical concentration (growth factors) is instrumental in the formation of 
ECM front near the boundary and its movement towards the centre of the wound 
area. Thus, the initial and boundary conditions for both the partial differential equa-
tions may be written as:

n R c R R( , ) ; ( , ) ; ,0 0 0 0 1 0= = > ≥� (1.34)

n T c T T T T( , ) ; ( , ) exp( / ); ,1 1 1 1 00= = − >� (1.35)

∂
∂

=
∂
∂

= = ≥
n

R

c

R
R T0 0 0 0; , ; ,at

�
(1.36)

where T0
 is the nondimensional form of t0

. We assume that f cc ( )  in Eq. 1.32 in-
creases as c c→ 0 ,  and also f nn ( )  in Eq. 1.33 increases as n n→ 0 .  The functions 
in production and loss terms of both the Eqs. 1.32 and 1.33 are assumed to be of in-
creasing nature. An exponential function is a general form to represent the changes; 
as it may be reduced to linear, quadratic, or other higher degree expressions under 
different approximations as required in modelling of many natural processes. Since 
the nondimensional dependent variables ( )n c,  in our model are always in the range 
0–1, this limits the rapid growth of exponential functions. We consider:

f n
n n

f n n f c c

f c
c c

f c

n

c

( ) , ( ) exp( ), ( ) ,

( ) , ( ) exp(

=
−

= =

=
−

=

1

1
0

1 2

0
3and cc f n n), ( ) .4 =

To demonstrate the effects of fractional order derivative (α ) and skewness (β ) on 
the dependent variable, we performed computational experiments to study the two 
effects on the cell migration from the wound boundary towards its centre in the 
domain ( a r≥ ≥ 0 ). The integer order space derivatives in Eqs. 1.32 and 1.33 are 
replaced by fractional order derivatives as in Eqs. 1.29 and 1.30. Their approxima-
tions are used from Eq. 1.31. The input values are chosen as: wound radius a = 1 0.  
cm, cell density at unwounded state n0 1 0= . ,  chemical concentration at the end of 
inflammatory phase c0 1 0= . ,  convective velocity u0 0 00001= .  cm/day, prolifera-
tion period t* = 21  days, inflammatory period, t0 3 5= .  days, all the λs, and µ s, 
are assigned a uniform value 0 001 1. (day) ,−  as this is our baseline model, the uni-
form step sizes along the R − and T − axes are chosen as h T= =0 1 0 0001. , .∆  re-
spectively, satisfying the stability criterion. The diffusion coefficient values for the 
cell and the chemical concentration are taken from some of the works cited above. 
Biologically plausible values of Dn0

 are in the range 3 5 10 6 9 1011 9. .× ×− −to cm /sec2

[83], depending upon the type of the cell. Higher value of Dn0
75 10= × − cm /sec2  
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has been considered elsewhere [84]. The value of diffusion coefficient for chemi-
cal concentration (growth factors) is suggested to be higher than that of the cells. 
We have used Dn0

90 0005 100000 5 0 10= ≈ ≈ × −0.0005cm /day cm /sec,2 2. / .  and 
0.0005 cm2/day. The effect of the fractional order α  is studied for 1.85α = , 1.75, 
and 1.5 and is shown in Fig. 1.2. As the order of the space derivative approaches 
2 (LPD is closer to the Gaussian distribution), wound at a particular position is 
healed in a better way. This trend is not observed in the vicinity of the wound 
boundary (where cell density is 1.0). This is because we have considered an ideal 
situation by assuming cell diffusion and convective parameters uniform. In the real 
situation, both will depend upon chemical concentration; in a recent work (to be 
communicated soon) we have not found this reversal. The effect of skewness on the 
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Fig. 1.2   a Effect of fractional order of space derivatives on cell migration. b Effect of skewness 
parameter on cell migration
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cell density is studied by performing the simulations for 0.95, 0.5, 0.95,β = − − +  
and is shown in Fig. 1.3. It may be observed that the cell density has higher val-
ues in the backward skewness domain ( 1 0)β− ≤ ≤  compared with those in the 
forward skewness domain (0 1).β≤ ≤  This effect of β  is indistinguishable close 
to the wound boundary, whereas it is pronounced towards the centre of the wound 
region. The reversal in this trend near the wound boundary is due to the same reason 
stated above.

1.5 � Ionic Diffusion

We illustrate ionic diffusion with the example of NPK release from coated fertilizer 
granules. Let us consider a spherical coated fertilizer granule which contains three 
types of nutrients, one is a nonelectrolyte, other is a weak electrolyte, and the third 
is a strong electrolyte, the diffusion pattern of all of these three substances are dif-
ferent. The unsteady diffusion equations in a spherical domain for the two species, 
ions and molecules of a weak electrolyte may be written as [85]:

∂
∂

=
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∂

+
∂
∂
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respectively, where k  is the rate of formation of the molecules (the dimmers), 
C C1 2and  are the concentrations; D D1 2and  are the diffusion coefficients of the 
ions and the molecules, respectively. The diffusing coefficient of the ions is ex-
pressed in terms of diffusion coefficients of both the ions as:

D
z z

z

D

z

D

c a

a

c

c

a

1 =
+

+
.

�

(1.39)

In the case of a non 1-1 electrolyte, where z zc aand  are the ionic charges; 
D Dc aand  are the diffusion coefficients, of the cation and anion, respectively. In 
the case of a 1-1 electrolyte, where z zc a= , we have:

D

D Dc a

1

2
1 1

=
+

.

�

(1.40)
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Fig. 1.3   a Effect of surface contact area on release time with pH. b Effect of association constant 
of electrolyte nutrient on release time with pH
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In an isodesmic model [85]

C KC2 1
2= ,� (1.41)

where K  is an association constant for the diffusing species, which is independent 
of the size of the aggregate. The total concentration, Cw  for weak electrolyte may 
be written [85] as:

C C Cw = +1 22 .� (1.42)

Using these equations the diffusion equation in terms of one dependent variable, C1
 

may be written as:
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This is a nonlinear partial differential equation. It suggests strong dependence of the 
apparent diffusion coefficient of the diffusing substance on the ionic or molecular 
concentration due to significant interactions among the diffusing species. The lin-
ear diffusion equation for a nonelectrolytic substance for diffusion parameter, i.e. 
D C D( ) = , in spherical coordinate system may be written as:
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A strong 1-1 electrolyte ionizes completely producing equal number of cations and 
anions. Although the concentrations of cations and anions Cc

and Ca ,  respectively, 
may vary through the solution, the concentrations and the concentration gradients of 
these species are equal everywhere because of electro-neutrality, that is:

C C C Cc a c a= ∇ = ∇and .� (1.45)

In the case of strong non 1-1 electrolyte, constraints on the concentration and flux 
at zero current are:

z C z C z C z Cc c a a c c a a+ = ∇ + ∇ =0 0and .� (1.46)

In the case of 1-1 electrolyte, z zc a= − .  The total concentration of strong electro-
lyte, Cs

 is

C C z C zs c a a c= =/ / .
�

(1.47)

The diffusion equation of a strong electrolyte is
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where the diffusion coefficient, Ds
 has either of the two expressions of Eq. 1.39 

or Eq. 1.40, depending on whether the electrolyte is a non 1-1 or a 1-1 electrolyte. 
The diffusion equation for a nonelectrolyte is the same as Eq. 1.44 with appropriate 
meaning of the variables.

Diffusion coefficients of cation and anion depend upon the pH of the soil water. 
As a result, release time of an electrolytic nutrient depends upon pH. The authors 
have studied the effects of different parameters such as radius of the granule, its 
surface area in contact with the soil determined by h,  association constant ( ),K  pH 
on the release time in their recent work [86]. The two figures from this work are be-
ing given here as Figs. 1.3a and 1.3b for the readers understanding about the ionic 
diffusion. In Fig. 1.3a. h = 1  represents the basal form of granule application (the 
granule is totally below the soil surface); hence, the release time is the minimum, 
while h = 120  corresponds to the almost point contact of the granule with the soil.

1.6 � Summary

Diffusion is not confined to a particular discipline. Its various forms in different 
disciplines are explained. The derivation of advection–diffusion equation describ-
ing the mass transport through a medium is given. Its forms in different coordinate 
systems are also given. Different transformations being used by various workers in 
a variety of disciplines are mentioned. How the heterogeneity of the medium and 
unsteadiness of advection are addressed by the two parameters of the ADE for reac-
tive and nonreactive solute mass, using the different dispersion theories with dif-
ferent analytical and numerical methods are explained. Most importantly, the effect 
of fractional order space derivative with skewness on the mass transport, have been 
explained through the wound healing problem. Lastly, the effect of ionic diffusion 
on the controlled release of nutrients from a coated spherical fertilizer granule is 
given.
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2.1 � Introduction

Diffusion, derived from the Latin word diffundere meaning to spread out, is a mass 
transport phenomenon in both fluids (without requiring bulk fluid motion) and sol-
ids. Both macroscopic or phenomenological and microscopic or atomistic and mo-
lecular approaches are employed to introduce the concept of diffusion. According to 
the former approach, the diffusion transport goes from regions of high concentra-
tion to regions of low concentration, whereas according to the latter diffusion is a 
result of the random walk of the particles. In molecular diffusion, moving molecules 
are self-propelled by thermal energy.

In this chapter we discuss the historical developments, diffusion in cells and the 
current status of research , basic mathematical models of diffusion, and osmosis and 
its importance for living systems.

2.1.1 � Historical Perspective

The history of diffusion goes back to several centuries B.C. Mechanisms of many 
technical processes in use over centuries are in fact controlled by diffusion, for 
example cementation used in gold or silver refining, carbon diffusion in elemental 
iron for steel making by the cementation process since medieval times or earlier, 
diffusion soldering of gold artefacts, colouring of glasses, earthenware, or chi-
naware, all happened long before the development of any theory of diffusion. In 
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the seventeenth century, Robert Boyle demonstrated diffusion of zinc into a copper 
coin. The well-known Brownian motion, never-ending movement of particles in 
suspension in a fluid, discovered in 1827 by Robert Brown, a botanist, is a manifes-
tation of the random walk of microscopic particles suspended in a fluid. This motion 
has been described on one hand as the wanderings of a drunken sailor and on the 
other hand as the zoom image of molecular movements. Interestingly, Brownian 
motion is a mathematical object treated in many text books as well as a physical 
one allowing us to rationalize natural facts as varied as the flight of birds or mosqui-
toes, the spread of diseases, dissemination of pollutants, the properties of biological 
membranes, the brain imaging by nuclear magnetic resonance (NMR) spectros-
copy, etc. In his theory of Brownian motion, Albert Einstein developed the micro-
scopic theory of diffusion of particles at sufficiently low concentration in a liquid 
in 1905. Significant contributions towards this approach were also made by Mar-
ian Smoluchowski and Jean-Baptiste Perrin. However, long before in 1858, James 
Clerk Maxwell developed the first microscopic theory of transport in gases based 
on gas kinetics; the concept of mean free path was introduced by Rudolf Clausius 
in the same year. Ludwig Boltzmann developed the atomistic backgrounds of the 
macroscopic transport processes and introduced the Boltzmann transport equation 
in 1872. The equation has been serving mathematics and physics with a source of 
transport process ideas and concerns over the last 140 years [1, 2].

The phenomenological approach was introduced by Adolf Fick as a 26-year-
old assistant in anatomy and physiology, in his famous papers in 1855 establishing 
the now classical Fick’s equations, governing the mass transport through diffusive 
means. It is worth mentioning that later as a chair professor of physiology he au-
thored the first treatise on medical physics, the first book of this kind. He remains 
a well-known name in the history of cardiology. Fick’s approach was inspired by 
Thomas Graham’s famous experimentation on diffusion of salts in water for investi-
gating and comparing the diffusibility of different salts in 1850 and his earlier work 
on diffusion in gases in 1833. Fick used the law of conservation of matter and the 
deep analogy between diffusion and hydraulic flow (Darcy’s law), heat conduction 
(Fourier’s law), or charge transport (Ohm’s law), to develop his fundamental laws 
for diffusion. He used Graham’s method to design his experiments on the measure-
ments of concentrations and fluxes of salts diffusing between two reservoirs through 
tubes of water. Fick’s work although originally concerned with diffusion in fluids, 
his laws later also became the core of understanding diffusion in solids. Today, Fick’s 
laws are the most popularly used laws for diffusion in gases, liquids, and solids [1, 2].

The successful use of Fick’s laws to solid state diffusion was demonstrated first 
in 1896 by William Chardler Roberts-Austen, a longtime associate of Thomas 
Graham, while extending Graham’s work to diffusion of gold in lead. George de 
Hevesy studied and measured self-diffusion of radioactive isotopes of lead in liquid 
and solid lead in 1920–1921. In 1926, Yakov Frenkel introduced the idea of dif-
fusion in crystals through local defects (vacancies and interstitial atoms) and con-
cluded that the diffusion in process in condensed matter is an ensemble of elemen-
tary jumps and quasi-chemical interactions of particles and defects. He proposed 
several mechanisms of diffusion and found rate constants from experimental data. 
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Sometime later, Carl Wagner and Walter H. Schottky developed Frenkel’s ideas 
about mechanisms of diffusion further. It is now universally recognized that atomic 
defects are necessary to mediate diffusion in crystals. In 1922, Saul Dushman and 
Irving Langmuir applied Arrhenius’ law to determine the coefficient of diffusion 
of thorium through tungsten and found satisfactory results. Henry Eyring and his 
coworkers applied his theory of absolute reaction rates to Frenkel’s quasi-chemical 
model of diffusion in 1935. The analogy between reaction kinetics and diffusion 
leads to various nonlinear versions of Fick’s law. Nonlinear models are also re-
quired for diffusion on catalyst surfaces [3, 4].

Diffusion is a widely applicable concept. It applies to any field involving random 
walks in the ensembles of individuals. In fact, the concept of diffusion is used across 
diverse fields stretching from physics, chemistry and biology to sociology, econom-
ics, and even finance.

2.1.2 � Diffusion In Living Cells

The efficient delivery of proteins, drugs, and other products to their correct loca-
tions within a cell (transport) is of prime importance to the normal cellular func-
tion and development [5]. On the other hand, cytoplasm and other aqueous intra-
cellular organelles such as mitochondria, nucleus, etc. are crowded with solutes, 
soluble macromolecules, skeletal proteins, and membranes inside the cell. In order 
to maintain homeostasis and cellular functions in the cell, most of the physiological 
processes depend on selective exchanges of metabolites between the cell and its 
exterior [6]. Substances such as liquids, nutrients, hormones and other signaling 
molecules, and waste products are routinely transported (received and delivered) 
across the cell plasma membranes.

Transportation of materials inside and outside of cells can be described in two 
ways: passive transport and active transport. In passive transportation, movement of 
substances does not require energy (adenosine triphosphate, ATP). Types of passive 
transportation include simple diffusion, facilitated diffusion, osmosis, and filtration. 
The diffusion process can continue until the concentration of solute in the extracel-
lular and intracellular spaces is attaining the equilibrium. In facilitated diffusion, 
solute particles move from higher to lower concentration via cell surface channels. 
Diffusion and facilitated diffusion involve transport of solutes, while osmosis in-
volves movement of water (or solvents) through a membrane. The movement of 
some transported proteins and glucose inside the cell membrane is highly selec-
tive so that movement across the cell membrane occurs only when assisted by the 
concentration gradient, a type of carrier-assisted transport known as facilitated dif-
fusion. Both simple diffusion and facilitated diffusion are driven by the potential 
energy differences of a concentration gradient. Simple diffusion is a nonselective 
process by which any molecule capable of dissolution in the phospholipid bilayer 
is able to cross the plasma membrane and equilibrate between inside and outside of 
the cell. Thus, only small hydrophobic molecules are able to diffuse across a phos-
pholipid bilayer at significant rates.
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The gases such as oxygen and carbon monoxide, hydrophobic molecules like 
benzene, and small polar but uncharged molecules hydrogen and ethanol, are able to 
transport across the plasma membrane by simple diffusion. Other larger uncharged 
polar molecules, such as glucose, are unable to cross the plasma membrane by pas-
sive diffusion. Facilitated diffusion involves the movement of molecules in the di-
rection determined by their relative concentrations inside and outside of the cell 
without any external energy. However, facilitated diffusion differs from simple dif-
fusion in that the transported molecules do not dissolve in the phospholipid bilayer. 
Therefore, facilitated diffusion allows only polar and charged molecules, such as 
nucleosides, carbohydrates, amino acids, and ions to cross the plasma membrane.

Facilitated diffusion is mediated by two classes of proteins such as carrier pro-
teins and channel proteins. Carrier proteins attach with specific molecules for trans-
portation to the other side of the membrane and undergo conformational changes, 
allowing the molecule to pass through the membrane. Carrier proteins are respon-
sible for the facilitated diffusion of sugars, amino acids, and nucleosides across 
the plasma membranes of most cells. Channel proteins create open pores through 
the membrane and allow free diffusion of any molecule of the appropriate size and 
charge.

Active transport is the movement of a substance across a cell membrane against 
its concentration gradient. There are three main types of active transport. Active 
transport in a cell requires energy, usually in the form of ATP. It includes transpor-
tation of large molecules (non-lipid soluble) and the sodium–potassium pump. In 
the case of active transport, the proteins and other molecules move against the con-
centration gradient. Primary active transport directly uses ATP. Secondary active 
transport does not directly use ATP. It takes advantage of a previously existing con-
centration gradient (via carriers). In a sodium–potassium pump, Na +  is maintained 
at low concentrations inside the cell and K +  is found at higher concentrations in 
nerve cells. When a nerve message is propagated, the ions are transported across the 
membrane, and a new message is generated. The ions must be actively transported 
back to their starting positions across the membrane using ATP as the carrier energy.

Active transports are classified as: uniport transport, cotransport, and vesicle-
mediated transport. In uniport transport, only one solute movement takes place at 
a time. It is a facilitated low resistance diffusion and thermodynamically favoured 
process. It is a reversible process and accelerates the reaction by low concentra-
tion gradient. It takes place in glucose transportation, impulse transmission in 
neurons, primary insulin regulated glucose transportation in muscle, and adipose 
tissue. In cotransport, movement of one substrate down the gradient is coupled 
with the movement of another substrate against the gradient at the same time. In 
1960, Robert K. Crane introduced the term cotransport in his discovery of the so-
dium–glucose cotransport as the mechanism for intestinal glucose absorption for 
the first time [7]. It can transport different numbers of molecules in different direc-
tions at the same time. It is also known as secondary active transport or coupled 
transport. It is divided into two types:(i) symporter—both the substrate (the solute 
and a cotransported solute) go in the same direction against its electrochemical 
gradient. It is found in glucose symporter SGLT1, which cotransports one glucose 
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(or galactose) molecule into the cell for every two sodium ions it imports into the 
cell. This symporter is located in the small intestine, trachea, heart, brain, testis, 
and prostate, and S3 segment of the proximal tubule in each nephron in the kidneys 
[8], and (ii) antiporter—the molecules of the solute go in (or out) and the cotrans-
ported solute go in the opposite direction across the membrane. It is found in the 
sodium–calcium exchanger, in which three sodium ions allowed into the cell to 
transport one calcium ion out [9].

In vesicle-mediated transport, vesicles and vacuoles fused with the cell mem-
brane is utilized to transport or release chemicals out of the cell. It is also catego-
rized as: (i) exocytosis, in which transport is out of the cell, and (ii) endocytosis, 
in which a molecule causes the cell membrane to bulge inward, forming a vesicle.

Diffusion also plays a fundamental role in every biochemical process in living 
cells. Characterizing and distinguishing the cytoskeletal migration, which includes 
all motor protein-mediated transport within a cell, is critical to understanding cel-
lular function and is regulated by the diffusion process [10]. The rate of diffusion in 
the cell depends on several factors, such as concentration gradient, thickness of the 
exchange surface, and the surface area. The most well-known example of diffusion 
is gas exchange in living organisms. Oxygen gas is transferred from lungs to red 
blood cells and vice versa via diffusion. Carbon dioxide is produced by all cells as 
a result of cellular metabolic processes. Since the source is inside the cell, the con-
centration gradient is constantly being replenished/reelevated, thus the net flow of 
CO2 is out of the cell. In photosynthesis, the gas exchange process (carbon dioxide 
from air to leaf and oxygen from leaf to air) follows diffusion process. Acetylcho-
line neurotransmitter is transported from presynaptic to postsynaptic membrane at 
a synapse via diffusion. In alveolus, macrophages eating viruses swim and tumble 
but can be modelled as diffusion. Cellular Ca2 +  dynamics involves the exchange of 
Ca2 +  ions between intracellular stores and the cytosol, the interior and exterior of 
a cell or between cells, as well as transport by diffusion and buffering due to the 
binding of Ca2 +  to proteins.

There are two ways in which substances can enter or leave a cell. According 
to this, diffusion may be classified as: (i) intracellular diffusion or self-diffusion, 
(ii) interdiffusion. The process of spontaneous mixing of molecules taking place 
in the absence of concentration (or chemical potential) gradient is known as self-
diffusion. The self-diffusion is diffusion in one-component material, when all atoms 
that exchange positions are of the same type. In the absence of external forces, the 
displacements of the particles result from their thermal agitation. This is an incoher-
ent process leading to random motions of the particles in any state of aggregation. 
Nowadays, this process is usually denoted as self-diffusion [11]. Some authors de-
note self-diffusion in liquid mixtures as intra-diffusion [12], retaining the term self-
diffusion only for diffusive processes in pure liquids. Unkel and others described 
variety in intracellular diffusion during the cell cycle [13].

The self-diffusion coefficient of neat water is: 2 299 10 9 1. × − −m s.2  at 25 °C and 
1 261 10 9 1. × − −m s.2  at 4 °C [14]. Topgaard and others demonstrated a new method 
for the characterization of water-swollen biological porous structures using NMR 
to determine the amount and self-diffusion of water within the porous objects [15]. 
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The method shows slower diffusion of water in starch granules in comparison to 
cellulose fibres and it is attributed to the smaller amount of freezable water and the 
pore geometry.

Drugs diffuse through various barriers for metabolism and excretion when ad-
ministered to the body. Some drugs diffuse through the skin, gastric mucosa. Paren-
teral drugs must diffuse through muscle, connective tissue, and so on, to get to the 
site of action; even intravenous drugs must diffuse from the blood to the site of ac-
tion. Considering all the diffusion processes that occur in the body (passive, active, 
and facilitated), it is not surprising that the laws governing diffusion are important 
to drug delivery systems. In the dissolution of the particles of drug, the dissolved 
molecules diffuse away from the individual particle body.

2.1.3 � Current Status of Research: Diffusion In Cell

Over the last three decades, the accelerating growth of publications in the area of 
ion transport has witnessed the interest in this area of research in current science 
[16–18]. The ion exchange process intensifies, increasing research interest among 
chemists, chemical engineers, and biologists in understanding the transport process-
es occurring across the natural and artificial membranes [19]. As artificial ligand 
models, several types of macrocyclic molecules have been prepared specifically to 
transport alkali, alkaline earth, and organic ammonium ions with high selectivities, 
useful in active transport process [20, 21]. Carrier-mediated transport (pertraction) 
of metal ions by soluble macromolecules has so far been investigated using the neu-
tral or functionalized polymers and the effectiveness of such macro-ionophores has 
been demonstrated [22, 23]. For the maintenance of homeostasis in the cell, newly 
synthesized products from the nucleus are transported to other intracellular medium 
or the cell membrane via a microtubular network from centrosomes. Various animal 
viruses including HIV were described as taking advantage of microtubule-based 
transport in order to reach the nucleus from the cell surface and releasing their ge-
nomic material through the nuclear pores [24].

The challenges of cellular transport are particularly great for neurons (brain 
cells), which are amongst the largest and most complex cells in biology with regard 
to the efficient transport of newly synthesized proteins from the cell body. In mi-
crorheology, the transport and motion of probes especially fluorescent molecules is 
tracked and recorded over a time period; local mechanical properties in the vicinity 
of the probes are deduced depending upon the driving mechanisms. Cells respond 
to the external conditions through internal structural, compositional, and function-
al modifications; their transport and mechanical properties get altered. Thus, the 
measurements of changing particle-transport properties indicate an evolution of the 
internal structure of the cell after administering nocodazole as expected during mi-
crotubule dissociation [25]. Extensive theoretical and experimental studies based 
on the carrier-mediated transport through liquid membranes have been reviewed in 
literature [26, 27].
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Verkman demonstrated diffusion of solutes and macromolecules in aqueous cel-
lular compartments. This is required for numerous cellular processes including 
metabolism, second messenger signaling, and protein–protein interactions [28]. 
Recently, Videcoq and others described the diffusion of two pectin methylesterases 
enzyme (PMEs) with different origins and modes of action and characterized with 
a multi-scale approach in different media consisting of pectin macromolecular so-
lutions and physical gels [29]. Another useful method for quantitative measure-
ment of the translational diffusion of fluorophores and fluorescently labelled mac-
romolecules is fluorescence recovery after photo bleaching. It is more sensitive 
than diffusion-weighted imaging (DWI) and permits cell-level spatial resolution. 
In this method, fluorescently labelled molecules are introduced inside the cells by 
microinjection or incubation, or by targeted expression of green fluorescent pro-
tein (GFP) chimeras. In spot photo bleaching, fluorophores in a defined volume 
of a fluorescent sample are irreversibly bleached by a short intense light pulse. 
Using an attenuated probe beam, the diffusion of unbleached fluorophores into the 
bleached volume is measured as a quantitative index of fluorophore translational 
diffusion. A variety of optical configurations, detection strategies, and analysis 
methods have been used to quantify diffusive phenomena in photo bleaching mea-
surements [30].

To measure diffusion, modulated gradient spin-echo method (MGSE) is used, 
in which pulsed gradients are not necessarily applied [31]. It gives information 
about diffusion in the frequency domain. By using a periodically oscillating phase 
factor, the MGSE experiment results in signal attenuation, which is proportional 
to the spectrum of the velocity autocorrelation function (VAF) of the spin-bearing 
particles. The diffusion spectrum probed by MGSE is related to the mean square 
displacement, and analogously to the time-dependent diffusion coefficient, and con-
tains information about the morphology [32]. The MGSE technique, which enables 
spectral characterization of diffusion with chemical-shift resolution, has been intro-
duced. The use of spin echoes instead of gradient echoes [33] is advantageous in re-
ducing the effects of field inhomogeneity and susceptibility artefacts. The technique 
is particularly suitable for in vitro studies of samples, where diffusion of several 
compounds with different chemical shifts is of interest. Whereas, optical tweezers 
(optical tweezer is a device that allows for manipulation of nano- and microscopic 
particles by a focused laser beam) are capable of studying diffusion at short times-
cales, optical particle tracking is typically used for studying diffusion and transport 
processes at larger timescales (greater than 0.01 s); a combination of these methods 
yields quite a large frequency range [34].

2.2 � Basic Models of Diffusion

The following is an outline of the basic models of linear diffusion put forward by 
Fick, Einstein, Teorell, and Onsagar.
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2.2.1 � Fick’s Law

The first prominent equation of diffusion is Fick’s first law which expresses the 
diffusion flux, J in mol.m−2.s−1 as proportional to the anti-gradient of the local con-
centration, c (in mol. m−3) at a position vector r at time t:

J r= − ∇ ( , )D c t� (2.1)

where D symbolizes diffusion coefficient (in m2. s−1) and ∇  is the del operator. 
Equation 2.1 applies to ideal mixtures and postulates that the flux goes from regions 
of higher concentration to regions of lower concentration. In one dimension, Eq. 2.1 
reduces to:

J D
c

xi
i

= −
∂
∂�

(2.2)

where the subscript i denotes the i-th position (in m).For systems other than ideal 
solutions or mixtures, the concentration gradient ( / )∂ ∂c xi

in one dimension is re-
placed by ( / ) ( / )ia RT xµ∂ ∂ , where μ is the chemical potential of the species (in 
Jmol−1), a is the activity of the species (in mol. m−3), R is the universal gas constant 
(in J.K−1. mol−1), and T is the temperature (in Kelvin). It may be noted that the anti-
gradient of chemical potential, µ−∇ , the driving force of diffusion is not neces-
sarily a truly real force. It represents the spontaneous tendency of the molecules to 
disperse as a consequence of the second law of thermodynamics and the hunt for 
maximum entropy. For ideal or near-ideal solutions and mixtures, a becomes c. The 
form of Fick’s law in one dimension becomes:

  i
i

c
J D

RT x

µ∂
= −

∂�
(2.3)

The corresponding diffusion equation predicting how diffusion changes concentra-
tion with time is Fick’s second law, according to which the time derivative of the 
concentration is the negative divergence of the flux, J. Using Eq. 2.1, we have:

2( , )
( , )

c t
D c t

t

∂
= −∇⋅ = ∇

∂
r
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�

(2.4)

where ∇2  is the Laplacian operator. In one dimension, Eq. 2.4 becomes:

2

2

( , ) ( , )c x t c x t
D

t x

∂ ∂
=

∂ ∂�
(2.5)

In all these expressions, D has been assumed constant, independent of concentra-
tion, position, and direction. The linear diffusion equation (Eq. 2.4 or 2.5) applies 
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to isotropic diffusion only and is in fact a special case of the generalized diffusion 
equation:

[ ]( , )
( , ) ( , )

c t
D c c t

t

∂
= −∇⋅ ∇

∂
r

r r
�

(2.6)

where D c( , )r  is the collective diffusion coefficient for the concentration c at the 
location r. The expression for Fick’s first law, Eq. 2.1 would be written as:

( , ) ( , )D c c t= − ∇J r r� (2.7)

More generally, when D is a symmetric positive definite matrix, Eq. 2.6 describes 
anisotropic diffusion which is written as:

3 3
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�

(2.8)

The nonlinear equation (Eq. 2.6) would obviously reduce to the linear form (Eq. 2.4), 
when D becomes a constant independent of c(r). The generalized equation (Eq. 2.6 
or Eq. 2.8) applies to inhomogeneous media, where D varies in space; anisotropic 
media, where D depends on the direction or inhomogeneous anisotropic media, 
where D depends upon both position and direction.

The linear diffusion equation (Eq. 2.4) can be solved using Fourier transforma-
tion with the initial condition 0( ,0) ( )c c δ=r r , c0 is c(0, 0); that is, all the solute 
molecules are at the origin initially. The solution is:

2
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4
r Dtc t c e

Dtπ
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r
�

(2.9)

At any time, the distribution is three-dimensional Gaussian function. Clearly, as the 
time passes the mixture becomes uniform. Using Eq. 2.9, the mean square displace-
ment from the origin at time t is calculated as:

< > = =r t Dt dDt( )2 6 2� (2.10)

where d is the spatial dimension.
The square-root-of-time dependence of the distance travelled is characteristic 

of diffusive motion and Eq. 2.10 may be considered as a practical definition of the 
diffusion coefficient. The length 2dDt  is defined as the diffusion length. This is 
the diffusion law derived by Albert Einstein [1, 35–38].

Diffusion results from Brownian motion, the random battering of solute mol-
ecules by the solvent molecules. Application of the one-dimensional random walk 
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model leads, interestingly, to the same expression for  < x(t)2 >  in one dimension, 
that is:

2
2( )

l t
x t

τ
< > =

�
(2.11)

where l is the step length and τ  is the time interval between two successive dis-
placements with the identification of 2 / 2l Dτ = . The solutions of diffusion and 
random walk problems thus become identical. Equation 2.10 is, in fact, a connector 
between a macroscopic entity D and the microscopic one  < r2 >  [1, 38].

2.2.2 � Einstein’s Mobility

While developing the theory of Brownian motion, Albert Einstein compared the 
motion of particles at sufficiently low concentration in a liquid under a constant 
force F with diffusion. For a given F (in N), each particle has the average velocity 
uF (in m.s−1),where u is the mobility (the ratio of the particle’s terminal drift veloc-
ity to the applied force) of the particle (in m. s−1. N−1) and obtained the connection

D uk TB=� (2.12)

known as the Einstein–Smoluchowski relation, the relation being revealed in-
dependently by Marian Smoluchowski, where kB

 is the Boltzmann constant (in 
JK−1molecule−1). The mobility u is referred as the Einstein mobility [1, 38]. This 
is an early example of the famous fluctuation–dissipation theorem, which bridges 
microscopic fluctuations with macroscopic transport coefficients. A special case of 
the Einstein–Smoluchowski relation is the Einstein–Stokes equation for diffusion 
of spherical particles through a liquid in the limit of low Reynolds number:

6
Bk T

D
πηρ

=
�

(2.13)

where η  is the viscosity coefficient of the liquid (in Nm−2s), ρ  is radius of the par-
ticle (in m), and 6πηρ  is the Stokes’ frictional coefficient. In the case of rotational 
diffusion, Eq. 2.12 becomes:

rot 8
Bk T

D
πηρ

=
�

(2.14)

Using Eq. 2.13, one can estimate the diffusion coefficient ( D) of spherical particles 
from measurements of the viscosity coefficient ( η) of a liquid [1, 38]. However, for 
real solutions at sufficiently high concentrations, the expression for D in terms of u 
(Eq. 2.12) is modified to:

D u RT Bc Mc= + + +( ...)2 3 2

� (2.15)

where B, M, … are the second, third, and higher order Virial coefficients [38].
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2.2.3 � Teorell Formula

In 1935, Torsten Teorell used the mobility-based approach for studying diffusion of 
ions through a membrane and formulated the essence of his approach as:

Flux mobility concentration force per gram ion= × ×    � (2.16)

This formula called Teorell formula [4, 39] ignores heat effects, special membrane 
effects, and chemical reactions. The force under isothermal conditions has two com-
ponents:

a.	 Diffusion force caused by concentration gradient: eqln( / ),RT c cµ−∇ = − ∇  
where ceq  is the equilibrium concentration.

b.	 Electrostatic potential gradient: ,q φ∇  where q is the charge and φ  is the electric 
potential.

The Teorell formula for flux J is thus:

RT
uc c q

c
φ = − ∇ + ∇  

J
�

(2.17)

This expression allows us to find the concentration jumps and the electric potential 
across the membrane caused by the combined action of diffusion and the electric 
field, when mobilities of various components are different. For nonideal systems 
under isothermal conditions, Teorell equation becomes:

( external force per gram particle)ua µ= −∇ +J� (2.18)

where a, the activity measures the effective concentration of a species in a nonideal 
mixture and a c c o c c= +/ ( / ),0 0  where c0 is the standard state concentration; the 
second term is a small correction, the activity coefficient. Equation 2.18 is the main 
analogue of Fick’s law for monomolecular diffusion in non-perfect media.

The time derivative of a or c (as normalized dimensionless quantity) in the Ein-
stein–Teorell approach, for small value of c becomes:

0( / )
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c c
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t

∂
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∂
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�
(2.19)

2.2.4 � Onsager’s Linear Phenomenology and Equations 
for Multicomponent Diffusion

In 1931, Lars Onsagar included multicomponent diffusion in the general context of 
the linear nonequilibrium thermodynamics:

J Xi ij
j

jL= ∑
�

(2.20)
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where J i  is the flux of the i-th component and X j  is the j-th thermodynamic force 
(for pure diffusion, it is the space anti-gradient of the j-th chemical potential, jµ  
divided by T, that is ( / )j Tµ−∇ ). After linearization near equilibrium, this approach 
gives for perfect systems (where deviations of c j  from c j

eq  are assumed small) 
under isothermal conditions:

1
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�
(2.21)
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The matrix of kinetic coefficients Lij  are symmetric, L Lij ji= : Onsager reciprocal 
relations and their symmetry follow from microscopic reversibility and statistical 
mechanics of fluctuations and their decay.

The Onsager form of diffusion equations (Eqs.  2.22–2.24) is correct near the 
equilibrium but violates the obvious physical requirement: J i

 is zero if ci
 has zero 

value. The Teorell approach (Eqs. 2.17–2.19) satisfies this requirement. Fick’s laws 
(Eqs. 2.1–2.5) also satisfy this requirement in the sense: if for nonnegative smooth 
c( x), the concentration vanishes at some points, then at these points the flux van-
ishes too (because these points are minimizers of concentration and the gradient 
vanishes there).

For isotropic non-perfect systems, the thermodynamic driving forces in Onsag-
er’s form for isothermal diffusion in the linear approximation near the equilibrium 
(using Eq. 2.21) are:

eq

1
, ( , 0)j

j k
k k c c

c j k
T c

µ

=

∂ 
= − ∇ > ∂ ∑X

�
(2.25)

and the diffusion equations become:

eq

1
, ( , 0)j

i ij j ij k
j j k k c c

L L c j k
T c

=

 ∂ 
= = − ∇ >  ∂   

∑ ∑ ∑J X
µ

�

(2.26)
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�
(2.27)

The matrix of diffusion coefficients, Dik
 becomes:

eq

1
( , , 0)j

ik ij
j k c c

D L i j k
T c

µ

=

∂ 
= > ∂ ∑

�
(2.28)

The intrinsic arbitrariness in the definitions of X j  and Lij  is to be noted. These are 
not measurable separately and only their combinations L Xij

j
j∑  can be measured. 

Thus, the Onsager’s formalism of linear irreversible thermodynamics gives the sys-
tem of linear diffusion equations in the form:

2 ( , 0)i
ij j

j

c
D c i j

t

∂
= ∇ >

∂ ∑
�

(2.29)

If the matrix Dij  is diagonal, this system of equations is simply a collection of de-
coupled Fick’s equations for various components [4, 40–42].

Non-diagonal diffusion must be nonlinear. Diffusion preserves the positivity of 
concentrations. If the diffusion is non-diagonal and linear, e.g. D12 0≠ ,  for a state 
where c cn2 0= = =... ,  the diffusion equation would be:

∂
∂

= ∇
c

t
D c x2

12
2

1( )
�

(2.30)

If D c x12
2

1 0∇ <( )  at some points, c x2 ( )  becomes negative at these points in a short 
time. Therefore, linear non-diagonal diffusion does not preserve the positivity of 
concentrations and consequently, non-diagonal equations of multicomponent diffu-
sion are nonlinear [4].

2.2.5 � Teorell Formula For Multicomponent Diffusion

The Teorell formula with combination of Onsager’s definition of the diffusion force 
gives:

J Xi i i ij
j

ju a L= ∑
�

(2.31)

For isothermal perfect systems:

J i i i ij
j j

ju c R L
c

c= − ∇∑ 1

�
(2.32)

eq

21
, ( , , 0)ji

i ij k
k j k c c

c
L c i j k

t T c

µ

=

 ∂ ∂
= −∇⋅ = ∑ ∇ >  ∂ ∂   

∑J
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Thus, the Einstein–Teorell approach gives the following generalization of the Fick’s 
law for multicomponent diffusion:

i i
ij j

j j

c c
D c

t c

 ∂
= ∇⋅ ∇ ∂  

∑
�

(2.33)

where Dij  is the matrix of coefficients [4]. It should be stressed that these physical 
models of diffusion are different from the toy models (Eq. 2.29), which are valid for 
very small deviations from uniform equilibration.

For anisotropic multicomponent diffusion coefficients (for example, in crystals) 
one needs 4-index quantities, for example, ,ijD αβ  where i, j are related to the com-
ponents and , 1, 2,3α β =  correspond to the space coordinates.

2.3 � Nonlinear Diffusion

As discussed earlier, the linear diffusion equation has limitations. There are many 
nonlinear diffusion models. We discuss a few of these below.

2.3.1 � Diffusion of Reagents on the Surface of a Catalyst: 
Jumps on the Surface

Alexander N. Gorban and his coauthors proposed a model of diffusion in mono-
layers of reagents on the surface, which is based on the jumps of the reagents on 
the nearest free places. This model has been used for oxidation of CO on platinum 
under low gas pressure.

The system includes several reagents A1, A2,…, An on the surface. Their surface 
concentrations are c1, c2, …, cn, respectively. The surface is a lattice of the adsorp-
tion sites. Each reagent molecule fills a place on the surface. Some of the places 

are free. A0 symbolizes a free place and its concentration is c0( = z). It follows that 

c bi
i

i n

=

=

∑ =
0

, a constant representing the density of adsorption places. According to the 

jump model, the diffusion flux of Ai ( i  = 1,2, …, n) is:

Ji = − ∇ − ∇( )D z c c zi i i� (2.34)

and the corresponding diffusion equation is:

( )2 2i
i i i

c
D z c c z

t

∂
= −∇⋅ = ∇ − ∇

∂ iJ
�

(2.35)

Due to conservation of the places on the surface z b ci
i

i n

= −
=

=

∑
1

 we have a system of 
n diffusion equations:
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1 1

n n

i i i i i
i i

D b c c c c
= =

 
= − − ∇ + ∇ 


 


 
 

∑ ∑iJ

�
(2.36)

2 2

1 1

n n
i

i i i i i
i i

c
D b c c c c

t = =

∂  
= − ∇ + ∇ 

 
 
  ∂ ∑ ∑

�
(2.37)

It may be noted that for one component:

( )b c c c c b c− ∇ + ∇ = ∇�
(2.38)

( ) ,b c c c c b c− ∇ + ∇ = ∇2 2 2

� (2.39)

and the diffusion equation becomes linear, the Fick’s law (Eq. 2.29). Obviously, 
for two or more components, the equations are nonlinear. When ci ≥ 0  for all x, 
( / )∂ ∂ ≥c ti 0  for all ci = 0 , which is necessary for the preservation of positivity.

If all particles can exchange their positions with their closest neighbours, a sim-
ple generalized equation follows:

Ji = − ∇ − ∇( )∑ D c c c cij
j

j i i j

�
(2.40)

∂
∂

= ∇ − ∇( )∑c

t
D c c c ci

ij
j

j i i j
2 2

�
(2.41)

where D Dij ji= ≥ 0  is a symmetric matrix of coefficients which characterize the 
extent of jumps [4].

2.3.2 � Diffusion In a Porous Medium

The basic equation describing diffusion in porous media, porous medium equation 
(PME), is a nonlinear parabolic-type evolution equation:

2 ([ ])mc
c D c c

t

∂
= ∇ = ∇⋅ ∇

∂�
(2.42)

where c c r t m D c= > >( , ) , , ( ),0 1 and  the concentration-dependent diffusivity is 
given as D c mcm( ) .= −1  PME applies to a number of processes such as the flow of 
an isentropic gas through a porous medium ( ),m ≥ 2  infiltration of ground water 
( m = 2), heat radiation in plasmas ( )m ≥ 4  [43].
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2.3.3 � Phase Separation: Cahn–Hilliard Equation

The process by which the two components of a binary fluid spontaneously separate 
and form domains pure in each component is a problem of nonlinear diffusion and 
is described by the Cahn–Hilliard equation:

( )2 3 2c
D c c c

t
γ∂

= ∇ − − ∇
∂�

(2.43)

where c is the concentration of the fluid, c = ±1  indicates domains, D is the dif-
fusion coefficient, and γ is the square of the of the length of the transition regions 
between the domains. The quantity 3 2( )c c cγ− − ∇  is identified as a chemical poten-
tial µ . The term 2cγ− ∇  is derived from a component of the free energy modelling 
the interface energy and it regularizes the solutions of the equation [4, 44]. In the 
phase separation problem, the components are definitely non-perfect and necessary 
corrections by the activity coefficients can be incorporated.

2.3.4 � Diffusion In Solids: Eyring’s Quasi-Chemical Model

Diffusion in solids takes place through the movement of defects, for example point 
defects (vacancies, interstitial atoms) are responsible for lattice diffusion. Diffusion 
occurs when an atom jumps from a normal lattice site into an adjacent vacant one or 
from an interstitial site to one of the neighbouring interstitial ones. The interstitial 
mechanism which involves significant lattice distortion is, however, favoured when 
interstitial atoms are sufficiently small as compared to normal lattice atoms, for 
example light atoms like H, C, N, O interstitially dissolved in metals. When lattice 
distortion becomes too large for the interstitial mechanism to be probable, the inter-
stitialcy mechanism (where an interstitial atom pushes one of its nearest neighbours 
on a normal lattice site into another interstitial position and itself occupies the lattice 
site of the displaced atom) is favoured.

The quasi-chemical theory of diffusion in solids was initially developed by Ya-
kov Frenkel and later improved by F. C. Frank and D. Turnbull [1, 4, 45]. This 
was further developed by Henry Eyring and coauthors who applied their famous 
activated complex theory (ACT) for chemical reactions to diffusion in solids. The 
diffusion in the treatment is represented by an ensemble of elementary events, each 
of which is represented by the creation or destruction of an activated complex (tran-
sition state). The rate of the elementary process is given by the concentration of the 
activated complex multiplied by the rate of its decomposition. It is hypothesized 
that the complex is in quasi-equilibrium with the stable components and the con-
centration of the complex can be calculated using equilibrium statistical thermody-
namics [3].

Eyring’s approach to diffusion problems is illustrated here for vacancy diffusion 
in cubic lattice of an elemental solid. The coefficient for such diffusion may be 
expressed as:
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2
0 dD a wNα=� (2.44)

where α  is a geometrical factor ( = 1 for bcc and fcc lattices), a0 is the lattice pa-
rameter, w  is the frequency of a jump to an adjacent site, and Nd

 is the fraction of 
vacancies in the lattice.

To obtain an expression for the temperature dependence of D (Eq. 2.44), it needs 
considering how N wd and  change with temperature. The diffusing atoms may 
make a jump, only when a neighbouring lattice site is vacant. If ∆Gd

 is the Gibbs 
free energy of vacancy formation, Nd

may be expressed as:

/ ( ) ( / ) /d d dG RT H RT S R
dN e e e−∆ − ∆ ∆= =� (2.45)

where ∆Hd
and ∆Sd

 are the corresponding enthalpy and entropy terms.
∆Hd

 is generally positive and Nd
 increases with temperature. The rate at which 

an atom jumps between neighbouring sites in a lattice may be written following 
ACT as:

/ / /m m mG RT S R H RTve ve eω −∆ ∆ −∆= =� (2.46)

where ∆Gm
, ∆Hm

, and ∆Sm
 are the free energy, enthalpy, and entropy changes as-

sociated with the movement of the atom from the initial equilibrium condition to 
the activated complex at the top of the potential energy barrier, which the atom has 
to surmount during the jump to another equilibrium site. v  in Eq. 2.46 represents 
the vibration frequency and is of the order of 1013 Hertz. ∆Sm

 is generally small 
~ 10 JK-1 mol−1.

The temperature dependence of D for vacancy diffusion in a cubic lattice of an 
elemental solid may now be expressed as [3, 45]:

( )/ ( )/ ( )2
0

d m d mS S R H H RTD a ve eα ∆ + ∆ − ∆ + ∆=� (2.47)

The experimental D versus T data leads to the following equation:

D D e Q RT= −
0

/

� (2.48)

where Q is the activation energy.
On comparing Eq. 2.48 with Eq. 2.47, the activation energy consists of:

Q H Hd m= +∆ ∆� (2.49)

and the corresponding D0 is given by:

( )/2
0 0

d mS S RD a veα ∆ + ∆=�
(2.50)
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2.4 � Osmosis

Transport processes occurring via artificial membranes separating different salt 
solutions are of great interest to chemists, chemical engineers, and biologists. To 
understand the mechanism of transport is a thrust area of research for chemists and 
chemical engineers; they are interested in fabricating membranes of any desired 
properties. However, biologists would like to use them as simple models for under-
standing the properties of complex cell membranes [46]. The transport of solvent 
molecules through semipermeable membranes is known as osmosis. If two solu-
tions of different concentrations are separated by a semipermeable membrane, the 
solvent tends to transport across the membrane from the less concentrated to the 
more concentrated side. Osmosis is a selective diffusion process driven by the inter-
nal energy of the solvent molecules. It is convenient to express the available energy 
per unit volume in terms of osmotic pressure.

The movement of a pure solvent is driven for reducing the free energy of the 
system by equalizing solute concentrations on each side of a membrane, generating 
osmotic pressure. Osmosis is driven by the imbalance in water concentration. Os-
mosis is vital to life, because of its function in maintaining equilibrium inside and 
outside of a cell. In the human body, osmosis is used by the kidneys to cleanse the 
blood. Osmosis is of great importance in biological processes where the solvent is 
water. The transport of water and other molecules across biological membranes is 
essential to many processes in living organisms. The cell membrane functions as a 
semipermeable barrier; it allows selective passage of molecules through it. Osmosis 
depends upon concentration of solute particles, ionization of solute particles, hydra-
tion of solute particles, and temperature.

Both plant and animal living cells are enclosed by semipermeable membranes, 
called the cell membranes that regulate the flow of liquids and of dissolved solids 
and gases into and out of the cell. The cell membrane forms a selective barrier be-
tween the cell and its environment so that not all substances can pass through the 
membrane easily. Without this selectivity, toxic materials from the surroundings 
would enter the cell. If blood or other cells are placed in contact with an isotonic 
solution, they will neither shrink nor swell. If the cell is placed in a hypertonic solu-
tion, it will lose water and shrink (plasmolysis) and shows exosmosis. If a cell is 
placed in a hypotonic solution (or if a pure solvent is used), the cells swell and show 
endosmosis. Hence, the osmotic pressure so developed inside the cell may even be 
great enough to rupture the cell membrane. In plants, osmosis is at least partially 
responsible for the absorption of soil water by root hairs and for the up pull of the 
liquid to the leaves of the plants. However, plants wilt when watered with saltwater 
or treated with too much fertilizer, since the soil around their roots becomes hyper-
tonic.

The phenomenon of osmosis takes place in the absorption of water by plant 
roots, reabsorption of water by the proximal and distal convoluted tubules of the 
nephron, reabsorption of tissue fluid into the venule ends of the blood capillaries, 
and the absorption of water by the alimentary canal, stomach, small intestine, and 
colon.
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Purification or desalination of water is also carried out by osmosis. Currently, 
two types of osmosis are used in the purification of water: forward osmosis (FO), 
reverse osmosis (RO). FO is a manipulated osmosis or engineered osmosis. It in-
volves low-cost energy processes and is one of the emerging membrane technolo-
gies, as it has the ability to desalinate seawater or brackish water naturally [47]. RO 
is currently the most commonly used water purification technology because of its 
merits over other conventional thermal desalination technologies. In RO, an applied 
pressure is used to overcome osmotic pressure, a colligative property that is driven 
by chemical potential, a thermodynamic parameter [48].

In osmotic drug delivery system, the osmotic pressure of drug or other solutes 
(osmogens or osmagents) is used for the controlled delivery of drugs. In drug de-
livery, the two most critical properties considered for the selection of osmogen are 
osmotic activity and aqueous solubility. Osmotic agents or osmogens for drug de-
livery are classified as: (i) inorganic water soluble osmogens: magnesium sulphate, 
sodium chloride, sodium sulphate, potassium chloride, sodium bicarbonate, etc. 
(ii) organic polymeric osmogens: sodium carboxymethyl cellulose (NaCMC), hy-
droxypropylmethycellulose (HPMC), hydroxyethylmethyl cellulose (HEMC), etc. 
and (iii) organic water soluble osmogens: sorbitol, mannitol, etc.

Cellulose acetate is a commonly used semipermeable membrane for the prepa-
ration of osmotic pumps in biological systems. Some other examples of polymers 
used in semipermeable membrane are agar acetate, amylose triacetate, beta-glucan 
acetate, poly (vinylmethyl) ether copolymers, poly (orthoesters), polyacetals, poly 
(glycolic acid), and poly (lactic acid) derivatives.

Osmosis has several implications in medical science. If blood cells were stored 
in water, osmosis would cause them to swell and eventually burst. Osmosis is close-
ly related to dialysis, which is critical to the survival of many victims of kidney 
diseases. Dialysis is the process by which an artificial kidney machine removes 
waste products from the patients’ blood, performing the role of a healthy, normally 
functioning kidney.

Osmosis is classified based on the solution in which the cell is placed: endos-
mosis, exosmosis. When a cell is placed in hypotonic solution, water enters into the 
cell from the outer (hypotonic) solution. This process of diffusion of water into a 
cell from the outside is called endosmosis. When a cell is immersed in a hypertonic 
solution, water diffuses out of the cell because the concentration of water molecules 
in the cell is more than the outer solution. This is known as exosmosis.

2.4.1 � Historical Perspective

In 1748, osmosis phenomenon through semipermeable membranes was first ob-
served by Cleric Jean-Antoine Nollet [49]. The term “osmosis” descends from the 
Greek words meaning “endosmose” and “exosmose”, which were coined by the 
French physician René Joachim Henri Dutrochet. The general term osmose (now 
osmosis) was introduced in 1854 by a British chemist, Thomas Graham [50]. Ex-
perimental work was conducted primarily with membranes of animals and plants. 
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In 1867, the first artificial semipermeable membrane of inorganic compound copper 
ferrocyanide was prepared by Traube [51]. Osmosis was first thoroughly studied 
in 1877 by a German plant physiologist Wilhelm Pfeffer by successful quantitative 
measurement of osmotic effect. Pfeffer measured the effect by utilizing a membrane, 
which is selectively permeable to water but impermeable to sugar. The membrane 
separated sugar solution from pure water. Pfeffer observed flow of water into the 
sugar solution, which stopped when a pressure p was applied to the sugar solution. 
Pfeffer postulated that this pressure, the osmotic pressure π of the sugar solution is 
proportional to the solution concentration and absolute temperature. Van’t Hoff es-
tablished an expression that is analogous to the Pfeffer results and the ideal gas laws 
[52] in 1886 as 

2 ,n RTπ =  where 
2n represents the molar concentration of sugar (or 

other solute) in the solution, R is the gas constant and T is the absolute temperature.
The most carefully documented use of pressure as a driving force for membrane 

filtration was published in 1907 by Bechold [53]. Osmotic drug delivery uses the 
osmotic pressure of drug or other solutes (osmogens or osmagents) for controlled 
delivery of drugs. Osmotic drug delivery has come a long way since the Australian 
physiologists Rose and Nelson developed an implantable pump in 1955 [54]. Drug 
itself may act as an osmogen showing good aqueous solubility (e.g. potassium chlo-
ride pumps). If the drug does not possess an osmogenic property, osmogenic salt 
and other sugars can be incorporated in the formulation.

2.4.2 � Current Status of Research

New therapeutically active molecules for the treatment and prevention of diseases 
are currently being developed. It is a primary requirement for the therapeutically ac-
tive molecules to reach its site of action, hence novel drug delivery systems (NDDS) 
have been recognized as an attraction for the pharmaceutical and health industry 
[55]. Many conventional drug delivery systems have been designed by various sci-
entists to modulate the release and transport of drugs over an extended period of 
time. The rate and extent of drug absorption and release may depend on the factors 
such as physicochemical properties of the drug, presence of excipients, physiologi-
cal factors such as presence or absence of food, and pH of the gastrointestinal tract 
(GI) [56]. Drugs can be delivered in a controlled pattern over a long period of time 
by the process of osmosis and this is known as the osmotic drug delivery process. 
Osmotic drug delivery uses the osmotic pressure of drugs or other solutes (called 
osmagents) for controlled delivery of drugs. Drug delivery systems are independent 
of the different physiological factors of gastrointestinal tract; the release character-
istics can be predicted easily from the known properties of the drug and the dosage 
form [57]. It is a cost-effective method for the drug delivery. The major advantage 
of osmotic drug delivery are: (i) the delivery rate of zero order (which is most desir-
able) is achievable with osmotic systems, (ii) desired drug delivery may be delayed 
or pulsed, (iii) for oral osmotic systems, drug release is independent of gastric pH 
and hydrodynamic conditions, which is mainly attributed to the unique properties of 
semipermeable membrane employed in coating of osmotic formulations.
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2.5 � Summary

Diffusion is a widely applicable concept. It applies to any field involving random 
walks in ensembles of individuals. In fact, the concept of diffusion is used across di-
verse fields stretching from physics, chemistry, and biology to sociology, econom-
ics, and finance even. The diffusion behaviour in many of the cases follows linear 
Fick’s laws. However, there are a good number of instances where diffusive flows 
become non-Fickian. For diffusion on catalyst surfaces, in crystal lattices, porous 
media, phase-segregation, etc., a more general nonlinear approach is required.

The biological cells use different mechanisms for transportation of substrates, 
products, waste, etc. to maintain homoeostasis. Diffusion and osmosis are involved 
in active metabolism in living cells. The implications of restricted molecular diffu-
sion for cell function remain a major unresolved issue. Diffusion has played a key 
role in extending the applicability of MRI technique and given rise to new MRI 
techniques. One such technique, diffusion-weighted imaging MR (DW-MRI) relies 
on the determination of random microscopic motion of free water molecules in tis-
sues with clinical applications to a wide range of pathological conditions. Another 
technique, diffusion tensor imaging MRI (DT-MRI) is based on the fact that mo-
bilities of water molecules in directionally ordered cellular structures such as cell 
membranes and myelin become directionally dependent. DT-MRI characterizes this 
directional nature of water motion and thereby provides structural information that 
cannot be obtained by standard anatomical imaging. On the other hand, osmosis has 
also several implications in medical care, particularly for the storage of red blood 
cells. For drug delivery in the living systems, scientists are pursuing development 
of osmosis that has better absorptive and pharmacokinetic properties. Osmotic drug 
delivery uses the osmotic pressure of drugs or other solutes (called osmagents) for 
controlled delivery of drugs in biological systems.
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3.1 � Introduction

Traditional approaches for the description of sediment-laden, open-channel flows 
rely on the concept of a flow of a mixture of sediment and water. The sediment is 
assumed to move with the same stream-wise velocity as the carrier fluid. The veloc-
ity of the mixture is obtained from the semi-logarithmic law as:

* 0

1
ln( ),

U z

u zκ
=

�
(3.1)

with for rough boundary,z
Ks

0 30
=

�
(3.2a)

0
*

and for smooth boundary,
9.0 

z
u

ν
=

�
(3.2b)

where U  is the time-averaged velocity, u* is the shear velocity, z indicates the dis-
tance from the bed in the wall-normal direction, K is the von-Kármán constant, KS is 
the grain roughness equivalent height, and v is the kinematic viscosity, respectively. 
Several attempts have been made to modify the value of von-Kármán constant to in-
clude the influence of sediment concentration [1–6], but there is no widely accepted 
result to date.
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In the simplest model, the transport of sediment can be described by the advec-
tion-diffusion equation for the sediment concentration ( )C . The sediment diffusiv-
ity in the wall-normal direction due to turbulence is assumed to balance the effect 
of gravity. This assumption leads to the famous Rousean formula [7] to estimate 
the distribution of sediment in the wall-normal direction. The following balance is 
achieved by neglecting the horizontal gradients of the transport terms in the advec-
tion-diffusion equation [8]:

CW D
dC

dzs d+ = 0,
�

(3.3)

where Dd  is the sediment diffusivity and Ws is the settling (fall) velocity. When the 
flow carries relatively large amount of sediment particles, a model proposed by 
Hunt [9] is more suitable than the Rousean balance to represent the physics of the 
problem. Hunt’s model is obtained from:

CW C D
dC

dzs d( ) .1 0− + =
�

(3.4)

It is clear that the Rousean balance is a special case of Hunt’s model in which 
the fraction of water ( )1− C  can be approximated as unity when the mixture is di-
lute.Dd  is customarily modeled as [10]:

,d cD Dβ=� (3.5)

where Dc is the diffusivity of momentum of the mixture, i.e., the eddy viscosity, and 
β is the damping coefficient. Dc

 is usually parameterized as:

* ( )c

z
D u h  z

h
κ= −

�
(3.6)

which is consistent with the semi-logarithmic velocity law [11]. The Rousean for-
mula has been used extensively since the seminal experiments by Vanoni [12] with 

1β= , in what it is considered its standard form [13–14]. In practice, one needs to 
adjust β to match the predictions to the experimental values of the sediment con-
centration.

Diverse authors have documented several limitations of the standard Rousean 
equation for predicting the sediment concentration in open channels. Many re-
searchers [15–17] have stated, through analysis of different datasets, that the “sin-
gle-phase model” clearly exemplified by Rouse’s approach is too simple from the 
phenomenology of the sediment-transport problem (a similar limitation has been 
found with Hunt’s model [18].). The observations in [16] pointed to the fact that 
the slopes in the sediment-concentration curves were flatter than those given by the 
Rousean curve. Since this can be associated with larger diffusion, Greiman et al. 
[15] attempted to explain the additional diffusion using the concept of drift.
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According to [19], the Rousean distribution has the merit of being rather simple 
since it contains few parameters. However, the classical approach cannot incorpo-
rate in detail the effects of particle inertia, particle–particle interaction, and particle–
fluid interaction. Greimann et al. [15] and Jiang et al. [19] stated that the Rousean 
distribution cannot address the velocity lag between water and the sediment in a 
direct manner. Further, the Rousean profile does not provide any information about 
the turbulence distribution in the vertical direction and cannot be extended to assess 
cases of non-dilute mixtures, where the sediment concentration is large. Hunt’s bal-
ance does not incorporate the effects of particle inertia, particle–particle interaction, 
and particle–fluid interaction, or the velocity lag between phases either. These facts 
provide motivation for seeking a more comprehensive model.

Through the relatively recent findings of experiments [1, 20–22], it is evident 
that even in the case of dilute flows, the stream-wise velocity of the suspended 
sediment in open channels is smaller than that of the carrier fluid. By ignoring the 
velocity lag between the two phases (sediments and water), the suspended-sediment 
load calculation can be overestimated by 37 % in some cases [23]. As the concen-
tration becomes large, the velocity lag may become more significant [24]. These 
issues call for more general theories than simply solving a vertical balance for the 
sediment, as done in the Rousean formula. Two-phase or two-fluid models seem to 
be a natural alternative.

Figure 3.1 shows the phases in sediment-laden flows in open channels; water 
acts as the carrier phase, and the solid particles constitute the disperse phase. 
In two-phase-flow models, there are mainly two approaches in use currently: 
“trajectory” (Lagrangian) approaches, and “two-fluid” (Eulerian) approaches. In 
trajectory approaches, the motion of each particle is followed in order to describe 
the distribution of the disperse phase. In the two-fluid approaches, the carrier and 
disperse phases are described by a set of “continuum” equations representing 
conservation of mass and momentum of each phase within a fixed elemental vol-
ume of the mixture (conservation equations of energy can be employed as well 
depending on the nature of the problem). The details of these approaches can 
be found in [25]. The purpose of this chapter is to present a general framework 

z

x

U
C C

θ

g

Fig. 3.1   Schematic of sediment-laden, open-channel flow ( y axis points in the direction perpen-
dicular to the page, adapted from [17])
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based on the two-fluid approach to model the transport of suspended sediment 
in open channels.

