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Abstract This paper is devoted to the numerical solution of the interaction of
compressible viscous flow with elastic structures. The flow in a time-dependent
domain is described by the compressible Navier-Stokes equations written in the ALE
formulation and the deformation of elastic structures is described by the dynamic
linear elasticity system. For each individual problem we employ the discretization
by the space-time discontinuous Galerkin finite element method (ST-DGM). The
flow and elasticity problems are coupled via transmission conditions. The developed
method is tested by numerical experiments.

1 Formulation of the Problem

1.1 Flow Problem

We are concerned with the problem of compressible flow in a time-dependent
bounded domain Ωt ⊂ IR2 with t ∈ [0, T ] . The boundary of Ωt is formed by
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three disjoint parts: ∂Ωt = ΓI ∪ ΓO ∪ ΓWt , where ΓI is the inlet, ΓO is the outlet
and ΓWt represents impermeable time-dependent walls.

The time dependence of the domain Ωt is taken into account with the aid of
the Arbitrary Lagrangian-Eulerian (ALE) method (see, e.g., [4]). It is based on a
regular one-to-one ALE mapping of the reference configuration Ω0 onto the current
configuration Ωt : At : Ω̄0 −→ Ω̄t , i.e. X ∈ Ω̄0 �−→ x = x(X, t) = At (X) ∈
Ω̄t . Further, we define the domain velocity z̃(X, t) = ∂

∂t At (X), t ∈ [0, T ] , X ∈
Ω0, z(x, t) = z̃(A−1

t (x), t), t ∈ [0, T ] , x ∈ Ωt and the ALE derivative of the

state vector function w = w(x, t) defined for x ∈ Ωt and t ∈ [0, T ]: DA
Dt w(x, t) =

∂w̃
∂t (X, t), w̃(X, t) = w(At (X), t), X ∈ Ω0, x = At (X). Then the continuity

equation, the Navier-Stokes equations and the energy equation can be written in the
ALE form

DAw

Dt
+

2∑

s=1

∂gs(w)

∂xs
+ wdivz =

2∑

s=1

∂Rs(w,∇w)

∂xs
, (1)

where w = (ρ, ρv1, ρv2, E)T ∈ IR4, gs(w) = f (w)s − zsw, f s = (ρvs, ρv1vs +
δ1s p, ρv2vs + δ2s p, (E + p)vs)

T , Rs(w,∇w) = (0, τ V
s1, τ

V
s2, τ

V
s1v1 + τ V

s2v2 +
k ∂θ

∂xs
)T , s = 1, 2, τ V

i j = λδi j divv + 2μdi j (v), di j (v) = 1
2

(
∂vi
∂x j

+ ∂v j
∂xi

)
, i, j =

1, 2. We have Rs(w,∇w) = ∑2
k=1 Ks,k(w)∂w

∂xk
, where Ks,k(w) are 4 × 4 matrices

depending on w, and f s(w) = A(w)w with A(w) = D f s(w)/Dw.
The following notation is used: ρ—fluid density, p—pressure, E—total energy,

v = (v1, v2)—velocity vector, θ—absolute temperature, cv > 0—specific heat
at constant volume, γ > 1—Poisson adiabatic constant, μ > 0,λ = −2μ/3—
viscosity coefficients, k > 0—heat conduction coefficient, τ V

i j —components of the
viscous part of the stress tensor. System (1) is completed by the thermodynamical

relations p = (γ − 1)
(

E − ρ |v|2
2

)
, θ = 1

cv

(
E
ρ − |v|2

2

)
and equipped with the

initial condition w(x, 0) = w0(x), x ∈ Ω0 and the boundary conditions:

ρ = ρD, v = vD,
∑2

j=1

(∑2
i=1 τ V

i j ni

)
v j + k ∂θ

∂n = 0 on the inlet ΓI ,

v = zD(t) = velocity of a moving wall, ∂θ
∂n = 0, on the moving wall ΓWt ,∑2

j=1 τ V
i j n j = 0, ∂θ

∂n = 0, i = 1, 2, on the outlet ΓO ,
with prescribed data ρD, vD, zD. By n we denote the unit outer normal.

