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Preface

The finite volume method in its various forms is a space discretization technique
for partial differential equations based on the fundamental physical principle of
conservation. It has been used successfully in many applications, including fluid
dynamics, magnetohydrodynamics, structural analysis, nuclear physics, and
semiconductor theory. Recent decades have brought significant success to the
theoretical understanding of the method. Many finite volume methods preserve
further qualitative or asymptotic properties, including maximum principles,
dissipativity, monotone decay of the free energy, and asymptotic stability.

Due to these properties, finite volume methods belong to the wider class of
compatible discretization methods, which preserve qualitative properties of
continuous problems at the discrete level. This structural approach to the
discretization of partial differential equations becomes particularly important for
multiphysics and multiscale applications.

The triennial series of conferences ‘‘International Symposium on Finite
Volumes for Complex Applications—Problems and Perspectives (FVCA)’’ brings
together mathematicians, physicists, and engineers interested in this kind of
physically motivated discretization. Contributions to the further advancement of
the theoretical understanding of suitable finite volume, finite element, discontin-
uous Galerkin and other discretization schemes, and the exploration of new
application fields have been welcomed.

Previous conferences on this series have been held in Rouen (1996), Duisburg
(1999), Porquerolles (2002), Marrakech (2005), Aussois (2008), and Prague
(2011).

The present volumes contain the invited and contributed papers presented as
posters or talks at the Seventh International Symposium on Finite Volumes for
Complex Applications held in Berlin, June 15–20, 2014.

The contributions in the first volume deal with the theoretical aspects of the
method. They focus on topics such as preservation of physical properties on the
discrete level, convergence, stability and error analysis, physically consistent
coupling between discretizations for different processes, connections to other
discretization methods, the relationship between grids and discretization schemes,
complex geometries and adaptivity shock waves and other flow discontinuities,
new and existing schemes and their limitations, and bottlenecks in the solution of
large-scale problems.
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As described, finite volume and related methods are of great practical value, as is
demonstrated by the contributions to the second volume of the proceedings. Fields
of application include atmospheric and ocean modeling, chemical engineering and
combustion energy generation and storage, electro-reaction-diffusion systems, and
porous media.

The volume editors thank the authors for their high quality contributions, the
members of the program committee for supporting the organization of the review
process, and all reviewers for their thorough work on the evaluation of each of the
contributions.

The production of the proceedings was continuously supported by the Editor’s
team at Springer Verlag.

Without the financial contributions of the Deutsche Forschungsgemeinschaft
(DFG), the Weierstrass Institute for Applied Analysis and Stochastics, the DFG
Priority Program 1276 ‘‘Metström,’’ the Westfälische Universität Münster, the
Stuttgart Research Centre for Simulation Technology (Simtech) and the Czech
Technical University of Prague, the organization of the conference and the
production of the proceedings would not have been possible.

The Berlin Brandenburgische Akademie der Wissenschaften provided an
impressive conference venue in the center of Berlin.

Finally, we thank the local organizers and the staff at the Weierstrass Institute
for Applied Analysis and Stochastics for carrying the main organizational burden
and for providing a friendly atmosphere at the conference.

March 2014 Jürgen Fuhrmann
Mario Ohlberger
Christian Rohde
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Elliptic and Parabolic Problems



Asymptotic-Preserving Methods
for an Anisotropic Model of Electrical
Potential in a Tokamak

Philippe Angot, Thomas Auphan and Olivier Guès

Abstract A 2D nonlinear model for the electrical potential in the edge plasma in a
tokamak generates a stiff problem due to the low resistivity in the direction parallel to
the magnetic field lines. An asymptotic-preserving method based on a micro-macro
decomposition is studied in order to have a well-posed problem, even when the
parallel resistivity goes to 0. Numerical tests with a finite difference scheme show
a bounded condition number for the linearised discrete problem solved at each time
step, which confirms the theoretical analysis on the continuous problem.

MSC2010: 00B25, 41A60, 65M30

1 Introduction

The fusion reaction can be performed using a tokamak, a machine whose shape is
toroidal. The plasma is confined and warmed in the core of the tokamak to produce
the fusion reaction. This technique is expected to maintain the fusion reaction during
a long time (more than five minutes, for the ITER project).

One of the main challenges for this objective is to control the wall-plasma inter-
actions. Indeed, the magnetic confinement is not perfect and the plasma is in contact
with the wall. In a tokamak such as TORE SUPRA, an obstacle called the limiter,
is settled at the bottom of the machine. Due to the strong magnetic confinement, the
plasma transport essentially occurs along the magnetic field lines. Thus, the parallel
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Fig. 1 Schematic representa-
tion of the 2D domain

resistivity η is very small (typically, η = 10−6), generating a strong anisotropy in
the model. The area where the magnetic lines are interrupted by the limiter is called
the scrape-off layer. The numerical simulation of the edge plasma transport allows
us to better understand the interactions with the wall.

2 Anisotropic Model of the Electrical Potential

In this paper, we focus on a 2D model of the electrical potential of the edge plasma φη

in a tokamak with a limiter configuration. A schematic representation of the domain
is given in Fig. 1. The x axis corresponds to the curvilinear coordinates along a
magnetic field line and the y axis is the radial direction. In the following equations,
the curvature terms have been neglected. As the magnetic field lines above the limiter
set are closed, periodic boundary conditions are imposed at x = ±0.5.

The dimensionless problem for the electrical potential reads:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−∂t∂
2
yφη − 1

η
∂2

x φη + ν∂4
yφη = S in ]0, T [×Ω

∂yφη|t=0 = ∂yφini in Ω

∂yφη|Σ∨ = 0 and ∂3
yφη|Σ∨ = 0 on ]0, T [×Σ∨

∂xφη|x=−L = η
(
1 − eΛ−φη|x=−L

)
on ]0, T [×]0, l[×{−L}

∂xφη|x=L = −η
(
1 − eΛ−φη|x=L

)
on ]0, T [×]0, l[×{L},

(1)

where ν corresponds to the ionic viscosity in the perpendicular direction and Λ stands
for the reference potential inside the limiter. The initial condition is ∂yφη|t=0 =
∂yφini . Negulescu et al. [4] proved that, for a fixed value of η > 0, the problem (1)
admits a unique weak solution, under suitable hypotheses on the data φini and S.

The boundary conditions at the limiter interface x = ±L , are nonlinear. Setting
directly η = 0 in the system (1) (after multiplying the first equation by η) leads to an
under-determined problem since there are only homogeneous Neumann boundary
conditions at the limiter surface x = ±L . Thus, when η is small the numerical reso-
lution of the problem (1) becomes stiff. This issue can be avoided by reformulating
the problem (1) thanks to asymptotic-preserving methods.
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3 The Micro-Macro Asymptotic-Preserving Method

We study the Asymptotic-Preserving (AP) method introduced by Degond et al. [3]
for a linear anisotropic elliptic problem. It consists in a decomposition of the solution
φη as φη = pη + ηqη where ∂x pη = 0 and qη|x=−L = 0. Then, it yields the problem
below where the unknowns are (φη, qη):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂t∂
2
yφη − ∂2

x qη + ν∂4
yφη = S in ]0, T [×Ω

∂2
x φη = η∂2

x qη in ]0, T [×Ω

∂xφη|x=−L = η∂x qη|x=−L on ]0, T [×]0, l[×{−L}
∂xφη|x=L = η∂x qη|x=L on ]0, T [×]0, l[×{L}
∂xφη|x=−0.5 = η∂x qη|x=−0.5 on ]0, T [×]l, 1[×{−0.5}
∂xφη|x=0.5 = η∂x qη|x=0.5 on ]0, T [×]l, 1[×{0.5}
∂yφη|t=0 = ∂yφini in Ω

∂yφη|Σ∨ = 0 and ∂3
yφ|Σ∨ = 0 on ]0, T [×Σ∨

∂x qη|x=−L = (
1 − eΛ−φη|x=−L

)
on ]0, T [×]0, l[×{−L}

∂x qη|x=L = − (
1 − eΛ−φη|x=L

)
on ]0, T [×]0, l[×{L},

(2)

One important advantage of this AP method is that it can be easily implemented even
if the mesh is not aligned with the directions (Ox) and (Oy). The main drawback is
the need to compute two unknowns (φη and qη) on the 2D domain though only φη is
interesting for the physics.

Let us give the theoretical result which ensures that the modified problem is well-
posed for η = 0, and that φη converges towards φ0. First, we provide the definitions
of the spaces used for the variational formulation of the problem (2).

Definition 1 Let us define the following Hilbert spaces:

• V =
{

f ∈ H1(Ω), ∂2
y f ∈ L2(Ω), f periodic on {−0.5, 0.5}×]l, 1[, ∂y f = 0

on Σ∨
}

with the scalar product:

⊃ f, u⊂V =
∫

Ω

∂x f ∂x u dydx +
∫

Ω

∂2
y f ∂2

y u dydx + 2
∫ l

0
f|x=L u|x=L dy.

• Q = {
f ∈ L2(Ω), ∂x f ∈ L2(Ω), f|x=−L = 0 on ]0, 1[}, with the scalar product:

⊃ f, u⊂Q =
∫

Ω

∂x f ∂x u dydx .

Definition 2 The space A is the set of functions φ such that:

• φ ∈ L2(0, T ; V ).
• ∂yφ ∈ L∞(0, T ; L2(Ω)).

• ∂yφ ∈ L2
⎜

0, T ; { f ∈ H1(Ω), ∂2
y f ∈ L2(Ω), f|Σ∨ = 0}

⎟
.



474 P. Angot et al.

• ∂2
yφ ∈ L∞(0, T ; L2(Ω)).

• ∂tφ ∈ L2(0, T ; V ).
• ∂y∂tφ ∈ L∞(0, T ; L2(Ω)).

The weak solution φη of (2) is then searched in the space A .

Assumption 31 Assume that S and φini verify:

1. S, ∂y S, ∂2
y S, ∂t S, ∂2

t S ∈ L2(]0, T [×Ω), ∨S∨L∞(]0,T [×Ω) ≤ Cs and
∨S|t=T ∨L∞(Ω) ≤ Cs with Cs sufficiently small.

2. φini ∈ H4(Ω).
3. φini does not depend on x.

4.
∫

Ω

S|t=0 dydx = ν

∫

Ω

∂4
yφini dydx + 2

∫ l

0

(
1 − eΛ−φini |x=L

)
dy.

The two last hypotheses are compatibility conditions for the initial and boundary
conditions with the source term.

We can now write the theorem which asserts the convergence of φη to φ0 when η

goes to 0:

Theorem 1 With the assumption 3.1, the weak formulation of (2):
find (φη, qη) ∈ A × L2(0, T ; Q) verifying

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀ξ ∈ H1(]0, T [),∀u ∈ V ∩ H2(Ω),∀w ∈ Q,
∫

Ω

∂yφη|t=T ∂yu dydxξ(T ) −
∫ T

0

∫

Ω

∂yφη|t=T ∂yu dydx ξ → dt

+
∫ T

0

∫

Ω

∂x qη ∂x u dydx ξdt + ν

∫ T

0

∫

Ω

∂2
y φη ∂2

y u dydx ξ dt

+
∫ T

0

∫ l

0

(
1 − eΛ−φη|x=−L

)
u|x=−L dy ξ dt +

∫ T

0

∫ l

0

(
1 − eΛ−φη|x=L

)
u|x=L dy ξ dt

=
∫

Ω

∂yφini ∂yu dydx ξ(0) +
∫ T

0

∫

Ω

S u dydx ξ dt

η

∫ T

0

∫

Ω

∂x qη ∂x w dydx ξ dt =
∫ T

0

∫

Ω

∂xφη ∂x w dydx ξ dt,

(3)

admits a unique solution. Besides, (φη, qη) converges weakly in L2(]0, T [×Ω)2,
towards (φ0, q0) ∈ A × L2(0, T ; Q) the solution of (3) when η equals 0.

Finally, the following error estimate holds:

∨φη − φ0∨L1(0,T ;L2(Ω)) ≤ c(T,Ω, φ0, S,Λ)
√

η,

where c(T,Ω, φ0, S,Λ) > 0 does not depend on η.

Theorem 1 provides an error estimate for the norm in L1(0, T ; L2(Ω)), but not for
the L2(]0, T [×Ω) norm. This point can be subject to further improvements.

This result is shown in [1, 2]. The proof of the existence and uniqueness of φ0
follows the same steps of [4], based on a fixed point method. The existence and
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uniqueness of q0 and the convergence of (φη, qη) when η goes to 0 are shown by
extending to a nonlinear case the proof provided in [3] for a linear elliptic problem.

4 Numerical Experiments

In this section, some numerical tests are presented for the system (2). The space
discretisation is done by the centred finite difference scheme. The time resolution
uses Euler semi-implicit method.

At first glance, a directional splitting method seems to be interesting. But, the
discrete problems obtained in the directions x and y are not invertible. The problem
is thus discretised implicitly, except for the nonlinear term. At each time step, a linear
system has to be solved to compute the approximations of φη and qη.

Let us consider a rectangular mesh of the space domain Ω with a constant mesh
step δx (for the direction (Ox)) and δy (for the direction (Oy)). The time step
writes δt . The scalar quantities φn

i, j , qn
i, j stands respectively for the approximations

of φη(nδt,−0.5 + iδx, jδy) and qη(nδt,−0.5 + iδx, jδy). The boundary condition
at x = −L is discretised as:

qn+1
I1+1, j − qn+1

I1−1, j

2δx
− φn+1

I1, j =
⎜

1 − eΛ−φn
I1, j −φn

I1, j

⎟
,

where I1 is the index such that −0.5 + I1δx = −L .
For the boundary condition at x = L , the same technique is used. This time

linearisation enables us to have an invertible matrix which is the same at each time
step.

The mesh convergence test is performed using a configuration where the limiter
goes up to the top of the computational domain, i.e. l = 1. This does not change the
results proven for l < 1. For L = 0.4, the chosen manufacturated solution is

φη(t, x, y) = η

(
t

π

)2

cos(πy) cos(1.25πx) − ln

(

1 − 1.25t2

π cos(πy)

)

+ Λ. (4)

Let us note that the source term S associated to the manufactured solution (4) depends
on η but is not singular when η goes to 0. This differs from the hypotheses made for
Theorem 1.

The plot of the approximated solution is shown in Fig. 2. Studying the L2 error in
Fig. 3, we observe that the numerical scheme is of second-order accuracy in space.

In Fig. 4, we observe that the condition number obtained with the AP method
is high but it is bounded independently from η. This is not the case for the matrix
obtained for the resolution of (1) without the asymptotic-preserving method. In order
to avoid the issues due to the bad conditioning, we choose a LU method to solve
the linear problem at each time step, which is faster than a GMRES solver with
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Fig. 2 Approximate fields of φη and qη for δx = δy = 0.003125, δt = 0.0001 and η = 0.001.
The reference solution is given by (4). Recall that the limiter area corresponds to x ≤ −0.4 and
x ≥ 0.4: the values of φη do not have any physical sense in this zone

Fig. 3 ∨φapprox
η − φη∨L2(Ω)

at t = 1 as a function of
the space step δx = δy for
different values of the time
step and η = 0.001. The
reference solution is given
by (4)

PETSc library. Finding an efficient preconditioner in order to use iterative methods
is a future enhancement of this work.

For the convergence when η tends to 0, the same domain is considered (l = 1,

L = 0.4) but another source term is chosen:

S(t, x, y) = 40 t cos(2π y) sin
⎜ π

2L
x
⎟

, φini (x, y) = Λ = 0 (5)

This configuration (5) with l = 1 leads to φ0(t, x, y) = 0, which enables us to
compute numerically ∨φη − φ0∨L1(0,T ;L2(Ω)) and ∨φη − φ0∨L2(0,T ;L2(Ω)). For these
two norms, we observe a convergence in O(η), see Fig. 5. This suggests that the
estimate of Theorem 1 might be improved.
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Fig. 4 Condition number
in the Euclidean norm as
a function of the parallel
resistivity η for the linear
system approaching (the same
at each time step) the solution
(4) with δx = δy = 0.025 and
δt = 0.001

Fig. 5 ∨φη−φ0∨L1(0,T ;L2(Ω))

(Δ) and ∨φη − φ0∨L2(]0,T [×Ω)

(+) as a function of η. The
configuration is given by
Eq. (5) with T = 1, δx =
δy = 0.003125 and δt =
0.0001

5 Conclusion

The high anisotropy of the 2D model for the edge plasma electrical potential in a
tokamak leads to an ill-conditioned matrix for the numerical approximation using
classical methods. The micro-macro decomposition induced by Degond et al. [3]
for a linear anisotropic elliptic problem is studied and analysed for the nonlinear
evolution problem of the electrical potential. This method yields a weak formulation
which is not degenerated when the parallel resistivity η tends to 0. Moreover, we
have the estimate

∨φη − φ0∨L1(0,T,L2(Ω)) = O
(√

η
)
,

which can probably be improved, as suggested by the numerical results.
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Semi-implicit Second Order Accurate
Finite Volume Method for Advection-Diffusion
Level Set Equation

Martin Balažovjech, Peter Frolkovič, Richard Frolkovič
and Karol Mikula

Abstract We present a second order accurate finite volume method for level set
equation describing the motion in normal direction with the speed depending on
external properties and curvature. A convenient combination of a Crank-Nicolson
type of the time discretization for diffusion term [1] and an Inflow Implicit and
Outflow Explicit scheme [6] for advection term is used. Numerical experiments for
an example with the exact solution derived in this paper and for examples motivated
by modeling of fire propagation in forests are presented.

1 Introduction

Although not in a divergence form, the level set equations are often solved with finite
volume methods [3–5, 8]. The basic idea behind such approaches is to rewrite the
level set equation in such a way that it can be approximated using integration by
parts. In this paper we apply such approach with an aim to suggest a second order
accurate finite volume method to solve level set equations that describe the motion in
normal direction with the speed depending on external properties and on curvature.

In the level set equation one can recognize two terms that have a character
of advection and diffusion, respectively. In [6, 7] a novel second order accurate
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Department of Mathematics, Slovak University of Technology, Radlinského 11,
813 68 Bratislava, Slovak Republic
e-mail: peter.frolkovic@stuba.sk

M. Balažovjech
e-mail: balazovjech@stuba.sk

K. Mikula
e-mail: karol.mikula@stuba.sk

J. Fuhrmann et al. (eds.), Finite Volumes for Complex Applications VII - Elliptic, 479
Parabolic and Hyperbolic Problems, Springer Proceedings in Mathematics & Statistics 78,
DOI: 10.1007/978-3-319-05591-6_47, © Springer International Publishing Switzerland 2014



480 M. Balažovjech et al.

semi-implicit finite volume discretization is used for the advection where the inflow
parts of finite volume boundaries are treated implicitly in time and the outflow parts
are treated in an explicit way. Our idea is to combine such approach with a second
order accurate approximation of the curvature term using a procedure similar to the
Crank-Nicolson method. The latter method is successfully used in a Lagrangian type
of method for curvature driven flow in [1].

In this paper we propose a particular finite volume scheme of this type. The scheme
treats the advection and diffusion fluxes in a compatible way. The resulting system of
semilinear algebraic equations has favorable properties that can be used conveniently
to solve it. When fixing the nonlinear coefficients in algebraic equations, the resulting
matrix is a M-matrix and iterative solvers like the Gauss-Seidel method can be used
to solve the linearized algebraic system.

Second order accurate methods for purely advective type of equations need in
general some stabilization (“limiter”) techniques to suppress nonphysical oscillations
in numerical solutions [4, 6, 7]. In the presence of curvature driven motion as in our
case we need not to apply such techniques if the advection is not too strong.

The paper is organized as follows. In Sect. 2 we derive briefly the level set equa-
tion that we want to solve. In Sect. 3 the finite volume method is derived. The Sect. 4
introduces a method for the solution of nonlinear algebraic equations. In Sect. 5 we
derive a representative exact solution of the level set equation and present experimen-
tal order of convergence for our numerical method. Moreover, examples motivated
by the modeling of fire front propagation in forests are presented. Finally, in Sect. 6
we conclude briefly our results.

2 Mathematical Model

Let u = u(x, t), (x, t) ∨ D × [0, T ] be the so called level set function used e.g. to
represent implicitly an evolving interface. We denote n := ∈u/|∈u| when |∈u| ⊃= 0.
Note that n(x̄) is the normal vector at x̄ to the level set given by u(x, t) = u(x̄, t).

We search u = u(x, t) for (x, t) ∨ D × (0, T ] fulfilling the level set equation

∂u

∂t
+ ( f + δk) n · ∈u = 0 , u(x, 0) = u0(x) . (1)

In (1) the term f + δk represents a speed in normal direction n with f (x) and
δ(x) > 0 being given. The function k denotes the curvature that is defined by

k = −∈ ·
⎧ ∈u

|∈u|
⎪

. (2)

Substituting (2) to (1) one obtains the nonlinear advection-diffusion level set
equation of the form
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∂u

∂t
+

⎧

f
∈u

|∈u|
⎪

· ∈u = δ|∈u|∈ ·
⎧ ∈u

|∈u|
⎪

, u(x, 0) = u0(x). (3)

3 Finite Volume Method

Before discretizing (3) we divide it by |∈u| and rewrite the advection term as in [3]
to obtain

1

|∈u|
∂u

∂t
+ ∈ ·

⎧

u f
∈u

|∈u|2
⎪

− u∈ ·
⎧

f
∈u

|∈u|2
⎪

= δ∈ ·
⎧ ∈u

|∈u|
⎪

. (4)

For simplicity we consider the domain D ⊂ R2 to be a square and the finite
volume mesh to consist of squared elements pi j , i, j = 1, 2, . . . , N having uniform
length h > 0 for all edges. The edges of pi j are denoted by lk , k ∨ Λi j where
Λi j = {(i + 1/2 j), (i j + 1/2), (i − 1/2 j), (i j − 1/2)} is the set of indices for particular edges
of pi j .

Furthermore, we consider a uniform time step Δt and tm = mΔt . The numerical
solution of (4) will be represented by the discrete unknown values um

i j that approxi-

mates u in pi j × (tm−1, tm].
The idea of a finite volume discretization for (4) is to integrate it over pi j and to

use appropriate quadrature rules that we explain for each term separately. Firstly,

⎨

pi j

1

|∈u|
∂u

∂t
dx ∞ h2

|∈u|i j

dui j

dt
, (5)

where the value |∈u|i j and the time discretization of ui j = ui j (t) will be introduced
later. Next,

⎨

pi j

∈ ·
⎧

f u
∈u

|∈u|2
⎪

dx =
⎩

k

∮

lk

⎧
f u

|∈u|2
∂u

∂n

⎪

ds ∞ h
⎩

k

(
fk ūk

|∈u|2k
∂u

∂n

∣
∣
∣
∣
lk

)

(6)

and

⎨

pi j

u∈ ·
⎧

f ∈u

|∈u|2
⎪

dx ∞ ūi j

⎨

pi j

∈ ·
⎧

f ∈u

|∈u|2
⎪

dx ∞ hūi j

⎩

k

(
fk

|∈u|2k
∂u

∂n

∣
∣
∣
∣
lk

)

.

(7)

The value fk denotes an averaged value of f at lk . Furthermore, ūk represents a
reconstructed value of u assigned to lk and ūi j is a reconstructed value of u assigned to
pi j [6, 7]. Particular choices for their computations, together with the approximations
of |∈u|k and the normal derivatives ∂u/∂n, will be introduced later.
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Finally, analogous rules are applied for the last term in (4) to obtain

⎨

pi j

δ∈ ·
⎧ ∈u

|∈u|
⎪

dx ∞ δi j

⎩

k

∮

lk

⎧
1

|∈u|
∂u

∂n

⎪

ds ∞ hδi j

⎩

k

(
1

|∈u|k
∂u

∂n

∣
∣
∣
∣
lk

)

,

(8)

where δi j is an averaged value of δ with respect to pi j .
Putting all approximations (5)–(8) together, we obtain a compact form of our

finite volume discretization method

h2

|∈u|i j

dui j

dt
− h

⎩

k

(

fk
ūi j − ūk

|∈u|2k
∂u

∂n

∣
∣
∣
∣
lk

)

= h
⎩

k

(
δi j

|∈u|k
∂u

∂n

∣
∣
∣
∣
lk

)

. (9)

We define now the missing approximations in (9). Firstly, we define uk , k ∨ Λi j

by a linear interpolation,

ui+1/2 j := ui j + ui+1 j

2
, ui−1/2 j := ui j + ui−1 j

2
, and so on.

The normal derivatives are approximated in a standard way,

∂u

∂n

∣
∣
∣
∣
li+1/2 j

∞ ui+1/2 j − ui j

h/2
= ui+1 j − ui j

h
,

∂u

∂n

∣
∣
∣
∣
li−1/2 j

∞ ui−1/2 j − ui j

h/2
, and so on.

To approximate ∈u at the edges lk of pi j , we use the diamond cell formula. To do
so we use the notation ui± 1

2 j± 1
2

for the four values of u in the corners of pi j that are
obtained as arithmetic averages

ui± 1
2 j± 1

2
:= 1

4

(
ui j + ui±1 j + ui j±1 + ui±1 j±1

)
.

Using it, we can approximate |∈u| at the edges lk , k ∨ Λi j of pi j by

|∈u|i+1/2 j ∞
⎜
⎟
⎟
√

⎧
ui+1 j − ui j

h

⎪2

+
(

ui+ 1
2 j+ 1

2
− ui+ 1

2 j− 1
2

h

)2

+ ε2, and so on.

A regularization was introduced in above formula by choosing 0 < ε << 1 to avoid
a division by zero in (9). Furthermore,

|∈u|i j ∞ 1

4

⎩

k∨Λi j

|∈u|k . (10)

Finally, we have to define in (9) the reconstructed values ūi j and ūk . Following [6]
we take simply ūi j = ui j and ūk = uk . This choice works well when the advection
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does not dominate the diffusion term in (3), in general more sophisticated choices
have to be taken into account, see [6, 7].

Summarizing all approximations used in (9) we obtain

h2

|∈u|i j

dui j

dt
= 2

⎩

k∨Λi j

1

|∈u|k
⎧

fk
ui j − uk

|∈u|k + δi j

⎪
(
uk − ui j

)
. (11)

To introduce formally a second order accurate time discretization of (11) we treat
the advection and diffusion term separately. We begin with the time discretization of
the curvature term. Inspired by [1] we use a Crank-Nicolson type of time discretiza-
tion that can be viewed as an arithmetic average of fully explicit and fully implicit
time discretization scheme,

h2

2Δt

(
1

|∈u|m+1
i j

+ 1

|∈u|mi j

)

(um+1
i j − um

i j ) =

δi j

⎩

k∨Λi j

1

|∈u|m+1
k

(
um+1

k − um+1
i j

)
+ δi j

⎩

k∨Λi j

1

|∈u|mk
(

um
k − um

i j

)
, (12)

where |∈u|mi j and |∈u|m+1
i j are computed from (10) at corresponding time levels.

To discretize the advection term in time we introduce the notation in which we
distinguish between the edges lk of pi j with an inflow and outflow character, namely

ain
k = max

(

fk
um+1

i j − um+1
k

|∈u|m+1
k

, 0

)

, aout
k = min

(

0, fk
um

i j − um
k

|∈u|mk

)

. (13)

The advection term can be approximated by the “Inflow Implicit/Outflow Explicit”
time discretization [7] to obtain

h2

2Δt

(
1

|∈u|m+1
i j

+ 1

|∈u|mi j

)

(um+1
i j − um

i j ) =

⎩

k∨Λi j

2ain
k

|∈u|m+1
k

(
um+1

k − um+1
i j

)
+

⎩

k∨Λi j

2aout
k

|∈u|mk
(

um
k − um

i j

)
. (14)

Putting (12) and (14) together we obtain

h2

2Δt

(
1

|∈u|m+1
i j

+ 1

|∈u|mi j

)
(

um+1
i j − um

i j

)
=

⎩

k∨Λi j

2ain
k + δi j

|∈u|m+1
k

(
um+1

k − um+1
i j

)
+

⎩

k∨Λi j

2aout
k + δi j

|∈u|mk
(

um
k − um

i j

)
. (15)
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4 Solution of Algebraic Equations

In this section we briefly comment how to solve the algebraic system of equations
represented by the discretization scheme (15).

The values u0
i j are computed from the initial condition. In our numerical exper-

iments we consider only the Dirichlet type of boundary conditions. Consequently,
one has to solve (15) for the unknowns {um+1

i j , i, j = 1, 2, . . . , N −1} in a sequence
for m = 0, 1 and so on.

We propose to solve (15) using a combination of fixed point iterations and Gauss-
Seidel iterative method. To introduce it we define for p = −1, 0, 1 and q = −1, 0, 1
that fulfill |p| + |q| = 1 the following coefficients

λi j = Δt
|∈ui j |m+1 + |∈ui j |m

h2 , M pq
i j = 2ain

i+p/2 j+q/2 + δi j

|∈u|m+1
i+p/2 j+q/2

(16)

Mi j =
⎩

|p|+|q|=1

M pq
i j , bi j =

⎩

|p|+|q|=1

2aout
i+p/2 j+q/2 + δi j

|∈u|mi+p/2 j+q/2

(
um

i+p j+q − um
i j

)
.

(17)

Using (16)–(17) the scheme (15) can be written in the form

um+1
i j = 1

1 + λi j Mi j

⎛

⎝um
i j + λi j

⎛

⎝bi j +
⎩

|p|+|q|=1

M pq
i j um+1

i+p j+q

⎞

⎠

⎞

⎠ . (18)

We note that the coefficients defined in (16) are nonlinear and always positive.
The iterative method consists of the following steps. Firstly, an initial guess for

the unknowns um+1
i j is set to the available values um

i j from the previous time step
or from the initial conditions if m = 0. Moreover, the coefficients bi j in (17) are
computed only once in each time step.

Each iteration of our iterative method is realized by computing the nonlinear
coefficients defined in (16) using the values computed from the previous iteration.
Fixing these coefficients one can update the values um+1

i j according to (18) for i, j =
1, 2, . . . , N − 1 by evaluating the values of um+1

i+p j+q on the right hand side of (18)
in a manner of Gauss-Seidel iterative method.

5 Numerical Experiments

At first we derive an exact solution in a simplified situation when an evolving curve
is a circle initially, and it evolves according to (1) with constant values of f and δ.
In such case the evolving curve preserves its circular shape, so it can be described
by its radius r = R(t, r0) where r0 = R(0, r0).
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Table 1 The comparison of
numerical solution obtained
with (15) with the exact
solution (20)

N Error EOC #i t

16 6.27e-2 – 26
32 1.00e-2 2.64 38
64 1.87e-3 2.42 59
128 4.41e-4 2.09 102

Let u0(r) be a given increasing function and u(x1, x2, 0) = u0(r), r =
(
x2

1 + x2
2

)1/2
. Clearly, any circle of radius r0 consists of points (x1, x2) such that

u(x1, x2, 0) = u0(r0). Our aim is to find u(x1, x2, t) such that u(x1, x2, t) = u0(r0)

for all points (x1, x2) that fulfill
(
x2 + y2

)1/2 = R(t, r0). To do so the inverse func-
tion of r = R(t, r0) with respect to r0 must exist, i.e. r0 = R−1(t, r). Once available,
one obtains u(x1, x2, t) = u0(R−1(t,

⎢
x2 + y2)).

If a circular curve expands or shrinks with a constant speed f and δ, the radius
r(t) shall fulfill the equation ṙ(t) = f + δ

r , r(0) = r0 which is solved by

R(t, r0) = δ

f
+ δ

f
W

⎧
1

δ

(
f r0 − δ

)
e

−δ+ f r0+ f 2 t
δ

⎪

(19)

where W is the product log function, i.e. W (z) is obtain such that z = W eW .

Let us choose as initial function u0(x1, x2) =
⎣

x2
1 + x2

2 . Using our approach one
obtains the solution of (3) for constant f and δ in the form

u(x1, x2, t) = δ

f
+ δ

f
W

(
1

δ

⎧

f
⎣

x2
1 + x2

2 − δ

⎪

e− δ− f
≤

x2
1 +x2

2 + f 2 t
δ

)

. (20)

In Table 1 we present the comparison of numerical solution obtained by (15) with
the exact solution (20) for f = δ = 1 and t ∨ [0, 1] using a standard l2 discrete
norm in time and space. The domain D is a square with the side length L = 8. The
Dirichlet boundary conditions defined by the available exact solution are used on
∂ D. The discretization step is taken h = 8/N for N = 16, 32, 64, 128, the time step
is chosen Δt = h/2.

One can see from Table 1 that for this example the experimental order of conver-
gence is approaching 2 from above. Moreover we present the number of iterations
for each N that were necessary to reduce the residuum below the value 10−10.

In the following illustrative examples we are motivated by numerical simulation
of fire front propagation in forests [2]. The parameter f (x) defines how fast the
underlying forest can burn and δ(x) = μ f (x) where μ > 0, so the speed in normal
direction n is given by f (x) (1 + μk).

The first example shows a behavior for inhomogeneous forest, see Fig. 1. The
second example illustrates a topological change when the evolving fire front, being
a circle initially, has to surround later a small area that can not burn, see Fig. 2.
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Fig. 1 Picture of fire front position at different time levels. The smallest circle is the initial position
of the front. The parameters are f = 1 left and f = 0.2 right, μ = 0.1

Fig. 2 Pictures of fire front position at 4 different time levels, the top row with 3D view, the bottom
row 2D view. The small black square can not burn ( f = 0), the north-east region is less burnable
( f = 0.2) than the rest ( f = 1). The small circle in 2D view is the initial position of the front

6 Conclusions

Our novel finite volume method combines conveniently explicit and implicit time
discretization to obtain the second order accurate numerical solution of level set
equation containing the terms of advection and diffusion character. For the cho-
sen representative example for which the exact solution is derived, we can report
experimental order of convergence approaching the value 2 from above.

Acknowledgments The first, second and fourth author were supported by APVV 0184-10 and
VEGA 1/1137/12.
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4. Frolkovič, P., Mikula, K.: High-resolution flux-based level set method. SIAM J. Sci. Comp.
29(2), 579–597 (2007)
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Adaptive Time Discretization and Linearization
Based on a Posteriori Estimates
for the Richards Equation

Vincent Baron, Yves Coudière and Pierre Sochala

Abstract We derive some a posteriori error estimates for the Richards equation,
based on the dual norm of the residual. This equation is nonlinear in space and in
time, thus its resolution requires fixed-point iterations within each time step. We
propose a strategy to decrease the computational cost relying on a splitting of the
error terms in three parts: linearization, time discretization, and space discretization.
In practice, we stop the fixed-point iterations after the linearization error becomes
negligible, and choose the time step in order to balance the time and space errors.

1 Introduction

We focus on water infiltration modeled by the parabolic nonlinear Richards equation,
written here on a polygonal domain η (in R

2) with a finite time horizon T > 0 and
mixed Dirichlet-Neumann boundary conditions:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φt∂(ν) − ∨ · (K(ν)∨(ν + z)) = f in QT := η × (0, T ),

ν = νD on φηD × (0, T ),

−K(ν)∨(ν + z) · n = g on φηN × (0, T ),

νt=0 = ν0 in η × {0},
(1)
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where the unknown is the hydraulic head ν . Implicit schemes are preferred to solve
this equation because explicit ones are only valid in the vadose zone and have a
restrictive CFL condition. Therefore, nonlinear systems are solved at each discrete
time level, and we have to pay special attention to the computational cost. In order to
optimize this cost, we can use local a posteriori estimates, which allow to control the
error between the exact and approximate solutions. These estimates are local bounds
that involve only the approximate solution and, ideally, some fully computable con-
stants. Several methods are available to obtain such estimates. The current work
deals with the equilibrated fluxes method [13]. For this method, the difficulty is to
reconstruct some continuous equilibrated fluxes from the discrete ones.

This method has received particular attention in various studies over the last
few years: finite elements for elasticity problems and the Poisson equation in
[5, 11], DG methods for a reaction-diffusion-convection equation in [8], finite vol-
umes for multiphase compositional flows in [6]. More recently, theoretical develop-
ments have unified various space discretizations, for the linear heat equation [9], and
for a nonlinear parabolic problem [7]. In the latter robust fully computable lower and
upper bounds were obtained using a space-time dual norm. This work includes the
water content formulation of the Richards equation. Other related results concerning
the Richards equation are available in [3], but based on the Kirchoff transform.

In this paper we consider a formulation based on the hydraulic head, which remains
valid in saturated soils unlike the water content form. We also put aside the Kirchoff
transform to benefit from conservative schemes especially designed for physical vari-
ables. The objective of this work is twofold: to derive a fully computable upper bound
in the spirit of [7, 13], and to propose some space and time flux reconstructions for
the Discrete Duality Finite Volume Scheme (DDFV) from [2]. Indeed, the nonlin-
earity in the time derivative term requires a special treatment, which we address by
equilibrating the time flux as well as the space flux in accordance with the space-
time norm used in the estimators. The upper bound can be split into spatial, temporal
and linearization error components. An adaptive algorithm is proposed to choose a
stopping criterion for the nonlinear algorithm and to adjust the time step during the
simulation. Although we consider a DDFV scheme in this paper, our results remain
general and not attached to a particular space discretization.

Section 2 introduces our upper bounds using a key space and time equilibrated flux
assumption. Section 3 describes the appropriate flux reconstructions for the DDFV
scheme. Section 4 presents an adaptive algorithm, and numerical results for two test
cases: an infiltration problem with an analytical solution, and a stiff case. Section 5
draws some conclusions and perspectives.

2 A Posteriori Error Estimate

Consider a simplicial meshM of η . We denote by K a cell ofM of diameter hK and
by (tn)1∈n∈N some discrete time levels. We set I n := (tn−1, tn) and Ωtn := tn −tn−1

for 1 ∈ n ∈ N . The weak formulation of (1) reads:
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∫ T

0
{( f, Σ) + (∂(ν), φtΣ) − (K(ν)∨(ν + z),∨Σ)−(g, Σ)φη }(t) dt

+ (∂(ν0), Σ(., 0)) = 0 (2)

where (., .) denotes the usual L2-inner product on η , and the test functions Σ belong
to the space Y := {Σ ⊃ L2(0, T ; H1(η)) | φtΣ ⊃ L2(QT ), Σ(., T ) = 0, Σ(x, t) =
0 ⊂(x, t) ⊃ φηD×]0, T ]}. Under reasonable assumptions expressed in [1], one can
prove the existence of a solution ν to Eq. (2) in L2(0, T ; H1(η)) ∞ L≤(QT ).

We assume that an approximate solution ν̃ is available in the space X := {Σ ⊃
L2(0, T, H1(η)) | φtΣ ⊃ L2(QT )}. The usual L2-norm on K × I n is denoted

by ∀·∀K×I n , we set ∀Σ∀Y,K×I n :=
(∥
∥Σ2

∥
∥

K×I n + h2
K

∥
∥∨Σ2

∥
∥

K×I n + (Ωtn)2 ∀φtΣ∀2
K×I n

)1/2

and ∀Σ∀Y :=
(∑

n
∑

K⊃M
∥
∥Σ2

∥
∥

Y,K×I n

)1/2
. As we want local estimates, we define at

each time level the subspace Y n := {Σ ⊃ Y | t ∩→ Σ(·, t) vanishes outside In}. The
error we want to measure is defined as E n(ν̃) := supΣ⊃Y n ,∀Σ∀Y =1√Rn(ν̃), Σ≥, where

√Rn(ν̃), Σ≥ := ∫

I n{( f, Σ)+ (∂(ν̃), φtΣ)− (K(ν̃)∨(ν̃ + z),∨Σ)− (g, Σ)φη }(t) dt.
We now consider any space discretization of (1) that can be written as:

d

dt
MΛ(ξh) + A(ξh)ξh = B(ξh) (3)

where ξh(t) is the vector of the degrees of freedom for the approximate solution, M is
a nonsingular mass matrix, the matrix A(ξh) approximates the semilinear diffusion
term −∨ · (K(·)∨·), and the vector B(ξh) gathers the contributions of the gravity,
source and boundary conditions. Then we use the Crank-Nicolson time-stepping
algorithm, and obtain the following discrete problem for each n ≥ 1:

M

Ωtn
Λ(ξ n) + 1

2
A(ξ n)ξ n

= 1

2

(
B(ξ n) + B(ξ n−1)

)
+ M

Ωtn
Λ(ξ n−1) − 1

2
A(ξ n−1)ξ n−1 =: D(ξ n, ξ n−1),

where ξ n � ξh(tn). We solve this nonlinear system using linearizations like in [12].
For each time level n, we look for a sequence of vectors (ξ n,m)m≥1 solving

⎜
M

Ωtn
Λ ′(ξ n,m−1) + 1

2
A(ξ n,m−1)

⎟

Ωξ n,m

= D(ξ n,m−1, ξ n−1) − 1

2
A(ξ n,m−1)ξ n,m−1 − M

Ωtn
Λ(ξ n,m−1),

(4)

where Ωξ n,m = ξ n,m −ξ n,m−1. In order to obtain this discrete system, we used the
approximations Λ (ξ n,m) � Λ

(
ξ n,m−1

)+Λ ′(ξ n,m−1) · Ωξ n,m , A(ξ n,m)ξ n,m �
A(ξ n,m−1)ξ n,m , and D(ξ n,m, ξ n−1) � D(ξ n,m−1, ξ n−1). This corresponds to a
Newton linearization in time, and a Picard linearization in space.
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We assume that we can associate with each discrete vector ξ • (• stands for {n, m}
or n − 1) of degrees of freedom a unique reconstructed function ν•

h ⊃ H1(η). At
time tn the value of ξ n−1 is known, and so is its reconstruction νn−1

h ⊃ H1(η).
After resolution of the linear system (4) for 1 ∈ m, the values of ξ n,m are known,
and we consider their reconstructions ν

n,m
h ⊃ H1(η). Next, for each iteration level

m, the space and time reconstruction is given by ν̃n,m(t) = (t − tn−1)/Ωtn ν
n,m
h +

(tn − t)/Ωtn νn−1
h ⊃ X . The following theorem gives an a posteriori estimate of

the error E n(ν̃n,m). In the resolution algorithm, the nonlinear iterations are stopped
upon completion of a criterion based on this theorem, and we set ξ n := ξ n,m before
moving to the next time level.

Theorem 1 Let n ≥ 1 be given and consider some reconstructions on η× I n of: the
source term, f̃ ⊃ L2(η× In); the time flux at the current iteration m, ∂̃m(t) ⊃ L2(η)

and affine in time; the space flux at the current iteration m, t̃m ⊃ L2(I n, H(div,δ));
and the time and space fluxes obtained by linearization between the iterations m − 1
and m, ∂̃m

lin(t) ⊃ L2(η) (affine in time) and t̃m
lin ⊃ L2(I n, H(div,δ)) and such that

∂̃m
lin(t

n−1) = ∂̃m(tn−1), t̃m
lin(t

n−1) = t̃m(tn−1), both independent of m at time tn−1.
Assume, that for any cell K ⊃ M , we have

∫

K×I n
{ f̃ − φt ∂̃

m
lin − ∨ · t̃m

lin} dt = 0 (5)

(note that φt ∂̃
m
lin = 1/Ωtn

(
∂̃m

lin(t
n) − ∂̃m(tn−1)

)
). Then the following estimate holds:

E n(ν̃n,m) ∈ π
n,m
residual + π

n,m
∂̃

+ π
n,m
∂̃lin

+ π
n,m
t̃

+ π
n,m
t̃lin

+ πn
f̃
+ π

n,m
boundary,

with πn,m• :=
(∑

K⊃M (π
n,m
•,K )2

)1/2
and πn,m• := (∑

Δ⊂φη(πn,m•,Δ )2
)1/2

, where

π
n,m
residual,K := CP

∥
∥
∥ f̃ − φt ∂̃

m
lin − ∨ · t̃m

lin

∥
∥
∥

K×I n
,

π
n,m
∂̃ ,K

:= (Ωtn)−1
∥
∥
∥∂(ν̃n,m) − ∂̃m

∥
∥
∥

K×I n
, π

n,m
∂̃lin,K

:= (Ωtn)−1
∥
∥
∥∂̃m

lin − ∂̃m
∥
∥
∥

K×I n
,

π
n,m
t̃,K

:= h−1
K

∥
∥
∥K(ν̃n,m)∨(ν̃n,m + z) + t̃m

∥
∥
∥

K×I n
, π

n,m
t̃lin,K

:= h−1
K

∥
∥t̃m − t̃m

lin

∥
∥

K×I n ,

πn
f̃ ,K

:=
∥
∥
∥ f − f̃

∥
∥
∥

K×I n
, π

n,m
boundary,Δ :=

(√
2CT

K ,Δ

) 1
2

h−1/2
K

∥
∥t̃m − g

∥
∥

Δ×I n .

The proof is derived from [7]. It is based on Eq. (5), which is a re-expression of the
scheme, along with some space and time Poincaré and trace inequalities from [7, 8].
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Fig. 1 a Notations for DDFV method—b Cells (in gray) of the secondary mesh, obtained by
joining the center of each cell to the corresponding edges

Fig. 2 Degrees of freedom
for the reconstruction of ν•

h
(circle points) and ∂•

h (square
points) on each triangle DΔ,K .
Both functions are continuous
across interfaces

3 Application to the DDFV Scheme

We discretize equation (1) with the DDFV scheme detailed in [2]. This method
provides some approximate values ξh = (νK , νA) of ν at the centers xK and at the
vertices xA of the cells K ⊃ M . The unknown vector ξh solves a system of finite
volume equations (written here for f = 0 and a homogeneous Dirichlet problem):

|K |d∂(νK )

dt
−

∑

Δ⊃φK

K(νΔ,K )
(∨Δ,K ξh + ez

) · NΔ,K = 0,

|A|d∂(νA)

dt
−

∑

Δ⊃φ A

(
K(νΔ,K )(∨Δ,K ξh + ez) · N A

K + K(νΔ,L)(∨Δ,Lξh + ez) · N A
L

)
= 0,

for all cells K inM and all vertices xA ofM . The permeability matrixK is evaluated
at the points νΔ,K := (νK +νA +νB)/3 (Fig. 1). We construct two gradients ∨Δ,K

and ∨Δ,L on each side of an interface Δ between some cells K and L (see Fig. 2):

∨Δ,K ξh = 1

2|DΔ,K |
(
(νΔ − νK )NΔ,K + (νB − νA)N A

K

)
,

∨Δ,Lξh = 1

2|DΔ,L |
(
(νL − νΔ )NΔ,L + (νB − νA)N A

L

)
.

We get rid of the auxiliary unknown νΔ by solving the linear local conservativity
condition K(νΔ,K )

(∨Δ,K ξh + ez
) · NΔ,K + K(νΔ,L)

(∨Δ,Lξh + ez
) · NΔ,L = 0.
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Given 1 ∈ n and the vector ξ n−1 at time tn−1, the fully discretized scheme
provides the sequence (ξ n,m)m≥1 at time tn . The function νn−1

h ⊃ H1(η) at time
tn−1 is the piecewise affine function on the triangles DΔ,K that interpolates νn−1

K ,
νn−1

A and νn−1
B at the vertices xK , xA and xB of DΔ,K . The functions ν

n,m
h ⊃

H1(η) are constructed similarly from the vectors ξ
n,m
h . It remains to explain how

the reconstructions ∂̃m , ∂̃m
lin, t̃m , t̃m

lin and f̃ used to obtain (5) are built. All these
reconstructions are affine in time, hence completely determined by their values at
time tn−1 and at time tn , nonlinear iterate number m, denoted respectively by ∂n−1

h ,
∂n−1

h,lin, tn−1
h , tn−1

h,lin, f n−1
h , and ∂

n,m
h , ∂

n,m
h,lin, tn,m

h , tn,m
h,lin, f n

h .

The functions f n−1
h and f n

h in L2(η) are piecewise constant on the cells K with
( f n−1

h )|K = f n−1
K and ( f n

h )|K = f n
K , where f •

K approximates 1/|K | ∫K f (x, t•) dx .
The functions ∂•

h ⊃ L2(η) are piecewise polynomials of degree 3 on the triangles
DΔ,K , uniquely defined by their values ∂(ν(xi )) at the 9 degrees of freedom depicted
on Fig. 2 and the equality 1/|DΔ,K | ∫DΔ,K

∂•
h (x) dx = ∂(ν•

K ). The function ∂
n,m
h,lin

is defined similarly, bar the condition 1/|DΔ,K | ∫DΔ,K
∂

n,m
h,lin(x) dx = ∂(ν

n,m−1
K ) +

∂ ′(νn,m−1
K )(ν

n,m
K − ν

n,m−1
K ). In addition, we take ∂n−1

h,lin = ∂n−1
h .

The functions t•h ⊃ H(div,δ) are piecewise in the usual Raviart-Thomas-Nédélec
space RTN1(K ) on each triangle K and uniquely defined by the conditions (see [4]):

1
|Δ |

∫

Δ
t•h · NΔ,K dΔ = −K(ν•

Δ,K )
(∨Δ,K ξ • + ez

) · NΔ,K ,

1
|Δ |

∫

Δ
x t•h · NΔ,K dΔ = − 1

2K(ν•
Δ,K )

(∨Δ,K ξ • + ez
) · NΔ,K ,

∫

K t•h dx = − ∑

Δ⊂φK
|DΔ,K |K(ν•

Δ,K )
(∨Δ,K ξ • + ez

)
.

Note that the last condition is straightforward to derive with the DDFV scheme, as the
discrete gradient is piecewise constant on each triangle DΔ,K . tn,m

h,lin is set similarly,

using K(ν
n,m−1
Δ,K ) instead of K(ν

n,m
Δ,K ).

4 Results

In order to define the adaptive algorithm below, the total error estimate from Theorem
1 is split into the contribution of the time-stepping method π

n,m
time := π

n,m
residual, the

contribution of the space discretization π
n,m
space := π

n,m
∂̃

+ π
n,m
t̃

+ πn
f̃
+ π

n,m
boundary, and

the contribution of the linearization π
n,m
lin := π

n,m
∂̃lin

+ π
n,m
t̃lin

. At time tn , we start with

the current time step, then stop the nonlinear iterations for m = m such that the
estimate π

n,m

lin becomes small with respect to π
n,m

space + π
n,m

time , and finally adjust the

time step so as to balance π
n,m

time and π
n,m

space.
The first test case features a downward infiltration problem with an analytical

solution given by ν(z, t) = 20.4 tanh (0.5 (z + t/12 − 15)) − 41.1, which deter-
mines adequate source term and Dirichlet boundary condition enforced on φη . The
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Table 1 L2 norm of the error ∀ν − νh∀L2(η×(0,T ))

Ntriangles Ωt1 Error Order

118 4 3.02e-03
430 2 9.16e-04 1.88
1688 1 2.27e-04 2.24
6474 0.5 5.75e-05 1.99

Both space and time diameters are halved at each refinement. The parameters are γlin = 1/100 and
γtime = 2

(a) (b)

Fig. 3 a Adapted time step over time (in seconds)—b Cumulated number of Picard iterations,
adapted case (dashed line) versus non adapted case (solid line)

Algorithm 1 Adaptive algorithm (Crank-Nicolson) at time level tn

Require: tn−1, Ωt , ξ n−1

1: repeat
2: m ← 0, initialize ξ n

3: repeat
4: Ωξ n,m ← solution to the linearized Richards equation (4) with the time step Ωt
5: m ← m + 1, ξ n,m ← ξ n,m + Ωξ n,m

6: ∂
n,m
h , ∂

n,m
h,lin, tn,m

h , tn,m
h,lin ← reconstructions computed as explained in section 3

7: π
n,m
lin , π

n,m
time, π

n,m
space ← the estimators from theorem 1

8: until π
n,m
lin < γlin(π

n,m
time + π

n,m
space)

9: Ωtn ← Ωt
10: Ωt ← π

n,m
space/π

n,m
time ∗ Ωt

11: until π
n,m
time < γtimeπ

n,m
space

12: tn ← tn−1 + Ωtn

water content and the hydraulic conductivity are defined by Haverkamp’s constitutive
relationships from [10]. Table 1 shows that the expected second-order convergence
remains valid when the adaptive algorithm is used.

We then propose a stiffer case characterized by a strong overpressure imposed
on the top of the column through a Dirichlet condition. This stiffness requires a
fairly low time step at the beginning of the simulation for the iterative procedure to
converge. But the time step can be increased afterwards, and a time adaptation is
especially relevant in this case. Figure 3 displays the gain measured in terms of the
cumulated number of Picard iterations over time.
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5 Conclusions

We presented a fully computable global in space and local in time upper bound
for the Richards equation, using the Crank-Nicolson time scheme and any space
discretization. The estimate was decoupled into three error components, which we
equilibrated in an adaptive time-stepping algorithm. Our results showed that the
second-order convergence still holds true, and that the benefit in terms of total number
of iterations can reach a full order of magnitude on stiff cases. In a future work we
plan to derive a lower bound to confirm the robustness of this estimate.
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Monotone Combined Finite Volume-Finite
Element Scheme for a Bone Healing Model

Marianne Bessemoulin-Chatard and Mazen Saad

Abstract We define a combined edge FV-FE scheme for a bone healing model.
This choice of discretization allows to take into account anisotropic diffusions and
does not impose any restrictions on the mesh. Moreover, following [3], we propose
a nonlinear correction to obtain a monotone scheme. We present some numerical
experiments which show its good behavior.

1 Introduction

We consider a bone growth model based on [1]. It describes the evolution of the con-
centrations of the following quantities: the mesenchymal stem cells s, the osteoblasts
b, the bone matrix m and the osteogenic growth factor g. Bone healing begins by
the migration of the stem cells to the site of the injury. Then along the bone, these
cells differentiate into osteoblasts which start to synthetize the bone matrix. This cell
differentiation is only possible in presence of the growth factor.

The proposed model takes into account several phenomena: the diffusion of the
stem cells and the growth factor, the migration of the stem cells towards the bone
matrix, the proliferation and the differentiation of stem cells. The osteoblasts are
considered without movement since they are fixed at the bone matrix. Moreover,
the model includes the case of heterogeneous domains, with possibly anisotropic
diffusions.
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It is given by the following nonlinear coupled system: for t > 0 and x ∨ Ω ,
where Ω is an open bounded polyhedral subset of R

d , d = 2, 3,

∂t s − div (S(x) (Λ(m)∈s − V (m)χ(s)∈m)) = K1(m)χ(s) − H(g)s, (1)

∂t b = K2(m)χ(b) + ρH(g)s − δ1b, (2)

∂t m = λ(1 − m)b, (3)

∂t g − div
(
S(x)Λg∈g

) = P(g)b − δ2g. (4)

The functions K1(m), K2(m), H(g), P(m) and the positive parameters ρ, δ1, λ and δ2
are given (see [1]). The diffusion coefficient Λ(m) and the haptotaxis velocity V (m)

are given by

Λ(m) = χh

ζ 2
h + m2

(m + Λ0)(1 − m), V (m) = χk

(ζk + m)2 ,

with χh , ζh , Λ0, χk , ζk > 0. The diffusion coefficient Λg for the growth factor
is a positive constant. Moreover, the accumulation of stem cells is limited by the
factor χ(s) = s(1 − s). The permeability S(x) is a symmetric d × d matrix, with
S ∨ L⊃(Ω), and we assume that ⊂CS > 0 such that ∞x ∨ Ω , ∞ξ ∨ R

d , S(x)ξ · ξ ≤
CS|ξ |2.

This nonlinear system (1–4) is supplemented with initial conditions s0, b0, m0,
g0 and with homogeneous Neumann boundary conditions on s and g:

S(x) (Λ1(m)∈s − V (m)χ(s)∈m) · n = 0, S(x)Λg∈g · n = 0, (5)

for t ∨ (0, T ) and x ∨ ∂Ω , where n is the outward unit normal of ∂Ω . Following [5],
a solution u = (s, b, m, g) is said to be physically admissible if u ∨ A = [0, 1] ×
[0, b] × [0, 1] × [0, g], where b and g depend on the physical parameters.

In this paper, we propose a numerical scheme for this bone growth model. A finite
volume (FV) scheme was proposed in [5] for this model in homogeneous domains
where the diffusion tensor S = I d. The cell-centered FV method with an upwind
discretization of the convective terms provides the stability and is extremely robust.
However in this case, the mesh is assumed to be admissible [7, Definition 9.1].
In particular, this implies that the orthogonality condition has to be satisfied. As
mentioned in [5], a difficulty in the implementation is to construct such admissible
meshes. Structured rectangular meshes are admissible, but they cannot be used for
complex geometries arising in physical contexts. Furthermore, the finite element (FE)
method allows for an easy discretization of diffusive terms with full tensors without
imposing any restrictions on the meshes. However, some numerical instabilities may
arise in the convection-dominated case.

The idea is hence to combine a FE discretization of diffusive terms with a FV
discretization of the other terms. Such schemes were proposed and studied in [9]
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Fig. 1 Triangles K , L and
M ∨ T and diamonds D,
E ∨ D associated with edges
σD , σE ∨ E

for fluid mechanics equations in the case of diffusion terms with S = I d and in [4] for
anisotropic Keller–Segel model. This idea was extended in [8] to inhomogeneous and
anisotropic diffusion-dispersion tensors and to very general meshes only satisfying
the shape regularity condition (6). However, the maximum principle is no more
guaranteed if there exist negative transmissibilities.

We first introduce in Sect. 2 the combined FV-FE scheme for the bone healing
model (1–4). Then in Sect. 3 we apply the method described in [3] to construct a
nonlinear correction providing a discrete maximum principle. Finally in Sect. 4 we
present some numerical experiments showing the efficiency of the scheme.

2 The Combined FV-FE Scheme

A mesh of Ω is a family T of closed simplices K such that Ω = ∀K∨T K . We
denote by E the set of all edges, by E int the set of interior edges, by E ext the set of
boundary edges and by EK the set of all edges of K ∨ T . The size of the mesh is
defined by h := max diam(K ). We assume that there exists a positive constant kT
such that:

reg(T ) := min
K∨T

|K |
(diam(K ))d

≤ kT . (6)

We also use a dual partition D of control volumes D of Ω called diamonds such
that Ω = ∀D∨D D. Each diamond D is associated with one edge σD ∨ E . We
construct it by connecting the barycenters of every K ∨ T that contains σD through
the vertices of σD (Fig. 1). For σD ∨ E ext , the contour of D is completed by the edge
σD itself. We define D int and Dext the set of all interior and boundary dual volumes
respectively. For K ∨ T , we set DK := {D ∨ D; σD ∨ EK }. We denote by |D|
the d-dimensional Lebesgue measure of D and |σ | the (d −1)-dimensional measure
of σ . For all D ∨ D , PD is the barycenter of σD and N (D) is the set of neighbours
of D. For all D ∨ D and all E ∨ N (D), σD,E is the interface between D and E
and nD,E is the unit normal vector to σD,E outward to D.

Next we define the following finite-dimensional space of piecewise linear non-
conforming FE [6]:
X := {ϕ ∨ L2(Ω); ϕ|K linear ∞K ∨ T , ϕ continuous at the points PD, D ∨
D int }, equipped with the seminorm ∩u∩2

X :=
∑

K∨T

∫

K
|∈u|2dx .
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The basis of X is spanned by the shape functions ϕD , D ∨ D , such that ϕD(PE ) =
δDE , E ∨ D . The approximations in this space are nonconforming since X �

H1(Ω).
Finally, we define the time step Δt and the increasing sequence (tn)0→n→N+1,

where tn = nΔt and N is the smallest integer such that (N + 1)Δt ≤ T .
The discrete unknowns are denoted by

{
wn

D, D ∨ D, n ∨ {0 · · · N + 1}}, where the
value wn

D is an approximation of w(PD, tn), w = s, b, m, g.
We now define the semi-implicit in time and combined FV-FE in space discretiza-

tion for (1)–(4). The initial conditions are approximated by (s0
D, b0

D, m0
D, g0

D)D∨D
by taking the mean values of s0, b0, m0 and g0 on each dual cell D. Then the scheme
is given by the following set of equations: for all n ∨ {0, ..., N } and all D ∨ D int ,

|D|
(

sn+1
D − sn

D

)
− Δt

∑

E∨D int

Λn
D,E sn+1

E + Δt
∑

E∨N (D)

G
(

sn+1
D , sn+1

E , V n
D,E

(
mn+1

E − mn+1
D

))

= Δt |D|
(

K1(m
n
D)sn+1

D (1 − sn
D) − H(gn

D)sn+1
D

)
, (7)

|D|
(

bn+1
D − bn

D

)
= Δt |D|

(
K2(m

n
D)χ(bn+1

D ) + H(gn
D)sn+1

D − δ1bn+1
D

)
, (8)

|D|
(

mn+1
D − mn

D

)
= Δt |D|λ(1 − mn+1

D )bn+1
D , (9)

|D|
(

gn+1
D − gn

D

)
− Δt

∑

E∨D int

SD,EΛggn+1
E = Δt |D|

(
P(gn

D)bn
D − δ2gn+1

D

)
, (10)

where for U = Λ, V ,

UD,E = −
∑

K∨T
UK (S(x)∈ϕE , ∈ϕD)0,K , SD,E = −

∑

K∨T
(S(x)∈ϕE ,∈ϕD)0,K ,

with UK =
∑

D∨DK
U (m D)

card(EK )
.

The flux function G is supposed to be monotone, consistent, conservative and
locally Lipschitz continuous. For example, we consider in the following

G(a, b, c) = c+ (
χ√(a) + χ≥(b)

) − c− (
χ√(b) + χ≥(a)

)
,

where c+ = max(c, 0), c− = max(−c, 0), χ√ and χ≥ are respectively the nonde-
creasing and nonincreasing parts of χ .

Definition 1 (Approximate solution) Using the values (u D)D∨D , u = s, b, m, g,
we define a nonconforming FE solution uh as a function piecewise linear and con-
tinuous in the barycenters PD of interior edges such that

uh(x) =
∑

D∨D
u DϕD(x), x ∨ Ω.
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Properties of the discrete diffusive operators. We define

A D : R
Card(D) → R

Card(D)

sh = (sD)D∨D �→ (AD(sh))D∨D
,

L D : R
Card(D) → R

Card(D)

gh = (gD)D∨D �→ (L D(gh))D∨D
,

the discrete diffusive operators appearing in (7), (10), with for all D ∨ D ,

AD(sh) =
∑

E∨D int

ΛD,E sE , L D(gh) =
∑

E∨D int

ΛgSD,E gE .

We give in the following proposition some properties of A D which are crucial to
get the convergence of the scheme. The same results hold for LD too.

Proposition 1 The discrete diffusive operator A D is

• Conservative: ∞D ∨ D, AD(sh) =
∑

E∨N (D)

ΛD,E (sE − sD),

• Coercive: ⊂CA > 0 such that −
∑

D∨D
AD(sh)sD ≤ CA∩sh∩2

X ∞sh ∨ X.

3 Monotone Correction

At this stage, the constructed scheme is valid both for full anisotropic diffusion tensors
and for general meshes satisfying only assumption (6). However, it possesses a dis-
crete maximum principle only if all transmissibilities ΛD,E , SD,E are nonnegative,
which is not guaranteed in the general case. Following [3], we now define a nonlinear
correction which gives monotone scheme while preserving the properties described
in Proposition 1.

We replace the operator A D in (7) by the corrected operator BD defined by

BD(s) = AD(s) +
∑

E∨N (D)

βε
D,E (s)(sD − sE ) ∞D ∨ D,

where βD,E (s) is the regularized correction proposed in [3]:

βε
D,E (s) = max

( |AD(s)|
CardεV (D, s)∗

,
|AE (s)|

CardεV (E, s)∗

)
1

|sD − sE | + ε
,

with CardεV (D, s)∗ =
∑

E∨N (D)

|sD − sE |
|sD − sE | + ε

.



502 M. Bessemoulin-Chatard and M. Saad

This corrected diffusive operator is monotone since βD,E (s) > |AD(s)| for all
D ∨ D , all E ∨ N (D). Moreover, the corrected diffusive operator BD still satisfies
the properties described in Proposition 1:

• It is conservative, since βD,E = βE,D for all D ∨ D, E ∨ N (D),
• It is coercive, since βD,E ≤ 0 for all D ∨ D, E ∨ N (D).

The diffusive operator LD can also be corrected in the same way.

Theorem 1 If (s0
D, b0

D, m0
D, g0

D) ∨ A for all D ∨ D , then the discrete problem
(7)–(10) with monotone correction has a physically admissible solution
(sn

D, bn
D, mn

D, gn
D) ∨ A , for all n ≤ 0 and all D ∨ D .

The proof of this result can be done by introducing a truncated version of the scheme
(see [5, Theorem 5]), and using the properties of the corrected diffusive operators
(monotony, conservativity, continuity). Following the same lines as [5, Theorem 7],
we can also prove some energy estimates:

Theorem 2 Let (sn
D, bn

D, mn
D, gn

D)D∨D , n≤0 be a solution of the corrected scheme.
Then ⊂C > 0 not depending on the discretization parameters such that

N−1∑

n=0

Δt
(
∩sn

h ∩2
X + ∩bn

h∩2
X + ∩mn

h∩2
X + ∩gn

h∩2
X

)
→ C.

Starting from this result, one can obtain some compactness estimates on discrete
solutions. The complete study of convergence of the corrected scheme, which
requires some additional numerical assumptions [3], is done in [2].

4 Numerical Experiments

We simulate the healing of a long bone fracture in rats [10]. The simulation cor-
responds to a 0.07 cm fracture. To implement the semi-implicit scheme (7)–(10),
we use the Newton’s method coupled with a biconjugate gradient method to solve
the nonlinear system. While the discrete maximum principle is not satisfied, the
monotone correction is computed using the iterative algorithm described in [3]. The
geometry of the fracture and the initial condition are described on Fig. 2.

We assume that S(x) = I2. We first consider an admissible mesh made of 14336
triangles and 21632 edges. Especially, all the angles are acute, which ensures in this
case that the combined FV-FE scheme without correction satisfies the maximum
principle. In particular, we observe that the discrete unknowns remain nonnegative
(Table 1).
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Fig. 2 Geometry and initial condition: the black area corresponds to the bone matrix (m0 = 1) and
the grey area to the cellular cluster (s0 = 1, g0 = 20). Elsewhere there is nothing initially

Table 1 Results obtained with the non corrected scheme on an admissible mesh

Min. Val. s Max. Val. s Min. Val. g Max. Val. g

Iter. 1 9.47 × 10−21 0.999 9.9 × 10−21 19.8

Iter. 10 5.83 × 10−21 0.991 9.05 × 10−21 17.99

Table 2 Numerical results with the original and the corrected schemes after 10 iterations

Mesh 1 Mesh 2 Mesh 3

Without Undershoots s 16 16 92
correction Min. Val. s −2.67 × 10−4 −8.95 × 10−7 −3.01 × 10−4

after 10 it. Max. Val. s 0.990 0.991 0.992
Undershoots g 70 71 144
Min. Val. g −0.27 −1.01 × 10−2 −8.56 × 10−3

Max. Val. g 17.96 18.41 20.27

With Min. Val. s 9.58 × 10−6 1.18 × 10−6 3.93 × 10−6

correction Max. Val. s 0.989 0.990 0.99
after 10 it. Min. Val. g 1.51 × 10−4 8.02 × 10−5 7.68 × 10−5

Max. Val. g 17.81 18.33 19.37

Then we consider three general unstructured meshes that contain obtuse angles.
Mesh 1 is made of 1539 triangles and 2346 edges, mesh 2 is made of 3132 triangles
and 4756 edges, and mesh 3 is made of 15568 triangles and 23479 edges. In Table 2,
we present the minimum and maximum values obtained with the scheme before
and after correction, after 1 and 10 iterations. We clearly observe that the discrete
maximum principle is well respected after correction, with disappearance of the
undershoots.

We now consider the corrected scheme on the finest mesh 3. After 2 days, we
observe the formation of osteoblasts where the stem cells were initially concentrated
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(a)

(c)

(b)

(d)

Fig. 3 Bone matrix density, concentrations of stem cells, osteoblasts and growth factor at T = 2
days a Concentration of stem cells s, b Concentration of osteoblasts b, c Bone matrix density m,
d Concentration of the growth factor g

(a) (b)

Fig. 4 Evolution of the bone matrix density a T = 12 h, b T = 48 h

(see Fig. 3). These osteoblasts synthetized the new bone matrix, which evolution is
shown on Fig. 4. The stem cells moved towards the center of the fracture. These
results are in agreement with previous results [5, 10].
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Vertex Approximate Gradient Scheme
for Hybrid Dimensional Two-Phase Darcy
Flows in Fractured Porous Media

Konstantin Brenner, Mayya Groza, Cindy Guichard and Roland Masson

Abstract This paper presents the Vertex Approximate Gradient (VAG) discretiza-
tion of a two-phase Darcy flow in discrete fracture networks (DFN) taking into
account the mass exchange between the matrix and the fracture. We consider the
asymptotic model for which the fractures are represented as interfaces of codimen-
sion one immersed in the matrix domain with continuous pressures at the matrix frac-
ture interface. Compared with Control Volume Finite Element (CVFE) approaches,
the VAG scheme has the advantage to avoid the mixing of the fracture and matrix
rocktypes at the interfaces between the matrix and the fractures, while keeping the
low cost of a nodal discretization on unstructured meshes. The convergence of the
scheme is proved under the assumption that the relative permeabilities are bounded
from below by a strictly positive constant but cover the case of discontinuous capil-
lary pressures. The efficiency of our approach compared with CVFE discretizations
is shown on a 3D fracture network with very low matrix permeability.
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1 Hybrid Dimensional Two-Phase Darcy Flow Model
in Fractured Porous Media

Let η denotes a bounded polyhedral domain of R
d , d = 2, 3. We consider the

asymptotic model introduced in [1] where fractures are represented as interfaces of
codimension 1. Let φ = ⎧

i∨I φ i denotes the network of fractures φi ∈ η , i ∨ I ,
such that each φi is a planar polygonal simply connected open domain. It is assumed
that the angles of φi are strictly lower than 2∂ and that φi ⊃ φ j = ⊂ for all i ∞= j . It
is also assumed that νi,0 = φ i ⊃ Ωη has a vanishing d − 1 measure. We will denote
by dΣ(x) the d − 1 dimensional Lebesgue measure on φ . Let H1(φ ) denote the
set of functions v = (vi )i∨I such that vi ∨ H1(φi ), i ∨ I with continuous traces at
the fracture intersections, and endowed with the norm ≤v≤2

H1(φ )
= ⎪

i∨I ≤vi≤2
H1(φi )

.