We start by presenting a framework for non-dilute transport of suspended sedi-
ment; dilute conditions appear as a special case. As expected, difficulties are en-
countered in solving a large number of equations interconnected by interaction 
forces and in the definition for diffusivities. The poor understanding of several un-
known correlation terms embedded in two-phase models (TFM) requires further 
simplifications. We present a hierarchy of models, which are as follows: (i) one 
which solves the two-fluid flow equations (which we call the complete two-fluid 
model, CTFM), (ii) a second one, based on solving mixture equations, which can 
be obtained by combining the mass and momentum equations of both phases (we 
call it the partial two-fluid model, PTFM). After presenting the equations, we turn 
to discussing potential closures for the correlation terms and their importance, based 
on different flow conditions and different mass loadings. We finally summarize the 
key findings of our research on this topic.

3.2 � Mathematical Models Based on the Multi Component 
Fluid Theory

3.2.1 � General Equations for a Complete Two-Fluid Model 
(CTFM)

Drew et al. [26] presented the rigorous derivation of the conservation of mass, mo-
mentum, and energy for multiphase flows starting from the very basics of con-
tinuum mechanics. They employed the “ensemble” averaging procedure. According 
to [27], the ensemble can be thought as a large number of realizations of a physical 
experiment carried out under identical external conditions. The ensemble average 
of an arbitrary variable ϕ  over several realizations is defined by ,d

ε

ϕ ϕ υ=
∑
∫  

where υ  indicates the density for the measure (probability) on the set of realiza-
tions. Based on the continuum assumption enforced for the phases, [26] presented 
the general TFM consisting of mass, momentum, and energy equations for the car-
rier and disperse phases. The TFM can be written as:

Conservation of mass

,( ) ( ) .p p p p j p p
j

U
t x

α ρ α ρ∂ ∂
+ = Γ

∂ ∂
�� �

�
(3.7)
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Conservation of momentum

, , ,

, , int
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t x x
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x

α ρ α ρ α

α α ρ
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+ = −

∂ ∂ ∂

∂  + + + ± ∂

�
� � �� �

� �

�
(3.8)

In the above equations, the subscript p  stands for both phases (which could be c 
or d for the carrier and the disperse phases, respectively); α  represents the volume 
fraction; , , and U Pρ � ��  represent the ensemble-averaged density, velocity, and pres-
sure, respectively; ,ij pT�  refers to the ensemble-averaged deviatoric stresses of phase 
p; the stresses with the superscript EA  are the remainder of the process of ensemble 
averaging; gi  is the ith  component of the acceleration due to gravity; ( )intF i

 in-
cludes all the interactive forces, typically, due to the drag, lift, virtual mass, and 
turbulent dispersion; and x and t  are the space and time coordinates, respectively. 
The indices i  and j vary from 1 to 3 and the sum is implied in repeated indices 
(Einstein convention).

The first and second terms on the left-hand side of Eq. 3.7 are the rate of change 
of mass in a point and the net rate of convective mass flux. The term on the right-
hand side of Eq. 3.7 represents the mass exchange between the phases, if any. The 
first and second terms on the left-hand side of Eq. 3.8 are the net rate of change of 
momentum in a point and the net rate of momentum transfer by convection, respec-
tively; the first term on the right-hand side is the ensemble-averaged pressure gradi-
ent; the second term represents the deviatoric stresses; the third term includes the 
body forces such as gravity; and the last term includes all types of interactive forces.

The TFM is the most general theory for two-phase flows. The equations ex-
plained in [26] have been used in several studies. Buscaglia et al. and Bombardelli 
et  al. [28, 29] used these equations to derive mixture equations to model large-
scale bubble plumes. Lopez De Bertodano et al. [30], in turn, developed a two-fluid 
model for two-phase jets for nuclear reactor safety. In sediment-transport modeling, 
TFM has been applied in different forms and simplifications by many researchers 
[15–17, 19, 31–38].

It could be thought that the TFM equations, together with the appropriate bound-
ary conditions, are the “exact” equations that need to be solved in order to repre-
sent the intrinsic mechanics of two-phase flows. However, these equations present 
some mathematical shortcomings under some conditions that need further analysis. 
Not only no proof of existence, uniqueness and smoothness with boundary condi-
tions have been given (as happens with the Navier-Stokes equations), but also [26] 
showed that even a simple case of 1D, unsteady two-phase flow is mathematically 
ill-posed. As a consequence, care should be taken when evaluating these equations.

Ensemble averaging, encompasses all scales of turbulence, is assumed in the 
derivations of Eqs. 3.7 and 3.8. Therefore, the effects of turbulence are taken into 
account in those equations through the turbulent dispersion force. We believe that 
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the ensemble average only encompasses scales of the order of the particle-to-par-
ticle distance. Under this assumption, the length and time scales associated with 
ensemble averaging are smaller than intermediate to large scales developed due to 
turbulence [17, 28, 29, 39]. Therefore, we argue that a second averaging procedure 
is needed to get a Reynolds-averaged Navier-Stokes (RANS) formulation, which 
would lead to a more involved momentum equation for each phase [33, 40, 41]. To 
perform a second averaging over time, we first introduce the Reynolds decomposi-
tion to each instantaneous variable as:

( ) ( ) ( )
, ,

int

~
; ; ; ;, , , ,

; ,, . , int int

p i p ij pU U u P P p T T ti pp p i p ij p ij p

EA EA EAT T t F F Fij p ij p ij p ii i

′α α α= + = + = + = +′ ′ ′

′= + = + ′

� �

�
(3.9)

where the uppercase letters with overbar represent the mean components of the 
variable, and the lowercase letters with superscript indicate the fluctuations of the 
variable. By inserting Eq. 3.9 into Eqs. 3.7 and 3.8, we obtain:

Conservation of mass
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(3.11)

By performing averaging over Eq. 3.10, the following equation holds true (we have 
removed the symbol of ensemble average from the equation):

, , 0.p p p p j p p p j p
j

U u
t x

′ ′α ρ ρ α ρ α∂ ∂    + + =   ∂ ∂
�

(3.12)
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Similarly, by performing averaging over Eq. 3.11, we obtain:

	�

(3.13)

Equation 3.13 can be approximated as:
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Following [42] in the derivation of Eq. 3.14, we have neglected several correla-
tions of fourth order and third order, such as 

, ,p i p j pu u′ ′ ′α . We also collapse two time 
derivatives of Eq. 3.13 into a single term (first term in Eq. 3.14). We consider that 
the terms , , , , , ,p p i p j p p i p p j p p j p p i pu u U u U u′ ′ ′ ′ ′ ′ρ α ρ α ρ α+ +  represent the Reynolds 
stresses and Reynolds solid fluxes. In Eq. 3.14, this term is represented by Tij p,

Re . 
We neglect the pressure fluctuation term on the right-hand side of Eq. 3.13. We fur-
ther assume that the terms , , ,

EA EA
p ij p p ij p p ij pT t t′ ′ ′ ′α α α+ +  are included in the Reynolds 

stresses as well. In Eq. 3.14, the Re
, , , ,ij p ij p p d ij pT Tς δ+ +  term is assumed to contain 

contributions of the viscous deviatoric stresses, the ensemble-averaged stresses as 
well as the contribution from the turbulent fluctuations. In the cases of non-dilute 
flows, additional stresses develop due to interparticle collisions. Similar to [43], we 
added a term , ,ij p p dς δ  in Eq. 3.15, where ,p dδ  is 0 when p c= , and 1 when p d=
. Equations3.12 and 3.14 constitute the CTFM.

3.2.2 � General Equations for a Partial Two-Fluid Model (PTFM)

Extending the works presented in [28, 29, 44, 45], the mixture equations can be 
derived by combining the mass and momentum equations of the two phases. This 
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approach has the advantage in reducing the complexities involved in solving non-
linear and interdependent equations of the CTFM. We introduce the mixture vari-
ables as:

;m m c c c d d dU U Uρ α ρ α ρ= +� �� �
� (3.15)

;m c c d dρ α ρ α ρ= +� �
� (3.16)

;m c c d dT T Tα α= +� �
� (3.17)

where the subscript m  stands for mixture and ~ denotes ensemble averaging. By 
combining Eqs. 3.7 and 3.9 and using the mixture variables, the following equations 
for the mixture can be obtained:

Conservation of mass for the mixture:
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(3.19)

As discussed in the previous section, we perform time averaging of Eqs. 3.18 and 
3.19 by decomposing the variables in their mean and fluctuation components as 
follows:

, , , ; ,i m i m i m m m mU U u T T t= + = +′ ′
�

(3.20)

Where the uppercase letters with overbar represent the mean component of the vari-
able and the lowercase letters with superscript indicate fluctuating components of 
the variable. The resulting equations are (after removing the symbol of ensemble 
average from the equations):

S. K. Jha and F. A. Bombardelli



59

Conservation of mass for the mixture:
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�Conservation of momentum for the mixture:
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(3.22)

Equation 3.22 is still involved and contains terms which require further closure and 
it adds uncertainty and complexity to the models. The last term of Eq. 3.22 pos-
sesses several correlations of second, third, and fourth orders. The current knowl-
edge on this topic does not allow us to propose a certain specific closure to these 
unknown terms [42]. Thus, we propose to model the momentum equation in the 
following simplified form:
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(3.23)

It is worth mentioning that the last term of Eq. 3.23 disappears when a dilute mix-
ture is considered. Further simplification to the PTFM model is introduced by em-
ploying the following algebraic relation instead of the momentum equation for the 
disperse phase:

U U Wj d j m d j, , , ,= +
�

(3.24)

where Wd
 is the relative velocity vector of the disperse phase. Equations 3.21, 3.23, 

and 3.24 constitute the PTFM. In the CTFM model, the velocity of the disperse 
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phase in the wall-normal direction is obtained by solving the momentum equation. 
But in the case of PTFM, the wall-normal velocity of the sediments is computed 
from an algebraic model.

3.2.3 � Closure to the Models

In the above model, we need closures for the Reynolds fluxes, Reynolds stresses, 
eddy viscosity of the carrier and disperse phases, stresses due to interparticle colli-
sions, and for the interactions forces. Following our previous papers on this topic, 
we summarize the closures in Table 3.1. In Eq. T1, the Reynolds fluxes are defined 
according to the gradient of the time-averaged solid fraction (gradient-transport hy-
pothesis [11]). In Eq. T2, ,T cν  is the eddy viscosity of the carrier phase and Sc  is 
the Schmidt number. Note that the Schmidt number also appears in Eq. 3.5 in the 
standard Rousean model as the inverse of β  parameter. Several authors have pro-
posed different formulae to determine the Schmidt number [17, 35, 46, 47]. There is 
no consensus whether the Schmidt number should be larger or smaller than one for 
a given flow condition. Cellino et al. [48] and Yoon et al. [49] obtained Sc greater 
than one even for dilute cases.

The Reynolds stresses of the carrier phase ( ), ,′ ′u ui c j c  can be obtained either rig-
orously by solving the transport equations for the components of the stress tensor 
leading to the Reynolds stress model (RSM) [50], or using Boussinesq model as 
presented in Eq. T3.

The Reynolds stress of the disperse phase ( ), ,′ ′u ui d j d  can also be approximated by 
using Eq. T3. Equation T3 involves , ,andT c T dν ν  which needs further closure. The 

,T cν  can be defined in terms of turbulent kinetic energy ( K ) and its dissipation rate 
(ε). The transport equations of K  and ε  are presented in [18]. For dilute flows, 
the Reynolds stresses in the disperse phase can be assumed as negligible; thus the 
problem of defining ,T dν  does not arise. Jha et al. [18] has tested the definition as 
proposed in Eqs. T5 and T6 for simulation of non-dilute flows in open channels.

Some researchers argue that the transport equations for the closure of Reynolds 
stresses of the carrier phase has to be extended for two-phase flows. Jha et al. [51] 
proposed extensions for the RSM, andK Kε ω− −  models. In the case of dilute 
flows, they found that the use of the RSM does not improve the model prediction 
beyond the accuracy of the K ε−  model when compared with the data of [21, 52, 
53]; however, different turbulence closures needed different values of the Schmidt 
number. The extensions proposed in the K ε−  model were found to have negligible 
effect on the model results. The accuracy of the application of extended equations 
for turbulence closures in the case of non-dilute flow is still under debate. Some 
researchers have also advocated the idea of modifying the coefficients used in the 
K ε−  model [35, 54].

For non-dilute flows, further complexity arises because of the need of closure 
for stresses due to interparticle collisions. Jha et al. [18] and Greimann et al. [34] 
successfully applied the model originally proposed by [43] as presented in Eq. T7. 
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In Eq. T7, ,max2.5
,max(1 / ) d

o d dg αα α −= − ; τ  is the granular temperature, which can 
be defined as 2 / 3 ;d dK Kτ =  is the turbulence kinetic energy of the disperse phase; 

,maxdα  is the maximum packing concentration which has the value of 0.53 as an up-
per limit; and e  is the coefficient of restitution of particle collision.

Equations T8, T9, T10 represent the interaction forces of drag, lift, and virtual 
mass, respectively. Based on the nature of the flow, a combination of these forces 
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Table 3.1   Closures of correlation terms in the CTFM and PTFM equations
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is necessary to consider in the modeling equations. These force terms contain vari-
ables of both the carrier phase and the disperse phase. Therefore, they make the 
equations coupled.

3.3 � Assessment of 1D Versions of the CTFM and PTFM 
in Modeling Dilute and Non-Dilute Flows

The observations presented in this section are based on our findings resulting from 
the application of 1D versions of the CTFM and PTFM in its non-dilute and dilute 
versions. We compared our simulation results with experimental data available in 
the literature for the mean velocity of the carrier and disperse phases, profiles of 
concentration of sediment in the flow, and turbulent statistics. Here we present the 
conclusions of our work. We refer readers to our papers for details.

3.3.1 � Model Complexity Necessary to Represent Mean Velocity

The complete solution of the CTFM is cumbersome. Even for a 1D case, the num-
ber of basic governing equations is six (mass, momentum in stream-wise direction 
and momentum in wall-normal direction for each phase). Further, the closure for the 
turbulence adds more equations to the list. For example, in the K ε−  model, there 
are two transport equations. So there are total eight transport equations which are 
interconnected. In the case of PTFM, the number of equations is the same as in the 
CTFM but there is no need to solve the momentum equation of the disperse phase 
in the wall-normal direction (Eq. 3.24). In case of dilute flows, we showed in [17] 
that although the CTFM should, in principle, provide more accurate results given 
its complexity and “rigor,” in practice, it does not provide significant improvement 
over the PTFM. When the magnitude of the maximum sediment concentration at 
the river bed boundary exceeds 10 %, the CTFM is found to be necessary to obtain 
accurate predictions of mean velocities. In Fig. 3.2, we show the profiles of stream-
wise velocity obtained from CTFM and PTFM compared with S13, S14, S16 data-
sets of [55]. The maximum concentration at the bed boundary in S13, S14, and S16 
are 13, 14, and 23 %, respectively. It is clear from this figure that as the maximum 
concentration of sediment at the bed boundary increases, results obtained from 
PTFM begin to deviate. It is very important that the modeler determines the level 
of complexity necessary in a given study and selects the most accurate approach.

3.3.2 � Importance of Forces

In non-dilute flows, the relative magnitude of the lift and virtual mass forces with 
respect to the drag force are found to be smaller than 5 and 25 %, respectively. In 
case of dilute flows, the lift force can be disregarded as opposed to the drag force.
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3.3.3 � Sediment Concentration

Most of our models were found to represent the velocity relatively accurately within 
a range of 5–10 % difference with data. In predicting the sediment volume fraction 
in dilute and non-dilute flows, two-phase flow equations bring a substantial im-
provement with respect to the Rousean distribution, albeit with the need of adjust-
ing the Schmidt number ( Sc). In Fig. 3.3, we show the results of applying the 1D 
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version of PTFM for simulating dilute transport of sediments. The reference data is 
obtained from [53]. We observe that the Rousean distribution with Sc = 1 does not 
provide results close to the data. The Sc number was found to be less than one to ap-
proximate the concentration profile with the data ( Sc = 0.6). We carried out several 
simulations of dilute and non-dilute flows and our results indicate that the value of 
Sc is less than one for dilute flows and greater than one for non-dilute flows. These 
findings indicate that the diffusivity of momentum of the carrier phase is smaller 
than the diffusivity of sediment in dilute flows. In non-dilute flows, the values of Sc 
imply that the diffusivity of the sediment is reduced in a sizeable way with respect 
to the flow eddy viscosity. Figure 3.4 shows that our findings agree with observa-
tions reported elsewhere.

3.4 � Concluding Remarks

This chapter summarizes a hierarchy of models based on multi-phase flow theory 
applied to investigating dilute and non-dilute transport of sediments in open chan-
nels. The following insights are highlighted from our findings:
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i.	 Traditional mixture flow model is too simplistic in formulation to account for all 
the mechanisms involved in sediment transport in open channels.

ii.	 The TFM model presented in various textbooks are supplemented with a second 
averaging that modifies the way turbulence is treated.

iii.	The resulting model requires further definition of several correlation terms 
which do not have well-established formulations. It is left up to the mod-
eler to apply proper assumptions and reliable closures. However, our work 
indicates the necessity and/or advantage for using some formulations over 
alternatives.

iv.	Based on the concentration of the sediment present in the flow, some simplifica-
tions can be introduced in the two-phase flow equations.

v.	 Further understanding of velocity lag between the sediment and water, and tur-
bulence modulation can only be possible through more experimental tests usable 
for validation of complex two-phase flow models.

3.5 � List of Symbols

C 	 Concentration of suspended sediment
Dc

	 Diffusivity of momentum of the mixture
Dd

	 Vertical diffusivity for sediment
d p 	 Diameter of particles
e 	 Coefficient of restitution
Fint

	 Interaction forces
g 	 Acceleration due to gravity
h 	 Depth of the channel
K 	  Turbulent kinetic energy
Ks

	 Grain roughness equivalent height
lmd

	 Mixing length
P 	 Pressure
S 	 Source term
Sb

	 Slope of the channel bed
T 	 Deviatoric stresses
U 	 Mean velocity in the stream-wise direction

′u 	 Velocity fluctuations in the stream-wise direction
u*

	 Wall-friction (shear) velocity
W 	 Mean velocity in the wall-normal direction

′w 	  Velocity fluctuations in the wall-normal direction
WS

	 Settling velocity
x	 Stream-wise coordinate
y	 Transverse coordinate
z	  Wall-normal coordinate
t	 Time coordinate
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3.6 � Greek symbols

Sc 	 Schmidt number
κ 	 von-Kármán constant
ε 	 Dissipation rate of turbulent kinetic energy
α 	 Phase fraction
β 	 Damping coefficient
ρ 	 Density
Γ 	 Mass sources (or sinks) due to the convective or molecular fluxes
ς 	 Stress due to interparticle collisions

ijδ 	 Kronecker delta
τ 	 Granular temperature
ν 	 Eddy viscosity
θ 	 Angle between the bed of the channel and a horizontal line

3.7 � Subscripts

c 	 Relative to the carrier phase
d 	 Relative to the disperse phase
m 	 Relative to the mixture
p 	 Phase

3.8 � Superscripts

`	 Fluctuation
Re 	 Explicit particle Reynolds number
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4.1 � Introduction

4.1.1 � Mathematical Modelling

Modelling a system is a Herculean task as the vast majority of systems which are 
studied, are extremely complex. A system may be open, i.e. the factors influenc-
ing it are numerous and are affected by the surroundings. Simpler to simulate are 
closed systems, in which, given justifiable assumptions, all components are pre-
cisely determinable. This type of system can be modelled with confidence and ac-
curacy. This makes the identification of an exact problem more challenging. Hence, 
any attempt to model a system is founded on some inherent physical assumptions 
and some degree of simplification which makes the system theoretically “closed” 
and renders a robust formulation for the processes involved in the system practi-
cable. We, therefore, make attempts to model a particular phenomenon of a sys-
tem by initially ignoring the parameters with less influence on the phenomenon. 
The model is improved by gradually incorporating more and more parameters and 
applying advanced mathematical know-how, reinforced with experimentation and 
observation, where possible. Nevertheless, the parameters with meager effects re-
main neglected. The reliability of a model is dependent on the degree of exactness. 
Modelling is, therefore, a pragmatic attempt to simulate a reduced complexity and 
reality. In biological systems, such as transport processes in the human body [1] 
and external aerodynamics of natural fliers [2], mathematical modelling provides 
insights which may not be realizable with practical experimentation. In conjunction 
with computers, mathematical simulation in biology [3] now provides one of the 
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most challenging, intriguing, and rewarding areas of scientific endeavour. In the 
same way that the twentieth century was the era of nuclear science and high-speed 
transport (aircraft, trains, automobiles and planetary exploration rovers) in which 
engineers mimicked and attempted to improve upon nature [4], the twenty-first cen-
tury has emerged as a new frontier for biological modelling.

There has been a tremendous fusion of biologists, mathematicians, biomechani-
cal engineers, biochemists and biophysicists, collectively focusing on resolving 
many types of problem at different scales [5]. In the same way that engineers mim-
icked biological mechanisms in the twentieth century (e.g. flight, naval propulsion, 
tensile structures), biology is now implementing “smart” technologies developed 
for astronautics, nanotechnology, microelectronics, lubrication technology (tribol-
ogy), seismic bearings for bridge structures, etc. [6]. This transfer of engineering 
and scientific technology into medical and biological simulation has accelerated 
developments in many exciting and critical areas. Paramount among these has been 
the application of fluid mechanics to medical systems [7], i.e. biofluid mechanics. 
Blood is often termed the “fluid of life” and hemodynamics has received most at-
tention from engineering scientists and mathematicians [8–11]. However, “biofluid 
mechanics” has infiltrated into a much wider spectrum of biomechanical problems. 
Excellent examples in this regard are hydroelastic flows mimicking marine swim-
mers [12], fish school group propulsion used to design optimal wind turbine farm 
layouts [13], mimicry of flapping wings for micro-unmanned air vehicles (mUAVs) 
[14], magnetic control of surgical extracorporeal blood flow circuits [15], hydro-
elastic vibration of inner ear membranes [16], peristaltic propulsion in the gastric 
system [17–19] and haemodialysis simulations [20–21]. Further, recent develop-
ments in the application of fluid mechanics to biomedical systems include viscous 
flow analysis of ophthalmic diseases [22], haematological purification devices [23], 
cerebrospinal flows [24], marine plankton dynamics [25], smart magnetic lubrica-
tion for prosthetics [26–27], larynx dynamics [28], biomagnetic response during 
astronaut re-entry [29–30], artificial heart-valve mechanics [31], and flows through 
capillaries and small blood vessels [32] and nasal ventilation aerodynamics [33]. 
Many of these applications have benefited from developments in chemical, aero-
space, civil, mechanical, and computer engineering, and of course mathematics and 
physics. Numerical methods, applied mathematics, theoretical chemistry and phys-
ics, smart mechanics, laser Doppler anemometry (LDA), particle image velocimetry 
(PIV), lasers and computer science (imaging, scanning, simulation) are just some of 
the areas, which although originally developed to solve engineering problems have 
now found their way into the rapidly expanding domain of mathematical biosci-
ences. The use of mathematical simulation in particular has resulted in garnering 
new insights into cerebral cortex formation, cancer spread, cartilage degeneration, 
epidemic disease prediction, pharmacology and even psychology. Many of these 
topics have utilized aspects of bio-fluid mechanics.

A particularly rich area which has emerged recently is that of nanotechnology, 
of which nano-fluid [34] is an example. Nano-fluids were developed by Choi [34] 
at the Argonne Energy Labs, Illinois in the 1990s. Applications have penetrated al-
most every area of engineering including rocket propellants, solar energy collectors, 
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lubricant design, automotive and electronic cooling systems and medicine [35]. 
Coupled with this, many developments have taken place in micro-electromechani-
cal systems and nano-systems including peristaltic pumps for medical applications 
[36]. In this discussion we, therefore, focus on recent progress in mathematical 
simulation of nano-fluid propulsion by peristaltic mechanisms. This topic has im-
mense applications in surgical exploration [37], drug delivery [38] hyperthermia 
cancer medication deployment [39], wound healing [40] and gastric pharmaco-
logical drug targeting [41, 42]. Recently the leading Swiss medical engineering 
corporation, Levitronix [43] has explored the fabrication of peristaltic nano-fluid 
pumps for a range of pharmaceutical applications where the peristaltic transport 
mechanism has been shown to achieve maximum reliability, long life, and superior 
ability to pump precious fluids in the harshest of environments, compared with 
any other type of micropump. The drawbacks of nanoparticle agglomeration, dilu-
tion and dosing as well as filtration difficulties have now largely been eradicated 
in modern nano-fluid peristaltic devices. This field is, therefore, very promising 
and will doubtlessly stimulate increased attention from the mathematical modelling 
community. We shall briefly review the mechanism of peristalsis, and then review 
the thermophysics and dynamics of nano-fluids. Finally, a new model simulating 
double-diffusive pumping of nano-fluids in peristaltic transport is presented with 
future recommendations for new simulations.

4.1.2 � Peristaltic Transport

Peristalsis is a physiological mechanism (pumping process) in which physiologi-
cal fluids are propelled (pumped) within living organs by contraction of circular 
smooth muscle behind the fluids and relaxation of circular smooth muscle ahead 
of it. Bayliss and Starling [44] historically first observed this phenomenon over a 
century ago. This type of pumping was first observed in physiology regarding:

1.	 Food movement in the digestive tract
2.	 Frine transportation from the kidney to the bladder through ureters
3.	 Semen movement in the vas deferens
4.	 Movement of lymphatic fluids in the lymphatic system
5.	 Bile flow from the gall bladder into the duodenum
6.	 Spermatozoa in the ductus efferent of the male reproductive tract
7.	 Ovum movement in the fallopian tube
8.	 Blood circulation in small blood vessels

Historically, however, the engineering analysis of peristalsis was initiated much 
later than physiological studies. A lucid summary of developments was present-
ed by the modern “father of biomechanics” Fung in the early 1970s [45]. Latham 
[46] initiated modern fluid mechanics simulations of peristalsis using both theo-
retical and experimental techniques. Significant work was also reported by Shapiro 
and others [47] who delineated different zones for pumping. Fung and Yih [48] 
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presented a model on peristaltic pumping using perturbation techniques. Burns and 
Parkes [49] studied the flow of Newtonian fluid through a channel and a tube by 
considering sinusoidal vibrations in the walls along the length. Barton and Raynor 
[50] studied the peristaltic motion in a circular tube by using long wavelength ap-
proximation for intestinal flow. Chaw [51] reported the solution for axisymmetric 
flow with initially nonstationary flow. Jaffrin [52] studied the effects of inertia and 
curvature on peristaltic pumping. Applications of peristalsis in industrial fluid me-
chanics usually involve peristaltic pumping of extremely hazardous liquids such as 
aggressive chemicals, high solids slurries, noxious fluid (nuclear industries), and 
other materials. Roller pumps, hose pumps, tube pumps, finger pumps, heart–lung 
machines, blood pump machines and dialysis machines are all engineered on the 
basis of peristalsis. In such applications and also medical flows, transport fluids are 
generally non-Newtonian. In recent years, therefore, researchers have developed 
new mathematical models utilizing a variety of viscoelastic rheological and micro-
structural models to simulate physiological fluids more accurately, demonstrating 
better correlation with clinical data than classical Newtonian viscous flow models, 
as examined in [45–52]. Relevant studies in this regard include Bohme and Fridrich 
[53] who employed a Walters-B model. Tsiklauri and Beresnew [54] used a Max-
well viscoelastic model. Tripathi [55] used Stokes’ couple-stress models, and also 
employed fractional Maxwell models [56] and generalized Oldroyd-B viscoelastic 
models [57] to study peristaltic propulsion under various body forces. Hayat and 
others [58] have employed a Johnson–Segalman model to simulate elastic effects in 
peristaltic rheological flow. Tripathi and others [59] have also employed a Jeffery’s 
elasto-viscous model to investigate gastric flow and heat transfer in swallowing. 
Bég and others [60] have used the electrically conducting Williamson non-New-
tonian model and also a differential transform algorithm to study peristaltic flow 
in a tube. Bhargava and others [61] have used a finite element method to study 
peristaltic waves in micropolar flow in a deformable conduit. Peristaltic nano-fluid 
dynamics has also recently received some attention. We shall review works in this 
area in due course.

4.1.3 � Nano-Fluids

Nano-fluids [34] are fluids containing nanoparticles (nanometer-sized particles 
of metals, oxides, carbides, nitrides or nanotubes). Nano-fluids exhibit enhanced 
thermal properties, notably higher thermal conductivity and convective heat trans-
fer coefficients compared to the base fluid. Nano-fluids are therefore a new class 
of fluids designed by dispersing nanometer-sized materials (nanoparticles, nano-
fibers, nanotubes, nanowires, nano-rods, nano-sheet, or droplets) in base fluids. 
They may also be regarded as nanoscale colloidal suspensions containing con-
densed nanomaterials. They are two-phase systems with one phase (solid phase) 
in another (liquid phase). Nano-fluids have been found to also exhibit enhanced 
thermal diffusivity and viscosity compared to those of base fluids like oil or wa-
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ter. In many engineering simulations, including computational fluid dynamics 
(CFD), nano-fluids can be assumed to be single-phase fluids. The classical theory 
of single-phase fluids can be applied, where physical properties of nano-fluids 
are taken as a function of properties of both constituents and their concentrations. 
In recent years, a number of mathematical models have been proposed for nano-
fluids. These have largely focused on the mechanism for thermal conductivity en-
hancement. A popular model is the Tiwari–Das [62] formulation, which has the 
advantage of not requiring a separate species diffusion equation for the nanopar-
ticle volume fraction. This approach has been successfully utilized in a number 
of recent studies including Rashidi and others [63] for axisymmetric boundary 
layer flow from a cylinder with the homotopy analysis method and Bég and oth-
ers [64] for transport in porous media. Rana and others [65] also very recently 
employed the Tiwari–Das model to simulate nano-fluid convection from an in-
clined cylindrical solar collector. Other models have also been developed aimed 
at further elucidating the properties of nano-fluids. Pre-eminent among these has 
been the Buongiorno model [66] in which multiple mechanisms are identified for 
the convective transport in nano-fluids using a two-phase nonhomogenous ap-
proach. In his two-component four-equation nonhomogeneous equilibrium model 
for mass, momentum, and heat transport in nano-fluids, he emphasized the follow-
ing mechanisms: inertia, Brownian diffusion, thermophoresis, diffusiophoresis, the 
Magnus effect, fluid drainage and gravity. Of all of these mechanisms, however, 
only Brownian diffusion and thermophoresis were found to be important in the 
absence of turbulence effects. It was also suggested that the boundary layer has 
different properties owing to the effect of temperature and thermophoresis. Taking 
Brownian motion and thermophoresis into account, Buongiorno [66] developed 
a correlation for the Nusselt number which was compared to the data from Xuan 
and Li [67] and Pak and Cho [68] and which correlated best with the latter [68] ex-
perimental data. The literature on the thermal conductivity and viscosity of nano-
fluids has been reviewed by Eastman and others [69], Wang and Mujumdar [70] 
and Trisaksri and Wongwises [71]. In addition, a succinct review on applications 
and challenges of nano-fluids has also been provided by Wen and others [72] and 
Saidur and others [73]. Recently, the Buongiorno [66] model has been used by 
Kuznetsov and Nield [74] to study the natural convection flow of nano-fluid over a 
vertical plate and their similarity analysis identified four parameters governing the 
transport process. The Kuznetsov–Nield formulation has proved immensely popu-
lar in computational thermo-sciences. It has been deployed in many subsequent 
studies including double-diffusive free convection [75], Rayleigh–Benard nano-
fluid instability [76–79], tube nano-fluid flows [80], boundary layers on translating 
sheets [81], vertical plate convection [82], nano-convection from a sphere in po-
rous media [83], stagnation-point nano-fluid flow in electronic components [84], 
unsteady radioactive hydromagnetic nano-fluid materials processing [85], nano-
fluid flows in geothermal systems [86] and nano-fluid oxytactic bio-convection in 
hybrid microbial fuel cells [87]. These studies have all considered the nano-fluid to 
be Newtonian. However, recently progress has also been made in non-Newtonian 
nano-fluid convection including simulations with an Ostwald–de Waele power law 
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model [88]. The present discourse is restricted, however, to Newtonian nano-fluid 
dynamics, i.e. rheological features are discarded.

4.2 � Mathematical Modelling

We now consider the peristaltic flow of a nano-fluid with double-diffusive con-
vection in a deformable channel. A number of studies have appeared in the past 
few years on nano-fluid peristaltic fluid mechanics including endoscopic effects 
[89]. These works have generally employed the Kuznetsov–Nield model although 
the boundary conditions employed are debatable. Akbar and others [90] devel-
oped closed-form solutions for stream function and pressure gradient for the 
peristaltic flow of a nano-fluid in an asymmetric channel with wall slip effects, 
under long wavelength and small Reynolds number assumptions. Further studies 
include Akbar and others [91] who used the homotopy perturbation method to 
compute temperature and nanoparticle concentration for the effects of Brown-
ian motion number, thermophoresis, local thermal Grashof number, and local 
nanoparticle Grashof number for five different peristaltic waves. They observed 
that pressure rise is reduced with increasing thermophoresis number whereas an 
increase in the Brownian motion parameter and the thermophoresis parameter en-
hances temperatures. Further studies include Mustafa and others [92] who consid-
ered viscous heating, Akbar and Nadeem [93] who used the Phan-Thien-Tanner 
rheological model for Jeffrey–Hamel nano-fluid peristaltic flow and Mustafa and 
others [94] who considered wall slip in nano-fluid peristaltic transport. In many 
drug-delivery applications [95] double-diffusive convection is significant. Ther-
mal diffusion is the transport of the components of gaseous mixtures or solutions 
when subjected to a temperature gradient. If the temperature difference is held 
constant, thermal diffusion in a mixture will produce a concentration gradient. 
The production of such a gradient causes classical species diffusion. An excel-
lent treatment of double-diffusion phenomena is provided by Gebhart and oth-
ers [96]. These effects are also sometimes known as cross-diffusion effects or 
Soret–Dufour effects [97–99]. Very few investigations have been conducted on 
peristaltic pumping of nano-fluids with double-diffusive (thermal and concen-
tration) convection in nano-fluids. Therefore, this chapter aims to examine the 
peristaltic flow of nano-fluids with Soret–Dufour (double-diffusive) convection 
through a two-dimensional deformable channel. The analysis is performed under 
the well-established long wavelength and low Reynolds number approximations. 
A detailed mathematical formulation is presented and numerical computations re-
ported. Mathematica software is employed to achieve visualization of the stream 
lines and trapping phenomenon. The influence of Brownian motion parameter, 
thermophoresis parameter, thermal Grashof number, concentration Grashof num-
ber, nanoparticle Grashof number, Soret parameter, Dufour parameter and peri-
staltic wave amplitude on nanoparticle fraction, temperature, pressure gradient, 
velocity and trapping are depicted.
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4.2.1 � Peristaltic Flow Geometry

The constitutive equation for the peristaltic wall geometry due to propagation of a 
train of waves, considered in the present investigation, takes the form:

2
( , ) sin ( )h t a b ct

πξ ξ
λ

= + −� �� � �
�

(4.1)

Here , , , , , , andh t a b cξ λ�� �  represent transverse vibration of the wall, axial coordi-
nate, time, half width of the channel, amplitude of the wave, wavelength, and wave 
velocity, respectively. The values of temperature ( T), solute concentration ( C) and 
nanoparticle fraction ( F) at the centreline 0η=  and the wall of the channel hη=  
are taken as T C F T C F0 0 0 1 1 1, , , , ,and  respectively.

4.2.2 � Governing Equations

Employing the Oberbeck–Boussinesq approximation, the governing equations 
for conservation of mass, momentum, thermal energy, solute concentration, and 
nanoparticle fraction [75] may be formulated thus:
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where , , , , , , , , , , ( ) , ( ) , , , , , , , , andf p T C f p B T S TC CTu v p g c c k T F C D D D D Dρ ρ η µ β β ρ ρ�� � �  
denote the fluid density, nanoparticle mass density, axial velocity, transverse ve-
locity, transverse coordinate, pressure, fluid viscosity, acceleration due to gravity, 
volumetric thermal expansion coefficient of the fluid, volumetric solute expansion 
coefficient of the fluid, heat capacity of fluid, effective heat capacity of nanoparti-
cle, thermal conductivity, temperature, nanoparticle volume fraction, solute concen-
tration, Brownian diffusion coefficient, thermophoretic diffusion coefficient, solute 
diffusivity of the porous medium, Dufour diffusivity and Soret diffusivity.

4.2.3 � Non-Dimensionalization and Boundary Conditions

To facilitate analytical solutions, we introduce the following non-dimensional pa-
rameters:
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where 
T C F, , , , , ,Re, , , , , , , ,r b t TC CTGr Gr Gr P N N N and Nδ φ ν θ γ Φ  are wave number, 

amplitude ratio, kinematic viscosity, dimensionless temperature, dimensionless 
solutal (species) concentration, rescaled nanoparticle volume fraction, Reynolds 
number, thermal Grashof number, solutal Grashof number, nanoparticle Grashof 

D. Tripathi and O. A. Bég



77

number, Prandtl number, Brownian motion parameter, thermophoresis parameter, 
Dufour parameter and Soret parameter, respectively. For low Reynolds number 
( Re→0) and long wavelength aλ >> , Eqs. 4.2–4.7 reduce to:
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The following boundary conditions are prescribed:
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4.2.4 � Analytical Solutions

Integrating Eq. 4.13 twice, with respect to η  and using the first and second bound-
ary conditions of Eq. 4.15, the nanoparticle fraction field is obtained as follows:
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Double integrating Eq. 4.14 with respect to η  and using the third and fourth bound-
ary conditions of Eq. 4.15, the solute concentration field is obtained as:
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Using Eqs. 4.16 and 4.17 in Eq. 4.12 and integrating it twice with respect to η  and 
using the fifth and sixth boundary conditions of Eq. 4.15, the temperature field is 
obtained as follows:
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Using Eqs. 4.16–4.18 in Eq. 4.10 and integrating it with respect to η  and using the 
seventh boundary condition of Eq. 4.15, the axial velocity gradient is obtained as 
follows:
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Integrating Eq. 4.19, and deploying the eighth boundary condition of Eq. 4.15, the 
axial velocity is then obtained as:
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(4.23)

4.2.5 � Volumetric Flow Rate

The volumetric flow rate is given by integrating across the channel width:
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Using Eq. 4.23 in Eq. 4.24 and solving the integral yields:
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Manipulating Eq. 4.25, the pressure gradient is obtained as:
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The transformations between a wave frame ( � �X Y, ) moving with velocity c  and the 
fixed frame ( , )ξ η� �  are now introduced as follows:
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where ( , )U V� �  and ( , )� �u v  are the velocity components in the wave and fixed frame, 
respectively.

The volumetric flow rate in the fixed frame is given by:
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which, on integration, yields:
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Averaging volumetric flow rate along one time period, we have:
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Equation 4.30 yields:
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From Eq. 4.26 and Eq. 4.31, the pressure gradient is expressed in term of averaged 
flow rate as:
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The pressure difference across one wavelength (Δp) is computed using:

1

0

,
p

p dξ
ξ

∂
∆ =

∂∫
�

(4.33)

Using Eq. 4.23 and the transformations of Eq. 4.27, the stream function in the wave 

frame (Cauchy–Riemann equations, that is, U ψ
η

∂
=

∂
 and V ψ

ξ
∂

= −
∂

) is obtained as 
follows:
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(4.34)

4.3 � Numerical Results and Discussion

Numerical and computational results of the mathematical model are discussed in 
this section. Mathematica is used to integrate the solutions due to the complicated 
definite integrals and plot (Figs. 4.1–4.7). The influences of the thermo-physical 
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Fig. 4.1   Nanoparticle fraction profiles ϕ( η) at φ = 0.5, x = 1.0 for: a Nt  = 1.0, NTC = 0.1, NCT = 0.1, 
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parameters characterizing double-diffusive convection in nano-fluids on the peri-
staltic flow patterns are also depicted.

The effects of Brownian motion parameter ( Nb), thermophoresis parameter ( Nt), 
Soret parameter ( NCT) and Dufour parameter ( NCT) on nanoparticle fraction profile 
( ( )Φ η ) are presented through the Figs. 4.1a–d. Nb arises in both the dimension-
less temperature and nanoparticle fraction conservation equations, i.e. Eqs.  4.12 
and 4.14 in the mixed derivative term, Nb(∂θ/∂η)(∂Φ/∂η) in the former, and the 
second order temperature derivative, 2 2( / )( / )t bN N θ η∂ ∂ , in the latter. Nb is a key 
parameter dictating the diffusion of nanoparticles. With an increase in Brownian 
motion parameter ( Nb), there is a strong reduction initially in nanoparticle fraction 
profile, Φ (η). This effect is shown in Fig. 4.1a. The nano-fluid is a two-phase fluid 
in nature and random movement of the suspended nanoparticles enhances energy 
exchange rates in the fluid but initially decreases nanoparticle concentrations in 
the flow regime. As dimensionless transverse coordinate, η, is increased there is 
change in the effect of the Brownian motion parameter-nanoparticle fraction (Φ) is 
distinctly increased with a divergence in profiles. Thermophoretic parameter ( Nt) 
effects are depicted in Fig. 4.1b. A slight increase in Φ (η) values is caused as Nt 
from 1 to 4, for some distance from the channel centre line ( η = 0); however, as η is 
further increased, there is a switch and thermophoresis is found to depress fraction 
ϕ values. As with the Brownian motion parameter, Nt also features in both energy 
and nanoparticle fraction conservation Eqs. 4.12 and 4.14, respectively. Although it 
features in the same term in the latter as the Nb parameter, in the former (Eq. 4.12) it 
appears in a separate term, consistent with the original formulation of Buongiornio 
[66] and Kuznetsov and Nield [74], viz 2( / ) .tN θ η∂ ∂  Hence, nanoparticle fraction 
diffusion is found to be initially assisted by thermophoresis but subsequently op-
posed by it. This pattern is also consistent with macroscopic convection flows (non-
nano-fluids). The influence of Soret parameter ( NCT) and Dufour parameter ( NTC) 
on nanoparticle fraction ( ϕ) are provided in Figs. 4.1c and d.

When heat and mass transfer occur simultaneously in a moving fluid, an en-
ergy flux can be generated not only by temperature gradients but by composition 
gradients also. The energy flux caused by a composition gradient is termed the 
Dufour or diffusion-thermo effect. On the other hand, mass fluxes can also be cre-
ated by temperature gradients and this embodies the Soret or thermal-diffusion ef-
fect. Such effects are significant when density differences exist in the flow regime. 
For example, when species are introduced at a surface in a fluid domain, with a 
different (lower) density than the surrounding fluid, both Soret (thermo-diffusion) 
and Dufour (diffuso-thermal) effects can become influential. Soret and Dufour ef-
fects are important for intermediate molecular weight fluids in coupled heat and 
mass transfer in fluid binary systems, often encountered in biophysical processes. 
NCT (Soret number) represents the effect of temperature gradients on mass (spe-
cies) diffusion. NTC (Dufour number) simulates the effect of concentration gradients 
on thermal energy flux in the peristaltic flow domain. These parameters arise in 
the energy and species conservation equations, Eqs.  4.12 and 4.13, in the terms 

2 2 2 2( / ) ( / ),TC CTN and Nγ η θ η∂ ∂ ∂ ∂  respectively.
However, they do not arise in the nanoparticle volume fraction (Eq. 4.14). As 

such both parameters will exert a minor role on ϕ distributions. Inspection of 
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Fig. 4.1c shows that a small decrease is induced in ϕ by a strong increase in NCT 
from 0.1 to 3; subsequently there is, however, a marginal increase in ϕ. An almost 
identical response is sustained by the nanoparticle volume fraction profiles with an 
increase in the Dufour number ( NTC).

Figures 4.2a–d show the concentration profile ( ( )γ η ) for the effects of Brown-
ian motion parameter ( Nb), thermophoresis parameter ( Nt), Soret parameter ( NCT) 
and Dufour parameter ( NTC). With increasing Nb and Nt, species concentration val-
ues are significantly reduced. A much more potent response is, however, observed 
with a change in Soret ( NCT) and Dufour ( NTC) parameters. Species concentration 
is found to be very strongly reduced with increasing Soret number (Fig. 4.2c) for 
some distance from the channel centre; with further distance from the channel cen-
tre, as we approach the periphery of the channel, this trend is noticeably reversed 
and thermo-diffusion is observed to accentuate concentration, i.e. enhance diffusion 
of the species. Figure 4.2d also confirms that Dufour number exerts a much weaker 
effect on species diffusion than the Soret effect, a slight reduction in concentration 
values is caused, and there is no significant alteration in the effect of Dufour number 
with transverse distance.

Figures 4.3a–d illustrate the evolution of the temperature profile ( ( )θ η ) under the 
effects of Brownian motion parameter ( Nb), thermophoresis parameter ( Nt), Soret 
parameter ( NCT), and Dufour parameter ( NTC). A very different distribution of pro-
files is observed compared with the concentration profiles. Increasing Brownian 
motion parameter initially strongly elevates temperatures in the vicinity of the chan-
nel centreline; further away this effect is reversed. It is also apparent that with strong 
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Brownian motion ( Nb = 4.0) effects, temperature profile stabilizes and becomes ap-
proximately parallel, i.e. eventually becomes invariant with transverse distance; this 
effect is clearly visible in Fig. 4.3a. Parabolic trends are only retained at large η 
values for weak Brownian diffusion ( Nb = 1.0). A similar evolution in temperature 
profiles is computed for the influence of thermophoresis parameter, Nt, in Fig. 4.3b. 
With increasing Soret and Dufour numbers, the profiles for temperature are similar 
to those in Figs. 4.3a and b; however, they ascend more smoothly. The temperature 
is found to be enhanced both with Soret and Dufour numbers, initially; with further 
distance from the channel centre, both effects serve to reduce temperatures.

Figures  4.4a–g illustrate the influence of Brownian motion parameter ( Nb), 
thermophoresis parameter ( Nt), Soret number ( NCT) Dufour number ( NTC) thermal 
Grashof number ( GrT), concentration Grashof number ( GrC), and nanoparticle 
Grashof number ( GrF) on the axial velocity profile ( u( η)) across the channel semi-
width. Axial velocity, u, is generally negative for all Brownian motion parame-
ters throughout the channel half-space defined by 0 ≤ η ≤ 1; flow reversal that is 
strong backflow is therefore taking place. Maximum velocities are always located 
at the channel centre, decaying smoothly to zero at the periphery (channel wall). 
Figure 4.4a indicates that an increase in Brownian motion parameter, Nb, decreases 
magnitudes of the axial velocity, i.e. opposes backflow u values, therefore, become 
more positive. The flow is, therefore, actually decelerated with Brownian motion. 
A substantially different response is computed for the effect of thermophoresis pa-
rameter in Fig. 4.4b. At low Nt value (= 1.0) negative axial velocity is observed; 
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however, as Nt is increased to 2 and then 3 and the maximum value of 4.0, ve-
locity becomes positive, i.e. backflow is completely eliminated across the channel 
half-space. The profiles also descend for Nt > 1, from a maximum at the channel 
centre to a minimum at the channel wall. The rate of descent is also enhanced with 
greater thermophoresis parameter. There is an order of magnitude difference also 
in the values of axial velocity between Figs. 4.4a and b; velocities are much large 
in Fig. 4.4b. With increasing Soret number, velocities are caused to become more 
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negative in Fig. 4.4c, i.e. flow deceleration is induced and backflow is accentu-
ated. The contrary response is computed for increasing Dufour number in Fig. 4.4d, 
where velocities are found to become less negative, i.e. flow reversal is inhibit-
ed. The velocity magnitudes in Fig. 4.4c are evidently much greater than those in 
Fig. 4.4d. Figure 4.4e shows the effect of thermal Grashof number ( GrT) on axial 
velocity distribution. This parameter arises in the momentum conservation equation 
(4.10), in the term, ( GrTθ). This parameter signifies the relative influence of thermal 
buoyancy force and viscous hydrodynamic force. For GrT < 1, the peristaltic regime 
is dominated by viscous forces and vice versa for GrT > 1. For the intermediate case 
of GrT = 1 both thermal buoyancy and viscous forces are of the same order of mag-
nitude, as described by Gebhart and others [96]. Velocity magnitudes are generally 
reduced with increasing thermal Grashof number. At low GrT velocities are nega-
tive, i.e. back flow exists. However, for GrT > 1, backflow is negated and a strong 
acceleration induced in the peristaltic axial flow. Figure 4.4f reveals that a similar 
response is induced by the concentration Grashof number, GrC however, there is 
still some minor backflow at GrC = 2; with larger concentration Grashof number as 
with thermal Grashof number, the backflow is completely eliminated and a strong 
acceleration achieved in the axial flow. GrC represents the ratio of species buoy-
ancy force to the viscous hydrodynamic force; it is the species diffusion analogy 
to thermal diffusion Grashof number. For the case where both forces are the same, 
i.e. GrC = 1, axial velocity magnitude is minimized. The same response is observed 
for thermal Grashof number. Figure  4.4g shows that increasing the nanoparticle 
Grashof number ( GrF) exacerbates the axial velocity back flow, i.e. increases nega-
tive values.

Figures 4.5a–g present the variation of pressure gradient ( / )p ξ∂ ∂  with axial co-
ordinate (ξ) under the influence of Brownian motion parameter ( Nb), thermophore-
sis parameter ( Nt), thermal Grashof number ( GrT), concentration Grashof number 
( GrC), nanoparticle Grashof number ( GrF). In all cases we have prescribed the wave 
amplitude and averaged volumetric flow rate as φ = 0.5, Q  = 0.5 respectively, which 
is characteristic of the actual physiological regimes as expounded in benchmark 
peristaltic studies by Shapiro and others [47]. In all profiles the strong periodic 
behaviour and fluctuations in pressure gradient caused by peristaltic motion are 
clearly visible. Effectively, Brownian motion is found to slightly enhance pressure 
gradient (Fig.  4.5a). A significantly greater accentuation in pressure gradient is 
generated with increasing thermophoresis parameter (Fig. 4.5b). Conversely, Soret 
number acts to strongly depress pressure gradient values, whereas there is a slight 
enhancement in them with increasing Dufour number. Thermal Grashof number is 
observed to depress pressure gradients, whereas the species (concentration) Grashof 
number and nanoparticle Grashof number distinctly enhance pressure gradients in 
the peristaltic flow regime in the channel. In all profiles the respective trends indi-
cated above are consistent across all axial coordinate values.

Figures  4.6a–g display the variation of pressure difference across one wave-
length (Δp) with averaged flow rate ( Q ) under the respective influences of Brown-
ian motion parameter ( Nb), thermophoresis parameter ( Nt), thermal Grashof number 
( GrT), concentration Grashof number ( GrC), nanoparticle Grashof number ( GrF). 
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Invariably linear distributions are observed. Three ranges of pumping are possible 
namely (a) Δp > 0, i.e. pumping region (b) Δp = 0 i.e. free pumping region, (c) Δp < 0, 
i.e. co-pumping region, and we have considered all three. Increasing Brownian 
motion parameter ( Nb) reduces pressure difference, an effect which is clearly of 
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Grc = 1, GrF = 1, NCT = 1, 2, 3, 4. d Nb = 1, Nt = 1, NCT = 0.1, GrT = 1, Grc = 1, GrF = 1, NT = 1, 2, 3, 4. 
e Nb = 1, Nt = 1, NTC = 0.1, NCT = 0.1, Grc = 1, GrF = 1, GrT = 1, 2, 3, 4. f GrT = 1, GrF = 1, Nb = 1, Nt = 1, 
NTC = 0.1, NCT = 0.1, Grc = 1, 2, 3, 4. g Nb = 1, Nt = 1, NTC = 0.1, NCT = 0.1, GrT = 1, Grc = 1, GrF = 1, 
2, 3, 4
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Fig. 4.7   Streamlines in the wave frame at φ = 0.5, Q  = 0.6 and a Nb = 1, Nt = 0.1, NTC = 0.1, NCT = 1, 
GrT = 0, Grc = 0, GrF = 0. b Nb = 1, Nt = 0.1, NTC = 0.1, NCT = 1, GrT = 0.1, Grc = 1, GrF = 1. c Nb = 1, 
Nt = 0.1, NTC = 0.1, NCT = 1 GrT = 0.1, Grc = 1, GrF = 3. d Nb = 1, Nt = 0.1, NTC=0.1, NCT = 1, GrT = 0.1, 
Grc = 3, GrF = 1. e Nb = 1, Nt = 0.1, NTC = 0.1, NCT = 1, GrT = 0.5, Grc = 1, GrF = 1. f Nb = 1, Nt =1, 
NTC = 0.1, NCT =1, GrT = 0.1, Grc = 1, GrF = 1. g Nb = 1, Nt = 0.1, NTC = 0.1, NCT = 1, GrT = 0.1, Grc = 1, 
GrF = 1. h Nb = 1, Nt = 0.1, NTC = 0.1, NCT = 3, GrT = 0.1, Grc = 1, GrF = 1. i Nb = 1, Nt = 0.1, NTC = 0.5, 
NCT = 1, GrT = 0.1, Grc = 1, GrF = 1
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significance in nano-fluid drug-delivery systems. Conversely, increasing thermo-
phoretic parameter ( Nt) strongly increases the pressure difference. In both the cases 
this pattern is sustained for all values of averaged volume flow rate, Q . In other 
words, in nano-peristaltic pumps, a pressure difference drop or rise can be main-
tained with increasing Brownian diffusion effect or increasing thermophoretic effect 
at all operating flow rates. Figures 4.6c and d show that increasing Soret number 
strongly decreases the pressure difference, whereas increasing Dufour number acts 
to slightly increase it. Figures 4.6e–g demonstrate that increasing thermal Grashof 
number, pressure gradient is curtailed, whereas it is strongly elevated with increas-
ing species (concentration) Grashof number and nanoparticle Grashof number, for 
all flow rates. In all Figs. 4.6a–g, at higher volumetric flow rates pressure difference 
becomes negative.

Trapping is an inherent phenomenon of peristaltic motion in which an inter-
nally circulating bolus of fluid is formed by closed streamlines and this trapped 
bolus is pushed ahead along with the peristaltic wave. The effects of Brownian 
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motion parameter ( Nb), thermophoresis parameter ( Nt), thermal Grashof number 
( GrT), concentration Grashof number ( GrC), nanoparticle Grashof number ( GrF) on 
streamlines and trapping phenomenon are therefore also depicted in Figs. 4.7(a–i). 
Nine streamline distributions are illustrated. A single parameter has been varied for 
each pair. In all cases, amplitude ratio ( φ) is fixed at 0.5 and averaged volume flow 
rate, Q  constrained at 0.6. The streamlines on the centerline in the wave frame are 
found to compartmentalize under specific conditions in order to enclose a bolus of 
fluid particles circulating along closed streamlines. This phenomenon is known as 
trapping, which is a characteristic of peristaltic motion. Since this bolus appear to 
be trapped by the wave, the bolus moves with the same speed as that of the wave 
(celerity). Comparison of the appropriate figures shows that magnitude of trapped 
bolus clearly reduces with increasing the magnitude of different Grashof num-
bers. Brownian motion parameter decreasing acts to reduce the number of trapped 
boluses. With decreasing thermophoretic parameter, the magnitude of boluses is 
slightly enhanced. With decreasing thermal Grashof number, the bolus size is am-
plified. Increasing species Grashof number reduces the multiple bolus structure to 
a single bolus. Increasing species Grashof number, therefore, exerts a similar effect 
on streamlines and trapping to decreasing Brownian motion parameter (Figs.  7b 
and d). Nano-fluid characteristics, therefore, undeniably exert a significant influ-
ence on peristaltic flow patterns. Where numbers of boluses are unchanged, the 
magnitudes are clearly affected by nano-fluid dynamic characteristics. Conversely, 
there is very little influence detected for a change in Soret and Dufour parameters. 
Comparing Figs. 4.7b and 4.7h, where the Dufour parameter is increased from 1 to 
3, or Figs. 4.7b and 4.7i, where the Soret parameter is increased, the streamline pat-
terns are almost indistinguishable.

4.4 � Summary

In this chapter we have briefly reviewed the challenges and potential of mathemati-
cal modelling biofluid mechanics. The fundamentals of peristaltic transport and 
nano-fluid dynamics have also been described qualitatively. A novel mathemati-
cal model has additionally been presented to simulate the influence of nano-fluid 
and thermo-diffusive/diffuso-thermal characteristics on peristaltic heat and mass 
transfer in a two-dimensional axisymmetric channel, as a simulation of nano-fluid 
peristaltic drug-delivery systems. The study has been motivated by applications in 
novel nano-fluid pharmacological delivery. Numerical computations have shown 
that:

a.	 Brownian and thermophoresis parameters exert a strong influence on nanopar-
ticle fraction profile, Φ( η) and temperature profile, θ( η).

b.	 Axial velocity is strongly affected by Soret and Dufour parameters as is the spe-
cies concentration distribution and temperature evolution through the channel.

c.	 Pressure difference is increased weakly with Brownian motion, whereas it is 
very strongly enhanced with increasing thermophoresis parameter.
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d.	 Increasing Soret number considerably reduces the pressure gradient values, 
whereas increasing Dufour number slightly elevates pressure difference.

e.	 Thermal Grashof number is observed to depress pressure gradients, whereas the 
species (concentration) Grashof number and nanoparticle Grashof number mark-
edly elevate pressure gradients in the peristaltic flow regime.

f.	 Streamline patterns illustrating the trapping of boluses are also found to be more 
strongly affected with Brownian and thermophoretic parameters and also all 
Grashof numbers (thermal, species, nanoparticle) than Soret and Dufour effects 
which exert almost a negligible influence on streamline profiles.