1.2 Elasticity Problem

We consider an elastic body Ωb ⊂ IR2, which has a common boundary Γ b
N with the

reference domain Ω0 occupied by the fluid at the initial time. Further, the boundary
of Ωb is formed by two disjoint parts ∂Ωb = Γ b

N ∪ Γ b
D, Γ b

N ⊂ ΓW0 and Γ b
D is

a fixed part of the boundary. Using the notation of the displacement of the body
u = u(X, t), X ∈ Ωb, t ∈ (0, T ) we can write the equations describing the defor-
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mation of the elastic body Ωb in the form

ρb ∂2u
∂t2 + cMρb ∂u

∂t
− div σ(u) − cK

∂

∂t
div σ(u) = f in Ωb × (0, T ), (2)

u = uD in Γ b
D × (0, T ), σ(u) · n = gN in Γ b

N × (0, T ), (3)

u(x, 0) = u0(x), x ∈ Ωb,
∂u
∂t

(x, 0) = z0(x), x ∈ Ωb. (4)

Here σ(u) = {σi j }2
i, j=1, σi j = λbdivuδi j + 2μbeb

i j (u) with eb
i j (u) = (∂ui/∂x j +

∂u j/∂xi )/2. Further, f : Ωb × (0, T ) → R
2—outer volume force, uD : Γ b

D ×
(0, T ) → R

2—boundary displacement, gN : Γ b
N ×(0, T ) → R

2—boundary normal
stress, u0 : Ωb → R

2—initial displacement, z0 : Ωb → R
2—initial deformation

velocity and ρb > 0—material density are given functions. The expressions cMρb ∂u
∂t

and cK
∂
∂t div σ(u) represent the damping terms, with cM , cK ≥ 0.

The flow and structural problems are coupled by the transmission conditions

v = ∂u
∂t

,

2∑

j=1

σi j (X, t)n j (X) = −
2∑

j=1

τ
f

i j (x, t)n j (X), i = 1, 2, (5)

X ∈ Γ b
N , x = X + u(X, t), τ

f
i j = −p δi j + τ V

i j .

2 Discrete Problem

2.1 Discretization of the Flow Problem

The problem will be discretized by the space-time discontinuous Galerkin method
(ST-DGM). We construct a polygonal approximation Ωht of the domain Ωt . By Tht

we denote a partition of the closure Ωht of the domain Ωt into a finite number of
closed triangles K with mutually disjoint interiors such that Ωht = ⋃

K∈Tht
K .

ByFh ,F B
h ,F I

h we denote the systems of all faces of all elements K ∈ Tht , bound-
ary faces and inner faces, respectively. Further, we introduce the set of “Dirichlet”
boundary faces FD

h = {Γ ∈ F B
h ; a Dirichlet condition is prescribed on Γ }. Each

face Γ is associated with a unit normal nΓ , which has the same orientation as the
outer normal on Γ ∈ F B

h . We set hΓ = length of Γ ∈ Fh .
We introduce the space of piecewise polynomial functions Sr

ht = {v; v|K ∈
Pr (K ) ∀ K ∈ Tht }4, where r > 0 is an integer and Pr (K ) denotes the space of all
polynomials on K of degree ≤ r . A function ϕ ∈ Sr

ht is, in general, discontinuous

on interfaces Γ ∈ F I
h . By ϕ

(L)
Γ and ϕ

(R)
Γ we denote the values of ϕ ∈ Sr

ht on Γ from

the side of the element K (L)
Γ and K (R)

Γ adjacent to Γ lying in the opposite direction

to nΓ and in the direction of nΓ , respectively. Then we set 〈ϕ〉Γ = (ϕ
(R)
Γ +ϕ

(L)
Γ )/2

and [ϕ]Γ = ϕ
(L)
Γ − ϕ

(R)
Γ .
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The discrete problem is derived in the following way: We multiply system (1) by a
test function ϕh ∈ Sr

ht , integrate over K ∈ Tht , apply Green’s theorem, sum over all
elements K ∈ Tht , use the concept of the numerical flux and introduce suitable terms
mutually vanishing for a regular exact solution and linearize the resulting forms (see,
e.g. [1, 3]). In this way we get the following forms:

âh(wh,wh,ϕh, t) =
∑

K∈Tht

∫

K

2∑

s=1

2∑

k=1

Ks,k(wh)
∂wh

∂xk
· ∂ϕh

∂xs
dx (6)