Its subspace with vanishing traces on ν0 = ⎧
i∨I νi,0 is denoted by H1

ν0
(φ ). The

gradient operator from H1(η) to L2(η)d is denoted by ∀, and the tangential gradient
from H1(φ ) to L2(φ )d−1 by ∀Σ . Let us also consider the trace operator Λ from
H1(η) to L2(φ ). We can now define the hybrid dimensional function spaces that
will be used in the variational formulation of the two-phase Darcy flow model:

V = {v ∨ H1(η), Λ v ∨ H1(φ )}, and its subspace

V0 = {v ∨ H1
0 (η), Λ v ∨ H1

ν0
(φ )}.

The space V0 is endowed with the norm ≤v≤2
V = ≤∀v≤2

L2(η)d + ≤∀Σ Λ v≤2
L2(φ )d−1 .

Let u2 (resp. u1) denote the wetting (resp. non wetting) phase pressure, p = u1 −
u2 the capillary pressure, and pini ∨ V the initial capillary pressure distribution. For
the sake of simplicity in the convergence analysis, homogeneous Dirichlet boundary
conditions are assumed for u1 and u2 at the boundary Ωη , as well as at ν0 for Λ u1

and Λ u2. Let us denote by S1
m(x, p) (resp. S1

f (x, p)) the inverses of the monotone
graph extension of the capillary pressure curves in the matrix domain η (resp. in
the fracture network φ ), and let us set S2

m = 1 − S1
m (resp. S2

f = 1 − S1
f ). In the

matrix domain η (resp. in the fracture network φ ), let us denote by kξ
m(x, Sξ

m) (resp.
kξ

f (x, Sξ
f )), ξ ∨ {1, 2}, the phase mobilities, by δm(x) (resp. δ f (x)) the porosity, and

by πm(x) (resp. π f (x)) the permeability tensor. We also denote by d f (x), x ∨ φ

the width of the fractures, and by dΣ f (x) the weighted Lebesgue d − 1 dimensional
measure on φ defined by dΣ f (x) = d f (x)dΣ(x). The hybrid dimensional phase
pressures weak formulation amounts to find u1, u2 ∨ L2(0, T ; V0) satisfying the
following variational equalities for ξ ∨ {1, 2}, and for all Δ ∨ C∩

c ([0, T [×η):
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⎨
⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩

⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩⎩

∫ T

0

∫

η

(
− δm(x)Sξ

m(x, p)ΩtΔ(x, t) + kξ
m(x, Sξ

m(x, p))πm(x)∀uξ(x, t)

·∀Δ(x, t)
)

dxdt

+
∫ T

0

∫

φ

−δ f (x)Sξ
f (x, Λ p)ΩtΛ Δ(x, t)dΣ f (x)dt

+
∫ T

0

∫

φ

kξ
f (x, Sξ

f (x, Λ p))π f (x)∀Σ Λ uξ(x, t) · ∀Σ Λ Δ(x, t)dΣ f (x)dt

+
∫

η

δm(x)Sξ
m(x, pini)Δ(x, 0)dxdt +

∫

φ

δ f (x)Sξ
f (x, Λ pini)Δ(x, 0)dΣ f (x)dt

−
∫ T

0

∫

η

hξ
m(x, t)Δ(x, t)dxdt −

∫ T

0

∫

φ

hξ
f (x, t)Λ Δ(x, t)dΣ f (x)dt = 0,

(1)

where the function hξ
m (resp. hξ

f ), ξ ∨ {1, 2} stands for the source term in the matrix
domain η (resp. in the fracture network φ ).

2 Vertex Approximate Gradient Discretization

In the spirit of [3], we consider generalised polyhedral meshes of η . Let M be the
set of cells that are disjoint open polyhedral subsets of η such that

⎧
K∨M K = η .

For all K ∨ M , xK denotes the so-called “centre” of the cell K under the assumption
that K is star-shaped with respect to xK . We then denote by FK the set of interfaces
of non zero d − 1 dimensional measure among the interior faces K ⊃ L , L ∨ M ,
and the boundary interface K ⊃ Ωη , which possibly splits in several boundary faces.
Let us denote by F = ⎧

K∨M FK the set of all faces of the mesh. Remark that the
faces are not assumed to be planar, hence the term “generalised polyhedral mesh”.
For σ ∨ F , let Eσ be the set of interfaces of non zero d − 2 dimensional measure
among the interfaces σ ⊃ σ →, σ → ∨ F . Then, we denote by E = ⎧

σ∨F Eσ the set
of all edges of the mesh. Let Vσ = ⎧

e,e→∨Eσ ,e ∞=e→
(
e ⊃ e→⎜ be the set of vertices of

σ , for each K ∨ M we define VK = ⎧
σ∨FK

Vσ , and we also denote by V =⎧
K∨M VK the set of all vertices of the mesh. It is then assumed that for each face

σ ∨ F , there exists a so-called “centre” of the face xσ ∨ σ \ ⎧
e∨Eσ

e such that
xσ = ⎪

s∨Vσ
γσ,s xs, with

⎪
s∨Vσ

γσ,s = 1, and γσ,s √ 0 for all s ∨ Vσ ; moreover
the face σ is assumed to match with the union of the triangles Tσ,e defined by the
face centre xσ and each edge e ∨ Eσ . The mesh is also supposed to be conforming
w.r.t. the fracture network φ in the sense that for all i ∨ I there exist the subsets Fφi

of F such that φ i = ⎧
σ∨Fφi

σ . We will denote by Fφ the set of fracture faces
⎧

i∨I Fφi . This geometrical discretization of η and φ is denoted in the following
by D .

The VAG discretization has been introduced in [3] for diffusive problems on
heterogeneous anisotropic media. Its extension to the hybrid dimensional Darcy
model is based on the following vector space of degrees of freedom:
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XD = {vK , vs, vσ ∨ R, K ∨ M , s ∨ V , σ ∨ Fφ },

and its subspace with homogeneous Dirichlet boundary conditions on Ωη:

X0
D = {v ∨ XD | vs = 0 for s ∨ Vext }.

where Vext = V ⊃ Ωη denotes the set of boundary vertices, and Vint = V \ Ωη

denotes the set of interior vertices.
A finite element discretization of V is built using a tetrahedral sub-mesh of M

and a second order interpolation at the face centres xσ , σ ∨ F \Fφ defined by the
operator Iσ : XD ≥ R such that Iσ (v) = ⎪

s∨Vσ
γσ,svs. The tetrahedral sub-mesh is

defined by T = {TK ,σ,e, e ∨ Eσ , σ ∨ FK , K ∨ M } where TK ,σ,e is the tetrahedron
joining the cell centre xK to the triangle Tσ,e.

For a given v ∨ XD , we define the function ∂T v ∨ V as the continuous piecewise
affine function on each tetrahedron of T such that ∂T v(xK ) = vK , ∂T v(s) = vs,
∂T v(xσ ) = vσ , and ∂T v(xσ →) = Iσ →(v) for all K ∨ M , s ∨ V , σ ∨ Fφ , and
σ → ∨ F \ Fφ . Discrete gradient operators are defined this from finite element
discretization of V by

∀Dm : XD ≥ L2(η)d such that ∀Dm v = ∀∂T v,

in the matrix, and by

∀D f : XD ≥ L2(φ )d−1 such that ∀D f v = ∀Σ Λ ∂T v,

in the fracture network. In addition, the VAG discretization uses two non conforming
piecewise constant reconstructions of functions from XD into respectively L2(η)

and L2(φ ) based on partitions of each cell and of each fracture face denoted by

K = ωK
⎧ (⎧

s∨VK ⊃Vint
ωK ,s

) ⎧ ( ⎧
σ∨FK ⊃Fφ

ωK ,σ

)
, for all K ∨ M , and by

σ = νσ

⎧ ( ⎧
s∨Vσ ⊃Vint

νσ,s

)
for all σ ∨ Fφ . Then, the function reconstruction

operators are defined by∂Dm v(x) =
⎨




vK for all x ∨ ωK , K ∨ M ,

vs for all x ∨ ωK ,s, s ∨ VK ⊃ Vint , K ∨ M ,

vσ for all x ∨ ωK ,σ , σ ∨ FK ⊃ Fφ , K ∨ M ,

and ∂D f v(x) =
⎟

vσ for all x ∨ νσ , σ ∨ Fφ ,

vs for all x ∨ νσ,s, s ∨ Vσ ⊃ Vint , σ ∨ Fφ .

It is important to notice that, in the practical case when the space discretization is
conforming with respect to the heterogeneities and when the source term hξ

m (resp.
hξ

f ) is a cellwise (resp. facewise) constant function, the implementation of the VAG
scheme does not require to build these partitions. In that case, it is sufficient to define

the matrix volume fractions ξK ,s =
∫

ωK ,s
dx

∫

K dx , s ∨ VK ⊃ Vint , K ∨ M , ξK ,σ =
∫

ωK ,σ
dx

∫

K dx , σ ∨ FK ⊃ Fφ , K ∨ M , constrained to satisfy ξK ,s √ 0, ξK ,σ √ 0, and
⎪

s∨VK ⊃Vint
ξK ,s + ⎪

σ∨FK ⊃Fφ
ξK ,σ ≤ 1, as well as the fracture volume fractions
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ξσ,s =
∫

νσ,s
dΣ f (x)

∫

σ dΣ f (x)
, s ∨ Vσ ⊃ Vint , σ ∨ Fφ , constrained to satisfy ξσ,s √ 0, and

⎪
s∨Vσ ⊃Vint

ξσ,s ≤ 1. The convergence of the scheme will be shown to hold whatever
the choice of these volume fractions. As will be detailed in the numerical section,
this flexibility is a crucial asset, compared with usual CVFE approaches [5, 6], in
order to improve the accuracy of the scheme for highly heterogeneous test cases.

For N ∨ N
∗, let us consider generally nonuniform discretization t0 = 0 < t1 <

· · · < tn−1 < tn · · · < t N = T of the time interval [0, T ]. We denote the time
steps by ∆tn = tn − tn−1 for all n ∨ {1, · · · , N } while ∆t stands for the whole
sequence (∆tn)n∨{1,...,N }. Let us denote by uξ,n ∨ X0

D , ξ ∨ {1, 2} the discrete phase
pressures, and by pn = u1,n − u2,n the discrete capillary pressure at time tn for all
n ∨ {1, · · · , N }. Given an approximation p0 ∨ XD of the initial capillary pressure
pini, the VAG discretization of the two-phase Darcy flow model in phase pressures

formulation (1) looks for uξ =
(

uξ,n ∨ X0
D

)

n∨{1,··· ,N }, ξ ∨ {1, 2}, such that for

ξ ∨ {1, 2}, and for all v ∨ X0
D one has

⎨
⎩⎩⎩⎩⎩⎩⎩

⎩⎩⎩⎩⎩⎩⎩

∫

η

δm

Sξ,n
Dm

− Sξ,n−1
Dm

∆tn
∂Dm v dx +

∫

η

kξ,n
Dm

πm∀Dm uξ,n · ∀Dm v dx

+
∫

φ

δ f

Sξ,n
D f

− Sξ,n−1
D f

∆tn
∂D f v dΣ f (x) +

∫

φ

kξ,n
D f

π f ∀D f uξ,n · ∀D f v dΣ f (x)

= 1

∆tn

∫ tn

tn−1

( ∫

η

hξ
m∂Dm v dx +

∫

φ

hξ
f ∂D f v dΣ f (x)

)
dt,

(2)

where Sξ,n
Dm

(x) = Sξ
m(x, ∂Dm pn(x)), Sξ,n

D f
(x) = Sξ

f (x, ∂D f pn(x)),

and kξ,n
Dm

(x) = kξ
m(x, Sξ,n

Dm
(x)), kξ,n

D f
(x) = kξ

f (x, Sξ,n
D f

(x)).

Convergence analysis: We present in Theorem 1 below the main theoretical result
obtained in [2]. Let ΠT denote the insphere diameter of a given tetrahedron T ,
hT its diameter, and hT = maxT ∨T hT . We will assume in the convergence
analysis that the family of tetrahedral submeshes T is shape regular in the sense
that θT = maxT ∨T hT

ΠT
and ΛM = maxK∨M Card(VK ) are uniformly bounded.

The assumptions on the data are natural extensions to our hybrid dimensional
model (1) of the assumptions stated in [4]. They are quite general, except for the
assumption kξ

m(x, s) (resp. kξ
f (x, s)) ∨ [kmin, kmax] for (x, s) ∨ η × [0, 1] (resp.

(x, s) ∨ φ × [0, 1]) which is needed in the following convergence analysis but not
in the practical implementation of the scheme. Using the discrete phase pressures as
test functions in the discrete variational formulation (2), we deduce the following a
priori estimate.

Lemma 1 Let uξ , ξ ∨ {1, 2}, be a solution to (2), then, there exists C > 0 depending
only on the data and on ΛM and θT such that

⎪
ξ∨{1,2}

⎪N
n=1 ∆tn≤∂T uξ,n≤2

V ≤ C.

Using a topological degree argument, this estimate allows to obtain the existence
of a discrete solution to (2). For all v = (

vn ∨ XD ,∆t
⎜

n∨{1,··· ,N } let us define
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∂Dm ,∆t v(x, t) = ∂Dm vn(x), ∂D f ,∆t v(x, t) = ∂D f vn(x), ∂T ,∆t v(x, t) = ∂T vn(x)

for all (x, t) ∨ η × (tn−1, tn], n ∨ {1, · · · , N }. We also define for ξ ∨ {1, 2} the
functions Sξ

Dm ,∆t (x, t) = Sξ(x, ∂Dm ,∆t p(x, t)) and Sξ
D f ,∆t (x, t) = Sξ(x, ∂D f ,∆t

p(x, t)).

Theorem 1 Let (D (k), ∆t (k))k∨N be a sequence of space-time discretizations such
that there exist two positive constants θ and Λ satisfying θT (k) ≤ θ , ΛM (k) ≤ Λ for all
k ∨ N and such that hT (k) , maxn ∆t (k),n ≥ 0 as m ≥ ∩. Let uξ,(k) ∨ XD (k),∆t (k) ,
Sξ

D (k)
m ,∆t (k)

and Sξ

D (k)
f ,∆t (k)

, ξ ∨ {1, 2}, be s.t (2) holds for all m ∨ N. It is also

assumed that ∂
D (k)

m
p0,(k) converges strongly to pini in L2(η), and that ∂

D (k)
f

p0,(k)

converges strongly to Λ pini in L2(φ ). Then, there exists a weak solution (u1, u2)

with p = u1 − u2 to the problem (1) such that for each phase ξ ∨ {1, 2}
and up to a subsequence, one has ∂T (k),∆t (k)uξ,(k)⇀uξ in L2(η × (0, T )) and
Λ∂T (k),∆t (k)uξ,(k)⇀Λ uξ in L2(φ × (0, T )), Sξ

D (k)
m ,∆t (k)

≥ Sξ
m(., p) in L2(η ×

(0, T )) and Sξ

D (k)
f ,∆t (k)

≥ Sξ
f (., Λ p) in L2(φ × (0, T )).

3 Numerical Experiments

This test case considers the migration of oil in a 3D basinη = (0, L)×(0, L)×(0, H)

with H = L = 100 m. The family of 4 tetrahedral meshes is generated using TetGen
[7] in order to be refined at the neighbourhood of the fracture network with a number
of cells ranging from 47670 to 3076262 and a factor of refinement at the matrix
fracture interface of roughly 12 (see Fig. 1 for the coarsest mesh imesh = 1).

The permeability of the matrix πm = λmId and the permeability of the fractures
π f = λ f Id are highly contrasted with πm = 10−17 m2, π f = 10−11 m2. The
width of the fractures is fixed to d f = 0.01 m and their porosity to δ f = 0.3. The
porosity of the matrix is set to δm = 0.1. The inverses of the capillary pressure
monotone graph in the matrix ( j = m) and in the fractures ( j = f ) are defined

by the Corey law S1
j (p) = 0 if p < 0 and S1

j (p) = (1 − s2
r, j )(1 − e

−p
b j ) if p √ 0

with the rocktype bm = 5·103 Pa, s2
r,m = 0.2, s1

r,m = 0 in the matrix and the
rocktype b f = 102 Pa, s2

r, f = s1
r, f = 0 in the fractures. The mobilities are defined

for j = m and j = f by the following Corey law kξ
j (x, sξ) = 0 if s̄ξ < 0,

kξ
j (x, sξ) = 1

μξ if s̄ξ > 1 and kξ
j (x, sξ) = (s̄ξ)2

μξ if s̄ξ ∨ (0, 1), for phase ξ = 1

(oil), and phase ξ = 2 (water) where s̄1 = s1−s1
r, j

1−s1
r, j −s2

r, j
, and s̄2 = s2−s2

r, j

1−s2
r, j −s1

r, j
are the

reduced saturations, and μ1 = 0.005 Pa.s and μ2 = 0.001 Pa.s are the viscosities of
the phases. The densities of phases are fixed to Π1 = 700 Kg/m3 for the oil phase and
Π2 = 1000 Kg/m3 for the water phase. Phase 1 is injected at the bottom boundary with
imposed pressures u2(x) = 8.1·106 +Π2gH Pa, u1(x) = u2(x)+(S1

f )
−1(0.999999)
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Fig. 1 Coarsest mesh
imesh = 1 and discrete solu-
tion obtained by the VAG-1
scheme with this mesh at final
time: oil saturation in the frac-
ture network and in the matrix
using the lower threshold in
the matrix equal to 0.001

corresponding to an input phase 1 saturation s1 = 0.999999 in the fractures. At the
top boundary, the phase pressures are fixed to u2(x) = 8·106 and u1(x) = u2(x). The
remaining boundaries of the basin are assumed to be impervious. The boundaries
of the fracture network not located at the top or bottom boundaries of the basin are
also assumed impervious. At initial time the porous media is saturated with phase 2
with a hydrostatic pressure u2

ini (x) = 8·106 + Π2g(H − y), and a phase 1 pressure
defined by u1

ini (x) = u2
ini (x).

The implementation of the VAG scheme is based on a flux formulation with
upwinding of the mobilities rather than the discrete variational formulation (2) in
order to improve the stability of the solution on coarse meshes for convective dom-
inant regimes. The nonlinear systems obtained at each time step are solved by a
Newton Raphson algorithm. The time stepping is defined by an initial time step, a
maximum time step and the following rule: if the Newton solver does not converge
after 20 iterations, the time step is chopped by a factor 2 and recomputed. The time
step is increased by a factor 1.2 after each successful time step until it reaches again
the maximum time step. The stopping criteria are fixed to 10−7 for the GMRes solver
and to 10−6 for the Newton solver. A CPR-AMG right preconditioner is used in the
GMRes iterative solver. Let us also stress that, using the two equations in each cell,
the cell unknowns are eliminated from the discrete linearized system at each New-
ton iteration without any fill-in, reducing the Jacobian system to nodal and fracture
face unknowns only. The simulation is run over a period of 10 years with an initial
time step of 0.2 days, and a maximum time step fixed to 5 days, except on mesh 4
for which a smaller maximum time step of 2.5 days is used. All the numerical tests
have been performed on the Cicada Cluster located at the University Nice Sophia-
Antipolis and which includes 1152 nodes equipped with two eight-core Intel(R)
E5-2670 processors. Figure 1 exhibits the oil saturation obtained on the coarsest
mesh imesh = 1 at final simulation time. We observe that the oil phase injected at
the bottom side in the domain initially saturated with water, quickly rises by gravity
along the faults and slowly penetrate in the matrix.

Figure 2 compares the convergence of the oil saturation on the family of refined
meshes for two choices of the volume fractions VAG-1 and VAG-2. The choice VAG-2
simply set ξK ,s = ξK ,σ = 0.1 and ξσ,e = 0.075 on the whole mesh while the choice
VAG-1 does not mix the fracture and matrix porous volume taking ξK ,s = ξK ,σ = 0
for all s ∨ Vφ and σ ∨ Fφ . One can see that, for such high ratio of the fracture
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Fig. 2 Volumes of oil in the fracture and in the matrix function of time for the family of meshes
imesh = 1, . . ..., 4, and for both choices VAG-1 and VAG-2 of the volume distribution

Table 1 For each choice VAG-1 and VAG-2 of the volume distribution and for each mesh imesh =
1, . . ., 4: number N∆t of successful time steps, number NChop of time step chops, number NNewton
of Newton iterations per successful time step, number NG M Res of GMRes iterations by Newton
iteration, CPU time in seconds

imesh N∆t NChop NNewton NG M Res CPU (s) N∆t NChop NNewton NG M Res CPU (s)

1 VAG-1 384 6 2.20 10.05 588 VAG-2 373 0 1.87 6.94 482
2 VAG-1 390 10 3.08 15.11 5 898 VAG-2 373 0 2.42 13.05 4 452
3 VAG-1 415 21 4.02 15.93 31 806 VAG-2 375 1 3.02 14.56 21 645
4 VAG-1 784 30 3.37 16.75 209 485 VAG-2 747 13 2.92 16.55 172 946

and matrix permeabilities, VAG-1 seems to provide a much better convergence than
VAG-2 since it does not mix porous volumes from the matrix and the fracture network.
This is confirmed by the 2D test case presented in [2] for which a reference solution
is computed on a fine grid. It illustrates again the advantage of the VAG scheme
compared with CVFE discretizations which cannot avoid such mixing of porous
volumes [5, 6]. Table 1 presents the numerical behaviour of the simulations for both
choices of the distribution of the volumes and for the family of meshes. The results
obtained demonstrate the good robustness and scalability of the proposed numerical
scheme both in terms of Newton convergence, linear solver convergence and CPU
time.
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Coupling of a Two Phase Gas Liquid
Compositional 3D Darcy Flow with a 1D
Compositional Free Gas Flow

Konstantin Brenner, Roland Masson, Laurent Trenty and Yumeng Zhang

Abstract A model coupling a three dimensional gas liquid compositional Darcy
flow and a one dimensional compositional free gas flow is presented. The coupling
conditions at the interface between the gallery and the porous media account for the
molar normal fluxes continuity for each component, the gas liquid thermodynami-
cal equilibrium, the gas pressure continuity and the gas and liquid molar fractions
continuity. This model is applied to the simulation of the mass exchanges at the
interface between the repository and the ventilation excavated gallery in a nuclear
waste geological repository. The convergence of the Vertex Approximate Gradient
discretization is analysed for a simplified model coupling the Richards approximation
in the porous media and the gas pressure equation in the gallery.

1 Model

Let η and S ∨ η be two simply connected domains ofR2 and φ = (0, L)×(η\S) be
the cylindrical domain defining the porous media. The excavated gallery corresponds
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to the domain (0, L) × S and it is assumed that the free flow in the gallery depends
only on the x coordinate along the gallery and on the time t . Let us denote by
∂ = (0, L) × νS the interface between the gallery and the porous media and by
∂D = ((0, L) × νη) ∈ ({0} × (η \ S)) ∈ ({L} × (η \ S)) the remaining boundaries
of φ .

Let Ω = g, l denote the gas and liquid phases assumed to be both defined by a
mixture of components i ⊃ C among which the water component denoted by e which
can vaporize in the gas phase, and a set of gaseous components j ⊃ C \{e} which can
dissolve in the liquid phase. For the sake of simplicity, the model will be assumed to

be isothermal with a fixed temperature T . We will denote by cΩ =
⎧

cΩ
i , i ⊃ C

⎪
the

vector of molar fractions of the components in the phase Ω = g, l with
⎨

i⊃C cΩ
i = 1,

and by Pg and Pl the two phase pressures. The mass densities of the phases are
denoted by ΣΩ(PΩ, cΩ) and the molar densities by Λ Ω(PΩ, cΩ), Ω ⊃ P . They are

related by ΣΩ(PΩ, cΩ) =
⎧ ⎨

i⊃C cΩ
i Mi

⎪
Λ Ω(PΩ, cΩ), where Mi , i ⊃ C are the molar

masses of the components. For the sake of simplicity, it is assumed that the liquid
molar density Λ l is constant as well as the viscosities μΩ , Ω = g, l.

The two phase Darcy’s laws are characterized by the relative permeability func-
tions kΩ

r (x, SΩ), for both phases Ω = g, l, and by the capillary pressure function
Pc(x, Sl), where SΩ ,Ω = l, g denote the saturations of the phases with Sg + Sl = 1.

Each component i ⊃ C is assumed to be at thermodynamical equilibrium between
both phases which is characterized by the equality of its fugacities f Ω

i , Ω = g, l
if both phases are present. The fugacities of the components in the gas phase are
given by Dalton’s law for an ideal mixture of perfect gas f g

i = cg
i Pg, i ⊃ C .

The fugacities of the components in the liquid phase are given by Henry’s law for
the dissolution of the gaseous components in the liquid phase f l

j = cl
j Hj (T ), j ⊃

C \ {e}, and by Raoult-Kelvin’s law for the water component in the liquid phase

f l
e = cl

e Psat (T )exp
⎧−(Pg−Pl )

Λ l RT

⎪
, where Psat (T ) is the vapor pressure of the pure

water.
Following [3], the gas liquid Darcy flow formulation uses both phase pressures

Pg and Pl and the component fugacities f = ( fi , i ⊃ C ) as set of primary
unknowns. For this set of unknowns, the component molar fractions of an absent
phase are extended by those at equilibrium with the present phase leading to define
cΩ

i ( f, Pg, Pl), Ω = g, l, i ⊃ C by

⎩




cl
e = fe

Psat (T )
exp

⎧
(Pg−Pl )

Λ l RT

⎪
, cl

j = f j
H j (T )

, j ⊃ C \ {e}
cg

e = fe
Pg , cg

j = f j
Pg , j ⊃ C \ {e}.

(1)

The pressure of an absent phase is also extended by the buble (for gas) and by the
dew (for liquid) pressure leading to the equations

⎨
i⊃C cΩ

i ( f, Pg, Pl) = 1, Ω =
g, l. Finally, we define S l(x, .) as the inverse of the monotone graph extension of
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the opposite of the capillary pressure −Pc(x, .). This leads to the following set of
equations in the porous media:

⎩




ξνt

∑

Ω⊃P
Λ Ω SΩcΩ

i + div
⎧ ∑

Ω⊃P
Λ ΩcΩ

i VΩ
⎪

= 0, i ⊃ C ,

VΩ = − kΩ
r (x,SΩ)

μΩ K
⎧
⊂ PΩ − ΣΩg

⎪
, Ω = g, l,

Sg + Sl = 1, Sl = Sl(x, Pl − Pg),
∑

i⊃C
cΩ

i ( f, Pg, Pl) = 1, Ω = g, l.

(2)

In the gallery, the primary unknowns, depending only on the x coordinate along
the gallery and on the time t , are chosen to be the gas pressure p and the gas molar
fractions c = (ci , i ⊃ C ). The set of equations is defined by the following no pressure
wave isothermal pipe flow model where Ω > 0, δ > 0 are parameters for the pressure
drop along the gallery, n is the unit normal vector at ∂ outward to φ , and |S| is the
surface of the section S.

⎩




νt

⎧
|S|Λ g(p)ci

⎪
+ νx

⎧
|S|Λ g(p)ci w

⎪
=

∫

νS

∑

Ω=g,l

Λ ΩcΩ
i VΩ · n ds,

∑

i⊃C
ci = 1, (Ωw + δ|w|w) = −νx p.

(3)

At the interface ∂ between the gallery and the porous media the coupling conditions
are an adaptation to a 1D model in the gallery of [4]. Compared with [4], the gas
pressure jump at the interface is neglected since a small flow rate between the porous
media and the gallery is assumed due to the low permeability of the storage. Hence
the coupling conditions account first for the continuity of the gas phase pressure
Pg = p. Second, we impose the continuity of the gas molar fractions cg = c, and
third the thermodynamical equilibrium fi = f l

i = f g
i = pci for all i ⊃ C together

with
⎨

i⊃C cl
i = 1 which provides the additional equation (using (1)):

Pg − Pl = −Λ l RT ln
⎧ fe

Psat (T )(1 − ⎨
j⊃C \{e}

f j
H j (T )

)

⎪
. (4)

2 Numerical Test

Let η and S be the disks of center 0 and radius respectively rη = 10 m and rS = 2 m.
We consider a radial mesh of the domain (0, L)× (η \ S), L = 100 m, exponentially
refined at the interface of the gallery∂ to account for the steep gradient of the capillary
pressure. In addition to the water component e, we consider the air gaseous compo-
nent denoted by a with the Henry constant Ha = 6·109 Pa. The gas molar density is
given by Λ g = p

RT . The porous medium is initially saturated by the liquid phase with
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Fig. 1 (x, r) cut of the storage
and initial and boundary
conditions of the test case

imposed pressure Pl
init = 40·105 Pa and composition cl

a = 0, cl
e = 1. At the external

boundary r = rη the water pressure is fixed to Pl
0 = Pl

init , with an input composition
cl

a = 0, cl
e = 1. On both sides x = 0 and x = L of the porous media, zero flux bound-

ary conditions are imposed. At the left side of the gallery x = 0, we consider a given
velocity w = w0 and an input relative humidity Hr = Hr,0 = 0.5 with Hr = ce p

Psat (T )
.

The initial condition in the gallery is given by pinit = 105 Pa and Hr = Hr,0,
and the pressure p = pinit is fixed at the right side of the gallery (see Fig. 1). The
relative permeabilities and capillary pressure are given by the Van-Genuchten laws
with the parameters n = 1.54, Sl

r = 0.01, Sg
r = 0, Pr = 2·106 Pa accounting

for concrete rocktype with homogeneous isotropic permeability K = 10−18 m2 and
porosity ξ = 0.3. For the pressure load we have taken Ω = 0 and δ = 10−3 kg
m−4. The simulation is run over a period of 1,500 days with an initial time step of
1 s and a maximum time step of 10 days. The input velocity w0 is fixed to w0 = 1
m/s during the first 400 days, w0 = 0.01 m/s during the next 600 days, and w0 = 0
m/s during the last 500 days. In order to validate the simulation, an approximate
stationary solution is computed for each w0 assuming that we can neglect the disso-
lution of air, the gravity, the pressure drop in the gallery, and that the longitudinal
derivatives are small compared with the radial derivatives in the porous media. Then,
the stationary solution ce(x), x ⊃ (0, L) can be approximated by the solution of the

following ODE for w0 > 0: Λ gw0(1 − ce,0)νx

⎧
ce(x)

1−ce(x)

⎪
= 2

r2
S

VT (pc(ce(x))), x ⊃
(0, L) with VT (pc) = Λ l K

μl log( rη
rS

)

(
Pl

0 − pinit + ⎜ pc
0 kl

r (S
l(−u))du

⎟
, and pc(ce) =

−Λ l RT ln
⎧

pini t ce
Psat (T )

⎪
, using the boundary condition ce(0) = ce,0 = Hr,0 Psat (T )

pini t
, and

by Hr (x) = exp

(
Pl

0−pini t

Λ l RT

)

, x ⊃ (0, L) for w0 = 0. In Fig. 2, we plot the average

relative humidity in the gallery as well as the volume of gas in the porous medium
function of time. Figure 3 plots the stationary numerical solution obtained for the
gas saturation at the interface and in the porous media for each w0. At the opening
of the gallery at t = 0, we observe in Fig. 2 an increase of Hr up to almost 1 in
average in a few seconds due to a large liquid flow rate at the interface. Then, the
flow rate decreases and we observe a drying of the gallery due to the ventilation at
w0 = 1 m/s down to an average relative humidity slightly above Hr,0 in a few days.
Meanwhile the gas penetrate slowly into the porous medium reaching a stationnary
state with around 13.5 m3 of gas in say 400 days. When the input velocity is reduced
to 0.01 m/s, we observe first a rapid increase of Hr in say 1 day due to the reduced
ventilation followed by a convergence to a second stationnary state with Hr = 0.77
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Fig. 2 Average of the relative humidity in the gallery and volume of gas in the porous medium
function of time (left); stationary relative humidity for each w0 compared with its approximate
“analytical” solution (right)

Fig. 3 (x, r) cut of the stationary gas saturation at the interface (depending only on x for r ⊃ (0, rS))
and in the porous medium (for r > rS) for w0 = 1 m/s (left), and w0 = 0.01 m/s (right). Only the
values above the threshold 10−3 are plotted

in average in the gallery and 12 m3 of gas in the porous medium. When w0 is set to
0, Hr reaches a value above 1 corresponding to Sl = 1 at the interface and the gas
disappears from the porous medium in around 100 days.

Figure 2 also compares the stationary numerical relative humidity obtained for
each w0 with its approximate “analytical” solution. A very good match is obtained.

3 Convergence Analysis of a Simplified Model

We consider the following simplified model using the Richards approximation in the
porous medium and a single component equation in the gallery with linear pressure
drop

⎩




ξνt (Λ
lSl(., u)) + div(Λ lVl) = 0,

νt (|S|Λ g(p)) + νx (− 1

Ω
|S |̃Λ g(p)νx p) =

∫

νS
Λ lVl · n ds,

Vl = −kΩ
r (.,Sl(., u))

μl
K

⎧
⊂u − MlΛ lg

⎪
, p = g(π (u)),

(5)

where π denotes the trace operator from H1(φ) to H1/2(∂ ). The only primary
unknown in the porous media is the liquid pressure denoted by u. The liquid mass
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density is assumed to be fixed to MlΛ l where Ml is the molar mass of the liquid
phase. The thermodynamical equilibrium at the interface ∂ is accounted for by the
relation p = g(π (u)) with g ⊃ C1(R,R), 0 < c1 ∞ g≤(q) ∞ c2 for all q ⊃ R and
for given constants c1, c2. The function g is a regularization for large positive and

negative u of p = Psat
ce

e
u

Λ l RT for given constants 1 ∀ ce > 0 and T > 0. The molar

gas density is set to Λ g(p) = p
RT and is truncated in the flux term such that Λ̃ g(p)

is assumed to be a non decreasing function in C1(R,R) bounded from below and
above by two strictly positive constants and with a bounded derivative.

Let πe be the trace operator from H1(φ) to H1/2(∂D). We define the function
space V = {u ⊃ H1(φ) | π u ⊃ H1(∂ ), νsπ u = 0}, where s denotes the curvilinear
coordinate along νS. Taking into account homogeneous Dirichlet boundary condi-
tions, its subspace is denoted by V 0 = {u ⊃ V | πeu = 0, (π u)(0) = (π u)(L) = 0},
endowed with the norm ∩u∩2

V 0 = ⎜

φ
|⊂u(x)|2dx + ⎜ L

0 | d
dx π u(x)|2dx .

LetC (φ×[0, T f )) be the subspace of functions Δ of C→
⎧
φ×[0, T f ]

⎪
vanishing

at t = T f and at ∂D and such that νsΔ = 0 on (0, L)×νS. Given ū ⊃ V and uini ⊃ V ,
the variational formulation of the simplified coupled model amounts to find u with

u − ū ⊃ L2
⎧

0, T f ; V 0
⎪

such that for all Δ ⊃ C (φ × [0, T f )) one has

⎩




−
∫ T f

0

∫

φ
ξ(x)Λ lSl (x, u(x, t))νtΔ(x, t)dxdt −

∫

φ
ξΛ lSl (x, uini (x))Δ(x, 0)dx

−
∫ T f

0

∫ L

0
|S|Λ g(g(π u)(x, t))νtπΔ(x, t)dxdt −

∫ L

0
|S|Λ g(g(π (uini ))(x))π Δ(x, 0)dx

+
∫ T f

0

∫

φ
Λ l kl

r (x,Sl (u(x, t)))

μl
K(⊂u(x, t) − MlΛ l g) · ⊂Δ(x, t)dxdt

+
∫ T f

0

∫ L

0

1

Ω(x)
|S |̃Λ g(g(π u)(x, t))νx g(π u)(x, t)νxπΔ(x, t)dxdt = 0.

(6)

We make the following additional assumptions on the data:

• It is assumed that kl
r (x, s) is a measurable function w.r.t. x and continuous w.r.t. s,

and such that 0 < kmin ∞ kl
r (x, s) ∞ kmax for all (x, s) ⊃ φ × [0, 1].

• S l(x, u) ⊃ [0, 1] for all (x, u) ⊃ φ ×R with S l(x, u) = S l
j (u) for a.e. x ⊃ φ j

and all u ⊃ R, where S l
j is a non decreasing Lipschitz continuous function with

constant L S and (φ j ) j⊃J is a finite family of disjoint connected polyhedral open
sets such that

⎛
j⊃J φ j = φ .

• The permeability tensor K is a measurable function on the space of symmetric
3 dimensional matrices such that there exist 0 < λmin ∞ λmax with λmin|γ |2 ∞
(K(x)γ, γ) ∞ λmax |γ |2 for all x ⊃ φ .

• Ω ⊃ L→(0, L) is such that 0 < Ωmin ∞ Ω(x) ∞ Ωmax for all x ⊃ (0, L).
• The porosity ξ belongs to L→(φ) with 0 < ξmin ∞ ξ(x) ∞ ξmax for all x ⊃ φ .

Vertex Approximate Gradient (VAG) discretization: We assume that η and S are
polygonal domains of R

2 and we consider a conforming polyhedral mesh of the
domain φ . It is assumed that the intersection of the mesh with the boundary ∂ of
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the gallery is the tensor product of the 1D mesh of (0, L) defined by 0 = x0 <

x1 < · · · < xnx +1 = L by the 1D mesh of νS defined by the set of distinct points
s1, s2 · · · , snS , snS+1 = s1 of νS in cyclic order.

Let M denote the set of cells K , V the set of nodes s, E the set of edges e, and F
the set of faces ω , of the mesh. We denote by VK the set of nodes of the cell K ⊃ M ,
by Vω the set of nodes and by Eω the set of edges of the face ω ⊃ F . The set of
nodes of the mesh belonging to {xi }× νS is denoted by Vi for all i = 0, · · · , nx +1.

It is assumed for each face ω ⊃ F , that there exists a so-called “centre” of the
face xω such that xω = ⎨

s⊃Vω
δω,s xs, with

⎨
s⊃Vω

δω,s = 1, where δω,s ∀ 0 for
all s ⊃ Vω . The face ω is assumed to be star-shaped w.r.t. its centre xω which means
that the face ω matches with the union of the triangles τω,e defined by the face centre
xω and each of its edge e ⊃ Eω .

The previous discretization is denoted by D , and we define the discrete space

XD = {vK ⊃ R, vs ⊃ R, vi ⊃ R, K ⊃ M , s ⊃ V , i = 0, · · · , nx + 1
| vs = vi for all s ⊃ Vi , i = 0, · · · , nx + 1}, (7)

and its subspace with homogeneous Dirichlet boundary conditions on ∂D and at
x = 0, x = L

X0
D = {v ⊃ XD | vs = 0 for all s ⊃ VD},

where VD = V √ ∂ D are the Dirichlet boundary nodes.
Following [1], the extension of the VAG discretization to the coupled model (6) is

based on conforming Finite Element reconstructions of the gradient operators on φ

and on (0, L), and on non conforming piecewise constant function reconstructions
on φ and on (0, L).

For all ω ⊃ F , let us first define the operator Iω : XD ≥ R such that Iω (v) =⎨
s⊃Vω

δω,svs, which is by definition of xω a second order interpolation operator at
point xω .

Let us introduce the tetrahedral sub-mesh T = {τK ,ω,e, e ⊃ Eω , ω ⊃ FK ,

K ⊃ M } of the mesh M , where τK ,ω,e is the tetrahedron defined by the cell center
xK and the triangle τω,e. For a given v ⊃ XD , we define the function ΠT v ⊃ V
as the continuous piecewise affine function on each tetrahedron τ of T such that
ΠT v(xK ) = vK , ΠT v(s) = vs, and ΠT v(xω ) = Iω (v) for all K ⊃ M , s ⊃ V ,
ω ⊃ F .

It is easily checked that νsπΠT v = 0 which shows that ΠT v ⊃ V for all v ⊃ XD .
Then, the gradient operators are defined for all v ⊃ XD by

⊂Dv = ⊂ΠT v and ⊂x,Dv = νxπΠT v.

One can easily check that ⊂x,Dv = vi+1−vi
xi+1−xi

on (xi , xi+1) for all i = 0, · · · , nx . For
the reconstructions of functions operators, we first set

ΠDv(x) = vK for all x ⊃ K , K ⊃ M .
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Next, let us define the points xi+ 1
2

= xi +xi+1
2 , i = 1, · · · , nx −1, x 1

2
= 0, xnx + 1

2
= L ,

we set
Πx,Dv(x) = vi for all x ⊃ (xi− 1

2
, xi+ 1

2
), i = 1, · · · , nx .

Let Στ denote the insphere diameter of a given tetrahedron τ ⊃ T , hτ its diameter,
hT = maxτ⊃T hτ , and θT = maxτ⊃T hτ

Στ
and πM = maxK⊃M Card(VK ). For

N ⊃ N
∗, let us consider the time discretization t0 = 0 < t1 < · · · < tn−1 < tn · · · <

t N = T f of the time interval [0, T f ]. We denote the time steps by ∆tn = tn −tn−1 for
all n = 1, · · · , N . For v ⊃ XD , and a function k ⊃ C0(R,R), we define k(v) ⊃ XD
as follows: k(v)s = k(vs) for all s ⊃ V , k(v)K = k(vK ) for all K ⊃ M , and
k(v)i = k(vi ) for all i = 0, · · · , nx + 1.

Given u0
D ⊃ XD and ūD ⊃ XD , the discretization of the coupled model (6) looks

for un
D ⊃ XD with un

D − ūD ⊃ X0
D for all n = 1, · · · , N such that for all vD ⊃ X0

D

⎩




∫

φ

ξ(x)Λ l Sl(x,ΠDun
D (x)) − Sl(x,ΠDun−1

D (x))

∆tn
ΠDvD (x)dx

+
∫ L

0
|S|Λ

g(Πx,Dg(un
D )(x)) − Λ g(Πx,Dg(un−1

D )(x))

∆tn
Πx,DvD (x)dx

+
∫

φ

Λ l kl
r (x,Sl(x,ΠDun

D (x)))

μl
K(⊂Dun

D (x) − MlΛ lg) · ⊂DvD (x)dx

+
∫ L

0

1

Ω(x)
|S |̃Λ g(Πx,Dg(un

D )(x))⊂x,Dg(un
D )(x)⊂x,DvD (x)dx = 0.

(8)

Convergence analysis: Let us set XD ,∆t = (XD )N , and for all vD = (vn
D )n=1,··· ,N ⊃

XD ,∆t let us define for all n = 1, · · · , N , and for all (x, t) ⊃ φ × (tn−1, tn]
the functions ΠD ,∆t vD (x, t) = ΠDvn

D (x), Πx,D ,∆t vD (x, t) = Πx,D vn
D (x),

ΠT ,∆t vD (x, t) = ΠT vn
D (x). Let uD = (un

D )n=1,··· ,N , the given solution to (8),
we also define the functions Sl

D ,∆t (x, t) = S l(x,ΠD ,∆t uD (x, t)), px,D ,∆t (x, t) =
g(Πx,D,∆t uD (x, t)). Using similar techniques as in [2], we can prove the following
convergence theorem.

Theorem 1 LetD (m),∆tn,(m), n = 1, · · · , N (m), m ⊃ Nbe a sequence of space time
discretizations such that there exist θ > 0, π > 0 with θT (m) ∞ θ , πT (m) ∞ π . It is
assumed that limm≥+→ hT (m) = 0, and that ∆t (m) = maxn=1,··· ,N (m) ∆tn,(m) tends
to zero when m ≥ +→, and that ∩ΠD (m)u0

D (m) − uini∩L2(φ), ∩Πx,D (m)u0
D (m) −

π uini∩L2(0,L), ∩ΠT (m) ūD (m) − ū∩V 0 , ∩ΠD (m) ūD (m) − ū∩L2(φ), ∩Πx,D (m) ūD (m) −
π ū∩L2(0,L) tends to zero when m ≥ +→. Then, there exist a subsequence of
m ⊃ N and a function u ⊃ L2(0, T f ; V ) solution of (6) such that up to this subse-
quence Sl

D (m),∆t (m) ≥ S l(., u) strongly in L2(φ×(0, T f )),ΠD (m),∆t (m)uD (m) ⇀ u

weakly in L2(φ × (0, T f )), and px,D (m),∆t (m) ≥ g(π (u)) strongly in L2((0, L) ×
(0, T f )).
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Gradient Discretization of Hybrid Dimensional
Darcy Flows in Fractured Porous Media

Konstantin Brenner, Mayya Groza, Cindy Guichard, Gilles Lebeau
and Roland Masson

Abstract This article deals with the discretization of hybrid dimensional model of
Darcy flow in fractured porous media. These models couple the flow in the frac-
tures represented as the surfaces of codimension one with the flow in the surround-
ing matrix. The convergence analysis is carried out in the framework of Gradient
schemes which accounts for a large family of conforming and nonconforming dis-
cretizations. The Vertex Approximate Gradient (VAG) scheme and the Hybrid Finite
Volume (HFV) scheme are applied to such models and are shown to verify the Gra-
dient scheme framework. Our theoretical results are confirmed by a few numerical
experiments performed both on tetrahedral and hexahedral meshes in heterogeneous
isotropic and anisotropic media.
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Fig. 1 Example of a 2D
domain with 3 intersecting
fractures and 2 connected
components

1 Hybrid Dimensional Darcy Flow in Fractured Porous Media

Let Ω denote a bounded polyhedral domain of R
d , d = 2, 3. We consider the

asymptotic model introduced in [1] where fractures are represented as interfaces
of codimension 1. Let Γ = ⎧

i∨I Γ i denotes the network of fractures Γi ∈ Ω ,
i ∨ I , such that each Γi is a planar polygonal simply connected open domain. It
is assumed that the angles of Γi are strictly lower than 2π and that Γi ⊃ Γ j = ⊂
for all i ∞= j . For all i ∨ I , let us set Σi = ∂Γi , Σi, j = Σi ⊃ Σ j , j ∨ I ,
Σi,0 = Σi ⊃ ∂Ω , Σi,N = Σi \ (

⎧
j∨I Σi, j ≤ Σi,0), and Σ = ⎧

(i, j)∨I×I,i ∞= j Σi, j

(Fig. 1). It is assumed that Σi,0 = Γ i ⊃ ∂Ω , and that
⎧

i∨I Γi = Γ \ Σ . We will
denote by dτ(x) the d − 1 dimensional Lebesgue measure on Γ . Let H1(Γ ) denote
the set of functions v = (vi )i∨I such that vi ∨ H1(Γi ), i ∨ I with continuous traces at
the fracture intersections, and endowed with the norm ∀v∀2

H1(Γ )
= ⎪

i∨I ∀vi∀2
H1(Γi )

.

Its subspace with vanishing traces on Σ0 = ⎧
i∨I Σi,0 is denoted by H1

Σ0
(Γ ). The

gradient operator from H1(Ω) to L2(Ω)d is denoted by ∩, and the tangential gradient
from H1(Γ ) to L2(Γ )d−1 by ∩τ . Let us also consider the trace operator γ from
H1(Ω) to L2(Γ ). The function spaces used in the variational formulation of the
hybrid dimensional Darcy flow model are defined by

V = {v ∨ H1(Ω), γ v ∨ H1(Γ )}, and its subspace

V0 = {v ∨ H1
0 (Ω), γ v ∨ H1

Σ0
(Γ )}.

The space V0 is endowed with the norm ∀v∀2
V0

= ∀∩v∀2
L2(Ω)d + ∀∩τ γ v∀2

L2(Γ )d−1

and the space V with the norm ∀v∀2
V = ∀v∀2

V0
+ ∀v∀2

L2(Ω)
. Let Ωα, α ∨ Ξ denote

the connected components of Ω \ Γ , and let us define the space Hdiv(Ω \ Γ ) =
{qm = (qm,α)α∨Ξ | qm,α ∨ Hdiv(Ωα)}. For all i ∨ I , we can define the two sides ±
of the fracture Γi and the corresponding unit normal vector n±

i at Γi outward to the
sides ±. For all qm ∨ Hdiv(Ω \ Γ ), let q±

m · n±
i |Γi denote the two normal traces at

the fracture Γi and let us define the jump operator Hdiv(Ω \ Γ ) → ⎨
H1/2

00 (Γi )
⎩√ by

[[qm · ni ]] = q+
m · n+

i |Γi + q−
m · n−

i |Γi . For all fractures Γi , i ∨ I , we denote by nΣi

the unit vector normal to Σi outward to Γi .

Hybrid Dimensional Darcy Flow Model: In the matrix domain Ω \ Γ (resp. in
the fracture network Γ ), let us denote by Λm(x) (resp. Λ f (x)) the permeability
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tensor. We also denote by d f (x), x ∨ Γ the width of the fractures, and by dτ f (x)

the weighted Lebesgue d − 1 dimensional measure on Γ defined by dτ f (x) =
d f (x)dτ(x). We consider the source terms hm ∨ L2(Ω) (resp. h f ∨ L2(Γ )) in the
matrix domain Ω \ Γ (resp. in the fracture network Γ ). The strong formulation of
the model amounts to find u ∨ V0, (qm, q f ) ∨ W (Ω, Γ ) such that






div(qm,α) = hm on Ωα, α ∨ Ξ,

qm,α = −Λm∩u on Ωα, α ∨ Ξ,

divτ (q f,i ) − [[qm · ni ]] = d f h f on Γi , i ∨ I,
q f,i = −d f Λ f ∩τ γ u on Γi , i ∨ I,

(1)

where the function space W (Ω, Γ ) is defined by

W (Ω, Γ ) = { qm = (qm,α)α∨Ξ, q f = (q f,i )i∨I | qm ∨ Hdiv(Ω \ Γ ),

q f,i ∨ L2(Γi )
d−1, r f,i = divτ (q f,i ) − [[qm · ni ]] ∨ L2(Γi ), i ∨ I,

∑

α∨Ξ

∫

Ωα

(qm,α · ∩v + div(qm,α)v)dx

+
∑

i∨I

∫

Γi

(q f,i · ∩τ γ v + r f,iγ v)dτ = 0 for all v ∨ V0}.

The last condition corresponds to impose in a weak sense that
⎪

i∨I q f,i · nΣi = 0
on Σ and q f,i · nΣi = 0 on Σi,N , i ∨ I .

In variational form, (1) amounts to find u ∨ V0 such that for all v ∨ V0:






∫

Ω

Λm(x)∩u(x) · ∩v(x)dx +
∫

Γ

Λ f (x)∩τ γ u(x) · ∩τ γ v(x)dτ f (x)

−
∫

Ω

hm(x)v(x)dx −
∫

Γ

h f (x)γ v(x)dτ f (x) = 0.
(2)

Proposition 1 From the Lax-Milgram theorem, the variational problem (2) has a
unique solution u ∨ V0 which satisfies the a priori estimate

∀u∀V ≥ C
⎜
∀hm∀L2(Ω)+∀h f ∀L2(Γ )

⎟
, with C depending only on Ω , Γ , Λm, Λ f , d f .

In addition (qm = −Λm∩u, q f = −d f Λ f ∩τ γ u) belongs to W (Ω, Γ ).

2 Gradient Discretization

A gradient discretization D of (2) is defined by a vector space of degrees of freedom
XD , its subspace associated with homogeneous Dirichlet boundary conditions X0

D ,
and the following set of linear operators:

• Gradient operator on the matrix domain: ∩Dm : XD → L2(Ω)d

• Gradient operator on the fracture network: ∩D f : XD → L2(Γ )d−1
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• A function reconstruction operator on the matrix domain: ΠDm : XD → L2(Ω)

• A function reconstruction operator on the fracture network: ΠD f : XD → L2(Γ ).

XD is endowed with the semi-norm ∀vD∀2
D = ∀∩Dm vD∀2

L2(Ω)d +∀∩D f vD∀2
L2(Γ )d−1

which is assumed to define a norm on X0
D . Next, we define the coercivity, consis-

tency, limit conformity and compactness properties of the gradient discretization.

Coercivity: There exists CD ≥ 0 such that for all v ∨ X0
D one has

∀ΠDm vD∀L2(Ω) + ∀ΠD f vD∀L2(Γ ) ≥ CD∀vD∀D .

Consistency: Let u ∨ V0, and let us define

SD (u) = infvD∨X0
D

⎜
∀∩Dm vD − ∩u∀L2(Ω)d + ∀∩D f vD − ∩τ γ u∀L2(Γ )d−1

+∀ΠDm vD − u∀L2(Ω) + ∀ΠD f vD − γ u∀L2(Γ )

⎟

Then, a sequence of gradient discretizations (D l)l∨N is said to be consistent if for
all u ∨ V0 one has liml→+∞ SD l (u) = 0.

Limit Conformity: For all (qm, q f ) ∨ W (Ω, Γ ), we define

WD (qm , q f ) = sup
0 ∞=vD∨X0

D

1

∀vD∀D
⎜ ∑

α∨Ξ

∫

Ωα

(∩Dm vD · qm,α + (ΠDm vD )div(qm,α))(x)dx

+
∑

i∨I

∫

Γi

(∩D f vD · q f + ΠD f vD (divτi (q f,i ) − [[qm · ni ]]))(x)dτ(x)
⎟
.

(3)

Then, a sequence of gradient discretizations (D l)l∨N is said to be limit conforming
if for all (qm, q f ) ∨ W (Ω, Γ ) one has liml→+∞ WD l (qm, q f ) = 0.

Compactness: A sequence of gradient discretizations (D l)l∨N is said to be compact
if for all sequences vD l ∨ X0

D l , l ∨ N such that there exists C > 0 with ∀vD l ∀D l ≥ C

for all l ∨ N, then there exist um ∨ L2(Ω) and u f ∨ L2(Γ ) with

lim
l→+∞ ∀ΠD l

m
vD l − um∀L2(Ω) = 0 and lim

l→+∞ ∀ΠD l
f
vD l − u f ∀L2(Γ ) = 0.

The discretization of (2) using the Gradient Scheme framework is defined by:
find u ∨ X0

D such that for all vD ∨ X0
D :






∫

Ω

Λm(x)∩Dm uD(x) · ∩Dm vD(x)dx +
∫

Γ

Λ f (x)∩D f uD(x) · ∩D f vD(x)dτ f (x)

−
∫

Ω

hm(x)ΠDm vD(x)dx −
∫

Γ

h f (x)ΠD f vD(x)dτ f (x) = 0.
(4)
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Proposition 2 Let D be a gradient discretization of (2) assumed to be coercive.
Then (4) has a unique solution uD ∨ X0

D satisfying the a priori estimate ∀uD∀D ≥
C

⎜
∀hm∀L2(Ω) + ∀h f ∀L2(Γ )

⎟
with C depending only on CD , Λm, Λ f , d f .

Proposition 3 Error Estimates. Let u ∨ V0, (qm, q f ) ∨ W (Ω, Γ ) be the solution
of (2). Let D be a gradient discretization of (2) assumed to be coercive, and let
uD ∨ X0

D be the solution of (4). Then, there exist C1, C2, C3, C4 depending only on
CD , Λm, Λ f , d f such that one has the following error estimates:

{ ∀∩u − ∩Dm uD∀L2(Ω)d + ∀∩τ γ u − ∩D f uD∀L2(Γ )d−1 ≥ C1SD (u) + C2W (qm , q f ),

∀ΠDm uD − u∀L2(Ω) + ∀ΠD f uD − γ u∀L2(Γ ) ≥ C3SD (u) + C4W (qm , q f ).

3 Two Examples of Gradient Discretizations of Hybrid
Dimensional Models

In the spirit of [3], we consider generalized polyhedral meshes of Ω . Let M be the
set of cells that are disjoint open polyhedral subsets of Ω such that

⎧
K∨M K = Ω .

For all K ∨ M , xK denotes the so-called “centre” of the cell K under the assumption
that K is star-shaped with respect to xK . We then denote by FK the set of interfaces
of non zero d −1 dimensional measure among the interior faces K ⊃ L , L ∨ M , and
the boundary interface K ⊃ ∂Ω , which possibly splits in several boundary faces. Let
us denote byF = ⎧

K∨M FK the set of all faces of the mesh. The term “generalized
polyhedral mesh” means that the faces are not assumed to be planar. For σ ∨ F , let
Eσ be the set of interfaces of non zero d−2 dimensional measure among the interfaces
σ ⊃σ √, σ √ ∨ F . Then, we denote by E = ⎧

σ∨F Eσ the set of all edges of the mesh.
LetVσ = ⎧

e,e√∨Eσ ,e ∞=e√
⎨
e⊃e√⎩ be the set of vertices of σ , for each K ∨ M we define

VK = ⎧
σ∨FK

Vσ , and we also denote by V = ⎧
K∨M VK the set of all vertices of

the mesh. It is then assumed that for each face σ ∨ F , there exists a so-called “centre”
of the face xσ ∨ σ \ ⎧

e∨Eσ
e such that xσ = ⎪

s∨Vσ
βσ,s xs, with

⎪
s∨Vσ

βσ,s = 1,

and βσ,s ≥ 0 for all s ∨ Vσ ; moreover the face σ is assumed to match with the union
of the triangles Tσ,e defined by the face centre xσ and each edge e ∨ Eσ . The mesh
is also supposed to be conforming w.r.t. the fracture network Γ in the sense that for
all i ∨ I there exist the subsets FΓi of F such that Γ i = ⎧

σ∨FΓi
σ. We will denote

by FΓ the set of fracture faces
⎧

i∨I FΓi .
The discretization of the hybrid dimensional Darcy flow model with continuous

pressures has been the object of several works such as [6] using a cell centred Multi-
Point Flux Approximation scheme, [1] using a Mixed Finite Element (MFE) method,
and [5] using a Control Volume Finite Element Method (CVFE). The MFE method,
as well as some CVFE and MPFA schemes on e.g. tetrahedral meshes can be shown
to be gradient discretizations. In the following we propose to apply the VAG and
HFV schemes.
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Vertex Approximate Gradient Discretization: The VAG discretization has been
introduced in [3] for diffusive problems on heterogeneous anisotropic media. Its
extension to the hybrid dimensional two-phase Darcy flow model is presented in [2].
The scheme is based on the following vector space of degrees of freedom:

XD = {uK , us, uσ ∨ R for all K ∨ M , s ∨ V , σ ∨ FΓ },

and its subspace with homogeneous Dirichlet boundary conditions on ∂Ω: X0
D =

{u ∨ XD | us = 0 for s ∨ Vext } where Vext = V ⊃ ∂Ω denotes the set of boundary
vertices, and Vint = V \ Vext denotes the set of interior vertices.

The discrete gradients in the matrix and in the fracture are defined as the usual
gradient operators on the conforming space of continuous affine finite elements built
upon a tetrahedral sub-mesh. In addition, the VAG discretization uses two non con-
forming piecewise constant reconstructions of functions from XD into respectively
L2(Ω) and L2(Γ ). In the matrix, it is such that πDm u(x)|Ωm,ν = uν where the Ωm,ν

for ν ∨ M ≤ Vint ≤ FΓ are neighbourhoods of xν defining a partition of Ω . In the
fractures, it is such that πD f u(x)|Ω f,ν = uν where the Ω f,ν for ν ∨ (VΓ ⊃Vint )≤FΓ

are neighbourhoods of xν defining a partition of Γ .

Hybrid Finite Volume Discretization: The Hybrid Finite Volume (HFV) scheme
introduced in [4] can be extended to the hybrid dimensional Darcy flow model as
follows. The faces σ ∨ F are assumed to be planar and xσ is assumed to be the
centre of gravity of the face σ . We also denote by xe the centre of the edge e ∨ E .
Let Fint ∈ F (resp. Eint ∈ E ) denote the subset of interior faces (resp. interior
edges). The vector space of degrees of freedom XD is defined by

XD = {uK , uσ , ue ∨ R for all K ∨ M , σ ∨ F , e ∨ EΓ },

where EΓ ∈ E denotes the subset of edges of Γ , and its subspace X0
D is such

that uσ = 0 for all σ ∨ F \ Fint and ue = 0 for all e ∨ EΓ \ Eint . For each
cell K and u ∨ XD , let us define ∩K u = 1

|K |
⎪

σ∨FK
|σ |(uσ − uK )nK ,σ , where

|K | is the volume of the cell K , |σ | is the surface of the face σ , and nK ,σ is the
unit normal vector of the face σ ∨ FK outward to the cell K . The discrete gra-
dient ∩K u is stabilized using ∩K ,σ u = ∩K u + RK ,σ (u)nK ,σ , σ ∨ FK , with

RK ,σ (u) =
√

d
dK ,σ

⎜
uσ − uK − ∩K u · (xK − xσ )

⎟
, and dK ,σ = nK ,σ · (xσ −

xK ) which leads to the definition of the matrix discrete gradient ∩Dm u(x) =
∩K ,σ u on Kσ for all K ∨ M , σ ∨ FK , where Kσ is the cone joining the face
σ to the cell centre xK . The fracture discrete gradient is defined similarly by
∩D f u(x) = ∩σ,eu on σe for all σ ∨ FΓ , e ∨ Eσ , with ∩σ,eu = ∩σ u + Rσ,e(u)nσ,e,

and ∩σ u = 1
|σ |

⎪
e∨Eσ

|e|(ue−uσ )nσ,e, Rσ,e(u) =
√

d−1
dσ,e

⎜
ue−uσ −∩σ u·(xσ −xe)

⎟
,

where nσ,e is the unit normal vector to the edge e in the tangent plane of the face σ

and outward to the face σ , dσ,e = nσ,e · (xe −xσ ), and σe is the triangle of base e and
vertex xσ . The function reconstruction operators are piecewise constant on a parti-
tion of the cells and of the fracture faces. These partitions are respectively denoted,



Gradient Discretization of Hybrid Dimensional Darcy Flows in Fractured Porous Media 533

for all K ∨ M , by K = ΩK ≤
⎜⎧

σ∨FK ⊃Fint
ΩK ,σ

⎟
, and, for all σ ∨ FΓ ,

by σ = Σσ ≤
⎜ ⎧

e∨Eσ ⊃Eint
Σσ,e

⎟
. Then, the function reconstruction operators

are defined by ΠDm u(x) =
{

uK for all x ∨ ΩK , K ∨ M ,

uσ for all x ∨ ΩK ,σ , σ ∨ FK ⊃ Fint , K ∨ M ,
and

ΠD f u(x) =
{

uσ for all x ∨ Σσ , σ ∨ FΓ ,

ue for all x ∨ Σσ,e, e ∨ Eσ ⊃ Eint , σ ∨ FΓ .

We can show the following proposition which can be proven using a lemma stating
the density of smooth function subspaces in the spaces V , V0, and W (Ω, Γ ).

Proposition 4 Let us consider a family of meshes M (m), m ∨ N as defined above.
It is assumed that the family of tetrahedral submeshes of M (m) is shape regular, that
the cardinal of VK is uniformly bounded for all K ∨ M (m), and all m ∨ N, and that
the maximum diameter h(m) of the cells K ∨ M (m) tends to zero with m → +∞.
In addition, in the case of the HFV scheme, the faces are assumed to be planar.
Then, the VAG and HFV discretizations are coercive, consistent, limit conforming
and compact gradient discretizations of the hybrid dimensional Darcy flow model.

4 Numerical Experiments

Let Ω = (0, 1)3 and consider the 2 planar fractures defined by x = 0.5 and y = 0.5
and splitting Ω into the four subdomains Ωα , α = 1, · · · , 4 corresponding respec-
tively to {x < 0.5, y < 0.5}, {x > 0.5, y < 0.5}, {x > 0.5, y > 0.5} and
{x < 0.5, y > 0.5}. In the fractures, we set Λ f (x) = 100 I and d f (x) = 0.01.
In the matrix, the permeability tensor Λm(x) is fixed to Λm,α on each subdomain
Ωα , α = 1, · · · , 4 with two choices of the subdomain permeabilities. The first choice
considers isotropic heterogeneous permeabilities setting Λm,α = λα I with λ1 = 1,
λ2 = 0.1, λ3 = 0.01, λ4 = 10. The second choice defines anisotropic heterogeneous
permeabilities by

Λm,1 =



a1 b1 0
b1 c1 0
0 0 λ

⎛

⎝ , Λm,2 =



a2 0 b2
0 λ 0
b2 0 c2

⎛

⎝ , Λm,3 =



a3 b3 0
b3 c3 0
0 0 λ

⎛

⎝ , Λm,4 =



λ 0 0
0 a4 b4
0 b4 c4

⎛

⎝ ,

with aα = cos2 βα + Ω sin2 βα , bα = (1−Ω)cos βα sin βα , cα = Ω cos2 βα + sin2

βα , λ = 0.01, β1 = π
6 , β2 = −π

6 , β3 = 0, β4 = π
6 and Ω = 0.01. For each

subdomain let us define t1(x) = y − x + z, t2(x) = x + y + z − 1, t3(x) = x − y + z
and t4(x) = 1 − x − y + z. It can be checked that the function u(x) = ecos(tα(x)),
x ∨ Ωα , α = 1, · · · , 4, belongs to V and is such that qm(x) = −Λm∩u(x),
q f (x) = −d f Λ f ∩τ γ u(x) belongs to W (Ω, Γ ). It will be used as exact solution
of (1) with ad-hoc right hand sides and Dirichlet boundary conditions on ∂Ω . For
the numerical solutions, three different families of meshes are considered: uniform
Cartesian meshes, a random perturbation of the previous Cartesian meshes, and
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Fig. 2 For the 3 families of meshes (top Cartesian meshes, middle randomly perturbated Cartesian
meshes, and bottom tetrahedral meshes), and for the isotropic (left) and anisotropic (right) test
cases: sum of the relative L2 norm of the error in the matrix and in the fracture for the function
and its gradients reconstructions and for both the VAG and HFV schemes function of the number
of d.o.f. after elimination of the cell and Dirichlet unknowns

tetrahedral meshes generated by TetGen. To assess the error estimates of Proposition
3, we have computed the sum of the relative L2 norms of the errors in the matrix and in
the fractures, both for the function and for the gradient reconstructions. As exhibited
in Fig. 2, the expected first orders of convergence are obtained both for the function
reconstructions and the gradient reconstructions with observed superconvergence of
order 2 for Cartesian meshes. We note that the HFV scheme seems to be less robust
than the VAG scheme with respect to anisotropy. Also, as expected on tetrahedral
meshes, the CPU time of the computation of the HFV solution is much larger of a
factor around 10 than the CPU time obtained with the VAG scheme using for both
schemes a GMRES solver preconditioned by ILUT.
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A Gradient Scheme for the Discretization
of Richards Equation

Konstantin Brenner, Danielle Hilhorst and Huy Cuong Vu Do

Abstract We propose a finite volume method on general meshes for the
discretization of Richards equation, an elliptic—parabolic equation modeling ground-
water flow. The diffusion term, which can be anisotropic and heterogeneous, is dis-
cretized in a gradient scheme framework, which can be applied to a wide range of
unstructured possibly non-matching polyhedral meshes in arbitrary space dimension.
More precisely, we implement the SUSHI scheme which is also locally conserva-
tive. As is needed for Richards equation, the time discretization is fully implicit. We
obtain a convergence result based upon energy-type estimates and the application
of the Fréchet-Kolmogorov compactness theorem. We implement the scheme and
present the results of a number of numerical tests.