References

1.	    �Mazumdar J (1999) An introduction to mathematical physiology and biology, 2nd edn. Cam-
bridge University Press, UK

2.	    �Shyy W, Lian Y, Tang J, Viieru D, Liu H (2008) Aerodynamics of Low Reynolds Number 
Flyers. Cambridge aerospace series (No. 22). Cambridge University Press, UK

3.	    �Hou TY, Stredie VG, Wu TY (2007) Mathematical modeling and simulation of aquatic and 
aerial animal locomotion. J Comput Phys 225:1603–1631

4.	    �Bar-Cohen Y (2006) Biomimetics-using nature to inspire human innovation. Bioinspir Bio-
mim 1:P1–P12

5.	    �Schwarz R (2008) Biological modelling and simulation-a survey of practical models, algo-
rithms and numerical methods. MIT, Cambridge

6.	    �Anderl R, Eigner M, Sendler U, Stark R (2012) Smart engineering … show all 4 hide. Spring-
er, Berlin

7.	    �Skalak R, Ozkaya N, Skalak TC (1989) Biofluid mechanics. Ann Rev Fluid Mech 21:167–200
8.	    Fung YC (1997) Biomechanics: circulation. Springer, New York
9.	    �Bathe KJ, Zhang H, Ji S (1999) Finite element analysis of fluid flows fully coupled with 

structural interactions. Computer Structures, 72:1–16
10.	 �  �Pedley TJ, Hung TK, Skalak R (1981) Fluid mechanics of cardiovascular flow. In: Reul 

H, Ghista DN, Rau G (eds) Perspectives in biomechanics. Harvard Academic Publishers, 
Aachen, 1, pp 113–226

11.	 Hung TK, Tsai TMC (2004) Nonlinear pulsatile flows in rigid and distensible arteries. J 
Mech Med Biol 4:419–434

12.	 Pavlov VV (2006) Dolphin skin as a natural anisotropic compliant wall. Bioinspir Biomim 
1:31–40

13.	 Whittlesey RW, Liska S, Dabiri JO (2010) Fish schooling as a basis for vertical axis wind 
turbine farm design. Bioinspir Biomim 5:035005

14.	 Von Ellenreider KD, Parker K, Soria J (2008) Fluid mechanics of flapping wings. Exp Therm 
Fluid Sci 32:1578–1589

15.	 Bég OA, Parsa AB, Rashidi MM, Sadri SM (2013) Semi-computational simulation of mag-
neto-hemodynamic flow in a semi-porous channel using optimal homotopy and differential 
transform methods-a model for surgical blood flow control. Comput Biol Med 43(9):1142–
1153

16.	 Gan RZ, Cheng T, Dai C, Yang F, Wood MW (2009) Finite element modeling of sound trans-
mission with perforations of tympanic membrane. J Acoust Soc Am 126:243–253

17.	 Tripathi D, Pandey SK, Siddiqui A, Bég OA (2012) Non-steady peristaltic propulsion with 
exponential variable viscosity: a study of transport through the digestive system. Comput 
Meth Biomech Biomed Eng. doi:10.1080/10255842.2012.703660

4  Mathematical Modelling of Peristaltic Pumping of Nano-Fluids�



92

18.	 Tripathi D, Bég OA (2012) Magnetohydrodynamic peristaltic flow of a couple stress fluid 
through coaxial channels containing a porous medium. J Mech Med Biol 12:1250088

19.	 Tripathi D, Bég OA, Curiel-Sosa JL (2012) Homotopy semi-numerical simulation of peri-
staltic flow of generalised oldroyd-b fluids with slip effects. Comput Meth Biomech Biomed 
Eng. doi:10.1080/10255842.2012.688109

20.	 Bég TA, Rashidi MM, Bég OA, Rahimzadeh N (2012) Differential transform semi-numerical 
analysis of biofluid-particle suspension flow and heat transfer in non-darcian porous media. 
Comput Meth Biomech Biomed Eng doi:10.1080/10255842.2011.643470

21.	 Ronco C (2007) Fluid mechanics and cross filtration in hollow-fiber hemodialyzers, hemo-
diafiltration. In: Canaud B, Aljama P (eds) Contributions to nephrology. Basel, Switzerland, 
158, p 34–49

22.	 Andrews JC (2004) Intralabyrinthine fluid dynamics: Meniere disease. Curr Opin Otolaryn-
gol Head Neck Surg 12:408–412

23.	 Rashidi MM, Keimanesh M, Bég OA, Hung TK (2010) Magnetohydrodynamic biorheologi-
cal transport phenomena in a porous medium: a simulation of magnetic blood flow control 
and filtration. Int J Numer Meth Biomed Eng 27:805–821

24.	 Fin L, Grebe R (2003) Three-dimensional modeling of the cerebrospinal fluid dynamics and 
brain interactions in the aqueduct of sylvius. Comput Meth Biomech Biomed Eng 6:163–170

25.	 Guasto JS, Rusconi R, Stocker R (2012) Fluid mechanics of planktonic microorganisms. Ann 
Rev Fluid Mech 44:373–400

26.	 Bég OA, Rashidi MM, Bég TA, Asadi M (2012) Homotopy analysis of transient magneto-
bio-fluid dynamics of micropolar squeeze film in a porous medium: a model for magneto-
bio-rheological lubrication. J Mech Med Biol 12:1250051.1–1250051.21

27.	 Zueco J, Bég OA (2010) Network numerical analysis of hydromagnetic squeeze film flow 
dynamics between two parallel rotating disks with induced magnetic field effects. Tribol Int 
43:532–543

28.	 Becker S, Kniesburges S, Müller S, Delgado A, Link G, Kaltenbacher M, Döllinger M (2009) 
Flow-structure-acoustic interaction in a human voice model. J Acoust Soc Am 125:1351–
1361

29.	 Bhargava R, Sharma S, Bég OA, Zueco J (2010) Finite element study of nonlinear two-
dimensional deoxygenated biomagnetic micropolar flow. Commun Nonlinear Sci Numer 
Simul 15:1210–1233

30.	 Bég OA, Bhargava R, Rawat S, Takhar HS, Halim MK (2008) Computational modeling of 
biomagnetic micropolar blood flow and heat transfer in a two-dimensional non-darcian po-
rous medium. Meccanica 43:391–410

31.	 Dasi LP, Simon HA, Sucosky P, Yoganathan AP (2009) Fluid mechanics of artificial heart 
valves. Clin Exp Pharmacol Physiol 36:225–237

32.	 Norouzi M, Davoodi M, Bég OA, Joneidi AA (2013) Analysis of the effect of normal 
stress differences on heat transfer in creeping viscoelastic dean flow. Int J Thermal Sci. 
doi:org/10.1016/j.ijthermalsci. 2013.02.002

33.	 Hörschler I, Meinke M, Schroder W (2003) Numerical simulation of the velocity field in a 
model of the nasal cavity. Comput Fluids 32:39–45

34.	 Choi SUS (1995) Enhancing thermal conductivity of fluid with nanoparticles. In: Siginer 
DA, Wang HP (eds) Developments and application of non-newtonian flows, vol 66. ASME, 
New York, pp. 99–105

35.	 Keblinski P, Eastman JA, Cahill DG (2005) Nanofluids for thermal transport. Materials To-
day June:36–44

36.	 Hilt JZ, Peppas NA (2005) Microfabricated drug delivery devices. Int J Pharm 306:15–23
37.	 Patel GM, Patel GC, Patel RB, Patel JK, Patel M (2006) Nanorobot: a versatile tool in nano-

medicine. J Drug Targeting 14:63–67
38.	 Emerich DF, Thanos CG (2006) The pinpoint promise of nanoparticle-based drug delivery 

and molecular diagnosis. Biomol Eng 23:171–184
39.	 Su D, Ma R, Zhu L (2011) Numerical study of nanofluid infusion in deformable tissues for 

hyperthermia cancer treatments. J Med Biol Eng 49:1233–1240

D. Tripathi and O. A. Bég



93

40.	 Burygin GL (2009) On the enhanced antibacterial activity of antibiotics mixed with gold 
nanoparticles. Nanoscale Res Lett 4:794–801

41.	 Coco R, Plapied L, Pourcelle V, Jérôme Ch, Brayden DJ, Schneider YJ, Préat V (2013) Drug 
delivery to inflamed colon by nanoparticles: comparison of different strategies. Int J Pharm 
440:3–12

42.	 Paolino D, Fresta M, Sinha P, Ferrari M (2006) Drug delivery systems. . In: Webster JG (ed) 
Encyclopedia of medical devices and instrumentation 2nd edn. Wiley, New York

43.	 Bég OA (2013) Peristaltic pumps- FSI modelling. Technical report, Gort Engovation, BIO-
FSI/02-13., February, pp 142

44.	 Bayliss WM, Starling EH (1899) The movements and innervation of the small Intestine. J 
Physiol (London) 24:99–143

45.	 Fung YC (1971) Peristaltic pumping: a bioengineering model. In Proceedings of Workshop 
Hydrodynamics. Upper UrinaryTract, Natl Acad Sci, Washington DC

46.	 Latham TW (1966) Fluid motion in peristaltic pump. MS thesis. MIT, USA
47.	 Shapiro AH, Jafferin MY, Weinberg SL (1969) Peristaltic pumping with long wavelengths at 

low Reynolds number. J Fluid Mech 37:699–825
48.	 Fung YC, Yih CS (1968) Peristaltic transport. ASME J Appl Mech 35:669–675
49.	 Burns JC, Parkes T (1967) Peristaltic motion. J Fluid Mech 29:731–743
50.	 Barton C, Raynor S (1968) Peristaltic flow in tubes. Bull Math Biophys 30:663–680
51.	 Chaw TS (1970) Peristaltic transport in a circular cylindrical pipe. ASME J Appl Mech 

37:901–905
52.	 Jafferin MY (1973) Inertia and streamline curvature effects on peristaltic pumping. Int J Eng 

Sci 11:681–699
53.	 Bohme G, Friedrich R (1983) Peristaltic flow of viscoelastic liquids. J Fluid Mech 128:109–

122
54.	 Tsiklauri D, Beresnev I (2001) Non-Newtonian effects in the peristaltic flow of a Maxwell 

fluid. Phys Rev E 64:036303-1–036303-5
55.	 Tripathi D (2011) Peristaltic flow of couple-stress conducting fluids through a porous chan-

nel: applications to blood flow in the micro-circulatory system. J Biol Syst 19:461–477
56.	 Tripathi D (2011) Peristaltic transport of fractional maxwell fluids in uniform tubes: applica-

tion of an endoscope. Comput Math Appl 62:1116–1126
57.	 Tripathi D (2011) Numerical and analytical simulation of peristaltic flows of generalized 

Oldroyd-B Fluids. Int J Numer Meth Fluids 67:1932–1943
58.	 Hayat T, Mahomed FM, Asghar S (2005) Peristaltic flow of a magnetohydrodynamic John-

son-Segalman fluid. Nonlinear Dyn 40:375–385
59.	 Tripathi D, Pandey SK, Bég. OA (2013) Mathematical modelling of heat transfer effects on 

swallowing dynamics of viscoelastic food bolus through the human oesophagus. Int J Therm 
Sci 70:41–53

60.	 Bég OA, Keimanesh M, Rashidi MM, Davoodi M (2013) Multi-Step dtm simulation of mag-
neto-peristaltic flow of a conducting Williamson viscoelastic fluid. Int J Appl Math Mech 
9:1–24

61.	 Bhargava R, Sharma S, Takhar HS, Bég TA, Bég OA, Hung TK (2006) Peristaltic pumping of 
micropolar fluid in porous channel—model for stenosed arteries. J Biomech 39:S649–S669

62.	 Tiwari RK, Das MK (2007) Heat transfer augmentation in a two-sided lid-driven differen-
tially heated square cavity utilizing nanofluids. Int J Heat Mass Transf 50:2002–2018

63.	 Rashidi MM, Bég OA, Mehr NF, Hosseini A, Gorla RSR (2012) Homotopy simulation of 
axisymmetric laminar mixed convection nanofluid boundary layer flow over a vertical cylin-
der. Theor Appl Mech 39:365–390

64.	 Bég OA, Gorla RSR, Prasad VR, Vasu B, Prashad RD (2011) Computational study of mixed 
thermal convection nanofluid flow in a porous medium. 12th UK National Heat Transfer 
Conference, Chemical Engineering Department, University of Leeds, West Yorkshire, Ses-
sion 8, ID 0004

65.	 Rana P, Bhargava R, Bég OA (2013) Finite element modeling of conjugate mixed convection 
flow of al2o3-water nanofluid from an inclined slender hollow cylinder. Phys Scripta 87:15

4  Mathematical Modelling of Peristaltic Pumping of Nano-Fluids�



94

66.	 Buongiorno J (2006) Convective transport in nanofluids. ASME J Heat Transf 128:240–250
67.	 Xuan Y, Li Q (2003) Investigation on convective heat transfer and flow features of nanoflu-

ids. ASME J Heat Transf 125:151–155
68.	 Pak BC, Cho Y (2003) Hydrodynamics and heat transfer study of dispersed fluids with sub-

micron metallic oxide particles. Exp Heat Transf 11:151–170
69.	 Eastman JA, Phillpot SR, Choi SUS, Keblinski P (2004) Thermal transport in nanofluids. 

Ann Rev Mater Res 34:219–146
70.	 Wang XQ, Majumdar AS (2007) Heat transfer characteristics of nanofluids: a review. Int J 

Therm Sci 46:1–19
71.	 Trisaksri V, Wongwises SP (2007) Critical review of heat transfer characteristics of nanoflu-

ids. Renew Sust Energ Rev 11:512–523
72.	 Wen D, Lin G, Vafaei S, Zhang K (2009) Review of nanofluids for heat transfer applications. 

Particuology 7:141–150
73.	 Saidur R, Leong KY, Mohammad HA (2011) A review on applications and challenges of 

nanofluids. Renew Sust Energ Rev 15:1646–1668
74.	 Kuznetsov AV, Nield DA (2010) Natural convection boundary layer flow of nanofluids past 

a vertical plate. Int J Therm Sci 49:243–247
75.	 Kuznetsov AV, Nield DA (2011) Double-diffusive natural convective boundary-layer flow of 

a nanofluid past a vertical plate. Int J Therm Sci 50:712–717
76.	 Nield DA, Kuznetsov AV (2011) The onset of double-diffusive convection in a nanofluid 

layer. Int J Heat Fluid Flow 32:771–776
77.	 Nield DA, Kuznetsov AV (2010) The onset of convection in a horizontal nanofluid layer of 

finite depth. Eur J Mech B/Fluids 29:217–223
78.	 Nield DA, Kuznetsov AV (2009) Thermal instability in a porous medium layer saturated by a 

nanofluid. Int J Heat Mass Transf 52:5796–5801
79.	 Nield DA, Kuznetsov AV (2010) The effect of local thermal non-equilibrium on the onset of 

convection in a nanofluid. ASME J Heat Transf 132:052405-1-7
80.	 Kolade B, Goodson KE, Eaton JK (2009) Convective performance of nanofluids in a laminar 

thermally-developing tube flow. ASME J Heat Transf 131:052402-1-8
81.	 Bachok N, Ishak A, Pop I (2010) Boundary-layer flow of nanofluids over a moving surface 

in a flowing fluid. Int J Therm Sci 49:1663–1668
82.	 Rashidi MM, Bég OA, Asadi M, Rastegari MT (2012) DTM- Padé modeling of natural con-

vective boundary layer flow of a nanofluid past a vertical surface. Int J Therm Environ Eng 
4:13–24

83.	 Bég OA, Bég TA, Rashidi MM, Asadi M (2012) Homotopy semi-numerical modelling of 
nanofluid convection boundary layers from an isothermal spherical body in a permeable re-
gime. Int J Micro Nano Therm Fluid Transp Phenom 3:237–266

84.	 Rashidi MM, Bég OA, Rostami B, Osmond L (2013) DTM- Padé simulation of stagnation-
point nanofluid mechanics. Int J Appl Math Mech 9:1–29

85.	 Bég OA, Ferdows M, Khan Md S (2013) Numerical study of transient magnetohydrody-
namic radiative mixed convection nanofluid flow from a stretching permeable surface. Pro-
ceedings of IMECHE–Part E: J Proc Mech Eng

86.	 Bég OA, Bég TA, Rashidi MM, Asadi M (2013) DTM- Padé semi-numerical simulation of 
nanofluid transport in porous media. Int J Appl Math Mech 9:80–107

87.	 Bég OA, Prasad VR, Vasu B (2013) Numerical study of mixed bio-convection in porous 
media saturated with nanofluid containing oxytactic micro-organisms. J Mech Med Biol 
13:1350067

88.	 Uddin MJ, Yusoff NHM, Bég OA, Ismail AI (2013) Lie group analysis and numerical solu-
tions for non-Newtonian nanofluid flow in a porous medium with internal heat generation. 
Physica Scripta 87:14

89.	 Akbar NS, Nadeem S (2011) Endoscopic effects on peristaltic flow of a nanofluid. Commun 
Theor Phys 56:761

90.	 Akbar NS, Nadeem S, Hayat T, Hendi AA (2012) Peristaltic flow of a nanofluid with slip 
effects. Meccanica 47:1283–1294

D. Tripathi and O. A. Bég



95

91.	 Akbar NS, Nadeem S, Hayat T, Hendi AA (2012) Peristaltic flow of a nanofluid in a non-
uniform tube. Heat Mass Transf 48:451–459

92.	 Mustafa M, Hina S, Hayat T, Alsaedi A (2012) Influence of wall properties on the peristaltic 
flow of a nanofluid: analytic and numerical solutions. Int J Heat Mass Transf 55:4871–4877

93.	 Akbar NS, Nadeem S (2012) Peristaltic flow of a Phan-Thien-tanner nanofluid in a diverging 
tube. Heat Transf-Asian Res 41:10–22

94.	 Mustafa M, Hina S, Hayat T, Alseadi A (2013) Slip effects on the peristaltic motion of nano-
fluid in a channel with wall properties. ASME J Heat Transf 135:041701-1-7

95.	 Kleinstreuer C, Li J (2010) Chapter 5 Microfluidic devices in nanotechnology. Microfluidic 
devices for drug delivery. Wiley, New York

96.	 Gebhart B (1988) Buoyancy-induced flows and transport. Hemisphere, Washington
97.	 Bég OA, Bhargava R, Rawat S, Kahya E (2008) Numerical study of micropolar convective 

heat and mass transfer in a non-Darcy porous regime with Soret and Dufour diffusion. Emer 
J Eng Res 13:51–66

98.	 Bég OA, Prasad VR, Vasu B, Reddy NB, Li Q, Bhargava R (2011) Free convection heat and 
mass transfer from an isothermal sphere to a micropolar regime with Soret/Dufour effects. Int 
J Heat Mass Transf 54:9–18

99.	 Prasad VR, Vasu B, Bég OA (2013) Thermo-diffusion and diffusion-thermo effects on free 
convection flow past a horizontal circular cylinder in a non-Darcy porous medium. J Porous 
Media 16:315–334

4  Mathematical Modelling of Peristaltic Pumping of Nano-Fluids�



97

Chapter 5
Numerical Study on Isotachophoretic 
Separation of Ionic Samples in Microfluidics

Partha P. Gopmandal and S. Bhattacharyya

S. K. Basu, Naveen Kumar (eds.), Modelling and Simulation of Diffusive Processes, 
Simulation Foundations, Methods and Applications, DOI 10.1007/978-3-319-05657-9_5, 
© Springer International Publishing Switzerland 2014

S. Bhattacharyya () · P. P. Gopmandal
Department of Mathematics, Indian Institute of Technology Kharagpur, 721302 Kharagpur, India
e-mail: somnath@maths.iitkgp.ernet.in

5.1 � Introduction

Motion of suspended charged particles or macromolecules in an aqueous medium 
under the action of an applied electric field is known as electrophoresis. Under the 
influence of an applied electric field E,  the ionic species will move with a veloc-
ity v  as ,v Eµ=  where µ  is termed as mobility of the ionic species. Differences in 
motilities cause differences in velocities and by utilizing this effect the ionic species 
can be separated. Capillary electrophoresis (CE) is an electrophoretic separation 
technique performed in a capillary [1–4]. It has a wide range of applications in 
different fields such as chemical, biotechnological, biomedical, colloidal, and envi-
ronmental sciences. Depending on the choice of electrolytes present in the system, 
several mode of CE occurs, such as zone electrophoresis (ZE), moving boundary 
electrophoresis (MBE), isoelectric focusing (IEF), and isotachophoresis (ITP).

ITP is a powerful electrokinetic technique for the preconcentration, separation, 
purification, and quantification of ionic analytes. In ITP, a target sample mixture is 
placed between a leading electrolyte (LE) with higher electrophoretic mobility and 
a terminating electrolyte (TE) with electrophoretic mobility lower than that of the 
sample species. When a constant electric field is applied along the axis of the chan-
nel, the ions of the analytes are arranged based on the electrophoretic mobilities in 
increasing order. This phenomenon of consecutive stacking of ions in order of their 
electrophoretic mobilities is referred as ITP. Once a steady state has been reached, 
all species move at the same speed, known as isotachophoretic velocity, U ITP . The 
cationic or anionic ITP corresponds the stacking of cations or anions, respectively. 
The electric field in each stack is constant. This leads to a formation of a sharp inter-
face (or transition zone) between the stacks in which steep gradients or step jump in 
ionic concentration and electric field develop. An accurate resolution of such sharp 
transition zones is a challenge in ITP modeling and has several technical applica-
tions in the Lab-on-a-Chip technology [5, 6].
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Depending on the amount of the sample present in the system, we can have two 
modes of ITP, namely peak mode and plateau mode [7, 8]. In the plateau mode ITP, 
the interface widths are negligible compared with the sample zone width. Unlike the 
plateau mode ITP, the sample ionic concentration in a peak mode ITP may vary with 
the axial position and the sample zone appears as a sharp peak between two adjacent 
electrolytes, that is, LE and TE.

Kohlrausch [9] first reports the mathematical formulation of ITP by introduc-
ing the concept of a regulating function (KRF) through which the conditions 
at the interface between two different ions with the same counter ion can be 
established. In ITP modeling, electroneutrality is assumed and the electric field 
is determined from the charge-conservation equation. Several authors [8, 10, 11] 
concluded that the electroneutrality is valid if the Debye length, based on ionic 
concentration of ionic species, is much smaller than the characteristic width of 
the transition zone.

The step changes in electric field and concentration of ions within the interface 
zones lead to a strong hyperbolic characteristic of the advection–diffusion equations 
for ion transport. Several authors, for example [12], described the ITP transport as 
a similar phenomenon as shock-wave propagation in gas dynamics. Recently, in a 
review article, Thormann and others [13] provided a state-of-the-art on the available 
computer simulation software for ITP separation. However, those numerical meth-
ods are based on 1-D analysis, which may not be suitable to analyze a dispersed ITP.

The spatial difference in fluid velocity may arise due to an unwanted pressure 
gradient or a nonuniform electro-osmotic flow (EOF) of electrolytes. The nonuni-
form convection produces dispersion in ITP. The EOF refers to the convection of 
electrolytes pasting a charged surface as a consequence of an applied electric field. 
A detailed discussion on mathematical modeling of EOF is made in our earlier 
chapter [14]. The nonuniform EOF of ions, which arises due to the variation of elec-
tric field across the interface and electro-osmotic mobility, leads to the development 
of an induced pressure gradient [15]. Unwanted pressure gradients may arise due to 
the complex geometrical shape of an ITP channel, for example, constricted channels 
[16] or dog-leg channels or near a cross-channel junction. A detailed knowledge 
of the impact of dispersion on the ITP transition zone is important. The dispersion 
should be minimized for an efficient sample stacking in ITP. Thus, it is important 
to understand the impact of dispersion on the form of interface, distribution of ionic 
species, and electric field. In this chapter we refer ITP with no dispersion effect as 
ideal ITP.

The impact on the ITP transient region due to an EOF and/or pressure-driven 
flow was addressed by several authors [8, 12, 15–20]. Based on the asymptotic 
expansion of the cross-sectional averaged variables, Saville and others [17] studied 
the imposed convection effect on ITP. Schonfeld and others [18] made a combined 
numerical and experimental study on the electro-osmotic effect on ITP near an in-
terface zone. Upon computing the 1-D advection–diffusion equation, Bercovici and 
others [12] studied the dispersion in ITP due to an external pressure gradient. Shim 
and others [16] imposed a counter flow in the ITP process in order to stop the migra-
tion of interface zones. Garcia–Schwartz and others [8] studied both experimentally 
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and numerically the dispersion effect on transition zone in peak mode ITP due to an 
on-uniform EOF of electrolytes. They developed an area-averaged analytical model 
for sample dispersion based on the Taylor–Aris dispersion coefficient. Baier and 
others [15] developed an analytical approximation for the flow field in the vicinity 
of an ITP transition zone between electrolytes of different electro-osmotic velocity. 
The numerical studies presented in [8, 15, 18] use finite element-based commercial 
package COMOSOL. Recently, Bhattacharyya and others [20] studied a particular 
mode of ITP which employs a pressure-driven flow to counter the electromigration 
of a sample in order to anchor a sample zone at a specific position along a channel 
or capillary.

In this work, we present a computer model to analyze the ion dynamics in ideal 
ITP as well as ITP with convective dispersion. We solve numerically the Nernst–
Planck equations for ion distribution which are coupled with the charge conser-
vation equation for electric potential and Navier–Stokes equations for fluid flow. 
A finite volume-based second order accurate upwind scheme Quadratic Upwind 
Interpolation for Convective Kinematics (QUICK) is adopted to resolve efficiently 
the sharpness which arise in the ITP transport. The present algorithm is tested for 
accuracy by comparing with the analytical solution for a plateau mode ideal ITP. 
In peak mode ITP, the sample zone smears out and the concentration of the sam-
ple may not follow the KRF. The preconcentration dynamics and its dependence 
on several parameters in peak mode ITP is different from the plateau mode ITP. 
The dispersion in distribution of ionic species is measured through the second- and 
third-order moment analysis.

5.2 � Mathematical Model

We assume the electrolytes to consist of monovalent LE of cationic concentration 
Cl , monovalent trailing electrolyte (TE) of cationic concentration Ct , cationic con-
centration of sample species Cs , and a common anion of concentration C0 . Here, 
the solvent, that is, water is in excess and its ionization is assumed to be negligible. 
The migration of charged species in an electrolyte under an external electric field is 
governed by diffusion, convection, and electromigration. We consider x-axis along 
the wide channel and y-axis perpendicular to it. The mass conservation of the ionic 
species leads to the Nernst–Planck equation:

∂
∂

+ ∇ =
c

t
Ni

i. ,0
�

(5.1)

where i t s l= , , , . and 0  The concentration of common ion C0  is obtained through 
electroneutrality assumption, that is, C z Ci

i
i0

0

=
≠
∑ . The molar flux of i-th species is:

,i i i i i i iN C z E C q D Cµ= + − ∇� (5.2)
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where valance zi = +1  for cations, and z0 1= −  for common anion. The mobil-
ity and diffusivity are related via the Nernst–Einstein relation z D F RTi i= / ,  
where F  is the Faraday constant, R  is the gas constant, and T  is absolute tem-
perature. The convective speed is governed by  and φ= −∇q E  is the electric 
field. The electric current density and charge density are defined, respectively, as 

,  and .i i e i i
i i

j F z N z Cρ= =∑ ∑  Conservation of electric charge leads to:

. 0.e j
t

ρ∂
+ ∇ =

∂�
(5.3)

Under electroneutrality condition, that is, 0,e i i
i

z Cρ = =∑  the unsteady term and 
convective terms in Eq. 5.3 vanishes. The electric field E  can be obtained from the 
charge conservation equation as:

.( ) .( ),i i i
i

F D z cν φ∇ ∇ = ∇ ∇∑
�

(5.4)

where ionic conductivity is given by 2 .i i
i

F z Cν = ∑  The term in the right-hand side 

of Eq. 5.4 is the diffusion current and its contribution is insignificant at all locations, 
except at the transition zones. We consider a long wide channel so that the motion of 
electrolytes can be considered as 2-D. The Cartesian coordinates are nondimension-
alized by H  and velocity is scaled by U ITP . We nondimensionalize the concentra-
tion by the bulk concentration of LE, that is, Cl

∞  and potential by 0 / .RT Fφ =  The 
charge conservation equation for electroneutral solution in nondimensional form 
obtained from Eq. 5.4 as:
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(5.5)

where the gradient operator is given by:

ˆ ˆx ye e
x y

∂ ∂
∇ = +

∂ ∂�
(5.6)

and ˆxe  and ˆye  are the unit vectors along the x and y directions. We consider that 
the convection effects on ITP transport of ions are either due to nonuniform EOF or 
pressure driven. Under the bulk fluid flow with average speed u , the transition zone 
velocity becomes U U uITP= + .  We consider that the coordinate is moving with 
the average speed of the ions, that is, U .  This will allow us to consider a truncated 
computational domain. A variable transformation is introduced as:

x x Ut y y t t= − = =, , .�
(5.7)
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The Nernst–Planck equations in nondimensionalized form can be expressed as:

21 1
(1 ) ( . ) ( . ) 0.i i i i

i i i i
l l

c c D D
c c z c

t x D Pe D Pe
α φ∂ ∂

− + + ∇ − ∇ − ∇ ∇ =
∂ ∂

q
�

(5.8)

We drop the overline from the transformed independent variables, that is, 
x y t, , . and  Here time is scaled by / .ITPH Uτ =  Different parameters arising in the 
nondimensional Nernst–Planck equations are Reynolds number Re / ,ITPHUρ η=  
and Peclet number / Re. ,  and / .ITP ITP

lPe U H D Sc u Uα= = =  The electric field is 
determined by solving the charge conservation equation (Eq. 5.5).

We impose a fixed potential drop 0 0E Lφ=  along the channel. Due to discon-
tinuous conductivity of the electrolytes, the electric field will vary. All the species 
migrate with the same ITP velocity U ITP in the steady state. Due to a distinct elec-
trophoretic mobility of each ionic species, the electric field strength of each zone 
will be different. The electric field in each zone is adjusted so that the zones migrate 
at a constant speed, U ITP .  If E i t s li ( , , )=  are the strengths of electric field in each 
separated zone occupied by only one species, then using the relation ,ITP

i iU E µ=  
we get:

0

1/
,

/
i

i
i i

i

E E
l

µ
µ

=
∑

�

(5.9)

where the summation is taken over all the species, and l L Li i= /  is the portion of 
the length L  filled by the i-th  species. We can also express E Et land  in terms of 
the applied current density j0  as follows:

0 0 0 0( ) ( ) ( ) .t t t s s s l l lj F C E F C E F C Eµ µ µ µ µ µ∞ ∞ ∞= + = + = +�
(5.10)

From the fact that at steady state all species moves at a constant speed ,ITP
i iU E µ=  

the above relation leads to the relationships for the bulk concentration of TE, LE, 
and all the sample species as:

0 0

0 0

, ,t t l s s l

l t l sl l

c c

c c

µ µ µ µ µ µ
µ µ µ µ µ µ

∞ ∞

∞ ∞

+ +
= =

+ +
�

(5.11)

where suffix ∞  stands for the bulk value of the concentrations. We consider a long 
wide channel so that the motion of electrolytes can be considered to be 2-D.

In solving the Nernst–Planck equations, the net flux through the channel walls are 
set to be zero, that is, . 0 for , ,iN n i t s l= =�  and n

�  is the unit outward normal. The 
electric potential is subjected to insulating boundary conditions along the wall, that 
is, . 0.nφ∇ =�  The left and right boundaries of the computational domain are placed 
sufficiently far away from the transition zones. The concentration far away from the 
transition zone is governed by the Kohlrauch’s condition (Eq. 5.11). The condition 
for electric field along the inlet and outlet boundaries of the computational domain 
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is governed by Eq. 5.9. To study the convection effect on the transition zone, we 
consider the ideal ITP solution as the initial condition.

The velocity field q  due to mismatch of EOF of electrolytes is governed by the 
Navier–Stokes equations as:

2 2[ ( . ) ] e

q
q q p q

t
ρ η ε ϕ ϕ∂

+ ∇ = −∇ + ∇ + ∇ ∇
∂�

(5.12)

where , , and p η ρ  are the fluid pressure, viscosity, and density, respectively. The 
last term in the above equation is important near the transition zone. This electri-
cal stress arises due to the spatial variation of φ  across the channel, whether the 
electrolyte solution is electroneutral or not. Garcia–Schwartz and others [8] found 
that the inclusion of electric body force produces a significant effect for relatively 
high-applied current density. Taking /ITPU Hτ η=  as a pressure scale, the nondi-
mensional form of the Navier–Stokes equations can be written as:

2 21 1
( . ) ,

Re Re

q
q q p q B

t
ϕ ϕ∂

+ ∇ = − ∇ + ∇ + ∇ ∇
∂�

(5.13)

where 2
0( / ) Re .ITP

eB H Uε φ η=  The nondimensional equation of continuity for in-
compressible fluid is given by:

∂
∂

+
∂
∂

=
u

x

v

y
0,

�
(5.14)

where u  and v  are the velocity components along the x and y directions, respec-
tively. We can either assume a no-slip condition along the channel wall or a free-slip 
velocity condition, based on the Smoluchowski equation, along the outer edge of 
the channel induced Debye layers. Far upstream and downstream of the transition 
zones, the velocity is assumed to be known. We solve the Navier–Stokes equations, 
which are coupled with the ion concentration and electric field equations, subjected 
to the prescribed boundary conditions to determine the convective velocity of ions. 
We considered the convection along the direction of ITP transport, that is, u > 0.

5.2.1 � Numerical Methods

The finite-volume method (FVM) method is used for solving the governing equa-
tions for mass, momentum, and electric potential distribution. In this method, the 
equations, which are cast into conservation law form, are integrated over a control 
volume. The variables on the control volume interfaces are estimated by a linear in-
terpolation between the two neighboring cells to either sides of the control volume 
interface. This approach enables us to compute the jump discontinuity as part of 
the solution. Thus, the finite volume discretization is more efficient than the finite 
difference scheme when a sharp gradient or step jump is expected. Here, we have 
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used the staggered grid arrangement [21] for allocating the variables, because of 
its advantages in considering the influence of the pressure gradients on fluid flow.

In ITP problems, the variables may suffer a step change (plateau mode) or steep 
gradient (peak mode) across the transition zones. The traditional finite volume 
method for computation of such cases is unsuitable, as the numerical solution may 
produce wiggles. The Nernst–Planck equations, based on convection, electromigra-
tion, and diffusion of ions may exhibit hyperbolic characteristics near a transition 
zone. To circumvent this problem, generally upwind schemes are used.

To illustrate the discretization of the transport equations, we express the general 
convection–diffusion–electromigration equations for the generic variable c  as:

( ) 2( ) 0,
c

Fc Gc c
t x y

 


∂ ∂ ∂
+ + −


∇ =

∂ ∂∂�
(5.15)

where the convective and electromigration terms are included in F  and G,  re-
spectively. The first and last terms of Eq. 5.15 are due to the time dependency and 
diffusion, respectively. The computational domain is subdivided into a number of 
elementary rectangular cells, ΩP

 with area d PΩ  whose sides are dx dyP P and . 
Equation  5.15 when integrated over a cell ΩP  (Fig. 5.1) yields the discretized form 
to advance the solution from k-th  time step to ( )k th+1  time step as:

1
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(5.16)

Here e w n s, , , and  refer to the eastern, western, northern, and southern faces of 
the cell (Fig. 5.1). An implicit first-order scheme is used to discretize the time de-
rivatives present. The diffusion terms are discretized through a central difference 
scheme. The diffusion flux at the interfaces “e” and “w” are evaluated as:

and .
0.5( ) 0.5( )

P WE P

e wP E P W

c cc cc c

x dx dx x dx dx

−−∂ ∂  = = ∂ + ∂ + 
 
  

Similar procedure is adopted to estimate the diffusion flux at the other cell faces “n” 
and “s.” Note that the big letter subscripts denote the cell centers in which variables 
are stored and small letter subscripts denote the corresponding cell faces.

The variable c  on the control volume interface is obtained by a linear interpola-
tion between its values on the two neighboring cells on either side of the interface. 
If we consider that the interface is midway of the corresponding cell centers, then 
the value of c  at interfaces “e” and “w” are evaluated as:

c c c c c ce E P w P W= + = +0 5 0 5. ( ), . ( ).
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Similar procedure is adopted to estimate cn and cs . Therefore, the discretized 
Eq. 5.15 can be written as:

a c a c a c a c a c a cP P
k

E E
k

W W
k

N N
k

S S
k

P P
k+ + + + += + + + +1 1 1 1 1 0 ,�

(5.17)

where the coefficients ai
 ( i = E, W, P, N, and S) are as follows:

with a
dx dy

dtP
P P0 = . The contribution of the diffusion terms are included in D.  The 

discretization procedure, as discussed above, is central difference type and second 
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Fig. 5.1   Schematic diagram for control volume ΩP
(e, w, n, and s are the cell faces of the cell 

centered at P, interpolation for a variable c based on QUICK scheme)
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order accurate. Stability of this scheme requires the cellular Peclet number to be less 
than 2. This scheme may produce wiggles near a step change in variable values [22]. 
An improvement to this scheme can be made by using upwind differences to the 
first-order derivatives in Eq. 5.15. In this scheme, the variable c at the cell interfaces 
in discretized equation (Eq. 5.16) is estimated as:

c
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Similar procedure is adopted to estimate cn and cs . Replacing the values of c in 
Eq. 5.15 at the cell interfaces ( e, w, n, and s) by these approximation, the coeffi-
cients ai

 ( i = E, W, P, N, and S) become:
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where the operator [ ],a b  yields the larger of a  and b.  The above discussed up-
wind scheme is first order accurate. The diffusion terms are discretized through 
a second-order scheme involving a linear interpolation of variable values at the 
neighboring cells. An improvement on accuracy of the upwind scheme can be made 
through a QUICK scheme. The QUICK scheme [23] uses a three-point upstream-
weighted quadratic interpolation for the c  at the cell faces. The main advantage of 
the QUICK scheme is that it reduces the numerical dissipation. In this scheme, the 
cell-face values of ce

 and cw
 can be obtained as:
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and similarly the values of c  at interfaces “n” and “s.”
At any time level, we use an iterative procedure for the computation of ion trans-

port equations, as these equations are coupled with the charge conservation equa-
tion and velocity field. The iteration procedure starts with an assumption for poten-
tial at each cell and velocity field. At every iteration, the electric field is determined 
by solving the reduced elliptic equation for charge conservation equation, that is, 
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Eq. 5.5. The elliptic equation (Eq. 5.5) is solved by a line-by-line iterative method 
along with the successive-overrelaxation (SOR) technique.

The convective velocity of ions is governed by the Navier–Stokes equation. At 
every iteration, the Navier–Stokes equations are discretized by using a control vol-
ume approach [21] over a staggered grid system, that is, the velocity components 
are stored at the cell interfaces to which it is normal. Here, we use the QUICK 
scheme to discretize the convective terms.

The governing discretized equations are solved through a pressure-correction-
based algorithm, SIMPLE [21]. The pressure link between the continuity and mo-
mentum equations is accomplished by transforming the discretized continuity equa-
tion into a Poisson equation for pressure correction. This Poisson equation imple-
ments a pressure correction for a divergent velocity field. The pressure Poisson 
equation is given by:

* * * *

1 1
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   − − −−
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 − −
= + 

 

The variable pc  denotes the pressure correction and u* and v* are the velocity 
components obtained by solving the momentum equations. Thus, at any time step 
a single iteration in SIMPLE algorithm consists of the following sequential steps:

1.	  An implicit calculation of the momentum equations is performed. The equations 
are discretized through the scheme as discussed above. Because of the coupling 
nature, the resulting system of algebraic equations is solved through a block 
elimination method.

2.	  The Poisson equation for pressure correction is solved using the successive 
under relaxation method.

3.	  The velocity field at each cell is updated using the pressure correction.

At the end of every iteration, the velocity on the channel wall is obtained by 
(Eq. 5.29) using the updated values for concentration distribution and electric field. 
The pressure-correction iteration at each time step is continued until the divergence-
free velocity field is obtained. However, for this purpose, the divergence in each 
cell is towed below a preassigned small quantity. The iterations are continued until 
the absolute difference between two successive iterations becomes smaller than the 
tolerance limit 10 6−  for concentration as well as potential distribution across the 
channel.

A steady state solution is achieved by taking sufficient time steps until the con-
centrations and velocity field remain unchanged with time. The initial condition for 
dispersed ITP is governed by the solution of the corresponding ideal ITP case.

As the variables along the transition zone change more rapidly than elsewhere, 
a nonuniform grid along the x-direction and a uniform grid distribution along 
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the y-direction are considered. The grid size dx  within the transition zone is 
considered to be small and it is increased by a constant value as we move away 
from the transition zone. The smallest dx  is chosen such that the Courant–Fried-
richs–Lewy (CFL) criterion is satisfied. A series of test runs are made to capture 
the interface characteristics with various grid sizes for ITP with or without the 
convection case. We have tested our code for different values of dx  with coarse 
grid size varied from 0.01 to 0.005. When Dr = 0 7. ,  the total number of grid 
points considered are 1,000 × 100, 1,500 × 100, 1,500 × 100 where the first and the 
second numbers are the number of grid points along the x and y directions, respec-
tively. Our test results suggest that 1,000 × 100 grid points for the computational 
domain having nondimensional channel length 10 with height 1 is optimal for ITP 
without the convection case. For the dispersion case, the length of the domain has 
been adjusted accordingly by increasing the number of uniform grid points within 
the dispersed transition zone.

5.3 � Results and Discussions

In order to make quantitative predictions using this model, the electrophoretic mobili-
ties of all species, concentration of the LE, voltage drop across the channel and height 
of the channel must be specified. We take 12

0 0.02586V, 695.39 10 C/Vm,eφ ε −= = ×  
23 19 3 3 31.381 10 J/K, 1.602 10 C, 300K, 10 Pa/s and 10 Kg/m .BK e T η ρ− − −= × = × = = =

We consider that the diffusivity of LE and common ion are equal, that is, 
D Dl = = × −

0
107 10 m /s2  and vary the diffusivity of TE by changing the value of the 

diffusivity ratio Dr , where D D Dr t l= / . The imposed electric field strength is con-
sidered to be E0

510=  V/m and the electric fields at the two ends are obtained by 
using Eq. 5.5. The electro-osmotic mobility of LE is varied between 1 35 10 8. × −  and 
2 03 10 7. × − m /Vs.2  The bulk concentration of LE is taken as C Ml

∞ = 0 001. , so that 
the Debye layer thickness (~ 10 nm) is much smaller than the height of the channel 
considered here (10 50 m).µ−  Unless stated otherwise, we consider the channel 
height as 25 m.H µ=

5.3.1 � ITP Without Dispersion (Ideal ITP)

We first describe an analytical solution for the case of ITP without dispersion (ideal 
ITP). Nernst–Planck equation for i-th  ionic species under the electroneutrality con-
dition in 1-D form is given by:

( 0,)ITP i
i i i i i x

dCd d
U C D z C E

dx dx dx
µ − − + =  �

(5.18)
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where Ex
 is the axial potential gradient. Integrating Eq. 5.18 and using the fact that 

thermodynamic potential at TE and LE ends remain constant along with constant 
values of concentrations at both the ends, yields:

0

ln .l t l

t

C E Ed

dx C φ
   −

=    �
(5.19)

Integrating Eq. 5.19 and considering the origin of the coordinate system in the re-
gion where the concentration of both the species are equal, that is, C Cl t= ,  we get:

0

ln ,l

t

C E
x

C φ
  ∆

=  
�

(5.20)

where ∆E E Et l= − ,  the difference in electric field strengths at TE and LE. We de-
fine the transition zone as the region where the concentration ratio C Cl t/  changes 
from e2  to 1 2/ .e  The width of the transition zone where most change in concentra-
tion occurs, is given by:

04
.X

E

φ
∆ =

∆�
(5.21)

Under the electroneutrality condition, the axial electric field Ex  can be obtained 
from the charge conservation equation (neglecting the diffusion current) as:

( ) 0.x

d
E

dx
ν =

�
(5.22)

Integrating Eq. 5.21 and using the relation given in Eq. 5.20, the axial electric field 
is given by:

00

0

1
E

t t l

x tt

E C
e

E C
φµ µ

µ µ

∆

∞

 +
= + 

+  �

(5.23)

Using the above relation and integrating Eq. 5.18 for i t= ,  concentration profile of 
TE can be expressed through the hypergeometric series

00

0

( )
1, 1 , ,

E

t t t l

tt

C x E E
F e

E EC
φµ µ

µ µ

∆

∞

 +
= + 

∆ ∆ +  �
(5.24)

and the concentration profile for LE can be obtained by using the Eq. 5.21.
In order to check the time dependency of the concentration profile for planer ITP, 

the computed result for the logarithmic ratio of the concentrations of LE and TE is 
compared with the analytical solution given by Eqs. 5.24 and 5.20. The results show 
(Fig. 5.2) that the concentration distribution becomes steady after a short transition. 
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Here the solid line represents the analytical result given in Eq. 5.20 and the dot-
ted lines are computed solutions for different nondimensional time. If the width of 
the sample zone is large compared with the transition zone width (plateau-mode 
ITP), the variables near the interface can be estimated by the analytical expressions 
(Eqs. 5.20, 5.23, and 5.24).

To test the accuracy of our algorithm for 2-D ITP, we make a comparison of 
ionic concentration and the electric field at different values of LE-to-TE mobility 
ratio ( )Dr

 in Figs. 5.3a and b. Our computed results agree well with the analytical 
predictions. The electric field gradually decreased as we move from low conductiv-
ity TE to high conductivity LE. The jump in voltage between neighboring zones 
results in the formation of permanently sharp boundaries between the TE and LE 
and are typical for ITP (Fig. 5.3a). The sharp gradient in Ex ,  which develops in 
the transition zone, smear out as the mobility ratio (or diffusivity ratio, Dr

) of the 
electrolytes increases. Figure 5.3b shows that low mobility ratio leads to a sharp 
transition zone, whereas a high mobility ratio widens the transition zone width and 
the lateral distribution of Ex

 is relatively smooth. We consider the zone length oc-
cupied by the sample species negligible compared with the channel length, that is, 
l l ls l t→ = =0 0 5with . . Figure 5.4a and b shows that our numerical code can suc-
cessfully resolve the sharp interfaces between successive zones in both peak and 
plateau mode ITP.

In a plateau mode ITP (Fig. 5.4a), the concentration distribution in each stack 
on either side of an interface can be treated independently, that is, consisting of two 
electrolytes say, TE and LE; whereas in peak mode (Fig. 5.4b), the transition zone 
width is of the order of the sample zone width.

Figure 5.5a through c shows the concentration profile in peak mode ITP for dif-
ferent values of sample-to-LE mobility ratio k2

 when LE-to-TE mobility ratio is 
fixed k1 3= . As the sample amount occupies a negligible portion of a long channel, 
the local electric field outside the sample zone is not influenced by the presence of 
the sample ions. We find from these results that the analyte penetrates more toward 
the LE (or TE) side, if the analyte mobility is near LE (or TE). The tails of the 
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sample distribution lies in the region where the electric field is relatively uniform. 
A symmetry pattern for analyte distribution results when its mobility is close to an 
average of the LE and TE mobilities.

5.3.2 � Effect of Convection on Sample Zone in ITP

We investigate the impact of convective dispersion due to uniform pressure-
driven flow and/or EOF on the ion distribution in ITP. The dispersion of the 
sample zone sandwiched between two adjacent electrolytes, namely LE and 
TE can be measured through the variance of the concentration of sample spe-
cies. We define the axial standard deviation as ( ( , )),sVar c x yσ =  where 

Var( ( , )) ( ) ( , ) ( , )c x y
M

x M c x y dxdy M
M

xc x y ds
s

x s

D

x
s

s= − =∫∫
1 12  with xxdy

D
∫∫  and 

the molar mass present in the system M c x y dxdys s

D

= ∫∫ ( , ) .  The strong dispersion 

due to convection may produce an asymmetry in the sample distribution. For this, 
we have estimated the skewness of the sample zone. We define skewness of the 
concentration profile of the sample species as:

3

1

1
( , ) .x

s
s D

x M
c x y dxdy

M
γ

σ
− =   ∫∫
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The value of skewness may be positive, negative, or zero depending on whether 
mass are skewed to the left (negative skew) or symmetric (zero skew) or to the 
right (positive skew) of average location of the mass. Qualitatively, for a mass 
distribution having negative skew indicates that the tail on the left side is longer 
than the right side, and vice versa for positive skew. Zero skew indicates that the 
mass are distributed in a symmetrical manner.

Effect of Pressure Driven Flow

We consider a constant pressure difference along the axial direction of the channel. 
Due to the imposed pressure gradient, the fully developed Poiseuille flow along the 
electromigration direction of the ionic species with average flow u  develops; that is,

u y u
y y

H
( )

( )
,=

−
6

1
2

�
(5.25)

where H  is the depth of the channel and U ITP  is the velocity of ITP transport for 
ideal ITP case. Under the bulk fluid flow with average speed U , the transition zone 
velocity becomes ( 1) ,where 0ITP ITPU U u Uα α= + = + =  corresponds to the ideal 
ITP case.

Figure  5.6a shows the concentration distribution of sample within the channel 
for k k1 23 2= =,  when the bulk fluid flows with average speed u m s= × −3 24 10 3. /  
along the favorable direction of ITP. In this case, the ITP zone moves at a faster rate 
compared with the plane ITP. Though the distribution of the sample species and TE 
in ideal ITP is y-independent, it becomes 2-D when a convection is considered. The 
electromigration leads to sample stacking, while diffusion works against it. With con-
vection along the ITP direction, the ITP zone widens and smears the sharpness of the 
electric field and ionic concentration. The combined effect of convection and lateral 
diffusion would result in a dispersion of the species concentration. Dispersion effect 
on the transition zone is also evident from the distribution of conductivity (Fig. 5.6b).

The variation of standard deviation ( σ ) and skewness ( 1γ ) of the dispersed sam-
ple zone by changing its electrophoretic mobility for fixed TE and LE is presented 
in Figs. 5.7a and b. It is clear from Fig. 5.7a that the sample dispersion is large when 
its mobility is close to the mobility of one of the adjacent electrolytes. If the mobil-
ity of the sample species is close to the harmonic mean of adjacent electrolytes, the 
dispersion will be minimum and the skewness of the concentration distribution of 
the sample species is close to zero (Fig. 5.7b). The dispersed sample zone deviates 
from Gaussian profile when the mobility of sample species is close to LE or TE.

�Dispersion Due to EOF of Electrolytes

If the Debye layer thickness is considered to be much lower than the height of 
the channel, then the slip velocity condition can be assumed on the channel wall. 
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We denote the electro-osmotic slip velocity along the wall for LE, sample, and TE 
by u u ul

EOF
s
EOF

t
EOF, ,, and  respectively. The slip velocity ui

EOF  is determined by the 
Smoluchowski’s equation / , where EOF EOF

i e i i i i eu E Eε ζ η µ ε= =  is the dielectric per-
mittivity of the medium, 

iζ  is the zeta-potential, and EOF
iµ  is the electro-osmotic 

(EO) mobility of the ith  species. We define the ratio of the EO slip velocities be-
tween LE and TE by v u ur t

EOF
l
EOF= / .  If u u ul

EOF
s
EOF

t
EOF= = ,  then the ITP transi-

tion zone is unperturbed due to EOF. The difference in EO slip velocity of the 
electrolytes induces axial pressure gradient. Sufficiently far away from the transi-
tion zone, the velocity of the electrolytes considered to be the superposition of EOF 
velocity and Poiseuille flow due to a constant pressure gradient [18 ] as:

u y u u
y y

Hi i
EOF

p i( )
( )

,,= +
−

6
1

2
�

(5.26)

where 6up i,  is the average flow due to a constant pressure gradient on i-th  zone.
If the net pressure drops across the length L  is zero, then u l u l u lp l l p s s p t t, , ,+ + = 0 

along with the conservation of mass leads to u u up i i
EOF

, ( )= −  and the velocity at 
the individual zone can be written as:

u y u u
y y

H
ui

EOF
i
EOF( ) ( )

( )
,= −

−
+

1
2

�
(5.27)

where the average electro-osmotic slip velocity is:

u l u l u l ul l
EOF

s s
EOF

t t
EOF= + + .� (5.28)

The slip velocity along the wall is:

( ; 0, ) ( ) ( ; 0, ),EOF EOFu x y H x E x y Hµ= = =�
(5.29)

where ( ) and ( ; 0, )EOF x E x y Hµ =  are the wall mobility and axial electric field on 
the wall at different axial positions x,  respectively. The approximate wall mobility 
is given by [15]:

( ; 0, )
( ) ,

( ; 0, )

EOF
i iEOF

i

C x y H
x

C x y H

µ
µ

=
=

=
∑

∑�
(5.30)

where C x y Hi ( ; , )= 0  are the concentration of the i-th  ionic species on the 
wall. The bulk electro-osmotic mobilities of LE, sample, and TE are denoted by 

, , and ,EOF EOF EOF
l s tµ µ µ  respectively.
The distribution and dispersion of the sample electrolytes sandwiched between 

LE and TE depend on the choice of the ratio of its electro-osmotic mobility with 
the adjacent electrolytes. A large dispersion in sample distribution occurs when the 
electro-osmotic mobility of the sample species deviates by a large margin from the 
adjacent electrolytes (LE or TE). As the electric field varies in each zone, an equal 
EO mobility of sample and the adjacent electrolytes lead to a nonuniform EO speed. 
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Figure 5.8 a and b shows the standard deviation ( σ ) and skewness ( 1γ ), respective-
ly as a function of the sample diffusivity Ds  when the diffusivity of both TE and LE 
are kept fixed as Dr .  Here, we have taken the EO motilities of all the three electro-
lytes as equal. We find that the stack width is minimum and the skewness is almost 
zero when the diffusivity of the sample is close to the average of D Dt tand .  The 
sample distribution shows asymmetry and the variance is large when the diffusivity 
of the sample is either close to LE or TE. However, the dispersion is smaller when 
sample diffusivity is close to LE ( / . )D Ds l > 0 5  compared with the case when it 
is close to TE, that is, D Ds l/ . .< 0 5  It may be noted that as the sample diffusivity 
changes, the electric field and hence the electro-osmotic velocity varies. Thus, the 
dependence of dispersion on diffusivity for EOF interacted ITP is qualitatively dif-
ferent from that of the case where ITP is interacted by a constant pressure gradient.

5.4 � Summary

A high resolution numerical algorithm is developed to analyze the 2-D ITP of elec-
trolytes of different mobility in a wide microchannel. The model is based on equa-
tions for conservation of mass, charge, and electroneutrality condition. In addition, 
the convective transport of electrolytes is governed by the Navier–Stokes equations. 
The present numerical algorithm is based on a finite volume method over a stag-
gered grid arrangement along with a higher-order upwind scheme, QUICK. In ITP, 
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a thin region (transition zone) between two adjacent analytes develops in which 
either a step change (plateau mode) or steep gradient (peak mode) of variables may 
occur. Presented numerical method can efficiently capture these sharp boundaries 
between adjacent anlaytes. In a peak-mode ITP, depending on the mobility ratio of 
the analytes, the distribution of analytes may show asymmetry. The imposed con-
vection speeds up the ITP separation, however, the transition zone widens and the 
sharpness of the variables across the transition zone smears- out. The distribution 
of analytes, in plateau shape in absence of convection, shows a peak when imposed 
convection is considered. Dispersion of analytes is measured through second- and 
third-order moment analysis.
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6.1 � Introduction

Inverse heat transfer problems deal with the estimation of unknown quantities ap-
pearing in the mathematical formulation of physical processes in thermal sciences 
by using measurements of temperature, heat flux, radiation intensities, etc. Origi-
nally, inverse heat transfer problems have been associated with the estimation of 
an unknown boundary heat flux by using temperature measurements taken below 
the boundary surface of a heat-conducting medium [1]. On the other hand, recent 
technological advancements often require the use of involved experiments and in-
direct measurements within the research paradigm of inverse problems. Nowadays, 
inverse analyses are encountered in single- and multi-mode heat transfer problems 
dealing with multi-scale phenomena. Applications range from the estimation of 
constant heat transfer parameters to the mapping of spatially and timely varying 
functions, such as heat sources, fluxes, and thermophysical properties. Systematic 
methods for the solution of inverse problems have developed significantly during 
the last 20 years and have become a powerful tool for analysis and design in en-
gineering [1–12]. Inverse analysis is nowadays a common practice in which the 
groups involved with experiments and numerical simulation synergistically col-
laborate throughout the research work, in order to obtain the maximum information 
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regarding the physical problem under study. Similarly, powerful measurement tech-
niques have been undergoing significant advancements, such as the use of infrared 
(IR) cameras for temperature measurements. Such measurement technique is quite 
powerful, because it can provide accurate nonintrusive measurements, with fine 
spatial resolutions and at large frequencies [10].

The mapping of thermophysical properties of nonhomogeneous materials from 
thermal images provided by an IR camera is a difficult inverse problem, due to the 
large amount of data to be processed and large number of parameters to be estimat-
ed, as well as the low signal-to-noise ratio. It is thus of great interest to implement 
estimation approaches of low computational cost that can accurately cope with such 
inherent difficulties [13–25].

In this chapter, we make use of the so-called statistical inversion approach for the 
solution of an inverse problem that involves the identification of nonhomogeneities 
or inclusions in a heat-conducting media, through the identification of its spatially 
varying thermophysical properties. The statistical inversion approach is based on 
the following principles [7]:

1.	 All variables appearing in the mathematical model of the physical problem are 
modeled as random variables.

2.	 The randomness describes the degree of information concerning their realizations.
3.	 The degree of information concerning these values is coded in probability 

distributions.
4.	 The solution of the inverse problem is the posterior probability distribution.

The statistical inversion approach falls within the Bayesian statistical framework, 
in which (probability distribution) models for the measurements and the unknowns 
are constructed separately and explicitly. The solution of the inverse problem is 
recast in the form of statistical inference from the posterior probability density, 
which is the model for the conditional probability distribution of the unknown 
parameters given the measurements. The measurement model incorporating the 
measurement error model and the related uncertainties is called the likelihood, i.e., 
the conditional probability of the measurements given the unknown parameters. 
The model for the unknowns that reflects all the uncertainty of the parameters 
without the information conveyed by the measurements is called the prior model 
[7, 9–12, 26–29].

We briefly present below the statistical approach for the solution of inverse 
problems, as well as the Metropolis–Hastings algorithm (MH) for the implemen-
tation of the Markov chain Monte Carlo (MCMC) method [7, 9, 11, 12, 26–29]. 
Such method is then applied to the solution of the inverse problem of estimating 
the spatial variation of thermophysical properties. The MCMC method is used 
in conjunction with two different techniques in order to obtain low-cost inverse 
problem solutions, namely: (1) A nodal approach, as advanced in [13–17] and 
(2) An eigenfunction expansion of the unknown properties and solution of the 
direct problem with the Generalized Integral Transform Technique (GITT), as 
advanced in [18–23].
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6.2 � Statistical Approach for the Solution of Inverse 
Problems

Consider the vector of parameters appearing in the physical model formulation as:

� (6.1a)

where

N	 is the number of parameters.

For the solution of the inverse problem of estimating P, we assume availability of 
the measured temperature data as given by:

�
(6.1b)

where
�
Yi

	contains the measured temperatures for each of the S sensors at time ti, i = 1,…, I,

i.e.,:

� (6.1c)

so that we have M = S I measurements in total. Bayes’ theorem can then be stated 
as [7, 9–12, 26–29]:

�
(6.2)

where

posterior ( )π P 	 is the posterior probability density, i.e., the conditional probability of 
the parameters P given the measurements Y;

prior ( )π P 	 is the prior density, i.e., the coded information about the parameters 
prior to the measurements;

( )π Y P 	is the likelihood function, which expresses the likelihood of different mea-
surement outcomes Y with P given; and

( )π Y 	 is the marginal probability density of the measurements, which plays the 
role of a normalizing constant.

If we assume the parameters and the measurement errors to be independent Gauss-
ian random variables, with known means and covariance matrices, and that the 
measurement errors are additive, a closed form expression can be derived for the 

posterior ( ).π P  In this case, the likelihood function can be expressed as [7, 9–12, 26–29]:

� (6.3)
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where

Ye	 is the vector of estimated variables, obtained from the solution of the direct 
(forward) model with an estimate for the parameters P,
M = S I	 is the number of measurements, and
W	 is the covariance matrix of the errors in Y.

Similarly, for the case involving a prior normal distribution for the parameters we 
can write:

� (6.4)

where

 and Vµ 	 are the known mean and covariance matrix for P, respectively.

By substituting Eqs. 6.3 and 6.4 into Bayes’ theorem, Eq. 6.2, except for the normal-
izing constant in the denominator we obtain:

�
(6.5)

where:

� (6.6)

Equation  6.5 reveals that the maximization of the posterior distribution function 
can be obtained with the minimization of the objective function given by Eq. 6.6, 
denoted as the maximum a posteriori objective function [4–13]. Equation 6.6 clearly 
shows the contributions of the likelihood and of the prior distributions in the objec-
tive function, given by the first and second terms on the right-hand side, respectively.

On the other hand, if different prior probability densities are assumed for the 
parameters, the posterior probability distribution may not allow an analytical treat-
ment such as that presented above. In this case, MCMC methods are used to draw 
samples of all possible parameters, so that inference on the posterior probability 
becomes inference on the samples [7, 9–12, 26–29].

In order to implement the Markov Chain, a density q(P*, P(t−1)) is required, 
which gives the probability of moving from the current state in the chain P(t−1) to a 
new state P*.

The MH [7, 9–12, 26–29] was used in this work to implement the MCMC meth-
od. It can be summarized in the following steps:

1.	 Sample a candidate point P* from a proposal distribution q(P*, Pt−1).
2.	 Calculate:

� (6.7)
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3.	 Generate a random value U which is uniformly distributed on (0, 1).
4.	 If U  α≤ , define P( t) = P*; otherwise, define P( t) = P( t−1).
5.	 Return to step 1 in order to generate the sequence {P(1), P(2),…, P( n)}.

In this way, we get a sequence that represents the posterior distribution and infer-
ence on this distribution is obtained from inference on the samples {P(1), P(2),…, 
P( n)}. We note that values of P( i) must be ignored until the chain has converged to 
equilibrium. For more details on theoretical aspects of the MH and MCMC meth-
ods, the reader should consult references [7, 9–12, 26–29].

6.3 � Nodal Approach for Estimating Spatially Varying 
Thermal Diffusivity and Heat Source

The physical problem examined here involves two-dimensional transient heat con-
duction in a thin plate, with spatially varying thermal conductivity and volumetric 
heat capacity. Lateral boundaries are supposed to be insulated and partial lumping 
is used across the plate. Internal steady heat generation and surface convective heat 
losses are taken into account in the formulation. The initial temperature within the 
medium is nonuniform. The mathematical formulation for this problem is given by:

� (6.8a)

� (6.8b)

� (6.8c)

� (6.8d)

where

C( x, y)	 is the local volumetric heat capacity
k( x, y)	 is the local thermal conductivity
h( x, y)	 is the local convective heat transfer coefficient divided by the thickness of 
the plate, and
g( x, y)	 is the local heat source.
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In the direct problem associated with the mathematical formulation of such physical 
problem, the thickness of the medium and the spatial variations of the volumetric 
heat capacity, thermal conductivity, heat transfer coefficient, heat source, and initial 
temperature are known. The objective of the direct problem is then to determine the 
transient temperature variation within the medium. On the other hand, the inverse 
problem is concerned with the identification of the spatially dependent thermal pa-
rameters, by making use of the nodal strategy advanced in [13, 14]. For the applica-
tion of such strategy, we rewrite Eq. 6.8a in the following nonconservative form:

�

(6.9)

where

� (6.10a–c)

An explicit discretization of Eq. 6.9 using finite differences results in:

� (6.11)
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Equation 6.12a defines the forward temperature difference in time. Equation 6.12b 
approximates the Laplacian of temperature at time tn and node ( i, j). Equation 6.12c, 
d is a finite difference approximations to the temperature gradient components.

By writing Eq. 6.11 for a given node ( i, j) and all time steps, we obtain:

� (6.13)

where

� (6.14a)

and

�

(6.14b, c)

In the nodal strategy, the sensitivity matrix, Eq. 6.14a, is approximately computed 
with the measurements. Therefore, for the implementation of the MH the uncertain-
ties in the computation of the sensitivity matrix need to be taken into account. By 
assuming that P and J are independent random variables, the sought posterior ( )π P  is 
then given by:

� (6.15)

where

( )π J 	 is the a priori distribution for the sensitivity matrix J.

Since the sensitivity matrix is computed with the measurements, its prior distribu-
tion can be obtained from the distribution of the measurement errors.

We consider here a test case dealing with the identification of a crack 
( k = 0.0257 Wm−1 K−1, C = 1211025 Jm−3 K−1, a = 2.12 × 10−8 m2/s) within a homo-
geneous material ( k = 10 Wm−1 K−1, C = 3.75 × 106  Jm−3 K−1, a = 2.66 × 10−6 m2/s) 
as depicted in Fig.  6.1a. Heat is generated with strength 5 × 106  W/m3 so that 
G = 1.33 K/s inside the square region shown in Fig. 6.1b, G = 4.129 K/s inside the 
crack, and G = 0 K/s outside the square region. For the MH, the prior distributions 
for the thermal diffusivity field a( x, y) are assumed to be uniform within the interval 
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and does not provide any practical restriction to the values to be estimated for the 
parameters. The prior distributions for the heat source parameters are assumed to 
be uniform within the interval [0, 10] K/s. The plate is initially randomly excited 
with a pseudo random binary sequence (PRBS), hence the initial temperature field 
is randomly distributed as 20 °C or 40 °C. This distribution is chosen in order to en-
hance the thermal gradients within the plate, and consequently the local sensitivity 
coefficients. The temperature fields for t = 0 s and t = 2 s, are presented in Fig. 6.2a 
and b, respectively.