−
∑

Γ ∈F I
ht

∫

Γ

2∑

s=1

〈
2∑

k=1

Ks,k(wh)
∂wh

∂xk

〉
(nΓ )s · [ϕh] dS

−
∑

Γ ∈FD
ht

∫

Γ

2∑

s=1

2∑

k=1

Ks,k(wh)
∂wh

∂xk
(nΓ )s · ϕh dS

− Θ
∑

Γ ∈F I
ht

∫

Γ

2∑

s=1

〈
2∑

k=1

K
T
k,s(wh)

∂ϕh

∂xk

〉
(nΓ )s · [wh] dS

− Θ
∑

Γ ∈FD
ht

∫

Γ

2∑

s=1

2∑

k=1

K
T
k,s(wh)

∂ϕh

∂xk
(nΓ )s · wh dS,

dh(wh,ϕh, t) =
∑

K∈Tht

∫

K
(wh · ϕh) divz dx, (7)

Jh(wh,ϕh, t) =
∑

Γ ∈F I
ht

∫

Γ

μCW

hΓ

[wh] · [ϕh] dS +
∑

Γ ∈FD
ht

∫

Γ

μCW

hΓ

wh · ϕh dS,

(8)

�h(wh,ϕh, t) =
∑

Γ ∈FD
ht

∫

Γ

μCW

hΓ

wB · ϕh dS (9)

− Θ
∑

Γ ∈FD
ht

∫

Γ

2∑

k=1

K
T
k,s(wh)

∂ϕh

∂xk
(nΓ )s · wB dS,

b̂h(wh,wh,ϕh, t) = (10)
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−
∑

K∈Thtk+1

∫

K

2∑

s=1

((As(wh(x)) − zs(x)I)wh(x)) · ∂ϕh(x)

∂xs
dx

+
∑

Γ ∈F I
ht

∫

Γ

(
P

+
g

(〈
wh

〉
Γ

, nΓ

)
w

(L)
h + P

−
g

(〈
wh

〉
Γ

, nΓ

)
w

(R)
h

)
· [ϕh] dS

+
∑

Γ ∈F B
ht

∫

Γ

(
P

+
g

(〈
wh

〉
Γ

, nΓ

)
w

(L)
h + P

−
g

(〈
wh

〉
Γ

, nΓ

)
w

(R)
h

)
· ϕh dS,

CW > 0 is a sufficiently large constant. We set Θ = 1 or Θ = 0 or Θ = −1
and get the so-called symmetric version (SIPG) or incomplete version (IIPG) or
nonsymmetric version (NIPG), respectively, of the discretization of viscous terms.
The symbols P+

g (w, n) and P
−
g (w, n) denote the “positive” and “negative” parts of

the matrix Pg(w, n) = ∑2
s=1(As(w) − zsI)ns defined, e.g., in [2]. The boundary

state wB is defined on the basis of the prescribed Dirichlet boundary conditions and
extrapolation.

For the space-time discretization we consider a partition 0 = t0 < t1 < . . . <

tM = T of the time interval [0, T ] and denote Im = (tm−1, tm), τm = tm − tm−1, for
m = 1, . . . , M.We define the space Srq

hτ = {
φ ; φ|Im

= ∑q
i=0 ζiφi , where φi ∈ Sr

ht ,

ζi ∈ Pq(Im)}2 with integers r, q ≥ 1. Pq(Im) denotes the space of all polynomials in
t on Im of degree ≤ q. For ϕ ∈ Srq

hτ we set ϕ±
m = ϕ(t±m ) = limt→tm± ϕ(t), {ϕ}m =

ϕ+
m − ϕ−

m . The initial state whτ (0−) ∈ Sp
h0 is defined as the L2(Ωh0)-projection

of w0 on Sr
h0. Moreover, we introduce the prolongation whτ (t) of whτ |Im−1 on the

interval Im . By (·, ·)t we denote the L2(Ωht )-scalar product.
Now the space-time DG approximate solution is defined as a function whτ ∈ Srq

hτ
satisfying the following relation for m = 1, . . . , M :

∫

Im

((
DAwhτ

Dt
(t),ϕhτ

)

t

+ âh(whτ ,whτ ,ϕhτ , t)

)
dt (11)

+
∫

Im

(
b̂h(whτ ,whτ ,ϕhτ , t) +

∫

Im

Jh(whτ ,ϕhτ , t)

)
dt

+({whτ }m−1,ϕhτ (tm−1+)) =
∫

Im

�h(wh D,ϕhτ , t) dt, ∀ϕhτ ∈ Srq
hτ .