1 Richards Equation

In this article, we study Richards equation using Kirchhoff transformation. Let η be
an open bounded polygonal subset of Rd (d = 1, 2 or 3) and let T be a positive real
number; Richards equation in the space-time domain QT = η × (0, T ) is given by

φt

⎧
∂(x)ν(p)

⎪
− div

⎧
kr (ν(p))K(x)∨(p + z)

⎪
= 0, (1)
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where p(x, t) is pressure head. The function ν(p) is the water saturation, ∂(x)

is the porosity, K(x) is the absolute permeability tensor and the scalar function
kr (ν) corresponds to the relative permeability, which depends on the water content.
The space coordinates are defined by x = (x, z) in the case of space dimension 2
and x = (x, y, z) in the case of space dimension 3. Next we perform Kirchhoff’s
transformation. We set

F(s) :=
⎨ s

0
kr (ν(Ω ))dΩ,

and suppose that the function F is invertible. Then we set u = F(p) in QT and
c(u) = c(F(p)) = ν(p). We remark that Kirchhoff’s transformation leads to ∨u =
kr (ν(p))∨ p. Thus, the Eq. (1) becomes

φt

⎧
∂(x)c(u)

⎪
− div

⎧
K(x)∨u

⎪
− div

⎧
kr (c(u))K(x)∨z

⎪
= 0. (2)

Next, we consider the Eq. (2) together with the inhomogeneous Dirichlet boundary
and the initial conditions

u(x, t) = û(x) a.e. on φη × (0, T ),

u(x, 0) = u0(x) a.e. in η.
(3)

We make the following hypotheses:
(H1) c is a continuous nondecreasing function such that there exist Σ > 0 and Σ ∈ 0

satisfying |c(u)| ⊃ Σ(1 + |u|) for all u ⊂ R and |c(u) − c(v)| ∈ Σ |u − v| for all
u, v ⊂ R.
(H2) kr is a continuous function such that 0 ⊃ kr ⊃ kr .
(H3) K is a bounded function from η to Md(R), where Md(R) denotes the set of
real d × d matrices. Moreover for a.e. x in η , K(x) is a symmetric positive definite
matrix and there exist two positive constants K and K such that the eigenvalues of
K(x) are included in [K, K].
(H4) u0 ⊂ L2(η), û ⊂ H1(η) and ∂ ⊂ L∞(η) is such that 0 < ∂ ⊃ ∂(x) ⊃ ∂ for
a.e. x ⊂ η .

Definition A function u(x, t) is said to be a weak solution of Problem (2)–(3) if:

(i) u(x, t) − û(x) ⊂ L2(0, T ; H1
0 (η)),

(i i) c(u) ⊂ L∞(0, T ; L2(η)),

(i i i) −
⎨ T

0

⎨

η

∂(x)c(u(x, t))φtΛ(x, t) dxdt −
⎨

η

∂(x)c(u0(x))Λ(x, 0) dx

+
⎨ T

0

⎨

η

K(x)∨u(x, t) · ∨Λ(x, t) dxdt (4)

+
⎨ T

0

⎨

η

kr (c(u(x, t))K(x)∨z · ∨Λ(x, t) dxdt = 0,
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for all Λ ⊂ L2(0, T ; H1
0 (η)) with Λ(·, T ) = 0 and φtΛ ⊂ L∞(QT ).

The discretization of Richards equation by means of gradient schemes has already
been proposed by Eymard, Guichard, Herbin and Masson [3], where they consider
Richards equation as a special case of two phase flow; however, they make the extra
hypothesis that the relative permeability kr is bounded away from zero.

2 Gradient Discretization

Following [2] we define a gradient discretization D of Problem (2)–(3) on a vector
space X D , or more precisely its subspace X0

D associated with the homogeneous
Dirichlet boundary condition, and the two following linear operators:

• A gradient operator on the matrix domain: ∨D : X D ≤ L2(η)d .
• A function reconstruction operator on the matrix domain: ξD : X D ≤ L2(η).

Coercivity: We assume that ∀∨D · ∀L2(η)d defines a norm on X0
D . A gradient dis-

cretization D is said to be coercive if there exists CD ∈ 0 such that for all v ⊂ X0
D

one has

∀ξDv∀L2(η) ⊃ CD∀∨Dv∀L2(η)d .

Consistency: Let u ⊂ H1
0 (η), and let us define

SD(u) = inf
v⊂X0

D

⎧
∀∨Dv − ∨u∀L2(η)d + ∀ξDv − u∀L2(η)

⎪
.

Then, a sequence of gradient discretizations (D(m))m⊂N is said to be consistent if for
all u ⊂ H1

0 (η), limm≤+∞ SD(m) (u) = 0.

Limit Conformity: For all q ⊂ Hdiv(η), we define

WD(q) = sup
0 ∩=v⊂X0

D

1

∀∨Dv∀L2(η)d

⎨

η

∨Dv · q + ξDvdiv(q) dx. (5)

Then, a sequence of gradient discretizations (D(m))m⊂N is said to be limit conforming
if for all q ⊂ Hdiv(η), limm≤+∞ WD(m) (q) = 0.

Compactness: A sequence of gradient discretizations (D(m))m⊂N is said to be com-
pact if for all sequences vm ⊂ X0

D(m) , m ⊂ N such that there exists C > 0 with

∀∨D(m)vm∀L2(η)d ⊃ C for all m ⊂ N, then there exist v ⊂ L2(η) such that

lim
m≤+∞ ∀ξD(m)vm − v∀L2(η) = 0.
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For N ⊂ N
→, let us consider the time discretization t0 = 0 < t1 < · · · < tn−1 <

tn · · · < t N = T of the time interval [0, T ]. We denote the time steps by δtn = tn −
tn−1 for all n ⊂ {1, · · · , N } while δt stands for the whole sequence (δtn)n⊂{1,...,N }.
For all v = ⎩

vn ⊂ X D
)

n=1,··· ,N we set ξD,δt v(x, t) = ξDvn(x) and ∨D,δt v(x, t) =
∨Dvn(x) for all (x, t) ⊂ η × (tn−1, tn], n ⊂ {1, . . . , N }.
Discrete variational formulation: For a given u0, û D ⊂ X D find u = ⎩

un ⊂
X D

)

n⊂{1,...,N } such that for each n ⊂ {1, . . . , N }, un − û D ⊂ X0
D and for all v ⊂ X0

D

⎨

η

∂
c(ξDun) − c(ξDun−1)

δtn
ξDv dx +

⎨

η

K(∨Dun + kr (ξDun)∨z) · ∨Dv dx = 0

(6)

Proposition 1 There exists at least one solution of (6); moreover there exists a
positive C only depending on ∂, ∂, Σ, Σ , K , K , kr , η , T , u0, û as well as on

∀c(ξDu0) − c(u0)∀L2(η), ∀ξDû D − û∀L2(η) and ∀∨Dû D − ∨û∀L2(η) such that

∀c(ξD,δt u)∀L∞(0,T ;L2(η)) + ∀∨D,δt u∀L2(QT )d ⊃ C (7)

for any solution u of (6).

Proof In order to keep this presentation short, we only prove below the priori esti-
mate (7), and only in the case of homogeneous Dirichlet boundary conditions; the
adaptation to the inhomogeneous case is straightforward, and the existence of a dis-
crete solution can be deduced using a standard argument based upon the topological
degree. Let u = (un)n⊂{1,...,N } be a solution of (6) and define

An
D,δt (v) =

⎨

η

∂
c(ξDun) − c(ξDun−1)

δtn
ξDv dx,

Bn
D,δt (v) =

⎨

η

K∨Dun · ∨Dv dx, Cn
D,δt (v) =

⎨

η

Kkr (ξDun)∨z · ∨Dv dx,

(8)

for all n ⊂ {1, . . . , N } and v ⊂ X0
D . The terms defined above satisfy

An
D,δt (v) + Bn

D,δt (v) + Cn
D,δt (v) = 0 for all v ⊂ X0

D. (9)

Let us first estimate
m∑

n=1

δtn An
D,δt (u

n) for m ⊂ {1, . . . , N }; we define

Σ(u) = c(u)u −
⎨ u

0
c(Ω ) dΩ for all u ⊂ R.

For all a, b ⊂ R, one has Σ(a) − Σ(b) = (c(a) − c(b))a − ∫ a
b (c(Ω ) − c(b)) dΩ and

since c is nondecreasing we have that Σ(a) − Σ(b) ⊃ (c(a) − c(b))a. It implies that
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m∑

n=1

δtn An
D,δt (u

n) ∈
⎨

η

∂(Σ(ξDum) − Σ(ξDu0)) dx. (10)

For all a ⊂ R it holds 1
2Σa2 ⊃ Σ(u) ⊃ c(a)a ⊃ (c(a))2

Σ
, therefore

m∑

n=1

πtn An
D,πt (u

n) ∈ 1

2
Σ∂∀ξDum∀2

L2(η)
− 1

Σ∂
∀c(ξDu0)∀2

L2(η)
. (11)

Using the assumptions (H2)–(H3) we deduce that Bn
D,δt (u

n) ∈ K∀∨Dun∀2
L2(η)d

and that Cn
D,δt (u

n) ⊃ kr K |η|1/2∀∨Dun∀L2(η)d for all n ⊂ {1, . . . , N }. Combining
these inequalities with (9) and (11) gives

1
2Σ ∂∀ξDum∀2

L2(η)
+ K

m∑

n=1

δtn∀∨Dun∀2
L2(η)d

⊃ 1

Σ∂
∀c(ξDu0)∀2

L2(η)
+ kr K |η|1/2

m∑

n=1

δtn∀∨Dun∀L2(η)d .

Applying Young’s inequality to the last term above, we obtain

kr K |η|1/2
m∑

n=1

δtn∀∨Dun∀L2(η)d ⊃ 1

2Δ
kr

2
K T |η| + Δ

2
K

m∑

n=1

δtn∀∨Dun∀2
L2(η)d .

This leads to

1

2
Σ ∂∀(ξD,δt u)∀2

L∞(0,T ;L2(η))
+ (K − Δ

2
K |)∀∨D,δt u∀2

L2(QT )d

⊃ 1

Σ∂
∀c(ξDu0)∀2

L2(η)
+ 1

2Δ
kr

2
K T |η|. (12)

One completes the proof of the estimate (7) by choosing Δ = K/K and using the
assumptions (H1) and (H4).

The following result is rather standard and given without proof.

Proposition 2 Let u be a solution to (6). There exists a positive constant C only
depending on ∂, ∂, Σ, Σ , K , K , kr , η , T , u0, û as well as on ∀c(ξDu0)−c(u0)∀L2(η),
∀ξDû D − û∀L2(η) and ∀∨Dû D −∨û∀L2(η) such that for all Ω ⊂ (0, T ), there holds

⎨ T −Ω

0

⎨

η

⎧
ξD,δt u(x, t + Ω) − ξD,δt u(x, t)

⎪2
dxdt ⊃ CΩ.
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Theorem 1 Let (D(m), δt (m))m⊂N be a family of discretizations, where (D(m))m⊂N
is assumed to be limit conforming, consistent, compact and uniformly coercive in
the sense that there exists C1 such that CD(m) ⊃ C1 for all m ⊂ N; moreover we
assume that ∀c(ξD(m)u0

m)−c(u0)∀L2(η), ∀ξD(m) û D(m) − û∀L2(η) and ∀∨D(m) û D(m) −
∨û∀L2(η), maxn δt (m),n tend to 0 as m ≤ ∞. Let um be a solution of (6) for all
m ⊂ N. Then, up to a subsequence

ξD(m),δt (m)um ≤ u in L2(QT ),

∨D(m),δt (m)um ⇀ ∨u in L2(QT )d ,

where u ⊂ L2(0, T ; H1(η)) is a solution of (4).

Proof Using the compactness and the uniform coercivity of the sequence D(m) as
well as Propositions 1 and 2, we deduce from Fréchet-Kolmogorov theorem that the
sequence {ξD(m),δt (m)um − ξD(m) û D(m)} is relatively compact in L2(QT ). Therefore,
we may extract a subsequence of {um} (denoted again by {um}) such thatξD(m),δt (m)um

converges to some u ⊂ L2(QT ) strongly in L2(QT ) and ∨D(m),δt (m)um is weakly
convergent in L2(QT ). It follows from Lemma 7.1 of [1] that the subsequence um can
also be chosen in such way that c(ξD(m),δt (m)um) and kr (c(ξD(m),δt (m)um)) converge
strongly in L2(QT ) to c(u) and kr (c(u)) respectively; moreover one deduces from
(7) that c(u) ⊂ L∞(0, T ; L2(η)). Finally we deduce from the limit conformity of the
scheme that u − û ⊂ L2(0, T ; H1

0 (η)) and that ∨D(m),δt (m)um ⇀ ∨u in L2(QT )d

as m ≤ +∞. Using again the limit conformity and consistency of the scheme we
deduce that u is a weak solution of (4).

3 Numerical Tests

3.1 The Hornung-Messing Problem

The Hornung-Messing problem is a standard test (cf. for instance [5]). We consider a
horizontal flow in a homogeneous ground η = [0, 1]2 and set T = 1. The problem
after Kirchhoff’s transformation is given by Problem (2) with

c(u) = ν(p) =
{

ξ2/2 − 2arctan2(
u

2 − u
) if p < 0,

ξ2/2 otherwise,

and suitable boundary and initial conditions. Let s = x − z − t , its solution is given:

u(x, z, t) =



⎜

2p(x, z, t)

1 + p(x, z, t)
if p < 0,

2p(x, z, t) otherwise,
p(x, z, t) =




⎜

−s/2 if s < 0,

−tan
⎧es − 1

es + 1

⎪
otherwise.

(13)
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Fig. 1 Saturation at t = 0.1 s and at t = 0.4 s. The medium is unsaturated on the right-hand side
of the space domain where ν < 4.9348 and fully saturated elsewhere

In this test, we apply the Sushi scheme [4] using an adaptive mesh driven by the
variations of the saturation. We prescribe the Neumann boundary condition deduced
from (13) on the line x = 0 and an inhomogeneous Dirichlet boundary condition
elsewhere. We use an initially square mesh, which is such that each square can be
decomposed again into four smaller square elements. Whereas the standard finite
volume scheme is not suited to handle such a non-conforming adaptive mesh, the
SUSHI scheme is compatible with these non-conforming volume elements (Fig. 1).

We introduce the relative error in L2(QT ) between the exact and the numerical
solution as well as the experimental order of convergence

err(u) = ∀(uexact (x, tn) − u D,δt (x, tn))∀L2(QT )

∀(uexact (x, tn))∀L2(QT )

, eoc = log(err(ui )/err(ui+1))

log(hDi /hDi+1)
,

where ui is the solution corresponding to the space discretization Di . Table 1 shows
the error using a uniform square mesh with various mesh sizes and time steps in the
four first lines. Note that the scheme is only first order accurate with respect to time;
therefore in order to obtain second order convergence we choose δt proportional to
h2

D . We also compare the error for the approximate saturation using a uniform mesh
and an adaptive mesh with a similar number of unknowns. In both cases: about 300
unknowns (line 2–line 5) and 1,200 unknowns (line 3–line 6), the adaptive mesh
compared to the fixed one provides slightly better results for the saturation c(u). The
observed computational gain is rather small (about 10–20 %), which is due to the
fact that the area of high gradients of c is comparatively large.

3.2 The Haverkamp Problem

We consider the case of a sand ground represented by the space domain η = (0, 2)×
(0, 40) on the time interval [0, 600]. The parameters are given by [7]
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Table 1 Number of time steps N , mesh diameter hD , number of unknown Nunk , the error on the
solution err(u), and on the saturation err(c(u)) and the experimental order of convergence eoc

Mesh N hD Nunk err(u) err(c(u)) eoc(u)

Uniform 25 0.2 85 2.40 · 10−2 1.60 · 10−5 –
Uniform 100 0.1 320 6.09 · 10−3 4.13 · 10−6 1.98
Uniform 400 0.05 1240 1.53 · 10−3 2.90 · 10−6 2.00
Uniform 1600 0.025 4880 3.76 · 10−3 1.83 · 10−6 2.02
Adaptive 200 0.143 302 5.62 · 10−3 3.67 · 10−6 –
Adaptive 800 0.071 1232 1.32 · 10−3 2.19 · 10−6 –

Fig. 2 Time evolution of the pressure p and the adaptive mesh

ν(p) =



⎜

νs − νr )

1 + |γp|ω + νr , if p < 0,

νs, otherwise,
kr (ν(p)) =




⎜

Ks

1 + |Ap|γ , if p < 0,

Ks, otherwise,

where νs = 0.287, νr = 0.075, γ = 0.0271 ω = 3.96, Ks = 9.44e − 3, A = 0.0524
and γ = 4.74. From ν and K , we have tabulated suitable values for the functions
c and Kc. We have taken here the initial condition p = −61.5, a homogeneous
Neumann boundary condition for x = 0 and x = 1, the Dirichlet boundary condition
p = −61.5 for z = 0 and p = −20.7 for z = 40.

We use an adaptive mesh and the time step δt = 1 to perform the test. Figure 2-left
represents the pressure profile at various times. In this test, no analytical solution is
known. Therefore we compare our numerical solution with that of Pierre Sochala
[8, Fig. 2.6, p. 35] which is obtained by means of a finite element method. Our
results are quite similar to his. Figure 2-right shows the time evolution of the mesh
at different times corresponding to the pressure profiles in Fig. 2-left.
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Convergence of a Finite Volume Scheme
for a Corrosion Model

Claire Chainais-Hillairet, Pierre-Louis Colin and Ingrid Lacroix-Violet

Abstract We consider a drift-diffusion system describing the corrosion of an iron
based alloy in nuclear waste repository. In particular, we are interested in the con-
vergence of a numerical scheme consisting in an implicit Euler scheme in time and
a Scharfetter-Gummel finite volume scheme in space.

1 General Framework

The DPCM model, introduced by Bataillon et al. in [1] , is related to the corrosion of
an iron based alloy in a nuclear waste repository. It describes the evolution of a dense
oxide layer formed at the surface of the metal when it is in contact with claystone.

The system is made of drift-diffusion equations on the charge densities coupled
with a Poisson equation on the electric potential. The boundary conditions induced
by the electrochemical reactions at the interfaces are Robin boundary conditions.
Moreover, the system includes moving boundary equations.

A numerical scheme for the DPCM model has been proposed and verified by
numerical experiments in [2]. The proof of convergence of the scheme proposed
in [2] for the full system is challenging. In this paper, we will focus on a simplified
model with only two species and on a fixed domain. It permits to show how to deal
with the boundary conditions in the proof of convergence.
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2 Presentation of the Model and of the Hypotheses

The unknowns are the densities of electrons N , cations P and the electric potential Ψ .
The current densities of electrons and cations are respectively denoted JN and JP ;
they contain both a drift part and a diffusion part. For u = N or P , we also denote
by zu the charge of the species (zP = 3, zN = −1) and εu the ratio of diffusion
coefficients arising in the scaling. The dimensionless system writes:

εu∂t u + ∂x Ju = 0, Ju = −∂x u − zuu∂xΨ, in (0, 1), for u = P, N , (1a)

− λ2∂2
xxΨ = 3P − N + ρhl , in (0, 1), (1b)

where λ2 is a dimensionless parameter (λ is the rescaled Debye length) and ρhl

is the net charge density of the ionic species in the host lattice which is supposed
constant in the whole layer, with ρhl = −5. Charge carriers are created and consumed
at both interfaces. The boundary conditions are prescribed by the kinetics of the
electrochemical reactions at the interfaces. It leads to Robin boundary conditions,
which are assumed to have the same form for electrons and cations:

− Ju(0) = β0
u (Ψ (0)) u(0) − γ 0

u (Ψ (0)) , on x = 0, for u = P, N , (2a)

Ju(1) = β1
u (V − Ψ (1)) u(1) − γ 1

u (V − Ψ (1)) , on x = 1, for u = P, N ,

(2b)

where V is the applied voltage and (β i
u, γ i

u)i=0,1 are continuous, nonnegative func-
tions defined by:

β i
u(x) = mi

ue−zubi
u x + ki

uezuai
u x , for u = P, N , (3a)

γ i
u(x) = mi

uume−zubi
u x , for u = P, N . (3b)

For the electric potential, the boundary conditions have the following form

Ψ (0) − α0∂xΨ (0) = ΔΨ
pzc

0 , on x = 0, (4a)

Ψ (1) + α1∂xΨ (1) = V − ΔΨ
pzc

1 , on x = 1, (4b)

where α0 and α1 are nonnegative dimensionless parameters and (ΔΨ
pzc

i )i=0,1 are
the inner and outer voltages of zero charge. The system is supplemented with initial
conditions, given in L∨(0, 1)

u(x, 0) = u0(x), for u = P, N . (5)
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Let us give a sense to the parameters in Eqs. (1a)–(4b) and some hypotheses:

• (mi
P , mi

N , ki
P , ki

N )i=0,1 are the interface kinetic coefficients which are supposed
constant and nonnegative.

• Pm is the maximum occupancy for cations and N m is the electron densities of
state in the metal. We assume that

zP Pm + zN N m + ρhl = 0. (6)

• (ai
P , ai

N , bi
P , bi

N )i=0,1 are the nonnegative transfer coefficients which satisfy a0
u +

b0
u = a1

u + b1
u = 1, u = P, N .

Let us also consider some compatibility hypotheses on the data (see [2])

− 1

3a0
P

⎧
1 + log

⎧
α0a0

P k0
P

⎪⎪
� ΔΨ

pzc
0 � 1

a0
N

⎧
1 + log

⎧
α0a0

N k0
N

⎪⎪
, (7a)

− 1

b1
N

⎧
1 + log

⎧
α1b1

N m1
P

⎪⎪
� ΔΨ

pzc
1 � 1

3b1
P

⎧
1 + log

⎧
α1b1

P m1
P

⎪⎪
. (7b)

3 Numerical Scheme

We are interested in the convergence analysis of the fully implicit scheme introduced
in [2]. It is an Euler implicit in time and finite volume in space scheme with a
Scharfetter-Gummel approximation of the convection-diffusion fluxes.

Let us consider a mesh T for the domain [0, 1], i.e a family of given points
(xi )0∈i∈I+1 satisfying: 0 = x0 < x1 < x2 < · · · < xI < xI+1 = 1. We define

xi+ 1
2

= xi + xi+1

2
, for 1 ∈ i ∈ I − 1 and we set x 1

2
= x0 = 0, xI+ 1

2
= xI+1 = 1.

Let us consider the mesh cells [xi− 1
2
, xi+ 1

2
], discretization steps:

hi = xi+ 1
2

− xi− 1
2
, ⊃1 ∈ i ∈ I and hi+ 1

2
= xi+1 − xi , ⊃0 ∈ i ∈ I.

We define h = max {hi , 1 ∈ i ∈ I } the mesh size. Let us denote by Δt the time step
given by NT Δt = T and consider the sequence (tn)0�n�NT such that tn = nΔt .
Then, the scheme writes:

−λ2
⎨

dΨ n+1
i+ 1

2
− dΨ n+1

i− 1
2

⎩

= hi

⎧
3Pn+1

i − N n+1
i + ρhl

⎪
, 1 � i � I, (8a)

εuhi
un+1

i − un
i

Δt
+ F n+1

u,i+ 1
2

− F n+1
u,i− 1

2
= 0, 1 � i � I, (8b)
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with the numerical fluxes defined for 0 ∈ i ∈ I by:

dΨ n+1
i+ 1

2
= Ψ n+1

i+1 − Ψ n+1
i

hi+ 1
2

, (9a)

F n+1
u,i+ 1

2
=

B

⎨

zuhi+ 1
2
dΨ n+1

i+ 1
2

⎩

un+1
i − B

⎨

−zuhi+ 1
2
dΨ n+1

i+ 1
2

⎩

un+1
i+1

hi+ 1
2

, (9b)

where B is the Bernoulli function, leading to Scharfetter-Gummel fluxes [7], i.e.:

B(x) = x

ex − 1
⊃x ⊂= 0, B(0) = 1.

We supplement the scheme with the discretization of the boundary conditions

Ψ n+1
0 − α0dΨ n+1

1
2

= ΔΨ
pzc

0 , (10a)

Ψ n+1
I+1 + α1dΨ n+1

I+ 1
2

= V − ΔΨ
pzc

1 , (10b)

−F n+1
u, 1

2
= β0

u

⎧
Ψ n+1

0

⎪
un+1

0 − γ 0
u

⎧
Ψ n+1

0

⎪
, for u = P, N , (10c)

F n+1
u,I+ 1

2
= β1

u

⎧
V − Ψ n+1

I+1

⎪
un+1

I+1 − γ 1
u

⎧
V − Ψ n+1

I+1

⎪
, for u = P, N , (10d)

and of the initial conditions

u0
i = 1

hi

∫ x
i+ 1

2

x
i− 1

2

u0(x) dx, 1 � i � I, for u = P, N . (11)

4 Main Results

The goal is to prove the convergence of a sequence of solutions to the numerical
scheme (8a)–(11) to a solution of (1a)–(5).

Proposition 1 Let εN , εP � 0. Under the hypotheses on the data given in Sect. 2,
there exists a solution (Pn+1

i , N n+1
i , Ψ n+1

i )0∈i∈I+1, n∞0 to the fully implicit scheme
(8a)–(11) satisfying the following stability property:

0 � Pn
i � Pm and 0 � N n

i � N m, ⊃0 � i � I + 1, ⊃n � 0. (12)

Outline of the Proof
This proposition is proved for εN , εP > 0 in [2]. Moreover, we can easily expand
the result if εN = 0 or/and εP = 0. It is based on a linearization of the scheme and
on a fixed point theorem.
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As it is classical for finite volume scheme, we consider an approximate solution
which is piecewise constant in time and space. For a sequence of meshes and time
steps (Tm,Δtm)m such that si ze(Tm) ≤ 0 and Δtm ≤ 0 as m ≤ +∨, we define
a sequence of approximate solutions (Pm, Nm, Ψm)m .

Theorem 1 Let εN , εP > 0. Under the hypotheses on the data given Sect. 2, up to
subsequence, we have as m ≤ +∨

um ≤ u strongly in L2(0, T, L2(0, 1)), for u = P, N

Ψm ≤ Ψ strongly in L2(0, T, L2(0, 1)),

with additional weak convergence on the discrete gradients. Moreover (P, N , Ψ ) is
a weak solution to the model (1a)–(5).

Outline of the Proof
Let us consider the sequences (Ψm)m and (um)m , for u = P, N . The proof splits
into three steps: a priori estimates in the appropriate space (see Sect. 5), compactness
of the sequences of approximate solutions and passage to the limit in the numerical
scheme. In this paper, we focus on the proof of the a priori estimates satisfied by N ,
P and Ψ . The main difficulty lies in the treatment of the boundary conditions.

5 A Priori Estimates

We introduce a discrete H1 norm in order to have a synthetical form for the estimates.

Definition 1 Let w = (wi ) ∀ R
I+2, |||w|||2

H1(0,1)
=

I∑

i=0

(wi+1 − wi )
2

hi+ 1
2

+ w2
0 + w2

I+1.

Let us remark that the following discrete Poincaré estimate holds: ⊃w = (wi ) ∀
R

I+2,
I∑

i=1
hi (wi )

2 ∈ 2|||w|||2
H1(0,1)

.

Proposition 2 Under the hypotheses of Theorem 1, there exists a constant C
depending only on the data and independent of Δt and h, such that:

|||Ψ n+1|||2H1(0,1)
� C, ⊃0 � n � NT − 1, (13)

NT −1∑

n=0

Δt |||Ψ n+1|||2H1(0,1)
� CT . (14)

Outline of the proof
We multiply (8a) by Ψ n+1

i and we sum over i . Then, using the boundary conditions
(10a)–(10d), Young inequality and the discrete Poincaré estimate, we easily obtain
estimate (13). Estimate (14) is a direct consequence of (13).
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Proposition 3 Under the hypotheses of Theorem 1, there exists a constant C
depending only on the data and independent of Δt and h, such that:

NT −1∑

n=0

Δt |||un+1|||2H1(0,1)
� C. (15)

Proof Although the proof is based on a classical method [5], the particular boundary
conditions imply a new difficulty. Moreover, the Scharfetter-Gummel fluxes are
treated as in [3].

Let us multiply (8b) with Δtun+1
i and sum over i and n, then:

0 =
NT −1∑

n=0

I∑

i=1

εuhi u
n+1
i

⎧
un+1

i − un
i

⎪
+

NT −1∑

n=0

I∑

i=1

Δtun+1
i

⎨

F n+1
u, i+ 1

2
− F n+1

u, i− 1
2

⎩

.

(16)

We have

NT −1∑

n=0

I∑

i=1

εuhi u
n+1
i

⎧
un+1

i − un
i

⎪
�

NT −1∑

n=0

I∑

i=1

εuhi

2

⎧
un+1

i − un
i

⎪2 −
I∑

i=1

εuhi

2

(
u0

i

)2
.

(17)

Using as in [3] the following decomposition of fluxes:

F n+1
u, i+ 1

2
= − zudΨ n+1

i+ 1
2

un+1
i + un+1

i+1

2

+
zudΨ n+1

i+ 1
2

2
coth



⎜
−zuhi+ 1

2
dΨ n+1

i+ 1
2

2

⎟


⎧

un+1
i+1 − un+1

i

⎪
,

we have

NT −1∑

n=0

I∑

i=1

Δtun+1
i

⎨

F n+1
u, i+ 1

2
− F n+1

u, i− 1
2

⎩

= B1 + B2 + B3,

with

B1 =
NT −1∑

n=0

I∑

i=0

Δt zu

2
dΨ n+1

i+ 1
2

⎨⎧
un+1

i+1

⎪2 −
⎧

un+1
i

⎪2
⎩

,

B2 = −
NT −1∑

n=0

I∑

i=0

Δt zu

2
dΨ n+1

i+ 1
2

coth



⎜
−zuhi+ 1

2
dΨ n+1

i+ 1
2

2

⎟


⎧

un+1
i+1 − un+1

i

⎪2
,
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B3 =
NT −1∑

n=0

Δt

⎨

un+1
I+1F

n+1
u, I+ 1

2
− un+1

0 F n+1
u, 1

2

⎩

.

Using (6) and (8a), (8b) we get:

B1 =
NT −1∑

n=0

I∑

i=1

Δt zuhi

2

zP

⎧
Pn+1

i − Pm
⎪

+ zN

⎧
N n+1

i − N m
⎪

λ2

⎧
un+1

i

⎪2

+
NT −1∑

n=0

Δt zu

2

⎨

dΨ n+1
I+ 1

2

⎧
un+1

I+1

⎪2 − dΨ n+1
1
2

⎧
un+1

0

⎪2
⎩

,

and thanks to the L∨-estimates (12)

B1 �
NT −1∑

n=0

I∑

i=1

Δt z2
uhi

2λ2

⎧
un+1

i − um
⎪ ⎧

un+1
i

⎪2

+
NT −1∑

n=0

Δt zu

2

⎨

dΨ n+1
I+ 1

2

⎧
un+1

I+1

⎪2 − dΨ n+1
1
2

⎧
un+1

0

⎪2
⎩

.

As in [3], using x coth(x) � 1 for all x ∀ R, we obtain

B2 �
NT −1∑

n=0

I∑

i=0

Δt

hi+ 1
2

⎧
un+1

i+1 − un+1
i

⎪2
.

Then, we get

B1 + B2 + B3 �
NT −1∑

n=0

I∑

i=1

Δt z2
uhi

2λ2

⎧
un+1

i − um
⎪ ⎧

un+1
i

⎪2

+
NT −1∑

n=0

I∑

i=0

Δt

hi+ 1
2

⎧
un+1

i+1 − un+1
i

⎪2 − ( f 0
u + f 1

u ), (18)

with

f 0
u =

⎧
un+1

0

⎪2
[

−β0
u

⎧
ψn+1

0

⎪
+ zu

2

ψn+1
0 − Δψ

pzc
0

α0

]

+ un+1
0 γ 0

u

⎧
ψn+1

0

⎪
,

f 1
u =

⎧
un+1

I+1

⎪2
[

−β1
u

⎧
V − ψn+1

I+1

⎪
− zu

2

V − ψn+1
I+1 − Δψ

pzc
1

α1

]

+ un+1
I+1γ

1
u

⎧
V − ψn+1

I+1

⎪
.

Then, it remains to find an upper bound of f 0
u + f 1

u . To this end, let us introduce:
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ξ0
u (x) = γ 0

u (x) − umβ0
u (x) + um zu

α0

(
x − Δψ

pzc
0

)
, ⊃x ∀ R,

ξ1
u (x) = γ 1

u (x) − umβ1
u (x) − um zu

α1

(
x − Δψ

pzc
1

)
, ⊃x ∀ R.

It permits to rewrite:

f 0
u =

⎧
un+1

0

⎪2

2um

⎛
ξ0

u

⎧
ψn+1

0

⎪
− umβ0

u

⎧
ψn+1

0

⎪
− γ 0

u

⎧
ψn+1

0

⎪⎝
+ γ 0

u

⎧
ψn+1

0

⎪
un+1

0 ,

f 1
u =

⎧
un+1

I+1

⎪2

2um

⎛
ξ1

u

⎧
V − ψn+1

I+1

⎪
− umβ1

u

⎧
V − ψn+1

I+1

⎪
− γ 1

u

⎧
V − ψn+1

I+1

⎪⎝

+ γ 1
u

⎧
V − ψn+1

I+1

⎪
un+1

I+1.

As shown in [2], hypotheses (7a), (7b) ensure that ξ0
u and ξ1

u are nonpositive functions
on R. β0

u , β1
u , γ 0

u and γ 1
u are nonnegative functions. Then, using (12) and (13) and

continuity of γ 0
u and γ 1

u , we obtain

f 0
u + f 1

u � γ 0
u

⎧
ψn+1

0

⎪
un+1

0 + γ 1
u

⎧
V − ψn+1

I+1

⎪
un+1

I+1 � C,

It leads to:

NT −1∑

n=0

I∑

i=0

Δt

⎧
un+1

i+1 − un+1
i

⎪2

hi+ 1
2

+ εu

2

NT −1∑

n=0

I∑

i=1

hi

⎧
un+1

i − un
i

⎪2
� C, (19)

with C depending on the data and independent of Δt and h, which concludes the
proof.

6 Conclusion

The a priori estimates (13)–(15) give us the compactness in space of the sequences of
approximate solutions. The compactness in time is obtained for instance by discrete
Aubin Simon compactness lemma (see [6]). We can already note that (19) also give
an estimate in time for P and N (which holds only for εN , εP > 0). Then, passing
to the limit in the numerical scheme, we obtain that (P, N , Ψ ) is a weak solution of
(1a)–(5) (see [3]). In this step, we also have to pay attention to the boundary terms.
This is not detailed in this paper but the integrality of the proof will be presented
in [4].
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In this paper, the convergence proof works for εN , εP > 0. But the dimensionless
parameters in (1a) are in practice εP = 1 and εN ∩ 1. It could be set to 0 in the
model. Existence of solutions to this new model and convergence of a numerical
scheme is still an open question. Future work will focus on it.
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High Performance Computing Linear
Algorithms for Two-Phase Flow in Porous Media

Robert Eymard, Cindy Guichard and Roland Masson

Abstract We focus here on the difficult problem of linear solving, when consid-
ering implicit scheme for two-phase flow simulation in porous media. Indeed, this
scheme leads to ill-conditioned linear systems, due to the different behaviors of the
pressure unknown (which follows a diffusion equation) and the saturation unknown
(mainly advected by the total volumic flow). This difficulty is enhanced by the paral-
lel computing techniques, which reduce the choice of the possible preconditioners.
We first present the framework of this study, and then we discuss different algo-
rithms for linear solving. Finally, numerical results show the performances of these
algorithms.

1 Introduction

We consider the flow of two immiscible compressible phases, the water phase
(denoted w) and the gas phase (denoted g), in porous media; each phase is only
composed of one component. In order to characterize the mathematical coupling of
diffusion and advection, we consider the case where the capillary pressure effects
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can be neglected in front of the high level of pressure gradients imposed by the
production and injection wells. The mass conservation equations are therefore the
following,

η φt ( ∂ν(P) Sν ) + div ( ∂ν(P) Vν ) = Qν, ν = w, g , (1)

together with the generalized Darcy law

Vν = − krν(Sν)

μν(P)
Ω ( ∨ P − ∂ν(P) g ) , ν = w, g . (2)

In Eqs. (1) and (2), the main unknowns are the pressure P and one saturation, for
example Sw, since the phase saturations are linked by Sw + Sg = 1. Additionally, η

is the porosity, Ω is the absolute permeability tensor (these values only depending
on the rock material), g is the gravity acceleration, and, for each phase ν = w, g, ∂ν

represents the bulk density, krν is the relative permeability (nonnegative increasing
function with respect to Sν), μν is the viscosity and Qν is the source term that
represents the contribution of the wells. The ratio krν

μν
is called the mobility of the

phase ν. These equations are considered in a time-space domain (0, tf) × Σ , where
Σ is a polygonal open bounded and connected subset of R3, and tf > 0 is the time
duration of the simulation. Finally, these equations are considered together with
homogeneous Neumann conditions at the boundary of the domain Σ , and initial
conditions on the pressure and on the saturation.

The approximation of the solution to (1) and (2) in the industrial framework with
large time and space scales, requires High Performance Computing techniques. This
implies to handle the difficult problem of solving the linear systems which arise from
fully coupled schemes and domain decomposition, using multi-threading algorithms:
these schemes happen to be the only ones used for the approximation of (1) and (2)
in the industrial framework. For this purpose, we consider here the use of PETSc
[5] together with external preconditioners libraries like MUMPS [4] and HYPRE
[2]. Note that other packages, like DUNE [1], are available. In the example of a gas
storage case [10], a very good scalability has been observed using Boomer AMG [2]
as a preconditioner on the full system, although AMG is usually not adapted to solve
the full system but only the pressure elliptic block. But for more general situations of
two-phase flow (such as the case considered in the numerical example of this paper),
this strategy fails. This has led to the development of efficient Combinative-AMG
preconditioners [11], combining typically an AMG preconditioner on the pressure
block with an ILU preconditioner on the full system. This paper focuses on an
alternative algorithm, based on the PETSc environment, for the resolution of the
linear systems issued from a fully implicit scheme for the approximation of (1) and
(2). Its main advantages are the following:

1. It makes a bridge between sequential and fully implicit schemes.
2. It leads to the sequential use of robust solvers suited for the nature of each

unknown.
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This paper is organized as follows. In Sect. 2, we present a discretization scheme and
its parallel implementation. We then discuss in Sect. 3 the fix-point methods used for
the approximation of the solution to the nonlinear systems of Eqs. (3) and (4). Some
numerical results, in Sect. 4, illustrate our method.

2 Discretization and Parallel Implementation

In order to study the algorithms for solving the linear systems in a parallel framework,
we have extended to the two-phase flow model a recent work (see [6]) done for a
linear parabolic equation. For the implementation details, we use below the same
notations as [6], thus we focus on the specific points regarding the discretization of
two-phase flow. Hence, the continuous model (1) and (2) is discretized using an Euler
fully implicit method in time, and the VAG scheme (Vertex Approximate Gradient
scheme introduced in [7]) in space with up-winding of the mobilities according to
the sign of the Darcy fluxes. We emphasize that the VAG scheme is a symmetric
scheme based on a hybrid formulation, both in terms of vertices and cells unknowns,
but in the resulting linear system the cell unknowns are algebraically eliminated
without any fill-in. The VAG scheme involves linear fluxes between a cell and its
vertices and its implementation matches with that of a standard Multi-Points Flux
Approximation. We refer to [8, 9] for details on the VAG scheme for multiphase flow
in porous media in the case of a sequential implementation.

Parallel discretization. We consider a mesh of the domain Σ (the elements of
the mesh are called cells in the following). As in [6, Sect. 2.1], we denote the set
of processes by P , and we consider a partition of the mesh. For a given process
p ∈ P , we denote by M p the set of its own cells (in practice selected by applying
the Metis package [3]) and by M

p
the set of its overlapped cells which is defined

as the set of all cells sharing a vertex with M p. Then we can define the overlapping
decomposition of the set of vertices as follows:

V
p =

⋃

K∈M p

VK , p ∈ P,

where VK is the set of the vertices of a given cell K . Finally, the set of the own
vertices of a process p ∈ P , denoted V p, is obtained by the application of a rule
detailed in [6, Sect. 2.1]. We then discretize the continuous Eqs. (1) and (2) on each
process p, for each phase ν = w, g, by writing

|s|
Λt (n)

(
∂ν(P(n+1)

s )S(n+1)
ν,s − ∂ν(P(n)

s )S(n)
ν,s

)
−

∑

K∈Ms

Mup,(⊃)

ν,K s V (n+1)
ν,K⊂s = 0

∞s ∈ V p, (3a)
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|K |
Λt (n)

(
∂ν(P(n+1)

K )S(n+1)
ν,K − ∂ν(P(n)

K )S(n)
ν,s

)
+

∑

s∈VK

Mup,(⊃)

ν,K s V (n+1)
ν,K⊂s = |K |Q(n+1)

ν,K

∞K ∈ M
p
, (3b)

together with the Darcy fluxes (see [8, Sects. 3.1.2 and 3.2])

V (n+1)
ν,K⊂s =

∑

s≤∈VK

as≤
K ,s

(
P(n+1)

K − P(n+1)

s≤ + ∂ν(P(n)
K )g · (xK − xs≤)

)
. (4)

In (3) and (4), we use the following notations: Ms is the set of cells K such that
s ∈ VK , |K | (resp. |s|) is the porous volume associated to a cell K (resp. to a vertex
s), computed from a redistribution of the total porous volume of the space domain
with respect to the mesh and the rock type properties [8, 9], xK ∈ R

3 (resp. xs ∈ R
3)

denotes the coordinates of the center of the cell K (resp. of the vertex s). Note that the
VAG scheme construction does not use the geometry of the control volumes s ∈ V
and K ∈ M but only their volumes. For n ∈N, Λt (n) = t (n+1) − t (n) is the time step
between times t (n+1) and t (n). For any control volume I (I = K or I = s), P(n)

I

(resp. S(n)
ν,I ) is an approximation of P (resp. of Sν) in I at time t (n). as≤

K ,s is computed

with respect to the mesh and the permeability tensor Ω [8, 9]. Mup,(⊃)

ν,K s denotes the
upstream mobility of the phase ν and is defined by

Mup,(⊃)

ν,K s =
(

∂ν(P(n)
K s )

krν(S(⊃)
ν,K s)

μν(P(n)
K s )

)

,

where K s denotes the cell K if V (n+1)
ν,K⊂s � 0, or the vertex s otherwise. The upper

index (⊃) stands for (n) (ImPES scheme) or (n + 1) (fully implicit scheme); this
point is reviewed in Sect. 3. Finally, Q(n+1)

ν,K is the possible source term if any well is
open through cell K .

As usual, no special numerical treatment is needed for taking into account the
homogeneous Neumann boundary conditions (see [8, 9]). The set of Eqs. (3) and (4)
leads to a system of nonlinear equations at each time step. This system is solved by
a fix-point algorithm based on the Newton-Raphson method (up to a possible under-
relaxation in order to prevent from nonconvergence behaviors). Thus, the unknowns
of the resulting discrete problem are, on each process p ∈ P , the variations of
(P(n+1)

I )I∈V p∀M p and (S(n+1)
w,I )I∈V p∀M p between two fix-point iterations. As in

[6, Sect. 2.4], their values are obtained through the construction of rectangular linear
systems on each process p ∈ P and, as mentioned above, a consequence of Eqs. (3)
and (4) is that the cell unknowns can be eliminated by a Schur complement without
fill-in, in order to reduce the linear system to the vertices unknowns. Thanks to our
general definition of the overlap, the assembling step may be performed locally on
each process without communication.
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3 Fix-Point Methods

This section presents the fix-point method used in our parallel implementation, and
its implementation thanks to open-source libraries. The variation of the vertices
unknowns between two fix-point iterations is denoted as follows, omitting the time
superscript (n + 1) and the Newton iteration index for the sake of clarity,

U p =
(

(∩Ps)s∈V p , (∩Sw,s)s∈V p

)
, ∞p ∈ P.

If the fix-point method were exactly the Newton method, then U p would be the
solution of a linear system over all processes p, under the form

(
Ap

P P Ap
P S

Ap
S P Ap

SS

)

U p =
(

B p
P

B p
S

)

, (5)

where, for u1, u2 = P, S, the vectors right-hand-side B p
u1 belong to R

V p
and the

sub-matrices Ap
u1,u2 belong to R

V p → R
V p

.
Then, we define the diagonal blocks, of size 2 × 2, by

Ds =
(

Ap
P P (s, s) Ap

P S(s, s)
Ap

S P (s, s) Ap
SS(s, s)

)

, ∞s ∈ V p, ∞p ∈ P,

where Ap
u1,u2(s, s) is the term associated to the equation on s and the unknown on s

of the sub-matrix Ap
u1,u2. We then left-multiply the system (5) by the square matrix

[diag(Ds, s ∈ V p)]−1 ∈ R
(V p)2 →R

(V p)2
. We then get the following linear system

(
Â p

P P Âp
P S

Âp
S P Âp

SS

)

U p =
(

B̂ p
P

B̂ p
S

)

, (6)

where the new right-hand-side and sub-matrices have the same dimension as in (5)
but now satisfy

Â p
P P (s, s) = 1, Â p

P S(s, s) = 0, Â p
S P (s, s) = 0, Â p

SS(s, s) = 1, (7)

for all vertices s ∈ V p, and for any process p ∈ P .
Our implementation of the sequential fix-point scheme allows the choice between

the three following schemes (in all cases, the solution at own and ghost cells is
computed locally on each process p ∈ P by Schur complement).

1. The ImPES scheme, for Implicit in Pressure and Explicit in Saturation, is obtained
by taking (⊃) = (n) in (3). This means that the linear system, under the form (6),
is such that Â p

P S = 0 and Â p
SS(s, s) = 1 if s ∈ V p, and Â p

SS(·, ·) = 0 otherwise.
Hence the resolution of (6) first implies a full resolution on all vertices of the mesh
for the equation
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Â p
P P (∩Ps)s∈V p = B̂p. (8)

This sub-system is transferred line by line to PETSc which provides the solution
vector on pressure variations (∩Ps)s∈V p at own vertices for each process p ∈ P .
The pressure variations at own and ghost vertices (∩Ps)s∈V p , p ∈ P is obtained
by a synchronization of the vertices. Then the saturation variations at own vertices
are immediately obtained from (6) and the saturation variations at ghost vertices are
obtained by a second synchronization of the vertices. Note that the matrix Ap

P P has
the main properties of a finite element matrix for a diffusion problem. Therefore, in
PETSc, it is standard to use Algebraic Multi-Grid preconditioning for the resolution
of these linear systems. Unfortunately, the ImPES scheme implies a limit on the time
step, for standard stability reasons, which is generally not compatible with industrial
requirements.

2. The fully implicit scheme is obtained by taking (⊃) = (n + 1) in (3) (which
implies that the matrices Â p

P S do no longer vanish) and then to solve the coupled
linear system (6) with a unique linear solver issued from the PETSc library. In this
case, PETSc provides the solution on both pressure and saturation variations at own
vertices for each process p ∈ P . The variations at the unknowns at the ghost vertices
are then obtained by synchronization. As discussed in the introduction of this paper,
this strategy implies the implementation of Combinative preconditioners [11]. The
following sequential scheme proposes a related but simpler to implement approach.

3. The sequential scheme consists in only approximately solving the linear systems
(6), thanks to the following algorithm, based on the combination of adapted pre-
conditioners on both the pressure and saturation blocks of the full system. For any
process p ∈ P , we consider the Gauss-Seidel type method,

∞s ∈ V p, ∩S{0}
w,s = 0, (9a)

Â p
P P (∩P{k+1}

s )s∈V p + Â p
P S(∩S{k}

w,s)s∈V p = B̂p (9b)

Â p
S P (∩P{k+1}

s )s∈V p + ÂSS(∩S{k+1}
w,s )s∈V p = B̂s, (9c)

where in (9a)–(9c), the upper index k = 0, . . . , M is corresponding to the sequential
scheme iterations. Hence, if the integer M is large enough, this algorithm leads to
a fix point method for solving the linear systems (6) issued from Newton’s method
applied to the fully implicit scheme. Nevertheless, we take in practice M √ 5 to
ensure a reasonable wall clock time (denoted by WCT in the tables).

The resolution of (9a)–(9c), at each scheme iteration k + 1, requires to solve the
first parallel linear system (9b) which has the same skeleton as (8) issued from the
ImPES scheme. Its resolution by PETSc provides the solution vector on pressure
variations (∩P{k+1}

s )s∈V p at own vertices for each process p ∈ P . The pressure
variations at own and ghost vertices is still obtained by a synchronization of the
vertices. Then the saturation variations is obtained by solving (9c). This implies
the assembling of a second parallel linear system, once again solved by PETSc.
This provides the saturation variations at own vertices for each process p ∈ P ,
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Fig. 1 Left residual with respect to the Newton iteration at the first time step of 401×401×12
mesh. Right random log normal heterogeneous permeability tensor on the same mesh

and a synchronization step concludes the iteration of the method. In terms of cost
of communication, this sequential method is close to that resulting from the fully
implicit scheme, if the total (sum on k) number of iterations of its two successive
solvers is close to the number of iterations of the unique linear solver used for the
fully implicit method. To achieve this, a very efficient strategy is then to specify the
residual tolerance ξ(k) of these two resolutions with respect to the value of k. We
have implemented the relation ξ(k + 1) = ξ(k)2. This leads to a very small number
of linear solver iterations for the first values of k.

4 Numerical Results

We now consider a two-phase flow on a 3D “five-spot pattern”, i.e. with 4 vertical
injection wells (at each corner of the domain) and 1 vertical production well (at the
center of the domain). The geometry and the permeability field of the test case is
illustrated by Fig. 1 (right side). The cluster used is composed of 32 processors Intel�
Xeon� CPU E5-4620 with frequency 2.20 GHz. Three successive meshes have been
built (with resp. 101×101×12, 201×201×12 and 401×401×12 cells), and we focus
on the beginning of the simulation where the pressure and saturation variations are
the highest. Referring to Sect. 3: firstly, the ImPES scheme is not efficient in front
of the highest variations of the unknowns; secondly, we did not find any efficient
preconditioner for the coupled system in the PETSc framework, involving a strong
motivation for exploring the sequential algorithm which is simpler to implement than
a Combinative-AMG preconditioner.

Let us first comment the results obtained with 32-processors runs. We present in
Fig. 1 (left side) the residual in function of the Newton iterations, for different values
of M (see Sect. 3). This figure shows that the convergence rate is only linear for
M = 1, and is more and more quadratic as M increases, since the scheme becomes
closer to the pure Newton method. Table 1 exhibits the wall clock times, the total
number of Newton iterations, and of solver iterations for the pressure resolution and
the saturation resolution. For the ill-conditioned pressure block, the preconditioner is
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Table 2 Results for 7 time steps on the 201 × 201 × 12 mesh and M = 3 (the total Wall Clock
Time includes the initialization and Newton iteration times)

δproc. 1 2 4 8 16 32
Total WCT (s) 3214 1743 1039 655 460 336
δNewton 45 45 45 45 45 44
δiter/P 569 560 570 562 562 558
δiter/S 243 244 243 244 243 238

1 V-cycle of boomer AMG of HYPRE with Gauss Seidel relaxation, whereas for the
much better conditionned saturation block, we selected the Jacobi preconditioner.
The final residual reduction specified for each linear resolution is ξ(M) = 10−5.
For these numerical tests we imposed a reduction of Newton residual equal to 10−6.
This criterion has been selected in order to impose a high precision in the nonlinear
resolution, hence indicating the robustness of the algorithm with respect to severe
convergence requirements. We observe that an optimum, both with respect to the
wall clock time and the number of Newton iterations, is obtained with M = 3.

The scalability results presented in Table 2 are similar to those of [10]. The parallel
efficiency is reduced from 16 to 32 processors due to a too small number of unknowns
per processor in the AMG preconditioner for this problem size (see [10]). They also
show a very good stability of the linear algorithms with respect to the increase of the
number of processors.
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Numerical Solution of Fluid-Structure
Interaction by the Space-Time Discontinuous
Galerkin Method

Miloslav Feistauer, Martin Hadrava, Jaromír Horáček and Adam Kosík

Abstract This paper is devoted to the numerical solution of the interaction of
compressible viscous flow with elastic structures. The flow in a time-dependent
domain is described by the compressible Navier-Stokes equations written in the ALE
formulation and the deformation of elastic structures is described by the dynamic
linear elasticity system. For each individual problem we employ the discretization
by the space-time discontinuous Galerkin finite element method (ST-DGM). The
flow and elasticity problems are coupled via transmission conditions. The developed
method is tested by numerical experiments.

1 Formulation of the Problem

1.1 Flow Problem

We are concerned with the problem of compressible flow in a time-dependent
bounded domain ηt ∨ IR2 with t ∈ [0, T ] . The boundary of ηt is formed by

M. Feistauer (B) · M. Hadrava · A. Kosík
Faculty of Mathematics and Physics, Charles University in Prague, Sokolovská
83,186 75 Praha 8, Czech Republic
e-mail: feist@karlin.mff.cuni.cz

M. Hadrava
e-mail: martin@hadrava.eu

A. Kosík
e-mail: adam.kosik@atlas.cz

J. Horáček
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three disjoint parts: ∂ηt = φI ⊃ φO ⊃ φWt , where φI is the inlet, φO is the outlet
and φWt represents impermeable time-dependent walls.

The time dependence of the domain ηt is taken into account with the aid of
the Arbitrary Lagrangian-Eulerian (ALE) method (see, e.g., [4]). It is based on a
regular one-to-one ALE mapping of the reference configuration η0 onto the current
configuration ηt : At : η̄0 −⊂ η̄t , i.e. X ∈ η̄0 ∞−⊂ x = x(X, t) = At (X) ∈
η̄t . Further, we define the domain velocity z̃(X, t) = ∂

∂t At (X), t ∈ [0, T ] , X ∈
η0, z(x, t) = z̃(A−1

t (x), t), t ∈ [0, T ] , x ∈ ηt and the ALE derivative of the

state vector function w = w(x, t) defined for x ∈ ηt and t ∈ [0, T ]: DA
Dt w(x, t) =

∂w̃
∂t (X, t), w̃(X, t) = w(At (X), t), X ∈ η0, x = At (X). Then the continuity

equation, the Navier-Stokes equations and the energy equation can be written in the
ALE form

DAw

Dt
+

2∑

s=1

∂gs(w)

∂xs
+ wdivz =

2∑

s=1

∂Rs(w,≤w)

∂xs
, (1)

where w = (ρ, ρv1, ρv2, E)T ∈ IR4, gs(w) = f (w)s − zsw, f s = (ρvs, ρv1vs +
δ1s p, ρv2vs + δ2s p, (E + p)vs)

T , Rs(w,≤w) = (0, τ V
s1, τ

V
s2, τ

V
s1v1 + τ V

s2v2 +
k ∂θ

∂xs
)T , s = 1, 2, τ V

i j = λδi j divv + 2μdi j (v), di j (v) = 1
2

(
∂vi
∂x j

+ ∂v j
∂xi

)
, i, j =

1, 2. We have Rs(w,≤w) = ∑2
k=1 Ks,k(w)∂w

∂xk
, where Ks,k(w) are 4 × 4 matrices

depending on w, and f s(w) = A(w)w with A(w) = D f s(w)/Dw.
The following notation is used: ρ—fluid density, p—pressure, E—total energy,

v = (v1, v2)—velocity vector, θ—absolute temperature, cv > 0—specific heat
at constant volume, γ > 1—Poisson adiabatic constant, μ > 0,λ = −2μ/3—
viscosity coefficients, k > 0—heat conduction coefficient, τ V

i j —components of the
viscous part of the stress tensor. System (1) is completed by the thermodynamical

relations p = (γ − 1)
(

E − ρ |v|2
2

)
, θ = 1

cv

(
E
ρ − |v|2

2

)
and equipped with the

initial condition w(x, 0) = w0(x), x ∈ η0 and the boundary conditions:

ρ = ρD, v = vD,
∑2

j=1

(∑2
i=1 τ V

i j ni

)
v j + k ∂θ

∂n = 0 on the inlet φI ,

v = zD(t) = velocity of a moving wall, ∂θ
∂n = 0, on the moving wall φWt ,∑2

j=1 τ V
i j n j = 0, ∂θ

∂n = 0, i = 1, 2, on the outlet φO ,
with prescribed data ρD, vD, zD. By n we denote the unit outer normal.

1.2 Elasticity Problem

We consider an elastic body ηb ∨ IR2, which has a common boundary φ b
N with the

reference domain η0 occupied by the fluid at the initial time. Further, the boundary
of ηb is formed by two disjoint parts ∂ηb = φ b

N ⊃ φ b
D, φ b

N ∨ φW0 and φ b
D is

a fixed part of the boundary. Using the notation of the displacement of the body
u = u(X, t), X ∈ ηb, t ∈ (0, T ) we can write the equations describing the defor-



Solution of FSI by the Space-Time DGM 569

mation of the elastic body ηb in the form

ρb ∂2u
∂t2 + cMρb ∂u

∂t
− div σ(u) − cK

∂

∂t
div σ(u) = f in ηb × (0, T ), (2)

u = uD in φ b
D × (0, T ), σ(u) · n = gN in φ b

N × (0, T ), (3)

u(x, 0) = u0(x), x ∈ ηb,
∂u
∂t

(x, 0) = z0(x), x ∈ ηb. (4)

Here σ(u) = {σi j }2
i, j=1, σi j = λbdivuδi j + 2μbeb

i j (u) with eb
i j (u) = (∂ui/∂x j +

∂u j/∂xi )/2. Further, f : ηb × (0, T ) ⊂ R
2—outer volume force, uD : φ b

D ×
(0, T ) ⊂ R

2—boundary displacement, gN : φ b
N ×(0, T ) ⊂ R

2—boundary normal
stress, u0 : ηb ⊂ R

2—initial displacement, z0 : ηb ⊂ R
2—initial deformation

velocity and ρb > 0—material density are given functions. The expressions cMρb ∂u
∂t

and cK
∂
∂t div σ(u) represent the damping terms, with cM , cK ∀ 0.

The flow and structural problems are coupled by the transmission conditions

v = ∂u
∂t

,

2∑

j=1

σi j (X, t)n j (X) = −
2∑

j=1

τ
f

i j (x, t)n j (X), i = 1, 2, (5)

X ∈ φ b
N , x = X + u(X, t), τ

f
i j = −p δi j + τ V

i j .

2 Discrete Problem

2.1 Discretization of the Flow Problem

The problem will be discretized by the space-time discontinuous Galerkin method
(ST-DGM). We construct a polygonal approximation ηht of the domain ηt . By Tht

we denote a partition of the closure ηht of the domain ηt into a finite number of
closed triangles K with mutually disjoint interiors such that ηht = ⋃

K∈Tht
K .

ByFh ,F B
h ,F I

h we denote the systems of all faces of all elements K ∈ Tht , bound-
ary faces and inner faces, respectively. Further, we introduce the set of “Dirichlet”
boundary faces FD

h = {φ ∈ F B
h ; a Dirichlet condition is prescribed on φ }. Each

face φ is associated with a unit normal nφ , which has the same orientation as the
outer normal on φ ∈ F B

h . We set hφ = length of φ ∈ Fh .
We introduce the space of piecewise polynomial functions Sr

ht = {v; v|K ∈
Pr (K ) ∩ K ∈ Tht }4, where r > 0 is an integer and Pr (K ) denotes the space of all
polynomials on K of degree → r . A function ϕ ∈ Sr

ht is, in general, discontinuous

on interfaces φ ∈ F I
h . By ϕ

(L)
φ and ϕ

(R)
φ we denote the values of ϕ ∈ Sr

ht on φ from

the side of the element K (L)
φ and K (R)

φ adjacent to φ lying in the opposite direction

to nφ and in the direction of nφ , respectively. Then we set √ϕ≥φ = (ϕ
(R)
φ +ϕ

(L)
φ )/2

and [ϕ]φ = ϕ
(L)
φ − ϕ

(R)
φ .
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The discrete problem is derived in the following way: We multiply system (1) by a
test function ϕh ∈ Sr

ht , integrate over K ∈ Tht , apply Green’s theorem, sum over all
elements K ∈ Tht , use the concept of the numerical flux and introduce suitable terms
mutually vanishing for a regular exact solution and linearize the resulting forms (see,
e.g. [1, 3]). In this way we get the following forms:

âh(wh,wh,ϕh, t) =
∑

K∈Tht

∫

K

2∑

s=1

2∑

k=1

Ks,k(wh)
∂wh

∂xk
· ∂ϕh

∂xs
dx (6)

−
∑

φ ∈F I
ht

∫

φ

2∑

s=1

〈
2∑

k=1

Ks,k(wh)
∂wh

∂xk

〉

(nφ )s · [ϕh] dS

−
∑

φ ∈FD
ht

∫

φ

2∑

s=1

2∑

k=1

Ks,k(wh)
∂wh

∂xk
(nφ )s · ϕh dS

− ∂
∑

φ ∈F I
ht

∫

φ

2∑

s=1

〈
2∑

k=1

K
T
k,s(wh)

∂ϕh

∂xk

〉

(nφ )s · [wh] dS

− ∂
∑

φ ∈FD
ht

∫

φ

2∑

s=1

2∑

k=1

K
T
k,s(wh)

∂ϕh

∂xk
(nφ )s · wh dS,

dh(wh,ϕh, t) =
∑

K∈Tht

∫

K
(wh · ϕh) divz dx, (7)

Jh(wh,ϕh, t) =
∑

φ ∈F I
ht

∫

φ

μCW

hφ

[wh] · [ϕh] dS +
∑

φ ∈FD
ht

∫

φ

μCW

hφ

wh · ϕh dS,

(8)

νh(wh,ϕh, t) =
∑

φ ∈FD
ht

∫

φ

μCW

hφ

wB · ϕh dS (9)

− ∂
∑

φ ∈FD
ht

∫

φ

2∑

k=1

K
T
k,s(wh)

∂ϕh

∂xk
(nφ )s · wB dS,

b̂h(wh,wh,ϕh, t) = (10)
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−
∑

K∈Thtk+1

∫

K

2∑

s=1

((As(wh(x)) − zs(x)I)wh(x)) · ∂ϕh(x)

∂xs
dx

+
∑

φ ∈F I
ht

∫

φ

(
P

+
g

(〈
wh

〉

φ
, nφ

)
w

(L)
h + P

−
g

(〈
wh

〉

φ
, nφ

)
w

(R)
h

)
· [ϕh] dS

+
∑

φ ∈F B
ht

∫

φ

(
P

+
g

(〈
wh

〉

φ
, nφ

)
w

(L)
h + P

−
g

(〈
wh

〉

φ
, nφ

)
w

(R)
h

)
· ϕh dS,

CW > 0 is a sufficiently large constant. We set ∂ = 1 or ∂ = 0 or ∂ = −1
and get the so-called symmetric version (SIPG) or incomplete version (IIPG) or
nonsymmetric version (NIPG), respectively, of the discretization of viscous terms.
The symbols P+

g (w, n) and P
−
g (w, n) denote the “positive” and “negative” parts of

the matrix Pg(w, n) = ∑2
s=1(As(w) − zsI)ns defined, e.g., in [2]. The boundary

state wB is defined on the basis of the prescribed Dirichlet boundary conditions and
extrapolation.

For the space-time discretization we consider a partition 0 = t0 < t1 < . . . <

tM = T of the time interval [0, T ] and denote Im = (tm−1, tm), τm = tm − tm−1, for
m = 1, . . . , M.We define the space Srq

hτ = {
φ ; φ|Im

= ∑q
i=0 ζiφi , where φi ∈ Sr

ht ,

ζi ∈ Pq(Im)}2 with integers r, q ∀ 1. Pq(Im) denotes the space of all polynomials in
t on Im of degree → q. For ϕ ∈ Srq

hτ we set ϕ±
m = ϕ(t±m ) = limt⊂tm± ϕ(t), {ϕ}m =

ϕ+
m − ϕ−

m . The initial state whτ (0−) ∈ Sp
h0 is defined as the L2(ηh0)-projection

of w0 on Sr
h0. Moreover, we introduce the prolongation whτ (t) of whτ |Im−1 on the

interval Im . By (·, ·)t we denote the L2(ηht )-scalar product.
Now the space-time DG approximate solution is defined as a function whτ ∈ Srq

hτ
satisfying the following relation for m = 1, . . . , M :

∫

Im

((
DAwhτ

Dt
(t),ϕhτ

)

t

+ âh(whτ ,whτ ,ϕhτ , t)

)

dt (11)

+
∫

Im

(

b̂h(whτ ,whτ ,ϕhτ , t) +
∫

Im

Jh(whτ ,ϕhτ , t)

)

dt

+({whτ }m−1,ϕhτ (tm−1+)) =
∫

Im

νh(wh D,ϕhτ , t) dt, ∩ϕhτ ∈ Srq
hτ .

2.2 Discretization of the Elasticity Problem

The elasticity problem will also be discretized by the ST-DGM. To this end, the
problem is reformulated as a couple of equations of the first order in time: find
functions u and z : ηb × [0, T ] ⊂ R

2 such that
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ρb ∂z
∂t

+ cρb z − div σ(u) = f in ηb × (0, T ), (12)

∂u
∂t

− z = 0 in ηb × (0, T ), (13)

u = uD in φ b
D × (0, T ), σ(u) · n = gN in φ b

N × (0, T ), (14)

u(x, 0) = u0(x), z(x, 0) = z0(x), x ∈ ηb. (15)

Now we proceed in a similar way as in Sect. 2.1. By ηb
h we denote a polygonal

approximation of the domain ηb. The sets φ b
Dh , φ b

Nh ∨ ∂ηb
h will approximate φ b

D

and φ b
N . Let T b

h be a partition of the closure η
b
h We define the finite dimensional

space Sb
hs = {

v ∈ L2(ηb
h ); v|K ∈ Ps(K ), K ∈ T b

h

}2
, where s > 0 is an integer.

By Fb
h ,FbD

h ,FbN
h ,FbI

h we denote the system of all faces of all elements K ∈ T b
h ,

boundary Dirichlet, Neumann faces and inner faces. If we introduce the forms

ab
h(u, v) =

∑

K∈T b
h

∫

K
σ(u) : e(v) dx −

∑

φ ∈FbI
h

∫

φ

(√σ(u)≥ · n) · [v] dS (16)

−
∑

φ ∈FbD
h

∫

φ

(σ(u) · n) · v dS − ∂
∑

φ ∈FbI
h

∫

φ

(√σ(v)≥ · n) · [u] dS

− ∂
∑

φ ∈FbD
h

∫

φ

(σ(v) · n) · u dS,

J b
h (u, v) =

∑

φ ∈FbI
h

∫

φ

Cb
W

hφ

[u] · [v] dS +
∑

φ ∈FbD
h

∫

φ

Cb
W

hφ

u · v dS, (17)

νb
h(v)(t) =

∑

K∈T b
h

∫

K
f (t) · v dx +

∑

φ ∈FbN
h

∫

φ

gN (t) · v dS (18)

− ∂
∑

φ ∈FbD
h

∫

φ

(σ(v) · n) · uD(t) dS +
∑

φ ∈FbD
h

∫

φ

Cb
W

hφ

uD(t) · v dS,

(u, v)ηb
h

=
∫

ηb
h

u · v dx =
∑

K∈T b
h

∫

K
u · v dx, (19)

where Cb
W > 0 is a sufficiently large constant, ∂ = 1, ∂ = 0 or ∂ = −1 and

Sb,sq
hτ = {

v ∈ L2(ηb
h × (0, T ); v|Im = ∑q

i=0 t iϕi with ϕi ∈ Sb
hs, m = 1, . . . , M

}2
,

the ST-DG approximate solution can be defined as a couple uhτ , zhτ ∈ Sb,sq
hτ such

that
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(a)
∫

Im

(
ρb(∂zhτ

∂t
, vhτ

)

ηb
h

+ C
(
ρb zhτ , vhτ

)

ηb
h

+ ab
h(uhτ , vhτ ) (20)

+J b
h (uhτ , vhτ )

)
dt + ({uhτ }m−1, vhτ (tm−1+))ηb

h

=
∫

Im

ν(vhτ ) dt ∩vhτ ∈ Sb,sq
hτ ,

(b)

∫

Im

((
∂uhτ

∂t
,whτ

)

ηb
h

− (zhτ ,whτ )ηb
h

)

dt

+({uhτ }m−1,whτ (tm−1+))ηb
h

= 0 ∩whτ ∈ Sb,sq
hτ ,

m = 1, . . . , M.

The initial states uh(0−), zh(0−) ∈ Sb
hs are defined by (uh(0−), vh)ηb

h
=

(u0, vh)ηb
h
), (zh(0−), vh)ηb

h
= (z0, vh)ηb

h
for all vh ∈ Sb

hs .
In the FSI problem the coupling of the discrete flow problem (11) and structural

problem (20) are realized via the discrete version of transmission conditions (5). The
coupled problem is solved with the aid of the following coupling procedure.

1. Assume that the approximate solution of the flow problem on the time level tk
is known as well as the deformation of the structure uh,k .

2. Set u0
h,k+1 := uh,k, l := 1 and apply the iterative process:

a. Compute the stress tensor τ
f

i j and the aerodynamical force acting on the

structure and transform it to the interface φ b
Nh .

b. Solve the elasticity problem, compute the deformation ul
h,k+1 at time tk+1

and approximate the domain η l
htk+1

.

c. Determine the ALE mapping Al
tk+1h and approximate the domain velocity

zl
h,k+1.

d. Solve the flow problem on the approximation of η l
htk+1

.

e. If the variation of the displacement ul
h,k+1 and ul−1

h,k+1 is larger than the
prescribed tolerance, go to (a) and l := l + 1. Else k := k + 1 and goto (2).

This represents the so-called strong coupling. If in the step (e) we set k := k + 1 and
go to (2) already in the case when l = 1, then we get the weak (loose) coupling.