In order to avoid using the same direct solution for the generation of the simu-
lated measurements and for the solution of the inverse problem, a finite volume 
solution is developed that yields the simulated data. For the solution of the inverse 
problem, the plate is discretized with ni = nj = 128 internal nodes, where the val-
ues of the parameters in Pij are estimated. The space step is chosen according to 
the pixel size: 200 mx y∆ = ∆ = µ . Therefore, the width and length of the plate are 
0.0256 m. The simulated measurement errors are Gaussian, additive, uncorrelated, 
with zero mean, and a constant standard deviation of 0.03  °C.

a b

Fig. 6.1   a Exact thermal diffusivity distribution. b Exact distribution of the source term

 

a b

Fig. 6.2   a Initial temperature field. b Final temperature field
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The estimated thermal diffusivity and heat source term ( G) are presented in 
Fig. 6.3a and b, respectively. The MH presented above is used for the estimation of 
these quantities in each of the nodal points. The Markov chain for each point consists 
of 1,500 states, where the first 500 is neglected for the computation of the statistics 
for the parameters. Generally, the acceptance ratio in the MH is of the order of 10 %. 
A comparison of Figs. 6.1 and 6.2 reveals an excellent agreement between exact 
and estimated quantities, despite the fact that the measurements are directly used for 
the computation of the sensitivity matrix. Note that the above parameter estimation 
problem (Eq. 6.13) is linear. Therefore, its computation is very fast and appropriate 
for use with computationally intensive techniques like the MCMC method.

6.4 � Identification of Thermophysical Properties 
of Nanocomposites

We consider in this example the following one-dimensional diffusion equation, with 
respective initial and boundary conditions:

�
(6.16a)

� (6.16b)

�
(6.16c)

� (6.16d)
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Fig. 6.3   a Estimated thermal diffusivity distribution. b Estimated distribution of the source term
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A formal exact solution of the direct problem given by Eq. 6.16 is achievable, ac-
counting for the exact integral transformation when the specific eigenvalue problem 
with all the space variable coefficients is chosen, such as in [18–22]. This solution is 
based on the application of the Classical Integral Transform and the GITT [30–32], 
by writing:

� (6.17a, b)

where

T x tf ( ; ) 	 is a proposed analytical filtering solution, and
T ti ( ) 	 the transformed potentials in the above eigenfunction expansion, defined 
with the integral transformation operation above.

The eigenvalues 
iµ  and normalized eigenfunctions ( ),i xψ�  are obtained from the 

chosen eigenvalue problem in each case, which specifies the weighting function to 
be adopted, w*( x), as described in further details in [18–22].

The coefficients w x( ), ( ),k x  and d x( )  are also expanded in terms of eigenfunc-
tions in the following form, exemplified for w( x):

� (6.18a)

� (6.18b)

where

w xf ( ) 	 is a filtering solution used to enhance convergence of the expansion and
ˆ ( )w x 	 is the weighting function for the chosen normalized eigenfunction �Γ k x( )  

[18–22].

For the solution of the inverse problem, the unknown quantities are the spatially 
dependent thermal properties and the effective heat transfer coefficients which are 
expressed as eigenfunction expansions, as well as the applied heat flux, which is 
parameterized as explained below. Thus, the total number of parameters N to be es-
timated is given by the sum of parameters in each expansion, including the number 
of parameters in each filter function, and the number of parameters in the heat flux 
expression.

By following the methodology advanced in [21], the solution of the inverse 
problem is obtained within the transformed temperature field. The experimental 
temperature data are integrally transformed by using Eq. 6.17b, thus compressing 
the experimental measurements in the spatial domain into a few transformed tem-
perature modes and allowing for much faster computation of the inverse problem 
solution.

The experimental setup presented in Fig.  6.4a employs temperature measure-
ments obtained from an IR camera FLIR SC660, with 640 × 480 image resolution, 
and − 40 to 1,500 °C temperature range. The main components of the setup are: (1) 
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IR camera (FLIR SC660); (2) camera stand for vertical experiment configuration; 
(3) frame with the sample and the heater; (4) sample support; (5) data acquisition 
system (Agilent 34970-A); (6) microcomputer for data acquisition. Figure 6.4b il-
lustrates an image produced by the FLIR SC660 camera after some elapsed heating 
time.

Figure 6.5 shows the nanocomposite plate used in this experiment, which is com-
posed of polyester resin as matrix and alumina nanoparticles as filler, manufactured 
in such a way that three-fourth of the plate’s length has 28.5 % of alumina nanopar-
ticles in mass and the other one-fourth of the plate’s length is composed only by 
polyester resin, with no addition of filler. The plate’s thickness is 1.51 mm and its 
lateral and vertical dimensions are 40 × 80 mm. An electrical resistance (38.2 Ω) is 
employed for the heating of the plate, with the same lateral dimensions as that of 
the plate but half the length (40 × 40 mm), here joined at the upper half of the plate’s 
height with the aid of a thermal compound paste. As a reference case, we use a pair 
of homogeneous polyester resin plates in a plate-heater-plate sandwich setup; this 
case is hereafter called Case 1. For the nanocomposite plate we use a plate-heater-
insulation sandwich setup and investigate two cases by varying the position of the 
plate with respect to the electrical resistance: First the portion with no addition of 

Fig. 6.4   a General view of the experimental setup. b Image produced by the FLIR SC660 camera 
after some elapsed heating time

 

Fig. 6.5   Polyester resin-
alumina nanocomposite plate 
used in the experiment with 
dimensions 1.51 mm (thick-
ness), 40 mm (width), and 
80 mm (length)
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filler is placed in contact with the electrical resistance and for the last case the plate 
is turned upside down. These experimental setups are hereafter called Cases 2 and 
3, respectively, and are schematically represented in Fig. 6.6. In order to reduce 
uncertainty in the IR camera readings, the plate surface that faces the IR camera is 
painted with a graphite ink, which brought its emissivity to 0.97.ε =

Considering a lumped formulation across the sample thickness, the direct prob-
lem is represented by averaging the multidimensional heat conduction equation, 
which results in the one-dimensional formulation with initial and boundary condi-
tions given by Eq. 6.16, and with the following parameters:

�

(6.19a–f)

where

h xeff ( ) 	 is the effective heat transfer coefficient,
q x tw ( , ) 	is the applied heat flux, and
Lz

	 is the plate’s thickness, respectively.

It has been verified that the appropriate identification of thermophysical properties 
through the proposed experimental setup requires simultaneous estimation of the 
time variation of the applied heat flux, resulting from the thermal capacitance of 
the heater, as well as of the heat transfer coefficient. For the time variation of the 
applied heat flux the following parameterization is employed:

�
(6.20a, b)
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Fig. 6.6   Schematic representation of the experimental setup for a Case 2, and b Case 3
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In order to have reference values for the thermophysical properties of the polyes-
ter resin employed in this study, we perform the inverse analysis of Case 1 with 
the homogeneous pure polyester resin sample. In this case, we adopt normal pri-
ors with 15 % standard deviation, centered in the literature values [33], obtaining 
the estimates: 6 30.16 0.02 W/m C and (1.57 0.08) 10  J/m  C,k w° °= ± = ± ×  for the 
thermal conductivity and heat capacity, respectively.

We now consider the inverse analysis for the estimation of the space varying 
properties of the nanocomposite plate with the setup of Case 2 (Fig. 6.6a). We as-
sume the filter for the thermal conductivity and heat capacity in the form of linear 
functions that vary between the end values kx0

 and kxL ,  and wx0
and wxL ,  respec-

tively. For these parameters we adopt normal priors, with 15 % standard devia-
tion, centered in the literature values for the polyester resin [33] and in the Lewis-
Nielsen’s formula prediction [34] for the region filled with alumina nanoparticles. 
Seven terms are used for the expansions in Eq. 6.5 of w( x) and k( x); three terms are 
used in the expansion of d( x). Tables 6.1, 6.2, 6.3 and 6.4 present the parameters 

Table 6.1   Prior information and estimated parameters for the thermal conductivity (Case 2—
linear filter)
Parameter Prior information Estimates (mean values)

kx0  [W/m°C] N (0.16, 15 %)    0.1621

kxL  [W/m°C] N (0.193, 15 %)    0.201

k1
U (− 0.0279, 0.0279)    0.00427344

k2
U (− 0.00698, 0.00698)    0.0002019

k3
U (− 0.00931, 0.00931) − 0.0007205

k4
U (− 0.00349, 0.00349) − 0.0003482

k5

U (− 0.00559, 0.00559) − 0.0004592

k6
U (− 0.00232, 0.00232)    0.0002434

k7
U (− 0.00399, 0.00399)    0.0001065

Table 6.2   Prior information and estimated parameters for the heat capacity (Case 2—linear filter)
Parameter Prior information Estimates (mean values)

wx0 [J/m3°C] N (1.595 × 106) 1.601 × 106

wxL [J/m3°C] N (1.736 × 106) 1.74 × 106

w1
U (− 255921.0, 255921.0) 17048.43

w2
U (− 63980.3, 63980.3) − 1479.72

w3
U (− 85307.0, 85307.0) − 1193.36

w4
U (− 31990.1, 31990.1) − 3341.41

w5

U (− 51184.2, 51184.2) − 477.34

w6
U (− 21326.8, 21326.8) 668.28

w7
U (− 36560.2, 36560.2) − 1002.42
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and type of prior information, i.e., adopted in this inverse analysis ( N = Gaussian 
distribution, U = noninformative uniform distribution) as well as the estimated mean 
values obtained for each one of the parameters.

Markov chains of NMCMC = 60 000,  states are used, and the statistics are com-
puted by neglecting the first Nburn-in = 20 000,  states needed for the warm up of the 
chains. For the sake of illustration, Fig. 6.7a and b show, respectively, the evolution 
of the Markov chains for the parameter kxL

 and for the first coefficient in the expan-
sion of the thermal conductivity, k1

, where one can clearly observe the convergence 
of the states. Figure 6.8a and b present, respectively, the estimated spatial variations 
for the thermal conductivity and heat capacity, with their 99 % confidence intervals, 
as well as the initial guess employed in this test case. One must observe that with 
the linear filter functions used for the thermophysical properties in this case, which 
does not provide informative priors regarding their functional forms, the proposed 
methodology is able to identify a transition of the space varying properties from 
the end values at x = 0  towards constant values. Figure 6.8a and b show that this 
transition is centered around x = 0 02.  m,  where, in fact, a sharp interface exists 
between the two materials that compose the plate. Figure 6.9a depicts the residuals 
between calculated and experimental quantities for the first five transformed tem-
perature modes.

Although presenting some correlation, which results from the integral transfor-
mation procedure, i.e., truncated at the low order of 10 modes, the residuals are 
small. Similar behavior can be observed for the residuals in the temperature field, 
presented in Fig. 6.9b at three different positions. Some tests are performed with 
more than seven terms in the expansions of the sought coefficients, but no improve-
ment is observed in the estimated quantities because of the small sensitivity coef-
ficients concerning the higher-order expansion coefficients.

Table 6.3   Prior information and estimated parameters for the heat transfer coefficient (Case 2—
linear filter)
Parameter Prior information Estimates (mean values)
hx0 [W/m2°C] N (15.03, 5 %) 14.286

hxL [W/m2°C] N (11.63, 5 %) 12.041

h1
N (− 0.23, 5 %) − 0.2492

h2
N (0.69, 5 %) 0.7197

h3

N (− 0.044, 5 %) − 0.0437

Table 6.4   Prior information and estimated parameters for the applied heat flux (Case 2—linear 
filter)
Parameter Prior information Estimates (mean values)

a N (0.19, 5 %) 0.197
b N (0.00332, 5 %) 0.00315
c N (0.66, 5 %) 0.64
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On the basis of the observations described above, we now consider a filter func-
tion for the thermophysical properties that approximates a step transition between 
the end values at x = 0 and x = Lx, in the form:

�
(6.21a, b)

where

� (6.21c)

In Eq. 6.21c, γ  is a parameter that controls the transition sharpness and xt
 is the 

transition point. Both are considered as fixed parameters, not to be estimated with 
the inverse analysis, the values of which are taken as 11500 m  and 0.02 mγ −= =  
(based on the above observations with the linear filter function).

Figure 6.10a and b show the estimated spatial variations for the thermal con-
ductivity and heat capacity obtained with the experimental arrangement of Case 2 
(Fig. 6.6a), but with the filter function given by Eq. 6.21. The estimated 99 % confi-
dence intervals and the employed initial guesses are also presented in these figures. 
Similar to the case examined above with the linear filter functions, the values used 
for the end parameters are obtained from normal priors, with 15 % standard devia-
tion, centered in literature values for the polyester resin, and in Lewis–Nielsen’s 
formula prediction [34] for the region filled with alumina nanoparticles.

In order to provide a better assessment on the estimates obtained, we now 
compare the experimental arrangements of Case 2 and Case 3 (Fig. 6.6). The ap-
proximate step filter function given by Eq. 6.21 is used for this comparison, with 

11500 m  andγ −=  xt
 given by the transition point of materials in the manufactured 

plate. The remaining quantities, such as the number of expansion terms used in the 
eigenfunction approximations and the prior distributions, are the same as specified 
above. Table 6.5 presents the estimated thermophysical properties obtained with the 
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experimental arrangements of Cases 1, 2, and 3, where NMCMC = 120 000,  states 
in the MCMC method are generated; the first Nburn-in = 40 000,  states neglected in 
order to achieve the equilibrium of the chains (Figs. 6.11 and 6.12).

One may observe that the estimates obtained for the polyester resin properties of 
the nanocomposite plate in Case 2 are very close to those obtained in Case 1, where 
the experimental setup involved homogeneous polyester resin plates. On the other 
hand, the estimated parameters for the polyester in Case 3 are not in good agreement 
with those estimated for Case 1. This behavior is because, for Case 3, the portion 
of the nanocomposite plate composed of polyester resin without addition of filler 
is placed away from the applied heat flux. This result is somehow expected, since 

Table 6.5   Prior information and estimated thermophysical properties in the Cases 1, 2, and 3 (a step 
filter is used for Cases 1 and 2)
Property Material Prior Estimates

(mean values)
Case 1

k  [W/m°C] Polyester N (0.16, 15 %) 0.159
w  [J/m3°C] Polyester N (1.595 × 106, 15 %) 1.566 × 106

Case 2
k  [W/m°C] Polyester N (0.16, 15 %) 0.162

Polyester + alumina N (0.193, 15 %) 0.204
w  [J/m3°C] Polyester N (1.595 × 106, 15 %) 1.59 × 106

Polyester + alumina N (1.736 × 106, 15 %) 1.760 × 106

Case 3
k  [W/m°C] Polyester N (0.16, 15 %) 0.149

Polyester + alumina N (0.193, 15 %) 0.203
w  [J/m3°C] Polyester N (1.595 × 106, 15 %) 1.529 × 106

Polyester + alumina N (1.736 × 106, 15 %) 1.743 × 106

a b

Fig. 6.11   Step function filter case: a residuals between calculated and experimental quantities for 
the first five transformed temperature modes, b residuals (°C) between calculated and experimen-
tal temperatures at three different positions
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the homogeneous portion of the plate suffers a smaller variation of temperature dur-
ing the experiment, yielding locally low sensitivity coefficients for the parameters. 
For the portion of the nanocomposite plate corresponding to the polyester resin 
filled with alumina nanoparticles, it may be observed that Cases 2 and 3 yield es-
timates very close to each other. The estimated values for the thermal conductivity 
are slightly higher than those provided by the Lewis–Nielsen formula [34].

In order to further illustrate the accuracy of the proposed approach for the iden-
tification of the spatially varying thermophysical properties, we present a compari-
son of experimental temperature measurements and predictions obtained with the 
utilization of the estimated parameters in an independent computer program, known 
as the UNIT code [35, 36]. The measurements and the simulations refer to Case 2 
and the parameters used in the simulation are those estimated with the linear filter 
function. Figure 6.13a and b present the experimental and simulated time evolutions 
of the temperatures at x = 20 mm and x = 40 mm, respectively, up to steady state.

a b

Fig. 6.13   Comparison of measured and simulated (GITT–UNIT code) temperatures using esti-
mated parameters: time evolution of the temperature at a x = 0.02 m and b x = 0.04 m

 

a b

Fig. 6.12   Comparison of the mean values estimated for the a heat conductivity and b heat capacity 
curves (obtained with the linear filter and with the step function filter)
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Figure 6.14a and b show the vertical spatial distribution of the temperature at 
times t = 400 s and t = 2210 s, respectively. An excellent agreement is observed in 
Figs. 6.13 and 6.14, between the experimental data and the simulated temperatures 
calculated with the parameters estimated with the present inverse analysis.

6.5 � Summary

The MCMC method is used for the solution of inverse problems dealing with the 
characterization of nonhomogenous media, in terms of spatially varying thermo-
physical properties and source terms. Two approaches are then presented and illus-
trated with practical examples, in order to reduce the computational cost associated 
with the MCMC method, namely: (1) a nodal approach, which locally linearizes 
the inverse problem by using temperature measurements for the computation of the 
sensitivity matrix and (2) an expansion of unknown spatially dependent thermo-
physical properties in terms of eigenfunctions, which is used in conjunction with 
the GITT. The results obtained with both the approaches are accurate and stable, 
thus demonstrating their capabilities of dealing with the ill-posed character of the 
inverse problem under consideration, which involves a large number of spatially 
distributed parameters.
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Fig. 6.14   Comparison of measured and simulated (GITT–UNIT code) temperatures using esti-
mated parameters: vertical spatial distribution of temperatures at a t = 400 s and b t = 2210 s
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7.1 � Introduction

The advection–dispersion equation (ADE) [1] that is widely used to model the dis-
persion of solutes in fluid flow through porous media is based on splitting the car-
rier fluid velocity into a macroscopic mean (the ‘drift’ velocity) and microscopic 
random fluctuations. Using plausibility arguments, a Fickian assumption is made 
to represent solute transport as a result of the fluctuations. This leads to a diffusion-
like transport equation but with the diffusion constant replaced by a medium-depen-
dent dispersion constant D.

Diffusive behaviour (as follows from Fick’s law) is exemplified by the linear 
time dependence of a Gaussian concentration plume variance σ2 with initial value S2:

� (7.1)
where D = dv is defined as the dispersion coefficient, d as the dispersivity, and v is 
the constant drift velocity.

Since the publication of collected experimental measurements of the dispersion 
of solutes in aquifers by Lallemand and Peaudecerf [2], Gelhar [3], and others, it 
has been known that the longitudinal dispersivity of natural porous media varies 
over several orders of magnitude with the scale of the experiment. While this de-
pendence is roughly linear over a moderate range, it becomes nonlinear for the com-
plete range of 5 orders of magnitude covered by available data as shown in Fig. 7.1.

Studies by many authors suggest that this is due to inhomogeneity of the hy-
draulic conductivity and other properties of real porous media. With the purpose of 
improving the understanding of such phenomena, we study a model where stochas-
ticity is introduced at the fundamental level of the path that a fluid element follows 
through a porous medium, rather than stochastic variations of medium properties as 
done in most of the literature referred to.

2 2( ) 2 ,t S Dtσ = +
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Hence, we describe the stochastic path followed by a single fluid element through 
the porous medium by the equation:

�
(7.2)

Here u( x) is the macroscopic carrier fluid velocity, as derived from an appropriate 
flow equation such as Darcy’s law, and will in general depend on the hydraulic head 
differential as well as medium properties such as hydraulic conductivity and poros-
ity. The second term represents the pore-scale (microscopic) scattering represented 
as a stochastic perturbation of the fluid velocity; ( ,  ,  )B x t θ  is a Wiener process 
with θ  labelling individual realisations and γ is the amplitude that regulates the 
extent to which the path is modified. Only 1D flow is modelled.

( ) ( , , ).dx u x dt dB x tγ θ= +

α

Fig. 7.1   Field-measured values of longitudinal dispersivity as a function of the scale of measure-
ment ( largest circles represent the most reliable data). (Source: Gelhar [3], reproduced from [1])

 



1437  Scale-Dependent Porous Dispersion Resulting from the Cumulative …

Equation 7.2 is a stochastic differential equation (SDE) and needs to be solved 
by using Ito calculus and other methods from SDE theory as set out, for example, 
by Øksendal [4]. Each individual realisation of the solution represents a possible 
path of a fluid element through the porous structure, and macroscopic dispersion is 
described by calculating statistics over all realisations.

Instead of numerically calculating individual realisations, our approach is to cal-
culate expectation values over all realisations, of a suitably chosen function. Using 
Dynkin’s formula [4] this in effect replaces the SDE by a deterministic partial dif-
ferential equation of the form:

�
(7.3)

A key step in this approach is using a spectral expansion (also called a Karhunen–
Loeve expansion [5]) that builds up a space- and time-dependent Wiener process 

( , , )B x t ω  with a known spatial covariance C( x1, x2) by superposition of a set of 
simpler time-dependent Wiener processes bn( t, ω) according to the definition:

�
(7.4)

Comparing expectation values from Dynkin’s formula with those calculated from a 
probability distribution for the position of a fluid element as a function of time, an 
integral equation for the probability density is derived. This is solved by a Gaussian 
functional form, hence allowing calculation of dispersivity and hence the evolution 
of an initial solute concentration from the following expression:

�
(7.5)

Here Pt′( x′|x, t) is the probability density with respect to x′, a fluid element which 
is found at the position x at time t, originated from position x′ at the earlier time 
t′ < t, and reduces to a Dirac delta function for deterministic flow (in the absence of 
stochastic perturbations of the path).

The work reported in this chapter was presented at the Modelling & Simulation 
of Diffusive Process and Its Applications (ICMSDPA)-12 conference [6] and more 
details are set out in the research literature [7–9].

7.2 � Dispersion in Accelerating Flow

A first application, treated in more detail elsewhere [7], is to the case of a linearly 
increasing or decreasing drift velocity:

� (7.6)

2
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Equation 7.3 is solved exactly in this case by:

�
(7.7)

where variables have been transformed to the dimensionless pair:

�
(7.8)

The outlined procedure in this case leads to an integral equation that may also be 
solved exactly, and hence it is found that an initial Gaussian solute concentration 

( ,0) ( , )C x sξ=   (where ξ is the mean and s is the standard deviation), evolves with 
time as given by:

�
(7.9)

Here X = X( t) is the position that the concentration peak would have in a determin-
istic (that is plug) flow at velocity u( x), and Eq. 7.9 shows that the Gaussian part of 
the plume still propagates at the deterministic (but changing) velocity.

However, there is a very significant change in the way that the plume dispers-
es with time. This information is contained in the time-dependent variance of the 
Gaussian:

� (7.10)

The modulation factor M in the Eq. 7.9 is a complicated rational expression and has 
the qualitative effect of introducing skewness into the peak. Except near stagnation 
points of the flow, it is slowly varying with x compared with the exponential varia-
tion of the peak, and can be taken to a first approximation as the fixed value at the 
peak position. This turns out to be M(0,T) = 1.

Although this is not immediately apparent from the formula, in the limit where 
µ→0 (that is constant velocity flow) the variance grows linearly with time, i.e. the 
diffusive behaviour of Eq. 7.1 is regained. Equation 7.9 reduces in this limit to:

�
(7.11)

This is identical to the expression obtained when Eq. 7.3 is solved directly for con-
stant flow.

By contrast, Eq. 7.10 shows that for a linearly changing flow velocity, the vari-
ance changes exponentially with time. Dispersion in the presence of a gradient in 
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the carrier fluid velocity is a more complex phenomenon, which cannot be ade-
quately described by a diffusive model.

The first term in Eq. 7.10 represents exponential growth even in the absence of 
pore scattering (the limit γ→0); this is easily shown to be a reversible kinematic 
effect. The second term represents the intrinsic dispersion and is not reversible. 
Figure 7.2 shows its effects in comparison with diffusive dispersion for the same 
reasonably chosen numerical parameters.

The figure calls into question the convention of describing dispersion by a linear 
time coefficient (the dispersivity) but characterising this as changing with scale 
(that is time). Instead, dispersion should simply be recognised as nonlinear, except 
in the special case of a constant drift velocity.

Also, bearing in mind that the drift velocity can only realistically increase or de-
crease over a limited distance, the opposite effects of acceleration and deceleration 
that the figure shows raises the question of what happens to a solute plume that tra-
verses a macroscopic velocity fluctuation. Will these opposite effects cancel, allow-
ing only the mean velocity to be taken into account? The nonlinearity makes that 
implausible, but a firm answer requires direct investigation of such fluctuations.

7.3 � Piecewise Constant Drift Velocities

A basic objective of this work is to find analytical solutions, even if approximate, 
rather than numeric ones to benefit from the more fundamental insights into the un-
derlying mechanisms that become possible in this way. Pursuant to that aim, while still 
maintaining flexibility in the qualitative behaviour of the drift velocity profile, a pro-
gression of increasingly complex piecewise constant velocity profiles are now studied.

In the case of a flow velocity that is piecewise constant, in a number of adjoining 
regions, Eq. 7.11 applies in each of these separately by taking an appropriate value 
for u = v0 in each region. For simplicity, we assume that u remains positive through-
out. Let ui indicate the flow velocity in region i, defined by its entrance boundary 
xi−1 and exit boundary xi.

To describe the transmission of a peak from one region to the next, we need to 
formulate the solution of a boundary value problem, rather than the initial value 
problem discussed so far. The underlying notion is that transmission of a peak from 

σFig. 7.2   Evolution of actual 
dispersion with time for 
accelerating flow ( dashed 
line) and decelerating flow 
( dash-dot line) in compari-
son to diffusive dispersion 
superimposed on kinematic 
dispersion ( solid line)
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region i to region i + 1 delivers solute concentration at the boundary xi as a time 
profile C( xi, t); and this is equivalent (inside region i + 1) to injecting the same time 
profile from an external source at x = xi. It seems straightforward to modify Eq. 7.5 
appropriately:

�
(7.12)

where the time-dependent probability density used in the boundary value problem 
is obtained from the spatial density in Eq. 7.5 by an appropriate transformation of 
variables. Equation 7.12 is indeed equivalent to Eq. 7.5 as a formulation of solute 
mass conservation in the case of deterministic flow, as may be confirmed by use of 
the appropriate δ-function expression for P.

However, in the stochastic case, the situation is more subtle. The time profile of 
an external source injecting solute at position xi is not the same any more as the time 
profile in the flow at position xi. This is because there is a finite probability of solute 
dispersing upstream from the injection point as well as downstream. There is also a 
mathematical difficulty in extrapolating the injection profile backwards in time, as 
required by the lower integration limit of Eq. 7.12. This necessitates the introduc-
tion of a time cutoff, tc. The effect of these difficulties is illustrated by noting that 
Eq. 7.12, applied to the trivial case when ui = ui + 1, does not reduce to transmission 
through the nonexistent step according to Eq. 7.11, as it should.

To rectify the matter, a modifying factor g( x, t, x, t, u) is introduced by which a 
desired concentration profile in the flow needs to be multiplied in order to find the 
required injection profile. It turns out that it is possible to solve for this function, in 
the case of a Gaussian peak propagating through a step, by requiring conformation 
to Eq. 7.11 for the case of a nonexistent step; the result is:

�

(7.13)

Incorporating these modifications into Eq. 7.12, the final expression for the concen-
tration in region i + 1, given as Gaussian peak in region i is:

�

(7.14)

and the appropriate cut-off time is given by 2 2 2 2 2or ( ),c ct s s t t tγ γ γ= − + = −  in 
the notation of Eq. 7.11.
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7.4 � Dispersion at a Velocity Step

A full description of the approximations and procedures used to solve the integral 
in Eq. 7.14 analytically is beyond the scope of the present chapter, but has been 
detailed elsewhere [8]. The main result obtained is that when a Gaussian concentra-
tion plume propagates through a stepwise velocity change from V1 to V2, the profile 
remains approximately Gaussian but the variance is now given by the expression:

�
(7.15)

For a constant velocity a( T) = 1, we recover the linear time relationship; as before, 
γ is the amplitude of the stochastic term in the underlying SPDE, and a comparison 
of Eq. 7.15 in the constant velocity case with Eq. 7.1 shows that apart from propor-
tionality constants, γ2 then reduces to the dispersion coefficient D.

The most significant feature of Eq. 7.15 is that beyond a step, the linear time de-
pendence is modified by the multiplicative factor 1/a( T). Here, as in Eq. 7.8, T is a 
dimensionless time parameter but now expressed by a formula given below in terms 
of the time θ  at which the plume reaches the step, and a( T) is approximated by:

2
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4
( ) 1 .
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α

∆
≈ −

+ ∆� (7.16)

In Eq. 7.16, ∆ = − +( ) ( )V V V V2 1 2 1/  is a dimensionless parameter that characterises 
the height of the velocity step from V1 to V2, and α  is the ratio of the plume vari-
ances at the entry and exit points of the velocity regime that is terminated at the step 
under consideration. The approximation holds for ∆ < 0 3. .

T is defined such that when the peak reaches the step, T = 1. In the absence of 
dispersion 1α =  and then a(1) reduces to the kinematical value ( ) / ( ) .1 12 2− +∆ ∆  
With dispersion, Eq. 7.16 only applies at T sufficiently larger than 1 that the plume 
has fully penetrated the step. At such a time a( T) approaches the kinematical com-
pression (stretching) of the plume at a downwards (upwards) velocity step but then 
decays back to a value of 1 for large times (that is at positions far beyond the step).

This behaviour is illustrated by the time dependence of the multiplicative factor, 
for a chosen step size, as shown in Fig. 7.3.

Of most interest is the interpretation of the decay from the kinematic to diffusive 
values. In the case of the upwards step, the initial kinematic compression produces 
larger concentration gradients than in a constant velocity, diffusive peak; conse-
quently, it disperses faster until it has eventually reached the same extension as the 
diffusive peak. The opposite holds for a downwards velocity step.

This result implies that the effects of a single velocity step on dispersion remain 
significant only over a limited length scale, which can be shown to be proportional 
to the initial Gaussian variance as well as the step size ∆.
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7.5 � Stepwise Fluctuation Sequences

The cases of linear velocity growth over an indefinite period, and of a velocity step, 
both demonstrate the principle of nonlinear dispersion growth, but neither repre-
sents a realistic scenario. Instead, an actual flow through an aquifer would be ex-
pected to show fluctuations of the flow velocity around the average that is deduced 
from total flow volume measurements.

To model that, the single-step results are now extended to a sequence of multiple 
steps, such as may be used to describe a series of fluctuations of the flow veloc-
ity about an average value. Clearly, such a piecewise constant velocity description 
is still highly idealized, but has the advantage that with a simple formula such as 
Eq. 7.16, it is feasible to perform a detailed calculation analytically and hence gain 
insight into the important processes and variables that are involved.

In the detailed analysis of the single step, it is found that a Gaussian incident 
concentration peak is somewhat distorted when it penetrates the step, and this is 
expressed by a slowly varying modulation factor that multiplies the transmitted 
peak. As a simplifying assumption, we now ignore the modulation and hence use 
the output Gaussian, with its nonlinear time-dependent variance, as the input Gauss-
ian for the next velocity step.

a

b

Fig. 7.3   Time development 
of the factor that multiplies 
diffusive dispersion, after 
penetration of a an upwards, 
and b a downwards velocity 
step (diffusive model value 
(= 1) shown as dotted lines, 
and the kinematic values as 
dashed lines)
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The variables that are needed to describe the effect of the mth step are then given 
by the following expressions that generalise the corresponding expressions for a 
single step:

� (7.17)

In a similar way, ∆  acquires an index and is calculated by appropriately assigning 
the applicable velocity values for the particular step.

While the output Gaussian from step m propagates to step ( m + 1), its variance 
changes and so the input variance for step ( m + 1) is found by evaluating Eq. 7.16 
for am( Tm) at the Tmvalue obtained by setting 

1,mt θ +=  hence reducing Tm to 1 .mα +  
When the peak emerges from step ( m + 1), the variance acquires an additional fac-
tor 1/am + 1( Tm + 1), which once more is evaluated at 1 1m mT α+ +=  to give the input 
Gaussian for step ( m + 2).

In this way, the cumulative effect of a sequence of M steps is to multiply the vari-
ance by an enhancement factor FM defined by using Eq. 7.16 as:

�
(7.18)

In this expression, strictly speaking the Mth factor and hence also FM should still be 
a function of an undetermined TM parameter. But in most applications, one envis-
ages an infinite sequence of steps. M is simply the number of steps that the plume 
has penetrated in moving from the origin to a position x. Then it is appropriate to 
evaluate the effect of the first M steps at the time when it enters the ( M + 1)th, and 
Eq. 7.18 is obtained.

The approximations leading to Eq. 7.18 can be tested by first applying it to a 
“staircase” of regularly spaced small discrete steps, all with the same value for ∆.  
For many small steps this approaches linear acceleration, a case exactly solved as 
described in a previous section.

Suppose first that there is no dispersion, i.e. the deterministic limit, and so all 
1.α =  Then, the product expression becomes a simple power law

�
(7.19)

and in the limit of large M, that is small ∆,  this reduces to 2 teµ  by virtue of the 
well-known identity (1 ) .nn xx

n e∞+ →  This exponential growth or decline is identi-
cal to that calculated directly for the deterministic evolution of a Gaussian plume in 
a flow with a constant velocity gradient, as displayed in the first term of Eq. 7.10.

Returning to the full dispersion expression, the 1mθ +  may be expressed in terms 
of ∆  and µ and used to substitute mα  in Eq. 7.18. The resulting product is compli-
cated but may be expressed in terms of Gamma functions, and these approximated 
by the Stirling approximation. In this way, similar exponential factors as for the 
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deterministic case are retrieved. Again, the result can be compared to the exact re-
sult for stochastic dispersion in a constant velocity gradient, both terms of Eq. 7.10. 
The analytical expressions are in this case not identical, as a result of the approxi-
mations involved in Eq. 7.16, but contain similar exponential terms and give a very 
similar numerical behaviour.

Moving on to a fluctuating drift velocity, a simple model is first investigated 
where the steps are located on a linear grid with spacing L, as shown in Fig. 7.4.

From the observation of a decay length associated with a single step, it can be 
anticipated that length-scale effects are bound to follow for stepwise fluctuations. 
The choice of a grid with a well-defined characteristic length facilitates investiga-
tion of such effects. The value V represents the average flow velocity. The val-
ue of V2 is fixed by freely choosing the step size parameter ∆  to determine the 
amplitude of the fluctuation about V, i.e. V V2 1 1= + −( ) / ( ).∆ ∆  Then the choice 
V V3 1 1 3= + +( ) / ( )∆ ∆  ensures that the average has value V. So the fluctuations are 
fully characterised by the amplitude parameter ∆  and the fluctuation length 3 L, 
which is in effect the periodic repeat length.

In the absence of dispersion, the only effects of the steps are the kinematical 
compression or stretching of the Gaussian solute peak required by flux conserva-
tion, and these obviously cancel over the combination of the 3 steps that make up 
a single fluctuation. It therefore makes sense to also collect the three steps together 
when describing the evolution of the plume in the presence of dispersion. Any de-
viation from 1, in the combined multiplicative factor, can then clearly be ascribed to 
a fluctuation effect on dispersion.

The first step in this calculation is to find the arrival times of the peak at each 
step, as ( / )i i L Vθ = Θ  where the dimensionless arrival times Θi

 are Θ1 1= ,  
Θ ∆2 2 1= +/ ( ),  and Θ3 3= .  Putting these into the definitions of the 

iα  as in 
Eq. 7.17, we find:

�
(7.20)

This equation exhibits a crucial fact that pervades all of the results on the fluctua-
tion model, namely that all lengths are measured with respect to a common length 
scale defined by:

2 2/ .cV t V S γΛ = − =
�

(7.21)
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Fig. 7.4   Step model for 
velocity fluctuations on a 
periodic grid of length L
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This is applied by replacing L in the expression for the Θi
 by the scaled grid spac-

ing / .Lλ = Λ
The effect of the first fluctuation that the plume encounters is then given by an 

enhancement factor f = F3 in the notation of Eq. 7.18, and it is easily seen that this is 
a function of only the two dimensionless parameters ∆  and λ  that characterise the 
fluctuation amplitude and length, respectively.

The analytical form obtained for ( , )f λ∆  is very complicated, but its numerical 
behaviour is rather simple, as shown in Fig. 7.5.

Plausibly, there is no enhancement for either 0 or  0, 1.fλ∆ = = =
However, a very significant feature seen in the figure is that for all other combi-

nations of ∆  and λ  values, f is greater than 1, which means that dispersion is in-
creased relative to the diffusive or Fickian values by a fluctuation. It is not obvious 
that this will happen, as a single upwards velocity step suppresses dispersion while 
a downwards step increases it, and without dispersion these effects cancel exactly 
across a fluctuation.

The parameters displayed in the figure cover a generous range, allowing for the 
maximum and minimum velocities to differ by ≈ 40 % from the average, and as will 
be seen below only 1λ <<  is expected to be physically relevant.

This result adds substantially to the plausibility of the simplified model under 
discussion where all fluctuations are assumed to be identical. If f turned out to be 
less than 1 for some fluctuations, it might have been argued that in a realistic system 
fluctuations over a range of amplitudes and lengths will be present and could cancel 
each other. As this is not the case, the present model where, in effect, the ranges are 
represented by their averages and the effects from subsequent fluctuations are al-
lowed to accumulate, appears quite reasonable as a first approximation.

The next step is to include not just multiple steps but multiple fluctuations in the 
calculation. We modify the notation slightly, henceforth, using m as an index count-
ing fluctuations rather than steps. Equation 7.18 is accordingly modified by replac-
ing the single-step factor that appears as the subject of the product, by a product of 
the three-step factors that make up the mth fluctuation. Analytical calculation of this 
single fluctuation enhancement factor ( , )mf λ ∆  proceeds as outlined above for the 

Fig. 7.5   The single fluctua-
tion enhancement factor for 

0.2 0.2 

and 0 1λ
− < ∆ < +

< <
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special case, now written as 
1( , ).f λ ∆  Once more a very complicated but rational 

algebraic expression is obtained for ( , ).mf λ ∆  The nature of its m dependence is 
illustrated in Fig. 7.6.

The enhancement encountered by the plume as it traverses a sequence of fluctua-
tions decreases slowly at first, but when it reaches the m value that corresponds to the 
scale length Λ,  there is a sharp decline and a further asymptotic decrease beyond that.

The parameter values chosen to display this behaviour are found by taking a 
Peclet number between 1 and 10, the initial plume extension of the order of 10−2 m 
and the pore diameter 10−4 m. These are merely meant as plausible order of mag-
nitude estimates and lead to a Λ  value in the order of 10 m or larger. Then the as-
sumed value 0.001λ =  implies a physical fluctuation length of about 3 cm, which 
appears as reasonable estimate of the scale on which inhomogeneity appears in 
natural aquifers.

The crucial role played by Λ  is seen to be as a transition point between distinct 
short-range and long-range behaviours of the enhancement factor. Such a distinc-
tion between short- and long-range behaviours is also noticeable in experimental 
observations of the dispersivity that extend over a sufficient spatial scale, such as in 
Fig. 7.1, and it is gratifying to find it arising as a natural consequence of the math-
ematics of the fluctuation model.

However, before dispersivity can be calculated, it is first necessary to perform 
the repeated product of enhancement factors required by Eq. 7.18. Unfortunately, 
this is not feasible with the complicated form obtained for fm  so far and we resort 
to an approximate expression for it.

The strategy used to find such an approximation is to make three series expan-
sions of fm about the points , 0,m λ→ ∞ =  and the point 1/ 2m λ=  that falls inside 
the transition range; then a simple function is guessed that has the same dominat-
ing terms in its series expansions about the same points. A surprising feature of the 
dominating terms in all three expansions is that the ∆  dependence is separated 
out into an identical rational polynomial expression that we designate as Q( ).∆  
The approximation found in terms of this is:

� (7.22)3 ( )
( , ) 1 .

1 3m

Q
f

m

λλ
λ

∆
∆ ≈ +

+

ƒ (λ,   −1Fig. 7.6   Dependence 
of the single fluctuation 
enhancement ( solid line) 
on the fluctuation number 
m ( 0.1, 0.001,λ∆ = =  
dotted line corresponds to the 
scale length Λ )
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This amazingly simple expression reproduces the behaviour of the full formula for 
fm to such an extent that it is indistinguishable from the original curve for the pa-
rameter values shown in Fig. 7.5; only when λ  approaches 1, it does underestimate 
the exact value by a few per cent in the low range, while the high-range values are 
still very close.

A plot of the Q function for a range of ∆  values is shown in Fig. 7.7. The calcu-
lations described so far have also been done for a slightly more general fluctuation 
model, in which the restriction of steps to lie at grid points is relaxed. It turns out 
that while the full expression for fm is different, Eq. 7.22 still holds but a somewhat 
different expression for ( )Q λ  is obtained.

Both curves are plotted in Fig. 7.7, and while Q is seen to be moderately sensitive 
to the details of the shape of the assumed fluctuation profile, Q values are less than 
about 0.4 for reasonable fluctuation amplitudes. A more elaborate model in which 
fluctuations on two different macroscopic scales are superimposed is also investi-
gated, with the result that the shorter-scale fluctuations are found to dominate. This 
confirms that the simple model with a well-defined single-fluctuation length is an 
adequate representation.

Equation 7.22 is simple enough that when substituted into Eq. 7.18, the expres-
sion for the cumulative enhancement factor FM can be calculated analytically. It is 
obtained as a ratio of two Pochhammer functions, which are themselves defined as a 
ratio of Gamma functions. The Stirling approximation is applied to these, and after 
simplification, we obtain the following expression for the cumulative enhancement 
factor:

�
(7.23)

When the plume has traversed a distance x, the number M of fluctuations that it has 
encountered is given by x = 3LM and the time t taken is x = Vt.

It can be seen that the dispersivity is obtained from the calculated enhancement 
factor by multiplying it by a constant, namely the initial (laboratory scale) disper-
sivity. In other words, the enhancement factor F can be considered as merely the 
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Fig. 7.7   Q as a function of 
step-size parameter ∆,  for 
the regular grid fluctuation 
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(dimensionless) scaled dispersivity. As the measured values are expressed as a func-
tion of the traversal length x rather than time t, we eliminate M in Eq. 7.23 in favour 
of the scaled traversal length /xχ = Λ  by the relation:

�
(7.24)

The resulting behaviour of ( )F χ  is shown in Fig. 7.8 over 5 orders of magnitudes 
of the traversal length, similar to the range of experimental values in Fig. 7.1.

The figure shows that there is a distinct transition from a low-range behaviour to 
a high-range behaviour when the traversal length reaches the scale length Λ.

Such a transition is also seen in the experimental values, at a length of 10–100 m.
The high-range behaviour is easily extracted from the analytic expression in 

Eq. 7.23 by taking the large M limit, as M is proportional to .χ  In this limit, the 
first factor reduces to eQ (a constant) and the last factor also becomes constant, so 
that the entire χ  dependence is carried by the second factor which simplifies to 
(1 ) .Q Qχ χ+ →  This power law becomes a straight line with slope Q in the loga-
rithmic plot, which agrees with the observed high-range behaviour. Even more sig-
nificant, the measured values suggest a slope of approximately 0.3, and this agrees 
with the restricted range of Q values derived from the mathematical properties of 
the fluctuation model as shown in Fig. 7.4.

However, there are also two points on which Fig. 7.8 differs markedly from the 
observations. First, the low-range trend in the figure is a slower rate of growth than 
in the high range while the reverse holds for the measurements. Secondly, as a result 
of this, the overall increase in the figure is only by a factor of 10, while an increase 
of 104 is found for measured values.

This vast numerical discrepancy hinges on a single detail of the low-range be-
haviour. For 1,χ <<  i.e. 1/ 3 ,M λ<<  the increase of F with χ  is dominated by the 
first factor in Eq. 7.23, and this increases roughly exponentially with .χ  It saturates 
to the value eQ at the transition point and with any reasonable value of Q this is far 
too small to produce the observed rise of 3 orders of magnitude in dispersivity up 
to the transition.

3 .Mχ λ=

χ

Fig. 7.8   Logarithmic plot 
of scaled dispersivity as a 
function of scaled traversal 
length ( 0.001λ = , Q = 0.3, 
calculated from Eq. 7.23)
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7.6 � Further Exploration of Fluctuation Effects Using 
a Schematic Model

The simple ad hoc change of replacing the coefficient of Q in the first term of the 
Eq. 7.23 by a value increased by a factor of about 25 is found to remove both dis-
crepancies and give a dispersivity curve in rather good agreement with the experi-
mental values. There is no obvious justification for such a change within the con-
fines of the stepped-fluctuation model presented, but this does suggest that it may 
be possible to modify the details of the model to obtain agreement while retaining 
key features such as the dispersive length scale that divides short- and long-range 
behaviour.

As a working hypothesis, it is assumed that the 1D stepped fluctuation model un-
derestimates the dispersion enhancement by a single fluctuation, but correctly pre-
dicts the decline of this enhancement with distance as measured against the length 
scale Λ,  the behaviour shown in Fig. 7.6.

Various arguments can be advanced why such an underestimate is plausible. 
Within the confines of the 1D step model, one reason is the neglect of the non-
Gaussian distortion of the plume by each step, mentioned to arrive at Eq. 7.17. The 
assumption of abrupt steps in the 1D step model may also contribute to this because 
it has been shown [10] that, for example, linearly slanted steps have associated ex-
ponential effects on dispersion.

Finally, it has been established that in higher dimensional systems, transverse 
variations in flow velocity (such as stratified flow [11]) can also enhance longitu-
dinal dispersion.

Based on this observation, and a number of trials guided by the idea that in a 
more elaborate model the Q function in the Eq. 7.22 may become a function of m 
and attain a higher value in the low range, a schematic model is proposed where the 
single fluctuation enhancement in the Eq. 7.22 is modified to the form:

�
(7.25)

Here w is a new constant to be empirically determined. In effect Q is assumed to 
have a product form, consisting of the factor Q( )∆  previously determined, and a 
factor that interpolates smoothly between a value enhanced by a factor w for m = 0, 
and 1 at ,m → ∞  with the transition taking place at the scale length Λ.  The trials 
show that the calculated dispersion is not sensitive to the functional form assumed 
for this interpolation, provided that it does not drop too steeply from the value w at 
m = 0.

Inserting Eq. 7.25 into Eq. 7.18 evaluation of the products once more leads to the 
Pochhammer functions, but this time with irrational arguments so that simplifica-
tion by use of the Stirling approximation is no longer applicable. The expression can 
nevertheless be calculated numerically.
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To compare with experiment, parameters are chosen by the following procedure. 
Inspection of the measured values suggests that the transition between low- and 
high-range behaviours takes place at approximately 10 m, so this is chosen as the 
length scale Λ.  To obtain a smooth buildup of the dispersivity to the observed large 
value at the transition point without an excessive enhancement by a single fluc-
tuation, a large number of factors are needed in the product appearing in Eq. 7.18, 
which means that λ  must be quite small. We choose 0.0035,λ =  but this value 
can be adjusted by an order of magnitude either way without affecting the results 
significantly.

The combination of the chosen Λ  and λ  values imply that the physical length 
of the dominating fluctuation is about 9 cm, which also appears very reasonable 
from a physical point of view. The value of Q is simply the slope of the high-range 
dispersivity on a logarithmic plot, and from the data a value of Q = 0.32 has been 
chosen. That leaves only w to be empirically fitted, and the value w = 24 produces 
good agreement with experimental values as shown in Fig. 7.9.

This w value represents a large increase in the effect of fluctuations in the low 
traversal length range for the schematic model, compared with the detailed predic-
tions of the original 1D stepped fluctuation model. It may be questioned whether 
this is plausible. To put that in perspective, note that for the 1D step model, the 
enhancement by the first fluctuation would be 0.1 %; this is increased to 2.4 % by 
w = 24, and smaller values for downstream fluctuations. Plausibly, even for w as 
large as 24, the effect of any single fluctuation remains only a small perturbation of 
the background diffusive plume growth.

There is obviously a reciprocal relationship between this behaviour and the value 
of .λ  For example, at the extreme of choosing 1/ 3,λ =  only a single fluctuation 
would fit into the interval covered by the length scale. Hence, not only would there 
be a single discontinuous jump in the dispersivity, but also the enhancement would 
have to be the absurd value of 1,000 rather than a few percent. This argument shows 
that whatever one considers to be a plausible maximum for the single fluctuation 
enhancement, places an upper limit to the value that can be chosen for .λ  The val-
ues presented above shows that it is possible to reconcile the enhancement value 
and the fluctuation length in a plausible way.

Another plausibility test of the model is to compare the value of the length scale 
Λ  as inferred from the data with the expression in terms of flow parameters that is 
given by Eq. 7.21. The right hand side of that equation may be expressed in terms 
of pore size p and Peclet number P, as shown in [8]. As a ballpark figure, we take 
the pore diameter as p = 10−4 m and the initial Gaussian plume variance as given by 
S = 10−2 m. Then the Λ  value of 10 m as used above implies a longitudinal Peclet 
number of P = 5, which compares well with measured values typically in the range 
1–10. Most likely the actual values of P, p, and S in the various experiments from 
which data are collected for Figs. 7.1 and 7.9 were all different, which may account 
for some of the variability in the measured values.
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7.7 � Conclusion

The development as summarized in this chapter of a detailed, semi-analytical sto-
chastic model of the dispersion effects of macroscopic drift velocity fluctuations, 
leads to significant insights.

One of these is that intrinsic dispersion is increased by a fluctuation, beyond the 
value associated with flow at the mean drift velocity. A second is that this enhance-
ment manifests as a factor multiplying the spatial variance of the solute plume, so 
that the effects of a sequence of fluctuations accumulate as a product. This implies 
an exponential rise of dispersion with the distance travelled as a solute plume tra-
verses the fluctuation sequence.

However, a third observation is that this behaviour is tempered by an annealing 
effect downstream of a velocity step, which has a length scale related to plume 

α

Fig. 7.9   Scaled dispersivity ( solid curve) as a function of scaled traversal length 
( 0.0035, 0.32,  24Q wλ = = = , calculated from Eq.  25, compared with experimental data 
of Fig 1)

 



158 W. S. Verwoerd

extension. This happens because of the way concentration gradients are changed 
by kinetic effects associated with velocity change, and so is not specific to a sharp 
step change. As a result, the enhancement produced by a fluctuation depends on its 
length in relation to the plume extension, and this relationship causes the enhance-
ment produced by each fluctuation to decline with traversal length. The decline has 
a reverse sigmoid shape, characterised by an overall traversal length scale Λ.

The combined effects of the productwise accumulation of declining-dispersion 
enhancements, is that dispersion at first rises exponentially, but when the traversal 
length approaches Λ there is a transition to a slower power law rise.

The described behaviour and interpretation is demonstrated in detail specifically 
for the 1D stepwise velocity fluctuation model. This is obviously highly simpli-
fied, but the qualitative and considerable quantitative agreement with experimental 
observations of dispersion in large-scale natural aquifers suggests that the simple 
model captures the essential mechanisms. The interpretations set out above do not 
rely on the presence of sharp steps; indeed key features are also displayed by the 
exactly solved case of a linear drift velocity growth or decline. This is further sup-
ported by the observation that broad agreement is obtained between the exact solu-
tion and a stepped “staircase” approximation to it.

Quantitatively, the 1D step model exhibits one major shortcoming: it underesti-
mates the extent of dispersivity growth in the low traversal length range. To support 
the hypothesis that this does not invalidate the broader interpretation, it was shown 
that one free parameter can be introduced into the model, in a way that is compatible 
with its overall structure, and is enough to eliminate the discrepancy.

Each of the parameters in the model has a particular physical interpretation, al-
lowing them to be fixed at physically meaningful values. The implication of the 
value obtained for the only freely adjustable parameter introduced for the final fit 
is that the simplified model underestimates the effect of fluctuations encountered 
early in the sequence.

Causes for this underestimate may plausibly include both simplifying assump-
tions made to facilitate the analysis, and intrinsic inadequacy of a 1D model. This 
is seen as the main outstanding issue to be addressed in future elaborations of the 
model. Some refinements of the 1D model are still possible, but it seems likely that 
the major source of larger enhancement will be from additional mechanisms for 
interaction between dispersion and velocity fluctuations coming into play in 2- and 
3D systems.
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8.1 � Introduction

Diffusive mass transfer at media interfaces exerts control on the fate and trans-
port of pollutants originating from agricultural and urban landscapes and affects 
the conditions of water bodies. Diffusion is essentially a physical process affecting 
the distribution and fate of various environmental pollutants such as nutrients, pes-
ticides, metals, PCBs, PAHs, etc. Environmental problems caused by excessive use 
of agricultural chemicals (e.g., pesticides and fertilizers) and the improper discharge 
of industrial waste and fuel leaks are all influenced by the diffusive nature of pollut-
ants in the environment. Eutrophication is one such environmental problem where 
the sediment-water interface exerts a significant physical and geochemical control 
on the eutrophic condition of the stressed water body. Exposure of streams and lakes 
to contaminated sediment is another common environmental problem whereby 
transport of the contaminant (PCBs, PAHs, and other organic contaminants) across 
the sediment water can increase the risk for exposure to the chemicals and pose a 
significant health hazard to aquatic life and human beings.

Eutrophication is a worldwide problem that is caused by excessive nutrient load-
ing of water bodies. Dissolved and particle-bound nutrients washed away by agri-
cultural and urban runoff ultimately find their way to the bottom of rivers, lakes, 
and oceans. The degradation of organic matter in bed sediments under aerobic and 
anaerobic conditions—a process also known as mineralization—produces pore-
water mineral nitrogen and phosphorus, which upon release diffuse to the water 
column and contribute to algal bloom and eutrophication of the water body. Aerobic 
and anaerobic decomposition of organic matter and oxidation reactions in bed sedi-
ments, such as nitrification and methane oxidation, deplete oxygen in the sediments 
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and exert oxygen demand on the overlying water column (i.e., sediment oxygen 
demand, SOD) [1]. Depletion of oxygen in the water body ultimately leads to the 
well-known hypoxia problem.

The sediment-water interface also plays a significant role in nitrogen transforma-
tion and cycling in wetlands which are recognized for their significant ecologic and 
economic values, owing to the wide variety of services they offer at ecosystem and 
watershed levels. The importance of wetlands to water quality purification, flood 
control, wildlife habitats, and biodiversity is well known [2, 3]. The physical and 
biochemical processes governing the behavior of nitrogen in wetland soils mixed 
with plant biomass detritus are to some extent similar to the processes in eutrophic-
lake bed sediments.

This chapter presents analytical and numerical models describing the fate and 
transport phenomena at the sediment-water interface in freshwater ecosystems, with 
the primary focus on nitrogen cycling and the applicability of the models to real-
world environmental problems and challenges faced in their applications. The first 
model deals with nitrogen cycling at the bottom of lakes, a problem that is relevant 
to the eutrophication of water bodies. The second model addresses nitrogen dynam-
ics in flooded wetlands. For a thorough treatment of analytical solutions for various 
diffusion problems, interested readers may refer to [4].

8.2 � Nitrogen Cycling in Bed Sediments

8.2.1 � Sediment Nitrogen Processes

Figure 8.1 depicts processes of nitrogen loading, transformation, and diffusion in 
bed sediments. The figure shows an active sediment layer wherein the top oxygen-
ated layer separates the overlying water from the underlying anaerobic zone. Usu-
ally, the aerobic layer is much thinner than the anaerobic layer. The thickness of the 
aerobic layer is determined according to the penetration depth of oxygen into the 
sediments [1]. The sediment layer receives a flux of particulate organic matter, part 
of which decomposes—a process referred to as mineralization to produce dissolved 
(pore-water) ammonium ion (NH4

+). NH4
+ generated in the anaerobic layer diffuses 

upward into the aerobic layer, partly undergoes nitrification to produce nitrate, and 
partly escapes to the water column by diffusion through the boundary layer. Nitrate 
(NO3

−) produced by nitrification in the aerobic layer partly diffuses into the under-
lying anaerobic layer and removed in the process of denitrification, and partly es-
capes into the water column by diffusion across a resistive boundary layer ( d). Ad-
vection, bioturbation, and resuspension cause physical mixing and could influence 
the transport and fate of nitrogen at bed sediments. In the model presented below, 
these physical processes are not accounted for explicitly, rather approximately by 
exaggerating diffusive mass transfer across the sediment-water interface.
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8.2.2 � Ammonia Nitrogen Model

Ammonia formation (ammonification), oxidation (nitrification), and diffusion in 
a two-layer system may be described by the coupled boundary-value problem [5]:
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subject to the following initial and boundary conditions:
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Fig. 8.1   Schematic illustration of nitrogen processes at the sediment-water interface (the active 
sediment layer has two distinct zones, a thin aerobic zone overlying a thicker anaerobic zone, from 
[6] with permission from ASCE, NH3 denotes total ammonia nitrogen)
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�
(8.3c)

�
(8.3d)

� (8.3e)

where a1( z, t) is pore-water ammonia-nitrogen (NH4
+ + NH3) concentration in the 

aerobic layer [ML−3], a2( z, t) is pore-water ammonia-nitrogen concentration in the 
anaerobic layer [ML−3], a0( z) is initial pore-water ammonia-nitrogen concentration 
in the active sediment layer [ML−3], z is sediment depth [L], t is time [T], Ja is am-
monia-nitrogen rate of production in the sediment layer [M T−1], R is the retardation 
factor, ka is first-order reaction rate for nitrification [T−1], Da

* is free-water diffusion 
coefficient of ammonia nitrogen [L2T−1], Da = is the sediment ammonia diffusion 
coefficient [L2T−1], aw ( t) is ammonia-nitrogen concentration in the water column 
[ML−3], l is thickness of the aerobic layer [L], d is thickness of laminar boundary 
layer [L], and H is thickness of the active sediment layer [L].

The retardation factor R accounts for partitioning of NH4
+ onto negatively 

charged sediment particles and is given by [5]:

�
(8.4)

where (1 )b sρ φ ρ= −  is the sediment bulk density [ML−3], ρs is the sediment particle 
density [ML−3], f is the fraction of sediment with negatively charged surfaces (e.g., 
clay fraction), Kd is the distribution coefficient [L3M−1], [ ]H pH+ −= 10  is the hydro-
gen ion concentration, and Keq is equilibrium constant. Keq may be related to the 
temperature empirically [7, 8].

The gradient boundary condition (Eq.  8.3a) maintains continuity of diffusive 
mass flux across a resistive boundary layer; it accounts for ammonia concentration 
in the overlying water, aw( t), and implicitly assumes a linear concentration profile 
within the boundary layer.

8.2.3 � Nitrate Model

Nitrate production and diffusion in the aerobic layer is given by:
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Similarly, assuming diffusion across a laminar boundary, conservation of mass flux 
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where n1( z, t) is the pore-water nitrate-nitrogen concentration in the aerobic layer 
[ML−3], Dn is the sediment nitrate diffusion coefficient [L2T−1], Dn

* is the free-water 
nitrate diffusion coefficient [L2T−1], and nw( t) is the nitrate-nitrogen concentration 
in the water column [ML−3]. The premise of boundary condition (B. C.) (Eq. 8.6b) 
is that nitrate is completely removed from the anaerobic layer.

A more comprehensive model including methane production, oxidation, and gas 
formation was presented and solved in [5]. In addition to accounting for transient 
oxic zone thickness, the challenge there was modeling a dynamically evolving 
methane saturation zone which propagates from the bottom of the active sediment 
layer upward towards the sediment-water interface.

8.2.4 � Organic Nitrogen Model

Mass balance of the organic matter delivered to the active sediment layer is:

H
dM

dt
f J k HM ii

i N m ii
= − =, ,1 2� (8.7)

where M is the concentration of decomposable organic matter nitrogen [ML−3], JN is 
the rate at which particulate organic matter nitrogen is delivered to the active sedi-
ment layer [ML−2T−1] including organic nitrogen delivered by the death of nitrogen-
fixing microorganisms, km is the first-order rate of organic matter decomposition 
[T−1]. The subscripts i = 1, 2 refer to fast and slowly decaying organic matters hav-
ing fractions f1 and  f2, respectively. Ammonia flux, Ja is related to the rate at which 
organic matter is mineralized:

J t k M t k M ta m m( ) ( ) ( ).= +
1 21 2� (8.8)

The solutions of the coupled boundary value problem (Eqs. 8.1–8.8) are obtained 
by first applying the Laplace transformation then using Green’s functions. From 
the analytical solutions, closed expressions for fluxes of a and n are obtained. For 
brevity and to conserve space only the steady-state solutions are shown below. The 
readers may refer to [5] for the detailed analysis.
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� (8.20)

Numerical evaluation of the transient analytical solutions for a and n is iterative due 
to the dependence of l on time, and are computationally demanding as they require 
nonlinear roots identification and the evaluation of infinite series. A simpler non-
iterative model is presented below to compute l( t) independent of the solutions for 
a and n, but at the expense of an additional calibration parameter.

Figure 8.2 shows the evolution in time of a and n concentrations with depth for 
a hypothetical sediment layer using the input and parameter values reported in the 
literature. The concentration profiles asymptotically approach the steady-state solu-
tions given above. The concentration profiles in the inner window in Fig. 8.2a are 
for a in the aerobic layer. Visually, the interface z = l is shifting to the left and the 
aerobic layer is getting thinner in time. For each profile, the concentration of a and 
its derivative at z = l appear continuous. Figure 8.2b depicts concentrations of n in a 
shrinking aerobic layer; note the zero concentration at z = l, n( l,t) = 0 (B.C. Eq. 8.6b).

8.3 � Sediment Oxygen Dynamics

The oxygen demand exerted by the sediment layer due to oxidation reactions in 
the aerobic layer, SOD( t), is equal to the oxygen flux from the water column to the 
sediment layer:
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Fig. 8.2   Simulated concentration profiles in time: a total ammonia nitrogen in active sediment 
layer ( inner panel is a blowout of simulated profiles in the aerobic layer), and b nitrate in the 
aerobic layer (adapted from [5]), NH3 denotes total ammonia nitrogen
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in which Do is the sediment pore-water diffusion coefficient of oxygen [L2T−1], O 
and Ow are oxygen concentration in interstitial pore-water and the water column, 
respectively. A mathematical expression for the thickness of aerobic zone, l, can be 
obtained by conserving the oxygen mass in the laminar and oxic layers [5]. How-
ever, a simpler model is presented here where all oxygen-consuming processes are 
lumped in a zero-order reaction rate term.