2.2 Discretization of the Elasticity Problem

The elasticity problem will also be discretized by the ST-DGM. To this end, the
problem is reformulated as a couple of equations of the first order in time: find
functions u and z : Ωb × [0, T ] → R

2 such that
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ρb ∂z
∂t

+ cρb z − div σ(u) = f in Ωb × (0, T ), (12)

∂u
∂t

− z = 0 in Ωb × (0, T ), (13)

u = uD in Γ b
D × (0, T ), σ(u) · n = gN in Γ b

N × (0, T ), (14)

u(x, 0) = u0(x), z(x, 0) = z0(x), x ∈ Ωb. (15)

Now we proceed in a similar way as in Sect. 2.1. By Ωb
h we denote a polygonal

approximation of the domain Ωb. The sets Γ b
Dh , Γ b

Nh ⊂ ∂Ωb
h will approximate Γ b

D

and Γ b
N . Let T b

h be a partition of the closure Ω
b
h We define the finite dimensional

space Sb
hs = {

v ∈ L2(Ωb
h ); v|K ∈ Ps(K ), K ∈ T b

h

}2
, where s > 0 is an integer.

By Fb
h ,FbD

h ,FbN
h ,FbI

h we denote the system of all faces of all elements K ∈ T b
h ,

boundary Dirichlet, Neumann faces and inner faces. If we introduce the forms

ab
h(u, v) =

∑

K∈T b
h

∫

K
σ(u) : e(v) dx −

∑

Γ ∈FbI
h

∫

Γ

(〈σ(u)〉 · n) · [v] dS (16)

−
∑

Γ ∈FbD
h

∫

Γ

(σ(u) · n) · v dS − Θ
∑

Γ ∈FbI
h

∫

Γ

(〈σ(v)〉 · n) · [u] dS

− Θ
∑

Γ ∈FbD
h

∫

Γ

(σ(v) · n) · u dS,

J b
h (u, v) =

∑

Γ ∈FbI
h

∫

Γ

Cb
W

hΓ

[u] · [v] dS +
∑

Γ ∈FbD
h

∫

Γ

Cb
W

hΓ

u · v dS, (17)

�b
h(v)(t) =

∑

K∈T b
h

∫

K
f (t) · v dx +

∑

Γ ∈FbN
h

∫

Γ

gN (t) · v dS (18)

− Θ
∑

Γ ∈FbD
h

∫

Γ

(σ(v) · n) · uD(t) dS +
∑

Γ ∈FbD
h

∫

Γ

Cb
W

hΓ

uD(t) · v dS,

(u, v)Ωb
h

=
∫

Ωb
h

u · v dx =
∑

K∈T b
h

∫

K
u · v dx, (19)

where Cb
W > 0 is a sufficiently large constant, Θ = 1, Θ = 0 or Θ = −1 and

Sb,sq
hτ = {

v ∈ L2(Ωb
h × (0, T ); v|Im = ∑q

i=0 t iϕi with ϕi ∈ Sb
hs, m = 1, . . . , M

}2
,

the ST-DG approximate solution can be defined as a couple uhτ , zhτ ∈ Sb,sq
hτ such

that
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(a)
∫

Im

(
ρb(∂zhτ

∂t
, vhτ

)
Ωb

h
+ C

(
ρb zhτ , vhτ

)

Ωb
h

+ ab
h(uhτ , vhτ ) (20)

+J b
h (uhτ , vhτ )

)
dt + ({uhτ }m−1, vhτ (tm−1+))Ωb

h

=
∫

Im

�(vhτ ) dt ∀vhτ ∈ Sb,sq
hτ ,

(b)

∫

Im

((
∂uhτ

∂t
,whτ

)

Ωb
h

− (zhτ ,whτ )Ωb
h

)
dt

+({uhτ }m−1,whτ (tm−1+))Ωb
h

= 0 ∀whτ ∈ Sb,sq
hτ ,

m = 1, . . . , M.