3 Numerical Results

We consider a 2D model of gas flow past an elastic airfoil. For testing our method
we assume that the material of the airfoil is very soft. It is characterized by the Lamè
parametres λb = 2 · 107 Pa and μb = 5 · 106 Pa. The structural damping coefficients
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Fig. 1 Triangulation at time t = 0 used for the computation of fluid flow and triangulation for the
elasticity problem

Fig. 2 Visualization of velocity vectors and of the deformed elastic airfoil at time t = 0.15 s

are chosen as cM = 0.1 s−1 and cK = 0.1 s and the material density is given by
ρb = 104 kg m−3.

The fluid flow simulation was carried out using the following data: μ = 1.72 ·
10−5 kg m−1.s, far-field pressure p = 101250 Pa, far-field densityρ = 1.225 kg m−3,
Poisson adiabatic constant γ = 1.4, specific heat cv = 721.428 m2 s−2

K−1, heat conduction coefficient k = 2.428 · 10−2 kg m . s−2 K−1. The far-field
velocity was 40 m s−1. Figure 1 shows the triangulation at the initial time t = 0.

Fluid flow is solved by the ST-DGM with quadratic polynomials in space and
linear polynomials in time. For the elasticity problem we also used the ST-DGM, but
with linear polynomials in space and constant polynomials in time. For both problems
the non-symmetric version (NIPG) was used. For flow problem we set CW = 1000
on the interior elements and CW = 10000 on the boundary elements in order to keep
the prescribed Dirichlet boundary conditions, particularly in the boundary layer. For
elasticity we set Cb

W = 1010 in order to match the magnitude of the Lamè parametres.
We used the time step τ = 2.25 · 10−6 s. The strong coupling was used for the FSI
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process. The accuracy 10−6 was achieved with at most 5 iteration on each time level.
Figure 2 shows the visualization of the deformed airfoil and the velocity vectors.
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An Anisotropic Diffusion Finite Volume
Algorithm Using a Small Stencil

Martin Ferrand, Jacques Fontaine and Ophélie Angelini

Abstract This article presents a finite volume algorithm to solve anisotropic hetero-
geneous diffusion equations within the open source CFD software Code_Saturne.
This algorithm has the advantage to use a small stencil composed of face neigh-
bouring cells only, which makes it easy to parallelize. The resolution is performed
through an iterative process (fixed point Picard algorithm). Second order conver-
gence in space is numerically obtained on various analytical test-cases and mesh
sequences of the FVCA6 benchmark and the results are compared to the barycentric
version of the SUSHI scheme [3].

1 Introduction

Several discretization schemes for anisotropic, heterogeneous diffusion problems
are presented in the literature, especially with the finite volume method (see [2],
or the 2D [7] and 3D [5] benchmarks). In this proceeding, we propose a two-
point flux approximation (TPFA) scheme for non-cartesian grids within an industrial
code called Code_Saturne (see [6] for more information), applied to various steps
in the core solver (diffusion part of scalar transport equation with Generalized Gra-
dient Diffusion Hypothesis (GGDH) [1], projection step of the predictor-corrector
Navier-Stokes solver in presence of head-losses, etc.). Therefore, the proposed
scheme is aimed to be highly parallelized, with a ghost-cells technique, and should
use the smallest stencil possible to be run on large meshes.

In this paper, the space discretization is presented in Sect. 2, then the scheme is
derived from the flux continuity property, the resolution is performed through an
iterative process. The obtained results are compared to the barycentric version of the
SUSHI scheme [3] and provided in Sect. 3.
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2 Space Discretization of the Anisotropic Heterogeneous
Diffusion Equation

In this article, first-order tensors (identified to vector fields) are underlined once, and
second-order tensors (identified to matrix fields) are twice underlined.

The studied Poisson equation reads:
⎧
⎪⎪⎨

⎪⎪⎩

−div
(

K · ∨Y
)

= f on Ω

Y = Yd on D ∈ ∂Ω(
K · ∨Y

)
· n = Qd on N = ∂Ω \ D

(1)

where we denote by ∂Ω = Ω \ Ω the boundary of the domain Ω , an open bounded
connected polyhedral subset of Rd (d is the space dimension), Y is the scalar field
defined on the domain Ω and belongs to H1 (Ω), K is the tensor diffusivity field,
assumed to be symmetric positive definite on the whole domain, continuous by part
and limited, and f ⊃ L2 (Ω) a source term. The boundary conditions on the field Y
are composed of Dirichlet conditions on D , and of Neumann conditions on N . D
and N are partitions of the boundary ∂Ω .

2.1 Space Discretization

The domain is discretized into cells Ωi on which K is supposed to be constant. The
barycentre of a cell i (respectively of a cell j) is denoted by I (respectively by J ). Two
cells i and j are said to be neighbours if they share a face noted fi j of centre F . The
intersection between fi j and the vector I J is O . The unit normal vector to the face
fi j oriented from i to j is ni j , the surface of fi j is S fi j , and we define Si j = S fi j ni j .

The set of all interior faces of i is denoted F int
i . Finally, I ⊂ (respectively J ⊂) is the

orthogonal projection of I (respectively of J ) with respect to the face fi j .
Faces shared by one and only one cell i are said to be boundary faces and denoted

fb. nib is the outward normal to the face fb, and Sib is the normal vector to the
face which norm is the surface. The set of boundary faces of i is denoted by F ext

i ,
whereas Fi is the set of all faces of i . Finally, I ⊂ is the orthogonal projection of I
with respect to face normal of fb. All the geometric definitions are recalled on Fig. 1a

and on Fig. 1b. The cell mean of Y in i is defined by Yi ∞ 1

|Ωi |
∫

Ωi

Y dΩ .

Code_Saturne uses a finite volume scheme where the solved variables are stored
at cell centres: i.e. YI = Yi . The discretized field Y is assumed to be affine on each
cell. Therefore, for every point I ⊂⊂ of a cell Ωi , the following relationship reads:

YI ⊂⊂ = Yi + ∨ i Y · I I ⊂⊂ (2)



An Anisotropic Diffusion Finite Volume Algorithm 579

(a) (b)

Fig. 1 Sketch displaying interior and exterior faces with recontruction points I ⊂⊂ and J ⊂⊂, a interior
face, b boundary face

where ∨ i Y is the Y gradient, constant within each cell. Face quantities are defined

by: Y f = 1

S f

∫

S f

Y dS. Thanks to the affinity of Y , we have Y f = YF . Integrating

Equation (1) over a cell Ωi gives:

−
∑

f ⊃Fi

(
K · ∨Y

)

f
· S f = |Ωi | fi (3)

2.2 Two-Point Flux Approximation Scheme

The aim of this section is to write a two-point flux as for isotropic diffusion problem
on orthogonal meshes (see [4] for a description of TPFA schemes). One can notice
that for the face fi j , the diffusive flux seen by cell i can be written as:

(
K

i
· ∨Y

)
· ni j = (∨Y

) ·
(

K T
i

· ni j

)
(4)

The tensor K is symmetric, therefore K T = K . The Eq. (4) indicates that the direction
K

i
·ni j is optimal to discretize the flux. Let I ⊂⊂ (resp. J ⊂⊂) be a point on the line passing

through F with direction vector K
i
·ni j (resp. K

j
·ni j ). The diffusive flux seen from

cell i is then approximated by:

(
K · ∨Y

)

F
· ni j = (∨Y

)

F ·
(

K
i
· ni j

)
≤

⎜
⎜
⎜K

i
· ni j

⎜
⎜
⎜

I ⊂⊂F
(YF − YI ⊂⊂) (5)
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where I ⊂⊂F is the algebraic distance between I ⊂⊂ and F . The flux seen from cell j is
approximated by:

(
K · ∨Y

)

F
· ni j = (∨Y

)

F ·
(

K · ni j

)
≤

⎜
⎜
⎜K

j
· ni j

⎜
⎜
⎜

F J ⊂⊂ (YJ ⊂⊂ − YF ) (6)

where F J ⊂⊂ is the algebraic distance between F and J ⊂⊂. Enforcing the continuity of
the fluxes (5) and (6) yields:

YF =
⎟


I ⊂⊂F

⎜
⎜
⎜K

i
· ni j

⎜
⎜
⎜

+ F J ⊂⊂
⎜
⎜
⎜K

j
· ni j

⎜
⎜
⎜





−1 ⎟

YI ⊂⊂
F J ⊂⊂

⎜
⎜
⎜K

j
· ni j

⎜
⎜
⎜

+ YJ ⊂⊂
I ⊂⊂F

⎜
⎜
⎜K

i
· ni j

⎜
⎜
⎜



 (7)

Therefore YF is the weighted harmonic mean depending on K · n in cells i and
j . Injecting (7) in (5) gives a two-point formula for the flux through face fi j :

−
(

K · ∨Y
)

fi j
· ni j = K fi j

I ⊂⊂ J ⊂⊂ (YI ⊂⊂ − YJ ⊂⊂)

where the equivalent scalar face diffusivity K fi j is defined by:

K fi j

I ⊂⊂ J ⊂⊂ =
⎟


I ⊂⊂F

⎜
⎜
⎜K

i
· ni j

⎜
⎜
⎜

+ F J ⊂⊂
⎜
⎜
⎜K

j
· ni j

⎜
⎜
⎜





−1

(8)

Besides, boundary terms are discretized as:

−
(

K · ∨Y
)

fb
· nib = A f

Y + B f
Y YI ⊂

2.3 Non-Orthogonalities Reconstruction and Iterative Solving

As the field values of Y at I ⊂⊂ and J ⊂⊂ are not degrees of freedom of the discretized
field, they are written in terms of Yi and Y j using the cell gradient through (2):

YI ⊂⊂ = YI + ∨ i Y · I I ⊂⊂
YJ ⊂⊂ = YJ + ∨ j Y · J J ⊂⊂ (9)

One should note that the choices for I ⊂⊂ and J ⊂⊂ are still arbitrary, the only require-
ment is that F I ⊂⊂ should be collinear to K

i
· ni j and F J ⊂⊂ should be collinear to

K
j
· ni j . Eventually, inserting (9) in Equation (3) reads:
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∑

fi j ⊃F int
i

K fi j

I ⊂⊂ J ⊂⊂
(

Yi − Y j +
(
∨ i Y · I I ⊂⊂ − ∨ j Y · J J ⊂⊂))

+
∑

fb⊃F ext
i

(
A f

Y + B f
Y

(
Yi + ∨ i Y · I I ⊂⊂)) − |Ωi | fi = Ei (Y) = 0

(10)

where E (.) is the linear operator to be solved and Y be the vector containing
the degree of freedom (vector of size Ncel ) of the discretized field Y : Y =⎛
Y1, · · · , Yi , · · · , YNcel

⎝
.

Equation (10) is solved using a Picard fix point. This approach is widely used
in industrial CFD codes because it gives a linear system with good invertibility
properties and with low memory consumption due to the small stencil. The problem
(10) can be rewritten as: find Y so that E (Y) = 0. Let

(
Yk

)

k⊃N be a series initialized
at 0 defined by:

⎞
EM

(
δYk+1

)
= E

(
Yk

)

Yk+1 = Yk + δYk+1
(11)

where EM (·) is the linear operator built with non-reconstructed fluxes:

E Mi

(
δYk+1

)
=

∑

fi j ⊃F int
i

K fi j

I ⊂⊂ J ⊂⊂
(
δYi − δY j

) +
∑

fb⊃F ext
i

B f
Y δYi (12)

The incremental vector is computed at each sub-iteration solving a linear system
of size Ncel × Ncel . The sparse matrix EM is composed of a diagonal of size Ncel

and an extra-diagonal of size N f ac (number of interior faces), and is a M−matrix,
thus, is invertible and its inverse is positive definite. In all the numerical test cases,
a conjugate gradient combined with an algebraic multi-grid algorithm is used.

If I ⊂⊂ and J ⊂⊂ were chosen as orthogonal projections on the lines passing through F
with respective direction vectors K

i
·ni j and K

j
·ni j , it would not ensure the positivity

of the face viscosity K fi j defined by (8) and the resulting matrix would loose its
invertibility property. Hence, we choose to maintain I ⊂⊂ and J ⊂⊂ on the same side of the

face fi j as I and J , by setting:
I ⊂⊂F

⎜
⎜
⎜K

i
· ni j

⎜
⎜
⎜

= max

⎠

⎢
⎣

I F · K
i
· ni j

⎜
⎜
⎜K

i
· ni j

⎜
⎜
⎜

2 , ε
I ⊂F

⎜
⎜
⎜K

i
· ni j

⎜
⎜
⎜

⎤

⎥
⎦,

with ε set to 0.1. That tends to drive away the built matrix from the one defined
in (10), and thus requires more reconstruction sweeps, but keeps the matrix as a
M−matrix. Finally, the reconstruction gradient used in Equation (10), is the standard
cell-gradient displayed in the theory documentation of Code_Saturne[6].
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(a) (b) (c) (d)

Fig. 2 An overview of mesh sequences. a HEX mesh. b TET mesh. c BLS mesh. d DBLS mesh

Table 1 Order of convergence for the two finer meshes of hexahedral (HEX), tetrahedral (TET),
prism with triangle bases (BLS) and prism with general bases (DBLS) mesh sequences for cases
(13), (14) and (15)

(a) Case 1. (b) Case 2. (c) Case 3.
Meshes Ratiol2 Ratiograd Meshes Ratiol2 Ratiograd Meshes Ratiol2 Ratiograd

HEX 1.985 1.265 HEX 1.968 1.447 HEX 2.002 2.001
TET 2.136 1.029 TET 2.090 0.927 TET 2.321 1.691
BLS 1.888 1.016 BLS 1.962 0.922 BLS 1.702 1.012
DBLS 1.727 1.009 DBLS 1.728 1.467 DBLS 2.042 1.593

3 Verification Test Cases

In this section, numerical results obtained on the FVCA6 benchmark test cases [5]
are presented and compared to the barycentric version of SUSHI scheme [3]. The
number of unknowns of the linear system is denoted by nu. We deliberately have not
chosen exactly the mandatory meshes of the benchmark, but all the presented cases
are run on hexahedral meshes (HEX), tetrahedral meshes (TET), prism meshes with
triangle bases (BLS) and prism meshes with general bases (DBLS) of the benchmark
mesh database (see Fig. 2).

Then the following orders of convergence are defined:

ratiol2(i) = −3
log

(
erl2(i)

erl2(i−1)

)

log
(

nu(i)
nu(i−1)

) , ratiograd(i) = −3
log

(
ergrad(i)

ergrad(i−1)

)

log
(

nu(i)
nu(i−1)

)

where i is the number of the mesh (from the coarser to the finer), erl2(i) is
the normalized discrete L2-error on the solution of the mesh number i, ergrad(i)

the normalized discrete L2-error on the gradient. In all cases bellow, the value of the
analytical solution is imposed as a Dirichlet. The first analytical test-case is defined
by:

K =
⎟


1 0.5 0

0.5 1 0.5
0 0.5 1





Yana = 1 + sin (πx) sin
(
π

(
y + 1

2

))
sin

(
π

(
z + 1

3

))
(13)
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(a) (b)

(c) (d)

(e) (f)

Fig. 3 L2 error norm for Y and its gradient. a L2 Error norm for Y for case 1. b L2 Error norm for
ΔY for case 1. c L2 Error norm for Y for case 2. d L2 Error norm for ΔY for case 2. e L2 Error
norm for Y for case 3. f L2 Error norm for ΔY for case 3.

The second analytical test case is defined as follows:

K =
⎟


1 + y2 + z2 −xy −xz

−xy 1 + x2 + z2 −yz
−xz −yz 1 + x2 + y2





Yana = x3 y2z + x sin (2πxy) sin (2πxz) sin (2π z)

(14)
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This case is representative of the applications covered by the algorithm (GGDH on the
diffusive term of a scalar transport equation) with an heterogeneous and anisotropic
tensor K , but not discontinuous. The last analytical test-case presented here is:

K =
⎟


1 0 0
0 1 0
0 0 1000



 , Yana = sin (2πx) sin (2πy) sin (2π z) (15)

The Picard fixed point algorithm is considered converged when the normed
residual becomes smaller than 10−10. Note that, by construction, no iteration is
needed for cases with hexahedral meshes and orthotropic diffusion coefficients (e.g.
case (15) and HEX meshes). On presented verification cases about 30 iterations are
needed to obtain the required precision (up to 177 sweeps for (15) case with the finest
TET mesh). A summary of convergence ratios is displayed in Table 1 for the two
finer meshes of each mesh sequence. We can notice that the order of convergence is
around 2, even greater for the two finer tetrahedral meshes. This is due to the fact
that the penultimate mesh is of poorer quality than the finest one as displayed on
Fig. 3. One can remark that the numerical results have a precision of the order of the
barycentric version of the SUSHI scheme, but are more sensitive to the mesh quality.
The worst accuracy is obtained with the tetrahedral meshes. We also must admit
that the results on kershaw-type meshes are not shown, since the present scheme is
sensitive to the mesh quality criterion, which are worst as the meshes are finer in the
kershaw-type sequence.

4 Conclusion

A new algorithm which solves anisotropic heterogeneous diffusion problem is
presented. It gives satisfactory results on various types of meshes with an approxi-
mate second order of convergence in space in L2-norm and with a precision close
to the one obtained with the SUSHI scheme. Its main advantage is the small stencil
needed, which allows an highly parallelization of the algorithm, within the industrial
CFD code Code_Saturne.
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Coupling of Fluid Flow and Solute Transport
Using a Divergence-Free Reconstruction of the
Crouzeix-Raviart Element

Jürgen Fuhrmann, Alexander Linke and Christian Merdon

Abstract The nonconforming Crouzeix-Raviart finite element discretization for the
Navier-Stokes equations allows for a divergence-free reconstruction of the discrete
velocity field in the Raviart-Thomas finite element space. Integration over the faces
of the control volumes of an admissible finite volume subdivision of the normal
components of this reconstructed velocity field allows the coupling to the two-point
flux based exponential fitting finite volume method for mass transport. The main
advantage of this scheme is that it preserves positivity and maximum principles
for the concentration. In comparison to previously introduced coupling schemes
based on divergence-free finite element ansatzes for the fluid flow, the new method
uses a significantly smaller number of degrees of freedom. The paper introduces
the coupling method, demonstrates the preservation of the qualitative properties of
the discrete concentration field and, based on numerical experiments, establishes the
hypothesis that the coupled scheme is convergent.

1 Introduction

This paper concerns the coupling between a fluid with the velocity u, pressure p and
viscosity η which satisfies the steady, incompressible Navier-Stokes equation

(u · ∨)u + ∨ p − ηΔu = f, ∨ · u = 0 and u = uD along ΓD (1)
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with the steady transport of a species dissolved in the fluid with a concentration c
and diffusion coefficient D that satisfies

∨ · (−D∨c + ∨ · cu) = s (2)

plus further boundary conditions.
Similar to the method proposed in [9], the Navier-Stokes equation is solved

numerically with a modified nonconforming Crouzeix-Raviart finite element method.
Employing a Raviart-Thomas velocity reconstruction operator, the modified
Crouzeix-Raviart element stabilises the discrete Navier-Stokes solution whenever
the exterior force term or the nonlinear convection term contains a large irrotational
part in the sense of the Helmholtz decomposition.

Similar to [2], one can apply this reconstruction operator to the discrete velocity
solution to obtain a divergence-free velocity field. This property is employed in the
coupling to a transport equation which is solved by a two-point exponential fitting
[1, 8, 10] finite volume method on an admissible finite volume mesh [5]. As a
consequence, the maximum principle for the solution of the transport equation is
preserved.

A similar, coupled FEM-FVM approach using the Scott-Vogelius finite element
has been shown to be convergent [6]. It has been successfully applied to the numerical
investigation of the limiting current problem in an electrochemical thin layer flow
cell [7]. If successful, the advantage of the new approach introduced in the present
paper would be the significantly reduced number of degrees of freedom for the FEM
solution of the Navier-Stokes equations, while retaining the advantageous qualitative
properties of the finite volume solution of the transport equation.

For the practical realization of the admissible finite volume mesh, Voronoi boxes
have been used. It seems to be possible to realise a simpler coupling scheme of the
same quality using a cell-centred finite volume method on acute simplex meshes. It
is however not straightforward to generate these meshes in complex domains, or to
relax this condition on the meshes. On the other hand, mesh generators which deliver
boundary conforming Delaunay meshes for large classes of geometries are available
[11, 12], allowing the implementation of Voronoi box based schemes [13].

2 Divergence-Free Reconstruction of the Velocity Field in the
Navier-Stokes Equations

LetT denote a regular triangulation into triangles (2D) or tetrahedra (3D) in the sense
of Ciarlet with nodes N and edges (2D) resp. faces (3D) E . Let Pk(T ) be the space
piece-wise polynomials of order k, i.e., every v ∈ Pk(T ) is a polynomial v ∈ Pk(T )

of order k on every element T ∈ T . The space of vector-valued nonconforming
Crouzeix-Raviart functions reads
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CR(T ;Rd) := ⎧
vh ∈ P1(T )d : for all T ∈ T , [vh](mid(E)) = 0 for all E ∈ E (Ω)

⎪
,

CR0(T ;Rd) := ⎧
vh ∈ CR(T ;Rd) : vh(mid(E)) = 0 for all E ∈ E (∂Ω)

⎪
.

The related nonconforming interpolation ΠCR : H1(Ω;Rd) ⊃ CR(T ;Rd) is
defined by

(ΠCRv)(mid(E)) = 1

|E |
⎨

E
v ds for all E ∈ E .

The unmodified Crouzeix-Raviart nonconforming finite element method for (1)
seeks uh ∈ ΠCRuD +CR0(T ;Rd) and ph ∈ Q(T ) := {qh ∈ P0(T ) : ⎩

Ω
ph dx =

0} with

⎨

Ω

(uh · ∨)uh · vh dx −
⎨

Ω

ph∨ · vh dx +
⎨

Ω

η∨uh : ∨vh dx =
⎨

Ω

f · vh dx,

−
⎨

Ω

qh∨ · uh dx = 0 for all (vh, qh) ∈ CR0(T ;Rd) × Q(T ).

(3)

The modified Crouzeix-Raviart finite element method for the Navier-Stokes equation
employs the Fortin interpolation operator ΠRT : H1(Ω;Rd) ⊂ CR(T ;Rd) ⊃
RT(T ) into the space of Raviart-Thomas finite elements

RT(T ) = {v ∈ H(div,Ω) | ∞T ∈ T , ≤a ∈ P0(T ;Rd), b ∈ P0(T ), v(x)|T = a + bx},

that is uniquely defined by

(ΠRTv) · nE := 1

|E |
⎨

E
v · nE ds for all E ∈ E .

The modified method seeks uh ∈ ΠCRu D + CR0(T ;Rd) and ph ∈ Q(T ) with

⎨

Ω

(ΠRTuh · ∨)uh · ΠRTvh dx −
⎨

Ω

ph∨ · vh dx +
⎨

Ω

η∨uh : ∨vh dx =
⎨

Ω

f · ΠRTvh dx,

−
⎨

Ω

qh∨ · uh dx = 0 for all (vh, qh) ∈ CR0(T ;Rd ) × Q(T ).

(4)

Note, that ΠRT is well-defined for Crouzeix-Raviart functions vh , since
⎩

E vh ·
nE ds = |E | vh(mid(E)) · nE and vh is continuous in mid(E). If vh is piece-
wise divergence-free, i.e. ∨ · vh |T = 0 on every T ∈ T , it follows that ΠRTvh ∈
H(div,Ω) ∀ P0(T ;Rd) is divergence-free. Moreover, there is the Fortin interpola-
tion estimate

∩v − ΠRTv∩L2(Ω) → Ch ∩∨hv∩L2(Ω) for all v ∈ H1(Ω;Rd) ⊂ CR(T ;Rd).
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A proof can be found in [3, 4] and is also valid for Crouzeix-Raviart functions. This
divergence-free reconstruction of the velocity enters the finite volume method for
the transport equation (2) as described below.

3 Finite Volume Scheme for the Transport Equation

Let P denote a set of points and let K denote the associated set of Voronoi cells
with facets F . For a point xK ∈ P , the Voronoi cell K ∈ K around xK is defined
as the set of points x ∈ Ω which are closer to xK than to any other point in P \{xK }.
The set of Dirichlet control volumes is denoted with KD and constructed such that
xK ∈ ΓD for any K ∈ KD . Let K0 := K \ KD . The set K (K ) consists of all
neighbouring cells L ∈ K such that the surface measure |σK L | of their shared facet
σK L := ∂K ∀∂L ∈ F is positive. The set of facets of K with nonempty intersection
with the Neumann boundary ΓN is denoted by FN (K ). In practice, the Voronoi cells
are constructed as the dual of a Delaunay triangulation of the domain. Therefore, due
to the progress in Delaunay mesh generation algorithms [11, 12], this procedure is a
constructive way to yield an admissible finite volume subdivision in the sense of [5].

The transmission coefficient along the facet σK L of two neighbouring cells K ∈
K and L ∈ K (K ) is given by

τσK L := |σK L | / ∣
∣hσK L

∣
∣ with hσK L := xL − xK . (5)

The transmission coefficient for a facet σ ∈ FN on the boundary reads τσ := |σ|
and hσ = nΓN equals the outer unit normal vector. The integral mean of a function
c ∈ L2(K ) over a control volume K ∈ K reads cK := ⎩

K c dx/ |K |. Given a
divergence-free vector field v ∈ H(div,Ω) that satisfies the boundary conditions
of (1) we define its scaled flux projection vh ∈ P0(F ) on the facets of the Voronoi
cells by

vh |σ = vσ := 1

|σ|
⎨

σ
v · hσ ds for all σ ∈ F . (6)

This flux projection is discretely divergence-free in the following finite volume
sense that

∑

L∈K (K )

τσK L vσK L =
⎨

∂K
v · nK dx =

⎨

K
∨ · v dx = 0 for all K ∈ K . (7)

Given vσK L from (6) and the Bernoulli function B(z) = z/(1 − e−z), we define the
exponentially fitted flux approximation [1, 8, 10]

g(cK , cL , vσK L ) := D
(

B
(vσK L

D

)
cK − B

(
−vσK L

D

)
cL

)
for K ∈ K , L ∈ K (K ).

(8)
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Then, the finite volume scheme seeks ch ∈ P0(K ) with cK = ch |K = cD(xK ) for
all K ∈ KD and

∑

L∈K (K )

τσK L g(cK , cL , vσK L ) +
∑

σ∈FN (K )

τσg(cK , cK , vσ) = |K | sK ∞K ∈ K0.

(9)

There is an equivalent description of (9). The sum of (9) over all control volumes
K ∈ K and the multiplication of a piece-wise constant test function λh ∈ P0(K )
with λK = 0 for K ∈ KD leads to

∑

K∈K0

λK




∑

L∈K (K )

τσK L g(cK , cL , vσK L ) +
∑

σ∈FN (K )

τσg(cK , cK , vσ)

⎜

⎟ =
∑

K∈K0

λK |K | sK .

By (8), it holds g(cK , cL , vσK L ) = −g(cL , cK ,−vσK L ) and therefore,

ah(ch,λh) :=
∑

σK L∈F0

τσK L g(cK , cL , vσK L )(λK − λL)

=
∑

K∈K0

λK |K | sK =
⎨

Ω

λhs dx =: F(λh).

Hence, an equivalent description of (9) is to search for ch ∈ P0(K ) with cK =
ch |K = cD(xK ) for all K ∈ KD and

ah(ch,λh) = F(λh) for all λh ∈ P0(K ) with λK = 0 for K ∈ KD.

Existence and uniqueness of the solutions depend on the coercivity of the bilin-
ear form ah and have been shown e.g. in [6]. Furthermore the corresponding dis-
cretization matrix has the M-Property. If s = 0, for a discrete solution (cK )K∈K , a
discrete maximum principle is valid, which bounds the value cK by the values cL for
L ∈ K (K ), and the values at the boundary [6]. We note that the derivation of the
discrete maximum principle explicitly uses the fact that the discrete velocity field vh

is discretely divergence-free in the sense of (7).

4 The Coupling Method

Similarly to the method proposed in [6], in order to realise the coupling, we obtain
a discrete solution of (1) and use the interpolation ΠRTuh as the velocity field v in
(6). The numerical results obtained so far allow to put forward the hypothesis that—
similar to the result in [6] which was based on the Scott-Vogelius finite element for
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the Navier-Stokes equations—the coupled method is convergent. A possible conver-
gence proof can exploit the fact that the distance between the reconstructed and the
unreconstructed solution is O(h) and and that the discrete velocity converges to a
continuous function in H1(Ω).

The velocity projections (6) onto the control volume faces are calculated simplex
by simplex using a second order quadrature rule. For this somewhat cumbersome
(especially in 3D) procedure, see [6]. We note however, that the complexity of this
operation is proportional to the number of degrees of freedom if the point set P
coincides with the set of simplex vertices, and that it can be parallelized in a straight-
forward manner. In the general case, with a properly implemented procedure to find
the element containing a given point, optimal complexity seems to be in reach as
well.

5 Numerical Examples

The method has been implemented within the framework of the numerical tool box
pdelib2 [13] developed and maintained at WIAS.

Convergence study. In order to assess the convergence properties of the coupling
scheme, we perform a numerical convergence study for the following coupled 2D
problem taken from [6]. It is given in the unit square Ω with homogeneous Dirichlet
boundary conditions. It has the exact solution

v =
(

2(−1 + x)2x2(−1 + y)y(−1 + 2y)

2(1 − 2x)(−1 + x)x(−1 + y)2 y2

)

c = x2(x − 1)y(y − 1).

The right hand sides have been chosen in such a way that they provide the indicated
exact solutions.

We investigate the convection diffusion problem on two series of grids. The first
series of triangular grids consisting of right angled triangles is created from a square
mesh of n × n points by subdividing each square into two triangles. The second
series of genuinely triangular grids is created using the mesh generator triangle [11]
such that no alignment of grid points occurs. We characterise both meshes by their
respective minimal edge length h, called mesh width.

The calculation of the flux integrals (6) is performed by a second order quadrature,
the right hand side sK is calculated by point evaluation and multiplication by the size
of the control volume.

The results are depicted in Fig. 1. We observe similar asymptotic behaviour for
the case of exact flux and the case of a flux calculated numerically by the proposed
modified Crouzeix-Raviart mixed finite element method. This allows to conjecture
a similar convergence result for the coupled problem as obtained in [6]. We note that
the numerical experiments for the unreconstructed method result in nearly the same
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Fig. 1 Convergence of the finite volume solution of the convection-diffusion problem on meshes
of right angled triangles (“sq”) resp. general triangles (“tr”) for diffusion coefficient D = 1 (left
column) and D = 10−5 (right column), and velocities taken from the exact (“exact”) resp. Raviart-
Thomas reconstruction of the Crouzeix-Raviart finite element solution (“crrt”) of the Stokes problem

convergence data. For the sake of readbility, these results have been omitted from
the plots.

Therefore, within the context of the proposed coupling scheme, the advantage
of the modified Crouzeix-Raviart mixed finite element method method lies in the
existence of a discrete maximum principle for the solution of the transport problem,
as will be demonstrated in the next example.

Influence of reconstruction on discrete maximum principle. The influence
of the reconstruction can be observed in Fig. 2. The flow has been calculated using
corresponding Hagen-Poiseuille velocity profiles for the inlet and the outlet boundary
conditions, with maximum velocity 4.2 × 109, respectively. The U-shaped domain
fits into a 5×10 rectangle, the width of the pipe is 1. At the other boundaries, no-slip
boundary conditions are fulfilled. The concentration has been set to 1 at the inlet.
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Fig. 2 Stationary concentration in the longitudinal section of a U shaped pipe: Crouzeix-Raviart
velocity without reconstruction (left) and with Raviart-Thomas reconstruction (right). Inlet and
outlet are marked by the arrows. Both isolines (on the base) and elevation graph of the concentration
are shown

At the outlet, an outflow boundary condition [6] is applied. At all other boundaries,
impermeability conditions are imposed. The diffusion coefficient is D = 1.

The correct physical solution of this stationary problem with strong convection
dominance is a constant concentration c = 1. Without reconstruction, the maxi-
mum principle for the concentration is significantly violated. The divergence-free
reconstruction allows to keep the maximum principle in the numerical solution.
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Activity Based Finite Volume Methods for
Generalised Nernst-Planck-Poisson Systems

Jürgen Fuhrmann

Abstract The paper shortly introduces models which improve the Nernst-Planck-
Poisson system to obtain more realistic ion concentrations near electrode surfaces
in comparison to classical models. The resulting equations are reformulated using
activities as basic variables describing the species amounts. This reformulation allows
to introduce a straightforward generalisation of the Scharfetter-Gummel scheme for
drift-diffusion equations. Numerical examples demonstrate the improved physical
correctness of the generalised model, the thermodynamic consistency in the sense of
the decay of the free energy, and the usefulness in nanofluidic problems.

1 Ion Transport in a Fluid in Mechanical Equilibrium

We regard an incompressible isothermal mixture of N components characterised
by molar densities (in the sequel called concentrations) cα , chemical potentials μα ,
diffusive fluxes Nα , charge numbers zα , molar masses Mα , diffusion coefficients Dα .
The component N is regarded as an electroneutral (zN = 0) solvent with dielectric
permittivity ε. The evolution of the concentrations and the electrostatic potential φ

is described by the Nernst-Planck-Poisson system [7, 10]:

−∇ · ε∇φ = q = F
N∑

α=1

zαcα (1a)

∂t cα + ∇ · (cαv + Nα) = 0 (α = 1 . . . N − 1) (1b)

Nα = − Dα

RT
cα (∇μ̃α + zα F∇φ) . (α = 1 . . . N − 1) (1c)
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The remaining notations are T —temperature, R—gas constant, F—Faraday con-
stant. The effective chemical potentials μ̃α relate to the chemical potentials as

μ̃α = μα − Mα

MN
μN . (α = 1 . . . N − 1) (2)

The barycentric velocity v of the mixture follows the incompressible Navier-
Stokes equations. The assumption of mechanical equilibrium allows to set v = 0
throughout the paper. The momentum equation results in the force balance [7, 10]:

∇ p = −q∇φ. (3)

The solvent concentration cN = c̄ − ∑N−1
α=1 cα is the difference between

the constant (due to incompressibility) concentration c̄ of the mixture and the sum
of the concentrations of the dissolved species. The solvent flux can be obtained from
the condition

∑N
α=1 MαNα = 0.

This ansatz differs from the classical treatment of ion drift diffusion (see e.g. [11])
by explicitly taking into account the chemical potential of the solvent [7].

2 Constitutive Relationships for Chemical Potential

To close system (1a–1c), it is necessary to introduce constitutive relationships
between the chemical potentials μ1 . . . μN and the other quantities describing the
system.

Ideal dilute solution. Here, the motion of the solvent is not influenced by the
motion of the dissolved species, and with given constant reference chemical potentials
μ◦

α , the chemical potential can be set to [1]:

μN = 0, μα = μ◦
α + RT ln

cα

c̄
(α = 1 . . . N − 1), (4)

corresponding to a free energy density which does not take into account the solvent:

ψ = 1

2
ε|∇φ|2 + RT

N−1∑

α=1

cα

(
ln

cα

c̄
− 1

)
. (5)

This ansatz regards ions as point charges and misses the fact that the finite size of
real ions limits the maximum possible species concentrations cα .

Bikerman model. The introduction of an additional term in the chemical potential
which takes into account the increase of the free energy resulting from the movement
of a molecule into a volume already crowded with other molecules is the subject of
a significant number of papers, see e.g. the reviews [3, 5].
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The summary volume fraction of dissolved species amounts to Φ = ∑N−1
α=1 vαcα ,

where vα is the partial molar volume accommodating 1 mole of species α together
with the hydration shells [5]. The Bikerman model [6] assumes that all molecules are
placed on a given lattice with lattice constant a and that vα = v = a3. A reasonable
choice is v = 1

c̄ , resulting in results in 1 − Φ = cN
c̄ , the mole fraction of the solvent.

A common way to incorporate the volume constraint is to set μN = 0 and

μα = μ̃α = μ◦
α + RT ln

cα

c̄
− RT ln

cN

c̄
(α = 1 . . . N − 1) (6)

= μ◦
α + RT ln

cα

c̄
− RT ln

(

1 −
N−1∑

α=1

cα

c̄

)

. (7)

This ansatz introduces a nonlinear coupling between the species and corresponds to
a free energy density

ψ = 1

2
ε|∇φ|2 + RT

N∑

α=1

cα

(
ln

cα

c̄
− 1

)
. (8)

Dreyer et al. model. The authors of [7] propose

μα = μ◦
α + 1

c̄
(p − p◦) + RT ln

cα

c̄
, (α = 1 . . . N ) (9)

using consistent expressions for all species including the solvent. Here, p◦ is a
constant reference pressure. The effective chemical potential is

μ̃α =μ◦
α + RT ln

cα

c̄
+

(

1 − Mα

MN

)
(p − p◦)

c̄

− Mα

MN
RT ln

cN

c̄
(α = 1 . . . N − 1).

Introducing the simplifying assumption of equal molar masses Mα of all species
including the solvent, we arrive at (6). Therefore the model of [7] appears as a
consistent generalisation of the Bikerman model (6).

We just remark that it is possible to treat the general case (9) by taking the diver-
gence on both sides of (3) arriving at a second order equation for the pressure. Due
to space restrictions, all subsequent considerations will be made for the models (4)
and (6). They can be readily generalized to the case (9).
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3 Activity Based Formulation

Chemical potentials as primary variables have the disadvantage that it is hard to
handle small concentrations. A common choice for the basic variables are the con-
centrations cα . The presence of cN in all species fluxes results in a coupling between
the concentration gradients which is quite inconvenient to handle numerically. We
make an argument in favour of an activity based re-formulation of the system. This
formulation as well has its drawbacks as, for large voltage differences, the domain of
values of activities may exceed the standard range of floating point implementations.
In electrochemistry, these, however do not occur.

The idea is to start with the expression μ̃α = μ̃◦
α + RT ln aα for the effective

chemical potential which has a similar form as for a dilute solution. The activity
coefficient γα defined by aα = γα

cα

c̄ , allows to express cα through aα:

cα = c̄
aα

γα

= c̄βαaα, (10)

where βα = 1
γα

denotes the inverse activity coefficient. After a straightforward
calculation, the Nernst-Planck-Poisson system (1a–1c) becomes

−∇ · ε∇φ = q = Fc̄
N−1∑

α=1

zαβαaα (11a)

∂t (c̄βαaα) = −∇ · Nα (α = 1 . . . N − 1) (11b)

Nα = −Dα c̄βα

(

∇aα + aαzα

F

RT
∇φ

)

. (α = 1 . . . N − 1) (11c)

The expressions in the activities under the time derivative and the divergence operator
are close to the dilute solution case. No gradient coupling is introduced.

For the dilute solution case (4), one obtains βα = 1, and the activity aα is identical
to the mole fraction yα = cα

c̄ .

For the Bikerman model (6) one obtains βα = 1 − ∑N−1
i=1

ci
c̄ =: β which is the

same for all species. Expressing ci yields β = 1 − ∑N−1
i=1 βai and

β = 1

1 + ∑N−1
i=1 ai

, (12)

introducing a nonlinear coupling of the species fluxes.
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4 Equilibrium Case: Nonlinear Poisson System

Assuming μ◦
α = 0 and zero flux due to thermodynamic equilibrium, one arrives at

∇μ̃α = −zα F∇φ (α = 1 . . . N − 1). (13)

To fulfil (13), we introduce the constant quasi-Fermi (electrochemical) potential ψα

and set μ̃α = zα F(ψα − φ) leading to the nonlinear Poisson equation

−∇ · ε∇φ = Fc̄
N−1∑

α=1

zαβ exp

(
zα F

RT
(ψα − φ)

)

(14)

which in the case β = 1 is exactly the Poisson-Boltzmann equation leading to the
classical Gouy-Chapman theory of the electric double layer [2] .

For the Bikerman model (6), we arrive at

−∇ · ε∇φ = Fc̄

∑N−1
α=1 zα exp

(
zα F
RT (ψα − φ)

)

1 + ∑N−1
α=1 exp

(
zα F
RT (ψα − φ)

) . (15)

For a binary 1:1 electrolyte (N = 3, z1 = 1, z2 = −1), this equation has been
introduced in [6] by statistical mechanics considerations.

5 Finite Volume Scheme Consistent with Equilibrium

We discuss a numerical scheme for the activity based formulation of the generalised
Nernst-Planck-Poisson system (11) which is consistent with the the equilibrium
problem (15), i.e. the zero flux condition is consistent with the expression

cα = c̄βαaα = c̄βα exp

(
zα F

RT
(ψα − φ)

)

(16)

where φ is a given value of the electrostatic potential and ψα is the constant quasi-
Fermi potential. In this section, we set Zα = zα F

RT and omit the index α.
For the concentration c = cα , we define a time implicit two-point flux finite

volume scheme on an admissible mesh [8] (e.g. on Voronoi boxes) of control volumes
K containing the collocation points xK in a given domain Ω:

|K |cn
K − cn−1

K

tn − tn−1 +
∑

L neighbour of K

|∂K ∩ ∂L|N n
K L = 0 (17)
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In a similar manner, one obtains for the Poisson equation

∑

L neighbour of K

|∂K ∩ ∂L|En
K L = |K |qn

K (18)

Here, cn
K , qn

K are the values of the concentration and the charge in the collocation
points xK at moment tn , respectively. N n

K L and En
K L are the respective averaged

projections of the molar flux and the electric field onto the normal directions of the
control volume faces ∂K ∩ ∂L . N n

K L and En
K L can be expressed consistently as

functions of the unknown values in the control volumes K and L . Aiming at the
unconditional stability of the scheme, we chose these unknown values solely from
the moment tn .

In a straightforward manner, the electric field projection is expressed by

En
K L = ε

φn
K − φn

L

|xK − xL | . (19)

In the equilibrium, one obtains the value of qK by inserting φ = φK into the
different right hand side expression of (14). A correct approximation N n

K L should
be consistent with this choice [4].

Case β = 1. In equilibrium, we have c= = c̄ exp(Z(ψ−φ)) with a constant quasi-
Fermi potential ψ and a position dependent electrostatic potential φ. Correspond-
ingly, c=,K = c̄ exp(Z(ψ −φK )). Consistency with equilibrium means that for such
values of c=,K , the resulting numerical flux NK L is zero. Using B(ξ) = ξ

exp(ξ)−1 ,
the Scharfetter-Gummel scheme [12]

NK L = D
B (Z(φL − φK )) cK − B (Z(φK − φL)) cL

|xK − xL | (20)

is consistent with equilibrium: For any given constant ψ , assuming NK L = 0 implies

cK

cL
= B(Z(φK − φL))

B(Z(φL − φK ))
= −exp(Z(φL − φK )) − 1

exp(Z(φK − φL)) − 1

= − exp(ZφL)

exp(ZφK )
· exp(−ZφK ) − exp(−ZφL)

exp(−ZφL) − exp(−ZφK )

= exp(ZφL)

exp(ZφK )
= exp(Z(ψ − φK ))

exp(Z(ψ − φL))
= c=,K

c=,L
.

General β. The flux in the activity based formulation up to the prefactor c̄β has
the same structure as in the case β = 1, so we propose the ansatz

NK L = c̄Dβ(B(Z(φL − φK ))aK − B(Z(φK − φL))aL), (21)
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Fig. 1 Negative ion concentration (left) and potential profile (right) at an ideally polarizable elec-
trode with bulk ion concentration c±∞ =0.01 mol/dm3 and applied voltage of 0.5 V

Fig. 2 Decay of free energy
to equilibrium value during
discharge of double layer

where β is some average of β on [aK , aL ]. In equilibrium, we get

aK

aL
= exp(Z(ψ − φK ))

exp(Z(ψ − φL))
. (22)

This is consistent with the expression for a in (16) resulting in a similarly consistent
expression for c = c̄βa.

6 Numerical Examples

The examples are solved numerically using the described finite volume method
implemented within pdelib [14]. The nonlinear systems are solved using Newton’s
method. The linear systems are solved using the direct solver Pardiso [13].

We regard an aqueous binary 1:1 electrolyte with a given molarity of the bulk
solution cα,∞ = c∞ for α = 1, 2. The summary concentration c̄ is set to the molarity
of water at standard conditions c̄ =55.508 mol/dm3.

Ideally polarizable electrode. Regard system (14) in the domain Ω = (0, L).
Assume the boundary conditions φ|x=0 = φ0, φ|x=L = 0. The quasi-Fermi poten-
tials are obtained from given concentration values cα|x=L = cα,∞ << c̄ such
that q|x=L = 0. Figure 1 demonstrates the most important difference between the
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Fig. 3 Electrolytic diode in a nanopore. If not stated otherwise: ∂nφ = 0, ∂n p = 0, N1,2 ·n = 0,
σ =250µA s/m2, cbulk =2 mol/dm3. Pore length = 100 nm, pore width = 2, 4, 8 nm

Fig. 4 Left: IV-Curves for the different models (pore width=2 nm). Right: discrepancy between
the models for different pore widths

models. The dilute solution model (4) with β = 1—also called Gouy-Chapman
model—overestimates the concentration close to the electrode, beyond the physical
limit given by the concentration of the water molecules. The Bikermann model (6),
(12) with β = 1

1+a1+a2
is more realistic by limiting the solute concentration by the

solvent concentration.
Discharge of double layer. Let Ω = (0, 2L) and solve the time dependent

problem using the flux (21) starting with an initial solution obtained by charging the
double layers by applying a potential φ|x=0 = φ0, φ|x=2L = −φ0. We confirm that
the discrete equilibrium solution from the time dependent scheme is identical to that
given by the nonlinear Poisson system (14) for both cases β = 1 and β = 1

1+a1+a2
.

After that, remove the applied potential (apply homogeneous Neumann boundary
conditions) for the Poisson equation. As the potential is asymmetric with respect to
x = L , its value in x = L is always zero, and we fix this value in order to obtain
uniqueness of the solution of the Poisson equation. In Fig. 2, we observe the evolution
of the free energy during the approach to the equilibrium. For both models it decays
monotonically, thus calling for an analysis of the scheme similar to [9].

Electrolytic diode. We apply the scheme in a 2D situation (Fig. 3). Figure 4 (left)
demonstrates the behaviour of a diode. In difference to a semiconductor diode, the
current is an ionic current, and the fixed surface charge ±σ plays the role of the
doping. Figure 4 demonstrates the influence of the model discrepancy on the IV
curve.
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Suitable Formulations of Lagrange Remap
Finite Volume Schemes for Manycore/GPU
Architectures

Thibault Gasc and Florian De Vuyst

Abstract This paper is dedicated to Lagrange-Remap schemes (also referred to as
Lagrange-Euler schemes) and their suitable formulations for manycore/GPU archi-
tectures. High performance computing efficiency requires a suitable balance between
floating point operations and memory accesses, uniform compactly supported sten-
cils, memory alignment, SIMD-based instructions and minimal dereferencing into
memory. We provide various formulations, from the basis geometrical remapping to
remap by flux balances and operator splitting variant approach. We present numer-
ical experiments of two-dimensional Euler hydrodynamics on Cartesian grids up to
20482 cells and provide performance results.

1 Introduction

For multimaterial hydrodynamics, Lagrangian methods are considered as the most
accurate methods because they inherently follow material interfaces and the convec-
tion is solved by means of the moving mesh. Unfortunately, they often show a lack of
robustness due to the possible cell degeneracy. Arbitrary Lagrangian-Eulerian (ALE)
methods try to keep most of the Lagrangian accuracy while smoothing the mesh
(if needed) by some remap processing. The limit case is the so-called Lagrange-
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Remap (or Lagrange-Euler) solver, pioneered by Von Neumann and Richtmyer in
1950 [5], where a remap step is performed after each Lagrangian time advance.
Lagrange-Remap schemes are known to have attractive mathematical properties, and
are still subject to developments and analyses [6]. However, the portability of these
methods on large scale parallel computers is still subject to ongoing research [2].

Compressible Euler equations written under a Lagrangian integral form over a
volume V t moving at velocity u are written as follows:

dV t

dt
=

⎧

S t
u · n ,

d

dt
(

⎧

V t
η) = 0 , (1)

d

dt
(

⎧

V t
ηu) = −

⎧

S t
Pn ,

d

dt
(

⎧

V t
ηE) = −

⎧

S t
Pu · n, (2)

with S t = φV t . The Lagrangian step simply consists in discretizing these equa-
tions by choosing some moving control volumes. The remap step is a geometrical
projection over fixed (Euler) control volumes:

⎧

Vi

q =
⎪

j

⎧

Vi∩V Lag
j

qLag
j , (3)

where Vi is the volume of cell i in the fixed Eulerian grid, V Lag
j the volume of the

cell j in the Lagrangian grid obtained from the Lagrangian step (1) and qLag
j the value

of the quantity which is remapped (η, ηu or ηE) on the Lagrangian cell j; this value
are obtained from the previous Lagrangian step (1–2). For the sake of simplicity, we
here assume a perfect gas equation of state P = (∂ − 1)ηe, ∂ ∈ (1, 3], where the

speed of sound c is given by c =
⎨

∂ P
η

.
The Lagrangian step does not introduce specific choices nor difficulties. But build-

ing an accurate and computing efficient remap can be challenging. Indeed one has to
compute many volume intersections and accuracy of this operation strongly impacts
the order of the scheme. In order to avoid computing complex exact volume inter-
sections, various techniques can be used such as Alternating Direction methods.

2 Lagrange Remap in Finite Volume Formalism

To avoid complex geometrical computations, Lagrange Remap schemes can be
approximated by using Finite Volume formalism. Specific fluxes can be defined to
approximate both steps. For example, the energy equation integrated in time between
n and n + 1 can be written as follows:
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Fig. 1 Remap operation
interpreted as a flux balance:
Eulerian fixed cell (i, j) with
material velocity at the nodes,
Lagrangian deformed cell
(i, j) and definition of areas
corresponding to the fluxes
through interfaces of the
Eulerian cell

u i+
1

2
, j+

1
2

u
i− 1

2 , j− 1
2

u i−
1

2
, j+

1
2

u
i+ 1

2 , j− 1
2

Φ qi+ 1
2 , j

Φ qi− 1
2 , j

⎧

V n+1
ηE −

⎧

V n
ηE = −

⎧ tn+1

tn

⎧

S (t)
Pu · n,

(mE)L − (mE)n ≈ −νt
⎪

S⊂S

|S|Psus · ns,

where S is a mean border of V between t and tn+1 and {S} define a partition of S .
The latest form is a pure flux formulation. The difference between the flux and the

pure Lagrangian step rely on the non trivial integration
⎩ tn+1

tn

⎩

S (t). The mass and
momentum equations can be also written with the same formalism.

The Remap step can also be rewritten as flux balance. In order to only use fluxes
to define an approximate Remap step, it should be noticed that a flux can only be
defined between two volumes (or area in 2D) sharing a face (or edge in 2D). The
Remap operation has been firstly described as a pure geometrical process (3). It
can also be understood as a redistribution process from a deformed grid to a fixed
one. Any quantity that has traveled too much during the Lagrangian step should be
assigned to a new location, which means a new volume. Quantities that have left
the fixed volume during the Lagrangian step have crossed an interface. This allows
us to define the remap operation by using fluxes. Since we construct this fluxes
with Lagrangian quantities which cross interface, Lagrangian upwind values of the
corresponding quantities are used to define the fluxes. The flux should match with

the area swept by the edge during the Lagrangian step
⎩ tn+1

tn

⎩

Si(t)
dSidt .

Any quantity that crosses multiple interface will be counted once for each crossed
interface. For example, in Fig. 1, the quantity in the triangle at left top corner of the
cell, is counted in both fluxes Ωi− 1

2 ,j and Ωi,j+ 1
2
. This allows us to take into account

fluxes between cells that do not share a face. This kind of exchanges is naturally
defined in a geometrical remap.

In the 1D case, the first order Lagrange Remap cell centered scheme can be exactly
described using fluxes formalism. The iteration process can be written as follows:
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mn+1
j = mn

j − νt
(
(Ωη)j+ 1

2
− (Ωη)j− 1

2

)
,

(mu)n+1
j = (mu)n

j − νt
(

Pj+ 1
2

− Pj− 1
2

)
− νt

(
(Ωηu)j+ 1

2
− (Ωηu)j− 1

2

)
,

(mE)n+1
j = (mE)n

j − νt
(

Pj+ 1
2

uj+ 1
2

− Pj− 1
2

uj− 1
2

)
− νt

(
(ΩηE)j+ 1

2
− (ΩηE)j− 1

2

)
,

where (Ωq)j+ 1
2

= uj+ 1
2

qL
j +qL

j+1
2 + sgn(uj+ 1

2
)

qL
j −qL

j+1
2 is the upwind flux associated to

the Lagrangian quantity qL . Lagrangian values are obtained thanks to the explicit
discretization of Eqs. (1–2):

V L
j =V n

j + νt(uj+ 1
2

− uj− 1
2
), ηL

j = ηn
j

V n
j

V L
j

,

uL
j =un

j − νt

mn
j
(Pj+ 1

2
− Pj− 1

2
), EL

j = En
j − νt

mn
j
(Pj+ 1

2
uj+ 1

2
− Pj− 1

2
uj− 1

2
),

where Pj+ 1
2

and uj+ 1
2

are estimated as solution of approximate Riemman solver.

3 Splitting Approach

We introduce a two steps algorithm by using a splitting strategy [3]. The first step
describes the pressure waves propagation while the second describes pure advection.

3.1 One-Dimensional Formulation

We introduce the Euler equations in the formal nonconservative form: denoting by
W = (η, u, P)T , we have

φtW + (uI + B)φxW = 0, where B =



0 η 0
0 0 Σ

0 ηc2 0



 .

This hyperbolic system has 3 eigenvalues (u − c, u, u + c). We split the system in
the two following ones:

φtW + BφxW = 0, (4)

φtW + uIφxW = 0. (5)

The system (4) is hyperbolic with eigenvalues (−c, 0, c). He describes the pressure
waves propagation. The system (5) is hyperbolic and has u as a triple eigenvalue.
Using the conservative variables, this splitting approach leads to these two systems:
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φtU + φxΛ + Uφxu = 0, (6)

φtU + φx(uU) − Uφxu = 0, (7)

where U = (η, ηu, ηE)T are the conservatives variables and Λ = (0, P, Pu)T is the
pressure contribution.

We propose a 1D discretization of the presented system. The common interme-
diary state is denoted (.)ξ. From tn to tξ, a implicit discretization of (6) is used and
from tξ to tn+1, a explicit discretization of (7) is used. Discretization of the pressure
system (6) gives:

ηξ
j = ηn

j − νt

h
ηξ

j (uj+ 1
2

− uj− 1
2
) , (8)

ηξ
j uξ

j = ηn
j un

j − νt

h
(Pj+ 1

2
− Pj− 1

2
) − νt

h
(ηξ

j uξ
j )(uj+ 1

2
− uj− 1

2
),

ηξ
j Eξ

j = (ηE)n
j − νt

h
(Pj+ 1

2
uj+ 1

2
− Pj− 1

2
uj− 1

2
) − νt

h
(ηξ

j Eξ
j )(uj+ 1

2
− uj− 1

2
).

And the discretization of the advection system (7) gives:

Un+1
j = Uξ

j − νt

h

(
(uU)ξ

j+ 1
2

− (uU)ξ
j− 1

2

)
+ νt

h
Uξ

j (uj+ 1
2

− uj− 1
2
) .

Please note the following important aspects of the discretization:

• Simplification of discrete non conservative terms Uνu is needed to build a global
conservative scheme from 2 non conservative steps,

• Intercells values uj+ 1
2

and Pj+ 1
2

are defined as values at time tn +νt/2 of approx-

imate solutions of the Riemann problem W̃(Un
j , Un

j+1), and can be estimated at
time tn explicitly,

• Thanks to Eq. (9), the implicit discretization of the pressure system can be

expressed explicitly in variables η, u and E: ηξ
j = ηn

j

1+ νt
h (u

j+ 1
2
−u

j− 1
2
)
, uξ

j =
un

j − νt
hηn

j
(Pj+ 1

2
−Pj− 1

2
), Eξ

j = En
j − νt

hηn
j
(Pj+ 1

2
uj+ 1

2
−Pj− 1

2
uj− 1

2
). This expressions

match with the 1D discretization of the Lagrangian step of the Lagrange-Remap
algorithm but the associated grid is fixed and does not follow the material as
previously.

• (uU)ξ
j+ 1

2
can be seen as an intercell flux. In order to build a scheme that matches per-

fectly (in 1D) with the Lagrange-Remap scheme, we define these fluxes as follows:

(uU)ξ
j+ 1

2
= uj+ 1

2
Uξ,upwind

j+ 1
2

, where Uξ,upwind

j+ 1
2

= Uξ
j +Uξ

j+1
2 + sgn(uj+ 1

2
)

Uξ
j −Uξ

j+1
2 .

Thanks to the previous choices, the presented scheme can be written in the fol-
lowing conservative form:
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Un+1
j = Un

j − νt

h

(
(uU)ξ

j+ 1
2

− (uU)ξ
j− 1

2

)
− νt

h



⎜


0
Pj+ 1

2
− Pj− 1

2

Pj+ 1
2
uj+ 1

2
− Pj− 1

2
uj− 1

2



⎟
 .

(9)

3.2 Multidimensional Extension

The previous 1D scheme can be easily extended to 2D and 3D discretizations. Since
no deformation of the grid is used here, the extension is easier than Lagrange-Remap
for multidimensional problem.

For example, using the same splitting strategy on the 2D Euler equation leads to
the two following system:

φtU + ∇ · Λ + U∇ · u = 0,

φtU + ∇ · (uU) − U∇ · u = 0,

where U = (η, ηu, ηv, ηE)T , Λ =
(

0 P 0 Pu
0 0 P pv

)T

, and u = (u, v)T . Discretization

of this systems leads to the following scheme:

ηξ
i,j =

ηn
i,j

1 + νt
h (ui+ 1

2 ,j − ui− 1
2 ,j + vi,j+ 1

2
− vi,j− 1

2 ,j)
,

uξ
i,j = un

i,j − νt

ηn
i,jh

(Pi+ 1
2 ,j − Pi− 1

2 ,j), vξ
i,j = vn

i,j − νt

ηn
i,jh

(Pi,j+ 1
2

− Pi,j− 1
2
),

Eξ
i,j = En

i,j − νt

ηn
i,jh

(Pi+ 1
2 ,jui+ 1

2 ,j − Pi− 1
2 ,jui− 1

2 ,j)

− νt

ηn
i,jh

(Pi,j+ 1
2

vi,j+ 1
2

− Pi,j− 1
2

vi,j− 1
2
),

Un+1
i,j = Uξ

i,j − νt

h

(

(uU)ξ
i+ 1

2 ,j
− (uU)ξ

i− 1
2 ,j

+ (vU)ξ
i,j+ 1

2
− (vU)ξ

i,j− 1
2

)

+ νt

h
Uξ

i,j (ui+ 1
2 ,j − ui+ 1

2 ,j + vi,j+ 1
2

− vi,j− 1
2
) .

The fluxes and values at the intercell (.)i+ 1
2 ,j or (.)i,j+ 1

2
are estimated by an upwinding

strategy or a 1D approximate Riemann solver in the corresponding direction. It may
be not directly clear that this numerical scheme is conservative, but, it can be shown
that it is, using multidimensional version of (9).

An extended version of the scheme has also been implemented: to improve accu-
racy, gradients of conservative variables are reconstructed before the computationof
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the fluxes, in the MUSCL spirit [4]. A minmod limiter is used for the slopes. Note
that this improvement does not leads to a complete second order in space scheme
but notably improves the resolution of contact waves.

4 A Practical GPU Implementation

The latest algorithm has been implemented using NVIDIA’s SDK language CUDA
for GPU in two versions, with and without the gradients reconstruction. The imple-
mentation has been tested on a NVIDIA K20M device (2496 cores, 5 GB memory).
Since host-device memory transfers are slow, they should be limited to the mini-
mum needs of the application or overlap with kernels executions. Here, data are all
allocated in the GPU memory and only data needed for the output files are mirrored
in the CPU memory and updated via device to host transfers when required. When
running performance analyses, output writing and data transfers are disabled.

The algorithm is divided into 5/6 kernels, each performing one elementary oper-
ation: maximum velocity global reduce for CFL condition, Riemann solver, pres-
sure wave propagation, (gradient reconstruction,) flux computation, and final update
including advection wave propagation. By doing this decomposition, we build rather
small kernels which can fit with the small number of registers per block available on
the GPU. These kernels have similar size and the time spent in the different kernels
are quite similar, going from 15 to 30 % of the total execution time.

During the optimization process, we try to merge or split some kernels (for exam-
ple splitting a 2D kernel into a X kernel and a Y one), but the initial decomposition
seems to be the most efficient. We provide kernel per kernel analysis and and describe
some changes performed during the optimization process. We hope this will help the
reader to understand both the implementation and how we try to use as efficiently
as possible the GPU. The global reduce kernel is used to compute the maximum
velocity from which we compute νt with a given CFL number to ensure the stability
of the scheme. The kernel was optimized using techniques presented in the example
of a global reduce sum given in the NVIDIA’s SDK. The execution time dropped
from 15 % to less than 4 % of the total time execution. The other kernels (except
the Riemann solver) are limited by the memory bandwidth using 75–85 % of the
theoretical memory peak and 15–35 % of the theoretical arithmetic operations peak.
The Riemann solver kernel uses about 50 % of the memory peak, and its perfor-
mance is probably limited by latency. Several reformulations of the kernels where
tried (including usage of shared memory, spitting into 2 (x + y) kernels) but we did
not reach a better performance.

Since the implementation is mainly memory bounded, we check that we perform
efficient read and write operations. Using a Cartesian grid allows us to perform easily
coalesced memory access. However, loading data from the neighborhood introduces
some misaligned coalesced reads. To avoid misaligned reads and to take advantage
of some data reuse, we tried to use shared memory. Unfortunately, kernels using
shared memory were not more efficient, mainly because the data reuse is rather
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Fig. 2 Density at time
t = 0.65—first order scheme
on 512 × 512 grid

small and the cache memory system of Kepler architectures is efficient. At the very
end of the optimization process, we forced the device to store some reused data
in registers or in the constant memory. The time execution is distributed among the
kernels in the following way: global reduce 4 %, Riemann solver 16 %, pressure wave
propagation 14 %, gradient reconstruction 13 %, flux computation 29 %, advection
wave propagation 24 %.

5 Numerical Results

We use a 2D test case. This test can be seen as an axisymmetrical extension of Sod
shock tube. At time t = 0, a light fluid at low pressure fulfills a bubble at the center
of a square domain. The bubble diameter d is defined such as d2 = 0.5. A dense
fluid at high pressure fulfills the remaining space. The case is periodic in both x and
y directions. The following values are used to define the initial state: η1 = 1, P1 = 1
and η2 = 0.125, P2 = 0.1. We use a perfect gas with the adiabatic coefficient of 1.4.
As in the Sod shock tube, rarefaction waves, shock waves and contact discontinu-
ities appear. The chosen geometry leads to multiple wave interactions. Interactions
between shock waves and contact discontinuities produce instabilities. Simulations
are run on both 512 × 512 and 2048 × 2048 Cartesian mesh using double-precision
floating points number. Figures 2, 3, 4 and 5 show the density at time t = 0.65. Using
a CFL number of 0.49, about 3550 time iterations are done on the 512 × 512 grid
(14600 on the 2048 × 2048 grid). Since the first order scheme is quite diffusive, it
is not able to capture instabilities. The first order version updates 231.106 (247.106)
cells×iterations/sec, and the minmod version 176.106 (189.106) cells× iterations/s.
Given the precision improvement, the loss of about 25 % performance is acceptable.
When using a larger grid (20182 instead of 5122), the computation is less sensitive
to side effects and run faster, updating more cells each second (but more iterations
are needed to reach the final time).
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Fig. 3 Density at time
t = 0.65—scheme with min-
mod flux limiter on 512 × 512
grid

Fig. 4 Density at time
t = 0.65—first order scheme
on 2048 × 2048 grid

Fig. 5 Density at time
t = 0.65—scheme with
minmod flux limiter on
2048 × 2048 grid

6 Concluding Remarks and Perspectives

In this paper we have proposed a suitable formulation of Lagrange-Remap schemes
for GPU or manycore architecture. A variant algorithm based on operator splitting
has been introduced. This two-step algorithm perfectly matches with the Lagrange-
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Remap in 1D first-order scheme. Extension to the multidimensional case can be done
without any geometrical projection which is time consuming. A 2D GPU implemen-
tation has been proposed and performance appears to be very satisfactory. In a future
work, second order schemes will be constructed and comparisons with standard
forms of Lagrange-Remap algorithms such as BBC [7] or others [1] will be done.
This splitting approach will be coupled with an interface capturing method in order
to compute multimaterial flows.
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Efficient Parallel Simulation of Atherosclerotic
Plaque Formation Using Higher Order
Discontinuous Galerkin Schemes

Stefan Girke, Robert Klöfkorn and Mario Ohlberger

Abstract The compact Discontinuous Galerkin 2 (CDG2) method was successfully
tested for elliptic problems, scalar convection-diffusion equations and compressible
Navier-Stokes equations. In this paper we use the newly developed DG method to
solve a mathematical model for early stages of atherosclerotic plaque formation.
Atherosclerotic plaque is mainly formed by accumulation of lipid-laden cells in the
arterial walls which leads to a heart attack in case the artery is occluded or a thrombus
is built through a rupture of the plaque. After describing a mathematical model and
the discretization scheme, we present some benchmark tests comparing the CDG2
method to other commonly used DG methods. Furthermore, we take parallelization
and higher order discretization schemes into account.

1 Introduction

Atherosclerotic plaque formation is today seen as a chronic inflammation of the
arterial wall which grows over decades and may finally lead to a heart attack in
case the artery is occluded or a thrombus is built through a rupture of the plaque. To
understand the mechanisms of the chronic inflammation it was recently shown in [11]
that genetically modified mice with a cuff around their carotid develop atherosclerotic
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plaque formation up- and downstream of the cuff after they were fed with a high
cholesterol diet. A low wall shear stress of the blood onto the arterial wall or highly
oscillating blood flow was shown to be an important indicator for the development
of plaque because it damages the endothelial layer which initiates the inflammation
process in the arterial wall.

At this point our mathematical model (cf. [7]) comes into play which we want to
present in Sect. 2: A dysfunction of the endothelial allows low-density lipoproteins
(LDL) to enter the artery wall. Once inside the arterial wall, the LDL becomes
oxidized which leads to a recruitment of immune cells. The immune cells differentiate
into active macrophages when inside the arterial wall starting continuously absorbing
the oxidized LDL. Finally, the macrophages differentiate into foam cells, die and
build a necrotic core. Smooth muscle cells (SMCs) from the outer regions of the
arterial wall can migrate into the lesion and either become an apoptotic cell or migrate
around the lesion to form a fibromuscular cap overlaying the plaque. The blood flow
in the artery, the wall shear stress onto the endothelial layer and other mechanics are
neglected in our model because we concentrate on the inflammation part. Section 3
describes the spatial and temporal discretization of the CDG2 method which was
successfully tested for elliptic problems, scalar convection-diffusion equations and
compressible Navier-Stokes equations in [3, 8, 9]. We summarize our paper with
some 2D and 3D benchmark tests1 in Sect. 4 and a conclusion in Sect. 5.

2 Mathematical Model for Atherosclerotic Inflammation

A variety of mathematical models dealing with atherosclerotic plaque formation
exist (cf. [4, 7]). Let Ω ∨ R

d , d = 2, 3 be the domain of the arterial wall, Γ1
the boundary between the arterial wall and the lumen and Γ2 the outer boundary of
the arterial wall. Moreover, let U = (u1, . . . , u6) be a vector with six (cellular or
molecular) species, where u1 denotes immune cells (i.e. macrophages), u2 SMCs,
u3 debris (dead or apoptotic cells), u4 a chemoattractant, u5 non oxidized and u6
oxidized LDL. Then our inflammation model is defined by

∂tU = −∈ · (F (U ) − A (U )∈U ) + S(U ) ⊃x ⊂ Ω , t > 0 (1)

with

F (U ) =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

χ14∈u4 + χ16∈u6
χ24∈u4 − χ21∈u1

0
0
0
0

⎩









, S(U ) =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

−d1u1
−d2u2

d1u1 + d2u2 + F0u1u3
−α1u1u4 − α2u2u4 + γ u3

−ku5
ku5

⎩









, (2)

1 Detailed benchmark data: wwwmath.uni-muenster.de/u/stefan.girke/bmark.
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A (U ) := diag(μ1, μ2, μ3, μ4, μ5, μ6), χi j := χ0
i j

ui

u j + χ th
i j

. (3)

All parameters are chosen constant and positive (except χi j ), although it is possible
(and necessary) to choose them more general, see [7]. All cellular and molecular
species are more or less motile by diffusion coefficients μi .

The parameters d1 and d2 describe the death rates of immune cells and SMCs.
Chemoattractant is neutralized by immune cells and SMCs which is described by α1
and α2. The parameter k describes how fast the native LDL becomes oxidized.