The boundary value problem for oxygen penetration is:

�
(8.22)

� (8.23a)

� (8.23b)

where S is the sediment oxygen consumption rate [ML−3T−1]. The above boundary 
value problem assumes quasi-steady oxygen diffusion in the aerobic layer and can 
be solved for l( t) [6],

� (8.24)

The reaction rates in all of the equations above generally increase with temperature 
and are updated according to the Arrhenius equation: 2 1( )

2 1( ) ( ) T Tk T k T θ −=  where θ 
is a constant. The integration of Eq. 8.22 from z = 0 to z = l and making use of bound-
ary conditions (Eqs. 8.23a and 8.23b) yields the obvious relationship:

� (8.25)

8.4 � Application to Chesapeake Bay Sediment Flux Data

In this section, the nitrogen sediment-flux model described above is applied to 
several sites in the Chesapeake Bay, USA. The sediment flux data was collected 
between March 1985 and December 1988 and is tabulated in [1]. To better under-
stand the dominant processes in the Bay, identify the most sensitive parameters, and 
estimate the uncertainty in the estimated fluxes, the generalized sensitivity analysis 
(GSA) first proposed by Spear and Hornberger [9] can be applied. For this purpose, 
prior probability distributions can be proposed for all model parameters by relying 
on information from the literature. Monte Carlo (MC) simulations are conducted 
by generating 100,000 parameter sets from the assumed prior distributions and 
simulating a corresponding number of ammonia, nitrate, and SOD flux time series. 
The Nash-Sutcliffe efficiency criterion ( ENS) [10] is used to evaluate the model 
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performance. Parameter sets that produced the top 1,000 model performances (i.e., 
having the highest ENS) were considered as behavioral ( B). The remaining param-
eter sets are classified as nonbehavioral ( B’).

Figure 8.3 compares MC-simulated time series with observed ammonium, ni-
trate, and SOD fluxes ( Fa, Fn, and SOD, respectively) at a selected site (PP). In each 
figure, the gray area corresponds to the ensemble of behavior parameter set ( B) simu-
lations. These simulations involved fine-tuning of the source loading rate ( JN) which 
is treated as unknown since no direct measurements of this variable are reported. 
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Fig. 8.3   Simulated and measured fluxes of ammonia ( Fa), nitrate ( Fn), and sediment oxygen 
demand ( SOD) at site PP ( gray band denotes the behavior set results, lines bound the entire set of 
(100,000) MC simulations)
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Overall, the model successfully captures the variability in the measured ammonia 
and nitrate fluxes at the sediment-water interface ( z = 0). The model especially does 
a good job in predicting Fa. Note that the observed data shows changes in direction 
of the nitrate flux. At times, the flux is from the water column to the sediment, and at 
other times from the bed sediments to the water column. The model is able to capture 
such flux reversals. The discrepancy between simulated Fn and measurements could 
potentially be attributed to the measurement errors and model deficiencies, such as 
exaggerating nitrate removal by denitrification in the anaerobic zone (i.e., assum-
ing zero concentration therein) n1( l, t) = 0, and/or neglecting denitrification in the 
aerobic layer itself; for example, in anoxic microsites where the interior of aggregate 
organic particle may be anaerobic even if the exterior is aerobic [1, 11].

The ability of the model to capture variability of measured SOD is relatively 
poorer. The model-computed uncertainty bands appear also wider in SOD predic-
tions, compared to Fa and Fn. It is not clear if the discrepancy between laboratory-
measured SOD and in situ real values has contributed to such a poor performance. 
However, the challenges often encountered in accurate on-site measurements of 
SOD are known [12].

Figure 8.4 shows the sensitive parameters for Fa, Fn, and SOD for the same site. 
Order of sensitivities decreases from left to right; this is based on the Dmax param-
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eter of the nonparametric Kolmogorov–Smirnov (K–S) test. Dmax is the maximum 
deviation between the cumulative distributive functions (CDFs) of the behavior and 
nonbehavior parameter sets. Figure 8.5 shows two example CDFs, and the corre-
sponding probability density functions (PDFs) for Fa. It is obvious that JN4 is a more 
sensitive parameter than φ, because Dmax of JN4 is > Dmax of φ. PDFs of B and B’ 
also differ significantly in JN4 compared to φ. In Fig. 8.4 JN1, JN2, JN3, and JN4 are 
parameters related to organic matter deposition in years 1, 2, 3, and 4, respectively 
(1985–1988). As can be seen, the model is consistently very sensitive to organic 
matter deposition rates. This is not too surprising as organic matter introduced to 
the sediment layer through deposition and decay of nitrogen-fixing microorganisms 
is the primary source of nitrogen to the system. The laminar boundary layer thick-
ness, d is the most sensitive parameter with Fn and SOD, which indicates that the 
movement of nitrate and oxygen between the water column and the sediment layer 
is dominated by diffusive processes.
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8.5 � Wetland Nitrogen Cycling

8.5.1 � Nitrogen Processes

Figure 8.6 depicts the conceptual model for complete biogeochemical pathways of 
mineralization of organic matter to ammonia and subsequent transport, retention, 
uptake, and removal (denitrification, volatilization, and burial) in flooded wetlands 
[13]. The model partitions a wetland into three basic compartments, the water col-
umn (free water), wetland soil layer, and plant biomass. The soil layer is further par-
titioned into aerobic and anaerobic zones [3, 14]. The aerobic layer at the soil-water 
interface is not a fixed layer and its thickness is determined by the supply of oxygen 
to the soil surface and consumption of oxygen in the soil [15].

While particulate organic nitrogen mineralizes slowly (stable) and fast (labile), 
a fraction may resist decomposition. The interactions between the free-water and 

Fig. 8.6   Schematic diagram of nitrogen processes in wetlands: water column, aerobic soil layer, 
and reduced lower soil layer. ([13] with permission from ASCE)
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soil compartments occur as a result of settling and resuspension of particulate mat-
ter, and advective and diffusive mass exchange of dissolved constituents. Burial 
is caused by net sediment accumulation and thus modeled with advection (at the 
burial velocity) across the bottom of the active sediment layer [1].

Sources of ammonia and nitrate to the wetland water column include agricul-
tural and urban runoff, groundwater discharge, mineralization of suspended organic 
nitrogen, sediment feedback (diffusion and resuspension), and atmospheric deposi-
tions. Atmospheric deposition and nitrogen gas (N2) fixation by microorganisms are 
other sources of nitrogen inputs to wetlands, especially for bogs in the northeast of 
the USA [16]. Nitrification of ammonium nitrogen occurs in the aerobic part of the 
soil and the water column, whereas nitrate removal by denitrification in this analy-
sis is confined to the underlying anaerobic zone of the active soil layer. However, 
both nitrification and denitrification can coexist in the aerobic layer; for example, 
the anaerobic interior of aggregate organic particles [1]. Nitrification also occurs 
near roots in the rhizosphere of wetland plants and can be as significant as at the soil 
surface [17]. Dissociation of NH4

+ into ammonia gas (NH3) and subsequent volatil-
ization to the atmosphere is a significant loss pathway for nitrogen under conditions 
of high alkalinity [15]. In addition to influent concentrations, nitrate (NO3

−) is pro-
duced by oxidation of NH4

+ in the water column and oxidized soil layer.
Although the primary objective of the wetland model is nutrient cycling, pro-

ductivity can be modeled using a generic mass balance for free-floating algae and 
rooted plants with relatively simple growth and death processes.

8.5.2 � Wetland Model Equations

Hydrology, mass balance of nitrogenous species, sediment and oxygen dynamics in 
both free-water and sediment compartments are accounted for in the ordinary dif-
ferential equations that are presented below [13].

�Hydrology

Surface flow routing in a wetland system can be described using a simple flow 
continuity equation:

� (8.26)

where Vw is the water volume of wetland surface water [L3], A is the wetland sur-
face area [L2], Qi is the volumetric inflow rate [L3T−1], Qg is groundwater discharge 
(negative for infiltration) [L3T-1], Qo is wetland discharge (outflow) rate [L3T−1], 
ip is the precipitation rate [LT-1], ET is the evapotranspiration rate [LT−1], and φw 
is the effective porosity of wetland free water (since biomass occupies part of the 
submerged wetland volume).

w
w i g o T p

dV
Q Q Q AE Ai

dt
φ = + − − +
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Outflow-depth relationship (rating curve) of the form 
oQ hερ= , where 

/w wh V Aφ= , can be used to route flow out of the wetland for a given inflow event, 
Qi. The specific case of ε = 1 corresponds to a linear-reservoir model.

�Nitrogen Cycling

Water Column

�

(8.27)

�

(8.28)

in which

* (1 )w wO
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where [ ]4 3NH NHawN + = +   is the total ammonia-nitrogen concentration in free 
water [ML−3], Nnw is the nitrate-nitrogen concentration in free water [ML−3], Now 
is the particulate organic nitrogen concentration in free water [ML−3], Ow is the 
oxygen concentration in free water [ML−3], a is the mass of free-floating plant [M 
Chl a], Nawi and Nnwi, respectively, are concentrations of total ammonia nitrogen 
and nitrate nitrogen in incoming inflow [ML−3], Na1 and Nn1, respectively, are pore-
water concentrations of total ammonia nitrogen and nitrate nitrogen in oxygenated 
top soil layer (aerobic layer in Fig. 8.6) [ML−3], Nap and Nnp, respectively, are con-
centrations of total ammonia nitrogen and nitrate nitrogen in precipitation [ML−3], 
qa and qn, respectively, are dry depositional rates of total ammonia nitrogen and 
nitrate [ML−2T−1], S is the rate of nitrogen fixation by microorganisms [ML−2T−1], 
F FN g

W
N g
W

a n
and , respectively, are groundwater source/loss for total ammonia nitrogen 

and nitrate nitrogen [MT−1], βa1 and βn1, respectively, are diffusive mass-transfer 
rates of total ammonia nitrogen and nitrate between wetland water and aerobic soil 
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layer [LT−1], and fN is the fraction of total ammonia in ionized form. For the defini-
tion of all other parameters in the above equations and below one may refer to [13].

Equation 8.29 limits nitrification rate to oxygen levels in the water column [18]. In 
this equation, λw is the first-order nitrification inhibition coefficient (≈ 0.6 L mg−1). 
Hantush and others [13] provided the following expression relating ammonia vola-
tilization rate kv to wind speed ( Uw) using a two-film resistance model and known 
relationships between liquid-film and gaseous-film exchange coefficients [19]:

1

1.17

1 12.07v w
w

k U
U

η
η

α
α −=

+
�

(8.31)

where α and η are empirical parameters. In Eq. 8.31, both Uw and kv are in md−1. For 
example, for open water bodies such as lakes, α = 0.864 [20] and η = 1. Due to wind 
shielding nature of green cover, it might be reasonable to assume that α < 0.864. The 
dependence of kv on temperature and pH was considered by Wang and others [21]. 
In Eq. 8.27 and as shown by Eq. 8.31, the effective volatilization rate expression 
k fv N( )1−  accounts for wind speed in addition to the above two parameters.

A general expression for the diffusion related parameter β can be obtained by 
conserving diffusive mass transfer between the two porous layers:
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where D* is free-water diffusion coefficient [L2T−1], and τi is the tortuosity of the 
layer i.

Aerobic Soil Layer
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in which

� (8.37)

where Nor is the concentration of rapidly mineralizing organic nitrogen in wetland 
soil [ML−3], Nos is the concentration of slowly mineralizing organic nitrogen in wet-
land soil [ML−3], V1 is the volume of aerobic soil [L3], Rs is the total ammonia retar-
dation factor in wetland soil, φ is the wetland soil porosity, Na2 is the total ammo-
nia-nitrogen pore-water concentration in lower anaerobic layer [ML−3], Nn2 is the 
nitrate-nitrogen pore-water concentration in lower anaerobic layer [ML−3], b is the 
mass of the rooted plants [M Chl a], vb is the burial velocity [LT−1], f l l l1 1 1 2= +/ ( )  
is the volumetric fraction of aerobic soil layer, l1 is thickness of aerobic soil layer [L], 
l2 is thickness of anaerobic soil layer [L], F FN g N ga n

1 1,  are, respectively, groundwater 
source/loss of total ammonia nitrogen and nitrate in the aerobic layer [MT-1], ms is 
the soil bulk density [ML−3], and Kd is the NH4

+ distribution coefficient [L3M−1].
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where NaG is the total ammonia-nitrogen concentration in groundwater [ML−3], 
NnG is the nitrate-nitrogen concentration in groundwater [ML−3], f l l l2 2 1 2= +/ ( )  
is volumetric fraction of anaerobic layer, V2 is the volume of anaerobic soil [L3], 
βa2 and βn2, respectively, are diffusive mass-transfer rates of total ammonia nitro-
gen and nitrate between aerobic and anaerobic soil layers [LT−1], and F FN g N ga n

2 2,  
are groundwater source/loss of total ammonia nitrogen and nitrate in the anaerobic 
layer [MT−1].
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�Oxygen Dynamics

Water Column

Oxygen variations in the water column can be described by the following equation:
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where Owi is the concentration of oxygen in the incoming water [ML−3], Op is the 
concentration of total oxygen in precipitation [ML−3], O* is oxygen concentration 
in the air (assumed at saturation) [ML−3], Ko is oxygen mass-transfer coefficient 
[LT−1], SO is the wetland soil oxygen depletion rate per unit area [ML−2T−1], and Sw 
is the volumetric oxygen consumption rate in water by other processes [ML−3T−1].

Wetland Soil

Using the equivalence of two-film theory and assuming linear drop of oxygen con-
centration from the free-water level ( Ow) to zero at depth l1 below soil surface, con-
servation of oxygen mass flux across the soil-water interface yields the following 
expression modified for constricted (porous) wetland surface water [5]:

*
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w
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w w

O
S D
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φτ φτ δ

φ τ

=
+

�

(8.42)

where δ is the thickness of a diffusive boundary layer situated on top of the soil-
water interface [L], τ is the wetland soil tortuosity factor, τw is effective tortuosity 
of the flooded area above soil, and D*

0 is the free-water oxygen diffusion coeffi-
cient [L2T−1]. Typical thickness of the diffusive boundary layer, δ, in natural waters 
(streams, lakes, oceans) is in the order of millimeters [22, 23]. For low energy en-
vironment and shallow wetland waters, the boundary layer is relatively thicker and 
may be approximated as / 2hδ ≈ .

Oxygen consumption in the aerobic layer can be related to the processes of ni-
trification, aerobic decomposition of organic matter (mineralization), and other un-
known oxidation processes. Conservation of oxygen mass in wetland soil requires:

�
(8.43)1 , 1 1 , 1( ) ( )O on n N ns w a on m ms os mr or sS l r f k O N l r k N k N l Sφ= + + +
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where Ss is the oxygen removal rate per unit volume of aerobic layer by other pro-
cesses, ron,m is gram of oxygen consumed per gram of organic nitrogen mineralized 
(= 15.29), and ron,n is gram of oxygen consumed per gram of total ammonium nitro-
gen oxidized by nitrification (= 4.57).

The use of Eqs. 8.42 and 8.43 leads to:

�
(8.44)

in which

�
(8.45)

For the simple case of 0,δ =  Eq.  8.44 reduces to *
1 2 /   o wl D Oφτ= Ω . Equa-

tion 8.44 predicts the thickness of the top oxic soil layer l1, which is typically much 
smaller than l2 (varies from a few mm to 1–2 cm), e.g., [24], thus, l H2 ≈  where H 
is the thickness of the active soil layer [L].

The equations for Now, Nor, Nos, a, b, and sediment transport are not displayed 
here for brevity. On the related equations and definitions of parameters and coef-
ficients, the readers may refer the original source [13].

8.5.3 � Wetland Model Application

The nitrogen model outlined above is evaluated using hydrologic and water quality 
data from a small restored wetland located on Kent Island, Maryland, on the eastern 
shores of the Chesapeake Bay. Removal of nutrients and suspended solids from 
this restored wetland, which received unregulated inflows from a 14-ha agricultural 
watershed, were monitored through automated flow-proportional sampling. Water 
flow, sediment and nutrient concentrations entering and leaving the wetland were 
measured from 8 May 1995 through 12 May 1997 [25]. The developed wetland 
model described above runs at daily time scale. Simulations started on 5/9/1995 and 
ended on 5/12/1997. Therefore, all the input data are required at daily time scale. 
The model internally divides the 1-day time interval into a smaller time interval (in 
this case 0.01 day) for numerical integration. Daily data are interpolated to generate 
inputs at higher than daily-time resolution. Initial concentrations required to initiate 
the model are taken from the values of day one, which is May 9th 1995. Weekly 
(typically 5–8 days) flow averaged nitrate nitrogen, total ammonia nitrogen, organ-
icnitrogen, and total suspended solids (TSS) concentrations in runoff are available 
from [25]. Conversion of weekly data and reconstruction of missing ones over the 
monitoring period were carried by [26].

2 *
1 ( ) 2 /   o wl D Oφτδ φτδ φτ= − + + Ω

, 1 ,  ( ) ( ) .on n N ns w a on m ms os mr or sr f k O N r k N k N SφΩ = + + +
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8.5.4 � Model Assessment

To evaluate model sensitivity to various parameters, dotty plots and GSA [9] were 
conducted in [26]. Dotty plots are simple scatter plots where values of a model pa-
rameter are plotted against either a selected model output or a model performance 
measure (e.g., mass balance error) after a MC simulation. Dotty plots not only pro-
vide information about sensitive parameters, but also depict the range in which the 
model is most sensitive to a given parameter. Further, such dotty plots also disclose 
the optimal ranges or the values of each parameter where the model performs best. 
In other words, they can be helpful during model calibration. Nash-Sutcliffe coef-
ficient EN [10] is used as the model performance measure. Dotty plots only provide 
qualitative measures for model sensitivity, whereas the GSA method, which is ap-
plicable only when observed data are available, is a quantitative approach for per-
forming sensitivity analysis. Model sensitivity to a parameter could vary depending 
on where the parameter is perturbed, which is why GSA is highly recommended 
over local sensitivity analysis [27]. Kalin et al. [26] combined the generalized likeli-
hood uncertainty estimation (GLUE) [28] and GSA approaches and applied them to 
the described wetland model to simultaneously perform sensitivity and uncertainty 
analysis. In the GSA, model parameter sets generated by sampling from proposed 
prior distributions of the parameters are separated into behavioral B and nonbe-
havioral B’ parameter sets using a threshold EN value, often subjectively selected. 
For example, if the threshold value is 0.2, B is composed of parameters sets whose 
EN ≥ 0.2. Parameters sets in B are valid simulators of the wetland system being mod-
eled, whereas parameters sets in B’ are not. The former defines the ensemble of 
model prediction, which is only a measure of predictive uncertainty and thus should 
be distinguished from probabilistic-based confidence intervals. The latter can be 
inferred using formal Bayesian analysis.

Figure 8.7 shows the dotty plots of EN values for nitrate (top row) and ammonia 
(bottom row) loadings for some selected parameters. Each figure contains 100,000 
points. Nitrate, as expected, is very sensitive to the denitrification parameter, kdn, 
which indicates that denitrification is a major nitrogen loss pathway in this study 
wetland. Nitrate also exhibits high degree of sensitivity to the Arrhenius coefficient 
θ, with higher temperatures stimulating the nitrate reactions and rate of diffusion. 
Diffusion of nitrate between the water column and the sediment layer is another 
important process in the study wetland as captured by the parameters βn1 and l2. For 
total ammonia, the model seems to perform better for higher ana (gram of nitrogen 
per gram of chlorophyll a in algae/plants) and fN (fraction of total ammonia nitro-
gen as ammonium nitrogen) values. The parameter ana is linked to plant uptake of 
ammonia while higher fN indicates that the system is high in NH4 and low in NH3 
(high pH). Dotty plots further reveal that mineralization of organic matter into am-
monia and diffusion of ammonia from bed sediments to the water column are the 
other likely key processes in the study site. Note that the striking difference between 
the left two figures and the right two figures on each row is caused by the selected 
prior PDFs of the parameters. Left ones are generated from a uniform distribution 
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and the figures to the right are generated from a log-normal distribution in which 
most of the data points are clustered and there is a long tail. Thus, although useful, 
it is difficult to see the full spectrum in dotty plots when the underlying probability 
distribution is nonuniform.

Results of the K–S test and the ensuing order of parameter sensitivities for nitrate 
and total ammonia are shown in Fig. 8.8. Compared to nitrate, total ammonia has 
more sensitive parameters at 5 % confidence level (15–7). This is because there are 
more processes affecting the fate and transport of ammonia compared to nitrate such 
as mineralization, adsorption, and volatilization. For ammonia, fN is the most sensi-
tive parameter along with ana. Note that fN is a function of pH and temperature. Next 
important processes are nitrification of ammonia to nitrate in the water column and 
ammonification. Diffusion of ammonia from the sediment layer to the water column 
appears to be a significant source of ammonia (see parameters βa1 and l2). For ni-
trate, the Arrhenius coefficient for temperature adjustment ( θ) is the most sensitive 
parameter, which is rather surprising. As mentioned earlier, many reaction rates and 
physiological parameters vary with temperature and are sensitive to θ, reflecting 
this fact. In terms of processes, diffusion of nitrate from the water column to bed 
sediments ( βn1 and l2) and denitrification in the anaerobic sediment layer are the two 
most important processes. The water and soil porosity parameters, φw and φ also 
appear sensitive. These two parameters dictate flow-accessible volumes in water 
and soil, respectively, and thus affect dissolved constituent concentrations.

Figure 8.9 compares the model-simulated total ammonia and nitrate concentra-
tions and loads to observed data. Figures show both behavior (gray band) and non-
behavior sets. Model performance is very good with both constituents. The model is 
especially doing a good job in predicting loads. The average EN value of the behav-
ior sets is 0.51 for Naw and 0.85 for Nnw. Mass balance errors are less than 6 % for all 
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the behavioral simulations. The gray bands in the figure that denote the prediction 
intervals from the behavior sets are relatively narrow. This means that uncertainty is 
small, which is a desirable thing.

Figure  8.10 shows computed nitrogen budget of the wetland over the 2-year 
study period. About 77 % of the incoming total nitrogen load (runoff from the wa-
tershed + atmospheric deposition) leaves the system as hydrologic export, which 
means the wetland system removed about 23 % of the incoming nitrogen. Diffusion 
to the sediment layer does not seem to be a major loss pathway for ammonia. This 
does not mean that diffusion is not an important process. What the figure reveals 
is that the amount of ammonia diffused to the sediment layer and the one diffused 
from the sediment layer balance out. On the contrary, diffusion of nitrate from the 
water column to the sediment layer is a major nitrogen retention mechanism, which 
accounted for roughly 9 % of the incoming nitrogen load.

8.6 � Summary

Although processes governing the environmental fate and transport of particu-
lar contaminants vary greatly, all contaminants, however, are subject to diffusion 
caused by the combined effect of random motion of molecules (molecular diffu-
sion) and mechanical mixing associated with deterministic and/or random velocity 
variations in the medium of concern (e.g., free water, porous media, and air). Of 
particular interest is diffusive mass exchange of pollutants at the sediment-water 
interface, a problem that is relevant to lake eutrophication and nitrogen cycling 
in wetlands, and to management of contaminated sediments accumulating at the 
bottom of streams, lakes, and estuaries. Mathematical models—conceptual or 
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physical—of environmental processes that govern the fate and transport of pollut-
ants are valuable tools for testing scientific hypotheses and informing risk-based 
environmental decision making. While mathematical models (analytical, semi-an-
alytical, and numerical) are useful for understanding processes and quantifying the 
relative importance of various physical and biogeochemical processes, their appli-
cation to real-world environmental problems, however, is often very challenging. 
This is primarily attributed to the complexity of the environment (e.g., heterogene-
ity, irregular boundaries, multimedia, etc.), lack of observational data, and imperfect 
understanding of the underlying processes. Aside from the challenge of obtaining 
exact and numerical solutions for the governing boundary or initial-value problems, 
parametric sensitivity (i.e., identifying most important processes) and identification 
(i.e., calibration), quantifying model predictive uncertainty remain even more chal-
lenging and more relevant to risk-based environmental decision making.

This chapter presents analytical and numerical models describing the fate and 
transport of nitrogen in two different, freshwater ecosystems, eutrophic water bod-
ies, and wetlands. Unlike previous models [1], the analytical model that was applied 
to interpret the Chesapeake Bay sediment flux data considered unsteady-state trans-
port and vertical resolution in bottom sediments. The wetland model on the other 
hand is among the first models that considered oxygen dynamics and accounted 
for the impact of a thin oxidizing layer on nitrogen transformation in wetland soils. 
The emphases were on diffusive transfer and geochemical transformation at the 
sediment-water interface. In both applications, the GSA method is implemented and 
the equifinality concept of Beven and coworkers (i.e., different parameter sets are 
potentially equally likely good simulators of the system) is embraced. The MC and 
GSA methods reveal the most sensitive parameters and dominant processes in both 
the Chesapeake Bay and treatment wetland applications. The equifinality, which is 
reflected by the behavioral parameter set, provides an estimate for model predictive 
uncertainty caused by measurement and modeling errors. In both cases, diffusive 
mass transfer plays a significant role in determining nitrogen concentrations. In the 
treatment wetland application, diffusion of nitrate from the water column to the 
sediment layer is a significant nitrogen retention mechanism, whereas denitrifica-
tion is a relatively major loss pathway.
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9.1 � Introduction

Water is distributed within the earth, on its surface, and also in the atmosphere in 
liquid, solid, and gaseous forms, respectively. Of the total available water on the 
earth, 97 % is saline stored in the oceans and the remaining 3 % is only in the form 
of fresh water. Out of this 3 % of fresh water, groundwater constitutes only 30.1 %. 
The remaining is in the form of icecap and glaciers (68.7 %), liquid surface water 
(0.3 %), and in atmosphere and living being (0.9 %). Of the liquid surface fresh 
water, 87 % is stored in lakes, 11 % in swamps, and only 2 % flows into the rivers 
(source: Wikipedia-a free encyclopedia). Accordingly, groundwater constitutes the 
second largest reserve of fresh water available on the earth. The main source of 
groundwater is precipitation. Precipitated water falls on the ground surface and en-
ters below it. This entering process is known as infiltration. Infiltrated water moves 
downward and gets stored in pores of subsurface geological formations or in geo-
logical structures such as fractures, faults, joints, etc. in the case of hard rocks. This 
leads to the evolution of groundwater regime below the earth’s surface. Geological 
formations capable of storing groundwater and allowing its movement from one 
place to another place under ordinary field conditions are known as aquifers. Sands, 
sandstone, weathered mantle, highly fractured rock, etc. are examples of aquifers. 
On the other hand, there are some geological formations such as massive basalt 
and granite units which can neither store the groundwater nor allow the movement 
of groundwater. Such geological formations are known as aquifuge. There is an-
other category of geological formation such as clay which can store good amount 
of groundwater but does not allow the movement of groundwater because of lack 
of interconnectivity of its pores. Such formations are known as aquiclude. Vertical 
distribution of groundwater is characterized into two zones: unsaturated and satu-
rated. In the unsaturated zone the entire pores contain both water and air, whereas 
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in the saturated zone the entire pore space is filled with water. If the saturated zone 
is bounded by two impermeable formations from top and bottom, it is called a con-
fined aquifer.

In confined aquifer water is stored at more than atmospheric pressure. That is 
why water level in the well penetrating a confined aquifer is at a higher elevation 
than the elevation of the upper boundary of the confined aquifer. Elevation of the 
water level in the well penetrating confined aquifer is called piezometric head and 
is measured from a reference stratum. If the upper boundary of the saturated zone is 
the water table (or phreatic surface), it is called unconfined aquifer. On the water ta-
ble, the pressure is equal to the atmospheric pressure. An unconfined aquifer (or part 
of it) that rests on a semi-pervious layer is a leaky unconfined aquifer. Similarly, a 
confined aquifer (or part of it) that has at least one semi-pervious layer containing 
stratum is called a leaky confined aquifer. A schematic diagram of the aquifer’s type 
and zones of vertical distribution of groundwater are shown in Fig. 9.1.

The advantage of unconfined aquifers over confined aquifers to serve as a sub-
surface reservoir is that the storage of groundwater in large quantity is possible 
only in unconfined aquifer. This is because the storativity of the unconfined aqui-
fer is linked to the porosity and not to the elastic properties of water and the solid 
matrix, as in the case of the confined aquifer [1]. Also, the vast surface area of the 
unconfined aquifer above the water table is available to receive the surface applied 
recharge, whereas in the case of confined aquifer, only a small open area exposed to 
the ground surface or leaky portion of the aquifer boundary is available to receive 
the recharge as shown in Fig. 9.1. Sources of surface water are not available every-
where. Therefore, their use to meet the demand of water supply for irrigation, indus-
trial, and domestic purposes is restricted to those areas where water can be transport-
ed through canals from these sources. Also surface water bodies such as rivers, lakes 
are more vulnerable to contamination. On the other hand, groundwater resources are 
distributed globally and are less vulnerable to contamination compared to surface 
water bodies. Therefore, groundwater plays a major role in augmenting water sup-
ply to meet the ever-increasing demand, especially in developing counties such as 
India, where agriculture sector provides job opportunity to a large rural population 
and is the main source of income to them. Increasing dependence of water supply on 
groundwater resources is resulting in increasing use of aquifers as a source of fresh 
water supply and subsurface reservoir for storing excess surface water.

Natural replenishment of aquifers occurs very slowly. Therefore, withdrawal of 
groundwater at a rate greater than the natural replenishment rate causes declining 
of groundwater level, which may lead to decrease in water supply, contamination 
of fresh water by polluted water from nearby sources, seawater intrusion into the 
aquifer of coastal areas, etc. To increase the natural replenishment, artificial re-
charging of the aquifer is becoming increasingly important in groundwater manage-
ment. In many cases, excess recharging also leads to the growth of water table near 
the ground surface and causes several types of environmental problems, such as 
water logging, soil salinity, etc. In such a situation, proper management of ground-
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water resources is needed to overcome the shortage of water supply on one hand 
and to prevent the environmental problems on the other hand. In order to address 
the management problem, one must be able to predict the response of the aquifer 
system to any proposed operational policy of groundwater resources development 
such as artificial recharging and pumping. Such problems are referred to as fore-
casting problems. Its solution will provide the new state of the groundwater system. 
Once the new state is known, one can check whether the related recharging and/or 
pumping scheme is feasible to meet the preset objectives of the sustainable devel-
opment and management of groundwater resources. Such problems can be tackled 
by applying mathematical modeling techniques. Mathematical models help in mak-
ing judicious selection of an appropriate development scheme such as designing of 
recharging and pumping schemes out of many proposed development schemes by 
comparing responses of different proposed recharge/pumping schemes in order to 
select the best scheme without resorting to the expensive field works. This chapter 
deals with mathematical modeling of groundwater flow in unconfined aquifer and 
related problems. Mathematical modeling needs simplification of complex geohy-
drological environ and processes based on assumptions to make it amenable to the 
mathematical treatment without compromising the physical characteristics of the 
problem. One such simplification is the hydraulic approach.

9  Modeling Groundwater Flow in Unconfined Aquifers
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9.2 � Hydraulic Approach

In general, flow through a porous medium is 3-D . However, as the geometry of 
most aquifers is such that they are thin relative to their horizontal dimension on re-
gional scale, a simpler approach called hydraulic approach is introduced for model-
ing purpose. According to this approach, it is assumed that the flow in the aquifer is 
essentially horizontal everywhere neglecting its vertical component [1–2]. The ap-
proximation of horizontal flow in unconfined aquifer is the basis of Dupuit assump-
tion which will be discussed later. However, this assumption fails in regions where 
the flow has a large vertical component, for example, in the vicinity of partially 
penetrating wells, or at boundaries with open water bodies such as lakes, rivers, etc.

9.3 � Mathematical Modeling

Modeling of groundwater flow begins with a conceptual understanding of the phys-
ical problem. The next step is translating the physical problem into a mathematical 
framework in the form of a set of mathematical equations governing groundwater 
flow, boundary, and initial conditions (in the case of unsteady state flow). Its solu-
tions are used to describe the dynamic behavior of water table in the flow system 
under consideration in response to the hydraulic stresses such as recharging, pump-
ing, leakages, stream aquifer interaction etc. Mathematical model may be deter-
ministic, statistical, or some combination of the two. Deterministic models retain 
a good measure of physical insight while permitting a number of problems of the 
same class to be tackled with the same model. Our discussion is confined to the 
development of governing groundwater flow equations, methods of solutions, and 
related deterministic models used for predicting water table fluctuation induced by 
recharging and/or pumping, which are the essential components of groundwater 
resources development. Formulations of groundwater flow equations are based on 
the conservation principles dealing with mass and momentum. These principles re-
quire that the net quantity of mass (or momentum) entering or leaving a specified 
volume of aquifer during a given time interval be equal to the change in the amount 
of mass (or moment) stored in the volume. Groundwater flow equations for specific 
aquifer systems are formulated by combining the equation of motion in the form of 
Darcy’s law, which follows principle of conservation of momentum with the mass 
balance equation, also known as mass conservation equations or continuity equa-
tions, which follows the principle of conservation of mass.

9.3.1 � Darcy’s Law

Consider flow of water under confined condition through a sand filled cylinder of 
cross sectional area A and length L as shown in Fig. 9.2. Cylinder is representing 
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a propos media through which water is flowing from one end to another end under 
gravitational flow because of elevation difference between piezometric heads at 
both ends. According to Darcy’s law, the rate of flow (volume of water per unit 
time), Q, is proportional to the crosssectional area A of the porous media, propor-
tional to the piezometric heads difference between two points (φ1 − φ2),  and in-
versely proportional to the length of the porous media, L as shown in Fig. 9.3. Math-
ematically, it can be expressed as:

Q = KA
φ1 − φ2

L
,

�
(9.1)

in which K is the coefficient of proportionality, called hydraulic conductivity. K de-
pends on the properties of fluid as well as solid matrix and is expressed by K=kρg/µ 
in which k is the solid medium permeability, ρ  is the density of fluid (taken 1 in case 
of water), g is the gravitational acceleration, and µ  is the dynamic viscosity. The 
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piezometric head is expressed as φ = z + p/γ , in which z is the elevation head, p 
is atmospheric pressure, and γ  is specific weight of water [1]. Equation 9.1 can also 
be rewritten as:

q =
Q

A
= K

φ1 − φ2

L
,

�
(9.2)

where q is the specific discharge defined as the volume of water flowing through 
unit crosssectional area of the cylinder. Writing (φ1 − φ2)/L in differential form 
by defining (φ1 − φ2) → dφ and L → dL and introducing a minus sign to indicate 
that flow is in the direction of decreasing φ, Eqs. 9.1 and 9.2 can be expressed as:

Q = −KA
dφ

dL�
(9.3)

and

q = −K
dφ

dL
.

�
(9.4)

In case of unconfined aquifer, Eqs. 9.3 and 9.4 can be written as:

Q = −KA
dh

dL�
(9.5)

q = −K
dh

dL
,

�
(9.6)

where dh is difference of water table heights between two points separated by dis-
tance dl. Eqs. 9.5 and 9.6 are known as the equation of motion. It is evident from 
Eq. 9.6 that for dh/dl = 1, K = q. Groundwater flow equation for an unconfined aqui-
fer is derived by combining the equation of motion modified by the Dupuit assump-
tion with the mass balance equation.

9.3.2 � Dupuit Assumption

Consider a vertical cross section of unconfined groundwater flow as shown in 
Fig. 9.4. Dupuit assumption is based on the field observation that the slope of the 
water table, θ , is generally very small on regional scale. It implies that the flow is 
almost horizontal and dL≈dx (Fig. 9.3). Replacing dL by dx, Eq. 9.6 becomes:

q = −Kx

dh

dx
.

�
(9.7)
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If groundwater flow takes place through a saturated vertical column of thickness h, 
then Eq. 9.7 can be rewritten as:

Q
′
x = −Kxh

dh

dx
.

�
(9.8)

9.3.3 � Mass Balance Equation

To derive the mass balance equation, consider groundwater flow through a 
control box in an unconfined aquifer (Fig.  9.4). The box is bounded by verti-
cal surfaces at (x − δx/2, y) and (x + δx/2, y). parallel to the y-axis and at 
(x, y − δy/2) and (x, y + δy/2)  parallel to the x-axis. The box has a horizontal 
impervious base and the water table forms its upper boundary. The control box 
receives vertical recharges with N( x, y, t) rate. The rate of recharge is the volume of 
water added to the water table in unit time through unit cross-sectional area and has 
the unit of velocity. In principle N( x, y, t) is the sum of all recharge rates from dis-
tributed sources (recharge basins, ponds, streams, etc.) and withdrawal rates from 
distributed sinks (wells, leakage sides, etc.).Here, N( x, y, t) is considered as recharge 
rate only from a single source to simplify the derivation of the mass balance equa-
tion.

Because of the excess mass inflow during time, δt , the water table rises from the 
initial height h( t) to a new height h(t+δt). The mass balance equation based on the 
Dupuit assumption can now be written as:
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where Q′
x and Q

′
y  are discharges per unit width in the x and y directions, respective-

ly; h(t) and h(t+δt) are the water table heights at times t and (t+δt),  respectively, 
ρ  is the density of water which is normally taken as one and Sy is the specific yield 
which is defined as the volume of water added to (or released from) the aquifer per 
unit horizontal area of aquifer and per unit rise (or decline) of water table. Sy is 
dimensionless aquifer parameter. By expanding Q

′
x , Q

′
y and h(t + δt)  about x, y, 

and t, respectively, by Taylor series and dropping all terms containing second and 
higher order derivatives gives:
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h(t + δt) = h(t) +
∂h

∂t

δh

2
.

�
(9.14)

Substituting these values in Eq. 9.9, and thereafter dividing both sides of Eq. 9.9 by 
δx, δy, δt  and letting δx, δy and δt → 0 , we obtain the following mass balance 

equation for an inhomogeneous and anisotropic unconfined aquifer:

−
∂

∂x
(Q

′
x) −

∂

∂y
(Q

′
y) + N (x, y, t) = Sy

∂h

∂t
.

�
(9.15)

Inserting the expressions for Qx’ and Qy’ from Eq. 9.8 into Eq. 9.15 yields:

∂
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(
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�
(9.16)
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For an inhomogeneous isotropic aquifer K = K( x, y), Eq. 9.16 becomes:
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Kh
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)
+ N (x, y, t) = Sy

∂h

∂t
.

�
(9.17)

9.3.4 � Groundwater Flow Equation for a Leaky Unconfined Aquifer

In this case, an unconfined aquifer is separated from an underlying confined aquifer 
by a partly semi-pervious layer as shown in Fig. 9.2. The mass balance equation for 
a control box in inhomogeneous anisotropic unconfined aquifer, taking into account 
a leakage of rate qL between the aquifers is given by:
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where h is water table height in an unconfined aquifer, φ  is piezometric head in 
underlying confined aquifer. qL for h < φ  is expressed as:

qL =
φ − h

σ
,

�
(9.19)

in which σ=B ′/K ′, B ′  being the thickness and K´ the hydraulic conductivity of 
the semi-pervious layer. For h > φ, qL becomes negative because groundwa-
ter outflows from the unconfined aquifer. For h < φ, groundwater flows into the 
unconfined aquifer and hence qL becomes positive. After simplification, Eq. 9.18 
becomes:

∂

∂x

(
Kxh

∂h
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+

∂

∂y

(
Kyh

∂h

∂y

)
+ N (x, y, t) +

φ − h

σ
= Sy

∂h

∂t
.

�
(9.20)

Equation 9.20 is the desired governing equation for groundwater flow in a leak-
ing unconfined aquifer. The equation for an inhomogeneous isotropic aquifer 
( K = K( x, y)) and a homogeneous isotropic aquifer ( K = constant) can be obtained 
from Eq. 9.20 as in the previous cases.

9.3.5 � Linearization of Groundwater Flow Equation

Generally, Eqs. 9.16, 9.17, and 9.20 are used for development of groundwater flow 
models. These are nonlinear second order partial differential equations and their ex-
act solutions are difficult to obtain. The nonlinearity is because of the presence of h 
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as coefficient in the partial derivatives on the left hand side. Therefore, linearization 
of these equations is essential to obtain analytical solutions. We consider Eq. 9.17 to 
describe the linearization procedures an example. For homogenous isotropic aqui-
fers ( K = constant), Eq. 9.17 can be written in the following two forms:

K

[
∂
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(
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∂h
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∂

∂y

(
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∂t�
(9.21)
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∂t
.

�
(9.22)

Two procedures of linearization are commonly used. According to the first proce-
dure, i.e., the Baumann procedure of linearization, if the variation in h is much less 
than the initial height of the water table h0, then the coefficient h appearing on the 
left hand side of Eq. 9.21 can be replaced by h0. Then Eq. 9.18 can be rewritten as:

T

(
∂2h

∂x2
+

∂2h

∂y2

)
+ N (x, y, t) = Sy

∂h

∂t
,

�
(9.23)

where T = Kh0. Now Eq. 9.23 is linear in h. In the second procedure, i.e., the Han-
tush’s procedure of linearization, h appearing in the denominator on the right hand 
side of Eq. 9.22 is replaced by the weighted mean of the depth of saturation h̄;  a 
constant of linearization which is approximated by 0.5[h0 + h( te)]; te is the period at 
the end of which h̄  is to be approximated. Then Eq. 9.23 becomes:

∂2h2

∂x2
+

∂2h2
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Now Eq. 9.24 becomes linear in h2. Substitution of a new variable H, defined as 
H=h2 − h2

0,  Eq. 9.24 can be rewritten as:

∂2H 2

∂x2
+

∂2H 2

∂y2
+

2N (x, y, t)
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Kh̄
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.

�
(9.25)

Equation 9.25 is being extensively used for development of groundwater flow mod-
els. Here, it should be mentioned that in case of using Eq. 9.25 for development of 
mathematical models, the initial and boundary conditions should be also described 
in the form of H to preserve linearity of the problem.

Now, to make use of Eq. 9.24 (or 9.25) for the development of groundwater flow 
models, one needs to compute the value of h̄ . Marino [3] suggested the method of 
successive approximation for computation of h̄  value. In this method, the weighted 
mean of the depth of saturation is taken as a first approximation equal to the initial 
depth of saturation, h0. The first approximated height of the water table is then cal-
culated by using a solution of Eq. 9.25. In the second trial, the weighted mean of the 
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depth of saturation is approximated by the average of the initial depth of saturation 
h0 and the first approximation of the height of the water table. This procedure is 
repeated until the value of the calculated height of the water table converges. The 
last estimated value of h̄ for which the calculated water table height converges 
at a given time and position is the desired value of h̄ for that particular time and 
position. Thus, for each time and position one has to compute h̄ and the conversed 
value of water table height for this value of h̄ is the desired water table height at the 
given position and time. By comparing results of analytical solutions based on the 
Hantush linearization procedure with the experimental results obtained from Hele-
shaw model, Marino[3] found that for N ≤ 0.2  K and h−h0 ≤ 0.5h0, the maximum 
deviation between both the results was 6 %. Even for h−h0 ≥ 20 h0, the maximum 
deviation was 12.2 %. It shows that the results of analytical model agree reasonably 
well with the experimental results. Rao and Sarma [4] have reported that both the 
linearization methods yield results which have satisfactory agreement with those 
of the experiments (within ± 5 %) for the rise of the water table up to 40 % of its 
initial height. Beyond this limit the Hantush linearization scheme gave a more sat-
isfactory agreement. Thus, Hantush method was found to have wider applicability. 
However, Hantush method involves computation of weighted mean of the depth of 
saturation through successive iteration and hence requires more computation time 
than the Baumann procedure of linearization. However, time is not at all an issue in 
this era of fast computers. Equations 9.23–9.25 are popularly known as linearized 
Boussinesq equations.

9.3.6 � Groundwater Flow Equations for Sloping Aquifer

The groundwater flow equation in a sloping 2-D unconfined aquifer is described 
by: [5–6]

∂2s

∂x2
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∂2s

∂y2
− 2a

∂s

∂t
+

2N (t)

K
=

1

�
∂s

∂t
,

�
(9.26)

where s = h2, h = variable water table height, a = q/2D, q = slope of the base, D =  the 
mean depth of saturation, and � = KD/Sy.

9.3.7 � Groundwater Flow Equations in Cylindrical Coordinates

This type of equation is used to describe groundwater flow induced by recharging/
pumping through circular shape recharge basin/well and is given by: [7–8]

S
∂h

∂t
= −

1

r

∂

∂r
(rQ) + N (r , t),

�
(9.27)
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where r is the radial distance measured from the center of recharge basin, and q is 
defined by Darcy law as:

Q = −Kh

(
∂h

∂r

)
.

�
(9.28)

Equations 9.23–9.25 describe 2-D groundwater flow. Equation for 1-D flow, for ex-
ample in the x direction, can be obtained by simply substituting zero for the deriva-
tive of y. Groundwater flow equations for a steady-state condition can be obtained 
by substituting zero for time derivatives.

Groundwater flow equations presented here are in the form of partial differential 
equations having infinite numbers of solutions. To obtain a unique solution for a 
particular problem, some more information about the problem under consideration 
is needed, such as the values of aquifer parameters, geometry of the flow domain, 
leakage rate, recharge rate, pumping rate, initial conditions, boundary conditions, 
etc. depending on the physical condition of the problem under consideration. Aqui-
fer parameters can be deduced from field as well as experimental methods [1, 9]. 
A brief description about the initial and boundary conditions commonly used in 
groundwater flow problems are discussed below.

9.3.8 � Initial Conditions

Initial conditions describe the distribution of h at all points of the flow domain at the 
beginning of the investigation, i.e., at t = 0. This is expressed as:

h = h0(x, y, 0),� (9.29)

where h0 is a known value of h for all points of the flow domain at t = 0. Now, to 
make use of initial condition for the solution of Eq. 9.25, Eq. 9.29 can be written as:

H (x, y, 0) = 0,� (9.30)

in which H = h2 − h2
0.

9.3.9 � Boundary Conditions

These conditions describe the nature of interaction of the aquifer along its boundar-
ies with its surrounding environs such as reservoir, rivers, groundwater divide, etc. 
Three types of boundary conditions are generally encountered in groundwater flow 
problems.

Dirichlet boundary condition: In this case, h is prescribed for all points of the 
boundary for the entire period of investigation. This is expressed as:
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0 ( , , ),h h x y t=� (9.31)

where h0(x, y, t)  are known values of h at all points on the boundary.
Neumann boundary condition: This type of boundary condition prescribes the 

flux across the boundary of the flow system and can be expressed as:

1
( , , ),q x y t= ψ

� (9.32)

where 
1
( , , )x y tψ  are the known values of flux at boundaries. A special case of this 

boundary condition is the no-flow boundary condition in which flux is zero. This 
condition occurs at impermeable surfaces or at the groundwater divide, a surface 
across which no flow takes place.

Cauchy boundary condition: This boundary condition is encountered at the semi-
pervious boundary layer between the aquifer and an open water body such as river. 
Because of the resistance to the flow offered by the semi-pervious boundary that 
lies between the aquifer and the river, the water level in the river differs from that 
in the aquifer on the other side of the semi-pervious boundary. In this case, the flux 
is defined by:

q = K
′ h − h0

b
,

�
(9.33)

where h  is the head at x = 0, h0 is the water level in the river, b and K’ are the thick-
ness and hydraulic conductivity, respectively, of the semi-pervious boundary layer.

9.3.10 � Estimation of Rate of Recharge and Pumping

Recharging and pumping are the essential components of groundwater development 
schemes. The purpose of groundwater recharging is to store groundwater in order to 
reduce, stop, or even reverse the declining trend of water table. On the other hand, 
pumping is used for water supply. Thus, recharging and pumping have significant 
effects on the dynamics of water table. Therefore, accurate estimation of recharge 
and pumping rates are very crucial for prediction of water table fluctuation. Many 
mathematical models have been developed to predict water table fluctuations in 
response to recharge from basins of different geometrical shapes [3, 10–15]. Most 
of the models are based on the assumption of constant rate of recharge applied con-
tinuously. However, rate of recharge largely depends on the infiltration rate which is 
influenced by several factors. The infiltration rate decreases initially mainly due to 
dispersion and swelling of soil particles at the bottom of the basin. After some time, 
it increases owing to displacement of the entrapped air from pores. After attaining a 
maximum value, it again decreases owing to clogging of the soil pores [1, 16–17].

Clogging is caused by silt and clay deposition over and immediately below the 
base of basin. The rate of recharge follows almost a similar pattern of variation of 
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infiltration rate with comparatively less intensity and with some time lag due to 
the time taken by the infiltrated water to reach the water table. When the rate of 
recharge decreases to a minimum prescribed level, the recharge operation is dis-
continued for some time and after drying, cleaning, and if necessary, scrapping 
of the silted bottom of the basin, recharge rate is brought back almost to its initial 
value and the basin is again put back to use for the next phase of recharge operation. 
Zomorodi [18] has demonstrated with the help of field examples that the solutions 
based on the assumption of constant rate of recharge are unable to predict the rise 
and subsequent decline of the water table which is due to decrease in the rate of 
recharge. He suggested that the recharge rate should be treated as a variable in time 
in order to simulate actual field conditions. Several schemes have been proposed to 
approximate time varying recharge rate in order to develop predictive groundwater 
flow models. Rai and Singh [19] have used two linear elements to approximate 
exponentially decaying recharge rates applied from a strip basin to a semi-infinite 
aquifer. Some workers [20–22] used exponential function to approximate one cycle 
of time varying recharge applied from a single basin. Yue-zan and others [23] have 
used a scheme in which the duration of time varying recharge is divided into several 
time zones according to the actual variation in the recharge rate. In each time zone, 
the variation range of recharge rate should be considered so small that it can be 
represented by the constant average value of recharge rate of that particular zone. 
Yue-zan and colleagues referred this recharge rate approximation as stepped vari-
able scheme.

Manglik and others [24] have proposed a new scheme for approximation of time 
varying recharge rate. In this scheme, time varying recharge rate is approximated 
by a series of line elements of different lengths and slopes. The number, lengths, 
and slopes of the line elements depend on the nature of variation of recharge rate. 
Advantage of this approximation scheme is that any complex nature of recharge 
rate variation can be approximated with more accuracy. This scheme was extended 
for the recharge operation from multiple basins [25] and combination of recharging 
and pumping from a number of basins and wells [26]. In a real field condition, ar-
tificial recharging and pumping operations are carried out intermittently from more 
than one site according to necessity. In groundwater flow equations, for example in 
Eq. 9.25, N( x, y, t) is the sum of all recharge and withdrawal rates from distributed 
sources (recharge basins, ponds, streams, etc.) and from distributed sinks (wells, 
leakage sides, etc.). According to the scheme considered in [26], N( x, y, t) is repre-
sented by:

1 2 1 2
1
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( , , ) ,

0 elsewhere                           
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N x y t =
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�

(9.34)

where n is the total number of basins and/or well, Ni(t)  is the time-varying recharge 
(or pumping) rate for the ith basin (or well, respectively) and xi1, xi2, yi1, yi2  are 
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the coordinates of ith basin (or well). Ni(t)  is positive for recharge to the aquifer 
and negative for pumping and leakage out of the aquifer.

For demonstration purpose, Fig. 9.5 illustrates approximation of two cycles of 
time varying recharge and pumping rates by using this scheme. In this example, 
two cycles of recharge operations each of 20 days duration with 20 days gap are 
considered. In each cycle the rate of recharge decreases from 0.8 to 0.7 m/d during 
the first 2 days and again reaches maximum value of 0.9 m/d during the next 2-day 
period. Thereafter, it continuously decreases to 0.2 m/d during the next 14 days pe-
riod. After that recharge operation is discontinued. As a result, the rate of recharge 
decreases to zero in the next 2 days (Fig. 9.5a). The second cycle of recharge starts 
after a gap of 20 days. In the second cycle also variation of the rate of recharge is 
considered in the same way. This kind of time varying recharge rate is approximated 
by using 11 linear elements of different lengths and slopes. In this example two 
cycles of pumping each of 10 days duration with a gap of 20 days is considered at a 
rate of 80 m3/d. The first cycle of pumping begins after 10th day from the beginning 
of the first cycle of recharge and continues till the 20th day, i.e., the last day of the 
first cycle of recharging. After a gap of 20 days, the second cycle of pumping starts 
on the 40th day and continues till the 50th day (Fig. 9.5b). This time varying pump-
ing rate is approximated by nine linear elements [27–30] used the same scheme to 
approximate time-dependent recharge, pumping and/or leakage to develop analyti-
cal models to predict water table fluctuation. Results of analytical models are veri-
fied by comparing with the numerical results obtained by using MODFLOW.
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Fig. 9.5   Approximation of two cycles of time varying recharge and pumping. [27]
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9.4 � Analytical Methods of Solution

The purpose of solving a groundwater flow equation is to obtain the values of water 
table height, h( x, y, t). Generally two types of methods, namely analytical methods 
and numerical methods are used for this purpose. Most of the field problems are of 
complex nature because of the inhomogeneous anisotropic nature of flow systems 
and irregular shape of their boundaries. Such problems are not easily amenable to 
analytical methods and can be solved by using numerical methods. Development of 
numerical methods is based on two schemes: finite difference and finite elements. 
Accordingly, these methods are called finite difference and finite elements. These 
methods are described in detail in many published works [1, 31–36]. Based on these 
numerical methods, many computer programs such as SUTRA, MODFLOW, POR-
FLOW, etc. are being developed and widely used to solve actual field problems of 
groundwater flow.

Although the application of analytical solutions is restricted to the relatively ho-
mogeneous isotropic flow system having boundaries of simple geometrical shapes, 
their application is fast and simple compared with that of the numerical methods. 
Analytical solutions are also useful for other purposes such as sensitivity analysis 
of the effects of various controlling parameters such as aquifers properties, initial 
and boundary conditions, intensity and duration of recharge rate, shape, size, and 
location of the recharge basin, etc. on water table fluctuation. Such information is 
very essential for making judicious selection of an appropriate development scheme 
out of many proposed schemes to achieve the preset objectives of groundwater re-
sources management. Besides these applications, analytical solutions are also used 
for checking validity and calibration of numerical models under development by 
comparing results obtained from both the approaches. Analytical methods common-
ly used for the solution of groundwater problems include the Laplace transforms, 
integral balance methods, method of separation of variables, approximate analytic 
methods, Fourier transforms, etc. Details about these methods and their applica-
tions in the solution of groundwater flow problems or in heat conduction problems 
can be found in many books [1, 37–42]. A review of analytical solutions has been 
presented in [43]. Some commonly used analytical methods are discussed in the 
following subsections.

9.4.1 � Laplace Transform

The technique of the Laplace transformation is widely used for solving diffusion 
type differential equation that contains a first order differential in time. By using 
the Laplace transform the partial derivative with respect to time variable is removed 
from the second order partial differential equation (in this case groundwater flow). 
As a result, the original second order partial differential equation is reduced in sec-
ond order ordinary differential equation. When the ordinary differential equation is 
solved and this solution is inverted by using inversion of the associated the Laplace 
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transform; the desired solution of the unknown variable such as water table height 
is obtained. The Laplace transform of a function h( t) is defined as:

0
[ ( )] ( ) ( ) ,ptL h t h p e h t dt

∞ −− = ′ ′∫�
(9.35)

and its inversion is:
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where y is a constant so large that all the singularities lie to the left of the line (y − i∞, 
y + i∞) on the complex p-plane. Generally, the Laplace transform of a function and 
its inverse are given in several books [38, 44–45]. Application of the Laplace trans-
form in the solution of groundwater flow problems can be found in [19, 46–49].

9.4.2 � The Integral Balance Method

This method is applicable to both linear and nonlinear 1-D transient boundary value 
problem for certain boundary conditions. The results are approximate. But several 
solutions obtained by applying this method when compared with the exact solutions 
have confirmed that the accuracy is generally acceptable. The following steps are 
followed in the application of this method:

(i)	 The differential equation describing 1-D groundwater flow is integrated over 
the length of the aquifer in order to remove the derivative with respect to space 
coordinate.

(ii)	 A suitable profile is chosen for the distribution of water table height. A polyno-
mial profile is generally preferred for this purpose. Experience has shown that 
there is no significant improvement in the accuracy of the solution by choosing 
a polynomial greater than the fourth degree. Coefficients in the polynomial are 
determined by applying boundary conditions.

(iii)	 When the expression of the polynomial profile is introduced into the integrated 
groundwater flow equation and the indicated operations are performed, a first 
order ordinary equation is obtained for the average height of the water table 
with time as the independent variable. The solution of this differential equation 
subject to the initial condition gives an expression of the initial condition for 
average height of the water table.

(iv)	 Now the first order differential equation for the average water table height is 
solved subject to the initial condition for the average height to get the desired 
solution of the water table height.

Singh and Rai [50–51] have used this method in the solution of ditch-drainage prob-
lems in the presence of time varying recharge rate.
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9.4.3 � Approximate Analytic Methods

Approximate analytic methods are attempted in solving groundwater flow govern-
ing equation in its nonlinear form. One example of such a method is presented by 
Basak [52] in solving a ditch-drainage problem based on the assumption that the 
first derivative of the water table height with respect to time is independent of the 
space coordinate, i.e., dh/dt ≠ f( x) and is a function of time only. This approximation 
is valid when the successive water table profiles are almost parallel. This condition 
is satisfied almost in the entire region except near the drains. The accuracy of ap-
proximate solution is verified by comparing the results with the results of known 
exact solutions. Basak’s solution is found to be in close agreement with an exact 
solution of the same problem. Singh and Rai, [50, 53] used this method to obtain 
a model to describe water table fluctuation induced by exponentially decaying re-
charge rates.

9.4.4 � Method of Separation of Variables

In this method groundwater flow equation is separated into ordinary differential 
equations for each independent variable. The resulting ordinary differential equa-
tions are solved and the complete solution is constructed by the linear superposition 
of all separated solutions. Examples of application of this method can be found in 
[54] for 1-D sloping aquifer, in [6] for 2-D sloping aquifer, and in [55] for radial 
flow.

9.4.5 � Finite Fourier Transforms

These transforms are useful in solving boundary value problems in which at least 
two of the boundaries are parallel and separated by a finite distance.

�1-D Finite Fourier Sine Transform

This transform is used when value of a variable is specified at the boundaries. For 
1-D case, the finite Fourier sine transform S( m, t) with respect to x of a function 
H( x, t), 0 < x < A is defined as:

Fs[H (x, t)] = S(m, t) =
A∫

0

H (x, t) sin
(mπx

A

)
dx,

�

(9.37)

its inversion is given by:
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H (x, t) =
2
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S(m, t) sin
(mπx

A

)
,

�
(9.38)

in which m is integer representing the number of Fourier coefficients and A is the 
length of the aquifer. Application of this transform in the solution of groundwater 
flow problem can be found in [21, 56, 57].

�2-D Finite Fourier Sine Transform

Finite Fourier sine transform, S( m, n, t) with respect to x and y of a function H( x, y, t), 
0 < x < A and 0 < y < B is given by:

�
(9.39)

in which m and n are integers representing number of Fourier coefficients and A 
and B are length and width of the aquifer in the x and y directions, respectively. Its 
inversion formula is given by:

H (x, y, t) =
4

AB

∞∑

m=0

∞∑

n=0

S(m, n, t) sin
(mπx

A

)
sin

(nπy

B

)
.

�
(9.40)

Example of application of this transform in the solution of groundwater flow equa-
tion can be found in [27, 58]. Recently, [29] have used this transform to develop a 
model to describe water table fluctuation in anisotropic aquifer.

1-D Finite Fourier Cosine Transform

This transform is used to solve 1-D flow equation where flux is defined at the bound-
aries. The finite Fourier cosine transform in the interval 0 < x < A  is defined as:

C(m, t) =
A∫

0

H (x, t) cos
(mπx

A

)
dx,

�

(9.41)

and its inverse is given by:

H (x, t) =
1

A
C(0, t) +

2

A

∞∑

m=1

C(m, t) cos
(mπx

A

)
.

�
(9.42)

Examples of application of this transform can be found in [21, 59].

Fs[H (x, y, t)] = S(m, n, t) =
B∫

0

A∫

0

H (x, y, t) sin
mπx

A
sin

nπy

B
dxdy,
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�2-D Finite Fourier Cosine Transform

This transform is used for the solution of those problems in which the boundary 
conditions are characterized by flux across the two parallel boundaries. For 2-D 
problem, the finite Fourier cosine transform C( m, n, t) with respect to x and y of a 
function H( x, y, t) in the intervals 0 < x < A and 0 < y < B  is defined as:

C(m, n, t) =
A∫

0

B∫

0

H (x, y, t) cos
(mπx

A

)
cos

(nπy

B

)
dydx,

�

(9.43)

and its inverse is given by:

H (x, y, t) = 1
AB

C(0, 0, t) + 2
AB

∞∑
m=1

C(m, 0, t) cos
(

mπx
B

)

+ 2
AB

∞∑
m=1

C(0, n, t) cos
(

nπy

A

)
+ 4

AB

∞∑
m=1

∞∑
n=1

C(m, n, t) cos
(

mπx
B

)
cos

(
nπy

A

)
.

�
(9.44)

Example of application of this transform is in [20, 28].

�1-D Extended Finite Fourier Cosine Transform

This transform is used when the flow problem is characterized with mixed bound-
ary conditions, i.e., at one boundary flux is defined and at its parallel boundary head 
is defined. This transform in the interval 0 < x < A  is defined as:

Ce[m, t] =
A∫

0

H (x, t) cos
(2m + 1)πx

2A
dx,

�

(9.45)

and its inverse is given by:

H (x, t) =
2

A

∞∑

m=0

Ce(m, t) cos

(
(2m + 1)πx

2A

)
.

�
(9.46)

Application of this transform in the solution of 1-D groundwater flow can be found 
in [55].

2-D Extended Finite Fourier Cosine Transform

For 2-D flow problem, the transform C( m, n, t) with respect to x and y in the interval 
0 < x < A and 0 < y < B of a function H( x, y, t) is defined as:
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Ce(m, n, t) =
B∫

0

A∫

0

H (x, y, t) cos
(2m + 1)π x

2A
cos

(2n + 1)πy

2B
dxdy,

�

(9.47)

its inversion formula is given by:

H (x, y, t) =
4

AB

∞∑

m=0

∞∑

n=0

Ce(m, n, t) cos

(
(2m + 1)πx

2A

)
cos

(
(2n + 1)πy

2B

)
.

� (9.48)

This transform has been used in [25] to develop a groundwater flow model.