The initial states uh(0−), zh(0−) ∈ Sb
hs are defined by (uh(0−), vh)Ωb

h
=

(u0, vh)Ωb
h
), (zh(0−), vh)Ωb

h
= (z0, vh)Ωb

h
for all vh ∈ Sb

hs .
In the FSI problem the coupling of the discrete flow problem (11) and structural

problem (20) are realized via the discrete version of transmission conditions (5). The
coupled problem is solved with the aid of the following coupling procedure.

1. Assume that the approximate solution of the flow problem on the time level tk
is known as well as the deformation of the structure uh,k .

2. Set u0
h,k+1 := uh,k, l := 1 and apply the iterative process:

a. Compute the stress tensor τ
f

i j and the aerodynamical force acting on the

structure and transform it to the interface Γ b
Nh .

b. Solve the elasticity problem, compute the deformation ul
h,k+1 at time tk+1

and approximate the domain Ω l
htk+1

.

c. Determine the ALE mapping Al
tk+1h and approximate the domain velocity

zl
h,k+1.

d. Solve the flow problem on the approximation of Ω l
htk+1

.

e. If the variation of the displacement ul
h,k+1 and ul−1

h,k+1 is larger than the
prescribed tolerance, go to (a) and l := l + 1. Else k := k + 1 and goto (2).

This represents the so-called strong coupling. If in the step (e) we set k := k + 1 and
go to (2) already in the case when l = 1, then we get the weak (loose) coupling.

3 Numerical Results

We consider a 2D model of gas flow past an elastic airfoil. For testing our method
we assume that the material of the airfoil is very soft. It is characterized by the Lamè
parametres λb = 2 · 107 Pa and μb = 5 · 106 Pa. The structural damping coefficients
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Fig. 1 Triangulation at time t = 0 used for the computation of fluid flow and triangulation for the
elasticity problem

Fig. 2 Visualization of velocity vectors and of the deformed elastic airfoil at time t = 0.15 s

are chosen as cM = 0.1 s−1 and cK = 0.1 s and the material density is given by
ρb = 104 kg m−3.

The fluid flow simulation was carried out using the following data: μ = 1.72 ·
10−5 kg m−1.s, far-field pressure p = 101250 Pa, far-field densityρ = 1.225 kg m−3,
Poisson adiabatic constant γ = 1.4, specific heat cv = 721.428 m2 s−2

K−1, heat conduction coefficient k = 2.428 · 10−2 kg m . s−2 K−1. The far-field
velocity was 40 m s−1. Figure 1 shows the triangulation at the initial time t = 0.

Fluid flow is solved by the ST-DGM with quadratic polynomials in space and
linear polynomials in time. For the elasticity problem we also used the ST-DGM, but
with linear polynomials in space and constant polynomials in time. For both problems
the non-symmetric version (NIPG) was used. For flow problem we set CW = 1000
on the interior elements and CW = 10000 on the boundary elements in order to keep
the prescribed Dirichlet boundary conditions, particularly in the boundary layer. For
elasticity we set Cb

W = 1010 in order to match the magnitude of the Lamè parametres.
We used the time step τ = 2.25 · 10−6 s. The strong coupling was used for the FSI
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process. The accuracy 10−6 was achieved with at most 5 iteration on each time level.
Figure 2 shows the visualization of the deformed airfoil and the velocity vectors.

Acknowledgments This work was supported by the grants P101/11/0207 (J. Horáček) and 13-
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3. Feistauer, M., Horáček, J., Kučera, V., Prokopová, J.: On numerical solution of compressible
flow in time-dependent domains. Mathematica Bohemica 137, 1–16 (2011)

4. Nomura, T., Hughes, T.J.R.: An arbitrary Lagrangian-Eulerian finite element method for inter-
action of flow and a rigid body. Comput. Meth. Appl. Mech. Eng. 95, 115–138 (1992)


	56 Numerical Solution of Fluid-Structure Interaction by the Space-Time Discontinuous Galerkin Method
	1 Formulation of the Problem
	1.1 Flow Problem
	1.2 Elasticity Problem

	2 Discrete Problem
	2.1 Discretization of the Flow Problem
	2.2 Discretization of the Elasticity Problem

	3 Numerical Results
	References