The functions χi j are called tactic sensitivity functions. We want to mimic a high
sensitivity of a species to the relative gradient of another species on the one hand and a
small penalization termχ th

i j to regularize the tactic movement for small concentrations
on the other hand. A lot of other tactic sensitivity functions are possible as well. Our
tactic sensitivity functions are defined by constants χ0

i j and χ th
i j .

A positive F0 indicates a diseased state which may lead to a increase of debris. For
a healthy immune system debris would be degraded which is indicated by a negative
F0. The parameter γ is a production term which is debris dependent.

Boundary conditions are given by

∂nu1 = −β1 H(u4 − u∞
4), ⊃x ⊂ Γ1, t > 0, (4)

∂nu2 = −β2 H(u4 − u∞∞
4 ), ⊃x ⊂ Γ2, t > 0, (5)

∂nu5 = −σ, ⊃x ⊂ Γ1,in ∨ Γ1, t > 0 (6)

with Heaviside function H and no-flow for all other boundary conditions. Initial data
is be given by some function ui (x, 0) = u0

i (x), i = 1, . . . , 6, x ⊂ Ω . We allow LDL
and immune cells to enter the arterial wall through the inner boundary and SMCs
to enter through the outer arterial wall. The immune cell (SMC) inflow is triggered
when a threshold u∞

4 (u∞∞
4 ) of chemoattractant is exceeded. Here, β1, β2 and σ denote

constant inflow rates for immune cells, SMCs and LDL, respectively.

3 Discretization

The considered discretization is based on the Discontinuous Galerkin (DG) approach
and implemented inDune- Fem [6] a module of theDune framework [2]. The current
state of development allows for simulation of convection dominated (cf. [5]) as well as
viscous flow (cf. [3]). We consider the CDG2 method from [3] for various polynomial
orders in space and 2nd (or 3rd) order in time for the numerical investigations carried
out in this paper.
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3.1 Spatial Discretization

The spatial discretization is derived in the following way. Given a tessellation Th of
the domain Ω with ≤K⊂Th K = Ω the discrete solution Uh is sought in the piecewise
polynomial space

Vh = {v ⊂ L2(Ω,Rnspec ) : v|K ⊂ [Pk(K )]nspec , K ⊂ Th} for some k ⊂ N,

where nspec is the number of species and Pk(K ) is a space containing polynomials
up to degree k.

We denote with Γi the set of all intersections between two elements of the grid
Th and accordingly with Γ the set of all intersections, also with the boundary of the
domain Ω . The following discrete form is not the most general but still covers a wide
range of well established DG methods. For all basis functions ϕ ⊂ Vh we define

∀ϕ,Lh(Uh)∩ := ∀ϕ,Kh(Uh)∩ + ∀ϕ,Ih(Uh)∩ (7)

with the element integrals

∀ϕ,Kh(Uh)∩ :=
∑

K⊂Th

∫

K

(
(F (Uh) − A (Uh)∈Uh) : ∈ϕ + S(Uh) · ϕ

)
, (8)

and the surface integrals (by introducing appropriate numerical fluxes ⎜Fe, ⎜Ae for
the convection and diffusion terms, respectively)

∀ϕ,Ih(Uh)∩ :=
∑

e⊂Γi

∫

e

({{A (Uh)T ∈ϕ}}e : [[Uh]]e + {{A (Uh)∈Uh}}e : [[ϕ]]e
)

−
∑

e⊂Γ

∫

e

(
⎜Fe(Uh) − ⎜Ae(Uh)

) : [[ϕ]]e, (9)

where {{V }}e = 1
2 (V ++V −)denotes the average and [[V ]]e = (n+→V ++ n−→V −)

the jump of the discontinuous function V ⊂ Vh over element boundaries. For matrices
σ, τ ⊂ R

m×n we use standard notation σ : τ = ⎟m
j=1

⎟n
l=1 σ jlτ jl . Additionally, for

vectors v ⊂ R
m, w ⊂ R

n , we define v → w ⊂ R
m×n according to (v → w) jl = v j wl

for 1 √ j √ m, 1 √ l √ n.
The convective numerical flux ⎜Fe can be any appropriate numerical flux known

for standard finite volume methods. For the results presented in this paper we choose
⎜Fe to be the widely used local Lax-Friedrichs numerical flux function.

A wide range of diffusion fluxes ⎜Ae can be found in the literature, for a summary
see [1]. We choose the CDG2 flux

⎜Ae(V ) := 2χe
(
A (V )re([[V ]]e)

)|K −
e

for V ⊂ Vh, (10)
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which was shown to be highly efficient for advection-diffusion equations (cf. [3]).
Based on stability results, we choose K −

e to be the element adjacent to the edge e
with the smaller volume. re([[V ]]e) ⊂ [Vh]d is the lifting of the jump of V defined by

∫

Ω

re([[V ]]e) : τ = −
∫

e
[[V ]]e : {{τ }}e for all τ ⊂ [Vh]d . (11)

For the numerical experiments in this paper we use χe = 1
2NTh , where NTh is the

maximal number of intersections one element in the grid can have (cf. [3]). We use
triangular elements where χe = 1.5 for all e ⊂ Γ , and tetrahedral elements where
χe = 2 for all e ⊂ Γ .

3.2 Temporal Discretization

The discrete solution Uh(t) ⊂ Vh has the form Uh(t, x) = ⎟
i Ui (t)ϕi (x). We get a

system of ODEs for the coefficients of U (t) which reads

U ≥(t) = f (U (t), t) in (0, T ] (12)

with f (U (t), t) = M−1Lh(Uh(t), t), M being the mass matrix which is in our case
block diagonal or even diagonal, depending on the choice of basis functions. U (0)

is given by the projection of U0 onto Vh .
For the numerical results we have chosen Diagonally Implicit Runge-Kutta

(DIRK) solvers of order 2, 3, or 4 depending on the polynomial order of the basis
functions. The DIRK solvers are based on a Jacobian-free Newton-Krylov method
(see [10]). The Krylov method is chosen to be GMRES without preconditioner. The
implicit solver relies on a matrix-free implementation of the discrete operator Lh .
In a follow-up paper we will compare this approach to a fully assembled approach.

4 Numerical Results

In this section we present some benchmark tests for 2D and 3D focusing on paral-
lelization and higher order DG schemes. Due to the lack of an exact solution U we
have computed the L2-error between the discrete solution Uh and a very fine, higher
order solution Uh≥ . The quadrature order to compute ‖Uh − Uh≥ ‖L2(Ω) was chosen
to be 2k + 4, where k denotes the order of the scheme. All computations are done
on an unstructured, tetrahedral mesh.
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Table 1 Accuracy of the CDG2 scheme with 32 threads

Linear Quadratic Cubic
Level Grid Timea L2-error EOCb Timea L2-error EOCb Timea L2-error EOCb

size

0 80 5.72E-1 2.42E-3 – 2.00E0 2.18E-3 – 6.52E0 1.96E-3 –
1 320 5.56E0 2.10E-3 0.20311 2.33E1 1.82E-3 0.26650 8.63E1 1.50E-3 0.38074
2 1280 3.98E2 1.82E-3 0.21263 2.09E2 1.34E-3 0.43315 8.22E2 9.26E-4 0.69823
3 5120 3.33E3 1.39E-3 0.38944 2.21E3 7.92E-4 0.76429 9.12E3 4.32E-4 1.0993
4 20480 3.01E4 8.28E-4 0.74208 2.10E4 2.94E-4 1.4284 8.02E4 8.77E-5 2.3024
5 81920 2.67E5 3.21E-4 1.3659 1.93E5 7.26E-5 2.0193 6.96E5 2.33E-5 1.9122
a Total CPU time
b Experimental order of convergence

4.1 A 2D Numerical Experiment with Six Species

Uh≥ was calculated using the 4th order CDG2 scheme on a grid with 81,920 elements
(refinement level 5), i.e. 7,372,800 degrees of freedom. For each h-refinement of the
grid we bisect the time step size. Results for linear, quadratic and cubic DG schemes
can be seen in Table 1. In Fig. 2 (left picture) we compare on a log-log scale the
total CPU time of all threads with the L2-error. Although the convergence rate is
not as high as from the theory for parabolic problems, we see better rates for higher
order schemes. We assume that re-entrant corners are responsible for the reduced
convergence rates, see re-entrant corners in left picture of Fig. 1.

The right picture of Fig. 2 shows that the CDG2 is as good as the BR2 scheme
and outperforms other DG schemes. A solution where SMCs start migrating into the
domain can be found in Fig. 1, right picture.

4.2 A 3D Numerical Experiment with Three Species

Despite the fact that the benchmark in Sect. 4.1 can be accomplished with ease in
3D for six species, we want to simplify our model to three species U = (u1, u3, u4):

F (U ) =
⎧

⎨
χ14∈u4

0
0

⎩

 , S(U ) =
⎧

⎨
0

F0u1u3
−α1u1u4 + γ u3

⎩

 , (13)

A (U ) = diag(μ1, μ3, μ4). (14)

We cannot trigger the inflammation through an inflow of LDL anymore. Thus, we
suppose that the inflammation is triggered by a local, high concentration of debris
and keep all other boundary and initial data from the Sect. 4.1.

In the 3D benchmark we examine parallelization using MPI and present in Table 2
strong scaling results for a third order CDG2 scheme on a grid with 113,549 elements
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Fig. 1 Left The coarsest grid for the EOC calculations containing 80 elements visualising a
re-entrant corner. The angle of 171◦ stays fixed for all refinements. The considered domain is
the cross-section of an arterial wall. Middle Initial distribution for the immune cells. We suppose
that immune cells are more likely near the inner boundary. Right Solution for six species from left to
right, up to down: Immune cells, SMCs, debris, chemoattractant, native and oxidized LDL. Native
LDL has entered the domain through the endothelial layer where it has oxidized. The immune
cells have accumulated (hard to recognize due to other effects) around the oxidized LDL and
started absorbing them. Dying immune cells have built a necrotic core (debris) which is producing
chemoattractant. The increase of chemoattractant has triggered a massive inflow of immune cells
from the blood through the endothelial layer. A developed plaque has led SMCs to enter the arterial
wall from the outer regions of the artery. To see the development of a fibrous cap (mainly formed
by SMCs between the inner boundary and the necrotic core) the mathematical model has to be
extended. (Data visualisation: Paraview)

Fig. 2 Plot CPU time versus L2-error (Left). 1st, 2nd and 3rd order CDG2 scheme (Right). 1st
order CDG, CDG2, Baumann-Oden (BO), Bassy-Rebay (BR2), interior penalty (IP) scheme. (Visu-
alisation of graphs: gnuplot)

and 13,625,880 degrees of freedom. Figure 3 shows the distribution of the processors
and a discrete solution of the chemoattractant calculated using first order CDG2.

5 Conclusion

We have shown that DG schemes are well suited for solving huge coupled reactive
diffusion transport systems. Modern techniques, such as parallelization, help to han-
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Table 2 CPU time for parallel runs using the cubic CDG2 method for computation of 10 time steps

Processors 8 16 32 64 128 256
CPU time in s 1177 528 277 142 75 39
Speedup – 2.23 4.29 8.29 15.7 30.18

Fig. 3 A 3D cuff model (Left). Each colour denotes a processor in a parallel run with 32 processors
(Right). Isolines of the distribution of the chemoattractant after the inflammation has started

dle large systems in an appropriate CPU time. Furthermore, we have shown that it
is possible to model the early stages of atherosclerotic plaque formation. A lot of
more work needs to be done: In a future paper we will model the wall shear stress
and some more species to understand later stages of atherosclerosis.
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A DDFV Scheme for Incompressible
Navier-Stokes Equations with Variable Density

Thierry Goudon and Stella Krell

Abstract We consider the application of “Discrete Duality Finite Volume” methods
for the simulation of incompressible heterogeneous viscous flows. We pay attention
to the numerical coupling between the mass conservation and the momentum balance
equations, together with the divergence free constraint.

MSC2010: 65M08, 76D05, 35Q35

1 Introduction

This work is concerned with the numerical simulation of the Incompressible Navier–
Stokes system

⎧
⎪⎨

⎪⎩

∂t (ρu) + div(ρu ∨ u) + div (−2ηDu + pId) = f, in ]0, T [×Ω,

div(u) = 0, in ]0, T [×Ω,

∂tρ + div(ρu) = 0, in ]0, T [×Ω,

(1)

where the unknowns are the velocity u :]0, T [×Ω ∈ R
2, the densityρ :]0, T [×Ω ∈

[0,⊃) and the pressure p :]0, T [×Ω ∈ R. Here and below, Ω is a polygonal
open bounded connected subset of R2, and T > 0 is fixed once for all. We denote
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Du = 1
2 (⊂u + t⊂u) and [div(ρu ∨ u)] j = ∑2

i=1 ∂i (ρui u j ) for u = (u1, u2). We
supplement the system (1) with the following boundary and initial conditions:

u = g on ]0, T [×∂Ω, u(0, .) = uinit in Ω, ρ(0, ·) = ρinit in Ω

while the pressure is subjected to the condition
∫

Ω
p(t, x)dx = 0, for all t ∞

]0, T [. When the velocity points inward, we also prescribe the incoming den-
sity ρinc. We assume ρinit ∞ L⊃(Ω), uinit ∞ (L⊃(Ω))2, f ∞ (L2(]0, T [×Ω))2,
g ∞ L2(]0, T [×∂Ω). For the sake of simplicity, we assume that the viscosity η is a
positive constant.

There is a huge literature on the specific case where ρinit(x) = ρ̄ > 0 is a given
positive constant: owing to the incompressibility constraint, the density remains con-
stant for ever. For instance, Finite Volume schemes have been recently introduced
for the homogeneous Incompressible Navier–Stokes system [5, 7]. However, the
situation of heterogeneous flows is much more realistic, and it leads to many dif-
ficulties both for the analysis and for numerics, see [3] and the references therein.
Dedicated schemes have been introduced and analysed, based either on Finite Dif-
ference discretizations, or Finite Element discretizations. However, it is not clear
that such methods preserve crucial physical properties like homogeneous solutions,
the conservation of the total mass, the positivity of the density. These issues become
particularly challenging when the ratio of extreme densities or the Reynolds number
increase, or when dealing with highly unstructured meshes. In [3] an original method
based on an hybrid Finite Volume/Finite Element approach is developed in order to
cope with these difficulties.

In this paper, we address the problem of simulating the system (1) in the frame-
work of the so-called DDFV schemes. These methods have been introduced in
[6, 9] to approximate the solution of the Laplace equation on a large class of 2D
meshes including non-conformal and distorted meshes. In particular, the scheme
does not require “orthogonality” constraints on the mesh, by contrast to classical
finite volume methods. Therefore, the method is very appealing in order to handle
complex geometries, or to be used in combination to mesh refinements methods in
order to follow accurately regions of strong density gradients. The strategy has been
extended to a wide class of PDE problems, see e.g. [1, 4, 10], including in higher
space dimension [12]. For Navier–Stokes equations, see [10, 11], DDFV schemes
provide naturally a staggered discretization: the approximate velocity is stored at the
centers and at the vertices of the mesh and the approximate pressure at the edges
of the mesh. It turns out that the method can be extended to heterogeneous flows
too, with a natural discretization of the density on the edges, the mass conservation
being treated by UpWinding techniques. This work is a first attempt in this direc-
tion, where we detail how to handle the difficulties induced by the coupling. This
approach looks particularly appealing for further extension towards intricate models
for mixture flows, with a complex constraint relating the divergence of the velocity
field and derivatives of the densities [8].
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This paper is organized as follows. In Sect. 2, we detail the construction of the
scheme, the numerical issues related to the coupling, and we state a few properties
of the scheme. Finally, in Sect. 3, we discuss a few numerical results.

2 The DDFV Framework

We refer the reader to [10] for a description of the DDFV scheme for the Stokes
problem; with the same notation, we have:

• the DDFV meshes (T,D): T combines the primal mesh M≤∂M (whose cells are
denoted by K), and the dual mesh M∀ ≤ ∂M∀, (whose cells K∀ are built around the
vertices xK∀ of the primal mesh), see Fig. 1. Next, D stands for the diamond mesh,
whose cells D are built around the edges σ of the primal mesh. For φ defined on
D (i.e φD ∞ R

D), we denote by φD its value on D ∞ D. We use a similar notation
for quantities defined on T, e. g., uK (resp. uK∀ ) for the value on K (resp. K∀) of a
quantity u defined on the primal and dual mesh, i.e uT ∞ (

R
2
)T

.

• We define: the discrete gradient ⊂D : (
R

2
)T ∈ (M2(R))D,

⊂DuT : = 1

2|D|
[|σ |(uL − uK) ∨ nσK + |σ ∀|(uL∀ − uK∀) ∨ nσ∀K∀

]
, ∩D ∞ D,

with nσK the unit vector normal to σ oriented from xK to xL, and nσ∀K∀ the unit
vector normal to σ ∀ oriented from xK∀ to xL∀ ; its discrete dual operator divT :
(M2(R))D ∈ (

R
2
)T

, for any K ∞ M and K∀ ∞ M∀

divKξD := 1

|K|
∑

D∞D,D→K

|σ |ξDnσK, divK∀
ξD := 1

|K∀|
∑

D∞D,D→K∀
|σ ∀|ξDnσ∀K∀;

its trace divD : (
R

2
)T ∈ R

D that is divD(uT) = Tr(⊂DuT); a discrete strain rate

tensor DD : (
R

2
)T ∈ (M2(R))D that is DD(uT) = 1

2 (⊂DuT + t⊂DuT).

As in [3], the system (1) is treated with a time splitting strategy. What is crucial in the
construction of the scheme is to verify the compatibility between the discretization
of the convection terms in the mass and momentum equations.

2.1 Approximation of the Mass Conservation Equation

The mass conservation equation is seen as a transport equation for the density ρ with
velocity u. Hence, we set up an approximation based on UpWinding principles.
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s= [xKxK∗ ] = D|D

xK

xL∗

xD

xDσ

xK∗

D

xLD

σ ∗

The boundary dual cell K∗
Node of the boundary dual cell xK∗
Inside node xK∗ of the dual cell

Inside dual cell K∗
Primal control volumes K

Primal node xK
K∗

xK∗

xK

K

Fig. 1 The mesh T (left). A diamond D with a neighbour diamond D√ (right)

Definition 1 The discrete divergence operator divcD is a mapping from R
D ×(

R
2
)T

to R
D defined for all ρD ∞ R

D and uT ∞ (
R

2
)T

by divcD(ρD, uT) =(
divcD(ρD, uT)

)

D∞D , with

divcD(ρD, uT) = 1

|D|
∑

s=D|D√∞∂D
|s|

⎜(
gs,D

)+
ρD − (

gs,D
)−

ρD√
⎟

, ∩D ∞ D

where gs,D = uK+uK∀
2 · nsD for s = [K,xK∀ ] ∞ ∂D, nsD the unit normal to s outward

of D, x+ = max(x, 0) and x− = − min(x, 0) for all x ∞ R. When s → ∂Ω and
gs,D < 0, we use the prescribed incoming density: gs,Dρinc(xD).

Note that divD(uT) = divcD(1D, uT), with 1D = 1 for all D ∞ D: homogeneous
solutions are preserved. Let N ∞ N∀. We note δt = T

N and tn = nδt for n ∞
{0, . . . , N }. Having at hand the discrete unknowns ρn

D and un
T at time tn , we first

update the density by

ρn+1
D − ρn

D

δt
+ divcD(ρn

D, un
T) = 0. (2)

It defines ρn+1
D ∞ R

D. We define a density ρn+1
T on the mesh T by

ρn+1
K = 1

|K|
∑

D∞D,D→K

|D≥K|ρn+1
D , ρn+1

K∀ = 1

|K∀|
∑

D∞D,D→K∀
|D≥K∀|ρn+1

D , ∩K ∞ M, K∀ ∞ M∀.

2.2 Approximation of the Non-linear Term ρu ⊗ u

We remind that un+1 is defined on the mesh T; thus the divergence ρnun ∨ un+1

would be naturally defined on D. This is not compatible with the discretization of
the momentum equation which has to be considered on T. We obtain a meaningful
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discretization by going back to the Stokes formula: for V ∞ T,
∑

ς∞∂V

∫

ς
(ρnun ·

nς,V )un+1ds is approached by a formula which looks like
∑

ς∞∂V Fς,V un+1
ς . It

remains to explain how to define Fς,V and un+1
ς .

Definition 2 We define bTm : (Fς,V , uT) ∞ R
D× (

R
2
)T ∈ bTm(Fς,V , uT) ∞ (

R
2
)T

,
as follows: for any K ∞ M, K∀ ∞ M∀,

bm
K (Fς,V , uT) = 1

|K|
∑

σ∞∂K

(Fσ,K)
+uK − (Fσ,K)

−uL

bm
K∀(Fς,V , uT) = 1

|K∀|
∑

σ ∀∞∂K∀
(Fσ∀,K∀)+uK∀ − (Fσ∀,K∀)−uL∀ .

Again, this definition relies on some UpWinding principle. We turn to the defini-

tion of Fσ,K. We set Fn
s,D = |s|

⎜(
gn
s,D

)+
ρn
D − (

gn
s,D

)−
ρn
D√

⎟
. As a matter of fact, (2)

recasts as

|D|ρ
n+1
D − ρn

D

δt
+ ∑

s∞∂D
Fn
s,D = 0.

We wish to establish a similar conservation relation on the primal cells K ∞ M

|K|ρ
n+1
K − ρn

K

δt
+

∑

σ∞∂K

Fn
σ,K = 0. (3)

This requirement guides the construction of Fn
σ,K. To this end, we seek four vectors

WK, WK∀ , WL, WL∀ and a function w ∞ H1(Ω) that fulfill

(i) for all s = [K,xK∀ ] ∞ ∂D, we have
WK + WK∀

2
· nsD = Fn

s,D

|s| .

(ii) w|D is piecewise P
1 on each quarter diamond Q so that div(w|D) is constant on

D; This constant is imposed to be div(w|D) = 1
|D|

∑
s∞∂D Fn

s,D.

Up to a suitable labelling of the vertices of a diamond D, see Fig. 2, we define a
function Φ : W ∞ R

8 ∈ Φ(W ) ∞ R
4, where the components of Φ(W ) correspond

to the inner product ni j · (Wi + W j )/2. This function is surjective, which proves the
existence of WK, WK∀ , WL, WL∀ satistying condition (i). The construction of w on
each diamond D relies on the Nagtegaal device for finite elements methods [13]. On
each quarter diamond Qi j (see Fig. 2), we obtain a P

1 function required to satisfy

w|D
⎜

Pi +Pj
2

⎟
= Wi +W j

2 and div(w|D) is a constant. We find this constant owing to

Stokes’ formula
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Fig. 2 A suitable labelling of
the vertices of a diamond D

and of the quarter diamond Q

P1

P2

P3

P4 23

12
41

34

n12

∫

D
div(w|D) = ∑

s∞∂D

∫

s
w|D · nsD = ∑

s∞∂D
|s|w|D

(
Pi + Pj

2

⎛

· ni j

= ∑

s∞∂D
|s| Wi + W j

2
· ni j = ∑

s∞∂D
Fn
s,D.

We conclude that div(w|D) = 1

|D|
∑

s∞∂D
Fn
s,D holds, which proves (ii). Finally, we set

Fn
σ,K =

∫

σ

w|D · nσK, which actually leads to the following explicit formula:

Fn
σ,K = −|D ≥ L|

|D|
∑

s∞∂D,s→K
Fn
s,D + |D ≥ K|

|D|
∑

s∞∂D,s→L
Fn
s,D.

We end up with the mass balance Eq. (3) for ρn+1
K . The fluxes are conservative since

Fn
σ,K = −Fn

σ,L for σ = K|L. A similar construction can be made for Fn
σ∀,K∀ .

2.3 DDFV Schemes for the Navier-Stokes Equation

The scheme for the momentum equation reads (up to the boundary condition):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Find un+1
T ∞ (

R
2
)T

and pn+1
D ∞ R

D such that,

ρn+1
T
δt un+1

T + divT(−2ηDDun+1
T + pn+1

D Id) + bTm(Fn
ς,V , un+1

T ) = ρn
T
δt un

T + fn+1
T ,

divD(un+1
T ) = 0,

∑

D∞D
|D|pn+1

D = 0.

(4)
We refer the reader to [10, 11] for the treatment of the boundary condition. Here, we
considered meshes such that we do not need further stabilization terms [2].

Proposition 1 The finite volume scheme (4) admits a unique solution (un+1
T , pn+1

D ).

Going back to the complete problem, if ρn
D = 1, then ρn+1

D = 1.
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Fig. 3 Family of meshes. On
the left: non conformal square
mesh; on the right: Triangle
mesh

Table 1 Test case 1 on the non conformal square mesh Fig. 3

NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio

64 1.534E-01 − 1.662E-01 − 60.029 −
208 2.723E-02 2.49 8.391E-02 0.99 19.21 1.65
736 6.577E-03 2.05 4.240E-02 0.99 7.862 1.29
2752 1.789E-03 1.88 2.123E-02 1.00 3.797 1.05
10624 6.434E-04 1.48 1.061E-02 1.00 1.900 1.00

3 Numerical Results

We validate the scheme by showing a few numerical experiments, inspired from [3].
The computational domain is Ω =]0, 1[2. We set η = 1. We wish to capture explicit
solutions of (1) with convenient source term f and boundary data g. In order to discuss
error estimates, a family of meshes is obtained by successive global refinement of
the original mesh, see Fig. 3. We compare the relative L2(Ω×]0, T [)-norm of the
error obtained with the DDFV scheme, for the pressure (denoted Erpre), the velocity
gradient (denoted Ergradvel) and the velocity (denoted Ervel) respectively. On the
two tables, we give the number of primal cells (denoted NbCell) and the convergence
rates (denoted Ratio). The linear system associated to (4) is solved by a direct method,
and div(u) vanishes at the machine-error order. We can check that the total mass is
conserved.

Test case 1. The Green-Taylor vortex:

u =
⎝− cos(2πx) sin(2πy)e−2t

sin(2πx) cos(2πy)e−2t

⎞

, p = −1

4
(cos(4πx)+cos(4πy))e−4t , ρ = 1.

The final time is T = 1 and we set δt = 5 × 10−3 that ensures the stability of the
transport part of the algorithm for all meshes.

The homogeneous case ρ = 1 is perfectly preserved by the scheme (Table 1),
we observe a first order accuracy on the velocity gradient and the pressure, which
seems to be optimal. We obtain a super-convergence for the L2-norm of the velocity.
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Table 2 Test case 2 on the triangle mesh Fig. 3

NbCell Ervel Ratio Ergradvel Ratio ErPre Ratio ErDen Ratio

72 1.41E-03 − 1.04E-02 − 2.82E-02 − 2.21E-03 −
256 5.38E-04 1.4 6.47E-03 0.7 7.61E-03 1.9 1.21E-03 0.9
960 1.95E-04 1.5 3.31E-03 1.0 2.58E-03 1.6 7.37E-04 0.7
3712 8.08E-05 1.3 1.60E-03 1.0 1.24E-03 1.1 4.38E-04 0.8
14592 3.75E-05 1.1 7.63E-04 1.0 8.35E-04 0.6 2.41E-04 0.9

Furthermore, we point out that the convergence rate is not sensitive to the presence
of non conformal control volumes.

Test case 2. An example of non homegeneous flow:

u =
⎝−y cos(t)

x cos(t)

⎞

, p = sin(x) sin(y) sin(t), ρ(r, θ, t) = 2+r cos(θ − sin(t)).

The final time is T = 3,125×10−2 and we set δt = 7,8125×10−5 that ensures the
stability of the transport part of the algorithm for all meshes. In Table 2, we also give
the error on the density (ErDen). Results are coherent with [3], which justifies the
validity of the DDFV approach that will be extended to more ambitious situations
elsewhere.
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An Efficient Implementation of a 3D CeVeFE
DDFV Scheme on Cartesian Grids and an
Application in Image Processing

Niklas Hartung and Florence Hubert

Abstract In this work we describe the implementation of a 3D Center-Vertex-
Face/Edge Discrete Duality Finite Volume (CeVeFE DDFV) scheme using only the
degrees of freedom (DOF) disposed on a Cartesian grid. These DOF are organised
in a three-mesh structure proper to the CeVeFE DDFV setting. Reposing on a dia-
mond structure, the approach presented here greatly simplifies the implementation,
also in the case of grids topologically equivalent to the uniform Cartesian one. The
numerical scheme is then applied to a problem in image processing, where uniform
Cartesian structure of the DOF is naturally imposed by the pixel/voxel structure.
A semi-implicit DDFV scheme is used for solving a nonlinear advection-diffusion
equation, the subjective surfaces equation, in order to reconstruct the volume of a
tumour from noisy 3D SPECT images with signal intensity on the tumour boundary.
The matrix of the linear system has a band structure and the method is fast and able
to successfully reconstruct the tumour volume.

1 Introduction

Discrete Duality Finite Volume (DDFV) schemes, introduced in 2D for the Laplace
problem by Hermeline [10], are a possible discretisation strategy applying to very
general meshes and a large variety of PDE [3, 6]. A dual or “node” mesh is used in this
framework and gradients are defined on a structure called the diamond mesh. A main
feature of the DDFV approach is that discrete gradients and divergence operators are
defined in a way that a discrete Green formula holds, called “discrete duality”.
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In 3D, several methods have been inspired by the 2D DDFV methodology. The
Center-Vertex (CeVe) DDFV schemes have a dual mesh with centers at the vertices
of the primary mesh [1, 2, 11]. A different method, called Center-Vertex-Face-Edge
(CeVeFE) DDFV scheme, features a third mesh with unknowns at the faces and
edges of the primary mesh [5]; this will be our framework.

The DDFV framework can also be used for the discretisation of PDE appearing in
image processing, such as level set methods, which are used for a broad spectrum of
applications [15]. A curvature-driven level set equation called the subjective surfaces
equation has been introduced by Sarti et al. [14] as a tool for the completion of missing
boundaries. Along with subsequent extensions, it has been successfully applied to
image processing problems [12, 13].

The nonlinearity and the non-divergent form of the curvature-driven level set
equation makes particular space discretisation techniques necessary. Several Finite
Volume methods have been proposed along with numerical analysis [7, 13]. Recently,
stability and convergence of a semi-implicit 2D DDFV scheme was proven [9], but
additional vertex unknowns were introduced.

In this work we will detail the efficient implementation of the 3D CeVeFE DDFV
method for Cartesian grids. The method will then be used for discretising the subjec-
tive surfaces equation on a uniform Cartesian grid. As an application, tumour volume
is reconstructed from a 3D SPECT image visualising proliferating cells, which are
located at the tumour boundary.

2 The 3D CeVeFE DDFV Scheme with Degrees of Freedom
on Cartesian Grids

2.1 Construction of the Meshes

In the 3D CeVeFE DDFV scheme, three different decompositions of the computa-
tional domain η are used, called the primary mesh M , the dual or node mesh N
associated with the vertices of the primary mesh and the tertiary or “face-edge”
mesh FE associated with the faces and edges of the primary mesh. For the detailed
construction of N and FE from a general primary mesh M , we refer to [5].

There is a canonical way to construct these three meshes if we want each gridpoint
of a Cartesian structureT to be associated to exactly one cell of eitherM ,N orFE .
Referring to each point by its three-dimensional index (i, j, k), 1 � i � Nx ∨ N,
1 � j � Ny ∨ N, 1 � k � Nz ∨ N, we have the following bijections (see Fig. 1):

{(i, j, k) with i, j, k even} ∈⊃ M , {(i, j, k) with i, j, k odd} ∈⊃ N ,

{(i, j, k) with i jk ⊂ 2 mod 4} ∈⊃ E , {(i, j, k) with i jk ⊂ 4 mod 8} ∈⊃ F .

We denote the control volumes of the primary mesh M by k or l (with centers xk
or xl), vertices by xa or xb, edges by e and faces by f. Control volumes of the dual
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Fig. 1 3D mesh views for uniform Cartesian grids. Primary mesh centers are marked by circles,
nodes by squares, faces by upright and edges by sideward triangles. a The 3 meshes. b Two
primary mesh cells together with other cells appearing in the mesh construction. Extreme left—
node cell, middle left—face cell, middle right—edge cell, extreme right—diamond cell. c Mapping
of a uniform Cartesian grid onto M ,N and EF

mesh N will be called a or b. To simplify notations, control volumes of the tertiary
mesh FE will also be called e and f as it will be clear from the context whether the
face/edge or the control volume is meant. We also define the center of gravity xf of
a face f and the midpoint xe of an edge e.

Discrete gradients are defined on a fourth decomposition of η called the diamond
mesh D . Each diamond cell d ∨ D corresponds to a face-edge couple (f, e) with
e ∨ φf. In our decomposition of the Cartesian grid T , a diamond cell d will be
defined by listing the indices of six points of T : a face center xf, the midpoint xe
of an edge e ∨ φf, the two vertices xa, xb ∨ φe and the two adjacent primary cell
centers xk and xl. The diamond d is then given by d := hull(xa, xb, xl, xk). The
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diamond mesh can be subdivided into twelve classes of diamonds, which are listed
in Table 1. This classification permits an efficient construction of the diamond mesh.
The volume of d is given by |d| = det(xb−xa,xf−xe,xl−xk)

6 > 0. For f ∨ φη , the
indices that exceed the Cartesian grid are projected onto T , creating degenerate
diamonds.

Noting xd = 1
2 (xe + xf), a diamond d can be decomposed into eight tetrahedra

dake,dale,dbke,dble,dakf,dalf,dbkf,dblf defined by

hull

((
xk
xl

)

,

(
xa
xb

)

,

(
xe
xf

)

, xd

)

. (1)

This decomposition permits to define the control volumesc of any of the three meshes
as the union of all tetrahedra containing the vertex xc, e.g.

k =
⋃

d∨D :xk∨d
(dake ∞ dbke ∞ dakf ∞ dbkf).

With this definition, some boundary volumes, depending on the parity of Nx , Ny, Nz ,
degenerate automatically. The DDFV meshes are coarser than the canonical mesh
associated to the Cartesian grid.

2.2 Discrete Gradient and Discrete Divergence Operators

For u ∨ R
|T | and a diamond d ∨ D , set uc as a notation for u(xc) where xc is one

of the six points defining d. The discrete gradient ≤d : R|T | ∈⊃ R
|D | is given by

(
≤d(uT )

)

d
= 1

3|d|
(
(ul − uk)

−⊃
Nkl + (uf − ue)

−⊃
Nef + (ub − ua)

−⊃
Nab

)

for any d ∨ D and with the vectors

−⊃
Nkl = (xb−xa)×(xf−xe)

2 ,
−⊃
Nab = (xf−xe)×(xl−xk)

2 ,
−⊃
Nef = (xl−xk)×(xb−xa)

2 .

These definitions and the structure of Table 1 ensure that
−−⊃
Nxy points from x to y

((x,y) ∨ {(k, l), (a, b), (e, f)}). Note that although there are more edges than faces,
ue and f contribute to the gradient similarly. The discrete divergence divd : R|D | ∈⊃
R

|T | is defined by
(

divd(∂)
)

c
= 1

|c|
∑

d:d∀c∩=→
∂d · −⊃

Nc, (2)

with
−⊃
Nc = −⊃

Nkl if c = k ∨ M ,
−⊃
Nc = −⊃

Nab if c = a ∨ N ,
−⊃
Nc = −⊃

Nef if c = e ∨ E

and
−⊃
Nc = −−⊃

Nef if c = f ∨ F .
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These expressions simplify on uniform Cartesian grids (e.g. |d| = 2
3 h3 for interior

diamonds, with voxel length h), but no acceleration is obtained by implementing these
simplifications, which is why we only present the general case.

3 An Application to the Subjective Surfaces Equation

In image processing, uniform Cartesian grids arise naturally because image informa-
tion is given on pixels or voxels. We will illustrate the performance of the numerical
scheme taking an application from this field. The subjective surfaces equation reads

φt u + |≤u|div

(

g(|≤ I |) ≤u

|≤u|
)

= 0 (3)

with g(x) = 1
1+kx2 , k > 0, I the (given) image intensity and Dirichlet boundary

conditions. Numerically, the solution u of Eq. (3) evolves to a piecewise constant
function delimited by regions where |≤ I | is large. The support of the initial condition
u0 is chosen in the region of which the boundary should be determined.

3.1 Discretisation of the Subjective Surfaces Equation
with CeVeFE DDFV

The meshing described in the previous section has the advantage that the unknowns
correspond to the image voxels; we stress that no additional degrees of freedom,
nor interpolated values, are used. Following [4, 9], we choose a semi-implicit time
discretisation of a regularised form of Eq. (3), which yields a linear scheme:

un+1 − un

νt
+ (|≤dun| + Ω)divd

(

g(|≤d I |) ≤dun+1

|≤dun| + Ω

)

= 0, (4)

with Ω > 0. A symmetric scheme is obtained by multiplying Eq. (4) by the diagonal
matrix Σn with entries ((|≤dun|c + Ω)/|c|)−1:

Σnun+1 + νt |c|divd
(

g(|≤d I |) ≤dun+1

|≤dun| + Ω

)

= Σnun . (5)

Observe that the matrix M with Mu = |c|divd
(

g(|≤d I |) ≤d u
|≤d un |+Ω

)
is computed in

the following way. Let Λd := g(|≤d I |d)

|≤d un |d+Ω
, which is known from the previous iteration,

and note that in order to calculate this quantity, an approximation of the norm of
the full gradient is needed (which basic Finite Difference schemes and some Finite
Volume schemes do not yield). Due to the uniform Cartesian grid structure,
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−⊃
Nkl · −⊃

Nef = −⊃
Nkl · −⊃

Nab = −⊃
Nef · −⊃

Nab = 0, (6)

yielding

(Mu)k = ∑

d∨dk
Λd

3|d| (ul − uk)||−⊃
Nkl||2, (Mu)a = ∑

d∨da
Λd

3|d| (ub − ua)||−⊃
Nab||2,

(Mu)e = ∑

d∨de
Λd

3|d| (uf − ue)||−⊃Nef||2, (Mu)f = ∑

d∨df
Λd

3|d| (ue − uf)||−⊃Nef||2.
(7)

Therefore, the meshes M ,N and FE are not coupled in the resolution of (5), only
to the previous time step by |≤un|, accelerating the numerical resolution.

3.2 Iterating Over Diamonds

We stress that the quantities needed for the resolution of Eq. (5) can be computed
only using the diamond structure. The following information has to be stored for
each diamond: the point references explained in Table 1, the volumes of the diamond
of its eight constituting tetrahedra (see (1)), and the vectors

−⊃
Nkl,

−⊃
Nab and

−⊃
Nef.

The matrix M can then be assembled efficiently by iterating over d ∨ D and
by computing for each diamond the contributions at the indices corresponding to
xk, xl, xa, xb, xe and xf via the formulas (7). Similarly, the measure of the control
volumes can be assembled from the eight tetrahedra constituting the diamonds. These
procedures, including the construction of the diamond mesh, are easily vectorised.

3.3 DDFV Solution

DDFV solutions, defined on overlapping meshes, naturally give rise to averaged
discrete solutions [2, 3]. In our case, based on the solution u of (5) at the final
time T , on each mesh (M ,N and FE ) a cell-wise piecewise constant function
(uM , uN , uFE ) is defined. The DDFV solution is

uDDFV = 1

3
(uM + uN + uFE ) ,

which is constant on each tetrahedron constituting the diamond cells. In order to
visualize the DDFV solution on the Cartesian grid, it is projected on the cells of T :

ucart
DDFV =

(
1

|c|
∫

c
uDDFV

)

c∨T
.
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Fig. 2 2D cuts of a 3D SPECT image (through then center of the tumour and parallel to the x , y
and z axes, respectively) showing the density of proliferating tumour cells, which are localised at
the boundary. The tumour reconstruction is marked by the black line

This averaging is the price we pay for avoiding additional unknowns (as compared
to [9], in 2D); indeed, in 3D it is crucial to reduce the number of degrees of freedom.
It is important to note that the use of ucart

DDFV is generally necessary and cannot be
replaced by the evaluation of u. Indeed, the weak coupling of the three meshes due to
the semi-implicit time discretisation allows u to contain local checkerboard structures
caused by noise whereas uDDFV is smooth.

3.4 Numerical Results

The numerical scheme is illustrated on 3D SPECT images visualising proliferating
tumour cells. These cells are mainly localised on the tumour boundary but do not
cover the entire surface, notably due to physical constraints such as bones. We want to
obtain the volume and shape of the tumour based on these images. In practice, tumour
diameters are often measured manually and volume is approximated with an ellipsoid
formula. The numerical method described above permits to obtain a less heuristical
estimation of the volume, also indicating the shape. Voxels of the Nx ×Ny×Nz-image
are numbered in a classical way by N (i, j, k) = i + Nx · ( j − 1)+ Ny · Nx · (k − 1),
such that Σn + ξt M is a band matrix. Figure 2 shows the three different 2D cuts of
the original image and the reconstructed tumour volume.

4 Conclusion

We have presented here the implementation of a 3D CeVeFE DDFV scheme using
a Cartesian structure without introducing artificial unknowns, which is an important
property in view of the high computational complexity in 3D. It comes at the cost of
a mild smoothing by projecting the discrete solution on underlying voxels.

The implementation presented here finds an application in image processing,
where uniform Cartesian grids naturally arise. The fact that DDFV schemes can
be used on degenerate meshes makes the implementation relevant for non-uniform
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Cartesian grids, for example the highly deformed Kershaw meshes appearing in
porous media [8]. Similar band matrix profiles can be obtained in these cases.

We have successfully used a 3D DDFV discretisation of the subjective surfaces
equation for the reconstruction of the tumour shape on an exemplary SPECT image.
A subsequent step would be to test the performance of an automatised version on a
large number of images and to compare it to the ellipsoid formula.

It should also be stressed that the DDFV framework is one out of many possible
discretisation strategies, each with their advantages and shortcomings. It is hoped
that this work permits an easy access to the DDFV approach.
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MPFA Algorithm for Solving Stokes-Brinkman
Equations on Quadrilateral Grids

Oleg Iliev, Ralf Kirsch, Zahra Lakdawala and Galina Printsypar

Abstract This work is concerned with the development of a robust and accurate
numerical method for solving the Stokes-Brinkman system of equations, which
describes a free fluid flow coupled with a flow in porous media. Quadrilateral bound-
ary fitted grid with a sophisticated finite volume method, namely MPFA O-method,
is used to discretize the system of equations. Numerical results for two examples are
presented, namely, channel flow and flow in a ring with a rolled porous medium.

1 Introduction

There is much work invested in the numerical simulation of coupled free fluid and
porous media flow, and one still aims towards faster, more robust, and more accurate
simulators. This problem arises in many applications, such as filtration, membranes,
hydrology, and so on. To account for the free fluid flow coupled with the porous
media flow, different approaches exist (see e.g. the detailed discussion in [5] and
references therein). We are concerned with a mathematical model using Stokes-
Brinkman system of equations (e.g. [3, 4] and references therein), and our primary
target is application of the developed algorithms to solving filtration problems.
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One of the challenges in solving filtration problems is the complicated shape of
the computational domain. The voxel grid based methods from [3, 4] were success-
fully applied in numerous industrial and academic problems, but in the case of very
complicated domains, a high number of voxels is needed. In 2D case, boundary
adapted quadrilateral grids due to their adaptation to the boundary and efficient use
of computational resources, in certain cases may be a better choice, compared to
the Cartesian grids. However, more sophisticated discretization and numerical algo-
rithms need to be developed in this case. Here we will focus on a numerical algorithm
which adapts MPFA O-method (see e.g. [1, 2]). MPFA is widely used, e.g., in solving
scalar elliptic equations, but up to the authors knowledge, there was no investigation
of MPFA discretization for Stokes-Brinkman problems, and this paper aims to fill
this gap. Furthermore, the discontinuity of the coefficients in the Stokes-Brinkman
model requires special interpolation at the porous-fluid interface [3]. However, due
to lack of space, the latter will not be described here and will be a subject of another
paper.

2 Modeling of Coupled Free and Porous Media Flow

There exist different models for simulating a free fluid flow coupled with a flow
in porous media. One of the popular approaches is to use Stokes and Darcy flow
problems with interface coupling conditions. Another approach is to use the Navier-
Stokes-Brinkman model that had been presented for the fluid flow through a filter
element in our earlier work (see [3] and references therein). In this study we are
concerned with a reduced model using the Stokes-Brinkman equations, which read

ρ
∂u
∂t

− ∨ · (μ∨u) + μK−1u = −∨ p , x ∈ Ω,

∨ · u = 0 , x ∈ Ω. (1)

Here u and p denote the fluid velocity vector and the fluid pressure, respectively.
Moreover, μ is the fluid dynamic viscosity. Ω is the computational domain, which
consists of two nonintersecting subsets, namely the fluid domain Ω f and the porous
domain Ωp. K is the intrinsic permeability of the porous medium in Ωp and K−1 = 0
in Ω f .

A typical set of boundary conditions looks as follows

u(x) = uin(x), x ∈ Γi ; σ · n = 0, x ∈ Γo; u(x) = 0, x ∈ Γs; (2)

where Γi , Γo and Γs denote the inlet, outlet, and solid wall boundaries, σ is the stress
tensor, n is the outward unit normal to Γo. More details can be found, for example,
in [3, 5].
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3 Chorin Type Method for Stokes-Brinkman Equations

Chorin type algorithm and its discretization. At first, let us introduce for simplicity
operators D = ∨ · μ∨ and B = μK−1. Then, the system of equations (1) to be
solved reads

ρ
∂u
∂t

− D u + B u = −∨ p, x ∈ Ω, (3)

∨ · u = 0, x ∈ Ω. (4)

For a given discretization time step τ > 0 and an initial time moment t0 ⊃ 0, we
define tn = t0 + n τ, n = 0, 1, . . . . Let un and pn denote the approximation of u
and p at time tn . The fractional time step discretization can be written as

ρ

τ

⎧
u⊂ − un⎪ − Du⊂ + Bu⊂ = −∨ pn , (5)

ρ

τ

⎧
un+1 − u⊂⎪ + Bun+1 − Bu⊂ = −⎧∨ pn+1 − ∨ pn⎪

, (6)

∨ · un+1 = 0 , (7)

where u⊂ is a prediction to the fluid velocity.
Finite volume integral formulation. The computational domain Ω is subdivided

into a setV of quadrilateral finite volumes v. After integrating the system of equations
(5)–(7) over each v and performing some transformations we obtain the following
Chorin type algorithm (for more details see [3])

⎨

v

ρ

τ

⎧
u⊂ − un⎪

dx −
⎨

v
Du⊂dx +

⎨

v
Bu⊂dx = −

⎨

v
∨ pndx, v ∈ V ; (8)

−
⎨

v
∨ ·

⎩
V

⎩ρ

τ
+ B

))−1 ∨ p
∞
dx = −

⎨

v
∨ · u⊂dx, v ∈ V ; (9)

un+1
v = u⊂

v −
⎨

v

⎩
V

⎩ρ

τ
+ B

))−1 ∨ p
∞
dx, v ∈ V ; (10)

pn+1
v = pn

v + p
∞
v, v ∈ V ; (11)

where index ‘v’ denotes volume averaged variables, p∞ is the pressure correction, V
is the measure of the finite volume v, V = mes(v).

4 Space Discretization Using MPFA

The equations are discretized using the cell-centered collocated finite volume
approach on quadrilaterals. Due to the complex quadrilateral grid arrangement and
varying (discontinuous) coefficients in the Stokes-Brinkman case, special attention
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Fig. 1 Primary and dual grids

is paid to the spatial discretization of the terms. The Multipoint Flux Approximation
method (MPFA) (see [1, 2]) is employed to approximate the following type of terms∫

v ∨ · α∨φdx and
∫

v ∨φdx, where φ is a scalar function representing one of the
velocity components or the pressure, α is a constant coefficient in our case, but this
discretization technique can account for a full tensor coefficient α.

At first, let us describe some necessary details. We employ two grids, name primary
and dual grids. As shown in Fig. 1, the primary grid consists of quadrilaterals marked
in red. The dual grid marked in blue is formed by connecting the centers of primary
quadrilaterals and the midpoints of their edges. The duals are further divided into
four parts, each part belongs to a different quadrilateral.

Approximation of − ∫

v ∨ · α∨φdx
Employing the Gauss’ divergence theorem, we get the flux fv through the boundary
∂v of the control volume v

fv = −
⎨

v
∨ · α∨φdx = −

∮

∂v
(α∨φ) · n dl. (12)

The evaluation of the flux is reduced to calculation of the integral in Eq. (12), which
is standard for the MPFA method (see [1]). We can write a flux expression for the
quadrilateral v as follows

fv =
ne−1∑

i=0

fi ≤
ne−1∑

i=0





n p−1∑

j=0

ti j φ̂ j

⎜

⎟ . (13)

As shown in Fig. 1, fi is the flux through half edges ei with ne = 8 denoting
the number of half edges of the primary cell and n p = 4 denoting the number of
primary quadrilaterals in the dual cell, ti j is called the transmissibility coefficient,
computed via the MPFA O-method (see Eq. (26) in [1]). φ̂ j is the value of function
φ at the center of the j th primary quadrilateral in the dual cell (see Fig. 1), which
also represent unknowns in the discretized system.



MPFA Algorithm for Solving Stokes-Brinkman Equations on Quadrilateral Grids 651

Approximation of
∫

v ∨φdx
Here the MPFA method is extended in order to approximate the gradient operators
in the last terms of Eqs. (8) and (10). Using the Green’s theorem and fundamental
relations between ordinary and line integrals, for the first gradient component we
obtain

⎨

v

∂φ

∂x
dx =

∮

∂v
0dx + φdy =

∮

∂v
(φ, 0) · (dy,−dx) =

∮

∂v
(φ, 0) · ndl

=
∮

∂v
φnx dl ≤

ne−1∑

i=0

φi si nx,i . (14)

where φi are the values of φ on ei (see Fig. 1), si is the measure of ei , si = mes(ei ),
ni = (nx,i , ny,i ) is the outward unit normal vector of ei . Values φi can also be
estimated using MPFA method like fluxes fi in (13) using values φ̂ j but with different
transmissibility coefficients (see Eq. (24) in [1]). Similar procedure can be carried
out to approximate the second component of the gradient

∫

v ∂φ/∂ydx.

5 Numerical Results

MPFA is one of the discretization techniques which was developed to approximate
fluxes with full tensor coefficient on irregular grids. Standard discretization tech-
niques such as two-point flux approximation can lead to unphysical or inaccurate
results for irregular grids. In this section we present a channel example and compare
its solution on different regular and irregular grids along with the analytical solution.
Example for a radial Stokes-Brinkman flow in a ring is also presented on irregular
grid. Obtained values are compared to their analytic counterparts.

Stationary channel flow between two parallel plates. The domain is a 2D channel
of width d (along x1) between two infinitely large plates. The equations are considered
in Cartesian coordinates. We assume that the flow is stationary ∂u/∂t ∀ 0 , and there
is no flow in x1 direction, u1 ∀ 0. Moreover, the pressure is linear in x2 and does not
depend on x1, i.e. ∂p/∂x2 ∀ −C p. The boundary conditions are “no-slip”, where
u(x1 = 0) = u(x1 = d) = 0. Then, in infinitely long channel the analytical solution
yields

u2(x1) = C p

2μ

⎩
dx1 − x2

1

)
= pdrop

2μL

⎩
dx1 − x2

1

)
,

where pdrop is the pressure drop along the channel at distance L , μ is the viscosity.
Then, the maximum centerline velocity reads

u2,max

(
d

2

)

= Pdropd2

8μL
= 1.5uin, (15)
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Fig. 2 Different quadrilateral grids: stretched Cartesian grid (left), fish-bone grid (middle), and
mosaic grid (right)

Fig. 3 Velocity distributions on different grids, i.e. stretched Cartesian grid (left), fish-bone grid
(middle), and mosaic shaped quadrilaterals (right). Resolution is 80 × 40 quadrilaterals

where uin is the inflow or average velocity.
Here, we present the results for the channel problem with a simple rectangu-

lar computational domain. The numerical algorithm was tested on different com-
plex grids (see Fig. 2), such as stretched Cartesian grid, fish-bone grid, and mosaic
grid, with different resolutions. The inflow parameters used for this problem are
the viscosity μ = 0.2 kg/ms, the inlet velocity uin = 0.015 m/s, the fluid density
ρ = 800 kg/m3. Dimensions of the channel are d = 1 m and L = 5 m.

The velocity profiles on the different grids are illustrated in Fig. 3. Table 1 sum-
marizes the results on different computational domains for different grid resolu-
tions. According to the analytical solution (15), the maximum centerline velocity is
u2,max = 0.0225 m/s and the pressure drop is pdrop = 0.18 Pa. It can be seen that
the complex grids result in a comparable pressure and velocity accuracy. Moreover
the results on different resolutions also compare well. It can be concluded that the
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Table 1 Summary of results on different computational domains for the flow between two parallel
plates

Geometry Resolution pdrop (Pa) u2,max (m/s)

Cartesian 80 × 40 0.1749 0.0228
40 × 20 0.19 0.02269

Fish-bone 80 × 40 0.1745 0.0228
80 × 20 0.1859 0.02214
40 × 20 0.185 0.02268

Mosaic 80 × 40 0.1735 0.02268
80 × 20 0.1829 0.02192
40 × 20 0.1882 0.02247

Convergence and grid study

Table 2 Input parameters for the ring problem

Inner radius, R1 (m) 1 Inflow velocity, uin
r (m/s) 6.36692 × 10−6

Outer radius, R2 (m) 5 Permeability, K (m2) 1 × 10−12

Inner porous radius, r1 (m) 2.516375 Fluid density, ρ (kg/m3) 800
Outer porous radius, r2 (m) 3.48156 Viscosity, μ (kg/ms) 0.2

algorithm works well on an arbitrary complex composition of quadrilateral grids for
the Stokes system of equations.

Radial Stokes-Brinkman flow in a ring. The domain is a 2D ring (annulus) which
contains an additional ring-shaped porous medium. The inlet is located on the outer
circle boundary and the outlet is on the inner circle boundary. They are separated by
the porous medium. On the inlet and the outlet we use Dirichlet boundary conditions
for the fluid velocity ur (R1) = uout

r and ur (R2) = uin
r . Using the continuity equation,

the solution for the fluid velocity is given by

ur (r, ϕ) = ur (r) = R2 uin
r

r
, uϕ(r, ϕ) ∀ 0 , for r ∈ [R1, R2] and ϕ ∈ [0, 2π ],

where u = (ur , uϕ) is the fluid velocity in polar coordinates r and ϕ. All other
parameters are introduced in Table 2. The momentum equation in the porous media
in polar coordinates reads

μ

K

R2 uin
r

r
= −∂p

∂r
, for r ∈ [r1, r2].

Then, an analytical expression for the pressure drop across the porous medium yields

p(r2) − p(r1) = − μ

K
R2 uin

r I n
⎩r2

r1

)
.
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Fig. 4 Numerical results for the ring with a rolled porous medium inside

Figure 4 (left) illustrates the computational domain discretized using the adaptive
grid with resolution 120 × 29. The geometries in red and blue denote the porous
and fluid regions, respectively. In the Fig. 4 (middle, right), the pressure and velocity
profiles are shown. The computed pressure difference is 2061.2 KPa. This compares
well to the analytically computed pressure difference, which is equal to 2067.1 KPa.
Note that the analytical pressure difference in the fluid domain is neglected as it is
very small compared to the pressure drop across the porous media.

6 Summary

In this paper, we have discussed the numerical algorithm and its associated discretiza-
tion for solving the Stokes and Stokes–Brinkman system of equations on quadrilateral
grids. The discretization method employs MPFA O-method to approximate first and
second order terms in the Eqs. (8)–(11) as described in Sect. 3. The results for the
two examples compare well to the analytical solutions.
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Nonlinear Monotone FV Schemes for
Radionuclide Geomigration and Multiphase
Flow Models

Ivan Kapyrin, Kirill Nikitin, Kirill Terekhov and Yuri Vassilevski

Abstract We present applications of the nonlinear monotone finite volume method
to radionuclide transport and multiphase flow in geological media models. The
scheme is applicable for full anisotropic discontinuous permeability or diffusion
tensors and arbitrary conformal polyhedral cells. We consider two versions of the
nonlinear scheme: two-point flux approximation preserving positivity of the solu-
tion and compact multi-point flux approximation that provides discrete maximum
principle. We compare the new nonlinear schemes with the conventional linear two-
point and multi-point (O-scheme) flux approximations. Both new nonlinear schemes
have compact stencils and a number of important advantages over the traditional lin-
ear discretizations. Two industrial applications are discussed briefly: radionuclides
transport modeling within the radioactive waste safety assessment and multiphase
flow modeling of oil recovery process.

1 Introduction

A simple and accurate conservative method applicable to general conformal meshes
and full anisotropic tensor permeability coefficients, is much-in-demand among
engineers. The maximum principle is one of the important properties of solutions of
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partial differential equations (PDEs) such as the diffusion or heat equation. Its discrete
counterpart is a very desirable property to have in a numerical scheme. Unfortunately,
the schemes satisfying the discrete maximum principle (DMP) impose severe limi-
tations on mesh regularity [6] and problem coefficients. Violation of the DMP leads
to various numerical artifacts, such as heat flow from a cold material to a hot one,
that can be amplified by physics non-linearity.

The classical two-point finite volume (FV) scheme for diffusion problems defines
a two-point flux approximation (TPFA) across a mesh face as a difference of two
concentrations at neighboring cells times a transmissibility coefficient. It results in
a system of algebraic equation with an M-matrix with diagonal dominance in rows,
which implies immediately the DMP [15]. However, accuracy of this scheme depends
on mesh geometry and mutual orientation of mesh faces and principle directions of the
diffusion tensor. More precisely, the co-normal vector for a face must be collinear to
the vector connecting neighboring collocation points, which is clearly the impossible
requirement for arbitrary tensors and/or arbitrary polyhedral cells. The multi-point
flux approximation (MPFA) scheme solves accuracy problem by using more than
two points in the flux stencil [1] and a matrix of transmissibility coefficients. The
MPFA scheme provides a second-order accurate approximation of concentrations
but is only conditionally stable and conditionally monotone [14].

A new research direction pioneered by Le Potier [7] uses a two-point flux sten-
cil with two coefficients that depend on the concentrations in neighboring cells.
Nonlinear FV schemes with TPFA proposed in [3, 5, 7, 9, 10, 13, 18] guarantee
solution positivity on general meshes and for general tensor coefficients.

For general meshes and coefficients the DMP requires a nonlinear multi-point
flux approximation. For diffusion problems, such schemes were proposed in [8, 19]
using auxiliary unknowns at mesh vertices. Later an interpolation-free multi-point
nonlinear approximation of diffusive fluxes was proposed for two-dimensional [11]
and three-dimensional cases [2, 4]. The resulting scheme has the minimal stencil and
reduces to the classical two-point FV scheme on Voronoi or rectangular meshes and
for scalar (and, in a few cases, diagonal tensor) coefficients.

In this article, we present two our FV schemes for the steady-state diffusion
equation with anisotropic coefficients: both schemes work on general polyhedral
meshes and have a compact stencil, the first preserves non-negativity of the discrete
solution and the second satisfies the DMP. We also briefly consider two applications of
the nonlinear schemes to subsurface flows: simulation of radionuclides geomigration
from a nuclear waste disposal and multiphase flow modeling of oil recovery process.

The paper outline is as follows. In Sect. 2 we introduce our nonlinear FV schemes
for the steady-state diffusion equation. In Sect. 3 we present a new parallel toolkit
and two industrial applications of the presented FV schemes.
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2 Nonlinear Finite Volume Methods

Let η be a three-dimensional polyhedral domain with boundary φ . The mixed form
of the diffusion equation for unknown concentration c with the Dirichlet boundary
condition is as follows:

q = −K∇c, div q = f in ∂,

c = g on φ.
(1)

Here K(x) is a symmetric positive definite discontinuous (possibly anisotropic)
diffusion tensor, f (x) is a source term, and g(x) is a boundary data.

A discretization scheme can have two additional properties: discrete maximum
(or minimum) principle and non-negativity of the discrete solution. The minimum
principle states that for f ≥ 0 the concentration c(x) satisfies:

min
x∈η̄

c(x) ≥ min{0, min
x∈φ

g(x)}.

The maximum principle is formulated similarly. In the following we shall refer to
both principles as the maximum principle. Non-negativity is a weaker property which
stems from the minimum principle: for non-negative f and g one has non-negative
c(x). A numerical scheme can provide non-negativity of c but violate the discrete
maximum principle (DMP) and thus can produce oscillations.

The cell-centered FV scheme uses one degree of freedom, CT , per cell T collo-
cated at cell barycenter xT . Integrating the mass balance Eq. (1) over T and using
the divergence theorem, we obtain:

∑

f ∈νT

ΩT, f q f · n f =
∫

T
f dx, q f = 1

| f |
∫

f
q ds, (2)

where q f · n f is the total flux across face f , and ΩT, f is either 1 or −1 depending
on the mutual orientation of normal vector to face n f and the outer normal to cell
boundary nT .

Both nonlinear flux approximation schemes exploit the same idea of vector expan-
sion. First we need to find a triplet of three vectors t1∗ connecting xT1 with other
collocation points such that the co-normal vector Σ f = K · n f can be expanded

Σ f = Λ1a t1a + ξ1b t1b + δ1c t1c, Λ1a ≥ 0, ξ1b ≥ 0, δ1c ≥ 0, (3)

where a, b, c are indexes of neighboring cells.
Since the flux normal component is the directional derivative along the co-normal

vector Σ f , it can be represented as the sum of three directional derivatives along t1∗
which are approximated by central differences:

(q f · n f )
(1)
h = Λ1a (Ca − C1) + ξ1b (Cb − C1) + δ1c (Cc − C1). (4)
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Fig. 1 Two representations of
co-normal vector Σ1 = −Σ2 =
K · ne (2D example)

For the opposite co-normal vector −Σe we have similar representation with another
triplet and central differences, see Fig. 1 for the 2D example:

(−q f · n f )
(2)
h = Λ2k (Ck − C2) + ξ2l (Cl − C2) + δ2m (Cm − C2). (5)

Our flux discretization is a linear combination of approximations (4) and (5) with
coefficients μ+ and μ−. For the sake of approximation the linear combination should
be convex:

μ+ + μ− = 1.

The second equation for μ± is dictated by the goal of the method:

• To obtain the two-point discretization, we get rid of unwanted concentrations in
the flux stencil:

μ+(Λ1a Ca + ξ1b Cb + δ1c Cc) − μ−(Λ2k Ck + ξ2l Cl + δ2m Cm) = 0.

• To provide the DMP, we balance the contributions of one-sided fluxes:

μ+(q f · n f )
(1)
h = μ−(−q f · n f )

(2)
h ,

so that either (4) or (5) can be used in assembling the discrete fluxes in (2). This
helps us to preserve compactness of the stencil for both cells T1 and T2 even with
the multi-point fluxes (4), (5).

FV method with the nonlinear TPFA provides non-negativity of the discrete solu-
tion [3, 9], whereas FV method with the nonlinear MPFA provides the DMP [2, 11].
In the case of K-orthogonal mesh vectors Kn f and t12 are collinear, both nonlinear
flux approximations reduce by construction to the conventional linear TPFA which
provides at least first order accuracy. In general case, the linear TPFA may not pro-
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Fig. 2 Statement of the test
case: two Dirichlet boundary
conditions and full anisotropic
diffusion tensor 300

15
1

G1

G0

vide approximation at all, whereas the linear MPFA may not provide the DMP or
positivity. This statement is illustrated by an extended test case from [12], we consider
all four schemes and two cases of Dirichlet boundary conditions: G0 = 0, G1 = 2
and G0 = 10, G1 = 12. Figure 2 presents the set up of the problem and Table 1
shows monotonicity and DMP violation by the schemes.

3 Applications

Means for the development of parallel numerical models of complex phenomena on
general polyhedral meshes are provided by data structures and algorithms from the
open source package Integrated Numerical Modelling Object-oriented Supercom-
puting Technologies (INMOST) [17]. FV discretization assumes that the processor
possessing a mesh cell has access to data in neighboring cells. If a cell adjoins to the
boundary of the local submesh associated with a processor, some of its neighbors
belong to other processors. For each local submesh we generate additional layers of
ghost cells composed of these neighbors. The ghost cells contain exact copy of data
of the associated normal cells. The main difference between the ghost cell and the
normal cell is that the ghost cell data should be actualized after any update of the
normal cell data. Actualization involves inter-processor communications that move
the data from normal cells to their ghost copies. Mesh data structure implemented in
INMOST allows simple design of a numerical scheme on each mesh cell and is very
convenient even for single processor implementations. Both applications presented
in this paper are built using INMOST toolkit.

First we consider application of the nonlinear FV schemes for the black-oil model
[12, 16]. The black oil model describes the three-phase flow of water, oil and gas com-
ponents in the underground reservoir. If the reservoir pressure drops below certain
threshold, then oil is split into a liquid phase and gaseous phase at thermodynamic
equilibrium. In this case the water phase does not exchange mass with the other
phases, while the liquid and the gaseous phases exchange mass. The model consists
of mass conservation equations for each of the components and Darcy’s velocity
equations for each phase:
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Table 1 Minimum and maximum concentration values for the problem with the Dirichlet boundary
conditions. Orthogonal grid with h = 1/40

Scheme G0 = 0, G1 = 2 G0 = 10, G1 = 12
Cmin Cmax Cmin Cmax

lin.TPFA 1.3 × 10−5 1.889 10.00 11.889
nonl. TPFA 1.6 × 10−10 1.948 9.972 11.940
MPFA −5.5 × 10−2 2.087 9.945 12.087
nonl. MPFA 1.2 × 10−9 1.993 10.00 11.993

uΛ = −krΛ

μΛ

K

(
∇ pΛ − πΛ(p)g∇z

)
, Λ = w, o, g, (6)

where K is the absolute permeability tensor, z is the depth, g is the gravity term, pΛ ,
SΛ are unknown pressure and saturation, μΛ and krΛ are the formation viscosity and
relative phase permeability, πΛ are the densities at current conditions for the phase
Λ = w, o, g.

We use the fully implicit scheme in time and Newton method to solve the nonlinear
system at each time step. Construction of the Jacobian matrix is based on partial
derivatives with respect to primary variables (oil pressure p, water and gas saturations
Sw, Sg) of discrete Darcy fluxes. The latter are obtained either by the conventional
linear TPFA or MPFA or by the nonlinear TPFA or MPFA presented above (the
diffusion tensor should be replaced with absolute permeability tensor).

Dependence of the method coefficients on primary variables leads to the extension
of the Jacobian stencil [12, 16]. For instance, in case of the nonlinear TPFA one has

− (K∇ p)h
f · n f = D+

f (p)p+ − D−
f (p)p−. (7)

Coefficients D±
f must be differentiated as dependent on primary variables in neigh-

boring cells: ΔD±
p = ∑

Ti ∈ΣT∗
L±

p,i ΔpTi , where ΣT ∗ = ΣT+ ∪ ΣT− , ΣT± is the set of

cells forming the stencil for cell T±, L±
p,i are the coefficients of differentiation. Wider

stencil ΣT ∗ for Jacobian results in more dense Jacobian matrix and more expensive
Jacobian-vector multiplication and Jacobian preconditioning compared to the con-
ventional linear TPFA. On the other hand, the linear TPFA is often inconsistent.

An example for three-phase water-flooding with several wells in heterogeneous
media using nonlinear TPFA scheme is shown in Fig. 3.

The second application of the nonlinear FV schemes is related to validation of
safe subsurface disposal of radioactive wastes (RW). In this application two main
tasks must be solved, the groundwater (GW) flow problem and the transport in porous
media problem, which may be strongly coupled in some cases. The novel FV schemes
are implemented within the code Geomigration of Radionuclides (GeRa). This code
is developed to model the major significant processes for radwaste disposal safety:
saturated and unsaturated flow, density-driven flow, reactive transport with decay,
heat transport. The basis for all these numerical models are the discretizations of the
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Fig. 3 Example of three-
phase flow in heterogeneous
media using nonlinear TPFA
scheme. Left computational
grid and geological layers.
Right water saturation field

Fig. 4 Example problem:
groundwater flow in a realistic
heterogeneous media. Left
computational grid and geo-
logical layers. Right pressure
head and flow streamlines

diffusion and advection operators. The computational meshes are assumed arbitrary
polyhedral. The code involves the triangular prismatic and the octree-hexahedral
mesh generators. In the first generator the resulting meshes may contain triangular
prisms, tetrahedra and pyramids. The octree hexahedral generator cuts and adapts
the cells to the domain boundary and interfaces between geological layers leading
to complicated polyhedral cells.

The GW flow problem may be solved by FV scheme with either the linear TPFA
(may be inconsistent) and MPFA (may be non-monotone) or the nonlinear TPFA and
MPFA (both consistent and monotone). For the temporal discretization the operator-
splitting scheme or the implicit scheme may be used. The first one treats the advection
operator explicitly and the diffusion operator implicitly. Advection may be modeled
using the conventional first-order accurate FV scheme with piecewise-constant solu-
tion or the second-order accurate TVD-scheme with linear reconstruction of discrete
solution on the cells. For the diffusion operator any of the four flux approximation
schemes (linear/nonlinear TPFA/MPFA) may be applied. The implicit scheme solves
the coupled advection-diffusion problem using the nonlinear FV method for diffusion
and local linear solution reconstruction for advection.