9.5 � Summary

Recharging and pumping are the essential components of water resources devel-
opment. Therefore, prediction of water table fluctuations in response to proposed 
schemes of recharging and pumping are essential to make judicious selection of an 
appropriate development scheme out of many to achieve the preset objectives of sus-
tainable management. This is accomplished by carrying out sensitivity analysis of 
the effects of changes in the controlling parameters on the dynamic behavior of the 
water table. Controlling parameters include shape, size, and location of recharge ba-
sins and wells, intensity of recharge and pumping rates, duration and number of cy-
cles of recharge and pumping operations, etc. Solution of the prediction problem lies 
in the solution of the governing flow equations subject to the initial and boundary 
conditions associated with the physical problems under consideration. In this chap-
ter groundwater flow equations have been presented to describe 2-D groundwater 
flows in inhomogeneous anisotropic unconfined aquifer (Eq. 9.16), inhomogeneous, 
isotropic unconfined aquifer (Eq. 9.17), in leaky unconfined aquifer (Eq. 9.20) in 
sloping homogeneous isotropic sloping aquifer (Eq. 9.26) in response to intermit-
tently applied time varying recharge and/or pumping from multiple basins of rectan-
gular shapes and wells, respectively, along with the initial and boundary conditions 
and methods of their solutions. Groundwater flow equations to describe 1-D flow 
can be obtained by substituting zero for the derivative of one space coordinate.

Governing flow equation in cylindrical coordinate system (Eq. 9.27) is also pre-
sented to describe groundwater flow induced by time varying recharge from circular 
basin. Groundwater flow equations for steady state can be obtained by substituting 
zero for the time derivative. The above mentioned governing flow equations are used 
for the development of analytical/numerical models to predict water table fluctuations 
in the flow system under consideration. Examples of the analytical models have been 
cited from the papers published in reputed journals which can be easily accessible to 
the interested readers. Though the application of analytical models are restricted to the 
flow system having boundaries of simple geometrical shapes, their application is fast 
and simple compared to numerical methods. Analytical models are also used to check 
the validity of numerical models under development, because of the assured accuracy 
of the results of analytical models.

9  Modeling Groundwater Flow in Unconfined Aquifers
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10.1 � Introduction

There are many sources from which certain mass in the form of solute particles or 
tracer particles are released and spread through a medium. Those of pollutants cat-
egory degrade the environment. The sources of such pollutants are from all walks 
of human life: industries, agricultural lands, municipal drainage systems, garbage 
disposal sites, mines, hydro, thermal, nuclear power plants, etc. Some of the sources 
are natural too, like the one due to volcanic eruption. Pollutants from these sources, 
in one or the other form, get mixed with air, surface water, groundwater, and soil 
making the environment unsuitable for life to survive on the earth. Instantaneous 
sources are a few. So, their impact also exists for a short period of time. Most of 
these sources are of continuous nature, i.e., they are active for a long time and are 
bound to remain as such in the future. They are of uniform nature (the input pol-
lutant remains uniform throughout its existence) or of varying nature (the input is 
either increasing or decreasing with time). Once the cause of the pollution is re-
moved, the input concentration either becomes zero or starts decreasing with time, 
and the region starts getting rehabilitated. Continuously increasing the sources of 
pollutants have become a matter of great concern. To assess the impact of pollut-
ants in the presence and after the removal of a source on the environment, it is 
necessary to know the solute-mass-transport behavior and the variation pattern in its 
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concentration level with position and time. One way is to use mathematical models 
in continuum approach. In this approach, the solute transport through a convective 
medium is described by a parabolic-type partial differential equation, derived on the 
principle of conservation of mass and is known as the advection-diffusion equation 
(ADE). Its general form in one dimension is:

�
(10.1)

where D x t( , )  is known as the solute dispersivity parameter and u x t( , )  is the ve-
locity of the flow domain through a medium transporting the solute particles, and 
c  is the solute concentration at a position x  at time t . The determination of the 
longitudinal distribution of waste products in a waterway is often based on one-
dimensional mass balance equation which includes advection and dispersion terms. 
The advective mass transfer is represented by the velocity averaged over a cross 
section normal to the longitudinal axis of the waterway. The dispersion term ac-
counts for longitudinal mixing which results from the combined effects of turbulent 
diffusion and the shear-induced velocity distribution in both the transverse and ver-
tical directions.

Mathematical modelers use ADE to describe the concentration levels at different 
positions and time away from its source through its analytical and numerical solu-
tions. Most of the analytical solutions for advection-diffusion transport problems in 
ideal conditions with growth and decay terms, subject to various initial and bound-
ary conditions in semi-infinite and finite regions have been compiled by different 
researchers [1–3]. Predicting the fate of pollutants in natural environments such as 
rivers and man-made channels is one of the major concerns. The transport of react-
ing species is affected by the changes produced in the chemical composition of the 
environment. The number of studies in reactive transport has increased, showing 
the importance of this issue [4–7]. In a recent work [8], a model was developed for 
investigating the solute transport into a sub-aqueous sediment bed, under an im-
posed standing water surface. Following the formulation of the ADE and the theo-
ries relating D  and u  [9–11], the number of solute transport studies has increased 
considerably. Many solute transport models consider homogeneous media but in 
reality the ability of solute to permeate though the medium of air, soil, or ground-
water varies with position, which is referred to as heterogeneity. Early efforts to de-
scribe heterogeneity were achieved by making the use of stratification and defining 
porosity–distance relationship [12–15]. In the former situation, the number of layers 
cannot be large and is restricted up to two or three only to get analytical solution for 
each layer. In the latter situation, the relationships are valid for finite domains and 
only numerical method is the option to deal with the dispersion problems. Later, 
scale-dependent dispersion has been attributed to heterogeneity.

According to another theory [16], some large subsurface formations exhibit 
variable dispersivity as a function of position or time variables while the flow do-
main remains uniform. This theory was fully supported through later works [17]. 
Analytical solutions to solute transport problem in a semi-infinite medium were 
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obtained [18] based on such observations, where the dispersion parameter depends 
on distance and increases up to a limited value. This problem was extended [19] for 
periodic input condition on a semi-infinite domain and porous media with fracture 
zones, and included the adsorption effects. An analytical solution was derived in 
[20] for linear-asymptotic distance-dependent dispersion problems. The limitations 
of analytical solution for ADE with coefficients being the function of space variable 
have also been analyzed [21]. But it is possible to solve this equation analytically 
only in some particular cases. In a more general situation, numerical techniques are 
required [22]. The literature presents several analytical methods, to solve the partial 
differential equations governing transport phenomena. Exact solutions of linear dif-
fusion problems by the classical integral transform techniques were reviewed and 
classified in [23]. This work identified and unified seven classes of problems and 
demonstrated many applications in heat and mass diffusion. This work was later 
generalized and extended [24], thereby creating a new systematic procedure re-
ferred to as the generalized integral transform technique (GITT) used in later works 
[25–27]. Most of the analytical methods are also reviewed in a recent work [28].

In both [9] and [29], it is pointed out that their analyses of the dispersion coef-
ficient are limited to asymptotically large times after the introduction of pollutant 
into the flow. This means that one-dimensional ADE is not applicable to a dispers-
ing mass cloud immediately after the introduction of the pollutant. So, modeling 
the dispersion problems in two and three dimensions have been thought to be a 
better option compared with the one-dimensional model. Several other authors have 
used simplified one- and two-dimensional models that to some extent incorporate 
variable coefficients [30–33]. The ADE with spatially variable coefficients in three 
dimensions with particular functional forms for the coefficients was analytically 
solved in [34]. A general methodology to develop dispersion models in three-di-
mensional heterogeneous aquifers under nonstationary conditions was presented in 
[35]. Analytical solutions of one-, two-, and three-dimensional ADEs were obtained 
in [36]. The author assumed that dispersivity increases directly with the first power 
of the flow length in the steady and unsteady flows. Depth-averaged solute trans-
port and lateral diffusive transport were modeled in a two-layer system of contrast-
ing permeabilities [37]. They obtained two-dimensional analytical solutions for the 
first-order rate model in an infinite medium, using the methods of Fourier and La-
place integral transformations. The analytical solution for two-dimensional chemi-
cal transports through an aquifer was presented in [38]. Time-dependent infinite 
element approach was used to simulate contaminant transport problems in infinite 
media [39]. They considered one- and two-dimensional ADEs with constant or vari-
able coefficients, addressing the anisotropy of the media as well as leakage effects 
in porous fissured media. A two-dimensional semi-analytical solution was present-
ed to analyze stream–aquifer interactions in a coastal aquifer, where groundwater is 
affected by tidal effects [40]. The work in [41] is devoted to mathematical modeling 
and computer simulation of diffusion and transport of chemicals in rivers, in which 
one-, two-, and three-dimensional models in terms of time-dependent convection-
diffusion-reaction differential equations are presented. Analytical solution for time-
varying dispersion coefficients have been presented in one dimension [42, 43], two 
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dimensions [44], and three dimensions [45, 46]. The Hankel transform technique 
was used in [47] to describe two-dimensional solute transport along unsteady flow 
from a time-dependent point source.

In view of such wide applicability of ADE, its analytical solutions in more real 
dispersion problems are always in demand. The present work is an attempt in that 
direction using Laplace integral transform. A two-dimensional ADE is solved ana-
lytically in a heterogeneous horizontal semi-infinite plane. The solute transport is 
due to a varying pulse-type stationary point source. Solutions with such type of 
input condition are very useful in estimating rehabilitation time of a polluted do-
main, once the source of pollution is eliminated. Particularly in groundwater do-
main, where one major source of pollution is the disposal of a variety of wastes 
on the surface, the input concentration increases with time in the presence of the 
source. Once it is dumped or removed, the input concentration starts decreasing, 
instead of becoming zero at once (as is the case with uniform point source). Due to 
heterogeneity of the semi-infinite medium velocity, the dispersivity components are 
considered as linear function of the respective space variable. Owing to the observa-
tions in [17, 21], to accommodate other causes affecting the two parameters of the 
solute transport over long space and time domains, both are considered temporally 
dependent too. The two-dimensional ADE with variable coefficients is reduced into 
an ADE in one dimension with constant coefficients.

10.2 � Mathematical Formulation and Analytical Solution

Let the longitudinal and lateral directions at the origin be taken as the x and y 
axes, respectively. Let c  be the contaminants concentration in the aquifer at any 
time t  at position ( , ), ( , ), ( , )x y u x t v y tand  be the velocity components while 
D x t D y tx y( , ) ( , )and  be the dispersions coefficients at the same position along the x 
and y axes, respectively. The linear advection–diffusion partial differential equation 
in two-dimensional horizontal isotropic but heterogeneous medium in general form 
may be written as:

�
(10.2)

It is assumed that due to heterogeneity, velocity increases linearly with position 
variable in a direction. In a finite domain 0 1≤ ≤x �  along the longitudinal direc-
tion, let the velocity at x u u= =0 0be ,  and at 1 0 1be (1 ),x u α= +�  where 1α is a 
nondimensional constant greater than zero. So, the velocity at an intermediate posi-
tion may be interpolated as u ax0 1( ),+  where 1 1( / )a α= �  may be considered as 
the heterogeneity parameter along the longitudinal direction as inverse of the space 
variable. Similarly, the lateral velocity component may be interpolated as v by0 1( )+  
in a domain 0 2≤ ≤y � ,  where 2 2( / )b α= �  may be termed as the heterogeneity 
parameter along the lateral direction. As the flow domain has to satisfy the Darcy 
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law (in case of porous flow) or laminar conditions (in the case of air or water flow), 
the values of a  and b  should be of small order.

In case both have different values, it means heterogeneity along the longitudinal 
direction is different from that along the lateral direction. The different values rep-
resent media of different heterogeneities. The dispersivity due to heterogeneity is 
considered square of the velocity, in each direction. Additionally, unsteadiness of 
velocity and dispersivity are considered. These are described by f mt f mt1 2( ) ( ),and  
respectively, where the coefficient m  is termed as the unsteady parameter with 
dimension inverse of t.  Heterogeneity along both the directions is considered dif-
ferent but unsteadiness is considered the same. Expressions for each coefficient are 
considered in degenerate forms as in [48–50].

� (10.3)

�
(10.4)

While choosing expressions for f mt f mt1 2( ) ( ),and  it is ensured that 
f mt f mt m t1 21 0 0( ) ( )= = = =for or  The former case represents the steady flow 
and dispersion while the latter case represents velocity and dispersion at the initial 
stage. So the coefficients u v0 0,  and Dx0 ,  Dy0  in the above equations may be re-
ferred to as the uniform velocity components of dimension ( )LT −1  and the initial 
dispersion coefficient components of dimension ( ),L T2 1−  respectively.

In this chapter, we are considering two subsections based on the relationship:

� (10.5)

For any value of n  between 1 and 2, the theory [51] holds good. In the first subsec-
tion n = 2  is considered, and in the second one n ≠ 2  is considered. For n = 2,  
each dispersivity component, due to both heterogeneity and unsteadiness, becomes 
proportional to the square of the respective velocity component, it thus satisfies the 
theories in [9–10].

For n = 1,  we get the theory in [11]. For f mt f mt f mt1 21( ) ( ) ( ),= =and  the 
theory in [16] is applicable. To solve ADE (Eq.  10.2), the following initial and 
boundary conditions are assumed:

Initially, the domain is considered solute free, i.e.,:

� (10.6)

The point source is a varying pulse type and is supposed to be at the origin of 
the horizontal medium, i.e., this condition is the combination of the following two 
equations:

� (10.7a)

� (10.7b)
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It describes that the concentration at the origin increases with time in the presence 
of the source. Once the source of pollution is eliminated at t t= 0 ,  the input con-
centration starts decreasing. The second boundary conditions at the far ends along 
both the directions are of homogeneous flux type:

� (10.8)

10.2.1 � Dispersivity as a Square of the Velocity
Using the Eq. 10.5 for n = 2,  in the Eqs. 10.2 and 10.3, ADE (10.2) becomes:

( )( ) ( )( )

( ) ( ) ( )( )

22
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2 2
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(10.9)

where a new independent variable T *  is introduced by using the transformation [52]:

�
(10.10)

As m  occurs in the denominator, hence T *  may be referred to as a new time vari-
able. Also, an expression of f mt( )  is chosen such that for t = 0,  we get T * ;= 0  
the nature of the initial condition does not change in the new time domain. Let the 
time of elimination of the source have a corresponding value T0

*.  Further, the fol-
lowing new space variables are introduced through the transformations [48, 49]:

�
(10.11a)

� (10.11b)

The longitudinal and lateral directions remain semi-infinite in the new space vari-
ables. The partial differential equation given by the Eq. 10.9 together with the initial 
and boundary conditions (Eqs. 10.6 through 10.8) become:

�
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�
(10.14)

� (10.15)

� (10.16)

Further, using another space variable introduced through a transformation similar to 
the one used in an earlier work [53]:

� (10.17)

and assuming:

� (10.18)

where 2 2
0 0 0 0( / ), , and ,x yD U D a D b D U au bvλ = = + = +  the present initial and 

boundary value problem becomes:

�
(10.19)

� (10.20)

� (10.21)

� (10.22)

where D aD bD U u vx y
* *,= + = +0 0 0 0

Now the first-order decay term in the Eq. 10.19 may be eliminated by using the 
transformation:
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one by one, the variable coefficients of the ADE are reduced into constant coeffi-
cients. Thus, we get the one-dimensional ADE with constant coefficients in the new 
independent variables ( , )Tη  as:

�
(10.26)

While choosing an expression for f mt( ),  it is also ascertained that through the 
transformation (Eq. 10.25), we get T t= =0 0, ,for  so that the nature of the initial 
condition does not change in this time domain. In this time domain, let the corre-
sponding value of time of elimination of the source be T0

 Thus, initial condition 
(Eq. 10.20) becomes:

( , ) 0, 0, 0.C T Tη η= = ≥� (10.27)

Now to write the input condition (Eq. 10.21) in the time domain T ,  the time vari-
able T *  has to be expressed explicitly in terms of T .  For the purpose, expressions 
of f mt1( )  and f mt2 ( )  may be chosen. Most of the changes are of exponential 
nature, hence an expression of exponentially decreasing or increasing nature is con-
sidered as:

� (10.28a)

� (10.28b)

Small value of m  less than 1.0 ensures that the changes are of small order. The two 
expressions represent decelerating flow and accelerating flow, respectively. Using 
the decelerating function, from the Eq. 10.10, we have:

T
m

mt mt mT* *exp( ) log( )= − −[ ] = − −
1

1 1or

Also from the Eq. 10.25, we have:

In f mt( ),  m  is chosen much smaller than 1, so its second- and higher-degree terms 
in the logarithmic and binomial expansions in the above equation may be omitted. 
So, we may get:

� (10.29)
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It may be verified that the same relationship may be obtained for the expression in 
the Eq. 10.28b. Using this relationship, the input condition (Eq. 10.21) for deceler-
ating flow, i.e., for the expression in the Eq. 10.28a may be written as:

�
(10.30a)

For the accelerating expression (Eq. 10.28b), it becomes:

�
(10.30b)

The second boundary condition (Eq. 10.22) may be obtained as:

�
(10.31)

The convective term in the advection-diffusion Eq. 10.26 is eliminated by using the 
transformation:

� (10.32)

We apply the above transformation on the Eqs. 10.26, 10.27, 10.30a, and 10.32 and 
then the Laplace transformation (parameter p); a second-order ordinary boundary 
value problem is obtained as:
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the factor p A p A+ +21 31
 is assumed as ( )p b+ 2 . Then, 2 21

2
31b A b A= =and  

are substituted in ( , ).K Tη  Using the necessary transformations back, the desired 
analytical solution may be obtained as:

�
(10.37a, b)
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The solution given by the Eq. 10.37a describes the solute transport in the time do-
main 0 0≤ ≤t t ,  i.e., in the presence of the source, and that given by the Eq. 10.37b 
describes the same, once the source is eliminated, i.e., in the time domain t t> 0 .  
For f mt mt( ) exp( ),=  proceeding with the input condition (Eq. 10.30b) the same 
solution as in the Eq. 10.37a and 10.37b will be obtained with only one change: 

*
3 .A m D Dλγ=

10.2.2 � Unsteadiness of Dispersion and the Velocity Being Related 
in a General Way

The value of n  in the Eq. 10.5 may be between 1 and 2 or outside of this range. In 
other words, the relation between unsteadiness of dispersion and that of velocity is 
considered general in nature. We use the expressions for velocity and dispersivity 
components from Eqs. 10.3 and 10.4 in Eq. 10.2. We then use the transformations 
in Eqs. 10.11a and 10.11b to get:

�

(10.39)

where:

� (10.40)

is another time variable. The input conditions (Eqs. 10.7a and 10.7b) become:

�

(10.41a)

�
(10.41b)

Using the transformation (Eqs. 10.17 and 10.23), the ADE and the input condition 
become
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(10.43)

∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂




c

T

f mt

f mt
D

c

X
D

c

Y
aD

c

X
bD

c

Yx y x y*

( )

( )
2

1
0

2

2 0

2

2 0 0




−
∂
∂

−
∂
∂

− +u
c

X
v

c

Y
au bv c0 0 0 0( ),

T f mt dt
t

* ( ) ,= ∫ 1
0

−
∂
∂

+ =
< ≤

>




= =D
f mt

f mt

c

X
u c

u C T T

T T
X Yx0

2

1
0

0 0 0

0

0

0
0 0

( )

( ) ,
, , ,

, * *

* *

−
∂
∂

+ =
< ≤

>




= =D
f mt

f mt

c

Y
v c

v C T T

T T
X Yy0

2

1
0

0 0 0

0

0

0
0 0

( )

( ) ,
, , .

, * *

* *

∂
∂

=
∂
∂

−
∂
∂

C

T
D

f mt

f mt

C

Z
Uf mt

C

Z*

( )

( )
( ) ,2

1

2

2 3

( )* * * *
0 0* *2

* *
1 0

exp , 0( )
, 0,

( ) 0,

U C UT T Tf mt C
D U C Z

f mt Z T T

 < ≤∂ − + = =∂ >



222 P. Singh et al.

respectively, where:

�
(10.44)

Further, using the new space and time variables introduced through the respective 
transformations:

�
(10.45)

� (10.46)

the ADE (Eq. 10.42) becomes:

�
(10.47)

It is the same as Eq. 10.26, but the new independent variables η  and T  have dif-
ferent expressions (Eqs. 10.45 and 10.46, respectively). Similarly, the initial and the 
second boundary conditions may be obtained as

� (10.48)

� (10.49)

respectively. To write the input condition (Eq. 10.43) in the new time variableT , it 
has to be explicitly related with T *. For this, we consider:

� (10.50a)

�
(10.50b)

The first combination represents accelerating flow and decelerating dispersivity, 
and the second one represents decelerating flow and accelerating dispersivity. For 
the combination in Eq. 10.50a and using the transformation in Eq. 10.40, we have:
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Also, using Eq. 10.44 and the transformation (Eq. 10.46), we get:

2 2
* 3 * 1 *1 2 1 2

(1 ) (1 ) (1 )
3 3

T mT mT mT
m m m m m m

λ λ λ λ−= + − + − + − + +

The unsteady parameter m  is considered much smaller than 1. Omitting its second- 
and higher-degree terms in the binomial expansions, we get the same relationship 
as in Eq. 10.29, i.e.:

* 2, where (1 )T Tγ γ λ −= = −

It may be verified that this relationship also holds good for the second combination 
given by the Eq. 10.50b. Thus, using the combination (Eq. 10.50a) and the above 
relationship, input condition (Eq. 10.43) may be written as:

�

(10.51a)

For the combination (Eq. 10.50.2), the input condition will be:

�

(10.51b)

Comparing the initial and boundary value problems in the ( , )Tη  domain, in both 
the sections, it may be concluded that the solution of Eqs. 10.45–10.47 along with 
the condition (Eq. 10.51a) will also be given by the solution (Eq. 10.37a, b) with 
one change, *

3 2 .A m D Dλγ= −  Similarly, using the input condition (Eq. 10.51b), 
the same solution will be obtained with one change: *
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10.2.3 � Particular Cases

1.	 For f mt f mt f mt f mt1 2 1
2( ) ( ) ( ) ( ),= =and  the results of Sect. 2.2 reduce to the 

respective results of Sect. 2.1. In other words, we get the solution of a dispersion 
problem subject to the same conditions, satisfying the theory [18–19]

2.	 For f mt f mt f mt1 2( ) ( ) ( ),= =  we get the solution according to the theory in [19]
3.	 For m f mt f mt= = =0 11 2, ( ) ( ) ,  we get the solution for a dispersion problem 

in which dispersivity and velocity both are steady. But, we should ensure that 
the heterogeneity parameters along both the directions are not equal, i.e., a b≠ . 
Otherwise, the denominator of B2

 in the expression of the Eq. 10.38 becomes zero
4.	 For f mt f mt f mt1 21( ) ( ) ( ),= =and  we get a solution holding the theory [26]
5.	 For the last combination, f mt f mt f mt1 2 1( ) ( ) ( ) ,= =and  we may get a solution
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10.3 � Illustration and Discussion

The solutions obtained in the Eqs. 10.37a, b, satisfying the conditions of both the 
Sects. 2.1 and 2.2, are illustrated in Figs. 10.1, 10.2, 10.3, 10.4. The concentration 
values are evaluated in a finite domain 0 1 0 1≤ ≤ ≤ ≤x y(km) (km)and  along the 
longitudinal and transverse directions, for a set of input data: reference concentra-
tion C0 1 0= . , initial velocity, and dispersivity components along both the directions 
as: u0 1 05= . ,km/year  v0 0 15= . km/year, Dx0 1 1= . km /year,2  Dy0 0 1= . km /year,2  
unsteady parameter m = −0 1 1. .year  Heterogeneity parameters are chosen as 
a b= = −0 1 1. ,km  except in Fig. 10.4 where both the parameters have different val-
ues (see the 3rd particular case in Sect. 2.3). The source of solute is supposed to be 
eliminated at time t0 2 0= . year. From the figures, it is evident that the input concen-
tration, i.e., ( / )c C0

 at the origin ( , ),x y= =0 0  described by the conditions in the 
Eqs. 10.7a and b, varies with time. In Figs. 10.1a and 10.2a, the input concentration 
increases with time in the presence of the source, i.e., in the time domain 0 0< <t t , 
and in Figs. 10.1b and 10.2b the input concentration decreases with time after the 
elimination of the source, i.e., in the time domain t t> 0 . Fig. 10.1a and b illustrate the 
solutions given by the Eqs. 10.37a and 10.37b, respectively, when the dispersivity 
in each direction is proportional to the square of the respective velocity (Sect. 2.1).

In both the figures f mt mt( ) exp( )= −  is considered. Fig.  10.1a is drawn at 
t year and= 1 0 1 5. . .  The input concentration increases with time, its values at both 
the times are 0.46 and 0.56, respectively. Fig. 10.1b is drawn at t year  and = . . .2 5 3 5  
The input concentration decreases with time, its values at both the times are 0.39 
and 0.24, respectively. The concentration values at a position ( x, y) increases with 
time, in the presence of the source and decreases with time in the absence of the 
source. Fig.  10.2a and b are drawn by evaluating concentration values from the 
solutions of the Eqs. 10.37a and 10.37b, subject to the provisions of subsection 2.2. 
The combination given by the Eq. 10.50b, i.e., that of decelerating flow and accel-
erating dispersivity is considered.

The concentration distribution pattern is as expected. Fig  10.3a and b com-
pare the two-dimensional solute transport for both the combinations given by the 
Eqs. 10.50a and 10.50b in the presence and after the removal of the source, respec-
tively. The former figure is drawn at t  (year) = 1 0.  and the latter figure is drawn 
at t  (year) = 2 5. .  It may be observed that in the presence of the source, the input 
concentration for the combination in the Eq. 10.50b is lower (0.43) than (0.50) for 
the combination given by the Eq. 10.50a. But the trend reverses in the absence of 
the source, though the difference is not so distinct (the two are 0.375 and 0.371, 
respectively). The solute transport in the presence of the source is slower but the 
rehabilitation process is faster for the combination in the Eq. 10.50a than that for 
the combination in the Eq. 10.50b. Though after the removal of the source a peak 
near the origin is formed in the case of the combination in the Eq. 10.50a, but it 
attenuates very fast. Fig. 10.4a and b compare the solute transport in the case of 
steady dispersivity along steady flow with that in the case of decelerating disper-
sivity along accelerating horizontal flow domain, in the presence of the source, at 



22510  Two-Dimensional Solute Transport from a Varying Pulse-Type Point Source�

t = 1 5.  (year), and after its removal at t = 3 5.  (year), respectively. But, as stated in 
the previous paragraph of this section, the heterogeneity parameters are chosen as 
a b= = −0 15 0 12 1. . .and km  In the presence of the source, the input concentration 
in the former case is 0.62 while that for the latter case is 0.63. After the source is 
removed, the two values are 0.157 and 0.143, respectively. It may be observed that 
the pollution rate in the domain is slower in the latter case but rehabilitation is faster.
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It is evident from these figures that the lateral solute transport is also signifi-
cant and cannot be ignored in comparison with the longitudinal component, even 
though the lateral component input value is considered only one tenth of that of the 
longitudinal component. In other words, neglecting lateral components of velocity 
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and dispersivity, one is estimating virtually higher concentration at a longitudinal 
position than the actual one. A two-dimensional model is always better than one-
dimensional model in estimating the time in which a domain gets polluted and its 
rehabilitation time, once the source of pollution is removed. One time dependent 
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form f mt mt( ) exp( )=  tends to infinity as t → ∞,  hence it may be argued that 
ultimately the solute transport or velocity of the flow field increases enormously. 
But this situation will never occur because (as evident from the figures), the con-
centration gradient with respect to position decreases with time. So, after a certain 
time period an equilibrium stage is reached; the source becomes ineffective as far 
as its effect of polluting the domain is concerned. Similarly, once the source is re-
moved, the rehabilitation process is almost completed in a finite time and its rate 
increases with time. In other words, the concentration value at a particular position 
does not change uniformly with time. For example, the concentration at the origin 
in the presence of the source at t = 1 0 1 5 2 0. , . , . ( )and years  are 0.46, 0.56, and 0.64, 
respectively. The same in the absence of the source at t = 2 5 3 5 4 5. , . , . ( )and years  
are 0.39, 0.24, and 0.04, respectively. This represents a real scenario. This may be 
achieved through a third type of boundary condition at the origin, as considered in 
the Eqs. 10.7a and 10.7b. The unsteadiness and heterogeneity in different media 
varies. In air, the two may be on the higher side, while in soil and in aquifer they 
are on the lower side. The present study may be useful to account for the dispersion 
through any medium through selection of the appropriate values of the respective 
parameters.

10.4 � Summary

ADE describes solute transport originating from a source. Dispersivity may not be 
uniform in a real situation. It depends upon convection through a medium, which 
is seldom homogeneous. So, heterogeneous nature of a medium affects the veloc-
ity as well as dispersivity and hence the solute transport. Apart from it, in a large 
time domain and long extent of the medium, the factors other than heterogeneity 
may affect both the parameters. To accommodate these factors, one way is to as-
sume velocity and dispersivity temporally dependent [43, 47]. With all such fac-
tors, a two-dimensional solute transport from a varying pulse-type point source has 
been studied along exponentially time-dependent flow through a heterogeneous, 
initially solute-free, semi-infinite medium. The heterogeneity is described by spa-
tially dependent advective and dispersivity parameters. The dependence considered 
increases linearly. By changing the value of the heterogeneity parameter, media of 
different heterogeneities may be represented. Small value of the parameter ensures 
that effects on solute transport remains confined to a small range. The unsteadi-
ness of dispersivity is considered as a square of the velocity, and inverse of the 
velocity, in two separate sections, respectively. Such real assumptions have made 
the coefficients of the ADE variable. These are reduced to constant coefficients, 
through formulation of suitable moving coordinate transformations. It helps the use 
of Laplace integral transformation technique in obtaining the analytical solution. 
This technique has the least error of approximation, compared to most of the other 
such analytical methods. To keep the error further low, the two-dimensional ADE 
is reduced to one-dimensional equation, by using another coordinate transforma-
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tion. The effect of lateral solute transport has been found significant in the context 
of a varying source of the solute mass too. To establish this fact, the values of the 
lateral components of velocity and dispersivity parameters are considered only one 
tenth of the respective longitudinal components. The point source considered in this 
model is stationary. A moving source or moving input boundary condition of vary-
ing pulse type may be an interesting extension to assess the pollution level of the air 
due to heavy vehicular transports.
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11.1 � Introduction

A metabolic flux model of an organism can be developed from the genome-scale 
metabolic network (GEM) for quantitatively understanding and simulating the phe-
notypes of metabolic systems. For the development of the flux model, the GEM 
serves as a framework that integrate all of the massive “omics” data derived from 
systems biology research, comprising (i) gene detection (genomics), (ii) gene ex-
pression (transcriptomics), (iii) protein expression and modifications (proteomics), 
(iv) primary and secondary metabolites production (metabolomics), (v) measure-
ment and estimation reaction rates (fluxes) for a network of reactions that occur 
in an organism (fluxomics) [1], and (vi) large-scale literature mining (bibliomics) 
[1–3].

Due to the advances in the high-throughput “omics” technologies and computer 
capabilities, there has been an exponential increase in GEMs reconstructed for a 
wide variety of organisms since the first GEM was built in 1999 [4]. As the GEMs 
intend to include as large part of the cell metabolism as possible and as much bio-
logical information as possible [5], they provide a detailed representation of bio-
logical reaction networks and their functional states [6], and can be used as analysis 
platforms for computational systems approaches such as constraint-based modeling 
[3], to characterize the flux profiles of the microbial phenotypes. This type of analy-
sis can generate new knowledge that facilitates metabolic engineering of interesting 
biotechnological processes at the whole-cell level and can overcome the difficulties 
experienced in reductionist investigative strategies. Therefore, using in silico mod-
eling approaches to develop strains has been considered as a promising area in the 
field of systems biology.
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In this chapter, we illuminate the basic concepts and principles of the constraint-
based flux analysis, discuss two issues commonly encountered in the analysis, 
namely, alternate optimal solutions (AOSs) and futile cycles, and provide some 
solution methods based on our perspective. We hope this chapter will guide the au-
dience whom we envisaged as researcher relatively new to metabolic flux modeling 
to understand the essential features of this technique.

11.2 � The Mathematical Expression of GEMs

The GEMs can be converted into a mathematical format as stoichiometric matrix 
that is fundamentally required by all in silico modeling approaches [7]. Stoichiom-
etry is the calculation of quantitative relationships of the reactants and products in 
chemical reactions. Metabolic networks are represented by a stoichiometric matrix 
S with each column of the stoichiometric matrix corresponding to a chemical or 
transport reaction and rows corresponding to the metabolites [8, 9]. The elements 
in S are the stoichiometric coefficients of the associated reactions. Negative and 
positive coefficients indicate the directionality of the reaction, i.e., the substrate 
metabolites have negative coefficients, whereas the product metabolites have posi-
tives ones. In real situations, the number of reactions ( n) is usually larger than that 
of compounds ( m), which indicates that there are more unknown variables than 
equations and thus the system of equations has more than one solution [10]. The 
stoichiometric matrix can be annotated by including other important information 
linked to either the reactions or the metabolites, such as the genome and gene ex-
pression data for use in certain applications [7]. The stoichiometric matrix based on 
a reconstructed metabolic network serves as a backbone for mathematical model-
ing approaches to perform predictive, hypothesis-driven in silico experiments [11]. 
These modeling approaches can be divided into three categories: (i) characterizing 
the general network structure through null-space analysis such as singular value 
decomposition (SVD), (ii) analyzing all possible flux distributions in a network 
through extreme pathway analysis (ExPa) and elementary mode analysis (EM), and 
(iii) constraint-based flux analysis, specifically flux balance analysis (FBA) that 
identifies the flux distribution of a particular network state [7]. However, constraint-
based modeling is the only approach that is tractable for genome-scale description 
of metabolic process.

11.3 � Flux Characterization of Cellular Phenotypes by 
Constraint-based Flux Modeling

The constraint-based modeling approach is used to predict possible cellular phe-
notypes by interrogating capabilities of the GEM through the imposition of physi-
cochemical constraints. The constraints are formulated based on the consideration 



23511  The Problem of Futile Cycles in Metabolic Flux Modeling

of stoichiometry, thermodynamics, flux capacity, and regulatory restraints under 
which reactions operate in a metabolic network [12, 13]. These constraints are ap-
plied to reduce the range of attainable flux distributions or metabolic phenotypes 
achievable for an organism. As a result, a steady-state flux space is defined that 
contains all possible functional states of the network [14].

Since far fewer model parameters are needed for steady-state analysis of a meta-
bolic network than for dynamic modeling, constraint-based analysis can be per-
formed on a GEM. Nonetheless, this method generally offers no information about 
metabolite concentrations or about the temporal dynamics of the system [15–17]. 
Although the other quantitative approach, i.e., kinetic modeling, can characterize 
the detailed mechanisms of the metabolic reaction systems, obtaining a large num-
ber of kinetic parameters is not an easy task. In addition, many of the kinetic values 
cannot be trusted because they are acquired from in vitro rather than in vivo mea-
surement [18]. Therefore, compared with kinetic modeling, constraint-based mod-
eling is the more appropriate tool for in silico engineering of the complex biological 
systems. The cornerstone of the constraint-based modeling approach is FBA [19].

11.3.1 � FBA

FBA relies on data-driven constraints and linear optimization theories [20]. The 
constraints used in FBA can be classified into three groups: physicochemical, to-
pological, and environmental. Physicochemical constraints are physical laws such 
as the stoichiometry of the reactions and thermodynamics on reaction directions; 
topological constraints represent spatial restrictions on metabolites within cellular 
compartments; and environmental constraints include nutrient availability, pH, and 
temperature [20]. FBA can analyze metabolic networks to relate genotypes to phe-
notypes because all expressed phenotypes of a given biological system must satisfy 
basic physicochemical, topological, and environmental constraints that are imposed 
on the functions of all cells [21, 22].

Once constraints are set, to evaluate the performance of the biological system 
at various perturbations, FBA requires a physiologically relevant objective func-
tion. Objective functions can be in many forms such as physiologically meaning-
ful objectives or design objectives for the interrogation or exploitation of a given 
system. Examples of common objective functions include maximizing biomass or 
cell growth, maximizing ATP production or maximizing the rate of synthesis of a 
particular product [23]. Because the physicochemical constraints are readily de-
fined from the annotated genome sequence that identifies the enzymes present in an 
organism, and hence the biochemical reactions for which stoichiometries are mostly 
known, as well as measured enzymatic capacities, FBA needs a minimal amount of 
experimental data.

FBA was originally specifically designed to quantitatively compute growth phe-
notypes [8, 24], by maximizing the biomass reaction flux (representing the growth 
rate) given a set of bounded intake rates for external substrates [25]. In FBA, the 
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biomass equation is usually set as a linear combination of a range of macromolecu-
lar components, including proteins, DNA, RNA, lipids, lipoteichoid acids, pepti-
doglycan, and polysaccharides, which accounts for all known biomass constituents 
and their fractional contributions to the overall cellular biomass [26, 27]. This equa-
tion is used to reflect the observation that cell growth requires synthesis of a range 
of metabolites. The individual composition of every precursor metabolite in the 
biomass equation is maintained at a fixed stoichiometry, which is determined by ex-
amining the relevant literature or adapting known biomass compositions of related 
organisms [25]. The stoichiometric combination makes the equation consume each 
biomass precursor metabolite in proportion to their ratio in the biomass composi-
tion [8] and thus independent of the specific growth rate [26]. The detailed method 
to formulate the biomass reaction for genome-scale network reconstruction can be 
found in [27].

While constraints represent fixed physical laws, the choice of an objective func-
tion is more ad hoc and generally represents biological reality. Taking biomass 
maximization as the FBA objective function reflects the assumption that microbes 
evolve to optimize their metabolisms for maximizing biomass production (growth 
rate) [24, 28–30]. This assumption has been confirmed by experiments in many 
cases [29, 31, 32]. It was also found that even when the metabolic network did not 
initially operate according to the optimal growth principle, under selection pressure 
Escherichia coli growing on glycerol evolved to eventually maximize their growth 
rate [31]. Besides, flux balance models have been successful for different specific 
metabolic engineering applications, such as production of lycopene and vanillin 
[33–36].

A previous study used a central metabolic model of E. coli to evaluate the predic-
tion accuracy of FBA with different objectives and the results showed that maxi-
mization of adenosine tri-phosphate (ATP) or biomass yield per unit flux could 
achieve higher accuracy under specific conditions, such as unlimited growth on glu-
cose under aerobic conditions, than maximization of biomass production (“growth 
rate”) [37]. However, this indication is questioned by a later study based on a ge-
nome-scale model of E. coli [38]. The study found that there was very little differ-
ence between maximizing biomass production rate and biomass yield per unit flux 
for predicting gene expression changes seen after adaptive evolution and both of 
these two objectives achieved high prediction accuracy. On the other hand, maxi-
mizing ATP yield led to poor prediction involving few genes. It was thought that 
maximization of ATP selects against the usage of biosynthetic pathways since the 
end products are not included in this objective [38].

The biomass objective function is now built into almost every FBA-based 
metabolic network simulation of a microorganism. It can be regarded as a short 
cut, to circumvent the need for including the regulatory and signaling networks. 
Conversely, if metabolic, regulatory, and signaling networks are all reconstructed, 
an extrinsic objective will not be required for a growth-phenotype simulation [19].
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11.3.2 � Mathematical Basis of FBA

FBA is an implementation of constraints-based analysis. The static metabolic state 
of a cell is represented by the vector of all flux values, each of which is associated 
with a particular reaction. Without any constraints, the fluxes can take on any real 
value. After addition of constraints such as stoichiometric, thermodynamic, and en-
zyme capability rules, the total flux solution space shrinks into a bounded polyhe-
dral cone, termed the allowable solution space. Any point outside of the polyhedral 
cone violates one or more of the applied constraints and are biologically infeasible. 
Linear optimization that can maximize or minimize a defined objective such as 
biomass production can further reduce the steady-state solution space, possibly to a 
single solution. This circumvents the need for complete knowledge of the biochemi-
cal reaction network.

Mathematically, FBA involves computing a basis of the underlying polyhedral 
cone and identifies a single optimal flux distribution point within the cone using 
linear optimization. Linear optimization underlying FBA modeling comprises four 
major stages (Fig. 11.1): (i) Metabolite balancing and stoichiometry under steady-
state assumption (connectivity and mass conservation) is mathematically expressed 
as a subspace of universal flux space. (ii) Irreversibility of biochemical fluxes limits 
all fluxes to positive values, yielding a semi-infinite convex cone. (iii) Minimum 
and maximum fluxes (capacity constraints) further reduce this to a confined con-
vex space. (iv) A linear objective represents a hyperplane that intersects the convex 
cone, and maximizing or minimizing amounts to adjusting this hyperplane to touch 
the polyhedral convex cone. If it touches the cone at a single vertex, this is the 
optimal point that represents a state of the flux distribution that achieves the opti-
mal objective function value consistent with all constraints. More generally, it may 
touch the cone along a line giving multiple optimal points.

Imposing constraints Maximizing objective

Unconstrained
solution space

Allowable
solution space Optimal solution

V3

V1

V2

V3

V1

V2

V3

V1

V2

Fig. 11.1   The conceptual basis of FBA. (Visualization inspired by [10, 39])
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A three-dimensional flux space based on a hypothetical metabolic network is 
depicted in Fig.  11.1. Progressive application of constraints reduces the feasible 
solution space to a convex cone, and optimizing the objective further may reduce 
this to a single optimal point.

Linear Programming Formulation of FBA
In FBA, all reactions in which a metabolite participates are considered, which 

can be represented by a mass balance equation:

.i
ij j

j

dx
s v

dt
= ∑� (11.1)

Here Sij is the stoichiometric coefficient of metabolite xi for flux vj. The equation 
neglects metabolite dilution because this effect on concentration is negligible com-
pared to the fluxes for each reaction in which the metabolite participates [40].

For FBA, the metabolic reactions of the metabolic model are converted into 
a stoichiometric matrix. The system is assumed in steady state, i.e., the concen-
trations x of internal metabolites are constant [41]. The maximum and minimum 
ranges of the flux for each reaction are defined by the capacity constraints. These 
constraints provide a feasible space of the flux distribution in the metabolic model. 
FBA defines these constraints as a system of linear equations, which are solved by 
application of a linear programming (LP) technique to obtain a flux distribution in 
the feasible space that maximizes or minimizes an appropriate objective function. 
This LP problem is represented by the following equation:

maximize:

subject to:

c v

S v

v v v

T i
i =

≤ ≤
0

min max .

� (11.2)

Here c is a vector containing the flux coefficients of the linear objective function. 
In general, a published network model always includes an experimentally formu-
lated biomass reaction as the objective function. The flux through this reaction is 
the growth rate ( h−1) predicted by modeling. S is the m × n stoichiometric matrix of 
all the reactions in the metabolic network; m is the number of metabolites, n is the 
number of fluxes (reaction rates), and v denotes a vector of flux of each metabolic 
reaction.

vmin and vmax represent the minimum and maximum flux of each reaction based 
on the maximal enzymatic reaction rate, any constant uptake rate from the envi-
ronment and possibly the irreversibility of the reaction. Also, thermodynamic con-
straints on reactions may exist to restrict the directional flow of the reaction. These 
constraints are obtained from the literature where the models are retrieved.

For a cellular metabolism, the number of metabolites defines the number of bal-
ance equations in Eq. 11.2 while the number of reactions represents the number of 
unknowns in Eq. 11.2. If the number of reactions n is larger than the number of me-
tabolites m, the system has a mutual degree of freedom F  ≥ n − m. Hence, if a system 
has a number of measured fluxes less than F the system becomes underdetermined 
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by nature. In general, the metabolic network of an organism is an underdetermined 
system.

Network reactions include those by which the cell exchanges metabolites (nu-
trients and waste products) with its environment. A given metabolic environment 
usually dictates upper bounds on such exchange reaction fluxes. The fluxes (or re-
action rates) are expressed in mmol per gram dry weight and hour (mmol/(gDW/h)). 
Under physiological conditions, each reaction will have a limited maximal flux 
due to thermodynamic constraints. vmin is limited to zero for irreversible reactions. 
The exact in vivo limits are usually not known, but it is biologically meaningful to 
restrict the reaction rates to a high value (for example 10,000 mmol/gDW/h) that 
act as additional constraints in the modeling. These high values are also known as 
explicitly encoded infinity constraints, i.e., bounds on reactions represented by a 
large number.

0 10000

10000 10000

≤ ≤
− ≤ ≤

v

v .

To further constrain an underdetermined system that does not yield a unique flux 
distribution, it may be possible to use experimentally measured exchange fluxes as 
fixed values or a proper range of values.

The static nature of FBA makes the model structure for this modeling frame-
work significantly different from others based on dynamical modeling systems of 
ordinary differential equations (ODE). Additional introductory expositions of the 
formulation of FBA can be found in the recent three chapters [10, 42, 43].

11.3.3 � Comparison of FBA and 13C-Based Metabolic Flux 
Analysis (13C-MFA)

13C-MFA is another fluxomics tool for experimental determination of reaction flux-
es in an organism. During the measurement, a 13C isotopic labelled carbon source 
is used to culture microbes and then intracellular fluxes can be quantitatively de-
termined by tracing the transition path of the labelled atoms between metabolites 
in a biochemical network. Both FBA and 13C-MFA require the use of a metabolic 
network and the assumption of a steady state for internal metabolites disregarding 
dynamic intracellular behavior. However, FBA characterizes the “optimal” metabo-
lism for the desired functional metabolic output (phenotype) and can be imple-
mented on GEM, whereas 13C-MFA profiles in vivo metabolic flux distribution in 
a metabolic network and current technique only allows it to work on a small-sized 
central metabolic network [44]. Nevertheless, as the 13C-MFA approach determines 
enzymatic rates at a specific growth condition experimentally, its resultant flux 
values are more precise than the prediction results of FBA. The metabolic fluxes 
experimentally measured by 13C-MFA can be complementary to the metabolism 
predicted by FBA for identifying competitive pathways or toxic by-products, and 

11  The Problem of Futile Cycles in Metabolic Flux Modeling



240

thus helps reducing gene targets underlying the enzymatic hurdle for improving 
desired product yield [45].

11.3.4 � Variants of FBA

FBA has been considered as a general guideline and a viable first step for metabolic 
engineering of microorganisms for improving biosynthetic yield [46]. Nonetheless, 
the in silico prediction results of FBA could be different from in vivo observation. 
In an attempt to resolve this inconsistency, a number of optimization algorithms 
and computational strategies have been proposed to constrain the solution space of 
FBA, i.e., energy balance analysis in conjunction with FBA can take into account 
the thermodynamic principle to improve theoretical prediction [46, 47]. However, 
energy balance analysis can only be conducted on small-sized network and requires 
biochemical thermodynamics parameters of all reactions. On the other hand, to bet-
ter describe metabolic behaviors divergent from optimal prediction, FBA can be 
performed under a bi-level optimization framework to estimate the potential trade-
off between the maximizations of biomass production rate and the other desired 
product yield [48]. FBA can also use other objective functions such as minimization 
of metabolic adjustment (MOMA) and regulatory on/off minimization (ROOM). 
MOMA has been successfully used to engineer strains with increased production of 
many products such as lycopene [49, 50], valine [51], threonine [52], and polylactic 
acid [53]. Besides, transcriptional regulation is incorporated into several other vari-
ants of FBAs, such as regulatory FBA (rFBA) [54], steady-state rFBA (SR-FBA) 
[55], and probabilistic regulation of metabolism (PROM). These variant approaches 
center on predicting the immediate behavior of knockout strains, which is different 
from ordinary FBA that is used to predict cellular behaviors after strains have un-
dergone adaptive evolution [30].

Furthermore, FBA can also be combined with metabolic pathway analysis, such 
as EM and ExPA, which can characterize all metabolic routes in a metabolic net-
work without a prior knowledge of reaction rates. The computation of EMs and Ex-
PAs are restricted to metabolic networks of moderate size and connectivity, because 
the number of modes and the computation time rise exponentially with increasing 
network complexity [56]. For example, 71 million elementary flux modes (EFMs) 
were found in a medium size metabolic network of Saccharomyces cerevisiae (230 
reactions and 218 metabolites) [57]. Computation of EMs for a central metabolism 
network of E. coli (106 reactions and 89 metabolites) results in about 26 millions 
[56]. According to our empirical observation, computation of EMs for the metabolic 
network of Geobacter sulfurreducens (709 reactions; performed with CellNetAna-
lyzer 9.9 on a i7 four cores CPU, 8 GB memory and solid state disk home computer) 
could not terminate after several days. The large number of EMs is biologically 
meaningless and could only be interpreted for the fact that the network contains a 
large quantity of parallel (redundant) pathways.
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11.4 � Exploration of AOS and Futile Loops

The identified solutions by FBA are generally not unique and an infinite number 
of different flux vectors may exist, producing an identical optimal objective value. 
In the context of metabolic models, these flux vectors are called AOS or equiva-
lent phenotypic states [58–61], and constitute an optimal solution space. Previous 
methods for the determination of AOS include: (a) vertex enumeration [60] such as 
EMs or ExPAs, and (b) flux variability analysis (FVA) [62]. As mentioned before, 
the drawback of the computation of EMs and ExPAs is that these two methods are 
usually not suitable for network models beyond a medium size (up to 100 reac-
tions). To explore the whole optimal solution space of the genome-scale network, it 
is required to use FVA, which can calculate the feasible range of flux values for each 
reaction [59]. FVA is an extension of FBA that calculates a full range of possible 
numerical values for each reaction flux in a network while achieving a particular 
objective function value. This can help clarify the entire range of achievable cellular 
functions and examine the redundancy in a metabolic network. However, ordinary 
FVA results usually contain large futile values due to the presence of loops in the 
network.

11.4.1 � Linear Programming Formulation of FVA

The FVA method tests for the range (min, max) of certain fluxes that fit the optimal 
solution. FVA can be formulated as:

minimize or maximize for all :

subject to

o

v i n

Sv

Z c v Z
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=

= =

1

0

, ,
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Here Z is a known optimal value for the biological objective; S is an m × q stoi-
chiometric matrix which consists of m rows (i.e., metabolites) and q columns (i.e., 
reactions with the respective stoichiometric coefficients for the participating me-
tabolites); v is the flux of each reaction in the model. FVA shares the same central 
assumption with FBA, i.e., the system is in steady state which means the concentra-
tions of internal metabolites are constant. FVA results address the variability of v 
and thus can capture the effect of perturbations to the metabolic reactions in terms 
of the changes in flux output range.

Specifically, FVA calculates for each reaction i, the minimal possible flux and 
the maximal possible flux that reaction i can carry in any flux distribution that is 
consistent with the constraints, including the optimal Z value as a constraint. In 
other words, the information obtained from FVA is the physiologically feasible flux 
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range for the unknown reactions. Moreover, if the computed minimal and maximal 
rate of a reaction coincide, vi,min = vi,max, the reaction rate follows to be uniquely 
determined.

In contrast to FBA, FVA as described above does not make any assumption about 
biological objectives [10]. The objective function Zoptimal is only used as a tool to de-
fine a desired metabolic state (such as a redox perturbed state) for FVA to compute 
the feasible flux ranges. The relationship between FBA and FVA is illustrated in 
Fig. 11.2. This figure visualizes a three-dimensional flux space, and shows that the 
FBA solution space is a projection on the plane represented by a fixed (maximal) 
objective value. In the illustrated case it is a polygon, and the vertices are extreme 
points that satisfy the FBA constraints represented by the finite convex cone. Any 
point inside the polygon, is a flux combination that is both feasible and gives the 
same objective value, and can be mathematically constructed by a suitable combi-
nation of the edge vectors of the polygon. Hence, knowledge of all vertices would 
be enough to fully specify the FBA optimal solution space. Note that an FBA cal-
culation only gives a single vertex; and since all vertices have the same objective 
value, it is essentially random which one. Minor changes to constraints, a different 
linear optimizer or even the ordering of variables can produce a different vertex. 
Hence, it is virtually impossible to get full specification of the optimality space 
from FBA especially for large networks.

In a FVA calculation, one flux at a time is allowed to vary while all others are 
kept fixed. For example, Fig. 11.2b shows the case where the feasible range of flux 
v1 is explored while v2 and v3 are kept fixed. This corresponds to the determination 
of two flat parallel planes, perpendicular to the v1 axis that touches the polygon at 
opposite vertices.

Repeating this for all fluxes, the result is a cubical bounding box containing 
the optimality polygon. So FVA yields only an approximation to the optimality 
space, as the intersection of the optimality plane and the bounding box; the actual 
polygon is contained within this, but it could also contain points that are outside the 
polygon and hence infeasible. Nevertheless, this approximate description is a major 
improvement on simple FBA and may suffice for practical use.

The situation illustrated by Fig. 11.2, where the optimality space is a finite poly-
gon, is simpler than most real network models where the convex cone and hence the 
optimality subspace is unbounded in some directions. This is more fully discussed 
in Sect. 4.5 below but a similar comparison between FBA and FVA solutions can be 
developed in that case.

11.4.2 � Futile Loops

In constraint-based modeling, the constraints mainly used are mass balance and me-
tabolite uptake rates. The thermodynamic limitations associated with the reactions 
are difficult to implement and thus commonly overlooked. Without thermodynamic 
constraints, nonphysical fluxes can be computed for some metabolic reactions if 
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they form an internal cycle (Fig. 11.3). Such a cycle of reactions violate a “loop 
law” that is analogous to Kirchhoff’s second law for electrical circuits, as discussed 
previously by Beard et al [63].

Futile cycles that consume biochemical energy are not necessarily “futile” [64]. 
Although the exact metabolic function of futile cycles has not been fully eluci-
dated, their activities have been suggested as mechanisms of biochemical regulation 
[64–66]. The amount of energy expended by (or the change of the flux through) a 
futile cycle determines the magnitude of changes in the effective equilibrium con-
stants for biochemical reactions and the sensitivity and robustness of intermediate 
concentrations [64]. Also, the cellular ATP/ADP ratio could be dependent on the 
specific growth rate and environmental conditions [67]. For example, futile cycle 
activity in Geobacter metallireducens might be associated with the regulation of the 
substrate utilization for gluconeogenesis and the oxidative tricarboxylic acid cycle 
(TCA) cycle [68].

In practical FBA calculations, the presence of a futile loop is often signaled by 
implausibly high flux values for some reactions. It is a common practice to set an 
artificial upper limit (for example 10,000) on all fluxes, simply to avoid numerical 
problems in the optimization algorithm. These large values are sometimes referred 
to as explicitly encoded infinity constraints. Fluxes of loop reactions are often ob-
served to reach values of this magnitude, but simple strategies such as blocking 
these reactions by constraining their fluxes to zero only work in the simplest cases 
as discussed further in Sect. 4.3 below.

One reason for this is that individual loop reactions may simultaneously also 
participate in non-futile fluxes carried by productive pathways. In this case, flux 
values along the loop may all be high, but with different values, because the ob-
served fluxes result from superimposition of productive and futile fluxes. This has 
to be disentangled without affecting productive fluxes. This problem is particularly 

Futile portion of the �ux
that does not contribute to

the objective

The actual �ux that
contributes to the objective

V2 Loop
A C

B

V4

V3

V1 V5

Fig. 11.3   An example set of reactions that form a loop cycling three metabolites internally ( capi-
tal letters represent hypothetical metabolites, FBA and FVA can particularly not resolve reversible, 
circular, and parallel reactions)
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common when loops involve a currency metabolite such as nicotinamide adenine 
dinucleotide (NADH).

Another reason is that as loop fluxes do not contribute to the objective value, 
it is conceivable that some such fluxes may have another value, even zero, in the 
particular flux distribution that is selected from the solution space by the optimiza-
tion algorithm.

Elaborate strategies proposed to remove these thermodynamically infeasible fu-
tile cycles include known flux directionality [69], energy-balance equations [63], 
known [70–75] or predicted [76] thermodynamic parameters, and nonlinear con-
straints to eliminate flux distributions that utilize reactions which cannot be thermo-
dynamically feasible under physiological conditions [77]. But these thermodynamic 
constraints are difficult to obtain and nonlinear constraints can make application to 
large-scale systems computationally challenging [71]. Therefore, the listed methods 
above cannot be applied on genome scale systems [71].

In addition, another algorithm called loopless-COBRA was recently proposed 
to eliminate loops [78]. This method imposes the second law of thermodynam-
ics by using a mixed-integer linear programming (MILP) approach to constrain 
flux solutions so that they obey the loop law and does not require additional data 
such as metabolite concentrations or thermodynamic parameters. This method was 
mathematically proved not to over-constrain the problem beyond the elimination 
of the loops themselves [79]. However, such a method was unable to be conducted 
with the commonly used solver GNU Linear Programming Kit (GLPK) and neces-
sitates a commercial solver (TOMLAB/CPLEX package (Tomlab Research, Pull-
man, WA)). In addition, the algorithm is computationally intensive and its running 
time is significantly increased with the network size.

Another previous study indirectly constrains the futile loops by coupling reac-
tion flux to enzyme synthesis costs, but this approach necessitates comprehensive 
knowledge about the transcriptional and translational machinery [61].

Alternatively, loops can be removed by minimizing network flux [38, 70, 80, 
81]. The application of flux minimization can produce a most likely stationary flux 
distribution. The notion behind this method is that the flux through any reaction of 
a metabolic network requires some “effort” and a metabolic network is inclined to 
fulfill the same biological objective, such as growth with minimum metabolic effort 
[70]. A drawback of this approach is that the use of the minimum sum of all fluxes 
in the network as an auxiliary criterion in FBA by previous methods, can forestall 
variability within optimal flux distribution.

We present a simple method that resolves the accidently activated futile values in 
the FBA results below. The simple method can remove the futile cycle without impact-
ing simulations of the cellular phenotype such as biomass growth, but in some situa-
tions will unintentionally eliminate alternative optimal solutions. On the other hand, 
for concurrently determining AOS and efficiently eliminating the flux loop without 
side effects, we also devised another method termed FVA with target flux minimiza-
tion (FATMIN) that combines the functions of FVA and FBA to determine AOS and 
eliminates flux loops in large metabolic networks. Importantly, FATMIN requires the 
least amount of information to quantify the fluxes and analyze the metabolic system.
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11.4.3 � A Simple Method to Remove Futile Reactions 
Encountered in FBA Modeling

An example of a network fragment that contains a superposition of productive flux-
es and a futile loop is shown in Fig. 11.4.

A simple method to remove those loops without affecting productive fluxes, is 
to constrain the flux with the smallest absolute value to zero in order to break the 
loop. This still allows other fluxes in the loop to attain the values they contribute to 
productive (non-loop) pathways.
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In the toy network of Fig. 11.4, fluxes towards the nodes I, J, and K are consid-
ered to be constrained while the yield of product H is to be maximized. In the opti-
mal solution, all flux contributions necessary to supply the constraints and yield are 
taken as productive. However, the solution illustrated in Fig. 11.4b in addition con-
tains a circulating flux. Because it is the sum of circulating and productive fluxes 
for a reaction that is limited by the explicitly encoded infinite capacity constraints 
as shown in Fig. 11.4a, it seems plausible to expect the smallest absolute flux value 
to be in the link along the loop that carries only the circular flux component. Con-
straining this flux ( v11) to zero, indeed produces a feasible steady state flux distribu-
tion ( v1,v2,…v11) = (40, 40, 40, 10, 30, 10, 20, 10, 10, 10, 0) without loops as shown 
in Fig. 11.4c.

However, this is not the only compatible distribution; for example, the flux vec-
tors (40, 30, 30, 10, 20, 10, 10, 10, 0, 10, − 10) and (40, 0, 0, 10, − 10, 10, − 20, 10, 
− 30, 10, − 40) satisfy the same conditions as would suitably normalized combina-
tions of these vectors. These alternative distributions only occur because by as-
sumption, all loop reactions in the toy network are reversible. In real networks, that 
is often not the case and so the simple method is adequate to eliminate futile loops. 
Even if this does not apply, depending on the purpose of the modeling it may only 
be required to produce one distribution free of futile loops, regardless of whether 
others also exist.

The simple method also has the drawback that it may overlook some hidden 
futile cycles, as sometimes those futile cycle reactions could have flux rates in a 
particular FBA solution within a reasonable range (for example, the absolute flux 
value is less than 100 mmol/gDW/h) and appears to be “normal.” For these reasons, 
we have developed a more elaborate method to deal with futile loops as described 
in the next subsection.

11.4.4 � The FATMIN Algorithm

The basis of FATMIN is FVA, which is used to probe the feasible flux ranges of 
desired reactions, such as reactions that involve NADH. FATMIN constrains the 
pointlessly high flux values of the loop reactions to biologically meaningful values. 
It is intended to deal with such loops involving one or more target metabolites that 
are of specific interest.

All reactions that produce (not consume) the target metabolite, and for which the 
FVA range extends higher than a threshold value (that is chosen to be higher than 
any realistic flux value) are identified as target reactions. Note that, because FVA 
probes the full range of fluxes compatible with the constraints, the problem of hid-
den cycles that can occur in a single FBA solution is eliminated.

To identify which portion of the high value is compulsory to achieve the value of 
the FBA objective function, we add an artificial metabolite to each target reaction, 
and add another reaction (for example, reaction ID: FluxMin) that only comprises 
the artificial metabolite. FluxMin acts as a drain reaction for the artificial metabo-
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lite, and its flux is the sum of all production fluxes. Minimizing this flux while 
maintaining the objective value, in effect eliminates futile fluxes.

The idea is demonstrated in Fig. 11.5a. Metabolite C is taken as the target metab-
olite that this simple network produces. The network contains two alternative routes 
(1 and 2) for producing C and two cycles (5 and 6). All reactions are irreversible, 
so with paths through the network chosen as indicated, all flux values are nonnega-
tive. A new metabolite labelled “F” is added to both reactions that produce C, as 
well as the associated drain reaction, to give the augmented network in Fig. 11.5b. 
Balancing fluxes at all nodes of the augmented network shows that although the net 
production of C (made up of the contributions v1 and v2) is independent of the futile 
fluxes, the flux of the added reaction FluxMin is v1 + v2 + v5 + v6. Since the value of 
v1 + v2 remains fixed for a chosen objective value and negative values for v5 and v6 
are not allowed, minimization of FluxMin reduces both of the cyclic fluxes to zero. 
The resulting minimal value is subsequently used as a constraint on FluxMin in a 
repeated FVA calculation for the augmented network.

Although the explanation above referred to fluxes along individual pathways—
in effect, EMs—the strength of the FATMIN method is that these do not in fact 
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Fig. 11.5   A schematic diagram to illustrate elimination of the futile cycle in an imaginary network 
by FATMIN ((a) flux distribution at steady state without employment of FATMIN, (b) minimiza-
tion in FATMIN to identify another constraint that can remove the futile values associated with 
cycles 5 and 6, the inset shows alternate path S through the network, with numbers used as flux 
indices in the main figure, path 3 and 4 carry no flux with reaction directions as shown, but are 
examples of paths that become active if reactions are made reversible) [82]
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have to be identified to apply the method. Simply adding FluxMin to the network 
and minimizing its flux ensures that the cyclic components implicitly contained in 
it are eliminated.

This result relies on the fact that negative flux values are excluded. Realistic 
networks containing reversible reactions are usually handled in FBA by allowing 
positive and negative flux values. To maintain the exclusion of negative fluxes, in 
the FATMIN minimization step reversible reactions involving the target metabo-
lite are conceptually split into two counter directional reactions, and the artificial 
metabolite only entered into the branch that produces the target metabolite. This is 
illustrated in Fig. 11.6.

In practice, because the other (consuming) branch does not contribute to Flux-
Min, it can be omitted. So the procedure followed is that where the FVA range of a 
target reaction exceeds the threshold on both negative and positive fluxes, the nega-
tive lower limit constraint is replaced by zero for finding the minimal FluxMin flux 
value. We stress that for the subsequent FluxMin-constrained FVA calculations the 
lower limit is restored to its original value.

Another point illustrated by the example is that the FATMIN strategy does 
not restrict the optimal solution space; for example all v1 and v2 value pairs allowed 
by the original objective value remain viable in the augmented network. Finally, 
we remark that the strategy described here is easily extended for multiple target 
metabolites by simply introducing a unique artificial metabolite and drain reaction 
for each.

Overall, FATMIN can be summarized as a modeling sequence FBA + FVA + FBA 
+ FVA, which is implemented as a computational pipeline consisting of the following 
steps, where we take NADH as the target metabolite:

Flux producing the arti�cial metabolite

A

B

D

C

F

V5 V5

V3 V3

V6

V1

V1+V2+V3

V4 V4

V2 V2

Flux contributing to the objective

FluxMin

Fig. 11.6   Illustration of all possible flux paths in the imaginary network with reversible loop 
reactions
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1.	 Perform FBA to calculate the optimal objective Zoptimum. Then set the obtained 
optimal Zoptimum as the constraint and perform FVA to calculate a feasible flux 
range for each reaction.

2.	 Extract NADH reactions and calculate the feasible range of NADH flux values 
associated with each reaction by multiplying its reaction rate with the NADH 
stoichiometry coefficient.

3.	 Any reaction with an absolute value of the NADH flux boundaries higher than a 
threshold T (here, we chose T = 100 mmol/gDW/h) is identified as a target reac-
tion. If the target reaction is reversible and the upper limit is higher than T, we 
decompose the target reaction into two reactions in forward and backward direc-
tion, respectively.

4.	 Extend the network by adding an artificial metabolite F as a product to each 
target reaction, and an F drain reaction FluxMin to the network model.

5.	 Use the FBA optimum ( Zoptimum) as the constraint and minimize the flux of reac-
tion FluxMin.

6.	 Perform FVA on the augmented network while using the minimal flux value 
obtained at step 5 as constraint for the flux of FluxMin.

7.	 Recalculate the numerical range of NADH flux values using the method in 
step 2.

This method shares some ideas (further detailed in the next subsection) with [57], in 
which the solution space is described in terms of three key characteristics: lineali-
ties which are the reversible (bidirectional) infinite reactions, rays which are the 
irreversible infinite reactions, and vertices which are the corner points of the shape 
formed by interception of the polyhedral cone representing the convex constraint 
space with the objective plane. However, there could be millions of vertices, from 
which one cannot identify biological significance. Therefore, FATMIN intends to 
remove only the rays and linealities, which matched irreversible and reversible 
cycles. The rays and linealities are independent of the growth medium [57]. Since 
FATMIN is based on FVA, the method inherits the function of FVA in elucidating 
the phenomena of equivalent optima in the network. Nonetheless, unlike the results 
of FVA that could contain infeasible, futile values, the result of FATMIN are the 
feasible flux ranges for the reactions.

The drawback of FVA is that this tool only produces the outline of a rectangular 
cuboid or “box” encompassing the polygon of the solutions, but cannot illustrate 
the real shape of the polygon, which indicates that FVA results cannot reflect the 
relationships between different reaction fluxes, for example, how the increase in the 
fluxes of some reactions influence the fluxes of the other reactions.

11.4.5 � Mathematical Explanation for the Optimal Solution Space 
of FBA

There are two ways to describe the set of optimal solutions of a FBA problem. In the 
first description, corresponding to the LP formulation discussed in Sect. 3.3, optimal 
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solutions arising from FBA are defined by a finite number of (a) linear inequalities, 
i.e., the constraints in the LP, and (b) equalities, i.e., the constraint that the objective 
value of the LP is equal to the optimal value. Therefore, the optimal solution space 
is a polyhedron (or polytope, when bounded, for example, when none of the fluxes 
can reach minus or plus infinity). This representation of a polyhedron is called the 
“outer description” and can be mathematically formulated as follows:

P x R Ax A Rn m n= ∈ ={ } ∈ ×0 .

The other description of the polyhedron is termed “inner description” or “parametric 
representation,” which involves use of Minkowsky sum to decompose polyhedron 
into three sets: a linear combination of so-called lines (columns of matrix L), and a 
positive combination of extremal rays, which form a cone (columns of matrix R), 
and a convex combination of vertices (columns of matrix V). Thus, the Minkowski 
characterization of any optimal flux vector can be formulated as follows:

              P = {x│x = Lλ + Rµ + V υ, µ, υ ≥ 0,  ∑υ = 1},� (11.3)

where λ, µ, and u denote lineality, ray, and vertex.
Linealities and rays correspond to reversible and irreversible cycles in the net-

work, respectively [83]. In linear algebraic terms, for any flux v in this lineality 
space and any optimal flux v′, the flux v vµ+′  is also optimal for every value of µ. 
And for any flux v in the cone of rays and any optimal flux v , the flux v′ + u v is also 
optimal for every value of u > 0. The rays and the linealities do not belong to the 
optimal solution space themselves and thus they do not contribute to optimization 
of the metabolic objective. In fact, the rays and linealites only carry the information 
about the directions in which the solution space is unbounded. Conversely, vertices 
are feasible and optimal flux vectors and they correspond to corner points (a suit-
ably chosen projection) of the polyhedron describing the solution space. Therefore, 
any optimal flux vector can then be written as a linear combination of the linealities 
plus a positive linear combination of the rays of the cone plus a convex combination 
of the vertices of the polytope, as shown in formula (11.3) [83]. This Minkovski 
description indicates that it is the µ v of linealities v′ + µ v and the u v of rays v′ + u v 
which are removed by the minimization of the flux through the FluxMin reaction in 
the FATMIN algorithm.

Compared with the elimination of the linealities and rays, identification of all 
the vertices in a network is much more difficult, because such a task is highly chal-
lenging from the point of computation. The vertices are reaction paths through the 
network that give rise to the maximization of an objective and the total number 
can in general be much larger than the number of reactions in the system. For ex-
ample, the FBA of growth of E. coli (model version iJR904) on glucose in a min-
eral medium indicated that only 59 reactions out of 1,066 reactions in the model 
are variable, but it gave rise to 17,280 vertex solutions [83]. Thus, this suggests 
the enumeration of vertices in a GEM would not help elucidation of the metabolic 
behavior of the microorganism from a biological perspective. For characterization 
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of the phenotypes of microorganisms, an algorithm that aims at removing the lin-
ealities and rays present in the solution space, such as FATMIN, would be far more 
efficient.

11.5 � Summary

The metabolic capabilities and behavior of an organism can be elucidated by devel-
opment of flux models of genome scale (GEM’s) with FBA. FBA characterizes the 
solution space by identifying one single optimal solution for the flux distribution 
of a network. On the other hand, the existence of AOS, i.e., multiple equally valid 
optima that spans the whole optimal solution space, can be explored by an extension 
of FBA termed as FVA. This technique can help clarify the entire range of achiev-
able cellular functions and examine the redundancy in a GEM.

The primary challenge in the use of FBA and FVA is that many biological net-
works are underdetermined systems and it is thus difficult to shrink the solution 
space by the use of stoichiometric constraints alone. The straightforward idea to 
reduce the number of the futile cycles in FBA results is to fix reaction directions 
by incorporating energy constraints. However, in most cases, the required kinetic 
and thermodynamic knowledge of the biochemical reactions are not easy to obtain. 
And there is a challenge for computation of a genome-scale energy balance model. 
Therefore, it is desired to develop methods based on available stoichiometry to ef-
ficiently eliminate futile loops. Such a method can greatly increase the predictive 
power of a genome-scale model.

In this chapter, for elimination of futile cycles in the FBA results, we introduce 
a simple notion to cut off the circulating flux layer while obtaining the same objec-
tive value. To comprehensively elucidate the AOS without the interference of futile 
values, we present FATMIN, a combined pipeline approach based on FBA and FVA.

FATMIN circumvents the need to fully characterize the optimal solution space 
of genome-scale stoichiometric models (a polyhedron) corresponding to FBA to 
remove futile cycles and captures the alternate optimal solutions at genome-scale in 
the form of flux ranges. Because vertices generally appear in large numbers that are 
quite meaningless to experimental biologists, this approach does not intend to iden-
tify all vertices that represent combinations of reaction paths through the network 
that maximize an objective.

Instead, the outcome of the approach is a list of reactions (enzymes) that produce 
some target metabolite at high rate. This information would enable experimental 
biologists to get essential information about candidate pathways for bioengineer-
ing, and about biological burdens that restrain high production rates of the target 
metabolite.

The field of using metabolic flux models to study cellular phenotypes is growing 
fast, with development of new constraint-based techniques and reconstructions of 
the GEMs for a wide range of organisms. Therefore, one challenge for the future 
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is to find different manipulation techniques of these models for engineering new 
strains of cells and organisms beneficial to human beings.
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12.1 � Introduction

A mathematical model in continuum approach comprises of one or more ordinary 
and/or partial differential equations. The solutions of such differential equations 
may be obtained through analytical, numerical, and statistical approaches. Each one 
of these has its own importance. The prime objective in this chapter is to focus on 
analytical and numerical approaches to solve a solute transport problem in geologi-
cal formations in general, and confined aquifer in particular. The geological for-
mations have characteristics such as porosity, permeability, hydraulic conductivity. 
The solute transport involves mechanisms such as advection, dispersion, adsorption, 
etc. The solute transport problem is dealt with initial and boundary conditions. The 
aquifers may be clean or may not be so before the source of the pollution is intro-
duced in the domain. The initial condition, normally defined at time t = 0, describes 
this feature. The boundary conditions describe the nature of the source of pollution 
and its interaction with the flow system and the surrounding. So the concentration 
is prescribed for all the points of the boundary for the entire period of investigation. 
There are three types of boundary conditions that occur in the literature: (i) Dirichlet 
type or the first type in which the solution is prescribed at a position, (ii) Neumann 
type or the second or flux type in which the derivative of the solution is prescribed, 
and (iii) the mixed or third type, which is a linear combination of the first- and 
second-type conditions. The condition may be homogeneous or inhomogeneous.

A geological formation is contaminated by means of various point or surface 
sources such as domestic, industrial, environmental, and agricultural, etc. On-site 
septic systems, spills of industrial chemicals, underground injection wells (indus-
trial waste), etc. are the examples of point sources. Examples of nonpoint source 
contamination are agricultural fields with excessive dosages of fertilizers and pesti-
cides, distribution of waste drugs on the earth surface, etc. [1–4].

S.K. Basu, Naveen Kumar (eds.), Modelling and Simulation of Diffusive Processes, 
Simulation Foundations, Methods and Applications, DOI 10.1007/978-3-319-05657-9_12, 
© Springer International Publishing Switzerland 2014
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A considerable interest is growing in understanding and evaluating contaminant 
transport along an aquifer to monitor the quality of the groundwater. The traditional 
advection–dispersion equation represents a standard model to predict the contami-
nant movement along the groundwater flow system, based on the Fick’s law of 
diffusion and conservation of mass [5–7]. The literature presents several methods 
to solve the advection–dispersion equation under a variety of initial and boundary 
conditions [8–13]. In the last few decades, attempts have been made to predict the 
contaminant concentration in aquifers for one-, two-, and three-dimensional cases 
[14–17].

The one-dimensional advection–dispersion equation with adsorption, zero or-
der production, and first-order decay was solved analytically, considering constant 
dispersion parameters. The solution was obtained using the Laplace transform for 
the first as well as the third-type boundary conditions [8]. Using the Fourier series 
and the method of superposition principle, analytical solutions of one-dimensional 
advection–dispersion equation in semi-infinite and infinite domains were presented 
for the cases of periodically fluctuating concentration and concentration pulse [18]. 
Considering scale-dependent dispersion coefficient and periodic type time-depen-
dent boundary condition, the analytical solution of one-dimensional advection–dis-
persion equation was obtained in the form of hyper-geometric function [19]. The 
solutions obtained in these studies were developed with a variety of integral trans-
forms. However, it may be obtained more conveniently with the help of the Green’s 
function method (GFM). Keeping these facts in mind, a multidimensional solute 
transport model for the first, the second, and the third-type boundary conditions 
using GFM was explored [20].

The time- and space-dependent nature of the dispersion coefficient in solute 
transport problems has been explored in the literature for both homogeneous and 
heterogeneous mediums. The heterogeneity arises from the assumption of a scale-
dependent dispersion coefficient. The analytical solution of one-dimensional sol-
ute transport equation with asymptotic scale-dependent dispersivity was studied 
[21], in which the dispersion coefficient was assumed to be increasing linearly 
with distance up to some distance and then reaching an asymptotic value. The an-
alytical solution of one-dimensional advection–dispersion equation was obtained 
with the help of the power series method, assuming radial distance-dependent ve-
locity and dispersion coefficient for different values of Peclet number [22]. Using 
the generalized integral transform technique (GITT), a general analytical solution 
was presented for the linear, one-dimensional advection–dispersion equation with 
a variety of distance-dependent coefficients in the form of linear, parabolic, expo-
nential, and asymptotic functions [23]. Considering linear equilibrium adsorption 
and first-order decay, the analytical solution of a one-dimensional solute transport 
equation was studied. The dispersion coefficient was taken in linear, asymptotic, 
and exponential forms. The solution was obtained with the method of superposi-
tion principle for instantaneous and continuous injection [24]. The contaminant 
concentration pattern, along uniform groundwater flow for uniform source con-
centration was discussed with the help of the Laplace integral transform technique 
(LITT) [25, 26].
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Most of the analytical solutions of the advection–dispersion equation available 
in the literature are based on simple initial and boundary conditions. However, the 
complexity of boundary condition makes the dispersion problem difficult in getting 
the analytical solution. The analytical solution of one-dimensional transient storage 
model was presented using the Laplace transform technique assuming the channel 
flow velocity and longitudinal dispersion coefficient as constants. The initial condi-
tion for both the main channel and the storage zone concentration was considered 
zero and the upstream boundary conditions for the channel and the storage zone 
were represented by the Heaviside function involving the time-dependent term [27]. 
Some of the problems dealt with by previous researchers are enlisted in Tables 12.1 
and 12.2 for different set of initial and boundary conditions in confined and uncon-
fined aquifers.

An example of one-dimensional contaminant transport model in a homogeneous, 
isotropic, semi-infinite aquifer is discussed below. The contaminant on the surface 
infiltrates, percolates downwards, and mixes with the groundwater; therefore, the 
initial concentration in the aquifer cannot be ignored. It is assumed here as an expo-
nentially decreasing function of a space-dependent term. The input boundary condi-
tion at the origin is linear pulse type and the time-dependent boundary condition is 
in the form of shifted Heaviside function. The dispersion coefficient is considered 
directly proportional to the seepage velocity [50, 51]. The study of solute transport 
modelling along unsteady groundwater flow in an aquifer was explored extensively 
[52]. The analytical solution is derived with the help of the Laplace transform tech-
nique for different types of unsteady groundwater velocity distribution taken from 
[24] and compared with that of numerical solution obtained by the finite difference 
method.

12.2 � Mathematical Models

A one-dimensional advection–dispersion equation in an isotropic, homogeneous, 
semi-infinite aquifer may be written as:

2

2 ,
c c c

D U
t xx

∂ ∂ ∂
= −

∂ ∂∂
� (12.1)

where c is the concentration of solute mass, D is the diffusion coefficient, and U is 
the Darcy velocity.

Initially, groundwater contains solutes. Some initial background concentration is 
supposed to decrease exponentially with distance. Let it be represented as:

*( , ) exp( ), 0, 0,ic x t c x x tγ= − > =� (12.2)

where 3
[ ]ic ML−  is the initial concentration and * 1[ ]Lγ −  is the decay parameter. The 

input point source concentration at the origin, where the contaminants reach the 
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groundwater level, is considered linear pulse type and the time-dependent boundary 
condition in the form of the Heaviside unit step function. The concentration gradi-
ent at the infinite extent is supposed to be zero. Thus, the two boundary conditions 
are:

[ ]0 1 2( , ) ( ) ( ) ( ) , 0, 0c x t c q qt b u t t u t t x t= + − − − = >� (12.3a)

Table 12.1   Input parameters for one-dimensional problem. [13, 28–49]
Author’s name Dispersion coefficients Seepage velocities
Savovic and Djordjev-

ich [13]
D0 0= . /71 km year2 u0 0 60= . /km year

Liu et al. [28] D0 = 0.1 cm day2 / 2 / 200 /

0.1 cmL

u cm h cm h

α
= −

=
Serrano, S. E.[29] D m= 1 2 / month u = 1m month/

Shukla, V. P. [30] D = 13 93. /m s2 u =
=

25 6

0 296

. /

. /

km day

m s
Didierjean et al. [31] D

D

x

x

1
6

2
7

4 63 10

1 16 10

= ×

= ×

−

−

. /

. /

m s

m s

2

2

vD = × −5 2 10 6. /m s

Kumar et al. [32] D0 1 0= . / hm day2
u0 0 01= . /hm day

Karahan, H. [33] D = 0 005. /m s2 u = 0 8. /m s
Smedt, F. D. [34] D = 5m s2 / v = 1m s/
Kumar et al. [35] D = × −5 5 10 2. /cm h2 u = 0 9. / cm h

Yeh and Yeh [36] D = 1m day2 / u = 1m day/

Srinivasan and 
Clement [37, 38]

Dx = 0 1

10

. /

/

8 cm h for Dirichlet

 m year for Cauchy

2

2

v = 1

100

 cm h for Dirichlet

 m year for Cauchy

/

/
Guerrero et al. [39] Dx = 1 cm h2 / u = 1cm h and 10 cm h/ /
Jaiswal et al. [40] D0 0 14= . /km year2 u0 0 25= . /km year
Yudianto and 

Yuebo [41]
Dx = 1 33. /m s2 ux = 1 26. /m s

Kumar et al. [42] D0 1 29= . /m day2 u0 1 05= . / m day

Wang et al. [43] DL = 0 4. /m day2 v = 0 25. /m day
Ahsan, M. [44] D = 50m s,100 m s2 2/ / u = 1 m s/
Guerrero et al. [45] D

D
m

m

=
=

20 50

7 18

, /

, /

cm day, two layer

 cm day, five layer

2

2

u

u
m

m

=
=

40 25

10 8

, /

, /

cm day, two layer

cm day, five layer

Su et al. [46] 2
1

2

1

0.0952 m / h

0.001m / h for 0, 1

0.00481

0.046for 2, 1

D

m

D

m

λ

λ

=

= =
=

= = −

v = 1 4

0 14

. /

. /

 m h

 m h

Liang et al. [47] D

D
xx

yy

=
=

1 02

0 094

. /

. /

m s

m s

2

2
U V= = 1 2/ /m s

Kong et al. [48] 2 21 m / s, 0.1 m / sL TK K= =   u v= = 0 5. /m s
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Author’s name Dimen-
sion

Nature Initial 
conditions

Boundary 
conditions

Method used

Savovic and 
Djordjevich 
[13]

One Inhomogeneous, 
semi-infinite

Zero Uniform Explicit finitedif-
ference method

Liu et al. [28] One Homogeneous, 
isotropic

Space 
dependent

Mixed type Generalized inte-
gral transform 
technique

Serrano, S.E. 
[29]

One Homogeneous Uniform with 
Dirac delta 
function

First type Method of 
decomposition

Shukla V. P. 
[30]

One Homogeneous Exponential 
decreas-
ing space 
dependent

First type, 
time-depen-
dent sine 
and cosine 
form

Fourier transform 
technique

Didierjean 
et al. [31]

One Heterogeneous Zero First type Quadrupole 
method

Kumar et al. 
[32]

One Inhomogeneous, 
finite and 
semi-infinite

Space 
dependent

Uniform pulse 
type

Explicit finite-
difference 
method

Karahan H. 
[33]

One Homogeneous, 
finite

Space 
dependent

First type, time 
dependent

Implicit finite-
difference 
method

Smedt F. D. 
[34]

One Homogeneous, 
infinite

Uniform pulse 
type

Zero Laplace transform 
technique

Kumar et al. 
[35]

One Homogeneous, 
finite

Uniform Dirichlet and 
Neumann

Element-free 
Galerkin 
method

Yeh and Yeh 
[36]

One Homogeneous, 
isotropic, 
semi-infinite

Zero First and third 
type with 
fixed con-
centration

Laplace transform 
technique

Srinivasan and 
Clement 
[37, 38]

One Homogeneous, 
semi-infinite

Space depen-
dent 
exponentially 
distributed

Dirichlet and 
Cauchy type

Laplace and 
linear 
tansformation

Guerrero et al. 
[39]

One Homogeneous Zero and 
uniform

First and third 
type

Generalized inte-
gral transform 
technique

Jaiswal et al. 
[40]

One Homogeneous, 
isotropic, 
semi-infinite

Space depen-
dent 
exponentially 
decreasing

Uniform and 
varying 
pulse type

Laplace transform 
technique

Yudianto and 
Yuebo [41]

One Homogeneous, 
finite

Uniform Dirichlet and 
Neumann 
type

Finite difference, 
shooting and 
collocation 
method

Kumar et al. 
[42]

One Homogeneous, 
semi-infinite

Uniform Uniform and 
varying 
pulse type

Laplace transform 
technique

Table 12.2   Set of geological formations with initial and boundary conditions. [13, 28–45, 49]
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0, , 0,
c

x t
x

∂
= → ∞ >

∂
� (12.3b)

where c ML0
3[ ]−  is the solute concentration. q T[ ]−1  is decay rate coefficient, b is 

the constant parameter of linear pulse boundary condition at x = 0,  the source is 
present during t t t1 2≤ ≤ ,  and u t ti( )−  is the shifted Heaviside function, defined as:

0,
( ) .

1,
i

i
i

t t
u t t

t t

<
− =  ≥� (12.4)

0 ( ),Let U U f mt=� (12.5)

where U LT0
1[ ]−  is initial seepage velocity. Here, f mt( )  is the time varying ex-

pression in which m T[ ]−1  is the flow resistance coefficient. For many types of 
porous media, the dispersion coefficient often varies with the seepage velocity [50]. 
So we assume:

0 0, ( ) ( ),D U D aU D aU f mt D D f mt∝ = ⇒ = ⇒ =� (12.6)

where a L[ ]  is the dispersivity and D aU0 0=  is the initial dispersion coefficient. 
Using Eqs. 12.5 and 12.6 in Eq. 12.1, we get:

2

0 02

1
.

( )

c c c
D U

f mt t xx

∂ ∂ ∂
= −

∂ ∂∂� (12.7)

We introduce a new time variable T *  [53] as:

*

0

( ) .
t

T f mt dt= ∫� (12.8)

Author’s name Dimen-
sion

Nature Initial 
conditions

Boundary 
conditions

Method used

Wang et al. 
[43]

One Homogeneous, 
semi-infinite

Non-zero First and third 
type

Stepwise 
superposition 
approximation 
approach

Ahsan, M. [44] One Homogeneous, 
finite

Space depen-
dent function

Uniform Laplace transform 
finite analyti-
cal method

Guerrero et al. 
[45]

One Homogeneous, 
multilayered

Arbitrary 
function

Uniform 
mixed type

Classic integral 
transform 
technique

Pang and Hunt 
[49]

One Homogeneous Zero First type Superposition 
principle

Table 12.2  (continued)
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Equation  12.7, with the initial and boundary conditions given in Eqs.  12.2 and 
12.3a, b, may be written as:

2

0 0* 2

c c c
D U

xT x

∂ ∂ ∂
= −

∂∂ ∂
� (12.9)

* * *( , ) exp ( ), 0, 0ic x T c x x Tγ= − > =� (12.10)

� (12.11a)

*0, , 0.
c

x T
x

∂
= → ∞ >

∂
� (12.11b)

To reduce the number of parameters from the above problem, a set of nondimen-
sional variables are introduced as follows:

2 *
*0 0 0 0

2
0 0 0 0 0

2 2
* *0 0

1 1 2 2
0 0

, , , , ,

, .

xU U D qDc
C X T T Q

c D D U U

U U
T T T T

D D

γγ= = = = =

= =� (12.12)

Using Eq. 12.12, Eqs. 12.9 through 12.11a, b reduce to:

2

2

C C C

T XX

∂ ∂ ∂
= −

∂ ∂∂�
(12.13)

0

( , ) exp( ), 0, 0ic
C X T X X T

c
γ= − > =� (12.14)

[ ]1 2( , ) ( ) ( ) ( ) , 0, 0C X T Q QT b u T T u T T X T= + − − − = >� (12.15a)

0, , 0.
C

X T
X

∂
= → ∞ >

∂� (12.15b)

* * * * * * *
0 1 2( , ) ( ) ( ) ( ) , 0, 0c x T c q qT b u T T u T T x T = + − − − = > 
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12.2.1 � Analytical Solution

To find the analytical solution of the problem, the convective term is reduced from 
Eq. 12.13, using the following transformation:

( , ) ( , ) exp .
2 4

X T
C X T K X T

 = −  
� (12.16)

Equations 12.13 through 12.15a, b become:

2

2

K K

T X

∂ ∂
=

∂ ∂
� (12.17)

0

1
( , ) exp , 0, 0

2
ic

K X T X X T
c

γ = − − > =  
� (12.18)

[ ]1 2( , ) ( ) ( ) ( ) exp ,
4

0, 0

T
K X T Q QT b u T T u T T

X T

 = + − − −   
= >� (12.19a)

and 0 , 0.
2

K K
at X T

X

∂
+ = → ∞ >

∂
� (12.19b)

Applying LITT to the Eqs. 12.17 through 12.19a, b, we get the solution K X T( ),  as 
follows:

2 2
1 2 3 4

5 6
0 0

( , ) ( , ) ( , ) ( , ) ( , )

1
exp ( , ) ( , ),

2
i i

K X T QF X T Q F X T QF X T Q F X T

c c
XF X T F X T

c c
γ

= + − −

 + − − −  
� (12.20)

where

1

1
1 1

1

1

( , ) ( ) exp
4

1 1
exp erfc exp erfc ,

2 4 2 2 2 4 2 22 2

0

T T T

T
F X T QT b

T X X T T X X T
T T

T T

T T

= −

 = +   

       − − + + + >              


<

� (12.21a)
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1

11
2

1

1
( ) exp erfc

2 4 2 22

( , ) exp 1
4 ( )exp erfc

2 4 2 22

0

T T T

T X X T
T X

T
T TT

F X T T X X T
T X

T

T T

= −

   − − −       
> =       + + + +      

 <

� (12.21b)

2

2
3 2

2

2

( , ) ( ) exp
4

1 1
exp erfc exp erfc

2 4 2 2 2 4 2 22 2

0

T T T

T
F X T QT b

T X X T T X X T
T T

T T

T T

= −

 = +   

       − − + + + >              


<

� (12.21c)

2

22
4

2

1
( ) exp erfc

2 4 2 22

( , ) exp 1
4 ( )exp erfc

2 4 2 22

0

T T T

T X X T
T X

T
T TT

F X T T X X T
T X

T

T T

= −

   − − −       
> =       + + + +      

 <

� (12.21d)
2

5

1
( , ) exp

2
F X T Tγ = +  

� (12.21e)

2
6

2

1
( , ) exp erfc

2 4 2 22

1
exp erfc .

2 4 2 22

T X X T
F X T T T X T

T

T X X T
T T X T

T

γ γ γ γ

γ γ γ γ

  = + + − − − −      

  + + + + + + +      

�

(12.21f)

Now using the transformation given in the Eq. 12.16, Eq. 12.20 can be written as:

2
1 2 3

2
4 5 6

0 0

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ),i i

C X T QG X T Q G X T QG X T

c c
Q G X T G X T G X T

c c

= + −

− + −� (12.22)
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where

G X T QT b
T

X

T

T
X

1 1
1

4

1

2 2 2

1

2

( , ) ( ) exp

erfc exp( )erfc

= + 





−






+

XX

T

T
T T

T T

T T T
2 2

0
1

1

1

+






>

<










= −

� (12.23a)

G X T
T

T X
X

T

T
T X X

2
1

4

1

2 2 2

1

2

( , ) exp

( )erfc ( ) exp ( )e

= 



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− −






+ + rrfc

X

T

T
T T

T T

T T T
2 2

0
1

1

1

+






>

<










= −

� (12.23b)

G X T QT b
T

X

T

T
X

3 2
2

4

1

2 2 2

1

2

( , ) ( ) exp

erfc exp( )erfc

= + 





−






+

XX

T

T
T T

T T

T T T
2 2

0
2

2

2

+






>

<








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= −

� (12.23c)
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4
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2 2 2
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
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− −




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+ + rrfc

X
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2 2

0
2
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+






>

<










= −

� (2.23d)

2
5 ( , ) exp ( )G X T T T Xγ γ γ= + −� (12.23e)
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( )

2
6

2

1
( , ) exp )erfc

2 22

exp erfc
22

X T
G X T T T X T

T

X T
T T X X T

T

γ γ γ γ

γ γ γ γ

   
= + − − −     

 
+ + + + + +    

� (12.23f)

For different values of T ,  the analytical solution can be written as:

( )

( )

( )
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0

2

0

2
1

( , ) exp

exp
2 22
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Combining the Eqs. 12.24a and 12.24c and using the shifted Heaviside function, the 
solution for a point source taken at the origin can be written as:

1 2 1 1

2 2

( , , , ) ( , , , 1) exp ( ) ( , , ,1)

( , , , 1) exp ( ) ( , , ,1) ( , ),

C X T T T F X T T X F X T T

F X T T X F X T T G X T

= − +
− − − +� (12.25)

where ( , , , ) and ( , )iF X T T G X Tλ  are defined as:

2 2

1
( , , , ) ( ) exp

2 4

( )
22

i
i i

i

i

T
F X T T u T T

T TX
Q T Qb Q X erfc

T T

λ

λ
λ

 = −   

 −
+ + + − 

� (12.26)

and

2 2

0 0

2

0

( , ) exp ( ) exp ( )
2 22

exp ( ) ,
2 22

i i

i

c c X T
G X T T T X T T X erfc T

c c T

c X T
T T X X erfc T

c T

γ γ γ γ γ γ γ

γ γ γ γ

 
= + − − + − − −  

 
− + + + + +  � (12.27)



12  Contaminant Concentration Prediction Along Unsteady Groundwater Flow 269

where u is the Heaviside function defined in Eq. 12.4. For the case of 0 1≤ <T T , 
the values of u T T u T T( ) ( )− −1 2and  are zero. Therefore, the terms involving 
u T T u T T( ) ( )− −1 2and  vanish and only the last term of the Eq. 12.25 will ap-
pear in the solution. This is the case when the input concentration is taken as zero. 
For the case of T T T u T T1 2 1≤ ≤ −, ( )  is 1 while u T T( )− 2

 is 0. Hence, in that case 
the terms involving u T T( ),− 2  i.e. the third and fourth terms of Eq. 12.25 will be 
zero.

In the case of T T> 2  the values of u T T u T T( ) ( )− −1 2and  are 1. Therefore, 
the solution involves all the terms involving u T T u T T( ) ( )− −1 2and .

12.2.2 � Numerical Solution

The equations 12.13 through 12.15b describe the one-dimensional solute transport 
problem in a semi-infinite domain. In order to get its numerical solution using a 
finite difference scheme, the semi-infinite domain X ∈ ∞( , )0  is converted into a 
finite domain Y ∈( , )0 1  using the transformation:

1 exp ( ).Y X= − −� (12.28)

As a result, Eq. 12.13 is transformed into:
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The initial and boundary conditions given by Eqs. 12.14 through 12.15b in the Y 
domain become:
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The boundary Y = 1  corresponds to x → ∞;  but getting concentration values at infin-
ity is not possible. Therefore, the values are evaluated up to some finite length x l= , 
along the longitudinal direction. It corresponds to Y u l D Y= − − =1 0 0 0exp ( ( / )) . 
To find the numerical solution of the problem two-level explicit finite difference 
schemes are used.
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12.3 � Numerical Results and Discussion

Three forms of the time-dependent seepage velocity are considered. They are: (a) 
asymptotic function, (b) exponential function, and (c) sigmoid function. Mathemat-
ical expressions for these functions are:
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The analytical and numerical solutions of the present problem are computed for: 
0 0 00.0001, 1.0, 0.001, 0.01, 0.3, 0.0001, 0.0165ic c U D q mγ= = = = = = =  and b =  

0.5. The length of the aquifer is assumed to be 1 km. The origin is assumed to be 
at the source of contaminants; the source is supposed to be active from t1 969=  
days to t2 1 060= ,  days (for 3 months approximately). The concentration distribu-
tion patterns with position and time are similar in all the three forms of velocity. 
The effect of unsteady parameter k on the concentration level is shown in Fig. 12.1 
for exponential velocity at a time when the source is active. This figure is drawn at 
t = 1,000th  day for k = 0 5, , and 10 ; k = 0  represents the uniform seepage veloc-
ity and dispersion coefficient. It may be noted that unsteadiness decreases with this 

Fig. 12.1   Concentration pattern for exponential velocity during T1 < T < T2
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parameter, as is evident from Eqs. 12.33, 34, and12.35. This figure also compares 
the analytical and numerical solutions. Both the solutions are similar and this fact 
mutually validates each other. The input concentration (concentration value at the 
origin) in both the solutions is the same, and it decreases with k. The same effect is 
shown in Fig. 12.2 at the t = 1,090th  day, when the source becomes inactive. It may 
be observed that the input concentration becomes zero and the peak concentration 
value decreases with k. The peak value describes the level of existing pollution after 
the removal of its source.

The effect of time on the concentration level is shown in Fig.  12.3 for sig-
moid velocity in the presence of source for k = 5 . This figure is drawn at 
t = 1 000, and 1,050  days. The pollution level increases with time at a particular 
position. After the removal of the source, this effect is shown in Fig. 12.4. This fig-
ure is drawn at t = 1 090, and 1,120  days, and it shows the pattern of rehabilitation 
of the polluted domain with time.

Fig. 12.2   Concentration pattern for exponential velocity during T > T2

 

Fig. 12.3   Analytical solution for the sigmoid-type velocity expression during T1 < T < T2
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12.4 � Conclusion

The one-dimensional contaminant concentration pattern governed by the advec-
tive-diffusive process along a homogeneous semi-infinite aquifer is depicted with a 
pulse-type input condition. Linear, exponentially decreasing, and sigmoid forms of 
Darcy velocity are considered. Using suitable transformations variable coefficients 
(due to unsteadiness of the two dispersive–advective parameters) are reduced into 
constant coefficients. As a result, it becomes possible to use the Laplace transforma-
tion technique to get the analytical solutions. Numerical solutions of the advection 
diffusive problem are also obtained. To get the numerical solution, the semi-infinite 
domain is converted into a finite domain. Analytical and numerical solutions are 
compared and they are found to be in good agreement. The unsteadiness of velocity 
is defined with the help of two parameters m and k .

12.5 � Notations

c 	 Contaminant concentration in the aquifer at any time ML−3

t 	 Time variable T
D 	 Dispersion coefficient along x -axis L T2 1−

U 	 Groundwater velocity component along x -axis LT −1

x 	 Space variable along x -axis L
ci 	 Initial background solute concentration ML−3

*γ 	 Decay parameter L−1

c0 	 Solute concentration at the source ML−3

q 	 Decay coefficientsT −1

b 	 Constant parameters

Fig. 12.4   Analytical solution for the sigmoid type velocity expression during T > T2
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u 	 Shifted Heaviside function
t1 	 Beginning time of the activated source T
t2 	 Ending time of the activated source T
U0

	 Initial seepage velocity LT −1

a 	 Dispersivity L
D0 	 Initial dispersion coefficient L T2 1−

f 	 Temporally dependent function
m 	 Flow resistance coefficient T −1

C 	 Non-dimensional solute concentration in the aquifer
X 	 Non-dimensional space variable
T * 	 New time variable T
T 	 Non-dimensional time variable
γ 	 Non-dimensional decay parameter
Q 	 Non-dimensional decay rate coefficient
T1

	 Non-dimensional beginning time of the activated source
T2

	 Non-dimensional ending time of the activated source
K 	 Non-dimensional solute concentration in the aquifer
λ 	 Constant parameter
k 	 Arbitrary constant
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13.1 � Introduction

Wavelets are recognized as a powerful mathematical tool in signal and image pro-
cessing, time-series analysis, geophysics, computer graphics, etc. The last few years 
have witnessed tremendous amount of interest and activity in the application of 
the wavelet theory and its associated multi-resolution analysis to different areas of 
science and technology. Lately, an area in which wavelets are gaining currency is 
numerical simulations of ordinary and partial differential equations. What makes 
them particularly appealing to the solution of partial differential equations is their 
hierarchical structure and localization property, coupled with their time and scale 
invariance. Wavelet-multigrid method is applied to solve modified Reynolds equa-
tion arising in biomedical engineering, an illustration of the advantages of wavelet 
methods over traditional methods. The unique feature of this method is combining 
classical multigrid scheme with the modern wavelet theory in such a way that each 
benefits from the other.

We turn our attention to synovial joints [1] of the human body. Recently, the 
research on synovial joints has focused on two aspects: To investigate the funda-
mental lubrication processes occurring in the natural joints of the human body and 
the development of artificial, replacement joints based on theoretical results. Math-
ematical models of human joints serve to predict quantities which are difficult to 
measure experimentally and to simulate changes to the physiological conditions. 
With particular reference to the human knee joint, many researchers are involved 
in modeling of the bio-mechanism of the joint lubrication, proposing sophisticated 
models that involve complex numerical computation in order to obtain the desired 
solutions.

The main aim of this chapter is to propose an analytical approximate squeeze 
film lubrication model of the human knee joint for the quick assessment of the 
synovial fluid pressure and the associated load carrying capacity. The proposed 
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model is based on a modified Reynolds equation; the solution of which gives the 
fluid pressure and consequently the load-carrying capacity. Normal synovial fluid 
is viscous, and its functions are nutrition and lubrication of cartilage, load bearing 
and shock absorption, ensuring efficient lubrication and proper functioning of the 
synovial joints.

The modified Reynolds equation which incorporates randomized surface rough-
ness structure as well as the elastic nature of the articular cartilage with viscous and 
non-Newtonian synovial fluid as lubricant is derived. A simplified mathematical 
model has been developed for understanding the combined effects of surface rough-
ness, poroelasticity, and lubrication aspects of viscous and non-Newtonian fluid of 
human knee joint.

Retrospectively, the simplest and the most successful linear biphasic model for 
articular cartilage has been developed by Mow and others [2]. This model includes 
small deformation of poroelastic material which corresponds to Biot [3] theory for 
soil consolidation. Using this (Biot’s) theory, the governing equations for cartilage 
deformation and motion of interstitial fluid were formulated. Monsour and others 
[4] modeled the joint as porous permeable, deformable elastic material (articular 
cartilage) filled with a single layer of homogenous fluid. The tissue secretes viscous 
and highly non-Newtonian fluid called synovial fluid which mainly consists of hy-
aluronic acid, nutrients, glycoprotein, etc. This synovial fluid bathes and supplies 
nutrients to both surfaces of the cartilage. Hou and others [5] analyzed the squeeze 
film lubrication of articular cartilage by assuming synovial fluid to be linearly vis-
cous fluid. Detailed analyses about articular cartilage and non-Newtonian charac-
teristics of synovial fluid are given in [6].

Poroelasticty is a continuum theory for the analysis of porous media with elastic 
matrix consisting of interconnected fluid filled pores. When fluid permeates into 
a poroelastic material, the drag force between the fluid and the porous medium 
may cause deformation in the porous matrix. This leads to volumetric changes in 
the pores. Since the pores are filled with fluid, the presence of the fluid not only 
acts as a stiffener of the material but also results in the flow of pore fluid between 
regions of higher and lower pore pressure. A successful model for cartilage with 
interstitial fluid has been developed by Mow and his coworkers [6]. This simplest 
linear version of biphasic mixture includes the small deformation of the porous 
elastic matrix, which corresponds to Biot’s model for soil consolidation. The above 
biphasic model for a homogeneous and isotropic articular cartilage was used in a 
series of papers to model the fluid flow across the articular surface in geometrically 
idealized step-loaded synovial joints [5–7]. Various aspects of articular cartilage 
and non-Newtonian characteristics of the synovial fluid are presented by Torzilli 
and Mow [6]. Collins [8] considered Biot’s theory to model poroelastic matrix for 
cartilage which is assumed to satisfy generalized form of Darcy’s law for unsteady 
flow in an elastic porous medium. Later, modified and corrected forms of the con-
stitutive equations were given in [9–12]. Most of the studies on synovial joint me-
chanics and lubrication have used elastic single-phase models of cartilage and a 
Newtonian single-phase model for synovial fluid. Recently, Mercer and Barry [13] 
gave a numerical method on finite difference approximations for the calculation of 
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deformation, pressure, and flow within a finite two-dimensional poroelastic me-
dium by considering slip and no-slip boundaries.

Sayles and others [14] experimentally revealed that the cartilage surface is rough 
and that roughness-height distribution is Gaussian in nature. This motivates us to 
investigate the effect of roughness in the cartilage surface. Christensen [15] devel-
oped the stochastic theory to investigate the effect of roughness in hydrodynamic 
lubrication on the assumption that roughness can be represented as a randomly 
varying quantity. It is assumed that in classical hydrodynamic lubrication theory, 
the roughness heights are small compared to the film thickness. This theory consists 
of two types of roughness structures, namely, longitudinal and transverse rough-
ness. The former one has the roughness striations in the form of long ridges and 
narrows in horizontal direction whereas the latter one in the vertical direction.

The present chapter is organized as follows. In order to make it as self-contained 
as possible, the anatomy of the human knee joint and its bio-mechanism is given in 
Sect. 13.2. The simplified modified constitutive relations of poroelastic material are 
considered in the Sect. 13.3. In Sect. 13.4, the modified Reynolds equation which 
holds in the film region is derived for two roughness patterns, namely, longitudinal 
and transverse roughness structures. In Sect. 13.5, we describe briefly wavelet-mul-
tigrid method, recently developed by the author, for the solution of elliptic partial 
differential equations. Section 13.6 is devoted to the discussion of the results ob-
tained in the previous sections for various parameters. Section 13.7 summarizes the 
major findings of the present study.

13.2 � Anatomy and Bio-Mechanism of a Human 
Knee Joint

The knee joint is one of the most important joints of our body. It plays an essen-
tial role in movement related to carrying the body weight in horizontal (running 
and walking) and vertical (jumps) directions. The knee joint is one of the largest 
and most complex joints in the body. The knee joins the thighbone (femur) to the 
shinbone (tibia). The smaller bone that runs alongside the tibia (fibula) and the 
kneecap (patella) are the other bones that make the knee joint. Tendons connect the 
knee bones to the leg muscles that move the knee joint. Ligaments join the knee 
bones and provide stability to the knee in preventive and self-corrective ways. The 
anterior cruciate ligament prevents the femur from sliding backward on the tibia (or 
the tibia sliding forward on the femur).The posterior cruciate ligament prevents the 
femur from sliding forward on the tibia (or the tibia from sliding backward on the 
femur). The medial and lateral collateral ligaments prevent the femur from sliding 
side to side.

Two C-shaped pieces of cartilage called the medial and lateral menisci act as 
shock absorbers between the femur and tibia. Numerous synovial fluid-filled sacs 
help the knee move smoothly. When a person walks or stands still, the force L act-
ing through pushes the femoral condyles and the tibial plateau together when L > 0 



280

and to create a squeeze film effect when L < 0. The synovial fluid is sucked into 
or sucked out of the cartilage. Cartilage is avascular (free from blood supply) and 
the flow of synovial fluid into the cartilage is one of the ways it receives nutrients. 
However, when a person stands still for an extended period of time, it is believed 
that the synovial fluid will eventually be squeezed out of the gap between tibial 
plateau and femoral condyles, causing direct contact between cartilage-coated sur-
faces. This is an undesirable condition, as it results in cartilage degradation and 
promotes in the long run osteoarthritis.

The physical configuration of the problem is shown in [16] to predict the per-
formance of the knee joint. The bone ends are covered by articular cartilage to 
prevent natural abrasion, which is in a sac containing fluid for lubricating the 
two surfaces. A tough fibrous capsule together with the muscles, ligaments, intra-
articular structures, etc. encloses the normal joint cavity. The inner lining of this 
capsule, the synovial membrane, secretes viscous and highly lubricating fluid 
called synovial fluid. This fluid bathes both articular surfaces and intra-articular 
structures. Following Walker and Erkman [17], as the load-bearing area of the 
synovial knee joint is small, two articular surfaces may be considered to be par-
allel under high loading conditions. For mathematical simplicity, the average of 
the three layers of the cartilages is modeled as a single poroelastic layer. So, the 
problem considered is that of squeeze film lubrication between two rectangular 
surfaces with finite dimensions.

13.3 � Mathematical Modeling and Computer Simulation

We present a simple mathematical model for the human knee joint. The governing 
equations are the principles of mass and momentum balances applied to the simpli-
fied geometry under the following hypotheses.

1.	 The lubricant in the film region is modeled as Newtonian, i.e., linearly viscous 
and incompressible fluid.

2.	 For simplicity, both the tibial plateau and the femoral condyles are modeled as 
rigid impermeable flat surfaces and the effects of menisci are neglected.

3.	 Classical lubrication theory is used to describe the flow of synovial fluid in the 
thin gap.

4.	 The flow is assumed to be steady state, laminar, incompressible, and 
three-dimensional.

5.	 Viscosity is kinematical and depends on the hyaluronic acid concentration.

The application of hypotheses from 1 to 5 to the conservative laws leads to a modi-
fied Reynolds lubrication equation giving fluid pressure in the joint which supports 
the load avoiding the direct contact between the solid surfaces.

The upper rigid rough impervious spherical indenter approaches the lower po-
roelastic matrix normally with a constant velocity dH dt/ .  The film thickness be-
tween two plates is characterized by:

C. Salimath
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( , ) ( , , ),sH h x y h x y ξ= +� (13.1)

where h x y h x y R( , ) ( ) /= + +0
2 2 2  is the nominal smooth part of the geometry, h0

 
is the minimum thickness, R is the radius of the indenter in x–y plane, hs

 is the 
height of the surface asperities measured from the nominal level which is a ran-
domly varying quantity of zero mean and ξ  is the index parameter determining a 
definite roughness structure. All the articulations of knee joint under fluid film lu-
brication involve cartilage–viscous fluid–cartilage interactions. The lubricant in the 
film region is assumed to be Newtonian fluid, i.e., linearly viscous. So, the problem 
considered would be that of three-dimensional squeeze film lubrication between the 
upper rigid spherical indenter and the lower smooth poroelastic matrix. With usual 
assumptions of lubrication, the governing equations are:
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where u v w, ,  and  are the velocity components in x y, , and z  directions, respec-
tively, p  is the pressure, and µ  is the viscosity of the fluid.

13.3.1 � Poroelastic Region

Following Mow and others [2], the poroelastic material is assumed to be made of a 
linearly elastic solid phase (deformable cartilage matrix) and an inviscid fluid phase 
in which these two phases are intrinsically incompressible. For the cartilage matrix 
deformation and viscous fluid contained in its pores, we write modified coupled 
equations of motion as in [9, 12, 17]:

2
2

2Matrix : ( )f
m mdiv

k tt

µρ σ φ∂ ∂ = − −  ∂∂
U U

V
�

(13.6)
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2Fluid: ( ) andf
f fdiv

t k t

µρ σ φ∂ ∂ = + −  ∂ ∂
V U

V
�

(13.7)

0,s f

t
φ φ∂ ∇⋅ + =  ∂

U
V

�
(13.8)

where fφ  is the porosity and 1s fφ φ= −  is the solidity of the poroelastic mate-
rial. andm fρ ρ  denote the densities of solid matrix and fluid, respectively, U  is 
the corresponding displacement vector, k  is the permeability of the cartilaginous 
matrix to the fluid. The left hand terms denote the local forces (mass times ac-
celeration), which are counterbalanced by the right hand terms namely the surface 
forces, ,divσ  and the porous medium driving forces (Darcy’s law), respectively. 
These two component equations may be simply viewed as generalized forms of 
Darcy’s law for unsteady flow in a deformable porous medium in terms of relative 
velocity ( / )∂ ∂ −U Vt  between the moving cartilage and the fluid contained in its 
pores. Also, Eqs. 6 and 7 denote force balances for the linear elastic solid and vis-
cous fluid components of the cartilage, respectively. The classical stress tensor σ 
for a continuous homogeneous medium may be expressed for the matrix (cartilage) 
and fluid (synovial). Thus, the constitutive relations for the solid and fluid phases, 
respectively are

2 ,s
m P Ne A eσ φ= − + + ′I I�

(13.9)

,f
f P E eσ φ= − + ′I I

�
(13.10)

in terms of the elastic parameters , , andN E A′ ′  of the cartilage and the hydrostatic 
pressure P  and I  the identity tensor, e the cartilage dilation. The inertial terms in 
Eqs. 13.6 and 13.7 are neglected, because in the balance of the momentum equation, 
the fluid–fluid viscous stress is negligible compared with the drag between the fluid 
and the solid matrix [10]. After neglecting the inertia terms in Eqs. 13.6 and 13.7 
and using this result into Eq. 13.8, we get:

2 0,
( 2 )

e
e

k A E N t

µ ∂
∇ − =

+ + ∂′�
(13.11)

where e = ∇⋅ U. The typical stress-strain curve obtained from confined compres-
sion tests an articular cartilage under loading stresses is essentially a linear relation-
ship beyond the initial stress level [18]. Following Collins [8], their results may be 
characterized by a simple linear equation in terms of the corresponding average 
bulk modulus K and pressure Pas:

e e
P

K
= +0 .

�
(13.12)
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Using this empirical relation (Eq. 13.12) in Eq. 13.11, we get the equation describ-
ing pressure in the poroelastic region:

∇ =2 0P .� (13.13)

13.3.2 � Boundary Conditions

The relevant boundary conditions for the velocity field (0 < z < H) are:

u x y u x y H v x y v x y H( , , ) ( , , ) ( , , ) ( , , ) ,0 0 0= = = =�
(13.14)

w x y w w x y H
dH

dtn( , , ) , ( , , ) ,0 = − = −
�

(13.15)

where wn
 represents the normal component of the relative velocity of the fluid at 

the cartilage surface. Conditions (Eq. 13.14) are no-slip velocity conditions.

13.4 � Solution Procedure

Integrating Eq. 13.13 with respect to z over the porous layer thickness ( δ− , 0) and 
using the solid backing boundary condition / 0 atP z z δ∂ ∂ = = −  we get:

0 2 2

2 2
0

.
z

P P P
dz

z x yδ= −

 ∂ ∂ ∂
= − + ∂ ∂ ∂ ∫

�
(13.16)

Here δ  is the thickness of the poroelastic layer. Using the Morgan–Cameron ap-
proximation [19] valid for the poroelastic layer to be small and incorporating the 
pressure continuity condition ( p =  p* ) at the porous interface z = 0, we get:

2 2

2 2
0

.
z

P p p

z x y
δ

=

 ∂ ∂ ∂
= − + ∂ ∂ ∂ �

(13.17)

After neglecting inertia terms, Eq. 13.7 may be arranged in terms of relative veloc-
ity in the form:

2 ( ).
( )

f
f

k
P E e

t
φ

µ φ
∂ − = − ∇ − ∇′  ∂
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V

�
(13.18)

Elimination of e  through Eqs. 13.12 and 13.18 gives:

2 .
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(13.19)
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The normal component of the relative fluid velocity at the cartilage surface is
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.
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(13.20)

Using Eq. 13.17 in Eq. 13.20, we get:
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(13.21)

Equations 13.3 and 13.4 can be integrated for u and v with respect to z using bound-
ary conditions (Eq. 13.14). Substituting u and v in Eq. 13.2 and integrating across 
the film thickness from z z H= =0 to  with respect to z using boundary conditions 
(Eq. 13.15), we obtain modified Reynolds equation
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(13.22)

for the pressure distribution in the joint cavity. For including roughness features, 
taking the stochastic average of Eq. 13.22 with respect to hs ,  we get:
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where expectancy operator (•)E is defined by:

(•) (•) ( ) ,s sE f h dh
∞

−∞

= ∫
�

(13.24)

f  is the probability density function of the stochastic film thickness hs .  In most of 
the problems, surfaces show a roughness height distribution which is Gaussian in 
nature. Therefore, polynomial form which approximates the Gaussian is chosen in 

C. Salimath
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the analysis. Such a probability density function is [12]:

( )32 2
7

35
,

( ) 32
0,  elsewhere

s s
s

c h c h c
f h c

 − − < <= 


where 
1 13 andc σ σ=  is the standard deviation.

13.4.1 � Longitudinal Roughness

In the context of rough surfaces, there are two types of roughness patterns, which 
are of special interest. The one-dimensional longitudinal structure where the rough-
ness has the form of long narrows ridges and valleys running in the x-direction and 
the one-dimensional transverse structure where roughness striations are running in 
the y-direction in the form of narrow and valleys. However, the present study is 
restricted to one-dimensional longitudinal roughness since the one roughness struc-
ture can be obtained from other by just rotation of the coordinate axes. For the one-
dimensional longitudinal roughness pattern, the film thickness assumes the form:

0 ( ) ( , ),sH h t h x ξ= +

then, modified Stochastic Reynolds equation (Eq. 13.23) takes the form:
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13.4.2 � Transverse Roughness

In this structure, the roughness striations are running in the y-direction in the form 
of narrow ridges and valleys. In this case, the film thickness takes the form:

( , )sH h h y ξ= +

and modified Reynolds equation becomes:
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(13.26)
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For the distribution function given by Eq. 13.24, we have:

E H h( ) .=� (13.27)

E H h
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�
(13.28)

�
(13.29)

Therefore, Reynolds equation (Eq. 27) for longitudinal roughness takes the form:
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Introducing the following nondimensional parameters and variables, in Eq. 13.30:
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and for pressure distribution, the boundary conditions are:

p x
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= = ±
= = ±
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0 1

at

at

,

.� (13.32)

13.5 � Wavelet-Multigrid Method

Since Eq. 13.32 is an elliptic equation with variable coefficients, it is difficult to 
solve analytically; we propose to solve it numerically using recently developed 
wavelet-multigrid method [20]. Using the first order finite difference scheme for 
the derivatives in Eq. 13.32, we write:

A p A p A p A p A p Ai j i j i j i j i j0 1 1 1 2 1 3 1 4 5+ − + −+ + + + =, , , , , ,
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(13.33)
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Let the matrix formulation of Eq. 13.33 be:

Ax y= .�
(13.34)

By considering D-4 family of wavelets, the corresponding transform matrix (just for 
illustrative purpose) is:
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(13.35)

where c di iand , ’s are the filter coefficients [21].
Now the fast wavelet transform (FWT) is performed on A and y of Eq. 13.35 

recursively till the coarsest level is reached at level − J. Then matrix equation 
ˆ ˆ ˆl l lA =x y  is used to obtain ˆ lx  at the coarsest level using the Gauss–Jordan method. 
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Finally, integer wavelet transform (IWT) is performed on x̂  to obtain 
0x̂  level − 1 

which gives the distribution of fluid film pressure p.  In the calculation, for all 
numerical experiments D-4 wavelets are employed. However, one has the freedom 
and flexibility to choose any wavelet basis. To test the accuracy, the problem is 
solved at resolutions 24  and 28.  It is observed that there is marginal increase in the 
accuracy of the solution; better accuracy can be achieved by increasing the resolu-
tion and/or the order of the wavelet family. It is also observed that the amount of 
computational effort is considerably less than that of classical multigrid method.

Once we have obtained the fluid film pressure by using the wavelet-multigrid 
method, the load carrying capacity can be evaluated straightforwardly. We can find 
the nondimensional load carrying capacity W  per unit area of the joint surface us-
ing the following formula.

W p x y d xd y=
−−
∫∫ ( , ) .
1

1

1

1

�
(13.36)

13.6 � Results and Discussion

A simplified mathematical model has been developed for the study of effect of 
surface roughness on the poroelastic bearing by modeling articulate cartilage as 
poroelastic matrix and synovial fluid as a linearly viscous fluid. The problem con-
sidered is that of the squeeze film lubrication between the rough spherical indenter 
and smooth poroelastic material. The modified Reynolds equation incorporates the 
constitutive equations of poroelastic matrix. This Reynolds equation is solved using 
wavelet-multigrid method. The values of ′E K k, , and  are taken from Torzilli [6], 
which are associated with healthy human cartilage with normal functioning. The pa-
rameters k  and fφ  are chosen in such way that the load-carrying capacity that can 
be sustained by the joints should be more. The pressure p wand  are functions of 
nondimensional parameters C k H, , and   and constant parameters and / .f E Kφ ′  
As the radius of the upper rigid indenter increases, it becomes relatively flat and 
uniform, which leads to increase in the area of the film region. This wide film area 
avoids exit of lateral fluid and is responsible for retaining the large amount of fluid 
which enhances the pressure and the load-carrying capacity. For large radius, the 
spherical indenter becomes relatively flat and thus the study reduces to the squeeze 
film lubrication between two parallel plates.

The distribution of pressure p  with rectangular coordinates x and y  is given in 
Figs. 13.1a and 13.1b. For C = 0.3, the roughness effects are more pronounced when 
compared with C = 0.1. In Fig. 13.2, it is observed that the effect of roughness is to 
increase the pressure distribution increasing values of C. The roughness increases 
the pressure in the film region compared with the smooth case. This is because, the 
presence of surface asperities reduces the fluid flow and therefore large fluid accu-
mulates in the film region, which enhances the pressure built up.
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The variation of load w  that can be sustained by a joint, with roughness parame-
ter C for different elastic parameter ′E K/  is shown in Fig. 13.3. The load-carrying 
capacity increases with increasing ′E K/  for different roughness parameters C. 
Presence of hyaluronic acid, molecular, and other molecular weight substances in 
the synovial fluid results in the formation of a thick dense substance on the cartilage 

Fig. 13.2   Variation of pressure p  with x  for different values of   C   with  k 7 65 10 f 0 85 f= × =−. , .
and / .=′ E K 1 0

 

a b

Fig. 13.1   a Fluid film pressure distribution for C = 0.3 with 57.65 10 ,k −= × 0.8 andfφ =   
/ .=′E K 1 0  b Fluid film pressure distribution for C = 0.1 with 57.65 10 0.8 andfk φ−= × =  
/ .=′E K 1 0
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surface during squeezing action. This leads to increase in the pressure distribution 
and in turn increase in the load-carrying capacity. This trend is preserved for all 
values of ′E K/ .

13.7 � Summary

Wavelet-multigrid method is found to be accurate for the solution of modified 
Reynolds equation, which incorporates surface roughness and poroelastic nature 
of articular cartilage. The method is proven to be more efficient than the classical 
multigrid method. Comparing the rates of convergence of the two methods, it is 
found that Wavelet-multigrid method converges faster compared with the multigrid 
scheme. It provides the ability to carry out calculations focusing only in regions 
where it is needed. It can as well be generalized to nonuniform grids, which is a 
unique feature of this approach. In classical scheme we find that as the grid size 
decreases the condition number increases; a serious disadvantage whereas in the 
present Wavelet-multigrid scheme the conditioning of the matrix is incorporated 
in the procedure itself without requiring separate analysis for it. It is observed that 

Fig. 13.3   Variation of load W with C for different values of ′E / K with k 7 65 10 f 0 85 f= × =−. , .
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the effect of roughness is to increase the pressure built up (and hence the load-
carrying capacity) compared with the classical case. The governing equations de-
scribing complex structure of cartilage and synovial fluid are complicated because 
of nonlinearity and joints having a wide range of articulating features. However, 
the proposed simplified model does predict some of the salient features of bearing 
characteristics, which would enable the biomedical engineers in selecting suitable 
design parameters. In addition to being of scientific and medical interest in its own 
right, the present study has achieved the objective of gaining deeper understanding 
of the lubrication in the knee joint which is of crucial importance in the total knee-
replacement technologies. The results obtained could guide the experimentation 
with new material for knee replacement with mechanical characteristics analyzed 
here. Currently, the most promising compliant materials are hydro gels, which have 
similar properties to those of natural cartilage.
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14.1 � Introduction

Soil organic carbon (SOC) is a complex and mixture of diversified materials rang-
ing from rapidly decomposable plant parts to microorganisms and make up a vital 
part of the soil. Enumeration of SOC dynamics is becoming more important as this 
can greatly impact soil productivity and sustainability. The amount of SOC is a bal-
ance between the build-up from inputs of new plants and animal materials and the 
constant losses, where the carbon (C) decomposes and the constituents separate to 
mineral nutrients and gases, or are washed or leached away. Positive build-up of 
SOC levels is possible when there is abundance of water, nutrients and sunlight, 
whereas continuous fallow favours SOC loss.