Numerical experiments with GeRa show robustness of the nonlinear schemes:
the resulting matrices are reasonably well conditioned and the solutions remain non-
negative or satisfy the DMP. In case of large complicated grids and heterogeneous
tensor coefficients the schemes provide the best solution, as they allow to solve
efficiently the generated grid equations and they are consistent.

Figure 4 (left) presents a filtration model with three geological layers, single well
and outflow boundary with a prescribed water head. Water head solution and flow
streamlines obtained using the FV scheme with the nonlinear TPFA is shown on
Fig. 4 (right).
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Numerical Modelling of Viscous and Viscoelastic
Fluids Flow in the Channel with T-Junction

Radka Keslerová, Karel Kozel and David Trdlička

Abstract In this work the numerical solution of the viscous and viscoelastic fluids
flow for generalized Newtonian and Oldroyd-B fluids are considered. The govern-
ing system of equations is the system of generalized Navier-Stokes equations for
incompressible laminar fluids flow. For the stress tensor on the right hand side of this
system two different mathematical models for viscous and viscoelastic fluids flow
are used, Newtonian model and Oldroyd-B model. For the numerical simulation of
generalized Newtonian and Oldroyd-B fluids flow in the tested domain a cross model
for viscosity function μ(γ̇ ) is considered. The finite volume method combined with
the artificial compressibility method is used for the spatial discretization. For the
time discretization the explicit multistage Runge-Kutta scheme is used. Computa-
tional domain is formed by the branched channel with one inlet and two outlet parts.
The crosssection is square and the branch is perpendicular to the main pipe. The
numerical results of generalized Newtonian and generalized Oldroyd-B fluids flow
obtained by this method are presented.

1 Introduction

Branching of pipes occurs very often in many technical or biological applications.
It is to be in human body in the complex branching system of blood vessels. Thus,
this work is motivated by medical area of research. The blood can be characterized
by shear-thinning property. In this work also the viscoelastic character is considered.
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This leads to study of generalized Newtonian and Oldroyd-B fluids flow in the
branched channel with T-junction.

2 Mathematical Model

The fundamental system of equations is the system of generalized Navier–Stokes
equations for incompressible fluids. This system is based on the system of balance
laws of mass and momentum for incompressible fluids.

div u = 0 (1)

ρ
∂u
∂t

+ ρ(u.∇)u = −∇ P + div T (2)

where P is the pressure, ρ is the constant density, u is the velocity vector. The symbol
T represents the stress tensor.

2.1 Stress Tensor

For the different choice of fluids model the different model of the stress tensor on the
right hand side of the system of Navier-Stokes equations is used. For viscous flows
with the representative of Newtonian fluids the simple model called Newtonian model
is considered (see e.g. [1, 2])

T = 2μD (3)

where μ is the dynamic viscosity and tensor D is the symmetric part of the velocity
gradient.

In the case of viscoelastic fluids, the simplest viscoelastic model can be used. This
model is denoted as Maxwell model

T + λ1
δT
δt

= 2μD (4)

where λ1 is the relaxation time. The symbol δ
δt represents upper convected time

derivative which is defined for general tensor by the relation (8).
By combination of these two presented models (Newtonian and Maxwell) the

behaviour of mixture of viscous and viscoelastic fluids can be described. This model
is called Oldroyd-B model and it has the form

T + λ1
δT
δt

= 2μ

⎧

D + λ2
δD
δt

⎪

. (5)

where symbols λ1 and λ2 are the relaxation and retardation time (with dimension of
time).
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The stress tensor T is decomposed to the Newtonian (viscous) part Ts and
viscoelastic part Te, (T = Ts + Te). The tensor Ts is defined by Newtonian model
(3) and the viscoelastic tensor Te is defined by Maxwell model (4)

Ts = 2μsD, Te + λ1
δTe

δt
= 2μeD, (6)

where

λ2

λ1
= μs

μs + μe
, μ = μs + μe. (7)

The upper convected derivative δ
δt used in the viscoelastic stress tensor is defined

for the general tensor M by the relation, for more details see [2]

δM
δt

= ∂M
∂t

+ (u.∇)M − (WM − MW) − (DM + MD) (8)

where D is symmetric part and W is antisymmetric part of the velocity gradient

D = 1

2
(∇u + ∇uT ) = 1

2

⎨

⎩
2ux uy + vx uz + wx

uy + vx 2vy vz + wy

wx + uz wy + vz 2wz



 (9)

and

W = 1

2
(∇u − ∇uT ) = 1

2

⎨

⎩
0 uy − vx uz − wx

vx − uy 0 vz − wy

wx − uz wy − vz 0



 . (10)

2.2 Generalizing: Cross Model

Both considered mathematical models (Newtonian and Oldroyd-B) could be
generalized for numerical simulation of the blood flow. In this case the viscosity
μ is no more constant but is defined by viscosity function according to the shear-
thinning cross model (for more details see [8])

μ(γ̇ ) = μ∞ + μ0 − μ∞
(1 + (λγ̇ )b)a

, γ̇ = 2

√
1

2
tr D2 (11)

the following parameters have been used for the blood flow simulations presented
in this paper: μ0 = 1.6 × 10−1 Pa s, μ∞ = 3.6 × 10−3 Pa s, a = 1.23, b =
0.64, λ = 8.2 s. The governing system of Eqs. (1), (2) is completed by the equation
for the viscoelastic part of the stress tensor, therefore this system can be rewritten as
follows
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div u = 0 (12)

ρ
∂u
∂t

+ ρ(u.∇)u = −∇ P + div T (13)

T = Ts + Te, Ts = 2μ(γ̇ )D (14)

∂Te

∂t
+ (u.∇)Te = 2μe

λ1
D − 1

λ1
Te + (WTe − TeW) + (DTe + TeD). (15)

3 Numerical Solution

Numerical solution of the presented mathematical models is based on cell-centered
finite volume method using explicit Runge–Kutta time integration. Steady state solu-
tion is achieved for t → ∞. In this case the artificial compressibility method can be
applied. It means that the continuity equation is completed by the time derivative of
the pressure (for more details see e.g. [3–5, 7]). The system of equations (including
the modified continuity equation) could be rewritten in the vector form.

R̃β Wt + Fc
x + Gc

y + Hc
z = Fv

x + Gv
y + Hv

z + S, R̃β = diag(
1

β2 , 1, . . . , 1)

(16)

where β ∈ R+, W is vector of unknowns, Fc, Gc, Hc and Fv, Gv, Hv are inviscid
and viscous fluxes and S denotes the source term

W =

⎨










⎩

p
u
v
w
t1
...

t6














, Fc =

⎨










⎩

u
u2 + p

uv
uw
ut1
...

ut6














, Gc =

⎨










⎩

v
uv

v2 + p
vw
vt1
...

vt6














, Hc =

⎨










⎩

w
uw
vw

w2 + p
wt1
...

wt6














,

(17)

Fv =

⎨










⎩

0
2μ(γ̇ )ux

μ(γ̇ )(uy + vx )

μ(γ̇ )(uz + wx )

0
...

0














, Gv =

⎨










⎩

0
μ(γ̇ )(uy + vx )

2μ(γ̇ )vy
μ(γ̇ )(vz + wy)

0
...

0














, Hv =

⎨








⎩

0
μ(γ̇ )(uz + wx )

μ(γ̇ )(vz + wy)

0
...

0












,

(18)
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S =

⎨
















⎩

0
t1x + t2y + t3z

t2x + t4y + t5z

t3x + t5y + t6z

2μe
λ1

ux − t1
λ1

+ 2ux t1 + (uy + vx )t2 + (uz + wx )t3
μe
λ1

(uy + vx ) − t2
λ1

+ uyt4 + uzt5 + uyt1 + wyt3 + ux t2 + vyt2
μe
λ1

(uz + wx ) − t3
λ1

+ uyt5 + uzt6 + uzt1 + vzt2 + ux t3 + wzt3
2μe

λ1
vy − t4

λ1
+ (uy + vx )t2 + 2vyt4 + (vz + wy)t5

μe
λ1

(vz + wy) − t5
λ1

+ vx t3 + vzt6 + uzt2 + vzt4 + vyt5 + wzt5
2μe

λ1
wz − t6

λ1
+ (uz + wx )t3 + (vz + wy)t5 + 2wzt6




















. (19)

Equation (16) is discretized in space by the finite volume method and the arising
system of ODEs is integrated in time by the multistage Runge–Kutta scheme ([5, 6])

W n
i = W (0)

i

W (s)
i = W (0)

i − αs−1ΔtR(W )
(s−1)
i (20)

W n+1
i = W (M)

i s = 1, . . . , M,

whith M = 3, α0 = α1 = 0.5, α2 = 1.0, the steady residual R(W )i is defined by
finite volume method as

R(W )i = 1

Ci

6∑

k=1

⎜⎟
F

c
k − F

v
k

)
ΔSxk −

⎟
G

c
k − G

v
k

)
ΔSyk −

⎟
H

c
k − H

v
k

)
ΔSzk

]
+ S,

(21)

where Ci is the volume of the primary grid cell. The symbols F
c
k, G

c
k, H

c
k and

F
v
k, G

v
k, H

v
k denote the numerical approximation of the inviscid and viscous physical

fluxes. The symbol S denotes the numerical approximation of the source term. The
symbols ΔSxk,ΔSyk and ΔSzk respectively represent the volume of the kth-surface
of the primary cell in the x, y, z direction.

The inviscid numerical fluxes are computed as an aritmetic average of the inviscid
numerical fluxes of two neighbouring finite volume cells

F
c
k = 1

2

(
Fc

i + Fc
k

⎛
, G

c
k = 1

2

(
Gc

i + Gc
k

⎛
, H

c
k = 1

2

(
Hc

i + Hc
k

⎛
(22)

where index i denotes the index of the primary cell and the index k is the index of
the neighboring cells. The mesh in the computational domain is assumed structured
with hexahedral cells. The variables of the source term are computed in the same
meaning.

In the definition of the viscous fluxes there are the partial derivatives of velocity
with respect to the spatial coordinates x, y, z. The numerical approximation of these
derivatives need to be discretized. Integrating these over a dual cell and using Green’s
theorem results in, e.g. for ux
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ux = 1

Ck

8∑

m=1

umΔSxm, (23)

where Ck is the volume of the dual cell corresponding to the k-th surface of the basic
cell, the shape of dual cells is octahedron. The symbol ΔSxm is the volume of the
mth-surface of the dual cell in the x direction. Similarly for other velocity derivatives.

Steady Boundary Conditions. The flow is modelled in a bounded computational
domain where a boundary is divided into three mutually disjoint parts: a solid wall,
an outlet and an inlet. At the inlet Dirichlet boundary condition for velocity vector
(parabolic profile) is used and for a pressure and the stress tensor Neumann boundary
condition is used. At the outlet parts the pressure value is given and for the velocity
vector and the stress tensor Neumann boundary condition is used. The homogeneous
Dirichlet boundary condition for the velocity vector is used on the wall. For the
pressure and stress tensor Neumann boundary condition is considered.

4 Numerical Results

This section deals with the comparison of the numerical results of generalized New-
tonian and generalized Oldroyd-B fluids flow. Numerical tests are performed in an
idealized branched channel with the square cross-section. Figure 1 (left) shows the
shape of the tested domain. The computational domain is discretized using a struc-
tured, wall fitted mesh with hexahedral cells. The domain is divided to four blocks,

Block #1 60 × 30 × 30 cells black
Block #2 30 × 30 × 30 cells red
Block #3 40 × 30 × 30 cells blue
Block #4 30 × 40 × 30 cells green

As initial condition the following model parameters are used: μe = 0.001 Pa s,
μs = 0.009 Pa s, λ1 = 0.06 s, U0 = 0.1 ms−1, L0 = 0.01 m, ρ = 1000 kg m−3

In the outlet parts the pressure is given by values: 0.0005 Pa (main channel) and
0.00025 Pa (branch). Using these data, fully developed Poiseuille velocity profile
(for Newtonian fluid) is prescribed at the inlet (Dirichlet condition). At the outlet
homogeneous Neumann conditions for the velocity components and a constant pres-
sure are prescribed. On the vessel walls no-slip homogeneous Dirichlet conditions
are prescribed for the velocity field. In the case of the Oldroyd-B and generalized
Oldroyd-B models, homogeneous Neumann conditions are imposed for the compo-
nents of the extra stress tensor at all boundaries. In Fig. 1 (right) the axial veloc-
ity profile for fully developed flow close to the branching is shown. The lines for
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Fig. 1 Structure of the computed domain (left) and axial velocity profile for steady fully developed
flow of tested fluids (right). a Structure of the domain. b Axial velocity profile
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Fig. 2 Velocity isolines of steady flows for generalized Newtonian and Oldroyd-B fluids. a New-
tonian. b Generalized Newtonian. c Oldroyd-B. d Generalized Oldroyd-B

Newtonian and Oldroyd-B fluids are similar to the parabolic line, as was assumed.
From this velocity profile is clear that the shear thinning fluids attain lower maximum
velocity in the central part of the channel (close to the axis of symmetry) which is
compensated by the increase of local velocity in the boundary layer close to the wall.
In Fig. 2 the velocity isolines and the cuts through the main channel and the small
branch are shown.

The axial velocity isolines for all tested fluids (Newtonian, generalized New-
tonian, Oldroyd-B and generalized Oldroyd-B) are shown in the Fig. 3. It can be
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Fig. 3 Axial velocity isolines in the center-plane area. a Newtonian. b Generalized Newtonian.
c Oldroyd-B. d Generalized Oldroyd-B

observed from Fig. 3 that the size of separation region for generalized Newtonian
and generalized Oldroyd-B fluids is smaller than for Newtonian and Oldroyd-B
fluids.

5 Conclusion

In this paper a finite volume solver for incompressible laminar viscous and viscoelas-
tic fluids flow in the branching channel with T-junction was described. Used mathe-
matical models (Newtonian and Oldroyd-B) were generalized by the shear-thinning
cross model for numerical solution of generalized Newtonian and Oldroyd-B fluids
flow. These types of flow were numerical modelled in three dimensional domain with
square cross-section.
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Gradient Evaluation on a Quadtree
Based Finite Volume Grid

Zuzana Krivá, Angela Handlovičová and Karol Mikula

Abstract Many problems described by nonlinear PDEs need good approximations
of gradients on finite volumes. Using finite volume methods, this can be difficult task
if discretization of a computational domain does not fulfill the classical orthogonality
property. Such a situation can occur, e.g., during coarsening in image processing using
quadtree grids. We present a construction of an adjusted quadtree grid for which the
connection of representative points of two adjacent finite volumes is perpendicular to
their common boundary. On the other hand, for such an adjusted grid, the intersection
of representative points connection with a finite volume boundary is not a middle
point of their common edge. In this paper we present a new method of gradient
evaluation for such a situation.

1 The Computational Grid

In this section we introduce our finite volume computational grid, its construction
and its properties. Our purpose is to build the grid using large elements for regions
with homogeneous values of a solution function—in our experiment representing
image intensities. To this purpose we first build a graded quadtree, i.e. the quadtree,
in which the difference in a level between adjacent cells is constrained, in our case to
one. Grids associated with such trees are often used in order to produce procedures
that are easier to implement. Moreover, in our case it is an inevitable requirement to

Z. Krivá (B) · A. Handlovičová · K. Mikula
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Fig. 1 An example of the
original quadtree grid together
with the representative points
of its elements (on the left).
This grid is transformed into
the consistent one (on the
right)

be able to adjust the quadtree to the consistent finite volume grid. The consistent grid
possesses the important property that the connection of two representative points of
two adjacent finite volumes is perpendicular to their common boundary, which is an
important fact when we use the classical finite volume discretization [2]. An example
of a quadtree and a corresponding consistent grid is displayed in Fig. 1.

Building the quadtree. Let us suppose that our data is given on a regular non-
adaptive square grid (which corresponds e.g. to the pixel structure of an image).
First we build the quadtree by merging the elements with similar values from the
smaller cells to the larger cells, i.e. from leaves to the root. The old values are either
unchanged, or replaced by averaging the values from the processed area. During
this process, the information about successful or unsuccessful merging is stored in a
binary field with the size corresponding to the image. Moreover, this information is
stored in such a way that it enables us to create a graded quadtree with a prescribed
ratio of elements. It can be also used as a stopping criterion during traversing the
quadtree and to test the configurations of elements—the leaves of the quadtree.

As we have already mentioned, in order to simplify creating the linear system
matrix, where access to neighbors is needed, and to enable creating the consistent
grid, we require that the ratio of sides of two adjacent squares is 1:1, 1:2 or 2:1. The
used technique of building the quadtree adaptive grids is described in [4]. It uses the
following coarsening criterion: the cells are merged if a difference in their intensities
is below a prescribed tolerance η.

Adjustment to the quadtree based consistent grid. The quadtree grid (Fig. 1
left) is inconsistent in the sense, that we cannot find the unique representative points
of the adjacent grid elements—finite volumes—such that the connection of their
representative points is perpendicular to their common boundary. The adaptive grid
fulfilling this condition is called consistent and it is an admissible mesh in the sense of
[2]. However, the basic quadtree grid can be adjusted to a consistent one procedurally:
we must adjust the shape, if two adjacent finite volumes p and q are of different size.
If we denote the length of a common edge in the original quadtree by h and we shift
the “hanging node“ by v = h

3 (e.g. in Fig. 2 we shift X to X ∨), then the connection
of representative points is perpendicular to the shifted common boundary. This fact
(and also the fact that B X ∨

P Q = 2
3 ) follows from the similarity of triangles ∈AQ P and

∈X X ∨ B with the ratio of their adjacent sides 1:3. The area of p is also evaluated
procedurally—it depends on a configuration of its neighbors.



Gradient Evaluation on a Quadtree Based Finite Volume Grid 677

Fig. 2 Adjustment to the consistent grid. |X X ∨| = v = 1
3 h. XB= 2

3 PA, hence B X ∨
P Q = 2

3 . Examples
of the shapes where the intersection of the connection of representative points and a common edge
φ is not the midpoint of φ

Notations. Let every finite volume p of measure |p| have a representative point
X p lying in its center or in the center of the original square for an adjusted element
of the consistent grid. The common interface of p and q is a line segment—an edge
φpq with a nonzero measure in R denoted by |φpq | and dpq = |Xq − X p| is the
distance of representative points. Let us denote by Xφ auch a point of φpq , which
represents the intersection of the line segment X p Xq and φpq . In our consistent grid,
X p Xq is perpendicular to φ , but the intersection Xφ is not the midpoint of φ in the
general case. Let us denote by X⊃

φ the midpoint of the edge φ . By Ep we denote the
set of all edges φ of p. When we speak about a unit outer normal vector to φ ⊂ Ep,
we denote it by npφ .

2 Approximation of the Gradient on the Consistent Grid

Our method for evaluation of gradients on finite volumes is based on [3]. Such a
method works locally in that sense that we consider also representative points on
finite volume edges, but not values at the corners. Then, with a help of these points
we only need access to neighbors sharing a common edge, which is important when
working on adaptive grids.

When solving PDEs where nonlinearities depend on the solution gradient, the
method from [3] works as follows:

1. for edges φ of a finite volume p we define representative points X⊃
φ —their mid-

points, it must hold X⊃
φ = Xφ ,

2. with a help of these points, we evaluate the norm of gradient on p locally using
the consequence of the Stokes formula, see (3)–(4),

3. discrete equation for the finite volume p is derived locally,
4. values of solution in X⊃

φ are obtained by using conservation principle.
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In the consistent adaptive grid X⊃
φ ∞= Xφ in general. Such a situation occurs on

edges containing a hanging node in the original quadtree grid. The most critical shape
in this sense is the sharp element where Xφ is not the midpoint on any of the edges
(Fig. 2 right).

Let us suppose the linear approximation of the solution over the finite volume p.
At X ⊂ p any linear function can be written as

u(X) = u(X p) + ≤u · (X − X p) = u p + ≤u · (X − X p). (1)

If X = Xφ it holds

uφ − u p = ≤u · (Xφ − X p), (2)

where uφ , u p represent values of the solution at points Xφ and X p. The gradient of
the linear function is a constant vector in R2, thus also over a control volume p. It
will be denoted by ≤u. Then it holds

≤u = 1

|p|
⎧

p

≤ud X = 1

|p|
⎧

∂p

unpd S = 1

|p|
⎪

φ⊂Ep

⎧

φ

(u p + ≤u · (X − X p))npφ d S

= 1

|p|u p

⎪

φ⊂Ep

|φ |npφ + 1

|p|
⎪

φ⊂Ep

|φ |≤u · (X⊃
φ − X p)npφ . (3)

The term
⎨

φ⊂Ep

|φ |npφ = 0 and the expression |φ |≤u(X⊃
φ − X p)npφ represents the

precise integration of a linear function over the edge φ . Thus we have

≤u = 1

|p|
⎪

φ⊂Ep

|φ |≤u · (X⊃
φ − X p)npφ . (4)

On the edges, where Xφ ∞= X⊃
φ , we can express

X⊃
φ − X p = (Xφ − X p) + (X⊃

φ − Xφ ). (5)

Then ≤u can be split into two parts

≤u = 1

|p|
⎪

φ⊂Ep

|φ |≤u · (Xφ − X p)npφ + 1

|p|
⎪

φ⊂Ep

|φ |≤u · (X⊃
φ − Xφ )npφ . (6)

The part of ≤u given by the first term of (6) will be denoted as (≤u)A and due to (2)
it can be evaluated as
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(≤u)A = 1

|p|
⎪

φ⊂Ep

|φ |(uφ − u p)npφ . (7)

The second term of (6) is a correction of (≤u)A and it depends on the unknown
gradient.

2.1 Evaluation of the Gradients with Corrections

In the following text we use subscripts in two ways: if they represent derivatives,
we use x or y and if they represent the vector components, we use 1 or 2. Let us
denote the correction vector (X⊃

φ − Xφ ) by cφ = ((cφ )1, (cφ )2). We will work
with (≤u)A = ((ux )

A, (uy)
A), npφ = ((n pφ )1, (n pφ )2) and the unknown vector

≤u = (ux , uy). Now (6) can be rewritten into the form

(ux , uy) = ((ux )
A, (uy)

A) + 1

|p|
⎪

φ⊂Ep

|φ |((cφ )1ux + (cφ )2uy)((n pφ )1, (n pφ )2).

(8)

We see that (8) represents the linear system of two equations with two unknowns ux
and uy which can be adjusted to the following form:

ux

⎩

1 − 1

|p|
⎪

φ⊂Ep

|φ |(cφ )1(n pφ )1



 + uy

⎩

− 1

|p|
⎪

φ⊂Ep

|φ |(cφ )2(n pφ )1



 = (ux )
A,

ux

⎩

− 1

|p|
⎪

φ⊂Ep

|φ |(cφ )1(n pφ )2



 + uy

⎩

1 − 1

|p|
⎪

φ⊂Ep

|φ |(cφ )2(n pφ )2



 = (uy)
A.

We rewrite the system into such a form that we can see that the coefficient matrix
denoted by B depends only on the shape of a grid element, but not on its size (level).
Let us denote: Npφ = |φ |npφ

l and Cφ = cφ

l , where l is the edge length of the square
in the non adjusted quadtree. We have:

ux

⎩

1 − l2

|p|
⎪

φ⊂Ep

(Cφ )1(Npφ )1



 + uy

⎩

− l2

|p|
⎪

φ⊂Ep

(Cφ )2(Npφ )1



 = (ux )
A,

(9)

ux

⎩

− l2

|p|
⎪

φ⊂Ep

(Cφ )1(Npφ )2



 + uy

⎩

1 − l2

|p|
⎪

φ⊂Ep

(Cφ )2(Npφ )2



 = (uy)
A.
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Fig. 3 Example 1 Left the consistent quadtree grid with the inspected element. For u2(X) =
1
3 (x3 + y3) we compare (≤u)p and (≤u)A

p with the values of the gradient evaluated analytically in

(x p, yp). The values are scaled with darker values representing larger differences. Middle ||(≤u)A|−
|≤uexact ||. Right ||≤u| − |≤uexact ||

The elements of the coefficient matrix in (9) can be evaluated procedurally traversing
the quadtree, or we can construct B using its properties mentioned later. B can be
also precalculated in advance for every shape (there is only limited number of shapes
in the consistent quadtree grid)—we can store B−1 and evaluate ≤u = B−1(≤u)A.

Example 1 Let us take the consistent quadtree grid built over a uniform grid
with 32 × 32 elements (Fig. 3 left). We inspect specific functions defined on
[−1.25, 1.25] × [−1.25, 1.25]: we consider the norm of the gradient evaluated an-
alytically, the norm of (≤u)A and ≤u obtained by solving (9). First let us take the
function u1(X) = 1

2 (x2 + y2). We take the sharp marked element (Fig. 3 left) with
the representative point (x p, yp) = (0.742,−0.89). First uφ is set to the exact value
evaluated using u(X). The approximated gradient—the vector (≤u)A evaluated with-
out correction is equal to (−1, 711,−1.801). After correction using (9) it is equal
to (0.860,−1.03), while the analytical gradient at this point has the value (x p, yp)

given above. In practical tasks, uφ is obtained by an interpolation. Thus we consider
also that uφ is obtained by a linear interpolation between u p and uq , its neighbor. It
is interesting that in such case the approximated gradient of the quadratic function
u1(X) obtained by (9) is equal to the analytical one. Secondly, let us take the function
u2(X) = 1

3 (x3 + y3), the selected volume as in the previous case and uφ obtained
by a linear interpolation. The analytical value of the gradient is (0.551, 0.807), using
(7) we get (≤u)A = (0.813, 0.987) and using (9) ≤u = (0.5572, 0.813). Figure 3
depicts differences of norms of (≤u)A

p and analytical gradient evaluated in the repre-
sentative points of grid elements (x p, yp) (middle) and the norms of (≤u)p obtained
by (9) and the analytical gradient (right) for the function u2(X) in (x p, yp). At the
end we explored L2 norms of errors |≤u| − |≤uexact | evaluated on four consis-
tent adaptive grids obtained by consequent refinement of the grid from Fig. 3: every
finite volume of a corresponding quadtree grid was divided into four subvolumes and
afterwards the grid was adjusted to the consistent one. We have obtained following
results: 0.0619, 0.0173, 0. 0051 and 0.00158.
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Properties of the coefficient matrix B. The nonzero corrections occur only if one
of the edgepoints of φ is the shifted node. Let the edge vector σ be oriented from
the shifted node to the quadtree corner. It can be shown that:

1. on the aligned edge φ , the correction cφ can be expressed like cφ = σ
10 , on the

vertical or horizontal edge cφ = σ
4 ,

2.
⎨

φ⊂Ep

(Cφ )1(Npφ )1 = − ⎨

φ⊂Ep

(Cφ )2(Npφ )2,

3.
⎨

φ⊂Ep

(Cφ )1(Npφ )2 = ⎨

φ⊂Ep

(Cφ )2(Npφ )1,

4. It holds that the matrix B is regular (det (B) > 0) and the system (9) has always
a unique solution. It can be proved using properties 1, 2 and 3.

3 Numerical Solution of the Regularized Perona-Malik Equation
on the Consistent Adaptive Grid

In this section we present one experiment—solution of the regularized Perona-Malik
equation [1] on a rectangular domain ν ∀ R2 discretized with help of a consistent
adaptive grid. The scaling interval I = [0, T ] is discretized into scale steps with
tn = tn + Ω , Ω is the scale step size, on the boundaries we keep the zero Neumann
boundary conditions. So we solve the problem

∂t u − ≤ · (g(|≤Gs ⊃ u|)≤u) = 0, in QT ∩ I × ν, (10)

where g(s) = 1
1+K s2 , K > 0 is the Perona-Malik function slowing down the diffu-

sion in the vicinity of edges and Gs(x) is the smoothing kernel. In our algorithm we
realize the convolution ≤(Gs ⊃u) = Gs ⊃≤u by solving the linear heat equation. We
apply one or several steps of the adaptive scheme for time Ts corresponding to s to
both x and y coordinates of the gradient, then we evaluate the norm of the gradients
and apply the Perona-Malik function g to get the diffusion coefficient denoted by
gs,n−1

p .
Let us denote by un

φ the value of the solution in Xφ at the time step tn . The deriv-

ative in the direction npφ is approximated by ≤un · npφ →
(

un
φ −un

p

)

dpφ
. The diffusion

coefficient gs,n−1
p is constant all over p, thus the flux over φ can be approximated by

Fn
pφ = gs,n−1

p
|φ |
dpφ

(
un

φ − un
p

)
. (11)

A good way to evaluate |φ |
dpφ

is to consider the neighbor q sharing φ with p. Then we

can express (11) with a help of the transmissivity coefficient Tpq = |φ |
dpq

and the ratio
of dpφ and dqφ , where dpφ and dqφ are distances of representative points from Xφ .
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Fig. 4 Numerical experiment The artificial noisy image, the filtered image and the fixed adaptive
grid

If φ√X p Xq in the non adjusted grid, dpφ

dqφ
= 1, otherwise, dpφ

dqφ
= 4

1 or 1
4 . For Tpq it

holds that if one edgepoint of φ is a hanging node in the nonadjusted quadtree, then
Tpq = 2

3 , otherwise Tpq = 1. The approximated flux (11) can be expressed as

Fn
pφ = Tpq

(

1 + dqφ

dpφ

⎜

gs,n−1
p

(
un

φ − un
p

)
. (12)

Now we solve the linear system, where the set of equations for all finite volumes p

(un
p − un−1

p ) |p| = Ω
⎪

φ⊂Ep

Fn
pφ (13)

is accompanied by a set of equations for every un
φ , σ ⊂ Ep, obtained from the

relationship Fn
pφ = −Fn

qφ resulting in

un
φ = dqφ gs,n−1

p un
p + dpφ gs,n−1

q un
q

dqφ gs,n−1
p + dpφ gs,n−1

q

.

We present here a numerical experiment where we begin with a regular grid and
continue to use it until the decrease of elements is sufficient. Then we run the adaptive
algorithm on the same adaptive grid. Advantage of this approach is that for the fixed
adaptive grid we can store all necessary information, e.g. configurations of neighbors,
matrix B, etc. We consider the image of the size 128 × 128 disturbed by the additive
noise. We performed 13 scale steps with Ω = 1, with K = 1000 in the Perona-Malik
function g and the time of presmoothing Ts = 0.6. The number of grid elements
was reduced to 1

3 after 5 scale steps, and then we continued on the fixed grid. The
parameter η used in the coarsening criterion is set to 0.01. Figure 4 shows the data
itself, the filtered data and the adaptive grid fixed after 5 scale steps.
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3D Lagrangian Segmentation with
Simultaneous Mesh Adjustment

Karol Mikula and Mariana Remešíková

Abstract We present a method for 3D image segmentation based on the Lagrangian
approach. The segmentation model is a 3D analogue of the geodesic active contour
model [1] and it contains an additional tangential movement term that allows us to
control the quality of the mesh during the evolution process. The model is discretized
by the finite volume approach. Segmentation of zebrafish cell images is shown to
illustrate the performance of the method.

1 Introduction

A large number of existing 3D image segmentation techniques are based on PDE
models representing evolution of 2D surfaces in 3D. Most of them use the level
set approach due to its favorable properties with respect to possible topological
changes. The other alternative is the Lagrangian approach that directly evolves a 2D
surface without viewing it as an isosurface of a three-dimensional function. Because
of its two-dimensional character, this technique offers a possibility to obtain faster
algorithms. However, even if we do not have to deal with any topological changes in
the course of the computation, a Lagrangian method can face the problem of mesh
deterioration as a discretized surface evolves. Therefore, in order to successfully
apply such methods, we need to have at disposal a mechanism for controlling the
quality of the surface discretization during the computation.
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Our paper presents a Lagrangian method for 3D image segmentation that allows
to adjust the mesh quality along with the surface evolution. The segmentation model
contains two normal movement components—one is given by the gradient of an
image edge detector function and the other one depends on the edge detector itself
and the mean curvature of the evolving surface. An additional tangential velocity
term is added in order to be able to redistribute the mesh points during the evolution.
The corresponding PDE is discretized by a finite volume technique and the redistri-
bution is designed so that all control volumes have the same area for t ∨ ∈. The
performance of the method is illustrated by examples using microscope images of
zebrafish cells.

2 The Segmentation Model

Let I : R3 ⊃ Ω ∨ R be an image intensity function. There are several possibilities
how to detect the edges in the image; one of them is to use the edge detector function
e : Ω ∨ R of the form

e(x, y, z) = 1

1 + K⊂∞ I (x, y, z)⊂2 (1)

where K is a positive real constant.
Now let X be a two-dimensional Riemannian sphere with metric gX and F : X ∨

Ω × ≤0, ts∀ its time-dependent embedding in Ω . The image of Ft = F(·, t) will be
denoted by St . The surface S0 will represent the initial estimate of the surface of
the segmented object and Sts will be the result of the segmentation procedure that
should be as close to the actual surface of the segmented object as possible. We let
F evolve by the 3D analogue of the geodesic active contour model [1],

∂t F = a (∞e · N ) N + beΔgF F (2)

where N is a unit normal to S and ΔgF F denotes the Laplace-Beltrami operator
with respect to the metric gF induced on X by F . It is known that ΔgF F is equal
to the mean curvature vector of F . As we can see from (1), the curvature term is
dominant in regions with low intensity changes where e is close to 1 and its gradient
is close to 0. On the contrary, the gradient of e becomes significant near the edges
where e decreases and approaches 0 for large values of K and ⊂∞ I (x, y, z)⊂. The
parameters a ∩ R+, b ∩ R+ are added to control the influence of the two terms on
the segmentation process.

In order to be able to redistribute the mesh points along the surface during the
evolution, we enrich (2) with a tangential velocity term. The new model reads

∂t F = a (∞e · N ) N + beΔgF F + vT = vN + vT (3)
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where vT is a tangential vector field on S and vN denotes the normal component of
the evolution, vN = a (∞e · N ) N + beΔgF F .

In our case, we use an area-oriented tangential redistribution [6] derived from the
evolution of the induced metric gF . Both metrics gX and gF induce measures on
X ; let us denote them by μX and μF . The Radon-Nikodým derivative G = ∂μF

∂μX
is

called the area density of F . It evolves along with F as [3]

∂t G = ⎧
vN · h + divgF wT

⎪
G (4)

where h is the mean curvature vector of F , wT is a vector field on X obtained as the
pull-back of vT along F and divgF denotes the divergence with respect to the metric
gF . From this follows the evolution of the area of S,

∂t A =
⎨

X

⎧
vN · h + divgF wT

⎪
dμF =

⎨

X
vN · h dμF . (5)

The embedding Ft is called area uniform with respect to gX if its area density Gt

is constant. Our redistribution method is based on the requirement Gt −∨t∨∈ C
that is equivalent to the practically more convenient dimensionless condition

Gt

At
−∨
t∨∈ C.

This can be achieved, for example, if G
A satisfies

∂t

⎩
G

A

)

= ω

⎩

C − G

A

)

(6)

where ω ∩ R+ × ≤0, ts∀ represents the redistribution speed. Since we know how
both G and A evolve, the combination of (4) and (5) with (6) implies that wT has to
satisfy

divgF wT = vN · h − 1

A

⎨

X
vN · h dμF + ω

⎩

C
A

G
− 1

)

. (7)

Since this condition does not uniquely determine wT , we suppose, in addition, that
wT is a gradient field, that means wT = ∞gF ψ , ψ : X ×≤0, ts∀ ∨ R. Thus we obtain

ΔgF ψ = vN · h − 1

A

⎨

X
vN · h dμF + ω

⎩

C
A

G
− 1

)

(8)

that yields a unique solution if we prescribe the value of ψ in one point of X .



688 K. Mikula and M. Remešíková

Fig. 1 The surface discretization mesh. Left the triangulation of the topological sphere X . Right
the corresponding approximation of the embedded surface Fn(X)

3 Numerical Approximation of the Segmentation Model

The time discretization of our segmentation model (3) is semi-implicit,

Fn − Fn−1

τ
= a

(
∞e · N n−1

)
N n−1 + beΔgFn−1 Fn + vn−1

T . (9)

The space discretization is based on the finite volume approach and it includes
two meshes—the mesh discretizing the surface Sn and the voxel grid of the image
used to approximate e and ∞e. First, let us consider a triangulation of X which
is a simplicial complex homeomorphic to X . The corresponding homeomorphism
induces a triangular structure on X consisting of vertices Xi , i = 1 . . . nv, edges e j ,
j = 1 . . . ne, and triangles Tk , k = 1 . . . nt .

Now we construct the control volume mesh (Fig. 1). The point Xi is the common
vertex of m mesh triangles T1, . . . ,Tm and m edges e1, . . . , em , where ep connects
Xi with its neighbor Xi p (we use local indexing for simplicity). The triangle Tp

admits a barycentric coordinate system—each point of the triangle can be expressed
as P = λ1 Xi +λ2 Xi p +λ3 Xi p+1 where λ1 +λ2 +λ3 = 1. Let Bp be the barycenter
of Tp and C p the center of ep, p = 1 . . . m, and let the barycentric subdivision of
Tp be constructed using these points. The control volume Vi corresponding to Xi is
constructed as the union of the triangles Vp,1 = Mi C p Bp and Vp,2 = Mi BpC p+1
for p = 1 . . . m where we set Cm+1 = C1. Each triangle contains two control volume
edges σp,1 = C p Bp, σp,2 = BpC p+1.

The manifold X can be embedded in R
3 by F̄n , a piecewise linear approximation

of Fn . First, we set F̄n(Xi ) = Fn(Xi ). Then, for any triangle Tp with vertices
Xi , Xi p , Xi p+1 , we set F̄n(λ1 Xi + λ2 Xi p + λ3 Xi p+1) = λ1 Fn(Xi ) + λ2 Fn(Xi p ) +
λ3 Fn(Xi p+1). The embedding F̄n induces a metric gn on X which induces a measure
μn on X .

The surface S̄n = F̄n(X) is a polyhedron with vertices F̄n(Xi ) = Fn(Xi ) = Fn
i ,

edges ēn
j = F̄n(e j ) and triangular faces T̄ n

p = F̄n(Tp). The approximation of the
unit normal to Sn at Fn

i is denoted by N n
i . We will use the notation νn

p,1, νn
p,2 for
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the outward unit normals to F̄n(σp,1) and F̄n(σp,2) in the plane of T̄ n
p . Further,

θn
p,1 and θn

p,2 will represent the angles of Tp adjacent to Xi p and Xi p+1 , respectively,
measured in the metric gn .

Integrating (9) over Vi , we obtain

⎨

Vi

Fn − Fn−1

τ
dμFn−1 =

⎨

Vi

a
(
∞e · N n−1

)
N n−1 dμFn−1

+
⎨

Vi

beΔgFn−1 Fn dμFn−1 +
⎨

Vi

vn−1
T dμFn−1 .

(10)

The term on the left hand side can be approximated simply by

⎨

Vi

Fn − Fn−1

τ
dμFn−1 → μn(Vi )

Fn
i − Fn−1

i

τ
. (11)

In order to approximate ⊂∞ I⊂, e and ∞e, we use the voxel structure of the image I . Let
us suppose that the voxels are cubes with side length h. The voxel with coordinates
x ∩ N, y ∩ N, z ∩ N will be denoted by Pj , j = (x, y, z). Since X is embedded in
the image domain Ω , the voxel coordinates corresponding to Fn

i are obtained simply
by rounding its coordinates. The representative value of I and e in Pj will be denoted
by I j and e j . Further, v1, v2 and v3 are the standard basis vectors in R

3. The 6 voxel
faces will be represented by F±p

j , p = 1, 2, 3.

First, let us construct the approximation of ∞ I in the barycenter c±p
j of F±p

j . The
derivative in the direction of vp is discretized by

D±p I j = ± ⎧
I j±vp − I j

⎪
/h.

For the other two directions vq , q √= p, we will use the values of I in the centers of
the voxel edges F±p,±q

j ; we denote them by I j± 1
2 vp± 1

2 vq
. Then we use

D±p,q I j =
I j± 1

2 vp+ 1
2 vq

− I j± 1
2 vp− 1

2 vq

h
, I j± 1

2 vp± 1
2 vq

= I j + I j±vp + I j±vq + I j±vp±vq

4
.

Finally, we take

Q±p
j =



(D±p I j )
2 +

∑

p √=q

(D±p,q I j )
2

⎜

⎟ , ⊂∞ I (x, y, z)⊂2 →



3∑

p=1

(Q+p
j + Q−p

j )

⎜

⎟ /6.

(12)

The gradient of e is computed analogously.
Now, the surface normal at Fn

i is approximated by the arithmetic mean of the
normals to all triangles containing Fn

i . This completes the approximation of the first
term on the right hand side of (10). As for the second term, we use
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⎨

Vi

beΔgFn−1 Fn dμFn−1 → bi ei
1

2

m∑

p=1

(
cot θn−1

i,p−1,1 + cot θn−1
i,p,2

)
(Fn

i − Fn
i p

) (13)

where we used the cotangent scheme [4] to discretize the Laplace-Beltrami operator.
The value ei is the value of e in the voxel containing Fn

i . We consider θn−1
i,0,1 = θn−1

i,m,1.
The last term to discretize is the integral of the tangential velocity. Since wn

T is a
gradient field, the following version of the Stokes theorem applies [2, 6]

⎨

Vi

vn−1
T dμFn−1 =

⎨

∂Vi

ψn−1νn−1
i dHμFn−1 −

⎨

Vi

ψn−1hn−1 dμFn−1 .

This yields the approximation

⎨

Vi

vn−1
T dμFn−1 →

m∑

p=1

(
⊂σi,p,1⊂n−1ψ

n−1
i,p,1ν

n−1
i,p,1 + ⊂σi,p,2⊂n−1ψ

n−1
i,p,2ν

n−1
i,p,2

)

−μn−1(Vi )ψ
n−1
i hn−1

i

(14)

where ⊂ · ⊂n−1 denotes the length computed by the metric gn−1 and ψn−1
i,p,1, ψn−1

i,p,2 are

the values of ψn−1 in the midpoints of σi,p,1 and σi,p,2. They are obtained from the
values of ψn−1 in the vertices Xi by linear interpolation.

The function ψ is computed from (8) where, again, we use the cotangent scheme
to discretize the Laplace-Beltrami operator of ψn−1. This scheme is also used to
approximate the mean curvature vector h, namely

hn−1
i = 1

μn−1(Vi )

m∑

p=1

(
cot θn−1

i,p−1,1 + cot θn−1
i,p,2

)
(Fn

i − Fn
i p

). (15)

The area of Sn−1 is approximated by

An−1 =
nv∑

i=1

μn−1(Vi ). (16)

Alternatively, A(tn−1) could be approximated as

A(tn−1) =
⎨

X
G(x, tn−1) dμX →

nv∑

i=1

Gn−1
i μX (Vi ).

This leads to an approximation of the volume density Gn−1. Since we did not par-
ticularly specify μX , we can assume that μX (X) = 1/C and μX (Vi ) = μX (X)/nv

for all i = 1 . . . nv. Then we can set



3D Lagrangian Segmentation with Simultaneous Mesh Adjustment 691

Fig. 2 Cell nucleus segmentation—the data, the initial surface and the segmented surface shown
in two different 2D slices

Gn−1
i = μn−1(Vi )

nv

μX (X)
= Cnvμ

n−1(Vi ), C
A

G
→ An−1

nvμn−1(Vi )
. (17)

4 Experiments

Finally, we present two examples of segmentation of biological images. The images
display cell nuclei and cell membranes of a zebrafish embryo. Segmentation of cell
nuclei and cells has a large number of applications [5]. Particularly, segmentation in
form of a triangulated surface can be easily used to compute the area of the surface
of a cell or to evaluate the shape of a cell. Before segmenting, the images were
pre-filtered by the geodesic mean curvature flow method [1].

In both experiments, we used a relatively large value of ω. Since the tangential
direction is approximated, for such large values, the points tend to deviate from the
surface where they should be situated [6]. In order to overcome this difficulty, in each
time step we first perform the corresponding normal movement, then the tangential
movement and afterwards we project the new vertices on the surface obtained by the
normal movement alone.

The first experiment deals with the nucleus image. We show segmentation of a
single cell nucleus. We performed 400 time steps and the model parameters were
set to nv = 258, τ = 0.001, h = 1.0, ω = 100.0, a = 1.0, b = 200.0 for time
steps 1 . . . 200 and b = 1.0 after. The initial condition was a sphere centered in a
manually estimated nucleus center. Figure 2 shows two different 2D slices of the
data, the initial surface and the segmentation result. Figure 3 shows the effect of the
tangential redistribution of mesh points during the computation. We can see that
the tangential movement leads to more evenly distributed mesh points and thus a
more correct representation of the surface. Quantitatively evaluated, the ratio of the
minimal and maximal control volume area was 0.176 when no redistribution was
applied while it reached 0.894 when the redistribution step was included.

In the second experiment, we segmented several cells from the membrane image.
Membrane data are usually of a worse quality and more difficult to segment than
nucleus data. We performed 400 time steps and we used nv = 258, τ = 0.003,
h = 1.0, ω = 100.0, a = 3.0, b = 20.0 for time steps 1 . . . 200 and b = 1.0 after.
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Fig. 3 Cell nucleus segmentation. Left the segmented nucleus surface obtained with no tangential
redistribution. Right the surface obtained with tangential redistribution of mesh points, ω = 100.0

Fig. 4 Cell membrane image segmentation—2D slices of the data, of the initial condition and of
the segmented surfaces

Fig. 5 Cell membrane image
segmentation—the segmented
surfaces

Similarly to the case of nucleus segmentation, the initial surface was a sphere (of the
same radius for all cells). Figure 4 shows a 2D slice of the image, the initial surfaces
and the segmented cells. Figure 5 shows the whole segmented cells.
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A Model Reduction Framework for Efficient
Simulation of Li-Ion Batteries

Mario Ohlberger, Stephan Rave, Sebastian Schmidt
and Shiquan Zhang

Abstract In order to achieve a better understanding of degradation processes in
lithium-ion batteries, the modelling of cell dynamics at the mircometer scale is
an important focus of current mathematical research. These models lead to large-
dimensional, highly nonlinear finite volume discretizations which, due to their
complexity, cannot be solved at cell scale on current hardware. Model order reduc-
tion strategies are therefore necessary to reduce the computational complexity while
retaining the features of the model. The application of such strategies to specialized
high performance solvers asks for new software designs allowing flexible control of
the solvers by the reduction algorithms. In this contribution we discuss the reduction
of microscale battery models with the reduced basis method and report on our new
software approach on integrating the model order reduction software pyMOR with
third-party solvers. Finally, we present numerical results for the reduction of a 3D
microscale battery model with porous electrode geometry.
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1 Introduction

A major cause for the failure of rechargeable lithium-ion batteries is the deposition of
metallic lithium at the negative battery electrode (Li-plating). Once established, this
metallic phase can grow in the form of dendrites to the positive electrode, ultimately
short-circuiting the cell. As Li-plating is initiated at the interface between active
electrode particles and the electrolyte, understanding of this phenomenon is only
gained through physical models accounting for effects on the micrometer-scale. This
in turn requires highly resolved meshes in the model discretization.

A thermodynamically consistent microscale battery model was developed in [7].
Based on a finite volume discretization [9], this model has been implemented at
Fraunhofer ITWM in the battery simulation software BEST [8]. However, since
such microscale discretizations lead to very large, highly nonlinear equation sys-
tems, simulations can currently only be performed on small portions of the cell and
parameter studies testing different charging regimes or operating conditions are very
time consuming. It is therefore desirable to combine microscale modeling with model
order reduction strategies which are able to reduce the computation time while at the
same time keeping the microscopic features of the model.

The reduced basis method is a well-established approach for model order reduc-
tion of problems given by parametric partial differential equations and has been
successfully adapted to various industrial applications (see references in [5]). In
this approach, the original equation is projected onto a low-dimensional discrete
function space which has been constructed from the solution trajectories of the
high-dimensional problem for selected parameters of a well-chosen training set.
The applicability of the method to nonlinear finite volume discretizations has been
been shown in [4, 5]. Results for the model order reduction of a pseudo-2D battery
model using similar techniques have been presented in [6].

A major challenge for the implementation of reduced basis schemes lies, however,
in their integration with (already existing) PDE solvers: in those schemes the solver
has to be controlled by the reduction algorithm which, apart from solving the high-
dimensional problem, now also has to provide the reduction data needed to perform
the low-dimensional simulations. Moreover, the solver is usually unable to perform
the reduced computations, which are based on different data structures. This often
leads to insertion of model reduction specific algorithms into the solver’s code base,
while in a separate code base the solution algorithm for the reduced problem is re-
implemented [3]. As a result, code is duplicated and the adoption of a different model
reduction strategy requires changes in both code bases.

After discussing the application of the reduced basis method to the microscale
model from [7], we present the design of our new model reduction software pyMOR
[1] which is specifically tailored to address these problems by offering a deep and
flexible integration with external PDE solvers. We will conclude with first numerical
results for the reduction of the full 3D-model with porous electrode geometries,
underlining the potential of the model reduction approach.
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2 Reduction of the Microscale Model

Our work is based on the microscale battery model introduced in [7]. Under the
assumption of a globally constant temperature T , this model is given by a system of
partial differential equations for the concentration of Li+-ions c and the electrical
potential η on each part of the domain, i.e. the positive and negative electrodes, the
electrolyte and the current collectors. Each of these systems is of the form

φc

φt
+ ∨ · N = 0, ∨ · j = 0,

where N = −(∂(c, η)∨c + ν(c, η)∨η), j = −(Ω (c, η)∨c + Σ(c, η)∨η) with
the coefficients ∂, ν, Ω, Σ depending on the domain for which the system is given.
While these coefficients can be considered constant in first approximation, a strong
nonlinearity enters the model through the interface conditions between electrolyte
and active particles in the electrodes. These conditions are given by prescribing the
normal interface fluxes of concentration and potential into the electrolyte via the
Butler-Volmer kinetics, i.e.

js · n = je · n = 2k
√

cecs(cmax − cs) sinh

(
ηs − ηe − U0(

cs
cmax

)

2RT
· F

)

,

and Ns · n = Ne · n = js · n/F . Here the subscripts s (e) denote the value of the
respective quantity in the active particle (electrolyte) domain at the interface, and
n is the unit normal at the interface pointing into the electrolyte. U0 denotes the
open circuit potential, k is a reaction rate, cmax the maximum Li-ion concentration
in the particle and T the temperature. The constants F and R denote the Faraday and
universal gas constants. The system is closed via appropriate boundary conditions as
well as interface conditions for the current collectors. E.g. a constant charge rate I
corresponds to the Neumann boundary condition j ·n = −I at the positive electrode
side of the domain.

2.1 Discretization

A discretization of the model based on a cell centered finite volume scheme has been
introduced in [9]. In this discretization, the interface conditions between electrolyte
and active particles are incorporated into the numerical fluxes and the implicit Euler
method is used for time discretization. As a result, one obtains nonlinear equation
systems of the form

[
1

Λt (c
(t+1)
μ − c(t)

μ )

0

]

+ Aμ

([
c(t+1)
μ

η
(t+1)
μ

])

= 0, c(t)
μ , η(t)

μ ∈ Vh (1)
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with Aμ denoting the finite volume space operator acting on the discrete function
space Vh ⊃ Vh . The subscript indicates the dependence of the solution on a certain
set of parameters μ (we consider the charge rate and temperature in our example
below). The discrete equation systems are solved in BEST with a Newton scheme
utilizing an algebraic multigrid solver for the linear systems in each Newton step.

2.2 Reduced Basis Approximation

The reduced basis method is based on the idea of performing a Galerkin projec-
tion of the high-dimensional discrete equations (1) onto low-dimensional subspaces
Ṽc, Ṽη ⊂ Vh constructed from solutions of (1) for appropriately selected parameters.
Under this projection, (1) is transformed into

[
1

Λt (c̃
(t+1)
μ − c̃(t)

μ )

0

]

+{
PṼ ∞ Aμ

}
([

c̃(t+1)
μ

η̃
(t+1)
μ

])

= 0, c̃(t)
μ ∈ Ṽc, η̃(t)

μ ∈ Ṽη, (2)

where PṼ denotes the orthogonal projection onto the reduced space Ṽ := Ṽc ⊃
Ṽη . After this projection has been performed in a preceding “offline-phase”, the
resulting low-dimensional system can be solved quickly for new parameter values
in a following “online-phase”.

For the selection of Ṽc and Ṽη a large variety of algorithms has been considered
([5] and references therein), many of which are based on a greedy search over a
prescribed (or adaptively refined) training set of parameters: in each round of the
algorithm, an error estimator is used to search the training set for the parameter μ≤ to
which the solution of (1) is worst approximated by the solution of the reduced problem
(2). The high-dimensional solution trajectory [c(t)

μ≤ , η
(t)
μ≤ ] is then computed and Ṽc,

Ṽη are enlarged by vectors from the linear span of this trajectory via an appropriate
extension algorithm. As the reduced spaces are constructed from solutions of the
full microscale model, characteristic features, e.g. concentration hotspots in certain
electrode regions due to local particle geometry, are still representable within these
spaces, despite their low dimensionality.

While posed on low-dimensional spaces, problem (2) still depends on evaluations
of the high-dimensional operator Aμ. This dependency can be removed by application
of the so-called empirical operator interpolation method [4]. In this approach, the
given operator is only evaluated at a small number of degrees of freedom (DOFs) of
the discrete space. The evaluation of the full operator is then approximated via linear
combination with a pre-computed (collateral) interpolation basis. The interpolated
operator can be evaluated quickly, independently of the dimension of Vh , due to the
locality of finite volume operators: the evaluation of Aμ at M degrees of freedom
only requires the knowledge of its argument at M ∀ ∩ C · M DOFs with C being
determined by the maximum number of cell neighbours in the given grid. If we
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denote by Ãμ : R
M ∀ → R

M the restricted operator and by RM ∀ : V 2
h → R

M ∀
,

IM : RM → V 2
h the operators given by projection onto the interpolation DOFs and

linear combination with the collateral basis, we obtain the fully reduced equation
systems

[
1

Λt (c̃
(t+1)
μ − c̃(t)

μ )

0

]

+
{
(PṼ ∞ IM ) ∞ Ãμ ∞ RM ∀

}
([

c̃(t+1)
μ

η̃
(t+1)
μ

])

= 0. (3)

The linear operators PṼ ∞ IM and RM ∀ can be pre-evaluated during the offline-
phase for a given basis of Ṽ , completely eliminating high-dimensional operations
from (3). For the determination of the interpolation DOFs and collateral basis, greedy
search strategies can again be utilized [4].

3 A New Software Framework

The implementation of reduced basis schemes involves several building blocks: solu-
tion of the detailed problem (1) for a given parameter, projection of the operators,
extension of the reduced spaces (high-dimensional operations), as well as solution
of the reduced problem (3), estimation of the reduction error and greedy algorithms
(low-dimensional operations). In previous software approaches [3], the implemen-
tation of all high-dimensional operations takes place in the solver code, whereas the
low-dimensional operations are implemented in a separate model reduction software.
As a consequence,both code bases have to be adapted if the reduction strategy shall
be modified. This can slow down implementation of new algorithms significantly if
the solver is developed by a different team than the model reduction software. More-
over, despite the fact that (1) and (3) are of the same mathematical structure, both
software packages need to implement the same algorithm for solving the respective
problems. In particular, for empirical operator interpolation the restricted operator
Ãμ has to be implemented again for the reduced scheme.

The design of pyMOR mitigates these difficulties by exploiting the observation
that all aforementioned building blocks can be implemented in terms of operations on
the following types of objects, either provided by implementations in pyMOR itself
(usually low-dimensional objects) or by external solvers (usually high-dimensional
objects):

• Vector arrays store collections of vectors, supporting basic linear algebra oper-
ations, e.g. computation of linear combinations of vectors or scalar products.
Selected DOFs can be extracted for the implementation of operator interpolation.

• Operators represent linear or nonlinear operators, bilinear forms or functionals.
Operators can be applied to vector arrays. Linear solvers are exposed through appli-
cation of the inverse operator, Jacobians and restricted operators can be formed.
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Fig. 1 Detailed simulation of
battery model with DUNE on
a 48 × 24 × 24 µm3 compu-
tational domain with random
electrode geometry. Coloring
indicates Li+ concentration
in active particles (electrolyte
not displayed)

Fig. 2 Sketch of the interface
concept for the integration of
pyMOR with external solvers

Reductor Greedy POD

Gram-Schmidt Newton . . .

Generic Algorithms

Vector Arrays
Operators

Discretizations

pyMOR

User Code

High-Dimensional Solver

• Discretizations encode as containers for operators the mathematical structure of
a given discrete problem and implement algorithms for solving the problem in
terms of the operators they contain.

All algorithms in pyMOR are implemented in terms of the interfaces provided by
these classes. As an important consequence, there is no distinction between high- and
low-dimensional objects in pyMOR except for the different types of vector arrays
or operators that represent them. In particular, the same discretization class can be
used to solve (1) as well as (3) or (2). The reduction process merely consists in
the replacement of operators of a given discretization object by the corresponding
projected operators. For empirical interpolation, pyMOR implements a generic inter-
polated operator which can be used to efficiently interpolate any restrictable operator
in pyMOR. The evaluation of the restricted operator Ãμ can still be performed by
the same code used to evaluate the full operator Aμ (Fig. 1).

As a consequence of this design, the model reduction algorithms in pyMOR are
completely decoupled from the development of the high-dimensional discretizations
(cf. Fig. 2).
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Table 1 Constants used in numerical example

Domain ∂ ν Ω Σ c0 cmax k

Electrolyte 1.622 · 10−6 0 −5.171 · 10−5 · T 0.02 1.200 · 10−3 – –
Pos. electrode 1.0 · 10−10 0 0 0.38 2.057 · 10−2 2.367 · 10−2 0.2
— current coll. 0 0 0 0.38 0 – –
Neg. electrode 1.0 · 10−10 0 0 10 2.639 · 10−3 2.468 · 10−2 0.002
— current coll. 0 0 0 10 0 – –

c0 denotes initial concentration, furthermore, U0(x) = −0.132+1.41·exp(−3.52x) for the negative
and U0(x) = 4 + 0.07 · tanh(−22x + 12)− 0.1 · (1/(1.002 − x)0.37 − 1.6)− 0.045 · exp(−72x8)+
0.01 · exp(−200(x − 0.19)) for the positive electrode, R = 8.314, F = 9.6487 · 104

3.1 Implementational Aspects

Following the line of most other model order reduction packages, we chose with
Python a scripting language for the implementation of pyMOR. Such languages
offer a high amount of interactivity, making it very easy to experiment with various
variants of model reduction algorithms.

While there is no underlying assumption of how the communication through
the abstract interfaces is handled, we favour, where possible, a tight integration of
external solvers with pyMOR. In particular for shared-memory solvers, an attractive
option is the compilation of the solver code as a shared library which then can
be directly loaded as a Python extension module. Apart from offering the easiest
and at the same time most efficient way of integration, an additional benefit is the
direct accessibility of solver data structures from Python which can be exploited to
quickly augment the high-dimensional code with additional features. This route of
development has also been chosen for the ongoing integration of pyMOR with BEST
within the publicly founded MULTIBAT project.

4 Numerical Results

In order to provide a testbed for our reduction framework, an experimental implemen-
tation of the battery model has been developed based on the PDELab discretization
module for the DUNE software framework [2] (cf. Fig. 1). As a first experiment, we
considered a small 3D test problem with randomly generated electrode geometry,
for which we evaluated the approximation quality of the reduced basis projection
(2). We chose constant material properties resulting in the coefficients in Table 1.
The computational domain was of size 4.8 · 10−3 × 2.4 · 10−2 × 2.4 · 10−2 (cm3)
which was meshed with a regular 40 × 20 × 20 grid. The width of the electrodes
(current collectors) was 10 (5) grid cells. The positive (negative) electrode was filled
to 61.4 % (74.2 %) with particle cells. 20 time steps of length 30 (s) were made.
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Table 2 Relative L√ − L2 errors for the reduced basis approximation (2) of the high-dimensional
model (1)

dim Ṽc = Ṽphi 8 16 24 32

Concentration 8.7 · 10−3 1.9 · 10−3 1.2 · 10−3 4.3 · 10−4

Potential 1.3 · 10−3 2.1 · 10−4 7.7 · 10−5 1.5 · 10−5

The parameters, charge rate I and temperature T , were allowed to vary in the
intervals [10−4, 10−3] (A/cm2) and [250, 350] (K ). The reduced spaces were con-
structed with the POD-Greedy algorithm [5] on a training set of 3 × 3 equidistant
parameters, using the true reduction error for snapshot selection. During each exten-
sion step, both reduced spaces were extended separately by orthogonally projecting
the selected trajectory onto the respective reduced space and then enlarging the space
with the first POD mode of the trajectory of projection errors. In Table 2, the maxi-
mum reduction error over the whole parameter space is estimated for different basis
sizes by computation of the errors for 20 randomly selected new parameters.
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Coupling Free Flow and Porous Medium Flow
Systems Using Sharp Interface and Transition
Region Concepts

Iryna Rybak

Abstract Two different coupling approaches for isothermal single-phase free flow
and isothermal single-fluid-phase porous medium systems are considered: sharp
interface and transition region approach. The sharp interface concept implies the
Beavers–Joseph–Saffman velocity jump condition together with restrictions that
arise due to mass conservation and balance of normal forces across the fluid-porous
interface. The transition region model is derived by means of the thermodynamically
constrained averaging theory (TCAT). The equations are averaged over the thickness
of the transition zone in the direction normal to the free flow and porous medium
domains being joined. Coupling conditions are the mass conservation, the momentum
balance and a generalization of the Beavers–Joseph condition. Two model formula-
tions are compared and numerical simulation results are presented. For discretization
of the coupled problem the finite volume method on staggered grids is used.

1 Introduction

Coupled free flow and porous medium flow systems arise routinely in environmental
settings and industrial applications such as overland flow interactions with ground-
water aquifers, evaporation from soil influenced by wind, fluid flow through filters,
and water-gas management in fuel cells. Two different models are typically applied
to describe physical processes in the flow domains, and these models should be coup-
led at the interface in the proper way. In the free flow region, the (Navier)–Stokes
equations are usually considered to describe momentum conservation while Darcy’s
law is used to approximate the momentum balance in the porous medium.
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Fig. 1 Coupled single-fluid-phase porous medium and free flow systems at the microscale (left)
and the macroscale (middle, right)

Transitions between the free flow and porous medium domains can be modeled
by the sharp interface approach imposing the appropriate coupling conditions at the
fluid-porous interface [3, 7, 9] or by considering a transition zone between these
flow regions and developing a transition region model [6]. The Beavers–Joseph–
Saffman condition [1, 10] is a common practice to couple the free flow and porous
medium domains, in conjunction with restrictions resulting from the conservation
of mass and balance of normal forces across the sharp interface. This approach is
restricted to flat interfaces and flows mainly parallel to the porous medium, unlike the
transition region approach. When a transition zone is considered between the flow
domains, the conservation equations are averaged over the transition region thickness
and the resulting model varies in two spatial dimensions [6]. This approach resolves
transfer of thermodynamic properties in tangential directions, unlike sharp interface
approximations, and is a generalization of the sharp interface concept.

The goal of this work is to compare, both theoretically and numerically, the sharp
interface and the transition region coupling concepts for isothermal single-fluid-
phase porous medium and free flow systems. The transition region model is derived
via TCAT approach in a similar way as for a two-fluid-phase porous medium [6].

2 Flow System Description

The system of interest contains a free flow region Ωff composed of a single fluid
phase and a porous medium Ωpm fully saturated with the same fluid (Fig. 1, left).
These flow regions can be separated at the macroscale by a sharp interface Γ (Fig. 1,
middle) or by a transition region Ωtr of a positive thickness b > 0 (Fig. 1, right).

In this work, we do not model compositional effects, therefore consider each phase
consisting of a single chemical species. In addition, the coupled system is assumed
to be isothermal, the fluid phase is incompressible and the solid is rigid.

The mass conservation equation in the free flow domain reads

∇·v = 0 in Ωff , (1)

where v is the fluid velocity.
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Neglecting convective acceleration, considering the gravity to be the only external
force and using Newton’s law, the conservation of momentum for steady-state flows
can be written as the Stokes equation

∇· (pI − 2μD (v)) − ρg = 0 in Ωff , (2)

where p is the pressure, I is the identity tensor, μ is the dynamic viscosity, D (v) =
1
2

(
∇v + (∇v)

T
)

is the rate of strain tensor, ρ is the fluid density, and g is the gravity.

Fluid flows through the porous medium are usually described by Darcy’s law
v = −K

μ
(∇p − ρg), which is together with the conservation of mass equation yields

the porous medium flow formulation

− ∇·
(

K
μ

(∇ p − ρg)

)

= 0 in Ωpm, (3)

where K is the intrinsic permeability tensor.
The free flow model (1), (2) and the porous medium model (3) can be coupled

directly at the sharp interface Γ or through a transition region, considering a model
in Ωtr and coupling it with the two flow models at the transition region boundaries.
Problem (1)–(3) is also subject to boundary conditions at the external boundary of
the coupled free flow and porous medium domains.

3 Sharp Interface Concept

We consider a sharp flat interface between the flow domains (Fig. 1, middle) that
has no thickness and cannot store and transfer mass and momentum. In this case,
the coupling conditions are well established [3, 7, 9], and they are algebraical jump
conditions. The mass conservation across the interface reads

[v·n]ff = − [v·n]pm on Γ, (4)

where n is the unit normal vector at the interface (Fig. 1, middle), nff = n, npm = −n.
The balance of normal forces is given by

[
n· (pI − 2μD (v)) ·n]ff = [p]pm on Γ. (5)

The Beavers–Joseph–Saffman interface condition [1, 10] can be written as

[

v·τi + 2
√

K
αBJ

n·D (v) ·τi

]ff

= 0, i = 1, . . . , d − 1 on Γ, (6)
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where τ i are the unit tangent vectors to the interface, αBJ > 0 is the Beavers–Joseph
parameter, and d is the number of space dimensions.

4 Transition Region Concept

There are several possibilities to develop a transition region model for single-fluid-
phase systems, e.g. considering the Brinkman equation which is a superposition of
the Stokes equation and Darcy’s law [2, 4, 8]. In this case, the equations in the
transition zone are full dimensional. However, this model cannot be extended to
more than one fluid phase and the definition of the flow parameters is not trivial.

To formulate the equations that describe coupled flow between the free flow
domain and the porous medium we apply the TCAT approach [5, 6]. This technique
is not restricted to the number of fluid phases and flow direction, and allows to derive
general models. The transition region is averaged in the direction normal to the
boundaries of the flow domains being joined (Fig. 1, right) that leads to the reduction
of spatial dimensionality, and the macroscale equations are restricted to the two-
dimensional surface. The detailed derivation of a general transition region model is
presented in [6]. The objective of this work is to couple the transition region model
with the free flow and the porous medium domains for single-fluid-phase systems.

Assuming the velocity of the transition region is zero, the mass conservation
equation for the fluid phase can be written as

[ερv]top ·N + ∇�· (bερv) = [ερv]bot ·N in Ωtr, (7)

where the superscripts top and bot determine physical quantities averaged over the
top and bottom boundaries Γtop and Γbot of the transition region, b > 0 is the
transition region thickness, ε is the porosity, N is the unit vector tangent to the axis
corresponding to the megascopic dimension (Fig. 1, right), and ∇� is the macroscale
surficial del operator, ∇� = ∇ − NN·∇.

Equation (7) needs to be closed by specifying the values at the transition region
boundaries Γtop and Γbot. These values come from the free flow and porous medium
domains accordingly, and serve as the source terms. Considering sharp interfaces
between the top of the transition region and the free flow domain, and between the
bottom of the transition region and the porous medium, we get

[ρv]ff ·N = [ερv]top ·N on Γtop, and [ερv]bot ·N = [ερv]pm ·N on Γbot.

When the transition region thickness b = 0, Eq. (7) reduces to the classical con-
dition of mass conservation across the sharp interface

[ρv]ff ·N = [ρu]pm ·N,
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where Darcy’s velocity u is the product of the averaged velocity v and porosity ε. In
case of the same fluid in both domains, we get the interface condition (4). Therefore,
Eq. (7) can be considered as a generalization of the classical jump condition.

We do not need to consider the solid phase mass conservation equation since the
solid is assumed to be non-deformable and rigid.

Under the assumption of slow flow through the transition region, the momentum
conservation for the fluid phase can be written as

ε∇� p − r̂top
w ·

(
vtop − v

)
− r̂bot

w ·
(

vbot − v
)

= −ε2R̂w·v in Ωtr, (8)

where v is the fluid velocity averaged over the transition region thickness, vtop and
vbot are the velocities averaged over the top and bottom boundaries of the transition
region, r̂w and R̂w are the resistance tensors, which depend on the morphology of
the transition region. We do not model the solid phase momentum balance equation
because the solid phase is rigid.