There are five principal pools which regulate the C cycle on earth—oceanic pool 
(~ 38,000 Pg, Pg = 1012 kg = 1015 g = Gt), followed by the geologic (~ 5,000 Pg), pe-
dologic/soil (~ 2,500 Pg to one meter depth, organic and inorganic), atmospheric 
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(~ 760 Pg) and biotic pool (~ 560 Pg) [1–2]. Soils contain about 1,500 Pg of or-
ganic carbon globally in top 1 m, which is roughly twice the amount of C in the 
atmosphere as carbon dioxide (CO2) and about three times the amount of C in 
vegetation [1, 3–4]. Although the SOC pool is small compared with that of the 
oceans, potentially it is much more labile in the short term [1]. Using respective 
estimates of 1,500 and 720 Pg of C in soil and the atmosphere, and an atmospheric 
concentration of 390 ppm for CO2,a 1 % change in the amount of C stored in soils 
would equate approximately to an 8 ppm change in atmospheric CO2 concentra-
tion, provided all other components of the C cycle remained constant [5]. Thus, 
small change in flow of C into or out of soil C pool could have dramatic impact 
on a global scale [6].

Diffusive process plays an important role in SOC dynamics through mass and 
gaseous movement and their transportation. The major factors controlling the size 
of the SOC pool and its movement are land use, land use change (LUC), climate, 
soil, management practice and technology [2, 6–8]. Agricultural soils are known to 
be C depleted due to tillage, disturbance, aeration and mineralization [9–10]. How-
ever, there is a considerable potential to sequester and store additional C by modify-
ing soil management practices in such soils. Accurate quantification of inputs of C 
into and outputs of C from soil is essential to assess C sequestration potential and 
changes in SOC with time. Such measurements will help unravel the mechanisms 
that control C storage and formulation of robust models of soil C dynamics and 
turnover. Understanding the response of the soil C reserve and its transportation to 
change in different factors is of critical importance. The SOC turnover models are 
able to simulate SOC dynamics under various land uses (forest, grassland, cropland, 
etc.), management practices (crop rotation, ploughing, fertilizer application, irriga-
tion, stubble management, soil amelioration, etc.), technological improvement (va-
rietal improvement, better machinery, improved agronomic knowledge, etc. ) and 
climatic conditions [8, 11–14]. Thus, they could help in investigation of change in 
SOC dynamics under different scenarios and may also help in refining our under-
standing of SOC turnover processes by pointing out our knowledge gap.

14.2 � Soil Organic Carbon Models

A model is a simplified representation of reality, designed to meet different objec-
tives [15]. A model may be a physical miniature of real entity, such as a clay sculp-
ture, a hypothetical description of a complex entity or process, or a schematic/math-
ematical representation of a real-world system, theory, phenomenon, or situation.

SOC models represent turnover or decomposition of SOC as well as its transfor-
mation in soil–plant–atmosphere system. One of the earliest SOC models [16] to 
describe C accumulation or loss from soil was:

dx

dt
kx A= − + ,
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where dx  = change in state variable (e.g. soil C)
k  = first order rate constant
A  = addition rate (mass t−1) which is independent of loss and the amount present
Since then many SOC models have been developed to meet different specific 

objectives.

14.3 � Application of Soil Organic Carbon Models

The SOC turnover models are widely used in many disciplines—soil science, 
agronomy and environmental sciences. These models help to improve our under-
standing of C turnover process in soil as well as underlying C stabilization mecha-
nisms in soil [13–14, 17]. At the same time, the models are now even being ex-
tensively used to extrapolate our understanding of SOC dynamics both temporally 
(future projections) [8, 12] and spatially, i.e. from national [18], regional [19] to 
global scales [20]. Another important application of SOC models is in agronomy, 
through its incorporation into decision support systems to improve agronomic ef-
ficiency and environmental quality, e.g. APSIM [21], DSSAT-CSM [22], SUNDI-
AL-FRS [23], etc.

The SOC models can be used to explore and investigate SOC dynamics under 
different management and environmental scenarios even beyond the realm of ex-
perimental work [8, 12]. They can be used for interpolation and extrapolation of 
experimental data both on time and space, and also making projections of SOC 
behaviour under current and future environmental and management conditions [14]. 
The SOC models are now increasingly being used by the policymakers also at the 
national, regional and global scales, for example, in post-Kyoto debate on capacity 
of terrestrial ecosystem to store C [24].

14.4 � Classification of Soil Organic Carbon Models

SOC turn-over models are broadly classified as:

a.	 Process-oriented models
b.	 Organism-oriented/food-web model
c.	 Cohort model

These models are described below.

14.4.1 � Process-Oriented Model

Process-oriented models focus on the processes controlling the movement and 
transformation of matter or energy. Process-based models can be divided into:
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a.	 Single compartmental model where SOC models consider SOC as one homoge-
neous compartment. [16]

b.	 Two compartmental models where SOC is considered as two compartments. 
[25]

c.	 Multi-compartmental model considers SOC multi-compartmental, e.g. RothC 
[26], CENTURY [27], etc.

The first two types of SOC models are mostly static, where the environmental 
variables remain constant, whereas the models under type (c) are mostly dynamic, 
where the environmental variables vary with time.

Most of the SOC models are process-based multi-compartmental, describing 
SOC as a finite number of compartments or SOC pools, each of which is homo-
geneous, well mixed and characterized by its position in the model’s structure and 
its decay rate [13–14, 28]. Decay rates are usually expressed by first-order kinetics 
with respect to the concentration (C) of the pool as:

dC

dt
kC= − ,

where t is the time, k is the rate constant of first-order kinetics. The pool’s half-life 
( h  = (ln 2)/k ), or its turnover time (1/k ) is sometimes used instead of k to character-
ize a pool’s dynamics.

With a lower decay rate constant, the stability of the organic pool is higher with 
higher half-life and turnover time. The compartments interact by exchanging mate-
rials, and by exchanges with the environment [29]. The flow of C within most mod-
els represent a sequence of C going from plant and animal debris to the microbial 
biomass, and then to soil organic pools of increasing stability. The output flow from 
an organic C pool is usually split into a microbial biomass pool, another C pool, 
and under aerobic condition into atmospheric CO2. Two parameters control the split 
flow, viz., microbial efficiency and stabilization/humification factor, which control 
the flow of decayed C to the biomass and humus pools, respectively. The sum of 
the efficiency and humification factors must be lower than one to account for the 
release of CO2 [14].

Most of the present day’s models are multi-compartmental process-based mod-
els. For example, out of the 33 models, currently available within the Global Change 
and Terrestrial Ecosystems (GCTE), and Soil Organic Matter Network (SOMNET) 
database [30], 30 are multi-compartmental process-based models.

14.4.2 � Organism-Oriented/Food-Web Model

Organism-oriented models focus on flow of energy and matter (C and N) through 
food webs of soil organisms [31–32]. Such models are dynamic and explicitly ac-
count for different trophic levels or functional groups of soil biota. Food-web mod-
els require a detailed knowledge of the biology of the system to be simulated and 
are usually parameterized for application at specific sites.

N. Senapati et al.
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14.4.3 � Cohort Model

This type of model considers each fresh addition of plant debris as a separate co-
hort, which decays in a continuous way. These models describe decomposition as 
continuum. Most of such models are dynamic models and account SOC as one 
pool, which decays with a feedback loop into itself. The SOC pool is divided into 
an infinite number of components, characterized by its quality with respect to de-
gradability as well as impact on the physiology of the decomposers. One of the 
examples of this type of model is Q-SOIL [33]. This model is quality dependent and 
is represented by a single rate equation which represents the dynamics of each SOC 
component. Exact solutions to the rate equations are obtained analytically [34].

Among the three types of models discussed, process-based multi-compartmental 
dynamic models are most popular due to (a) ease of use and transferability, (b) their 
successful coupling with GIS software, (c) their different internal parameters are 
easier to estimate and calibrate for specific purposes, and (d) they are easily scaled 
up. Different compartments actually simplify very complex physical, biological and 
chemical characteristics of SOC, and thus help to understand and depict the under-
lying turnover process [14]. Figures 14.1 and 14.2 show the structure of the two 
most popular process-based multi-compartmental models, viz., Rothamsted carbon 
model (RothC) [26] and CENTURY model [27]. A detailed overview on the SOC 
turnover models could be found elsewhere [13–14, 35].

14.5 � Factors Affecting Turnover of Soil Organic 
Carbon in Models

Decomposition rate constants of different compartments or SOC pools follow the 
first-order kinetics and are constant for a given set of biotic and abiotic conditions. 
For nonoptimum environmental circumstances, the maximum value of rate constant 

Fig. 14.1   Structure of the Rothamsted carbon model ( RothC ) (after [26]). DPM Decomposable 
plant material, RPM Resistant plant material, IOM Inert organic matter, BIO Microbial biomass, 
HUM Humified organic matter
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( k ) is modified by multiplication with a reduction factor µ —ranging from 0 to 1. 
Environmental factors considered by SOC models for the modification of k include 
soil temperature, water, oxygen, pH, nitrogen, clay content, cation exchange capac-
ity, salinity, type of vegetation, plant cover and tillage [13–14, 36].

14.6 � Initialization of SOC Models

Model initialization, the initial distribution of total SOC between model pools, has 
been described as the most crucial part of a simulation study as it can influence the 
model prediction of soil C stock [37–38]. Incorrect or flawed initialization poten-
tially leads to improper assessment of interannual variability, and can also produce 
fallacious trends in output as the state variables drift back towards the model ideal 
[38]. As various pools in SOC models are based on qualitative concepts and often 
do not correspond to measureable fractions [28, 39], the partition of SOC pools may 
lead to an initialization problem. Thus, the model may reflect not only the effect of 
the modelling objectives, but also the initialization procedure. The most common 
approach to solve the initialization problem is to achieve the initial SOC pool distri-
bution by a spin-up run of the model, i.e. a run of the model over several hundreds 
to thousands of years to find equilibrium/steady state SOC, assuming initial SOC 

Fig. 14.2   A simple structural diagram of the SOC sub-model of the CENTURY model. ( M : Mul-
tiplier for effect of moisture, temperature, cultivation, Leach : H2O leached below 30 cm)
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and its distribution among the model pools are at equilibrium/steady state with the 
current land use and climatic conditions [8, 40]. The observed soils, however, may 
not be at equilibrium due to disturbances such as fire, erosion, land use and man-
agement changes [41]. The equilibrium/steady state assumption for the ecosystem 
C cycle has been challenged [42] and its limitation in modelling approaches em-
phasized [41].

In the second method, where recent land use and management condition is 
known, the model is started with default or steady-state pool distribution and then 
run for a few decades to obtain a quasi-steady state distribution under recent condi-
tions [43]. However, there is rarely enough information about the past condition for 
a large area to initialize the model correctly. A third approach is to run most pools to 
steady state and then adjust the slowest pool so that the total SOC content matches 
the measured value [41]. Rapidly turnover pools reflect the current and recent state 
of the system, while slowly turnover pools reflect historical condition. Addition-
ally, a fourth method is using the statistical model-data fusion technique to match 
pool distribution with observed C dynamics during the period of model simulation 
[38, 44]. Another method of initialization of SOC model is initializing model with 
measured SOC pools.

The use of measured SOC pools has the advantage over other initialization meth-
ods, as field measurements are independent of the model or any assumption, and 
information on previous land use and management history are not required [45]. 
Any process that is ignored in the model, but which could influence SOC dynamics, 
is also taken into account in SOC partitioning. Thus, measured fractions reflect bet-
ter the real site-specific conditions under which SOC is accumulated [45–46]. Once 
the SOC pools are measured by a reliable fractionation method, model initialization 
issues can be solved and model performance can also be improved.

14.7 � Measured SOC Fractions and Conceptual 
Modelled Pools

Soil organic matter represents a chemically and spatially heterogeneous mixture 
of organic materials that exist along a continuum of various stage of decomposi-
tion [47]. Thus, SOC cannot be separated easily into different pools, rather it exists 
as one continuous pool with almost infinite range of turnover times from minutes 
to millennia [48]. However, to simulate SOC dynamics successfully, most of the 
process-based SOC models divided SOC into multiple conceptual pools defined by 
their sizes and turnover times which are governed by first-order rate constants and 
modified by different climatic and edaphic factors [13–14, 28, 38]. A pool may be 
defined as a compartment containing material that is chemically indistinguishable 
and equally accessible to plants or to the soil microbial population [49]. A measured 
fraction represents a pool when it is unique (i.e. it should not represent only a por-
tion of chemically and biologically indistinguishable material) as well as non-com-
posite [39]. On the other hand, some other researchers [48] have given importance 
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to the mechanisms and process of SOC stabilization in measured fractions/pools 
and for modelling SOC dynamics.

The SOC turnover in models has been described using simplified, determinis-
tic, multi-compartmental simulation that is primarily based on empirically derived 
relationship. A major limitation of process-based multi-compartmental SOC mod-
els is that the various model compartments/pools are conceptual and often do not 
correspond to measureable fractions [39, 45, 50]. The only measured quantity is 
the microbial biomass and total SOC. Thus, it is often not possible to validate the 
dynamics of the modelled SOC pools with measured pools. However, measured 
pools in model have the advantage of thorough model evaluation and detailed ini-
tialization [39].

During the last few decades, different chemical methods were proposed to sep-
arate SOC into different pools [51–53]. The wet chemical fractionation methods 
consider the chemical nature of SOC as the only factor to influence the turnover 
rate of SOC pools, soil protection on SOC is ignored. Protected C is the influence 
of spatial arrangement of SOC in soil matrix (primary organo-mineral complex) and 
soil structure or aggregate (secondary organo-mineral complex) on stabilization/
decomposition mechanism of SOC [50, 54]. Microorganism needs physical access 
of soil C in order to use it. In situations where the structure of a system does not 
control the accessibility of soil C to microbes (for example, forest litter layer), there 
chemical composition is the sole factor controlling soil C dynamics [50]. Soil mi-
crobes generally consume most organic substrate fallen or deposited onto the soil, 
yet there is accumulation of organic C in the soil. There must be some protection of 
incoming organic C in the way that prevents it from being completely consumed.

In the last few decades, physical fractionation methods have got the importance 
over chemical methods in fractionating SOC [55–57]. Although physical SOC 
fractionation methods elucidate spatial arrangement of primary and secondary or-
gano–mineral complexes on SOC stabilization, they do not consider chemical or 
biochemical stabilization mechanisms, i.e. they are unable to give importance to 
chemical or biochemical nature or composition of SOC on its stabilization.

Therefore, to capture all the SOC stabilization mechanisms together, various 
approaches in SOC fractionation schemes have combined physical and chemi-
cal methods together subsequently. The most common approach is density or size 
fractionation prior to chemical analysis. By separating light fraction (LF) or the 
sand-sized fraction (particulate organic matter, POC), which contains mainly fresh 
plant material, through density fractionation or particle size fractionation, rest of 
the fractions are then further characterized chemically by acid hydrolysis or base 
extraction [58–61] or oxidation with H2O2/NaOCl/Na2S2O8 [62]. There are some 
physicochemical methods which have shown good promise to relate measured SOC 
fractions with SOC pools. Skjemstad and others [63] have proposed a physico-
chemical method where they suggested partitioning SOC into POC (particle size 
fractionation), charcoal carbon (photo-oxidation) and humus (Fig. 14.3). Similarly, 
Zimmermann and others [45] suggested a physicochemical fractionation method to 
partition SOC into free LF/POC, dissolved organic carbon (DOC), stable aggregate 
and sand associated C (S + A), silt and clay associated C (s + c), and inert organic 
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carbon (rSOC) (NaOCl oxidation of silt + clay associated C) (Fig. 14.4). The con-
cepts of relating these SOC fractions with model (RothC) conceptual pools are sum-
marized in Figs. 14.5 and 14.6. Figures 14.3 and 14.5 show the partitioning of SOC 
into different fractions and relation of SOC fraction to SOC model (RothC) pools 
after [63]. POC is the measure of the resistant plant material pool (RPM), charcoal 
C is the measure of inert organic matter pool (IOM) and the quantity of humus pool 
(HUM) is calculated by HUM = total SOC–(POC + Charcoal carbon).

Similarly, Figs. 14.4 and 14.6 show the partitioning of SOC into different frac-
tions and relation of SOC fraction to model pools after [45]. The measured C in 
rSOC fraction is directly associated with the IOM. The sum of C in POC and DOC 
fractions is split into decomposable plant material pool (DPM) and RPM using the 
ratio of DPM: RPM obtained by RothC model under equilibrium condition. The 
same procedure is also used to separate the sum of C in S + A fraction, and silt and 
clay fraction excluding rSOC fraction ( s + c –rSOC) into biomass pool (BIO) and 
HUM.

One of the most important issues in the SOC model is inert organic matter pool 
(IOM). The issue of the IOM and its representation in models has been discussed 
[28]. IOM is defined in the model as an inert pool which does not undergo decom-
position, means that it is not a dynamic pool. Although, different chemical methods 
are able to produce an old, chemically recalcitrant and stable SOC fraction, they 
nevertheless are not completely inert [64]. Further research for harmonizing mea-
sured IOM fraction of SOC and the IOM pool may be necessary.

Process-oriented multi-compartmental models could be improved by modifying 
different pools/compartments so that they are based on measureable SOC fractions 
which are unique, non-composite and in accordance with different SOC stabiliza-
tion mechanisms

Fig. 14.3   Physicochemical 
SOC fractionation method 
POC particulate organic 
carbon, after [63])
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–

Fig. 14.5   The concept of relating measured soil organic carbon fractions to conceptual pools of 
RothC model POC particulate soil organic carbon, charcoal carbon ( Char-C ), total soil organic 
carbon ( TOC ), total soil organic carbon excluding POC and Char-C ( TOC (POC + Char-C) ), 
resistant plant material ( RPM ), inert organic matter ( IOM ) and humified organic matter ( HUM), 
after [63]

 

Fig. 14.4   Physicochemical SOC fractionation method. Particulate organic carbon ( POC ), Dis-
solved soil organic carbon ( DOC ), Soil organic carbon in sand and stable aggregate ( S + A ), 
Chemically resistant soil organic carbon/inert organic carbon ( rSOC ), Soil organic carbon in silt 
and clay fraction ( s + c ), after [45]
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14.8 � Black Carbon and Modelling Soil Organic Carbon

Black carbon (C) is an inorganic carbon compound produced from incomplete 
combustion of organic materials having a graphitic microstructure [65]. Black C 
is resistant to oxidation and microbial activity and so is persistent on a geologi-
cal timescale [66]. Due to this recalcitrant nature, black C is assumed to represent 
part of the inert organic carbon pool. This pool is expected in higher proportion 
of total SOC in fire prone regions, for example at the continental scale, black C 
comprises 0–82 % of the total SOC in Australia [67]. The importance of black C 
in the simulation of SOC was demonstrated [67] and the result showed a reduc-
tion in simulated CO2 emissions by 18.3 and 24.4 % in two Australian savannah 
regions in response to a warming of 3 °C over 100 years by including a realistic 
black C stocks in prediction models. Hence, quantification of the amount of black 

–

Fig. 14.6   The concept of relating measured soil organic carbon fractions to conceptual pools of 
RothC model particulate soil organic carbon ( POC ), dissolved soil organic carbon ( DOC ), soil 
organic carbon in sand and stable aggregate ( S + A ), soil organic carbon in silt and clay frac-
tion excluding inert organic carbon ( s + c–rSOC ), chemically resistant soil organic carbon/inert 
organic carbon ( rSOC ), decomposable plant material ( DPM ), resistant plant material ( RPM ), 
microbial biomass ( BIO ), humified organic matter ( HUM ) and inert organic matter ( IOM ), oval 
represents fraction, square represents pool, after [45])
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C is important in SOC modelling. Historically, black C in soils has been calcu-
lated by digesting away organic matter using nitric acid and heat, and then sorting 
char particles by hand or under a microscope [68]. New analytical methods for 
estimating char materials in mineral soils include using benzenepolycarboxylic 
acids (BPDA) during nitric acid digestions as markers for black C [69], chemical 
digestion [70] and using a combination of high energy ultraviolet photooxidation 
and nuclear magnetic resonance spectroscopy [71] or a combination of chemical 
oxidation followed by solid-state 13°C nuclear magnetic resonance spectroscopy 
[72]. Schmidt and others [73] tested several forms of thermal oxidation, chemical 
oxidation, photo-oxidation, and a molecular marker method on Australian soils. 
The resulting black C values for individual sample varied over two orders of mag-
nitude indicating great disparity between individual methods. One of the possible 
explanations for the wide range of the result is the different operational definitions 
of black C and clear cut boundaries of the different methods, which were devel-
oped for specific research questions.

14.9 � Evaluation of SOC Models

Model evaluation is the prerequisite for model application and helps in the assess-
ment of model performance [15]. The benefits of model evaluation are: (a) it shows 
how well a model can be expected to perform in a given situation, i.e. it determines 
the accuracy of the simulation, (b) it analyses the behaviour of model, whether the 
model responds in the expected way to the change in the conditions of simulation, 
(c) it determines which components of the model are most important in influencing 
the results, and (d) it can help in improving the understanding of the system as well 
as the model [13–15].

A graphical analysis gives a quick approximate evaluation, whereas a quantita-
tive analysis determines the statistical accuracy of the simulation. Some statistics 
measure association (e.g. sample correlation coefficient) and others measure coin-
cidence (root mean square error, relative error, mean difference, modelling efficien-
cy, lack of fit, etc.) between the measured and simulated values. A higher associa-
tion indicates similar trends between the measured and simulated values, whereas 
a higher coincidence indicates close proximity of the simulated values with the 
corresponding measured values. Figure 14.7 shows different model performances 
with different coincidences and associations between the measured and simulated 
values. A sensitivity analysis evaluates the behaviour of the model, whereas uncer-
tainty analysis determines how much uncertainty is introduced in model output by 
each component of the model. All these model evaluation methods/parameters are 
defined and summarized in the literature [11, 15, 74].

Model performances are generally assessed using a long-term experimental data 
set. Models can be evaluated at different levels, viz., individual process level, subset 
process level (e.g. net mineralization), or the model’s overall outputs (e.g. changes 
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in total soil organic matter (SOM) over time). Most comprehensive model evalua-
tion to date has been done by Smith and others [11] with nine models using 12 data 
sets from seven long-term experiments covering arable lands, managed-unmanaged 
grasslands, and woodlands across the world.

14.9.1 � Evaluation of SOC Models Under Land Use Change

LUC is a global concern and has adverse effects on the climate through emission 
of greenhouse gases [75]. Historically, soils have lost between 40–90 Pg C globally 
through cultivation and disturbance [76], and it is estimated that change in land use 
alone emitted 1.6 ± 0.8 Pg C yr −1 to the atmosphere during the 1990s [4, 77]. Expan-
sion of the cropland is one of the major drivers of LUC and is likely to continue in 

Fig. 14.7   An illustration of different hypothetical model performances with different coincidences 
and associations between measured and simulated values. a Higher association but lower coinci-
dence, bad model performance. b Lower association but higher coincidence, bad model perfor-
mance. c Higher association and coincidence, good model performance. d Higher association and 
coincidence in time scale, good model performance
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the future. The magnitude of changes of SOC following LUC vary widely among 
sites due to differences in environmental conditions (such as soil type, texture, min-
eralogy, etc.), climate, ecosystem productivity, plant species, and the management 
practices [7]. The prediction of changes in SOC as a consequence of rapid changes 
in land use is an important task for the future, and SOC dynamic models are one of 
the most promising tools in this respect.

Model performances are generally evaluated using the long-term field experi-
mental data set, collected in chronosequence [11]. Model performance in simulation 
of changes in SOC under LUC can also be assessed using chronosequence data sets 
[78]. However, there are extremely few cases where chronosequence data have been 
collected before and after a LUC. In this respect, paired-sites offer an opportunity 
to study LUC effects on SOC and can provide a basis for SOM model evaluation. 
Paired-site consists of two sites, viz., a site where LUC already occurred several 
years before and an adjacent remnant, native-vegetation site, located on a common 
soil type, landscape position, and slope angle.

14.10 � Projection of Soil Organic Carbon Under 
Climate Change

A number of studies have examined the potential of soil C sequestration for climate 
mitigation options [2, 4]; whereas, climate change will be a key driver of change in 
soil C stock during the twenty-first century [8]. Increases in mean air temperature 
are likely to accelerate SOC decomposition and loss of SOC in the future, if soil 
moisture is not a limiting factor [8, 12]. On the other hand, any increase in soil C in-
put from, for example, increased ecosystem productivity through CO2 fertilization 
or climate change, or technological and management improvement, could compen-
sate the loss [8]. Increase in extreme climatic events and decrease in rainfall could 
reduce ecosystem productivity and thus could offset any positive impacts of climate 
change and CO2 fertilization on soil C inputs through ecosystem productivity. Ulti-
mately increase in SOC decomposition and changes in soil C inputs will determine 
the fate of soil C reserve under future climatic changes. Therefore, simulation of the 
fate of SOC under climatic changes is very important. There are some recent studies 
on projection of SOC under climatic changes across arable, forests and grasslands 
[8, 12, 46].

Grassland is one of the most important and widespread terrestrial ecosystems, 
covering approximately 40 % of the global land surface, and containing the largest 
share (39 %) of terrestrial soil C stocks (~ 580 Gt C) [79]. Any change in the SOC 
storage in grasslands will have a significant and long-term effect on global C cycles 
[80]. Hence, estimates of changes in grassland soil C stocks under climatic changes 
are of critical importance. A loss of 6–10 % of the European grassland SOC stocks 
over 90 years (1990–2080) was projected by Smith and others [8] depending on 
the emission scenarios, whereas Xu and others [46] reported a loss of 2–6 % of 
grassland SOC stocks in Ireland across different emission scenarios over 40 years 
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(2021–2060). Similarly, Senapati and others [81] estimated a loss of grassland SOC 
by 10–11 % due to the direct effect of climatic changes in Australia.

14.11 � Limitation/Weakness/Scope of Improvement 
of the SOC Model

Soil microbial biomass is often represented as an active pool in SOC turnover mod-
els and thus remains a black box in terms of functionality [82]. Models often do not 
include the simulation of feedback of soil microbial biomass resulting from changes 
of a range of management practices [32]. Although there is no evidence of limit-
ing SOC turnover by soil biota abundance, inclusion of the dynamics of soil biota 
explicitly and their feedback in the SOC models could improve model performance 
[83].

Soil protection towards SOC through aggregation is well known [60]. Disruption 
of soil aggregates is associated with loss of SOC, whereas generation of soil aggre-
gates provides more retention of SOC. However, most of the models do not count 
the whole process of soil aggregate formation and destruction, and hence ignore soil 
structure dynamics and its implication on SOC stabilization or decomposition [48]. 
Inclusion of soil aggregate dynamics in the model might help in model improve-
ment. Although there are some efforts to include soil aggregation factor in model 
[17], but still feedback between soil structure and microbial activity needs to be 
improved in the SOC turnover models.

Although the diffusive process plays an important role in movement and trans-
portation of solutes and gaseous substances in SOC dynamics, SOC models often 
do not simulate the diffusive process explicitly. Further, model development regard-
ing the role of diffusive process in SOC dynamics could be important.

Models often simulate inadequately the dynamics of different macronutrients 
(N, P, K), and other micronutrients especially their toxicity (e.g. Al toxicity), if 
any in the soil, along with the SOC dynamics. The SOC models generally simulate 
faster SOC turnover than reality in acidic soil, as the decomposition rate is up to 
two-thirds slower under acidic condition [43]. While some models account soil pH 
in turnover process of SOC, others do not. Adequate simulation of these factors 
together with soil C in the SOC turnover model could improve model overall per-
formance. SOC models also need better integration with landscape as well as whole 
ecosystem processes.

14.12 � Summary

The SOC turnover models are important tools for investigating the behaviour of 
SOC under current and future management practices, land use, LUC and climat-
ic condition. The SOC models are now increasingly being used to assist policy 
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decisions at the national and international levels regarding future guidelines of land 
use, climate change and management practices. They are the important components 
of different agronomic decision support systems for improving agronomic efficien-
cy and environmental quality. These models are useful in exploration, extrapola-
tion, interpolation and explanation of experimental data. The SOC models are also 
important means of improving our understanding of C turnover process as well as 
underlying C stabilization mechanisms in soil.

Process-based multi-compartmental models are most popular and widely used 
SOC turnover models compared with other SOC models due to ease of use across 
different scales in space and time. Different compartments/pools actually simplify 
very complex physical, biological and chemical characteristics of SOC, and thus 
help in better understanding the SOC dynamics. However, various pools in multi-
compartmental models are conceptual, based on empirically derived relationships 
and qualitative concepts, and often do not correspond to measureable fractions. 
Measured SOC fractions need to be unique as well as non-composite to represent a 
pool in the model. Although a combination of physical fractionation methods with 
chemical fractionation methods has the potential to relate measured SOC fractions 
to model pools, its applicability needs to be tested further.

However, the process-oriented multi-compartmental models could be improved 
by modifying their different pools/compartments so that they are based on mea-
sureable SOC fractions which are unique, non-composite, and in accordance with 
different SOC stabilization mechanisms. Once measured, the different SOC pools 
can be helpful in initialization of model explicitly. The use of measured SOC pools 
has the advantage over other initialization methods as the field measurements are 
independent of the model assumptions. Measured fractions reflect better the real 
site specific conditions under which SOC is accumulated; information on previous 
land use and management history are not required.

Model evaluation is a prerequisite for model application and helps in the assess-
ment of model performance. Model evaluation provides confidence and reliability 
in the modelling. Different SOC models need to be evaluated comprehensively us-
ing reliable dataset as widely as possible before their use in a new environment other 
than their original environment, where they were developed. Model performances 
are generally evaluated using long-term field experimental data set, collected in 
chronosequence. In the absence of long-term chronosequence data sets, particularly 
under the scenario of LUC, paired-sites data sets could offer an opportunity for the 
evaluation of SOC models.

Climatic change is a key driver of change in soil C dynamics during the twenty-
first century. Increases in mean air temperature are likely to accelerate SOC de-
composition and loss of SOC in the future, if soil moisture is not a limiting factor. 
Increases in mean air temperature and CO2 fertilization could increase ecosystem 
productivity, whereas increase in extreme climatic events and decrease in rainfall 
could reduce the same. Hence, projection of the fate of SOC dynamics under cli-
matic change is very important. Reliable measures of black C in the fire-prone re-
gions are very important in projection studies, as it influences the simulation of 
SOC dynamics.
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The SOC models often simulate the dynamics of different macro- and micronu-
trients along with SOC dynamics inadequately. They also often do not account for 
soil pH explicitly, and do not simulate the whole process of soil aggregation and the 
dynamics of soil biota adequately. Inclusion of all these process/factors/parameters 
in the SOC models could represent the complex real life systems in a better way; it 
might improve the overall model performance.
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15.1 � Introduction

Agricultural crops comprise of various annual and perennial plant species grown on 
farm for food, fodder, fiber, and other raw material for industrial uses. The fields 
used for growing crops differ in environmental conditions, input availability and 
management practices resulting in differences in resource use and productivity. It is 
predicted that there will be around 9.1 billion people on the globe by the year 2050 
and food consumption will have to increase by 50–70 % from now [1]. Increase 
in population requires increase in the agricultural production for food and other 
requirements. At the same time, there is shrinkage of available resources due to 
urbanization, developmental activities, and use of land for industries. The demand 
for food is increasing due to growing population and rising income of majority of 
the population. There is a possibility of aggravating food crisis because of climate 
change and diversion of arable lands to other uses [2–3].

Efficient management of available resources is essential to increase productivity 
of agriculture. In addition, the focus of agricultural production is changing from 
quantity to desired food quality. Solution to these challenges requires consideration 
of how crop growth components such as inputs, soils, weather, and management 
work together to effect plant growth and crop yield. Farmers require increasing 
amount of information to deal with the transitions in weather, changes in technolo-
gy, and transition in demand for food in terms of both quantity and quality. The task 
to collect, collate, store, and analyze the information is demanding in itself. With 
information technology opening new opportunities, computer programs in the form 
of crop models that simulate crop growth and crop yield under different input and 
environments can help farmers and planners make decisions to manage crops better.

Crop modeling is the dynamic simulation of crop growth by numerical integra-
tion of constituent processes with the aid of computers [4]. Crop modeling has de-
veloped extensively over the past 30 years and a diverse range of crop models have 
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been developed and validated across regions. It combines a scientific approach to 
enhance understanding with application orientation focusing on output prediction 
tasks. Crop simulation models have been the desired tools for increasing the effi-
ciency of trials on a crop in diverse regions.

Precision farming aims to apply crop inputs such as seed, fertilizer, pesticide, 
and irrigation in a timely and efficient manner. It holds great potential to increase 
crop productivity through taking up agricultural practices according to weather 
and soil conditions. This involves management of agricultural practices such as 
sowing, fertilizer, irrigation, and other inputs on the basis of variability in field 
conditions. Therefore, it depends on crop growth models to accurately predict 
responses of crop growth under different weather, soil, and other environmental 
conditions [5].

Changes in climate have resulted in increase in average temperature and CO2 
levels. Environmental degradation due to industrial and agricultural activities has 
caused dispersion of pollutants in the subsurface. New strategies are needed to as-
sess the impact of these changes. Existing groundwater, soil conservation and ag-
ricultural policies and strategies need reconsideration. A system approach, encom-
passing the development of crop simulation models is useful for policy makers and 
scientists to get better insights in the complexity and interaction of the processes 
affecting the nutrients, pollutants, and chemicals in the dynamic soil–water–crop 
relations [6].

15.2 � History of Crop Modeling

Oteng-Darko and others [7] describe the history of crop growth modeling since 
1960s. Attempts to model photosynthetic rates of crop canopies and to estimate 
potential food production for some areas of the world and to provide indications 
for crop management and breeding resulted in the construction of an elementary 
crop growth simulator (ELCROS) [8]. The model included a static photosynthesis 
model. Crop respiration was taken as a daily fixed factor of the biomass. Later, a 
functional equilibrium between root and shoot growth was added to the model. 
Addition of micrometeorology and quantification of canopy resistance to gas ex-
changes improved the simulation of transpiration. It resulted into the basic crop 
growth simulator (BACROS) [9].

International Benchmark Sites Network for Agrotechnology Transfer (IB-
SNAT) started the development of a model in 1982 for tropics and subtropi-
cal environments. It was an attempt for understanding various cropping options 
through systems analysis and simulation. Major outcome of IBSNAT was the 
decision support system for agrotechnology transfer (DSSAT) [10], which has 
been used as a research and teaching tool. It is used to derive recommenda-
tions concerning crop management and to investigate environmental and sustain-
ability issues. It enables users to match biological requirements of the crops to 
physical characteristics of the land to provide them with management options 
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for improvement in land-use planning. It includes database management for soil, 
weather, genetic coefficients, management inputs, crop simulation models, and a 
series of utility, and weather generation programs. It also contains strategy eval-
uation program to evaluate options such as variety selection, planting date, plant 
density, row spacing, soil type, irrigation, fertilizer application, initial conditions 
on yields, water stress in the vegetative or reproductive stages of development, 
and yield. DSSAT has the potential to reduce substantially the time and cost of 
field experimentation necessary for adequate evaluation of new cultivars and 
management systems.

Agricultural production systems simulator (APSIM) has been developed and 
used for improved risk management in agricultural production [11]. It includes crop 
models that were mostly species oriented, emphasizing the differences between 
species.

The species-oriented approach has dominated simulation models of agricultural 
production systems and resulted in a large number of different crop models [11]. 
Thus, the science behind the models is often not transparent, improvements cannot 
be easily transferred between models, and their computer code can hardly be reused. 
Due to differences in their program structures and modeling approaches and poor 
modularity, such models are difficult to maintain and component level comparison 
is not possible while whole model comparison provides little information on how 
to improve models due to the confounding effects of interactions among different 
subprocesses.

Alternately, crop models based on the similarities across crops can be thought so 
that modeling approaches developed and implemented for one crop can be reused 
for other crops. These similarities are based on the recognition that all crops can be 
represented using the same basic physiological principles to capture resources, to 
grow and develop to yield the desired output [12]. Such generic models have been 
developed recently for wide use of modeling community. InfoCrop [13] is such a 
generic crop model that is designed to simulate the effects of weather, soils, agro-
nomic management such as planting, nitrogen, residues and irrigation, and major 
pests on crop yield and associations with environmental impacts.

15.3 � Crop Model Development

A crop model is a simple demonstration of growth and yield of a crop. In general, 
it is used to study crop growth and to calculate growth responses to the environ-
ment in which the crop is cultivated. Model simulates or imitates the behavior of a 
real crop by predicting the growth of its components, such as leaves, roots, stems, 
and grains. Thus, a crop growth simulation model not only predicts the final state 
of crop production or harvestable yield but also contains quantitative information 
about major processes involved in the growth and development of the crop. Reac-
tions and interactions at the level of tissues and organs are combined to form a 
picture of the crop’s growth processes [7].
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15.3.1 � Crop Growth Processes

Empirical crop growth models, which apply functions fitted to data, are calibrated 
for a particular species and given site conditions. These models cannot be valid 
over a wide range of conditions. Understanding how plant growth and development 
interact with environmental factors such as light, temperature, soil parameters, and 
water availability is extremely important to understand the yield of crop plants. 
To model these interactions we need to take into account the physiological pro-
cesses involved in crop growth. The term “process-based model” was introduced 
to describe those models that considered the interactions between plant functional 
processes and abiotic factors [14].

Plant growth is driven by several processes simultaneously and is thus highly 
complex to understand and to model. Photosynthesis is only one out of several 
growth drivers. Photosynthesis is simulated based on direct and diffuse light, as in 
greenhouses. The CO2 concentration in the atmosphere can have a large impact on 
the rate of photosynthesis. Other important aspects of plant growth that can also be 
considered are the way in which dry matter is stored into the different plant organs, 
the feedbacks involved, and the plant’s capacity for additional resource acquisition, 
as well as the metabolic costs and expenses. Plant investment strategies with regard 
to the above sink-driving processes are a very important aspect to be considered in 
analyzing and modeling morphological plasticity. Added to this complexity is the 
further problem of situating a given species within an ecosystem and understanding 
the interactions taking place, especially concerning below-ground processes.

The InfoCrop model [13] considers the following processes in the model:

1.	 Crop growth and development: phenology, photosynthesis, partitioning, leaf 
area growth, storage organ numbers, source sink balance, transpiration, uptake, 
allocation, and redistribution of nitrogen

2.	 Effects of water, nitrogen, temperature, flooding, and frost stresses on crop 
growth and development

3.	 Crop–pest interactions: damage mechanisms of insects-pests and diseases
4.	 Soil water balance: root water uptake, inter-layer movement, drainage, evapora-

tion, runoff, and pond filling
5.	 Soil nitrogen balance: mineralization, uptake, nitrification, volatilization, inter-

layer movement, denitrification, leaching
6.	 Soil organic carbon dynamics: mineralization and immobilization
7.	 Emissions of green house gases: CO2, methane, nitrous oxide

15.3.2 � Input and Output

Crop models take a variety of input data on weather, phenology, nutrients, and ir-
rigation, and provide output at various crop growth stages and finally crop yield.

A. K. Bhatia
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Gertsis and others [15] use the following information for crop simulation model 
divided into three categories to validate and apply GOSSYM for optimization of 
cotton production under the cultural, soil, and climatic conditions of Greece and 
Spain:

1.	 Crop information: latitude of location, distance between rows, plant population 
per unit of planted row, date of emergence and cultivar used, time and amount of 
irrigation, and nitrogen fertilizer in various forms

2.	 Soil information: initial soil water and fertility levels at 15 cm depth incre-
ments, taken at the beginning of each growing season; the soil moisture charac-
teristic of the curve, the saturated hydraulic conductivity and textural analysis, 
and the bulk density required for the permanent soil hydrology files and for 
each horizon

3.	 Weather information: daily maximum and minimum temperature, rainfall, solar 
radiation, and wind speed

The following information is produced in three formats by the GOSSYM model 
execution:

1.	 Analytical tables: general information on crop height, leaf area index, node num-
ber, green and open bolls, yield, aborted fruits, fruiting positions, light inter-
cepted, evapotranspiration, water and nitrogen stress, soil water and leaf water 
potential, weather information, dry weight of the plant parts

2.	 Maps: plant map, root system map, soil water potential, soil water content, soil 
temperature, soil nitrogen, vegetative and reproductive branch and plant organs 
distribution

3.	 Graphs: cotton lint yield, plant height, bolls, water and nitrogen stress, solar 
radiation, temperature

InfoCrop [13], a generic crop model, requires the following input to produce certain 
output as given below:

Input:

1.	 Weather parameters: radiation, rainfall, temperature, wind speed, humidity, frost
2.	 Soil parameters: texture, pH, depth, fertility
3.	 Crop variety: Physiology, phenology, morphology
4.	 Management/package of practices: Date of planting, fertilizer application, irriga-

tion, residue management
5.	 Pests: type, population, severity

Output:

1.	 Economic yield, biomass
2.	 Crop duration, evapotranspiration, and nitrogen uptake
3.	 Yield loss due to pests
4.	 Environmental impact: greenhouse gases, nitrogen losses, percolation
5.	 Soil carbon, nitrogen, water dynamics

15  Crop Growth Simulation Modeling�
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It becomes difficult to have all the required data for simulation. With the available 
minimum data set, it is possible to execute simulation models for desired purposes.

15.3.3 � Programming Languages

The basic crop growth models are developed in Fortran simulation translator/
environment (FST/FSE) [16]. FORTRAN simulation environment has been de-
veloped to provide a computationally powerful programming. The simulation en-
vironment provides functionality for specification of model processes, integration 
of various rate variables, time update in the model, input of weather data, and 
reading of model parameters from files. It also provides graphical presentation 
of results. The crop model software is written in a high-level computer language, 
usually FORTRAN. Other high-level computer languages such as C ++ and Pas-
cal have also been used.

15.3.4 � Other Requirements

The time step of the operating crop simulation model should match the real lifetime 
intervals during which there is measurable variation in the inputs. One-day time 
step is taken for crop growth simulation models, because the weather parameters 
such as rainfall, temperature, wind speed, etc. are recorded on a daily basis.

15.3.5 � Model Development Process

Model building can be started after availability of scientific knowledge about the 
crop growth processes, the growth-controlling factors, and the interactions that are 
dominant within a particular cropping system. Crop growth models in general con-
tain a set of equations that estimate the production rate of biomass from the captured 
resources, such as carbon dioxide, solar radiation, and water. Regression analysis 
describes the effect of one or more variables (independent variables) on a single 
variable (dependent variable). For the desired output such as crop yield, one equa-
tion would be identified. The factors that control daily growth would be identified. 
Then, the biomass would be partitioned to the economic portion and the other crop 
matter. These would be specified as mathematical functions with conditional rules 
and would be looped over the selected time-steps to calculate plant growth and crop 
yield.

A crop growth simulation model algorithm [17] is given below. It calculates 
plant growth at a time step as a function of solar radiation, which is a function of 
crop canopy. The stop condition can be provided as the number of days for which 
the simulation is desired till the life span of crop.

A. K. Bhatia
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t = 0;  /*Time */ 
yield(t) = seed sowing;  /* Yield at time t */ 
DO UNTIL END-condition is satisfied 
t = t+1; 
Inputsolar-radiation; 
solar-radiation intercepted = Defined function of  
crop canopy; 

plant-growth(t) = (solar-radiation) * (% radiation 
intercepted)*(radiation-used); 
yield(t) = yield(t-1) + plant growth(t); 

END DO 

Steps in development of a crop growth model are listed below [17]:

1.	 Flow charts are constructed to depict input, major crop processes, and output. 
It is a framework depicting the different steps to be followed like reading the 
data, computing different model components, repetition of calculations, desired 
reports, etc. in achieving the objective of the model.

2.	 Phenological development such as vegetative development, canopy expansion, 
crop maturity is controlled by thermal time. Phenology is the study of periodic 
biological phenomena. It qualitatively describes the successive stages in the 
development of plants, from seed germination to flowering to maturity. The crop 
growth stages, known as phenophases differ from crop to crop. Temperature and 
photo-period are the two main factors that determine flowering in plants.

3.	 Photosynthesis is derived as a function of canopy light interception and a radi-
ation-use efficiency factor; and as soon as flowering occurs, daily biomass is 
allocated to maintenance and grain filling until crop end is encountered. Crop 
growth results from photosynthesis and is subject to modification by both abiotic 
and biotic factors. In the early crop growth stages, the rate of dry matter produc-
tion is proportional to the amount of radiation intercepted, which is a function 
of leaf area index. Crop growth depends on the quantity of incident light, the 
proportion of that light intercepted by the photosynthesizing organs of the plant, 
its efficiency of conversion of light into dry matter and respiratory losses.

4.	 Computer program for the crop model is developed in a computer language.

15.4 � Model Calibration

Calibration is the adjustment of the system parameters so that simulation results 
reach at a predetermined level of an observation. In many instances, even if a model 
is based on observed data, simulated values do not exactly comply with the ob-
served data and minor adjustments have to be made for some parameters. This non-
compliance may arise from sampling errors as well as from incomplete knowledge 
of the system. Alternatively, it may arise when the model is used in a situation that 
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is markedly different from the one under which it was developed. This is an essen-
tial step in model development aimed at deriving parameter values on the basis of 
experimental data.

Table 15.1 shows an example of parameters in some crop growth model as re-
ported in literature.

Abedinpour and others [18] accomplished calibration of the AquaCrop model for 
maize crop by using the observed values from the field experiment during the year 
2009 as a model input and then simulating the model to predict the output, viz. the 
yield, biomass, and canopy cover. The predicted output values were compared with 
the observed yield and biomass of the experimental plot. The difference between the 
model predicted and the experimental data was minimized by using trial and error 
approach, in which one specific input variable was chosen as the reference variable 

Reference Model and crop Parameter Value Unit
[18] AquaCrop, maize Base temperature 8.0 °C

Cut-off temperature 30.0 °C
Canopy growth coefficient 19.9 % per day
Leaf growth threshold (Pupper) 0.14 % of total available 

water
Leaf growth threshold (Plower) 0.72 % of total available 

water
Leaf growth stress coefficient 

curve shape
2.9 Unitless (moder-

ately convex 
curve)

Time from sowing to 
emergence

6 days

Time from sowing to the start 
of flowering

52 days

Time from sowing to start 
senescence

72 days

Time from sowing to maturity 97 days
Length of the flowering stage 10 days

[13] InfoCrop, wheat Base temperature for sowing 
to germination

3.6 °C

Thermal time form sowing to 
germination

70 °C days

Base temperature for germina-
tion to 50 % flowering

5 °C

Thermal time for germination 
to 50 % flowering

850 °C days

Base temperature for 50 % 
flowering to physiological 
maturity

7.5 °C

[19] Canegro, 
sugarcane

Maximum fraction of daily 
dry mass increments parti-
tioned to aerial parts

0.88

Partitioning coefficient 0.6

Table 15.1   Examples of model parameters used in literature
A. K. Bhatia
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at a time, and adjusting only those parameters that were known to influence the 
reference variable the most. The procedure is repeated to arrive at the closest match 
between the simulated and observed values of the experiments for each treatment 
combination.

15.5 � Model Validation

Before a model can be used, it must be validated that involves running the model 
on historical input data recorded for a real system. Model output is compared with 
the real system output. Models should be validated with independent data, which 
has not been used in model development. Model building is an expensive exercise 
and most researchers are involved in the validation of an existing model to a new 
situation rather than in model development.

The model validation stage involves the confirmation that the calibrated model 
closely represents the real situation. Ideally, all models should be validated both at 
the level of overall system output and at the level of internal components and pro-
cesses [17]. Validation of internal processes is important because of the occurrence 
of feedback loops in biological systems; good prediction of the overall output of the 
model could be attributed to compensating internal errors. However, validation of 
all the components is not possible due to the lack of detailed datasets and the option 
of validating only the determinant ones are adopted.

Singh and others [20] perform calibration, validation, and sensitivity analysis 
of CropSyst model to quantify and verify the interactive effects of different water 
and nitrogen treatments on the productivity of direct-seeded rice–wheat cropping 
system using measurements from field experiments. The observed variables were 
collected from field experiments conducted during 2004–2005 and 2005–2006 at 
the research farm of Indian Agricultural Research Institute, New Delhi. For direct 
seeded rice, the model performed well at lower levels of nitrogen (120 kg/ha), 
whereas at higher levels of nitrogen treatment (150 kg/ha) the predicted values 
were less than the measured values. The model performed satisfactorily at all 
levels of nitrogen in the case of wheat. Sensitivity analysis of the model for vari-
ous crop parameters shows that the model is highly sensitive to the parameters 
like light to the above biomass conversion, specific leaf area, and phenological 
degree-days. Thus, more accuracy is required in the determination of these pa-
rameters in the model.

Casanova and others [21] test the performance of ORYZA1 for Mediterranean 
conditions for fully irrigated direct-seeded rice. The model was calibrated and 
validated with field data of two cultivars, a short-grain (Tebre) and a long-grain 
cultivar (L-202), grown in various years in the EbroDelta of Spain. Phenological 
development of rice crop, daily dry matter production, and leaf area development 
were calibrated. Tebre and L-202 had no significant differences in the total length 
of the development period. The preheading period, however, was longer and the 
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postheading period shorter in L-202 than in Tebre. This induced differences in 
translocation characteristics, spikelet number per unit area, weight of the grains 
and harvest index. The crop characteristics—extinction coefficient (increased with 
development stage), dynamics of nitrogen distribution, partitioning of assimilates, 
relative death rate of leaves, relative growth rate of leaf area during exponential 
growth, specific leaf area, and a strongly decreasing specific stem green area—
were similar between cultivars. The simulated curve fitted the observations. The 
model simulated rice growth very accurately until flowering. After flowering, 
however, divergences appeared and increased especially at the yellow ripe stage. 
From then on, the crop did not grow much more, whereas it continued in the simu-
lation. This reduction of growth rate was usually accompanied by an increase in 
the relative death rate of leaves and the drying of the grains. The researchers at-
tribute the main source of error to a limited understanding of the ripening and sink 
limitation processes.

15.6 � Available Models

Table 15.2 shows some of the available crop simulation models. The World Food 
Studies (WOFOST) model has been used to simulate maize crop growth and yield. 
The crop environment resource synthesis (CERES)—pearl millet and Cropsyst—
are being used to study the suitability and yield simulation of pearl millet geno-
types. GOSSYM is one of the most common growth models used for cotton crop. 
APSIM added with several modules is being used in crop rotation, crop sequence, 
and simulation studies involving perennial crops. DSSAT includes 15 crop models 
along with databases and other decision tools. Generic models such as InfoCrop 
have been used for modeling tree crops such as coconut [22].

15.7 � Applications of Crop Growth Models

Simulation modeling is increasingly being applied in research, teaching, farm man-
agement, policy analysis, and production forecasts [7]. Some applications of crop 
growth simulation models are listed in the following sub-sections.

15.7.1 � Crop Cultivation Practices

Many crop modeling groups have used their models in a research mode to evaluate 
producer risk by considering yield response to long-term historical weather records 
for a region, and to optimize planting date, planting density, row spacing, choice of 
cultivar, and fertilizer application for different soil types [30]. Models can assist in 
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adjusting package of practices in various crops. Farmers can optimize a package of 
practices in his/her field with the help of crop growth models.

15.7.2 � Cropping System Research Understanding

Model development involves integration of cropping systems’ performance across 
variety of plants, soil, water management, weather, etc. It allows identification of 
the major factors that drive the system and can highlight areas where knowledge is 
lacking. Thus, modeling of crop growth contributes towards targeted and efficient 
research programs on crop cultivation.

Crop models can be used by researchers to examine scientific hypotheses on how 
a given process works or how the crop responds to a particular factor [30]. The hy-
pothesis tested may be the ability of the model to predict final yield or the ability to 
predict intermediate processes such as instantaneous or daily canopy assimilation.

Model Description Reference
COTTAM Determines the morphological development of cotton crop 

in response to environment
[23]

GOSSYM-COMAX GOSSYM/COMAX is a model-based decision aid for cot-
ton crop management

[24]

WOFOST Analyses of the growth and production of field crops 
under a wide range of weather and soil conditions

[25]

CropSyst CropSyst is a multi-year, multi-crop, daily time-step crop-
ping systems simulation model

[26]

APSIM Agricultural Production Systems Simulator (APSIM) 
contains a suite of modules for modeling framework of 
crops, soil, climate, and management interactions

[11]

GWM General weed management (GWM) model consists of a 
simulation model and databases. The simulation model 
includes processes of weed population dynamics during 
a season

[27]

ORYZA1 Simulates rice growth, development, and leaf area index 
under potential production

[21]

CERES Crop environment resource synthesis (CERES)—generic 
modeling environment for cereal crops

[28]

DSSAT A collection of programs and databases with various crop 
simulation models and decision tools

[10]

CANEGRO Simulation of dry matter partitioning in sugarcane crop [19]
InfoCrop A generic crop simulation model to provide integrated 

assessment of the effect of weather, variety, pests, soil, 
and management practices on crop growth and yield, 
soil nitrogen, and organic carbon dynamics

[13]

AquaCrop The Food and Agriculture Organization (FAO) crop model 
simulates yields of major herbaceous crops as a func-
tion of water consumption under rain-fed, supplemental, 
deficit, and full irrigation conditions

[29]

Table 15.2   Description of some crop growth simulation models
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15.7.3 � Field Experiments Data Management

Crop model development requires experimentation with data from various sites. It 
also guides crop cultivation under optimal conditions for maximal yield. Simula-
tion model development, testing, and application demand the use of a large amount 
of technical and observational data and the modeler needs to develop data storage 
systems that aid in field research. The stored data becomes permanent record of 
experiments and are available to other researchers.

15.7.4 � Climate Change Impacts Studies

The variability of climate is currently one of the major concerns for maintaining 
crop productivity. The application of crop models to study the potential impact of 
climate change on crop production has been widely used in various regions. The 
increased concentration of carbon dioxide and other greenhouse gases are expected 
to increase the temperature. Elevated temperature and carbon dioxide affects the 
biological processes like respiration, photosynthesis, plant growth, reproduction, 
water use, etc. Proper understanding of the effects of climate change on crop yield 
helps farmers to make crop management decisions such as selection of crops, vari-
eties, sowing dates, and irrigation scheduling to minimize the risks.

15.7.5 � Water and Fertilizer Management

Crop models have attempted to optimize water and nitrogen management over the 
long term. These efforts can suggest the best long-term strategy for water or fertil-
izer applications. For producers with access to water, this approach can help deter-
mine return on investment in irrigation equipment. Considered with prices and com-
plete enterprise production costs, crop models can be used to evaluate economic 
risk in crop cultivation.

15.7.6 � Crop Management Practices

Simulation can be done to determine the best management practices under a certain 
cropping system. In the past, the main focus of agronomic research has been on 
crop production. But the quality of the environment has become an important issue 
in addition to profitable crop production. Agricultural managers require strategies 
for optimizing the profitability of crop production while maintaining soil quality 
and minimizing environmental degradation. Solutions to these challenges require 
consideration of how numerous components interact to effect plant growth. Models 
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having parameters such as chemical leaching or erosion components can be used to 
determine the best farming practices over the long term.

15.7.7 � Crop Yield Forecasting

Reasonably precise estimates of crop yield over large areas before the actual harvest 
are of immense value to both the researcher and the farmers in terms of crop cultiva-
tion and planning. Crop models are executed using actual weather data during the 
cropping season for the geographical region of interest to forecast crop yield. Yield 
forecasts are integrated with other information systems on availability and prices of 
crop produce to locate areas of surplus yield and possible trade.

15.7.8 � Genetic Improvement and Breeding

Development and release of a crop variety is a complex process that may take many 
years. Crop models integrate different components of agro-ecosystems and can be 
used to conduct multilocation field experiments to understand genotype by envi-
ronmental interactions. These studies are useful in reducing the number of sites 
and seasons required for field evaluation of crop varieties. Crop varieties may be 
developed in much less time with this approach.

The crop parameter determining the specific interaction could be identified by 
modeling a range of genotypes in selected environments. Hypothetical values could 
then be modeled combining the crop parameters conferring the most advantage as 
an indication of suitable traits and breeding target. Crop simulation models may be 
used to determine, in the future, which genetic traits would be most profitable for 
molecular geneticists to manipulate to maximize yields and returns for particular 
environments [30].

15.8 � Limitations of Crop Growth Models

Model use is limited by unavailability of accurate input data. Limitations of model 
data includes cost of obtaining data, spatial variability in soil characteristics, tem-
poral variability in pest outbreaks, and data quality in terms of measurement and 
sampling errors [30].

Crop models capture complex physiological interactions in a rough way by using 
sink requirements with environmental variables, using empirical routines for car-
bohydrate partitioning, nitrogen dynamics, incomplete description of root develop-
ment and growth, and the assumption of optimum crop growth conditions [31]. In-
teractions between production, environment, and cost-cutting measures have many 
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aspects. Most of the underlying mechanisms are either yet to be quantified or even 
not known. The lack of corresponding knowledge forces modelers to build idealistic 
representations of system mechanism.

Crop models are assumed to work in different environments. Their empirical na-
ture often does not allow such extrapolations [32]. The models should be important 
both for assessing the impacts of different management schemes and for identifying 
subject area where further basic research is needed.

15.9 � Future Prospects in Crop modeling

15.9.1 � Inclusion of Plant Architecture

A modeling methodology that takes into account aspects of the spatial, three-di-
mensional structure of plants, referred to as plant architecture, could answer the 
questions regarding plant and crop growth and development. Examples of such 
questions include those related to the effects of manipulation of plant canopies to 
competition phenomena between plants of the same or of different species such as 
weeds, or to the plastic response of plant structure to environmental influences.

Functional-structural plant modeling (FSPM) builds upon the classical prin-
ciples that have been implemented in the widely used process-based crop models, 
and adds the possibility of explicitly considering plant structure [33]. This ap-
proach to plant and crop modeling provides the framework to consider environ-
mental influences on each component of the system as well as mutual influences 
of structural components. An illustration can be given about cereal crop species 
such as rice, wheat, and maize. These plants exhibit a regular and coordinated 
development, making them particularly suitable for FSPM. These crops grow at 
high population densities and individual plant experiences a high degree of intra-
specific competition for light, nutrients, and water. Compared to solitarily grown 
cereal plants, crop cereals experience various effects of competition, an important 
one of which is expressed in the tillering that the plant produces. For example, 
wheat plants grown at a low population density produce a high number of tillers 
and vice versa. To a large extent, the number of tillers that a wheat plant produces 
can be traced back to the degree of intra-specific competition for light at the early 
stages of vegetative growth, when the axillary buds break and tillers are being 
formed.

15.9.2 � Social and Environmental Interactions

With the global population increase, climate change, and decrease in arable areas, 
identifying new approaches to increase crop productivity is one critical global chal-
lenge. Developing the next generation of crop and agro-ecosystem models can help 
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us identify better farming practices and breeding targets for increased productivity. 
It can also be helpful in the studies on the mechanistic basis behind observable 
macroscopic phenotypes, and predict responses of plants or crops to future climate 
change. The next generation crop and agro-ecosystem models will incorporate re-
cent advances of mechanisms underlying many aspects of crop growth and develop-
ment, and interactions between plants and their environments [5].

Developing the next generation crop and agro-ecosystem models requires close 
collaboration between scientists in different disciplines such as agronomy, math-
ematics, computer science, plant sciences, soil sciences, geology, and social sci-
ences. Such models will play an important role in precision agriculture, where the 
bottleneck is the lack of robust models of interaction of plants with their environ-
ments. These interactions are essential to ensure that technical innovations are so-
cioeconomically viable and will eventually be implemented to the benefit of farm-
ers, consumers, and policy makers.

15.9.3 � Genomics and Crop Modeling

In view of the potential added value of robust crop modeling to classical quanti-
tative genetics, model-input parameters are considered to represent genetic coef-
ficients. A number of case studies, in which the effects of quantitative trait loci or 
genes have been incorporated into existing models to replace model input, have 
shown promise of using these models in analyzing genotype–phenotype relation-
ships of complex crop traits [34]. Studies of functional genomics will increasingly 
enable the elucidation of the molecular genetic basis of these model-input traits. 
Modeling of crop systems biology, which combines modern genomics, traditional 
physiology, and biochemistry is expected to realize the roles of in-silico modeling 
in narrowing genotype–phenotype gaps. Modeling tools based on crop systems bi-
ology can generate important insights to investigate important societal issues, such 
as improving food security or zinc supply for human nutrition [35].

15.9.4 � Microscale Modeling of Crop Growth Components

Components such as CO2 diffusion, light propagation in leaves, nutrient disper-
sion in the soil, ecohydrological processes, etc. affect crop production. Studies on 
individual crop growth elements at microscale are useful to breed crops for chang-
ing climate conditions resulting into severe drought and severe flooding. The mi-
croscale studies are also useful for agricultural and environmental policy makers 
concerned with dispersion of pollutants and fertilizers in the environments. Crop 
growth models are useful tools for the microscale studies on the effects of the in-
dividual elements on crop productivity. One example of such a study is the inves-
tigation of transport of CO2 in leaves by combining a two-dimensional, microscale 
model with photosynthesis kinetics in wheat leaves [36].
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15.10 � Summary

Increase in the world population demands increase in the agricultural production 
for food, fiber, and industrial use. This demands efficient management of resources 
to increase crop productivity. Precision agriculture requires pertinent technologies, 
such as crop growth models to facilitate measured amounts of inputs to obtain de-
sired quantity and quality of crop output. Crop growth model-based decision sup-
port systems are desirable tools to help agricultural decision makers in policy issues 
like yield forecasting, crop management, environmental issues, etc.

Crop growth simulation models integrate crop physiology, weather parameters, 
soil parameters, and management practices to simulate growth and yield of crops. 
It may not be possible to obtain all the required data for crop simulation. However, 
with the available minimum data it is possible to run the simulation models for 
desired applications. Crop simulation models compute growth values on a day 
to day basis using the relations among values of crop growth and weather pa-
rameters. The crop-specific model design results in poor modularity and prevents 
model sharing. A generic model can be developed using common crop physiologi-
cal processes.

Validating and fine-tuning of crop model is an important step before using it for 
actual prediction tasks. A number of crop growth models have been developed since 
1980s; many are generic models applicable to various crops. Future crop models 
should incorporate improved mechanism of interaction with environment and so-
ciety. Crop models would be more helpful in breeding programs, if model param-
eters could be linked to genetic information. Microscale studies on individual crop 
growth components such as nutrient dispersion, CO2 diffusion, subsurface water 
movement are possible with crop growth models.
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