Again, considering sharp interfaces between the top of the transition region and
the free flow domain as well as between the bottom of the transition region and the
porous medium, we close Eq. (8). Momentum conservation at the boundary between
the free flow domain and the transition region can be written as

[
pI − 2μD

]ff ·N = ptopN − br̂top
w ·

(
vtop − v

)
on Γtop, (9)

and at the boundary between the transition region and the porous medium domain

pbotN + br̂bot
w ·

(
vbot − v

)
= [p]pm N on Γbot. (10)

We decompose the momentum conservation Eqs. (9) and (10) into the megascale
and tangential components. The normal component of Eq. (9) reads

[
p − 2μN·D·N]ff = ptop − br̂top

w ·
(

vtop − v
)
·N on Γtop,

and the normal component of Eq. (10) is given by

pbot + br̂bot
w ·

(
vbot − v

)
·N = [

p
]pm on Γbot,

that is combined with the transition region momentum conservation (8) yields

[
p − 2μN·D·N]ff = [p]pm +

(
ptop − pbot

)
− bε2R̂w·v·N. (11)

When b = 0, Eq. (11) is the balance of normal forces across the sharp interface
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[
p − 2μN·D·N]ff = [p]pm .

If b > 0, we need to define the pressure and the normal component of velocity at the
top and bottom boundaries of the transition region

ptop = [p]ff , vtop·N = [v]ff ·N on Γtop,

pbot = [p]pm , vbot·N = [v]pm ·N on Γbot.

The tangential component of Eq. (9) can be written as

− [
2μD�]ff ·N = −br̂top

w ·
(

v�top − v�
)

, (12)

where D� = 1
2

(
∇�v + (∇�v

)T)
and v� = v − NN·v are restricted to two dimensions

in the transition region. The tangential component of Eq. (10) is given by

br̂bot
w ·

(
v�bot − v�

)
= 0. (13)

The tangential component of velocity at the transition region boundaries can be
defined as

v�top = [
v�]ff

, v�bot = [
v�]pm

. (14)

Equation (12) together with condition (14) can be considered as the generalization of
the Beavers–Joseph condition at the boundary between the free flow and transition
region. Combining Eq. (12) and (13) together with the transition region momentum
conservation Eq. (8), we get

− [
2μN·D�]ff = −bε

[
∇� p − εR̂w·v�

]tr
.

5 Numerical Experiments

We consider flow domains Ωff = [0, 5m] × [1, 2m] and Ωpm = [0, 5m] × [0, 1m]
with the sharp interface Γ = (0, 5m) × {1m} and the transition region Ωtr =
[0, 5m] × [0.98, 1m], which partially occupies the porous medium layer. The fluid
is water with density ρ = 103

[
kg/m3

]
and dynamic viscosity μ = 10−3 [Pa s]. The

soil is isotropic with permeability k = 10−7
[
m2

]
. The Beavers–Joseph coefficient

is αBJ = 1. The gravitational effects are neglected.
The boundary conditions are described in Fig. 2, where the inflow condition at

the left boundary of the free flow domain reads v = (u, v) = (10(y − 1)(2 − y), 0)
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Fig. 2 Coupled domain, locations of the interface and transition region, boundary conditions

[m/s], the no-flow conditions at the left and bottom boundaries of the porous medium
domain are given by ∂p/∂n = 0, and the outflow condition is ∂v/∂n = 0.

Second order in space finite volume schemes on staggered grids are considered
in both flow domains [[11], Chaps. 4.4, 6.2, 6.3]. The fluid pressure is computed in
the centers of the control volumes, and in addition at the interface and the external
boundary of the porous medium domain. The velocities are computed in the centers
of the control volume faces. The method is locally mass conservative and does not
require any stabilization. In the porous medium domain, the pressure is the primary
variable and the velocities are computed at the post-processing stage. The compu-
tational grids are uniform and conforming at the interfaces between the domains.
For the numerical simulations of the steady-state coupled problem, the monolithic
approach is applied: the systems of linear algebraical equations resulting from the
discretization of the flow models are built together with the interface conditions into
one matrix and solved simultaneously.

To compare the sharp interface and the transition region models, we plot the
horizontal component of the velocity at the cross-section x = 2.5 [m] through
the coupled domain for the sharp interface and transition region approach (Fig. 3).
The porous medium velocity is of order 10−3 [m/s]. The horizontal component of
the velocity computed through the sharp interface concept has a jump at the fluid-
porous interface resulting from the Beavers–Joseph condition.

The transition region approach is a composition of three models: the free flow
model, the porous medium model, and the transition region model. In addition to the
sharp interface model, it contains the mass and momentum conservation equations
of codimension one, therefore the CPU time for both models is essentially the same.

The advantage of the transition region approach is that the model is not restricted
to the flow direction and the interface can be curved. It is especially important for
modeling filtration processes where the flow is mainly perpendicular to the porous
layer. The sharp interface concept is based on the Beavers–Joseph interface condi-
tion which is derived for flows parallel to the porous medium. In both models, the
parameters should be estimated: in the sharp interface concept it is Beavers–Joseph
coefficient and in the transition region model these are the resistance coefficients.
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Fig. 3 Velocity profiles in the coupled domain at x = 2.5 [m] for the sharp interface and transition
region models

The numerical simulation results presented in Fig. 3 demonstrate the velocity
jump for the sharp interface concept according to the Beavers–Joseph condition. The
transition region velocity profile is smooth at the fluid-porous interface due to the
considered transition zone.

6 Conclusions

In this work, we considered two coupling approaches (sharp interface, transition
region) for isothermal single-fluid-phase porous medium and free flow systems. The
proposed transition region model is a generalization of the well established sharp
interface concept based on the Beavers–Joseph condition. Numerical simulation
results demonstrate the velocity profiles in the coupled domain for both models.

Many extensions to this work are possible such as considering deformable porous
materials, modeling species and energy transport, considering compressible fluids,
taking into account moving interfaces and multiple fluid phases in porous media.

Acknowledgments This work was supported by the German Research Foundation (DFG) project
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Convergence Analysis of a FV-FE Scheme
for Partially Miscible Two-Phase Flow
in Anisotropic Porous Media

Bilal Saad and Mazen Saad

Abstract We study the convergence of a combined finite volume nonconform-
ing finite element scheme on general meshes for a partially miscible two-phase
flow model in anisotropic porous media. This model includes capillary effects and
exchange between the phase. The diffusion term, which can be anisotropic and hetero-
geneous, is discretized by piecewise linear nonconforming triangular finite elements.
The other terms are discretized by means of a cell-centered finite volume scheme on
a dual mesh. The relative permeability of each phase is decentred according the sign
of the velocity at the dual interface. The convergence of the scheme is proved thanks
to an estimate on the two pressures which allows to show estimates on the discrete
time and compactness results in the case of degenerate relative permeabilities. A key
point in the scheme is to use particular averaging formula for the dissolution function
arising in the diffusion term. We show also a simulation of CO2 injection in a water
saturated reservoir and nuclear waste management. Numerical results are obtained
by in-house numerical code.

1 Introduction

In nuclear waste management, an important quantity of hydrogen can be produced by
corrosion of the steel engineered barriers (carbon steel overpack and stainless steel
envelope) of radioactive waste packages. A direct consequence of this production is
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the growth of hydrogen pressure around alveolus which can affect all the functions
allocated to the canisters, waste forms, backfill, host rock. Host rock safety function
may be threatened by over pressurisation leading to opening fractures of the domain,
inducing groundwater flow and transport of radionuclides.

In this work, we address the construction and convergence analysis of a combined
finite volume nonconforming finite element scheme, based on a two pressures for-
mulation, for two–phase two–component flow in porous media where the dissolution
of the non-wetting phase can occur in different engineering application (e.g. nuclear
storage and CO2 storage). The convergence analysis is done in the degenerate case
and for the general model including capillarity and gravity effects.

2 Mathematical Formulation of the Continuous Problem

We consider herein a porous medium saturated with a fluid composed of two phases
(liquid and gas) and a mixture of two components (water and hydrogen). The water is
supposed only present in the liquid phase (no vapor of water due to evaporation). Let
T > 0, let be η a bounded open subset of Rd (d ∨ 1) and we set QT = (0, T )×η .
We write the mass conservation of each component

φ∂t
⎧
νw

l sl
⎪ + div

⎧
νw

l Vl
⎪ = fw, (1)

φ∂t

⎨
νh

l (pg)sl + νh
g (pg)sg

⎩
+ div

⎨
νh

l (pg)Vl + νh
g (pg)Vg

⎩

− div
⎨
Ωslνl Dh

l ∈ Xh
l

⎩
= fg, (2)

where φ(x), sΣ(t, x) (sl + sg = 1), pΣ(t, x), νh
l (pg), νh

g (pg), νΣ = νh
Σ + νw

Σ ,

Xh
l = νh

l /νl
⎧
Xh

l + Xw
l = 1

⎪
and Dh

l represent respectively the (given) porosity of
the medium, the saturation of the Σ phase (Σ = l, g), the pressure of the Σ phase,
the density of dissolved hydrogen, the density of the hydrogen in the gas phase, the
density of the Σ phase, the mass fraction of the hydrogen in the liquid phase, the
diffusivity coefficient of the dissolved gas phase in the liquid phase. The velocity of
each fluid VΣ is given by the Darcy law

VΣ = −K
krΣ (sΣ)

μΣ

(∈ pΣ − νΣ(pΣ)g) ,

where K(x) is the intrinsic (given) permeability tensor of the porous medium, krΣ

the relative permeability of the Σ phase, μΣ the constant Σ-phase’s viscosity, pΣ the
Σ-phase’s pressure and g the gravity. For detailed presentation of the model we refer
to the presentation of the benchmark Couplex-Gaz [4].

To define the hydrogen densities, we use the ideal gas law and the Henry law

νh
g = Mh

RT pg, νh
l = Mh H h pg, where the quantities Mh , H h , R and T repre-

sent respectively the molar mass of hydrogen, the Henry constant for hydrogen, the
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universal constant of perfect gases and T the temperature. To close the system, we
introduce the capillary pressure law which links the jump of pressure of the two
phases to the saturation

pc(sl) = pg − pl , (3)

the application sl ⊃⊂ pc(sl) is decreasing. This model also corresponding to the
application of CO2 storage when hydrogen is replaced by CO2.

Let T > 0 be the final time fixed, let be η a bounded open subset of Rd (d ∨ 1)

where ∂η is C 1. We set ΛT = (0, T )× ∂η and we note ξl the part of the boundary
of η where the liquid saturation is imposed to one and ξn = ξ \ξl . The chosen
mixed boundary conditions on the pressures are

{
pg(t, x) = pl(t, x) = 0 on (0, T ) × ξl ,

Vl · n = Vg · n = Ωslνl Dh
l ∈ Xh

l · n = 0 on (0, T ) × ξn,

where n is the outward normal to ξn . The initial conditions are defined on pressures

pΣ(t = 0) = p0
Σ in η, for Σ = l, g. (4)

Next we introduce a classically physically relevant assumptions on the coefficients
of the system.

(H1) Degeneracy. The functions Ml = krl
μl

and Mg = krg
μg

∞ C 0([0, 1],R+),
MΣ(sΣ = 0) = 0 and there is a positive constant m0 > 0 such that for all
sl ∞ [0, 1],

Ml(sl) + Mg(sg) ∨ m0.

(H2) Density Bounded. The density νh
l is in C 1(R), increasing and there exists two

positive constants νm > 0 and νM > 0 such that 0 < νm ≤ νh
l (pg) ≤ νM .

(H3) The capillary pressure fonction pc ∞ C 1([0, 1];R+) and there exists pc > 0

such that d pc
dsl

≤ −pc < 0.

(H4) The functions fw, fg ∞ L2(QT )and fw, fg ∨ 0 a.e. for all (t, x) ∞ QT .
(H5) Dh

l is a possibly null positive constant.

This problem renews the mathematical and numerical interest in the equation
describing multiphase multicomponent flows through porous media. Existence of
weak solutions for the two compressible, partially miscible flow in porous media,
under various assumptions on physical data, we refer to [1]. In [2] and [7] the authors
study respectively the convergence of a combined FV-FE scheme of the Keller-Segel
model and of a immiscible compressible two phase flows un porous media. Study of
the convergence of a finite volume scheme for a model of miscible two-phase flow in
porous media under non-degeneracy and regularization of the physical situation on
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Fig. 1 Triangles K ,L ∞ Th and dual volumes D,E ∞ Dh associated with edges δD, δE ∞ Eh

the relative permeability of each phase which physically vanishes when its saturation
goes to zero, we refer to [3].

3 Combined Finite Volume–Nonconforming Finite
Element Scheme

3.1 Primal and Dual Meshes

We perform a triangulation Th of the domain η such that η = ∀K∞Th K . We denote
by Eh the set of all sides, by E int

h the set of all interior sides, by E ext
h the set of all

exterior sides, and by EK the set of all the sides of an element K ∞ Th . We define
h := max{diam(K ), K ∞ Th}. We assume the following shape regularity: there
exists a positive constant πT such that

min
K∞Th

|K |
diam(K )d

∨ πT . (5)

We also use a dual partition Dh of η such that η = ∀D∞Dh D. There is one dual
element D associated with each side δD ∞ Eh . We construct it by connecting the
barycenters of every K ∞ Th that contains δD through the vertices of δD . We denote
by Q D the barycenter of the side δD . As for the primal mesh, we set Fh , Fint

h , Fext
h and

FD for the dual mesh sides. We denote by D int
h the set of all interior and by Dext

h the
set of all boundary dual volumes. We finally denote by N (D) the set of all adjacent
volumes to the volume D, N (D) := {E ∞ Dh; ∩δ ∞ Fint

h such that δ = ∂ D → ∂ E}.
For E ∞ N (D), we also set dK |L := |QE − Q D|, δK |L := ∂ D → ∂ E and K D|E the
element of Th such that δK |L √ K D|E .

We consider a uniform step time Δt , and define tn = nΔt for n ∞ [0, N ]. We define
the following finite-dimensional spaces:

Xh :={ϕh ∞ L2(η);ϕh |K is linear ≥K ∞ Th,

ϕh is continuous at the points Q D, D ∞ D int
h },
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we equip Xh with the seminorm ‖uh‖2
Xh

:=
∑

K∞Th

∫

K
|∈uh |2 dx .

3.2 The Combined Scheme

For clarity and simplicity, we restrict the theoretical demonstration to a horizontal
field, i.e. we neglect the gravity effect. The Henry law combined to the ideal gas law,
to obtain that the density of hydrogen gas is proportional to the density of hydrogen
dissolved νh

g = C1ν
h
l where C1 = 1

Hh RT . Remark that the density of water νw
l in the

liquid phase is constant and from the Henry law, we can write νl∈ Xh
l = Xw

l ∈ pg,

where C2 is a constant equal to H h Mh .

Definition 1 (Combined scheme) The fully implicit combined finite volume-non
conforming finite element scheme for the problem (1)–(2) reads: find the values
pn
Σ,D , D ∞ Dh , n ∞ {1, · · · , N }, such that

p0
Σ,D = 1

|D|
∫

D

p0
Σ(x)dx, s0

Σ,D = 1

|D|
∫

D

s0
Σ(x)dx, for all D ∞ D int

h , (6)

|D|ΩD
sn
l,D − sn−1

l,D

Δt
−

∑

E∞N (D)

Ml(s
n
l,D|E ) γD,E Δn

D|E (pl) = f n
w,D

νw
l

, (7)

|D| ΩD
νh

l (pn
g,D)m(sn

l,D) − νh
l (pn−1

g,D )m(sn−1
l,D )

Δt

−
∑

E∞N (D)

(νh
l )n

D|E Ml(s
n
l,D|E ) γD,E Δn

D|E (pl)

− C1

∑

E∞N (D)

(νh
l )n

D|E Mg(s
n
l,D|E ) γD,E Δn

D|E (pg)

− C2

∑

E∞N (D)

ΩDsn
l,D|E (Xw

l )n
D|E Dh

l Δn
D|E (pg) = f n

g,D, (8)

pc(s
n
l,D) = pn

g,D − pn
l,D . (9)

Where m(sl) = sl +C1sg . We refer to the matrix γ of elements γD,E , D, E ∞ D int
h ,

as the diffusion matrix. The stiffness matrix of the nonconforming finite element
method, is defined as follow
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γD,E := −
∑

K∞Th

(γ(x)∈ϕE ,∈ϕD)0,K D, E ∞ Dh . (10)

The mean value of the density of each phase on interfaces is not classical since it
is given as

1

(νh
l (pg))

n
D|E

=




⎜

1
pn

g,E −pn
g,D

pn
g,E⎟

pn
g,D

1
νh

l (ω )
dω if pn

g,D �= pn
g,E ,

1
νh

l (pn
g,D)

otherwise,

(11)

this choice is crucial to obtain estimates on discrete pressures.
This scheme consists in a finite volume method together with a phase-by-phase

upstream scheme. The implicit finite volume scheme satisfies industrial constraints
of robustness and stability. In comparison with incompressible fluid, compressible
fluids requires more powerful techniques. We show that the proposed scheme satisfy,
a discrete energy estimate on the pressures and a function of the saturation that denote
capillary terms, that allow us to derive the convergence of a subsequence to a weak
solution of the continuous equations as the size of the discretization tends to zero. The
treatment of the degeneracy needs the introduction of powerful technics to link the
velocities to the global pressure and the capillary pressure on the discrete form [6].

3.3 A Priori Estimates and Convergence

We summarize the main estimates:

Proposition 1 1. (Maximum principle). Let (s0
Σ,D)D∞T ∞ [0, 1]. Then, the satu-

ration (sn
l,D)D∞T ,n∞{0,...,N } is positive.

2. Assume that all transmissibilities are non-negative, i.e. γD,E ∨ 0 ≥D ∞
D int

h , E ∞ N (D). Then, the solution of the combined scheme satisfies

N∑

n=1

Δt
∑

D∞Dh

∑

E∞N (D)

γD,E MΣ(sn
Σ,D|E )|pn

Σ,E − pn
Σ,D|2 ≤ C, (12)

3. The discrete global pressure satisfies

N∑

n=1

Δt ‖ph‖2
Xh

≤ C, (13)

where p = pg + p̃(sl), and p̃(sl) = − ⎟ sl
0

Ml (z)
M(z) p

′
c(z)dz.
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Table 1 Parameter values for the porous medium and fluid characteristics used in test case 1

Porous medium Fluid characteristics

Parameter Value Parameter Value
� [-] 0.15 Dh

l [m2 s−1] 3 × 10−9

K [m2] 5.10−20 μl [Pa s] 1 × 10−3

pr [Pa] 2 × 106 μg [Pa s] 9 × 10−6

n [-] 1.54 H h [mol Pa−1 m−3] 7.65 × 10−6

slr [-] 0.4 Mh [Kg mol−1] 2 × 10−3

sgr [-] 0 νw
l [Kg mol−3] 103

To prove the estimate (12), we multiply (7) byC1 pn
l,D − pn

g,D and (8) by the nonlinear

function gg(pn
g,D) = ⎟ pg

0
1

νh
l (z)

dz, then summing the resulting equation over D ∞ Dh

and n ∞ {1, · · · , N } to deduce the estimates on velocities. The estimates (13) is a
consequence of the proof done in [6], the authors prove this property on primal mesh
satisfying the orthogonal condition. This proof use only two neighbors elements
and it is based only on the definition of the global pressure. Thus, the estimate (13)
remains valid on the dual mesh, that allow us, based on the use of the Kolmogorov
relative compactness theorem, to derive the convergence of these approximation to
a weak solution of the continuous problem in this paper provided the mesh size and
the time step tend to zero.

The main result of this paper is the following theorem.

Theorem 1 There exists an approximate solutions (pn
Σ,D)n,D corresponding to the

system (7)–(8), which converges in L2(QT )(up to a subsequence) to a weak solution
pΣ of the system (1)–(2).

4 Numerical Results: Gas Phase (Dis)appearance (Quasi-1D)

In this section, we evaluate numerically the finite volume-nonconforming finite
element method derived in the Sect. 3 on a test case dedicated to gas-phase (dis)
appearance (see the Couplex-Gas benchmark [4] for more details). The method has
been implemented into in-house Fortran code.

The porous medium and fluid characteristics are presented in [4] and summarized
in Table. 1.

Initial conditions are pl(t = 0) = 106 Pa and pg(t = 0) = 0 Pa. For
boundary conditions on the left, the hydrogen flow rate is given qh = 5.57 ×
10−6Π[0,Tinj](t) kg/m2/year, where Π[0,Tinj] denote the characteristic function of the
set [0, Tinj] and we impose a zero water flow rate qw = 0. The Dirichlet boundary
conditions for the outflow boundary are the same as the initial conditions.

A structured grid with 200×20 cells was used for the computations and we used a
constant time step of 10 years. Figure 2 show the phase pressures, with respect to time
(years) during and after injection. For 0 < t < 14 × 103 years, the gas saturation is
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Fig. 2 Liquid and gas pressures pl (left) and pg (right) at the (0, 10) with respect to time (years).

Fig. 3 CO2 phase saturation,
color scale ranges from s� = 0
(blue) to s� = max(s�) (red)

zero and the liquid pressure stay constant; the whole domain is saturated with water.
For 14 × 103 ≤ t ≤ 1.6 × 105 years, the gas phase appears. For t > 5 × 105 years,
the gas saturation decreases and after a while, the gas phase disappears. At the end of
the simulation the system reaches a stationary state and the liquid pressure gradient
goes to zero.

5 CO2 Injection in a Fully Water Saturated Domaine

The Fig. 3 shows the CO2 phase saturation at different time. CO2 is injected
into the lower left part of a rectangular geometry (200 × 50 m) with a flux of
4.10−2 kg m−2 s−1. Densities, viscosities and all other parameters are chosen as sug-
gested in [5]. In this example, we used the Brooks-Corey model for the soil water
characteristic and relative permeabilities. The CO2 migrates upwards until it reaches
the top of the domain with the nonflux conditions and is then driven to the right by
advective forces.
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Piecewise Linear Transformation in Diffusive
Flux Discretizations

D. Vidović, M. Dotlić, B. Pokorni, M. Pušić and M. Dimkić

Abstract A piecewise linear transformation that allows interpolation of diffused
concentration over material discontinuities is presented. It may be used either to
evaluate concentration values at auxiliary points, or to approximate face fluxes
directly. It does not violate the discrete minimum and maximum principles, so it
can be used to construct discretization schemes that preserve solution positivity or
discrete minimum and maximum principles. The method has been demonstrated
to produce second-order accurate interpolated concentration values and first-order
accurate fluxes even when interpolation nodes lie at opposite sides of a discontinuity.

1 Introduction

Second-order terms play a role in a variety of partial differential equations. They
are used to represent a number of unrelated physical phenomena such as molecular
diffusion, heat conduction, dispersion, flow through porous media etc. For the sake
of study we put aside the possible complexity of the physical system and consider
the simplest linear diffusion equation, obtained by substituting Fick’s law
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e-mail: milandotlic@gmail.com

B. Pokorni
e-mail: bpokorni.jci@gmail.com

M. Dimkić
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u = −D∨C (1)

into the continuity equation
∨ · u = g, (2)

where u is the diffusive velocity, C is the concentration, D is the diffusion tensor
which may be anisotropic and discontinuous, and g is a source term. Portions of
domain Ω in which D is continuous are called material zones and interfaces between
them are called material interfaces.

We consider three types of boundary conditions:

C = gD on ΓD, (3)

u · n = gN on ΓN , (4)

u · n = Ψ (C − gR) on ΓR, (5)

where ΓD ∈ ΓR = ΓD ∈ ΓR , ΓD ∈ ΓR ⊃= ⊂, ΓD ∈ ΓN ∈ ΓR = ∂Ω , and ΓD , ΓN ,
and ΓR are mutually disjoint.

We assume that the domain Ω is divided into polyhedral control volumes (cells)
such that each cell is entirely contained in a single material zone. With each cell T
we associate one collocation point xT (for example the centroid or the circumcenter)
and one concentration value CT .

Finite volume discretization is performed by integrating Eq. (2) over each cell and
applying the divergence theorem:

⎧

T

u · ndS ∞
⎪

f

χT, f u f =
⎨

T

gdT, u f =
⎨

f

u · n f dS, (6)

where n is the outward unit normal vector, the sum runs over all faces f of polyhedron
T , n f is a fixed unit normal vector associated with face f , and χT, f = 1 if n f points
outside of T , or χT, f = −1 otherwise.

Further discretization requires that flux u f is represented using concentration
values in some of the surrounding cells, and this is where finite volume schemes start
to differ. For second order accuracy one wants to use linear interpolation to obtain
the concentration gradient. This leads to

u f ≤
⎪

i

αi (CT − CTi ), (7)

Coefficients αi can be found from the system
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− Dn f =
⎪

i

αi (xT − xTi ). (8)

Examples of second-order accurate schemes include the diamond scheme of which
a review is found in [6] and schemes in which fluxes obtained using the linear
interpolation are combined in a non-linear way to preserve the solution positivity [4,
7, 9, 10, 12, 14–17] or the discrete minimum and maximum principles [2, 3, 5, 8, 11,
13]. In this paper we do not present another finite volume scheme, but only a single
building block—the interpolation—that may be used in these or other discretization
schemes.

Boundary conditions can be used in this interpolation. Dirichlet boundary condi-
tion can be evaluated at any point x f ∀ ΓD and the obtained value C f can be used
in (7). Neumann conditions can be resolved by introducing auxiliary collocation
points at Neumann faces. If f is such a face then auxiliary concentration value C f

is explicitly computed from

u f =
⎪

i

αi (C f − CTi ) (9)

and used in (7) to compute fluxes through other faces. Robin condition can be treated
similarly. An alternative to introducing auxiliary collocation points is to use the
Neumann and Robin conditions directly, as this is done in this paper.

Difficulties arise when face f is close to a material interface. Concentration gradi-
ent is discontinuous at the interface, so if concentration values associated with cells in
different material zones are used as interpolation nodes then the accuracy is reduced.
On the other hand schemes preserving the solution positivity or the discrete minimum
and maximum principles require that coefficients αi in (7) are non-negative, i.e. that
vector −Dn is a conical combination of differences xT − xTi . Sometimes this does
not hold for any combination of collocation points within the same material zone.

One cure is to use harmonic averaging points introduced in [1]. These are special
points at the material interface where any piecewise linear solution can be exactly
represented as a convex combination of concentration values in only two collocation
points at the opposite sides of the interface.

In this paper we present a unified method to treat discontinuities and include
boundary conditions in concentration interpolation. An advantage over the harmonic
points is that the interpolation can be performed over multiple material interfaces and
that Neumann and Robin conditions in multiple material zones can be used as well.
The interpolation method and the the piecewise linear interpolation it is based on
were introduced in [16]. We also suggest two ways to use this interpolation method,
one that was presented in [16], and another one explained here in Sect. 3.2.

The paper is organized as follows. The piecewise linear transformation is described
in Sect. 2. Two alternative ways to use the transformation in flux discretization are
presented in Sect. 3. A numerical example is given in Sect. 4.
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Fig. 1 Domain is assumed
to have a locally layered
structure

Ω −2

x0

Ω 2
x2

x1
Ω 1

Ω 0

Ω −1
x−2

x−1

2 Piecewise Linear Transformation

We assume that the domain consists of layers with smooth interfaces as shown in
Fig. 1. Even though authors usually do not state this requirement explicitly, corners
in material interfaces generally introduce singularities with respect to the solution
differentiability which reduce the accuracy of any scheme we are aware of. This is
also the case with the presented interpolation method.

In each material zone Ωi we represent the concentration locally as a linear function

C(x) = Ci + Gi · (x − xi ), (10)

where xi are arbitrary nearby points chosen at material interfaces as in Fig. 1, and G
is an unknown vector. Function C(x) must satisfy two conditions:

1. It must be continuous at the interfaces;
2. Fluxes through interfaces must be continuous.

For each interface the first condition determines three degrees of freedom in function
(10) and the second condition determines yet another degree of freedom. Thus the
whole piecewise linear function C(x) has only four remaining degrees of freedom
and it can be reformulated as

C(x) = C0 + G0 · F(x), (11)

where F(x) is a piecewise linear transformation defined by conditions 1 and 2 and
explicitly derived in [16]. Transformation F(x) is completely determined by the
geometry and diffusion tensors, i.e. it does not depend on the concentration.

If a material zone interface is not smooth at some point (for example because more
then two zones meet there) the presented interpolation method is still applicable, but
the accuracy is reduced, as demonstrated in [16]. However, points xi must be chosen
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such that the interface is smooth in xi because a normal vector is associated with this
point. Therefore in practice for xi we take mesh face centroids.

3 Usage in Flux Discretization

Function C(x) can be used in discretization of flux u f either to produce a concen-
tration value in an auxiliary point used in (7) and (8), or directly to compute the flux
u f = −D∨C(x f ).

3.1 Evaluation in Auxiliary Points

This case was explained in [16]. Free parameters C0 and G0 are determined by
imposing additional requirements that C(x) matches concentration values at some
collocation points or that it satisfies boundary conditions at some faces. Four equa-
tions of form

C(xT ) = CT where T is a mesh cell; (12)

C(xd) = gD(xd) if xd ∀ ΓD; (13)

− nT
f D(x f )∨C(x f ) = gN (x f ) if x f ∀ ΓN ; (14)

− nT
f D(x f )∨C(x f ) = Ψ (x f )

⎩
C(x f ) − gR(x f )

)
if x f ∀ ΓR (15)

are chosen to form a linear system that determines C0 and G0. For x f we choose the
centroid of face f .

When this system is solved, coefficients of linear function C(x) are represented
as linear combinations of concentration values and boundary fluxes. When C(x) is
evaluated at an auxiliary point, the concentration in this point is represented as a
linear combination of the same. To satisfy the minimum and maximum principles,
the coefficients of this linear combination must be non-negative. Thus one chooses
from Eqs. (12)–(15) such that the value at the auxiliary point is evaluated as a convex
combination of concentration values used in (12)–(15), with possible addition of
Neumann faces contribution. As noted in [16], finding such equations can be a diffi-
cult task on distorted meshes, in particular if we choose to evaluate C(x) in a mesh
node, because in some cases collocation points that form a convex combination lie
several cells away from this node. Nevertheless, it is possible to find such equations
for any auxiliary point in most meshes.
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3.2 Direct Usage

Let cells T1 and T2 share face f . To approximate the flux u f from T1 to T2 we take
x0 = xT1 and thus C0 = CT1 . To determine the remaining three degrees of freedom
of G0 we form a linear system

AG0 = b (16)

by picking three equations of form (12)–(15), where b has components among con-
centration differences CT0 − CT , CT0 − gD(xd), CT0 − gR(x f ), and prescribed
boundary fluxes gN (x f ). The flux is computed as

u f = −| f |nT
f DG0 = −| f |nT

f DA−1b. (17)

In schemes preserving the positivity or the discrete minimum and maximum prin-
ciples it is required that each component of −| f |nT

f DA−1 is non-negative. It must
also be required that these components do not exceed a certain prescribed maximal
value, otherwise an ill-conditioned matrix A may degrade the interpolation accuracy.

This approach has advantages over auxiliary points. Cases when collocation points
leading to non-negative coefficients are more than three cells away were not encoun-
tered here. On the contrary, collocation points necessary to represent a node value
as a convex combination may be more than ten cells away on distorted grids. In
addition, linear systems are 3 × 3, while with the auxiliary points they are 4 × 4.
Thus this approach may require considerably less computational effort, especially if
distorted grids are used.

Note that (17) is not a complete flux discretization and it should not be used directly
in (6) because it is not conservative. When building a finite volume discretization,
one-sided fluxes of form (17) are combined as in [2–5, 7–17] to yield a conservative
scheme.

4 Example

Unit cube is divided in zones Ω1 = {(x, y, z)|x < 0.5} and Ω2 = {(x, y, z)|x ∩
0.5}. Diffusion tensor is

D =
{
D1 in Ω1,

D2 in Ω2,
(18)

D1 =



3 1 0
1 3 0
0 0 1



 , D2 =



10 3 0
3 1 0
0 0 1



 . (19)

The exact concentration field is

C =
{

1 − 2x2 + 4xy + 2y + 6x in Ω1,

3.5 − 2y2 + 2xy + 3y + x in Ω2.
(20)
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Table 1 Errors of interpolated node values and face fluxes

h 1/10 1/20 1/40 1/80

εC
2 7.64 × 10−4 1.84 × 10−4 4.14 × 10−5 9.83 × 10−6

εC
max 1.43 × 10−2 4.61 × 10−3 5.33 × 10−4 1.34 × 10−4

εu
2 3.70 × 10−2 1.51 × 10−2 7.48 × 10−3 3.62 × 10−3

εu
max 0.594 0.249 0.203 0.0961

We specify the exact solution at z = 0 and z = 1, the exact flux at y = 0 and y = 1,
and Robin condition at the remaining boundary with gR = 0 if x = 0, gR = 10 if
x = 1, and Ψ chosen accordingly.

We use four independently generated unstructured tetrahedral grids. The mesh
parameter h is proportional to the longest edge length. In each mesh node N the
solution CN was represented as a convex combination of surrounding cell values.
Flux through each face f was represented as a conical combination of concentration
differences and prescribed boundary fluxes. Cell concentration values were obtained
from the analytic solution. The errors of the interpolated concentration

εC
2 =

⎜⎟
N (C(xN ) − CN )2
⎟

N (C(xN ))2

]1/2

, εC
max = maxN |C(xN ) − CN |

[⎟
N (C(xN ))2

]1/2
/
⎟

N 1
. (21)

and of the interpolated flux

εu
2 =

⎛⎟
f | f |(u(x f ) · n f − u f /| f |)2

⎟
f | f |(u(x f ) · n f )2

⎝1/2

,

εu
max = max f

⎞
⎞u(x f ) · n f − u f /| f |⎞⎞

⎠⎟
f | f |(u(x f ) · n f )2/

⎟
f | f |

⎢1/2 (22)

are shown in Table 1.
The reported errors demonstrate that the proposed interpolation method gener-

ates second-order accurate node values and first-order accurate fluxes even when
interpolation nodes belong to different material zones.

5 Conclusion

We have presented a piecewise linear interpolation method to be used in discretization
of diffusive fluxes in discontinuous anisotropic environment. The method is second
order accurate even when interpolation nodes are found at opposite sides of a material
discontinuity. It does not violate the discrete minimum and maximum principles, so it
can be used to construct schemes that preserve the positivity or the discrete maximum



730 D. Vidović et al.

and minimum principles. Unlike the harmonic points, this interpolation method can
use boundary conditions in different material zones and interpolate over multiple
discontinuities.
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Comparison of Two Approaches
for Treatment of the Interface Conditions
in FV Discretization of Pore Scale
Models for Li-Ion Batteries

Shiquan Zhang, Oleg Iliev, Sebastian Schmidt and Jochen Zausch

Abstract Pore scale models of Li-ions transport allow to gain insight into the details
of the charge and discharge processes in Li-ion batteries. These models are diffusion
type PDE-systems with very complex, nonlinear interface conditions on the inter-
faces between the active particles in the porous electrodes and the electrolyte. In
this work, we discuss two approaches for the treatment of these interface conditions
in conjunction with a cell-centered Finite Volume (FV) discretization of the gov-
erning equations. The first approach treats exactly the fluxes on the interface, but
approximates the Butler-Volmer flux. This approach requires less memory because
it does not introduce unknowns on the interface. The second approach introduces
unknowns on the interface and discretizes the fluxes, but the Li-ion Butler-Volmer
flux is evaluated exactly on the interface. Our numerical results show that the two
approaches give very close results when the current rate is low. However, when the
current rate becomes higher, the second approach is more accurate than the first one.

1 Introduction

Li-ion batteries used for technical applications are based on porous insertion elec-
trodes. In most applications, the porous electrodes are random structures of active
particles. During discharging Li-ions are de-intercalated from the anode particles into
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Fig. 1 Current density distribution of electronic current flowing through the solid phase (simulated
with BEST [1])

the electrolyte and transported through the electrolyte to the porous cathode. There
they intercalate into the cathode particles and are then transported via diffusion into
their interior. It is well understood that the microstructure (e.g. size and arrangement
of the active particles in the porous electrodes) significantly influence the perfor-
mance of the battery. Going beyond porous structures, it has even been shown that
specifically designed electrodes, can achieve a much larger power density [9], but
still a lot of research is needed in order to quantitatively evaluate the influence of 3D
structures. Available 3D microscopic models include ion transport in the electrolyte
and in the solid particles, coupled with an equation for the potential [2, 3, 8]. Solving
these models is only possible on cuts through the whole cell covering nevertheless
the whole cathode anode direction [4, 7]. An example of pore scale simulation results
for the isothermal part of the model from [2, 3], based on the discretization from [6],
can be seen on Fig. 1.

The coefficients in the governing equations [2, 3, 6] usually experience jump on
interface between the solid particles and the electrolyte. What is even more important,
the interface conditions, that are modelled by the so-called Butler-Volmer expres-
sion, are highly nonlinear. The discretization of these interface conditions in [6] is
done in a way that the Butler-Volmer flux is not evaluated exactly on the interface,
instead, values of the concentration and the potential at the nearest volume are used.
The discretization from [6] is successfully used in solving a number of academic
and industrial problems. However, it is not theoretically investigated, and numerical
investigation of its accuracy is desirable. In this work we compare the discretization
from [6] with a new discretization approach, based on introducing new unknowns
for the concentration and the potential on the interface.

The work is organized as follows. In Sect. 2, we describe the governing equations
and interface conditions. In Sect. 3, we discuss the two ways to treat the interface
conditions. Numerical results are given in Sect. 4 to compare the two methods and
discuss their differences.
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Fig. 2 Our computational
domain consists of an anode
region ηa , electrolyte region
ηe, and a cathode region ηc
of thicknesses La , Le, Lc,
respectively

Ωa Ωe Ωc

Γa Γae Γec Γc

H

La Le Lc

Table 1 Coefficients Sub-domain φ ∂ ν Ω

ηa Ds,a 0 0 Σa

ηe De − t+
F Λ

1−t+
F RT 1

c
t+Λ
F Λ

1−t+
F RT 1

c Λ

ηc Ds,c 0 0 Σc

2 Microscopic Model

The real porous electrode geometry is like the one shown on Fig. 1, but for the needs of
this paper it is enough to consider a simple geometry, e.g., assuming that the anode
and the cathode consist of one particle each. Figure 2 is a simple sketch of such
simplified geometry of lithium-ion battery, where ηa and ηc are anode and cathode
respectively, and ηe denotes the electrolyte. To understand the charge and discharge
dynamics of the battery, one needs to know the evolution of the concentration of
lithium ions c and the distribution of the potential ξ in the whole battery domain.
The governing equations for the microscopic model can be expressed generally as
[2, 3, 6]

δc

δt
+ ∨ · N = 0, (1)

∨ · j = 0, (2)

where the fluxes can be written as

N = −(φ(c, ξ)∨c + ∂(c, ξ)∨ξ), (3)

j = −(ν(c, ξ)∨c + Ω (c, ξ)∨ξ). (4)

Here φ, ∂, ν and Ω are, in general, nonlinear coefficients which have different form
and values in different subregions. In the engineering and physics literature usually
the model is written in a way which directly reflects the physics, but for us the above
compact formulation is more convenient. The coefficients are given in Table 1, and
for their physical meaning we refer to [2, 3, 6] and references therein.

The initial conditions for concentration are piecewise constant, i.e. they are ca,0,
ce,0 and cc,0 for anode, electrolyte and cathode respectively. The boundary conditions
are given in Table 2. The Butler-Volmer interface conditions [5] are given as follows
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Table 2 Boundary
conditions

Boundary Concentration Potential

Upper ∨c · n̂ = 0 ∨ξ · n̂ = 0
Lower ∨c · n̂ = 0 ∨ξ · n̂ = 0
πa −Ds,a∨c · n̂ = 0 ξ = ξ f i x

πc −Ds,a∨c · n̂ = 0 −Σc∨ξ · n̂ = I

Nπ+ ·⎧n = Nπ− ·⎧n = ise(c+, c−, ξ+, ξ−)/F, π ∈ {πae, πec} (5)

jπ+ ·⎧n = jπ− ·⎧n = ise(c+, c−, ξ+, ξ−), π ∈ {πae, πec}. (6)

In the above interface conditions, the direction of ⎧n is always pointing into the elec-
trolyte, c+, c− are the concentration values on the interface taken in the electrolyte
and in the solid particle, respectively. Similar notation convention applies to poten-
tial ξ, particle flux N and current density j. The subscript e denotes electrolyte and
s denotes solid phase, the latter being anode or cathode in our simplified geome-
try. Furthermore, ise denotes the lithium ion flux across the interface and it has the
following expression:

ise = 2k
⎪

c+c−(cmax − c−) sinh

⎨
F

2RT
(ξ− − ξ+ − U0)

⎩

. (7)

Here U0 represents the open circuit potential, it is a function of the state of charge
(SOC). Denoting Δ := cs

cmax
, the functional U0 and the constant parameters are given

in Table 3.

3 Discretization of the Interface Conditions

For the discretization of Eqs. (1) and (2), a standard lowest order cell centered finite
volume method is adopted for spatial space, and first order backward Euler is used
with uniform time steps. Note that our example is a simple 2D domain, uniform spatial
mesh of rectangles are used, and any part of interfaces can only be the common
edge of two rectangles. Omitting the obvious details, and using 1D notations for
convenience, integration of (1) and (2) over a finite volume with center “i”, after
applying the divergence theorem, will result in

h
cnew

i − cold
i

t
= Ni+0.5 − Ni−0.5, i = 1, 2, ...nx , (8)

−ji+0.5 + ji−0.5 = 0, i = 1, 2, ...nx , (9)

where h is the spatial size and nx is the number of finite volumes (grid cells) in x−
direction. In above, Ni+0.5 = φ

ci+1−ci
h +∂

ξi+1−ξi
h and ji+0.5 = ν

ci+1−ci
h +Ω

ξi+1−ξi
h ,
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Table 3 Parameters

Parameter Value Unit Parameter Value Unit

La 0.0009 cm Lc 0.0009 cm
Le 0.0012 cm H 0.0024 cm
ca,0 2639e-6 mol/cm3 cc,0 20574e-6 mol/cm3

ca,max 24681e-6 mol/cm3 cc,max 23671e-6 mol/cm3

cc,0 1200e-6 mol/cm3 ξ f i x U0,a(ca,0/ca,max ) V
F 96487 As/mol ka 0.002 Acm2.5/mol1.5

R 8.314 J/mol/K kc 0.2 Acm2.5/mol1.5

Σa 10 S/cm Σc 0.38 S/cm
T 298 K t+ 0.39989 –
Ds,a 1e-10 cm2/s Ds,c 1e-10 cm2/s
De 1.622e-6 cm2/s Λ 0.02 S/cm

U0,a = −0.132 + 1.41 exp(−3.52Δ)

U0,c = 4 + 0.07 tanh(−22Δ + 12) − 0.1((1.002 − Δ)−0.37 − 1.6)

−0.045 exp(−72Δ8) + 0.01 exp(−200(Δ − 0.19))

where φ is the harmonic average of φ(ci+1, ξi+1) and φ(ci , ξi ), and similarly for ∂,
ν and Ω . The definition of Ni−0.5 and ji−0.5 are similarly.

The discretization of the interface conditions is the main focus of this paper.
For the treatment of the interface conditions (5) and (6), we consider two different
ways. The first way is using the nearby volume’s center values cs, ce, ξs, ξe in the
function ise, see (7). This is the approach used in [6]. The second way is introducing
new variables c−, c+, ξ−, ξ+ on the interfaces and discretizing the fluxes on the
interface. As the interface conditions (5) and (6) are basically one dimensional along
the normal direction of interfaces, we just show this treatment in the 1D case, the
extension to multi dimensional case is straightforward.

Method 1: exact fluxes, approximate evaluation of ise

Let us suppose that for some fixed i , an interface π is located at xi+0,5. In this case,
in (8) the interface condition has to be used to determine Ni+0,5. We use (5), but
instead of evaluating ise using c−, c+, ξ−, ξ+, we evaluate it using cs, ce, ξs, ξe.
In this particular case the subscripts e, s stand for the centers of the near-interface
finite volumes. The above explanation means e.g.,

Nπ− ·⎧n = Ni+0.5 ·⎧n = ise(c+, c−, ξ+, ξ−)/F ⊃ ise(ce, cs, ξe, ξs)/F. (10)

The flux ji+0.5 is treated in a similar way.
Method 2: exact evaluation of ise, approximate fluxes

Here we introduce four unknowns on the interface, namely c−, c+, ξ−, ξ+. In
this case we discretize the fluxes in the interface conditions (5) and (6) by using
these new unknowns, i.e.
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−(φ(c−, ξ−)
c−−cs

h/2 + ∂(c−, ξ−)
ξ−−ξs

h/2 ) = ise(c+, c−, ξ+, ξ−)/F,

−(ν(c−, ξ−)
c−−cs

h/2 + Ω (c−, ξ−)
ξ−−ξs

h/2 ) = ise(c+, c−, ξ+, ξ−),

−(φ(c+, ξ+)
ce−c+

h/2 + ∂(c+, ξ+)
ξe−ξ+

h/2 ) = ise(c+, c−, ξ+, ξ−)/F,

−(ν(c+, ξ+)
ce−c+

h/2 + Ω (c+, ξ+)
ξe−ξ+

h/2 ) = ise(c+, c−, ξ+, ξ−).

(11)

4 Numerical Results

In this section, we use numerical results to discuss the accuracy of the above meth-
ods. Let us remark that generally the default number of volumes in x direction are
respectively 12, 16, 12 in ηa , ηe, ηc and 32 in y direction, and the refined mesh
is to double all these four numbers. To test the behavior at different values of the
current density, we consider two examples. The first one is to apply a lower cur-
rent density, i.e. I = −0.0001 A/cm2, the other one is higher current density, i.e.
I = −0.001 A/cm2. These current densities correspond to charge rates of 0.3 and 3C ,
respectively (with the usual definition of a 1C-current corresponding to cell capacity
divided by 1 h). For the lower current density, we take the total charge time to be
Tcharge = 10000 s and time step to be ⊂t = 100 s. For the higher current density,
we take the total charge time to be Tcharge = 190 s and time step to be ⊂t = 5 s.
The results of these two examples are given in Fig. 3 where cell potential and solid
concentration at the anode interface are displayed. The cell potential is the potential
difference between cathode and anode boundary (since we fix the anode boundary
potential it is just a point value at a special position, which is most important in
the battery simulation). From the figures we can see that when the applied current
density is low the results obtained with both methods are very close. However, at
3C the cell-potential is pronouncedly different for both methods which is consistent
with the increased difference in solid interface concentration. Of course, due to the
simplicity of the geometric model presented here, comparisons to experiment with
the aim to judge which method is more exact are not meaningful. However, based on
the following reasoning we can expect that method 2 is more exact: A snapshot of
the concentration along the x-direction of the battery cell reveals that the concentra-
tion profile basically does not change with the two methods no matter whether the
current is high or low (Fig. 4). The only difference is the additional concentration
value directly on the interface in case of method two. This additional value contin-
ues the concentration trend according to the solid diffusion. Since our galvanostatic
simulation setting basically fixes ise to the applied current density I a difference
in the concentration profile is not to be expected. However, the potential ξ has to
adjust such that the required ise is obtained. Since the potential depends on the open-
circuit-potential U0(Δ) of the respective electrode, the potential indirectly depends
on the solid interface concentration. Now at 0.3C the interface concentration does
not differ much from the concentration of the nearest solid voxel. This is not true
anymore at 3C since the concentration gradient is much steeper and therefore the
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Fig. 3 Cell potential and anode concentration used in interface conditions as function of time
for charging rates 0.3C (left) and 3C (right). In the latter case comparison with a refined mesh is
included (dashed lines)
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Fig. 4 Concentration snapshot at charging rates 0.3C (left) and 3C (right)

difference between interface and voxel concentration is much more pronounced. Via
U0 this couples back to the potential distribution and leads to the observed difference
in cell-potential. From this we conclude that the discretization with additional inter-
face unknowns can lead to more accurate results whenever a strong concentration
gradient within the active particles is present (e.g. by slow diffusion or high applied
current density).

In some sense this method is similar to increasing the spatial resolution. Therefore
we have compared simulations of different mesh resolutions (right panel of Fig. 3).
Indeed, higher resolution has the same effect on the cell potential as adding extra
interface unknowns. As expected the effect of a higher resolution on the other hand
is smaller when compared to the case with extra interface nodes.

In this context we also looked at the convergence behavior of both methods. To
this end, we fix the number of volumes in y direction to be 4, and double the number
of volumes in x direction in five steps, beginning with 12, 16, 12 volumes (for anode,
electrolyte and cathode, respectively) and ending with 384, 512, 384 volumes. The
meshes are denoted mesh 1 to mesh 6, respectively. We take the solution of “method
2” at the finest mesh (i.e. mesh 6) as the “exact” solution to evaluate the error, see
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Table 4 Maximal relative error of cell potential with respect to mesh 6 (with 1280 volumes in
x-direction) for the two methods and charging rates

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 Average order

Number of volumes in x 40 80 160 320 640
Method 1 (0.3C) 0.0097 0.0052 0.0027 0.0014 7.0128e-4 0.9476
Method 1 (3C) 0.0587 0.0366 0.0206 0.0107 0.0055 0.8540
Method 2 (0.3C) 0.0020 5.1991e-4 1.2758e-4 2.6692e-5 6.5943e-6 2.0608
Method 2 (3C) 0.0420 0.0150 0.0042 0.0011 2.1265e-4 1.9064

Table 4. Note that just for the maximal (at all time steps) relative error of cell potential,
when the mesh is not too coarse, method 1 seems to be first order, and method 2 to
be second order accurate. In the near future we will study the numerical behaviour
of both methods more deeply. Furthermore the interplay between geometry, spatial
resolution and additional interface unknowns will be investigated. The current study
suggests already, that the additional technical complexity of method 2 may be justified
by gaining a second order method also at the interface.
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A Finite Volume Method for Large-Eddy
Simulation of Shallow Water Equations

Rajaa Abdellaoui, Fayssal Benkhaldoun, Imad Elmahi
and Mohammed Seaid

Abstract We present a robust finite volume method for large-eddy simulation of
shallow water flows. The governing equations are derived from the Navier-Stokes
equations with assumptions of shallow water flows including bed frictions and eddy
viscosity. The turbulence effects are incorporated in the system by considering the
Smagorinsky model. The numerical fluxes are reconstructed using a modified Roe’s
scheme that incorporates, in its reconstruction, the sign of the Jacobian matrix of the
convective part of the large-eddy shallow water equations. The diffusion terms are
discretized using a Green-Gauss diamond reconstruction. The proposed method is
verified for the benchmark problem of flow around a circular cylinder.

1 Introduction

The description of the evolution of water flows in terms of water height and water
velocity has proven to be very successful. Obviously, this description cannot be valid
for very small scales at which molecular nature of the medium has to be taken into
account. In the present work we consider the large-eddy simulation (LES) to model
these small scales and also to analyse the subgrid errors. The basic idea of LES is to
compute a space averaged flow field accurately. To achieve this, each flow variable
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ω is decomposed into a large-scale component ω and a subgrid scale component ω∨.
The large-scale component is obtained by the application of a filter operator, see for
example [4]. We also introduce the mass-weighted (Favre) filtering of ω as

⎧ω = hω

h
.

By applying the filter operator to the standard shallow water equations, one obtains
the depth-averaged equations

∂t h + ∂x (h⎧u) + ∂y(h⎧v) = 0,

∂t (h⎧u) + ∂x

⎪

h⎧u2 + 1

2
gh

2
⎨

+ ∂y
⎩
h⎧u⎧v

) = −τ bx

ρ
+ ∈ ·

(
(ν + νt )∈ ⎩

h⎧u
))

, (1)

∂t (h⎧v) + ∂x
⎩
h⎧u⎧v

) + ∂y

⎪

h⎧v2 + 1

2
gh

2
⎨

= −τ by

ρ
+ ∈ ·

(
(ν + νt ) ∈ ⎩

h⎧v
))

,

where t is the time variable, x = (x, y)T the space coordinates, ρ the water density, g
is the gravitational acceleration, ν is the kinematic viscosity of water, h(t, x, y) is the
water depth, u(t, x, y) and v(t, x, y) are the depth-averaged velocities in the x- and
y-direction, respectively. In (1), ∈ = ⎩

∂x , ∂y
)T denotes the gradient operator and

νt = (csδ)
2

h

√

∂x
⎩
h⎧u

)2 + 1

2

(
∂y

⎩
h⎧u

) + ∂x
⎩
h⎧v

)) + ∂y
⎩
h⎧v

)2
,

where cs is a model constant which has to be chosen a priori, and δ is the grid
filter width. Numerical tests in the literature with the Smagorinsky model use a
Smagorinsky constant cs ranging from 0.01 to 0.1, see for example [6].

For free-surface water flows, the shear stresses are commonly modelled by the
following quadratic friction law [5],

τ bx = ρC f
⎧u
⊃

⎧u2 +⎧v2

2
, τ by = ρC f

⎧v
⊃

⎧u2 +⎧v2

2
, (2)

where C f is the friction coefficient assumed to satisfy the semi-empirical law [5],

1
√

C f
= −4 log

(
1.25

4Re
√

C f

⎜

, (3)

with Re denotes the Reynolds number. In the current study we are interested in devel-
oping an unstructured finite volume method for solving the LES of shallow water
Eq. (1). Numerical fluxes are reconstructed using the techniques used in [2] whereas,
the finite volume discretization of the elliptic part in (1) is dealt with using a Green-
Gauss diamond reconstruction. The performance of the present method is examined
for the test problem of turbulent shallow water flows around a circular cylinder.
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2 The Finite Volume Method

For simplicity in presentation, the LES shallow water system (1) can be rearranged
in a conservative form as

∂t W + ∂x

(
F(W) − F̃(W)

)
+ ∂y

(
G(W) − G̃(W)

)
= S(W), (4)

where W and S are the vectors of conserved variables and source term, F and G are
the convection tensor fluxes, F̃ and G̃ are the diffusion tensor fluxes

W =
⎟


h

hu
hv



 , F(W) =
⎟


hu

hu2 + 1
2 gh2

huv



 , G(W) =
⎟


hv

huv
hv2 + 1

2 gh2



 ,

S(W) =

⎟

⎛
⎛
⎛


0

− τbx

ρ

− τby

ρ



⎝
⎝
⎝


, F̃(W) =
⎟


0

(ν + νt ) ∂x (hu)

(ν + νt ) ∂x (hv)



 , G̃(W) =
⎟


0

(ν + νt ) ∂y (hu)

(ν + νt ) ∂y (hv)



 ,

where the “overbar” and “Favre”, used to refer to filtered variables, has been omitted
for ease in notation. The integral form of the Eq. (4) over a fixed volume V is given
by

∂t

⎞

V
W dV +

⎞

V

(
∂x

(
F(W) − F̃(W)

)
+ ∂y

(
G(W) − G̃(W)

))
dV =

⎞

V
S(W) dV,

that, using the divergence theorem for the second integral leads to

∂t

⎞

V
W dV +

⎞

∂V
F (W; n) dσ −

⎞

∂V
F̃ (W; n) dσ =

⎞

V
S(W) dV, (5)

where

F (W; n) = F(W)nx + G(W)ny, F̃ (W; n) = F̃(W)nx + G̃(W)ny,

and ∂V is the surface surrounding the volume V .
Research on numerical solution of shallow water equations has received con-

siderable attention during the last decades and several finite volume methods have
been developed in the literature. In the current work, we consider a finite volume
method based on the sign matrix developed and analyzed in [2] among others. The
main advantages of this method lies on its implementation on unstructured triangular
meshes and preserving conservation properties of the equations. Hence, using the
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Fig. 1 A generic control
volume and notations. The
co-volume coVi j is limited
by the gray area, Wi and W j
are the solution vectors at the
control volume Ti and T j ,
respectively

i j
Γij

W
W

x x
coVij diji

j

control volume depicted in Fig. 1, a finite volume discretization of (5) yields

Wn+1
i = Wn

i − Δt

|Ti |
⎠

j⊂N (i)

⎞

Γi j

F (Wn; n) dσ + Δt

|Ti |
⎠

j⊂N (i)

⎞

Γi j

F̃ (Wn; n) dσ

+ Δt

|Ti |
⎞

Ti

S(Wn) dV, (6)

where N (i) is the set of neighboring triangles of the cell Ti , Γi j is the interface
between the two control volumes Ti and T j , Wn

i is an average value of the solution
W in the cell Ti at time tn ,

Wi = 1

|Ti |
⎞

Ti

W dV,

where |Ti | denotes the area of Ti and ∂V is the surface surrounding the control
volume V . Here, n = (nx , ny)

T denotes the unit outward normal to the surface ∂V .
Following the formulation in [2], the proposed finite volume scheme consists of a
predictor stage and corrector stage as

Wn
i j = 1

2

(
Wn

i + Wn
j

)
− 1

2
sgn

⎢
∈F

(
W

n
i j ; ni j

)⎣ (
Wn

j − Wn
i

)
,

(7)

Wn+1
i = Wn

i − Δt

|Ti |
⎠

j⊂N (i)

F
(

Wn
i j ; ni j

) ⎤
⎤Γi j

⎤
⎤ + ΔtSn

i ,

with sgn [A] denotes the sign matrix of A and W
n
i j is the Roes average state. A detailed

formulation of the sign matrix can be found in [2] and it will not be repeated here.
To discretize the diffusion fluxes in (6) we adapt a Green–Gauss diamond recon-

struction, see for example [1] and further references are therein. This method has
been selected because it can be applied on general unstructured grids, it does not
require serious restrictions on the angles of triangles, and it can be easily incorpo-
rated in our finite volume scheme. Hence, a co-volume, coVi j , is first constructed by
connecting the barycentres of the elements that share the edge Γi j and its endpoints
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as shown in Fig. 1. Then, in the x-direction, diffusion fluxes are evaluated at an inner
edge Γi j as

⎞

Γi j

ν∂x (hu) nx dσ =
ν̄
⎤
⎤
Γi j⎤

⎤coVi j
⎤
⎤

⎠

ε⊂∂coVi j

(hu)N1
+ (hu)N2

2

⎞

ε

nxε dσ, (8)

where N1 and N2 are the nodes of the edge ε on the surface ∂coVi j , (hu)N1 and
(hu)N2 are the values of the discharge (hu) in the node N1 and N2, respectively. In
(8), the diffusion coefficient ν̄ is defined by

ν̄ = νN1 + νN2 + νN3 + νN4

4
,

with νNk , k = 1, . . . , 4, are values of the diffusion coefficient ν at the co-volume
nodes Nk approximated by linear interpolation from the values on the cells sharing
the same vertex Nk .

3 Numerical Results

We present numerical results for the test example of LES shallow water flows over
a circular cylinder. The main goals of this section are to illustrate the numerical
performance of the finite volume method described above and to numerically verify
its capability to solve turbulent shallow water problems. In all the computations
reported herein, cs = 0.03 and we used variable time stepsizes Δt adjusted at each
step according to

Δt = Cr · min (Δtconv,Δtdiff) ,

where

Δtconv = min
Γi j

(
|Ti | + ⎤

⎤T j
⎤
⎤

2
⎤
⎤Γi j

⎤
⎤ maxp

⎤
⎤(λp)i j

⎤
⎤

⎜

, Δtdiff = min
Γi j

⎪ |Ti |
2 (ν + νt )i j

⎨

with Γi j is the edge between two cells Ti and T j , and Cr is the Courant number set
to 0.8 to ensure stability. The gravitational acceleration is fixed to g = 9.81m/s2.
A schematic of the system considered in the present work is shown in Fig. 2. The
system consists of a shallow water flow in a channel containing a circular cylinder.
A similar test problem has been investigated in [3]. Here, the channel width is L , the
channel height is H and the diameter of cylinder is D. A water flow enters through
the left boundary of channel with uniform velocity u∞. The Reynolds number for
this problem is defined as Re = Du∞/ν. Here, the governing equations (4) are
solved on a computational domain Ω with smooth boundary ∂Ω = Γw ≤ Γin ≤ Γout
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Fig. 2 Configuration of the flow around a cylinder

-0.05 0 0.05 0.1 0.15

-0.04

0

0.04

-0.05 0 0.05 0.1 0.15

-0.04

0

0.04

Fig. 3 A zoom on Mesh 1 (left plot) and Mesh 2 (right plot) used in the simulation

shown in Fig. 2, and subject to the following boundary conditions

u(t, x̂) = 0, ∀ x̂ ⊂ Γw,

u(t, x̂) = u∞, ∀ x̂ ⊂ Γin, (9)

n(x̂) · ∈u(t, x̂) = 0, ∀ x̂ ⊂ Γout,

for the flow and

n(x̂) · ∈h(t, x̂) = 0, ∀ x̂ ⊂ ∂Ω, (10)

for the water height. Here, u = (u, v)T and n(x̂) denotes the outward unit normal
in x̂ with respect to ∂Ω . In all our computations we set L = 1.25 m, H = 0.6 m,
D = 6.3 cm, u∞ = 14.3 cm/s and initially the water height is set to h = 3.8 cm. We
perform computations with triangular finite volumes using the unstructured meshes
shown in Fig. 3.

In Fig. 4 we display the snapshots of the u-velocity and v-velocity. In this figure
we also include the transport of two passive tracers injected at the upstream side of
the cylinder. The presented results indicate circulation zones moving downstream for
both meshes. The results also indicate that refining the mesh, alters the flow features
and also the tracer distribution past the cylinder. For instance, the size of the recircu-
lation zones increases with the flow exhibiting eddies with different magnitudes and
separating shear layers. We can see the small complex structures of the flow being
captured by the proposed finite volume method.

Figure 5 presents cross-sections of the u-velocity and v-velocity at three different
locations within the channel using the unstructured grids listed in Table 1. The vertical
sections have been located upstream at x = −0.1, right behind the cylinder at
x = 0.04 and downstream at x = 0.1. It is clear that the flow structures differ from
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Fig. 4 Snapshots of u-velocity (first row), v-velocity (second row) and tracer (third row). Results
obtained using a coarse mesh Mesh 1 (left column) and using a fine mesh Mesh 3 (right column)
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Fig. 5 Cross-sections of the u-velocity (first row) and v-velocity (second row) at different locations
in the channel. Here x = −0.1 (first column), x = 0.04 (second column) and x = 0.1 (third column)
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Table 1 Comparison results for the LES shallow water flows over a circular cylinder on three
unstructured meshes

# of elements # of nodes min h max h min u max u

Mesh 1 19256 9853 0.241 0.245 –0.069 0.229
Mesh 2 41310 20980 0.219 0.223 –0.082 0.242
Mesh 3 81330 40550 0.213 0.218 –0.095 0.256

one location to another and strongly depend on the mesh considered in the simulation.
It is also evident that the finer mesh Mesh 3 would produce more accurate results that
the coarse mesh Mesh 1. However, the results on the Mesh 3 and Mesh 2 demonstrate
similar trends. This can clearly been seen in Table where minimum and maximum
values of the water height and flow field are summarized.

4 Conclusions

In the present study, the turbulent fow past a circular cylinder is numerically solved
by a robust finite volume method. The method uses shallow water assumptions and
the Smagorinsky model in the governing equations and its belongs to the class of
fractional step procedures where the convection part and diffusion part are discretized
on separated control volumes. Conservative reconstruction of numerical fluxes is
achieved thanks to the the sign of the Jacobian matrix of the convective part of the
large-eddy shallow water equations. The numerical simulations are performed and
comparisons are presented for simulations on different unstructured meshes. The
presented results demonstrate the capability of the finite volume method that can
provide insight into complex shallow water fow behaviors.
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An Asymptotic Preserving Scheme for
the Barotropic Baer-Nunziato Model

Rémi Abgrall and Sophie Dallet

Abstract We introduce in this paper a new scheme for obtaining approximations of
solutions of the barotropic Baer-Nunziato (BN) model. This scheme is expected to
provide relevant approximations when relaxation time scales embedded in pressure
and velocity relaxation terms vanish. A brief recall of the BN model and the asymp-
totic model is first given. The scheme and its main properties are described and some
numerical results are provided confirming that it behaves reasonably well.

1 Introduction

The mathematical and numerical modelling of two-phase flows is a widely debated
topic. Depending on applications, the single-fluid or the two-fluid approach may be
preferred. An advantage of the former is its simplicity and computational efficiency,
whereas a probable drawback of the two-fluid formalism is that the use of high-order
schemes is mandatory in order to obtain decent approximations of solutions. For
flows involving non-negligible relative velocities, the two-fluid approach is manda-
tory. Actually, for some applications, a hybrid approach seems rather appealing, but
this in turn requires the development of a consistent approach, which means retrieving
at least the main patterns from the—simpler—single fluid model when some ade-
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quate parameters are tuned to 0 in the—expected more complex—two-fluid model.
The two-fluid model investigated in this paper is a barotropic version of the original
Baer-Nunziato (BN) model [2]. This five-equation model has been investigated quite
recently in [7] and [3] for instance. The authors of these two references respectively
propose a well-balanced scheme and a relaxation scheme in order to compute approx-
imations of solutions of the barotropic BN model. In this paper, we wish to construct
a scheme that preserves the asymptotic regime when the relaxation time scales that
are active in so-called source terms tend to vanish (see [4]). Another aim is to obtain
a sufficiently cheap and accurate algorithm. Hence, after a very brief description of
the whole model, we will introduce the scheme and give its main properties; next,
we will present some computational results in order to evaluate the capabilities of
the scheme when simulating a Riemann problem and also to examine the behaviour
of the scheme when some small parameter tends to 0.

2 The Barotropic Baer-Nunziato Model

We recall the governing equations of the barotropic Baer-Nunziato model. We denote
as usual αk, ρk and uk the statistical fraction, density and velocity within phase k, such
that α1 + α2 = 1, αk ∨]0; 1[, and mk = αkρk stands for the mass fraction in phase
k. The model includes pressure and velocity relaxation terms, with corresponding
relaxation time scales embedded in Θ(W ) > 0 and Λ(W ) > 0. We also set VI =
βu1 + (1 − β)u2 and PI = (1 − β)P1 + β P2, where β = 0 or 1, and define relative
pressure Pr = P2 − P1 and velocity ur = u2 −u1. In this barotropic formulation, the
pressure Pk is an increasing function of ρk : Pk = Pk(ρk). Thus the system reads:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂α2

∂t
+ VI

∂α2

∂x
= Θ(W )(P2 − P1)

∂

∂t
(αkρk) + ∂

∂x
(αkρkuk) = 0

∂

∂t
(αkρkuk) + ∂

∂x
(αkρku2

k) + ∂

∂x
(αk Pk) − PI

∂αk

∂x
= (−1)k+1Λ(W )|ur |ur

(1)

The convective part of this system is hyperbolic. We recall that the eigenvalues
are: λ1 = VI , λ2−5 = uk ± ck ; moreover the set of right eigenvectors spans the
whole space R

5 unless |uk − VI | = ck . Fields associated with eigenvalues λ2−5 are
genuinely non linear; the 1−wave is linearly degenerated due to the specific choice
of VI . Regular solutions of system (1) comply with the following balance equation:

∂t
( ∑

k

mk(
u2

k
2

+ fk(ρk))
) + ∂x

( ∑

k

(αkuk(ρk
u2

k
2

+ ρk fk(ρk) + Pk))
) = −Λ|ur |u2

r − Θ P2
r

where the function fk(ρk) is such that: f
∈
k(ρk) = Pk (ρk )

ρ2
k

.
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We now assume that scalar functions Θ(W ),Λ(W ) behave as: Θ(W ) = θ(W )

ε2 and:

Λ(W ) = λ(W )

ε2 with respect to some small parameter ε. Hence, by using a Chapman-

Enskog expansion, we know (see [1] and [5]) that system (1) may be rewritten in the
asymptotic regime in the following modified form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ

∂t
+ ∂

∂x
(ρu) = 0

∂ρY

∂t
+ ∂

∂x
(ρY u + ρY (1 − Y )ur ) = 0

∂ρu

∂t
+ ∂

∂x
(ρu2 + P + ρY (1 − Y )u2

r ) = 0

|ur |ur = ε2 ρY (1 − Y )

λ
(1/ρ2 − 1/ρ1)

∂ P

∂x
Pr = 0

while neglecting O(ε2) contributions -except for u2
r terms-, and noting ρ, ρY, ρu, P

the total mass, the mass of species 2, the total momentum and the mean pressure.
Actually, the latter correspond to: (1−α2)ρ1 +α2ρ2, α2ρ2, (1−α2)ρ1u1 +α2ρ2u2,
and (1−α2)P1+α2 P2 respectively. In the asymptotic model, the new equation of state

is obtained by setting Pr = 0 and thus solving: P1(
ρ(1 − Y )

1 − α2
)−P2(

ρY

α2
) = 0 with

respect to α2, at any point (x, t), which eventually provides P = P1(
ρ(1 − Y )

1 − α2
).

3 Numerical Scheme

We present below a semi-implicit scheme in order to compute approximations of
the solutions of system (1), in such a way that no constraint would arise in the
choice of relaxation time scales, i.e. with ε. Another objective is to have discrete
pressure contributions such that the relative velocity would agree with the asymptotic
situation. The scheme basically relies on the single-phase algorithm quite recently
introduced in [6]. Thus a classic staggered mesh arrangement is used. Pressures,
mass fractions and total mass are evaluated at the centre of Finite Volume cells, while
velocities are estimated at cell boundaries. Convective contributions are accounted
for explicitly; meanwhile, the discrete pressure terms are implicit. Thus, setting
δw = (wn+1 − wn)/Δtn whatever w is, the time scheme is:

δmk +
[ ∂

∂x
(mkuk)

]n = 0

δα2 +
[
VI

∂α2

∂x

]n =
[
Θ(u)(P2 − P1)

]n+1
setting: Pn+1

k = Pk(
mn+1

k

αn+1
k

)
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δ(mkuk) +
[ ∂

∂x
(mku2

k)
]n +

[ ∂

∂x
(αk Pk)

]n+1 −
[

PI
∂αk

∂x

]n+1 =
[
(−1)k+1Λ|ur |ur

]n+1

We define, for m = n, n + 1 the mean values (φ)m
i+ 1

2
around cell interfaces xi+ 1

2
as:

(φ)m
i+ 1

2
= 1/2(φ)m

i + 1/2(φ)m
i+1, for: φ = mk, PI

Step 1: The mass fractions are first advanced in time using the cell scheme:

hδ
(
(mk)i

⎜
+ (Fk)

n
i+ 1

2
− (Fk)

n
i− 1

2
= 0

where h is the length of each primal or dual cell, and:

(Fk)
n
i+ 1

2
= (uk)

n
i+ 1

2

⎟
(mk)

n
i i f (uk)

n
i+ 1

2
> 0

(mk)
n
i+1 otherwise

Step 2: Once the latter have been computed, volume fractions (α2)
n+1
i are then

obtained using:

hδ
(
(α2)i

⎜
+(VI )

n
i− 1

2

(
(α2)

n
i − Hn

i− 1
2

) + (VI )
n
i+ 1

2

(
Hn

i+ 1
2

− (α2)
n
i

) = h
θn+1

i

ε2 (Pr )
n+1
i

with (Pr )
n+1
i = (P2)

n+1
i − (P1)

n+1
i and where the upwind flux Hi+ 1

2
and pressures

(Pk)
n+1
i are defined by:

(Pk)
n+1
i = Pk(

(mk)
n+1
i

(αk)
n+1
i

) and: Hn
i+ 1

2
=

⎟
(α2)

n
i if (VI )

n
i+ 1

2
> 0

(α2)
n
i+1 otherwise

This second step requires solving a non-linear equation g(y) = 0 within each cell,
with respect to y = (α2)

n+1
i ; new values (α1)

n+1
i = 1 − (α2)

n+1
i can then be

deduced. When θ(W ) = θ0 or when θ(W ) = θ0α1α2, where θ0 is a positive constant,
the function g(y) is monotone in ]0, 1[, and admits a unique solution ysol ∨]0, 1[
provided that equations of state satisfy natural conditions:

lim
y⊃+⊂Pk(y) = +⊂ lim

y⊃+O+ Pk(y) = a ∨ R

Step 3: Approximate values of velocities (uk)i+ 1
2

are evaluated on the staggered

mesh in the third step. Once again, discrete convective fluxes (Gk)
n
i on the boundary

of the staggered mesh are calculated using the upwind scheme:
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(Gk)
n
i = (Fk)

n
i (̃uk)

n
i

noting: (Fk)
n
i = 1/2(Fk)

n
i− 1

2
+ 1/2(Fk)

n
i+ 1

2
and

(̃uk)
n
i =

⎟
(uk)

n
i− 1

2
if (Fk)

n
i > 0

(uk)
n
i+ 1

2
otherwise

hδ
(
(mk)i+ 1

2
(uk)i+ 1

2

⎜
+ (Gk)

n
i+1 − (Gk)

n
i + [

(αk)
n+1
i+1 (Pk)

n+1
i+1 − (αk)

n+1
i (Pk)

n+1
i

]

−(PI )
n+1
i+ 1

2

[
(αk)

n+1
i+1 − (αk)

n+1
i

] = (−1)k+1h
λn+1

i+1/2

ε2 (ur )
n+1
i+ 1

2

∣
∣
∣(ur )

n+1
i+ 1

2

∣
∣
∣

This third step only requires computing the root of a second-order polynomial. As
soon as (mk)

n+1
i+ 1

2
> 0, the existence and uniqueness of a real root is obtained and the

solution is known explicitly. The preservation of the total mass is also guaranteed on
the staggered mesh.

Property The mass fractions mk remain positive if the following CFL-like condition
holds:

Δt

⎛

max
(
(uk)

n
i+ 1

2
; 0

⎜
− min

(
(uk)

n
i− 1

2
; 0

⎜⎝

< h

Volume fractions αk remain in ]0; 1[ by construction.

We now have the following result, for constant θ(W ) = θ0 or θ(W ) = θ0α1α2:

Theorem 1 We consider the expansion: φ(x, t) = φ0(x, t) + εφ1(x, t) + O(ε2).
We assume bounded initial conditions such that αk(x, t = 0) ∨]0; 1[ and mk(x, t =
0) > 0. We also assume that boundary conditions do not depend on ε.

• Then, for n ∞ 0 the scheme associated with steps (1 − 3) admits a limit when
ε ⊃ 0: if W n, a discrete solution obtained by the scheme at time tn—on all
cells—has a bounded limit when ε tends to 0, then W n+1 has a limit, bounded too,
when ε tends to 0.

• For n ∞ 1, and for all cells indexed by i , we have:

((αk)
n
i )0 ∨]0; 1[ and: ((mk)

n
i )0 > 0

provided that the following CFL condition is ensured:

Δtn
⎛

[
max

(
(uk)

n
i+ 1

2
; 0

)]

0 − [
min

(
(uk)

n
i− 1

2
; 0

)]

0

⎝

< h.

• We also have the asymptotic behaviour:

((Pr )
n
i )0 = 0 and: ((Pr )

n
i )1 = 0.
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Fig. 1 Logarithm of the L1

norm of the error ||w − wh ||L1

as a function of ln(h) for the
1D Riemann problem, for
w = α2, ρ1, ρ2, u1, u2
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Moreover, the discrete relative velocity satisfies:

(
(ur )

n
i+ 1

2

)

0 = 0

h
(
(ur )
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2

)

1

∣
∣
(
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([
(1/ρ2 − 1/ρ1)

∂ P
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+ Rn
i+ 1

2

⎜

where the estimates for the mean pressure gradient and the residual are:

[
(τ2 −τ1)

∂ P

∂x

]n+1

τ, i+ 1
2

= [
τ2,h −τ1,h

][ ∑

k=1,2
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i+1 (Pk)

n+1
i+1 −

∑

k=1,2
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n+1
i (Pk)

n+1
i

]

noting: τk = 1/ρk and τk,h = ((αk)
n+1
i+ 1

2
)/((mk)

n+1
i+ 1

2
)

Rn
i+ 1

2
=

∑

k

(−1)k

(mk)
n+1
i+ 1

2

[[
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n
i −(Fk)

n
i+1

]
(uk)

n
i+ 1

2
+[

(Fk)
n
i+1(̃uk)

n
i+1−(Fk)

n
i (̃uk)

n
i

]]

Idea of the proof: We first show all these properties—except for the first-order’s
estimation on the relative velocity (ur )1—making a proof by mathematical induction
on the number of time iterations. We consider each discretization successively—step
1, then step 2, and finally step 3—for all cells, and we deduce for each step that
discrete unknowns have a limit, which is bounded, when ε tends to 0, and meanwhile
we get associated properties (positivity of partial masses—step 1—, positivity of
statistical fractions and estimate for the relative pressure—step 2—, first estimate
for the relative velocity (ur )0—step 3—) within each step. Eventually, we obtain the
second estimate for the relative velocity (ur )1 using previous results.
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Fig. 2 α2, ρk and uk for ε = 10−4 (red), 1 (green), 2 (pink) and without source terms (blue)

4 Numerical Results

We first consider the system without source terms in order to compare the approxi-
mations obtained with the present scheme to the exact solution of a Riemann problem
during mesh refinement. The source terms are then considered. The aim of this second
test is to confirm the asymptotic behaviour of the solution.

In both cases the equations of state are given by: Pk(ρk) = ρ
γk
k , with γk > 1.

The time step complies with a classic CFL condition, setting C F L = 0.5 and the
final time is T = 0.1 in all tests.

Test 1: A Riemann problem for the convective part
We set γ1 = 2 and γ2 = 3, VI = u1 and PI = P2. Initial conditions are:

(α2, ρ1, ρ2, u1, u2)L = (0.7, 1, 0.8, 0.3, 0.4)

(α2, ρ1, ρ2, u1, u2)R = (0.3, 0.88998555539, 0.5, 0.16183014405, 0.35732339488)

The solution of this Riemann problem contains a (u1 − c1)-shock wave, followed
subsequently by a u1-contact discontinuity and finally by a (u2 + c2)-shock wave.
The finer mesh contains 50,000 cells, whereas the coarser mesh contains 100 cells.
We observe on Fig. 1 a h1/2 asymptotic rate of convergence as expected.
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Fig. 3 ln(||ur ||L1 ) (left) and ln(||Pr ||L1 ) (right) as function of ln(ε)

Test 2: Asymptotic behaviour
In this test case, we set γ1 = 3, γ2 = 1.5, VI = u2 and PI = P1. We also

set source terms coefficients: λ = θ = 1. Initial conditions for the second test
case are: (α2, ρ1, ρ2, u1, u2)L = (0.9, 0.8, 1, 0, 0) and (α2, ρ1, ρ2, u1, u2)R =
(0.4, 1.2, 0.2, 0, 0).

A first order (respectively second-order) rate of convergence is retrieved for the
relative velocity (respectively for the relative pressure). A mesh with 200 cells (Fig. 3)
has been used for this test, although results on convergence rates are not mesh sen-
sitive. The approximations obtained for several values of ε with a mesh including
1,000 cells and the approximation obtained when source terms are not considered
with 15,000 cells can be observed on Fig. 2.
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Numerical Simulations of a Fluid-Particle
Coupling

Nina Aguillon

Abstract We present numerical simulations of a model of coupling between a
inviscid compressible fluid and a pointwise particle. The particle is seen as a mov-
ing interface, through which interface conditions are prescribed. Key points are to
impose those conditions at the numerical level, and to deal with the coupling between
an ordinary and a partial differential equations.

1 The Model

We consider the following coupling, introduced in [2], between a pointwise particle
of position h, and a fluid governed by the isothermal Euler equations, having density
ρ(t, x) and velocity u(t, x) at time t and point x :

⎧
⎪⎨

⎪⎩

∂tρ + ∂x (ρu) = 0,

∂t (ρu) + ∂x
(
ρu2 + c2ρ

) = −D(ρ, ρ(u − h∨(t)))δh(t)(x),

mh∨∨(t) = D(ρ(t, h(t)), ρ(u(t, h(t)) − h∨(t))).
(1)

Here, c is the speed of sound. The fluid and the particle interact with each other
through the drag force D, which applies only at the point where the particle is located.
If D has the same sign as u − h∨, it formally tends to bring the velocities of the fluid
and the particle closer to each other. Indeed the third line of (1), which is nothing
else than Newton’s law applied to the particle, yields that the particle accelerates if
its velocity is smaller than the fluid’s velocity. This system is a generalization of the
coupling between a particle and an inviscid fluid introduced and studied in [4, 5,
15] (see references therein). In [6], one can find another model of coupling between
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a pointwise particle and a compressible inviscid fluid. The model is different, and
local in time existence of solution for small subsonic data is proved, with tools
develop in [8]. Let us start with two remarks about System (1). We denote by H
the Heaviside function. With the new unknown w := H(x − h(t)), which verifies
∂t w − h∨(t)∂x w = 0, we can write (1) as a non-conservative system of conservation
laws. It is not strictly hyperbolic: its Jacobian matrix has eigenvalues u − c, u + c
and h∨, and is not diagonalizable when h∨ = u ± c. Moreover, as shocks appear in
finite time in the solutions of the Euler equations, the right hand-sides of (1) are not
well defined. However, it is possible to reformulate the System (1) as an interface
problem. In the sequel we denote by (ρ−, u−) and (ρ+, u+) the traces of the fluid on
the left and on the right of the particle: e.g. ρ−(t) = limx∈h(t)− ρ(t, x). Interface
conditions are imposed by saying that the traces must belong to a certain set. In the
spirit of [3], we call that set the germ and we denote it by GD(h∨).

Definition 1 We denote by Fα an antiderivative of the function ρ ⊃∈ α2/ρ+c2ρ
|D(ρ,α)| . The

germ GD(h∨) is the set of ((ρ−, u−), (ρ+, u+)) in (R+ × R)2 such that

1. ρ−(u− − h∨) = ρ+(u+ − h∨). We denote by α this quantity;
2. Either Fα(ρ−) − Fα(ρ+) = sign(α), or there exists θ ⊂ [0, 1] and ρ0 ∞ |α|

c such
that

a. ρ− ∞ α
c ∞ ρ+ and Fα(ρ−)− Fα(ρ0) = θ and Fα( c2

α2ρ0
)− Fα(ρ+) = (1 − θ);

b. ρ+ ∞ −α
c ∞ ρ− and Fα(ρ+)−Fα(ρ0) = θ and Fα( c2

α2ρ0
)−Fα(ρ−) = (1−θ);

3. If u− > h∨ and u− − h∨ ∞ c, then u+ − h∨ ∞ c;
4. If u+ < h∨ and u+ − h∨ ≤ −c, then u− − h∨ ≤ −c.

This relation are obtained thanks to a thickening of the particle, where the Heaviside
function H is replaced by one of its regularization Hε . It appears that the densities and
velocities at the entry and at the exit of the particle are always linked by the relations
of Definition 1, whatever the size ε of the particle is, and which regularization is
chosen (see [2] for more details). The “Riemann invariants” of the wave associated
to eigenvalue h∨ of System (1) are α = ρ(u − h∨) and Fα − Hε.

Definition 2 A triplet (ρ, u, h) ⊂ L∀(R+ × R) × L∀(R+ × R) × W 2,∀
loc (R+) is

called an entropy solution of the problem (1) if:

1. The pair of functions (ρ, u) is a weak entropy solution of the isothermal Euler
equations on the sets {(t, x) ⊂ R

∩+ × R : x > h(t)} and {(t, x) ⊂ R
∩+ × R : x <

h(t)};
2. For almost every t > 0, the traces around the particle exist and belong to the germ

at speed h∨(t): ((ρ−(t), u−(t)), (ρ+(t), u+(t)) ⊂ GD(h∨(t));
3. For almost every t > 0, the particle is driven by the ODE:

mh∨∨(t) = c2(ρ−(t) − ρ+(t))

(

1 − (u−(t) − h∨(t))(u+(t) − h∨(t))
c2

)

. (2)
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The following Proposition, which is proven by simple computations, justifies the
first point of Definition 1 and the reformulation (2) of the ODE.

Proposition 1 A solution (ρ, u) of the Euler equation on the sets {x < h} and
{x > h}, with total bounded variations, conserves the total mass

∫

R
ρdx if and only

if for almost every time,

ρ−(u− − h∨) = ρ+(u+ − h∨).

In that case, it conserves the total impulsion
∫

R
ρudx + mh∨ if and only if for almost

every time, the particle is driven by Eq. (2).

Proof The proof consists in cutting integrals on R as integrals on {x < h} and
{x > h}. For the total impulsion, we obtain that h must verify

mh∨∨(t) = h∨(ρ+u+ − ρ−u−) + (ρ−u2− + c2ρ−) − (ρ+u2+ + c2ρ+).

When the mass is conserved, we express u± in terms of ρ± and α := ρ±(u± − h∨)
to obtain (2).

The main result of [2] exhibits some conditions under which the Riemann problem
for a motionless particle is well-posed.

Theorem 1 Consider a particle having a constant velocity equal to some real v.
If the drag force D has the same sign as α := ρ(u − v), is an increasing function
of α and if |D| is a decreasing function of ρ, then for all ((ρL , uL), (ρR, u R)) in
(R+ × R)2, there exists a unique self similar solution to the Riemann problem

⎧
⎪⎨

⎪⎩

∂tρ + ∂x (ρu) = 0,

∂t (ρu) + ∂x
(
ρu2 + c2ρ

) = −D(ρ, α)δvt (x),

(ρ(0, x), u(0, x)) = (ρL , uL)1x<0 + (ρR, u R)1x>0

(3)

The main difficulty is the non-hyperbolicity of the system. The Riemann problem has
a more complicated structure than in the strictly hyperbolic case, and in particular
uniqueness can be lost (see for example [11, 14]). This is the case for the drag force
D(ρ, α) = ρ illustrated below, which violates the hypothesis of Theorem 1. Remark
that this source term is similar to the source term in the shallow water equations
with discontinuous topography. The Riemann problem (3) with ρL = 0.7, ρR = 5,
qL = 5, qR = 9, c = 2 and λ = 1.5 admits three solutions, depicted on the right
of Fig. 1. As in [7], this coexistence of solutions persists at the numerical level. We
can see on the left of Fig. 1 two solutions selected by the Godunov scheme when
replacing the Dirac measure by

x ⊃∈ exp((x/η − ξ)2)/(η
→

2),

with η = 0.005 and ξ = −0.5 or ξ = 0.5. We used a splitting between the fluid part
and the regularized source term. The subsonic and supersonic solutions are obtained
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Fig. 1 Left solutions at time T = 0.15 given by the Godunov scheme for different regularizations
of the Dirac measure. Right the three solutions of the Riemann problem

for large range of parameter ξ , with a very quick transition between the two passing
through the mixed solution.

2 Finite Volume Schemes for the Coupled System

In the sequel, we adopt classical notation for finite volume schemes. We denote by
q = ρu the momentum of the fluid. In particular, U n

j = (ρn
j , qn

j ) is an approximation
of the solution at the nth iteration in time and in the j th cell, and g is the numerical
flux. Consider the case where the particle has a fixed constant velocity v, and denote
by jn

0 the cell where the particle lies at the nth iteration in time. The three points
scheme

⎧
⎪⎨

⎪⎩

U n+1/2
j = U n

j − Δt
Δx (g(U n

j , U n
j+1) − g(U n

j−1, U n
j )),

U n+1
jn
0

= U n+1/2
jn
0

− Δt
Δx

(
0

D(ρ
n+1/2
jn
0

, ρ
n+1/2
j0

(un+1/2
jn
0

− v))

⎜

,

corresponds to a splitting scheme between the evolution of the fluid (first line) and
the influence of the particle (second line). This scheme does not converge toward the
correct solution, even in the simplest case where D(ρ, ρ(u−h∨)) = λρ(u−h∨) (which
fulfills the hypothesis of Theorem 1) and the initial data belongs to the germ. It can be
seen on Fig. 2. This failure to capture a small scale phenomenon recalls the difficulties
encountered when approximating non-classical shocks (see for example [13]) or non-
conservative systems (see for example [9, 16]). It illustrates that the reformulation
as an interface problem of system (1) is necessary.

2.1 Schemes for a Motionless Particle

When the particle is motionless, we can easily implement schemes based on the exact
resolution of the Riemann problem, which is constructed in the proof of Theorem 1.
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Fig. 2 Solution at time T = 0.04 given by the fluid-particle splitting

Since the particle is not moving, the particle is a fixed interface that we place between
cells numbered 0 and 1. We use a ghost-fluid approach (see [1, 10]) to write the
scheme

⎧
⎪⎨

⎪⎩

U n+1
j = U n

j − Δt
Δx (g(U n

j , U n
j+1) − g(U n

j−1, U n
j )) for j /⊂ {0, 1},

U n+1
0 = U n

0 − Δt
Δx (g(U n

0 , U n
part,−) − g(U n−1, U n

0 )) for j = 0,

U n+1
1 = U n

1 − Δt
Δx (g(U n

1 , U n
2 ) − g(U n

part,+, U n
1 )) for j = 1.

(4)

Here, U n
part,− = (ρn

part,−, qn
part,−) and U n

part,+ = (ρn
part,+, qn

part,+) are the values of the
density and the momentum of the fluid on lines x = 0− and x = 0+ of the unique
self similar solution to (3), with

ρL = ρn
0 , uL = qn

0

ρn
0
, ρR = ρn

1 and u R = qn
1

ρn
1
.

Remark that when g is the Godunov flux, U n+1
0 and U n+1

1 are the averages of the
exact solution with particle given by Theorem 1. In other words, it is the original
Godunov scheme for the fluid/particle coupling. If we start with a Riemann problem
belonging to GD(0), i.e. verifying the relations of Defintion 1, we obtain for all n,

U n
part,− = UL and U n

part,+ = UR .

Adopting the vocabulary of [12], it follows that the scheme (4) is well balanced
with respect to the whole germ GD(0). We used this scheme to simulate a clogged
organ pipe. The pipe is initially filled with a fluid at rest having density 5 kg/m, and
we take c=1 m/s. At time t > 0, a constant flow of 3 kg/s is imposed on the left
entry of the pipe, while the gas exits freely on the right. The pipe is blocked in its
middle by a porous particle that we model using the drag force D(ρ, ρu) = ρu. At
time 0.041 s, the shock emitted by the left boundary condition hits the particle. The
Riemann problem with the particle develops one shock on each side of the particle.
Roughly speaking, most of the air is stuck in front of the particle, causing an elevation
of its density and a decrease of its velocity. A small part of the fluid manages to pass
through the particle, and has a large velocity on the exit of the particle by conservation
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Fig. 3 Two successive interactions between shocks and particle in a clogged organ pipe

of momentum through the particle. The shock on the left of the particle interacts with
the left boundary at time 0.114 s, creating another shock that meets the particle at
time 0.153 s. Asymptotically, the fluid has constant momentum all over the pipe, with
high density and low velocity before the particle, and low density and high velocity
afterwards. Shapes of the solution after the first two interactions of a shock with
the particle are depicted on Fig. 3. This simulation illustrates the convergence of the
ghost fluid scheme (4) on Riemann problem. We used the Godunov numerical flux
but the results are similar with the Rusanov flux.

2.2 Dealing with a Moving Particle

We now focus on the case where the particle is free to move under the influence of
the fluid. We saw in the introduction that it was necessary to treat the particle as an
interface. Therefore, the particle must end up at an interface between two cells at
the end of each time iteration. We could have used a mesh tracking the particle, but
with in mind more complex applications (with numerous particles for example) we
decided to use a fixed mesh and a Glimm’s approach to replace the particle. At each
time iteration, a real number xr is uniformly picked up in [0,Δx]. In the j th cell,
the fluid is updated by the exact value of the solution at time Δt and at point xr of
the Euler equation with initial data

U 0(x) = U n
j−11x<0 + U n

j 10<x<Δx + U n
j+11Δx<x .

Under the classical CFL condition Δt < Δx
2 maxx |u(x)|+c , the solution consists in the

juxtaposition of two Riemann problems. When j corresponds to a neighbor cell of
the particle, one of these Riemann problems takes the particle into account. The
particle’s position is updated in accordance to xr . If the particle it at the interface
jn
0 + 1/2 at time n, and has speed vn , then at time n + 1 we placed it:
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Fig. 4 Left velocity of the particle. Each discontinuity on its acceleration is caused by a shock
hitting the marble. Right density of the fluid on the tube through time. We can see the shock with
decreasing strength trapped between the marble and the bottom of the tube

1. at interface jn
0 + 3/2 if vn > 0 and xr < vnΔt , in which case jn+1

0 = jn
0 + 1;

2. at interface jn
0 −1/2 if vn < 0 and xr > Δx +vnΔt , in which case jn+1

0 = jn
0 −1;

3. at interface jn
0 + 1/2 otherwise, in which case jn+1

0 = jn
0 ;

Eventually, we update the particle’s velocity using (2) and the numerical traces. The
following numerical simulation is inspired by [6]. A marble falls into a cylinder filled
with a compressible inviscid gas, which is initially at rest and of density 1/225 kg/m.
Both the gas and the marble are subject to gravity and friction. The complete system
writes

⎧
⎪⎨

⎪⎩

∂tρ + ∂x (ρu) = 0

∂t (ρu) + ∂x (ρu2 + c2ρ) = −λ(u − h∨)δh(t)(x) − ρg − νF (ρ, u)

mh∨∨(t) = λ(u(t, h(t)) − h∨(t)) − mg − mνS(h∨(t))

where we take as in [6], νS(h∨) = 10−2h∨, νF (ρ, u) = 10−8ρu|u|, c = 15 m/s,
m = 0.004 kg and g = 9.81 m/s2. We took λ = 5 m2 · kg/s. The first term of the
ODE should be understood as in Eq. (2). At first, the marble compresses the gas
beneath it, creating a shock, and its velocity decreases due to friction. At some time,
the shock reflects on the closed bottom of the tube, and then hits the marble, creating
a discontinuity in its acceleration and accelerating it. This can be seen on Fig. 4, on
the left. When the shock interacts with the marble, it is somehow split in two: a part
is reflected downward and a part passes through the marble and exits freely on the
top end of the tube. Therefore the shock trapped between the marble and the bottom
of the tube is of decreasing strength, as it can be seen on the plot of the density on the
right of Fig. 4. The particle being very light, it is very sensible to the fluid’s velocity,
which is positive when the first shocks are moving upward. It causes the marble to
climb back up for a while, then the gravity becomes predominant and the marble
falls down again. The results are qualitatively the same as in [6]. However, they
do not match perfectly, because the modeling is quite different. In particular in [6],
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the friction between the fluid and the marble is taken into account via a source term

νI = 5
⎟

h∨ − u−+u+
2

)2
, while it is modeled directly through the interface conditions

of Definition 1 in the present work.

3 Perspectives

Let us start with some remarks on System (1), for which we proved in [2] existence
and uniqueness to the Riemann problem when the particle is motionless, and give in
this paper some qualitative properties and illustrative numerical simulations. Further
theoretical study of System (1) seems difficult, as we have to deal with a system
which is neither conservative nor hyperbolic. Even the extension of Theorem 1 to
a freely moving particle is tricky, because the solution is not self-similar, and the
traces around the particle constantly change. It is not difficult to extend the result to
other pressure law, at least to p(ρ) = aργ , with 1 < γ ∞ 3, a > 0 and where no
vacuum appears. Therefore, this model could be used to model the influence of an
obstacle into the shallow water equation. Similarly, the extension to the full Euler
equations is interesting, and could take into account exchange of heat between the
fluid and the particle.
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A Simple Finite Volume Approach to Compute
Flows in Variable Cross-Section Ducts

Bruno Audebert, Jean-Marc Hérard, Xavier Martin and Ouardia Touazi

Abstract In order to derive a simple one-dimensional approach that could handle
fluid flows in smooth ducts as well as in ducts of discontinuous cross-section, we
propose herein a Finite Volume approach that relies on an integral formulation of the
multidimensional flow model. While focusing on Euler equations, we compare two-
dimensional results with approximations obtained using the present approach, and
also with the classical formulation for variable cross-sections using a well-balanced
scheme. Numerical simulations confirm the ability of this integral method to provide
approximations that compare well with 2D results. This method also enables to deal
with all-even including vanishing-cross-section ducts. This approach may also be
applied when considering other single-phase or multi-phase fluid flow models.
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1 Introduction

Numerical tools devoted to the computation of single-phase or two-phase flows in
ducts with variable cross sections are very useful in industry, because they enable
to obtain a reasonable approximation of the true flow in unsteady situations, using
standard computers. This is of particular interest for hydraulic circuits, as well as
in some medical applications, however it requires the ability to deal with smooth or
discontinuous cross sections. When neglecting viscous effects and external forces,
the classical approach which is overwhelmingly retained consists of constructing
numerical approximations of solutions of systems that take the form:

(S1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηS

ηt
= 0

ηφS

ηt
+ ηφuS

ηx
= 0

ηφuS

ηt
+ ηφu2S

ηx
+ S

ηP

ηx
= 0

ηES

ηt
+ ηu(E + P)S

ηx
= 0

where S(x) stands for the area of the cross section, and φ, u, P, E denote the density,
velocity, pressure and total energy of the fluid. Several investigations of the problem
that arises with discontinuous cross-sections have been published, among which we
may cite [1, 6–8, 10], wherein authors focus either on the continuous or the discrete
framework. Roughly speaking, most of the schemes that have emerged to cope with
this problem rely on the well-balanced strategy [5]. The use of this strategy would
even seem mandatory; otherwise approximate solutions can sometimes converge
towards incorrect solutions (see [3, 6, 8]). Nonetheless, an inconvenience of this
strategy is that it assumes that the Riemann invariants of the standing wave associated
with ∂ = 0 are preserved, which of course makes sense for mass flux and total
enthalpy flux, but is questionable in the case of the last Riemann invariant. This
has been confirmed by numerical comparisons (see the work reported in [4] for
instance), and it is actually quite a well-known problem, the classic treatment for
which consists of the introduction of head losses using various empirical closure laws.
This problem has motivated the present work, which aims at providing a somewhat
different approach in order to eliminate the limitations and drawbacks of the classical
approach. Another motivation will be discussed in the conclusion.

The current paper presents the main ideas and results of the work and is organ-
ised as follows: firstly, we present the modified one-dimensional approach; next
we present a few numerical results, with a comparison with the two-dimensional
approach, the classical approach (S1) and the modified one-dimensional formula-
tion, using sufficiently fine and reliable meshes.
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2 A Finite Volume Approach for One-Dimensional Flows

The one-dimensional formulation is obtained as follows. Starting with the three-
dimensional governing equations, restricted here to the Euler framework, thus:

(S2)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ηφ

ηt
+ ∇.(φu) = 0

ηφu

ηt
+ ∇.(φu ⊗ u) + ∇P = 0

ηE

ηt
+ ∇.

(
u(E + P)

) = 0

where the total energy E is E = φ((u)2 + ν(P, φ))/2 and ν(P, φ) is the internal
energy, we integrate over time—from time tn to tn+1—and space using coarse con-
trol volumes as depicted on Fig. 1. At time t = tp, we denote:

Ω
Σ
i Λ

p
i =

∫

Ω
Σ
i

Λ(x, tp)dv

for: Λ = φ, Q, E and also Ω
Σ
i = Si × hi the volume occupied by the fluid within

the i-cell. Using previous definitions, and noting ξi the boundary of control volume
Ωi, straightforward calculations yield:

(S3)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ω
Σ
i

(
φn+1

i − φn
i

)
+ ∫

[tn,tn+1]
∫

ξ (i)(φu.n)(xξ , t)dξ dt = 0

Ω
Σ
i

(
Qn+1

i
− Qn

i

)
+ ∫

[tn,tn+1]
∫

ξ (i)((φu.n)u + Pn)(xξ , t)dξ dt = 0

Ω
Σ
i

(
En+1

i − En
i

)
+ ∫

[tn,tn+1]
∫

ξ (i)((φu.n)H)(xξ , t)dξ dt = 0

s

where Q = φU is the momentum and H = (E + P)/φ is the total enthalpy. Of
course, viscous effects and gravity forces could also be included if required.

We may now introduce a simple explicit Finite Volume scheme FVCA (Finite-
volumes for Variable Cross-section Applications) as follows:

(FVCA)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ω
Σ
i

(
φn+1

i − φn
i

)
+ δtn ⎜

j∈V(i)(φu.n)h
ijξ

Σ
ij = 0

Ω
Σ
i

(
Qn+1

i
− Qn

i

)
+ δtn ⎜

j∈V(i)((φu.n)u + Pn)h
ijξ

Σ
ij = 0

Ω
Σ
i

(
En+1

i − En
i

)
+ δtn ⎜

j∈V(i)((φu.n)H)h
ijξ

Σ
ij = 0

where (π)h stands for some suitable flux scheme (exact or approximate Godunov
scheme) associated with the continuous flux π , and setting δtn = tn+1 − tn; V(i)
refers to the neighbouring cells of cell i and to ghost “mirror” cells associated with
the wall boundaries of cell i (see Fig. 1).
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Fig. 1 Finite volume Ωi
with neighbouring cells, fluid
interfaces and inner wall-
boundaries

We now assume that the initial condition at time tn is such that the transverse
velocity in the y-direction is null everywhere: Uy

n
i = 0. Using the exact Riemann

solution for fluxes around all interfaces, and using the mirror technique for all wall
boundaries, it may be easily checked that the scalar product of ey with the discrete

momentum equation in (FVCA) leads to: (Qy
n+1
i − Qy

n
i ) = 0, and thus Qy

n+1
i = 0

or Uy
n+1
i = 0. This simply means that the discrete flow remains 1D. We detail now

mass and energy balance equations. These read:

Ω
Σ
i

(
φn+1

i − φn
i

)
+ δtn

(
(φux)

h
i+1/2ξ

Σ
i+1/2 − (φux)

h
i−1/2ξ

Σ
i−1/2

)
= 0 (1)

and:

Ω
Σ
i

(
En+1

i − En
i

)
+ δtn

(
(φHux)

h
i+1/2ξ

Σ
i+1/2 − (φHux)

h
i−1/2ξ

Σ
i−1/2

)
= 0 (2)

setting ξ
Σ

i+1/2 = min(Si, Si+1). Eventually, the discrete x−momentum balance for
Qx = φux takes the final form:

Ω
Σ
i

(
Qn+1

xi
− Qn

xi

)
+ δtn

(
(φu2

x + P)h
i+1/2ξ

Σ
i+1/2 − (φu2

x + P)h
i−1/2ξ

Σ
i−1/2

)

+ δtnP∗
i+ 1

2 ,i

(
Si − ξ

Σ
i+1/2

)
− δtnP∗

i− 1
2 ,i

(
Si − ξ

Σ
i−1/2)

)
= 0 (3)

where P∗
i± 1

2 ,i
is an estimation of the Riemann pressure on the wall boundaries i±1/2.

Focusing for instance on perfect gas EOS, hence setting P = (Δ − 1)φν(P, φ),
and using classical results (see [2] for example), we obtain when Si > Si+1:

• if Mi = un
i

cn
i

< 0, then: P∗
i+ 1

2 ,i
=

⎧
⎪⎪⎨

⎪⎪⎩

Pn
i

(
1 + Δ−1

2 Mi

) 2Δ
Δ−1

if 1 + Δ−1
2 Mi ≥ 0

0 otherwise
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Fig. 2 Experimental setup: 1D pipe with a sudden contraction and position of the initial membrane

• if Mi = un
i

cn
i

> 0, then: P∗
i+ 1

2 ,i
= Pn

i

⎟

1 + Δ Mi

(
1 + (Δ+1)2

16 M2
i

)1/2 + Δ (Δ+1)
4 M2

i

)

The same technique is applied when Si < Si+1 in order to estimate P∗
i+ 1

2 ,i+1
.

On the whole, we can now compute mass, x-momentum and energy balance with
the aid of (1–3), assuming that some standard explicit CFL condition holds for δtn.
The counterpart of the latter expressions of P∗

i± 1
2 ,i

can be found for any EOS, using

the mirror state and shock/rarefaction curves in GNL waves. Obviously, there are no
intrinsic limits for cross-section values, even if Si = 0. Depending on the choice of
numerical fluxes at the fluid interfaces, CFL-like conditions must be introduced in
order to guarantee positive discrete values of the density φn

i . Further details can be
found in [11].

3 Numerical Results

We present in this section a few results arising from a comparison of the three distinct
approaches.

• A first approach simply consists of computing the complete set of equations (S2)
using the approximate Godunov scheme [2] on a fine enough two-dimensional
mesh of about one million cells; the results will be called the reference solution;

• The second series of results were obtained with the classical well-balanced strategy
applied to the set of one-dimensional equations (S1), with the focus here on very
fine meshes only; the well-balanced Rusanov scheme used in these computations
is the one proposed in [8] and also used in [3] where the convergence towards the
correct solution has been verified;

• The third series illustrates the numerical approximations obtained by computing
the integral system (1–3) on fine one-dimensional meshes (called 1D+).

Actually, two slightly different ways of estimating the pressure on the wall boundaries
will be applied to the set of formulas above, corresponding respectively to the exact
Riemann solution and to the same approximation obtained by setting Mi = 0.

The experimental setup is the following: a one dimensional pipe contains a sudden
cross-section contraction located at x = 0.8 (see Fig. 2). At the start of the simulation,
a membrane at x = 0.7 separates two distinct states (φL, uL, PL) = (1, 0, 105)

and (φR, uR, PR) = (0.125, 0, 104). Hence, at the beginning, a right-going shock
wave followed by a contact discontinuity propagates, then “hits” the cross-section
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Fig. 3 Density profiles at t = T0 in test case 1. Dashed blue curve 1D+ approach with 50,000
cells. Dotted red and dashed green curves 1D+ approach with 50,000 and 1,000 cells respectively,
assuming Mi = 0 in wall pressures. Dotted-dashed magenta curve well-valanced Rusanov scheme
with 50,000 cells. Black curve y−averaging of 2D results

contraction; this results in a right-going transmitted wave and a left-going reflected
wave. We have used a perfect gas EOS setting Δ = 7/5. The fine one-dimensional
meshes used for the classical and 1D+ approaches contain 50,000 regular cells, and
the CFL number has been set to 1/2. Two different cross-section ratios are considered,
Sl/Sr = 2 (Fig. 3), and Sl/Sr = 100 (Figs. 4 and 5) in test cases 1 and 2 respectively.

Test case 1: Sl/Sr = 2: This corresponds to a rather classical situation aris-
ing in many practical simulations. We have plotted on Fig. 3 the density profiles
at time t = T0 = 1.5 × 10−3. As was expected in this particular case, the 1D+
approximation where Mi is set to 0 (dotted red for 50,000 cells and dashed green for
one thousand cells) fits experimental “results” (in black) quite well, and performs
better than the standard wall-pressure estimation (dashed blue with 50,000 cells).
The former 1D+ approach (setting Mi = 0 in the wall pressure formula) is also
much more relevant than the classical approach (1) using the well-balanced Rusanov
scheme ([8], magenta dashed dotted line in Fig. 3). Results of the 1D+ approach are
similar, whenever a coarse mesh (one thousand cells) or a fine mesh (50,000 cells)
is used.

Test case 2: Sl/Sr = 100: Here, the well-balanced Rusanov scheme [8] fails to
provide approximations on fine meshes, and a similar problem occurs when using
the well-balanced approximate Godunov scheme [6]. Thus we were only able to
compare results of the multi-dimensional approach to the results provided by the
1D+ approach (see Figs. 4 and 5). Both estimations of P∗

i± 1
2 ,i

provide similar results,

which again was expected, and the comparison with the multi-dimensional approach
is even better in this case, which may be explained.
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Fig. 4 Density profiles at t = T0 in test case 2. Dashed curve 1D+ approach. Dotted curve
1D+ approach assuming Mi = 0 in wall pressure estimations. Black curve y-averaging of two-
dimensional results

Fig. 5 Comparison of wall pressures in test case 2. Dashed red curve 1D+ approach. Dotted
and dashed green curves 1D+ approach setting Mi = 0. Dotted blue curve multidimensional
computation using 4002 cells. Full black curve multidimensional computation using 8002 cells

4 Conclusion and Further Work

The present 1D+ approach is a very simple one relying on a straightforward integral
formulation on particular Finite volumes, combined with an estimation of wall-
pressure interactions. We have briefly presented a few of the results from among the
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sixteen distinct situations that have been investigated up till now, where rarefaction
or shock waves interact with eight contractions (Sl/Sr = 10−2/10−1/0.5/0.9 and
Sl/Sr = /(0.9)−1/2/10/100, see [11]). We would like to emphasize that:

• The present approach could be extended in order to take external forces, viscous
contributions into account, without any loss of generality;

• The focus here has been on Euler equations but other (single phase or multiphase)
fluid flow models could also be considered;

• A key point is that vanishing cross sections may occur in the duct; furthermore,
it must be emphasized that numerical results depend continuously on the cross-
section distribution. This can hardly be achieved with the classical approach, at
least not when using well-balanced schemes that rely on approximate Godunov
schemes. Moreover, even when the classical approach (S1) is feasible, numerical
results do not sufficiently match multi-dimensional results.

Another important point is that this method could be extended in order to improve
the formulation that is currently applied in a particular three-dimensional porous
framework widely used in the nuclear industry (see [9] for instance). We also plan
to use the present results in order to improve the basic well-balanced strategy.
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A 1D Stabilized Finite Element Model for
Non-hydrostatic Wave Breaking and Run-up

P. Bacigaluppi, M. Ricchiuto and P. Bonneton

Abstract We present a stabilized finite element model for wave propagation, break-
ing and run-up. Propagation is modelled by a form of the enhanced Boussinesq equa-
tions, while energy transformation in breaking regions is captured by reverting to
the shallow water equations and allowing waves to locally converge into disconti-
nuities. To discretize the system we propose a non-linear variant of the stabilized
finite element method of (Ricchiuto and Filippini, J.Comput.Phys. 2014). To guar-
antee monotone shock capturing, a non-linear mass-lumping procedure is proposed
which locally reverts the third order finite element scheme to the first order upwind
scheme. We present different definitions of the breaking criterion, including a local
implementation of the convective criterion of (Bjørkavåg and Kalisch, Phys.Letters
A 2011), and discuss in some detail the implementation of the shock capturing tech-
nique. The robustness of the scheme and the behaviour of different breaking criteria
is investigated on several cases with available experimental data.

1 Modelling Approach and Main Objectives

When arriving in the near shore region, waves are relatively long, with a ratio water-
depth over wavelength σ 2 ∨ 1. When approaching the shoreline the wave steepens
and non-linear effects start to become dominating up to the moment in which the wave
breaks (ε = A/d ∈ 1), with important production of vorticity, and with potential
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Fig. 1 Depth averaged equa-
tions: notation

energy transformation and dissipation. The first phase of the process can be modelled
by the a properly chosen set of non-hydrostatic equations, such as for example, the
Boussinesq equations, or other type of dispersive models [2]. The treatment of wave
breaking is more delicate. Several approaches exist, see [10] for a recent review. The
extensive study of [4], indicate that the energy transformation in the breaking region
can be modelled by the dissipation across nonlinear discontinuities of hyperbolic
models such as the shallow water equations. This is confirmed by the numerical
results of [5, 10, 13, 18, 19]. For this reason, we use a hybrid model reverting from
the enhanced Boussinesq to the shallow water equations in properly defined breaking
regions.

To discretize the equations, we start from the stabilized finite element approach of
[16], which has a very interesting potential in terms of providing low dispersion errors
and very high accuracy on unstructured adaptive meshes. Here, we propose a new
nonlinear variant of the method. In our approach, the third order finite element scheme
is reverted to the first upwind scheme across discontinuities via nonlinear mass-
lumping procedure. The objective of this paper is to present the hybrid modelling
approach, and in particular the definition of the breaking detection algorithm, and
the discussion of the discontinuity capturing methodology, and in particular of the
choice of the mass-lumping limiter. Concerning the first aspect, we consider the
hybrid criteria of [19], and [10], and a novel local implementation of the convective
criterion of [3]. The mass-lumping limiter is instead chosen based on the requirement
that smooth extrema should be preserved, and is based on a smoothness sensor. The
model obtained is extensively tested. The behaviour of different breaking models is
studied on several cases allowing comparisons with experimental data.

2 Hybrid Equations for Wave Breaking Treatment

To simulate wave propagation, we start from the following system, based on the
enhanced Boussinesq equations in the form proposed in [14] (cf. Fig. 1):
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with η = η(x, t) the wave height, q = hu the discharge, h = η + d the local height
of the water column, u = u(x, t) the depth-averaged velocity, and with d = d(x) the
depth w.r.t. an average still water level. The term D(η, q) represents the dispersive
effects, with B and β obtained by optimizing the linear dispersion relation. The flag
fbreak assumes the value 1 in the Boussinesq regions, and 0 in breaking fronts, and
allows to revert to the hyperbolic shallow water equations. We consider here three
breaking criteria.

The simplest, due to Tonelli and Petti [19], is based on a local measure of non-
linearity. Breaking regions are denoted as those for which ε = |η|/|d| ⊃ εcr, with
εcr ⊂ 0.8. Once a breaking front has been detected, its end (de-breaking) is located
as the point in the flow direction where ε is below ⊂ 0.35 (see [10, 19] for more).

The second criterion, proposed in [10], uses a hybrid condition involving vertical
velocity and slope. A point is flagged as breaking if either |∂tη| > γ

∞
gh or |∂xη| >

tan φcr. The values γ and φcr may depend on the case simulated (see [10] for more).
Lastly, we consider a local implementation of the convective criterion of [3]. The

idea is that breaking occurs when the free surface velocity is larger than the wave
celerity. In [3] only simple cases have been considered for which at least the celerity
is known a-priori. Here we proceed as follows:

1. Pre-flagging using the criterion of [10] with smaller γ and φcr;
2. For every front (set of neighbouring pre-flagged nodes) locate crest and trough;
3. For every front evaluate celerity Cb and crest velocity uS;
4. Final flagging: if uS ⊃ Cb set fbreak = 0 for x ≤ [xmin, xmax]
Combining the relations ∂tη ⊂ −Cb∂xη and ∂tη = −∂x q, we obtain Cb ⊂ ∂x q/∂xη

which is implemented as Cb = (qcrest − qtrough)/(ηcrest − ηtrough). To obtain uS,
vertical asymptotic expansions can be used to show that (see e.g. [3, 7]) uS =
u − αh2∂xx u, with α = 1/3 the analytical value. Here this constant is kept free, to
account for the different wave shoaling provided by Boussinesq models, and to be able
to correct wave under-shoaling [7]. The results reported are obtained with α = 2/3.
A parametric study is under way to understand the influence of this parameter for
different Boussinesq equations. The definition of [xmin, xmax], giving local position
and width of the breaking region is the same used in [10, 18].

3 Discretization and Discontinuity Capturing

The numerical discretization follows the initial developments made in [16] where
upwind stabilized residual based and finite element discretizations of the Boussinesq
equations of [14] have been analyzed and tested on a large number of one and two-
dimensional wave propagation problems. Already for P1 interpolation, the results of
[16] show a high potential of the approach in terms of providing low dispersion error
and high accuracy with the flexibility of a natural unstructured mesh formulation.

Here we propose a discontinuity capturing method based on a nonlinear lumping
of the mass matrix allowing to locally recover first order upwind flux differencing.
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Set W = [η q]T , F(W) = [q (uq + g h2

2 )]T , S = [0 − gh∂x d]T , D = [0 D]T ,

F f = [0 − ghC f u]T , and A = ∂ F(W)
∂W the shallow water flux Jacobian. Let also

dWi/dt be the (continuous) time derivative of the value of W at node i , Δx the
1D mesh spatial spacing, I2 the 2 × 2 identity matrix, and denote with superscripts
i ± 1/2 arithmetic cell-average values. The spatial discretization we propose reads:

Δx
dWi

dt
+ δi−1/2{Δx

6
[dWi−1

dt
− dWi

dt
] + Δx

2
sign(Ai− 1

2 )
dWi− 1

2

dt
}

+ δi+1/2{Δx

6
[dWi+1

dt
− dWi

dt
] − Δx

2
sign(Ai+ 1

2 )
dWi+ 1

2

dt
}

+ I2 + sign(Ai− 1
2 )

2
(Fi − Fi−1 + Δx Si− 1

2 )

+ I2 − sign(Ai+ 1
2 )

2
(Fi+1 − Fi + Δx Si+ 1

2 ) = fbreaki Di + F f i (2)

One can distinguish the terms associated to the Galerkin approximation, and the
stabilization terms, multiplied by the sign of the Jacobian A. These terms have been
simplified using the properties of the P1 finite element approximation, as detailed in
[16]. The right hand side contains the contributions of friction and dispersive terms,
also involving centred and upwind biasing contributions, and requiring the evaluation
of auxiliary variables necessary for the high order derivatives. These terms are quite
complex and we refer to [16] for details. Note that if the right hand side is zero, for
δi±1/2 = 0 we obtain the standard first order upwind flux difference scheme. Our
implementation in this limit actually follows the well-balanced, positivity preserving
upwind approach of e.g. [6], and it includes an entropy fix [9] to avoid problems in
strongly accelerating regions with small water heights (cf. [1] for more). So, if δi = 0
and fbreaki = 0 the scheme is locally first-order, it preserves the positivity of the depth,
and it is well-balanced. Whenever fbreaki = 1, we automatically set δi = 1. In this
case, the resulting scheme is third-order accurate in space, as amply demonstrated
in [16]. The main ingredient is the choice of the limiter δ(W). An extensive study
and comparison of different limiters available in literature is provided in [1]. Many
of these result in an over-dissipative method. An effective definition is based on the
smoothness sensor

σi = min(1, ri ) , ri =
|ηi − ηi−1|

Δx
+ |ηi − ηi+1|

Δx
|ηi+2 − 4ηi+1 + 6ηi − 4ηi−1 + ηi−2|

12Δx2

with ri the ratio between the magnitude of the first order derivative and the difference
between a fourth and second order approximation of the second order derivative. In
smooth regions, the denominator of ri is of O(Δx2) while the numerator is bounded,
resulting in σ = 1. On a discontinuity, while the numerator is of an order O(1/Δx),
the denominator is of an order O(1/Δx2), giving σ = O(Δx). Finally, we have set
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δi = σi if σi ∀ 1/2, and δi = 1 otherwise. The typical result obtained for a standard
Riemann problem is reported on Fig. 2 where the sensor proposed is compared to the
Superbee and to the Monotonized Central limiter [12]. In the tests that follow, as in
[15] we pre-multiply δ by an exponential function smoothly switching off high order
terms in vicinity of dry fronts. For all the tests considered, time integration has been
performed with the non-dissipative second-order Crank-Nicholson scheme.

4 Numerical Validation

4.1 Periodic Wave over a Submerged Bar

We consider the experiment of plunging breaking periodic waves over a submerged
bar of Beji and Battjes. This test has been first done by Dingemans to verify the Delft
Hydraulics model HISWA, and then repeated by Beji and Battjes [7, 17]. To give an
overview of the qualitative behaviour of the solution, wave profiles at different break-
ing instants are reported on Fig. 3 for the three tested breaking criteria. In the figure we
report the wave profiles at the first breaking instance, at an intermediate time (same
for all criteria), and at the last seen breaking instance for a given wave. The vertical
lines delimit the breaking region in which the shallow water equations are used. The
criterion of [10] provides the strongest and most regular breaking behaviour, with
wave heights considerably decreasing along the plateau. The local implementation of
the convective criterion proposed gives weaker breaking, and slightly higher waves.
We have also observed numerically a more intermittent behaviour of the flag. Lastly,
the criterion of [19] gives the weakest breaking, with wave heights only slightly
decreasing.

These observations are confirmed by the temporal evolution of the wave height in
four experimental gauges (respectively at the beginning and the end of the upward
slope of the bar and in the middle and end of the plateau), reported in Fig. 4. The results
obtained with the criterion of [10] show very good agreement with experiments, while
the convective criterion is slightly worse in terms of wave heights. The non-linearity
sensor of [19] fails to detect some wave breaking areas, at least on this level of mesh
size. We mention that better results are obtained in [19] on much finer grids, and that
the results of the convective criterion could be improved by increasing the value of
the constant α in the definition of the free surface velocity (under investigation).

4.2 Run-up of a Periodic Wave

This test, known as the spilling breaking test of Hansen and Svendsen, involves the
shoaling and breaking over a shore of a set of regular waves, and corresponds to
the test 051041 described in [8]. A qualitative view of the wave profiles obtained is
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Fig. 3 Plunging breaking test. Wave profiles corresponding to: first (left), intermediate (center), and
last breaking instants. Breaking criterion: Kazolea, Delis and Synolakis (top), convective (middle),
Tonelli and Petti (bottom). The vertical lines delimit the breaking (shallow water) region

reported on Fig. 5, showing the effects of wave shoaling and wave breaking over a
constant slope bathymetry. On Fig. 6, instead, we report a quantitative comparison
of the time-average of the wave height and of the wave set-up along the shore with
experimental data. The numerical results are those obtained with the criterion of
[10], and with the convective criterion. We can see from the change in slope in the
computed results that wave breaking is predicted too early by the criterion of Kazolea,
Delis and Synolakis, while the wave heights are under-predicted in both cases. This,
according to [20], might be due to the use of a weakly nonlinear Boussinesq model
for propagation. For this test, the convective criterion gives a better prediction of the
breaking position. The wave set-up is predicted very well by both models.

5 Conclusions and Perspectives

We have presented a one-dimensional finite element model for non-hydrostatic wave
propagation, breaking, and run-up. The model combines a weakly non-linear Boussi-
nesq model with the hyperbolic shallow water equations. The blending is obtained via
a wave breaking criterion based on physical arguments. We propose an enhancement
of the stabilized finite element method of [16] consisting in a discontinuity capturing
technique relying on a nonlinear lumping of the mass matrix. This allows the local
treatment of discontinuous shallow water flows, and wetting/drying fronts. When
combined with the hybrid dispersive-hyperbolic modeling approach, this method
allows to provide an accurate description of the wave transformation in the near
shore region.
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The numerical results, while confirming the stability and robustness of the numer-
ics proposed, also provide an initial validation for the different breaking criteria
tested. Our implementation of the convective breaking criterion of [3] shows some
promise, even though the criterion of Kazolea et al. gives similar, and sometimes
better, results, with a much simpler implementation. The very simple criterion of
[19] is not able to provide similar results.

The work planned for the future involves a more systematic study of the definition
of the free surface velocity used on the convective criterion, the implementation of
the model in two dimensions and on unstructured meshes, following [10, 16], and
the use of fully non-linear dispersive models, as in [5, 11].
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A Quasi-1D Model of Biomass Co-Firing
in a Circulating Fluidized Bed Boiler

Michal Beneš, Pavel Strachota, Radek Máca, Vladimír Havlena
and Jan Mach

Abstract We introduce an outline of the mathematical model of combustion in cir-
culating fluidized bed boilers. The model is concerned with multiphase flow of flue
gas, bed material, and two types of fuels (coal and biomass) that can be co-fired
in the furnace. It further considers phase interaction resulting in particle attrition,
devolatilization and burnout of fuel particles, and energy balance between heat pro-
duction and consumption (radiative and convective transfer to walls). Numerical
solution by means of the finite volume method together with a Runge-Kutta class
time integration scheme is mentioned only briefly as the used methods are generic
and well documented elsewhere. Some representative results are also presented.
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1 Introduction

Fluidized bed (FB) combustion [3, 5, 21] is a modern technology of industrial energy
production from both fossil and renewable fuel sources. FB boilers are very flexible
with respect to fuel properties. They also release limited amounts of pollutants into
the atmosphere thanks to relatively low combustion temperatures and sulfur oxides
being captured by the fluidized bed material. Mathematical modeling and numerical
simulations of FB combustion are helpful in design and control of energy production
facilities.

We propose a model of a circulating fluidized bed (CFB) [3] combustion chamber
extended by a simple description of solid phase recirculation. It is able to capture the
physical aspects of fluidized flow and combustion processes. Such model is sufficient
to study the temperature and dynamic behavior of the fluidized bed which in turn is
important for designing a control strategy leading to optimal operation conditions.
Combustion chemistry is not considered at the moment.

2 Summary of Governing Equations

The model consists of equations of multiphase flow, fuel transformation, and heat
transport in a variable cross section duct, originally based on two-phase flow of gas
(air) and solid found in [10]. The conservation laws are formulated for quasi-one-
dimensional nozzle flow [1, Chap. 7] along the vertical axis x of the combustor which
has a rectangular cross section A (x).

The mixture comprises the flue gas phase and three solid phases: the bed material
(granular dolomite or limestone) denoted by the index s, granular coal char (c),
and granular biomass char (b). The volume fractions of the individual phases i ∈
{g, s, c, b} are represented by the quantities εi (t, x) satisfying the relation εg + εs +
εc + εb = 1. We denote the velocity of phase i by ui and its density by ρi . The
remaining variables are the concentrations (mass fraction) of oxygen YO2 and the
volatile matter (VM, see Sect. 3) released from both fuels.

Mass Balance The continuity equations for the individual phases i ∈ {g, s, c, b}, and
gaseous species X ∈ {O2, VMc, VMb} read

∂ (ρiεi )

∂t
+ 1

A

∂ (Aρiεi ui )

∂x
= Mi (t, x) + μi , (1)

∂
(
ρgεgYX

)

∂t
+ 1

A

∂
(

AρgεgugYX
)

∂x
= MX (t, x) + μX (2)

where the bulk solid material densities ρi , i ∈ {s, c, b} are assumed to be con-
stant. The source terms Mg,Mi

[
kg · m−3s−1

]
describe the injection of the sec-

ondary air together with “instantaneously” released volatiles, bed material, and solid
fuel components into the furnace at the respective elevations. MO2

[
kg · m−3 · s−1

]
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is the inflow of oxygen as part of the secondary and tertiary air. MVMc ,MVMb[
kg · m−3 · s−1

]
is the inflow of VM as part of the fuel inflow. The terms −μc,−μb

account for mass loss due to char particle burnout. This mass converts into flue gas
and ash, which becomes part of the bed material (μs). The term μg is the production
of flue gas due to combustion of char and −μO2 is the rate of oxygen consumption
by combustion. The terms μi satisfy μg + μs + μc + μb = 0. Lastly, the terms
μVMc , μVMb account for the burnout of coal and biomass VM.

Passive Particle Transport Combustion rate of fuel particles and attrition dynamics
depend on the size and shape of the solid particles. Given the number of particles
per unit volume ni for the phase i ∈ {s, c, b}, the average mass and diameter of

one (spherical) particle are equal to m(1)
i = ρi εi

ni
, dp,i = 3

√
6εi
πni

, respectively. The
quantities ni are subject to passive transport described by the equations

∂ni

∂t
+ 1

A

∂ (Ani ui )

∂x
= Mni (t, x) + μni (3)

for each i ∈ {s, c, b}. The source term Mni

[
m−3 · s−1

]
in (3) is nonzero where the

solid phase enters the combustor. The term μni stands for particle number change
due to attrition and conversion of burnt out fuel mass into ash (Sect. 3).

Momentum Balance The momentum equations for the individual phases
i ∈ {g, s, c, b} assume the form

∂ (ρiεi ui )

∂t
+ 1

A

∂
(

Aρiεi u2
i

)

∂x
= − ∂ Pi

∂x
+

∑

k∈{g,s,c,b}
βki (uk − ui ) − 2 fiεiρi u2

i

D

+ Riεi g + Pi (t, x) + πi (4)

where Pg is the pressure of gas and for i ∈ {s, c, b}, we put ∂ Pi
∂x = G ∂εi

∂x where
G

(
εg

)
is the solids stress modulus [10]. The coefficients fi and βki express the wall

friction and inter-phase friction forces. In the gravity/buoyancy term Riεi g, we have
Rg = ρg and Ri = ρi − ρg for i ∈ {s, c, b}. The source terms Pi

[
kg · m−2 · s−2

]

account for the density of vertical momentum of the injected material. The term πg

represents the vertical momentum of the fuels burnt into flue gas. πs is the vertical
momentum of the ash which remains after burning μg + μc fuels. πc and πb are the
vertical momenta of the burnt out fuels with masses μc and μb, respectively. The
equality πg + πs + πc + πb = 0 holds.
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Energy Balance We assume local thermal equilibrium between all phases at each
point. Extending the steps in [1, Chap. 7], we derive the equations for internal energy
ei of each phase i ∈ (g, s, c, b) and sum them to arrive at the single equation for
internal energy of the phase mixture in terms of temperature T

∑

i∈{g,s,c,b}
ρiεi cp,i

(
∂T

∂t
+ ui

∂T

∂x

)

= 1

A

∑

i∈{g,s,c,b}

(

−Pi
∂ (Aui )

∂x
+ εi

∂

∂x

(

Aλi
∂T

∂x

))

+
∑

i∈{g,s,c,b}

(

Ei − ui (Pi + πi ) + (Mi + μi )

(
u2

i

2
−

∫ T

0
cp,i (τ ) dτ

))

+ Q̇

(5)

where Q̇
[
W · m−3

]
is the total heat source term consisting of heat production by

combustion and consumption by radiative and convective heat transfer. The sys-
tem is closed by the equation of state for ideal gas, i.e. ρg = P

RspecT where Rspec
[
J · kg−1 · K−1

]
is the specific gas constant.

3 Modeling the Particular Effects

Inter-phase Momentum Transfer and Wall Friction The drag between the gas phase
g and the phase i ∈ {s, c, b} appears in (4) as the inter-phase friction coefficient βig

given by the empirical formula adopted from [10]. The formula for the solid–solid
momentum transfer coefficient βki between two solid phases i, k ∈ {s, c, b} has been
taken from [18] with additional parameter settings based on the data in [14]. The
wall friction factors fg, fi are given by the modified Hagen-Poiseuille expression
and by the Konno-Saito correlation [10].

Attrition. Attrition of solid particles in the fluidized bed is a joint effect of abrasion
and fragmentation [21]. However, it is generally believed that the contribution of
fragmentation is negligible [12, 20]. Therefore, only abrasion is modeled.

For bed material attrition, we use the model of [19] with a single equation for
particle mass loss. It is aimed primarily at circulating fluidized beds and overcomes
the drawbacks of several previously published models. For fuel char particles, it is
necessary to take into account combustion-assisted attrition. The formula proposed
in [3, p. 116] and [4] is used.

For each solid phase i ∈ {s, c, b}, the particle mass attrition rate per unit volume
ṁi is converted to the rate of increase in the number of the particles by the relation
μni = ṅi = − ni

mi
ṁi . This corresponds to a constant mass being distributed among

an increasing number of particles with a decreasing average size.

Fuel Devolatilization and Burnout As the particle heats up, volatiles release and
burn simultaneously (they form the volatile flame) [5]. It is not possible to track
the age of each individual particle in the proposed model. As the time to complete
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Fig. 1 Simplified fuel conversion in the proposed CFB combustion model

devolatilization is an order of magnitude shorter than the time to complete char
burnout [3]), we assume that the fuel particles enter the combustion chamber already
fully devolatilized and we further treat the burnout of VM and the solid char particles
separately. The mass exchange terms in Eqs. (1)–(2) involved in fuel conversion
(devolatilization and burnout) are depicted in Fig. 1.

We assume that VM burnout is governed by the Arrhenian kinetic theory and
depends primarily on temperature and oxygen concentration. The rate of char burnout
is controlled by two independent processes: the transfer of oxygen to the particle
surface from the ambient gas and by the reaction rate of pure carbon with oxygen
[4]. Combining the correlations for both, one obtains the combustion rate μi . Oxygen
consumption can then be calculated using the ultimate analysis [5] of the fuels.
Finally, the lower heating value of the fuel is used to calculate the heat production.

Heat Transfer Volumetric heat consumption is caused by radiative and convective
transfer to walls. Currently, we employ empirical formulas that do not take into
account the effect of the solid phase presence.

The radiative heat transfer to walls per unit volume is given by
Q̇ R = σ

(
ε (T ) T 4 − ε (Twall) T 4

wall

)
where σ is the Boltzmann constant and ε is

the emissivity (and absorptivity) of the flue gas [13, p. 277]. ε depends on the con-
centration of the radiant species H2O and CO2.

The convective heat transfer occurs directly at the walls and is given by the term
Q̇C = 4

D α (T − Twall) where α
[
W · m−2 · K−1

]
is the convective heat transfer

coefficient per unit wall surface. The formula for α has been taken from [15].

4 Numerical Solution and Implementation

For numerical solution, the proven combination of a finite volume scheme [7] on a
regular 1D mesh with the Runge-Kutta-Merson adaptive explicit time solver [6, 11]
is employed. The system of model Eqs. (1)–(5) can be written in aggregate vector
form

∂W
∂t

+ ∂

∂x
(Fc − Fv) = Q
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biomass char

coal VM

biomass VMcoal char

consumption kg s 1consumption kg s 1consumption kg s 1

consumption kg s 1heat transfer to walls [MW]heat production [MW]

biomass inventory [t]coal inventory [t]bed material inventory [t]

Fig. 2 Time progress of the cumulative quantities in the time range from t = 0 s to t = 2000 s

where W is the vector of state variables and Fc, Fv the convective and viscous fluxes,
respectively. The corresponding semidiscrete finite volume scheme for the unknown
numerical solution WK reads

dWK

dt
= 1

|K |
[(

Fc,R − Fv,R + Fν,R
) − (

Fc,L − Fv,L + Fν,L
)] − QK

where the subscripts R, L indicate the values of the respective fluxes at the left and
right boundary of the cell K with size |K |. Adjustable artificial diffusion Fν is used
for stabilization.

The boundary conditions are implemented by means of auxiliary (ghost) cells
beyond the computational domain. By default, zero Neumann b.c. (extrapolation)
is imposed on all physical quantities (e.g. the conservative variable ρiεi ui in (4)
consists of the physical quantities ρi , εi , and ui ). This is overriden at the inlet by
Dirichlet b.c. for the volumetric fractions εi , particle diameters dp,i , temperature T ,
and gas mass inflow ρgεgug . At the outlet, the Dirichlet b.c. for pressure is prescribed.

Initial conditions are set up to quickly reach the stationary state with the given
boundary conditions. In brief, zero flow velocities, atmospheric pressure, zero fuel
inventory, and gas pre-heating is assumed.
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bed material velocity us m s 1

temperature T [K]

coal VM mass

fraction YVMcdiameter dp c [m]

coal particle
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bed material

gas velocity u m s 1

Fig. 3 Spatial profiles of the selected quantities along the vertical axis of the combustor at the
time t = 2000 s

The algorithm is parallel and has been written using C/C++ and the MPI library
[17] for computation on an arbitrary number of CPU cores of a Linux HPC cluster.

5 Results

For the simulations, we currently use the data from the technical documentation of
one particular CFB heating plant and fuel data from various other sources such as
official catalogs of coal and biomass producers. Adaptation of the model to the real
device requires careful setting of initial and boundary conditions as well as the source
terms (e.g. for implementing controlled recirculation of solids). Detailed discussion
is beyond the scope of this paper. Figure 2 shows the time progress of the cumulative
(integral) quantities in a sample simulation and Fig. 3 contains the spatial profiles of
the selected quantities at the end of the simulation. The model exhibits qualitative
agreement with the expected behavior of the device, as can partly be observed in
both figures. For example, the shape of gas velocity and temperature profiles as
well as the ratio of total heat production to the heat transfer to the walls agree with
the information in the technical documentation. Even though the validation of the
model has not yet been completed, it already represents a cornerstone for further
parameters fitting and step response measurement with potential application in the
design of model-based predictive control.
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6 Conclusion

Recently, there has been an extensive increase of interest in detailed non-stationary
CFD simulations of fluidized bed combustion (see [16] for a review). There exist
several comprehensive 3D simulation instruments based either on continuous,
discrete, or combined (multiphase particle-in-cell [2]) approach. All of them gener-
ally require enormous computational resources.

On the other hand, we propose a model aimed for use as a vehicle for predictive
control strategies development and testing. Its Eulerian–Eulerian multiphase flow
model is based on the widely used equations of Gidaspow [10]. In addition, several
results of independent modeling and measurements of the important phenomena
of fluidized bed combustion are combined in the model, as described in Sect. 3.
The choice of the variables and input parameters is in accordance with the purpose
and possibilities of the control mechanisms [8, 9]. The quasi-1D approach provides
a reasonable approximation of the underlying 3D geometry while maintaining low
computational complexity. This results in faster than real time simulations on a single
multi-core workstation.

Acknowledgments This work was supported by the project “Advanced Control and Optimization
of Biofuel Co-Firing in Energy Production”, project No. TA01020871 of the Technological Agency
of the Czech Republic, 2011–2013.
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Simulation of Diluted Flow Regimes in Presence
of Unsteady Boundaries

Florian Bernard, Angelo Iollo and Gabriella Puppo

Abstract The main feature of diluted flows is the presence of both continuum and
kinetic regimes in the same field. The ES-BGK model is a kinetic model that preserves
the asymptotic properties towards compressible Euler equations in the hydrodynamic
regime, yet modeling momentum and kinetic energy diffusion for low Knudsen
numbers. Here, this model is discretized by a finite-volume scheme on Cartesian
meshes. The scheme is second order up to the possibly moving boundaries. To ensure
a smooth transition between the hydrodynamic and the kinetic regime up to the
walls, appropriate boundary conditions are devised. As an application, we present
the simulation of an unsteady nozzle plume in a very low pressure environment.

1 Introduction

The Boltzmann equation models flow regimes where the mean free path η between
particle shocks is larger than the characteristic length of the problem L under con-
sideration. The ratio η/L is called the Knudsen number and becomes large in the
rarefied regime.
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Here, the ES-BGK model [1, 7], is considered for its capability to ensure a smooth
transition between the rarefied and the continuum regime. With respect to the full
Boltzmann equation, or to other models like DSMC [5] and BGK model [4], the
computational cost is reasonable and it preserves the correct Prandtl number Pr .

In this work, a finite-volume method on Cartesian meshes is presented to dis-
cretized the ES-BGK model preserving the asymptotic properties. In this sense, a
new boundary condition is proposed to avoid spurious effects due to the discretiza-
tion [3]. In particular, this approach is validated with experimental data on a nozzle
spreading jet in a low pressure environment.

2 Governing Equations

In the ES-BGK model, the collision term is approximated as a relaxation towards a
Gaussian function:

φ f

φt
(x, ∂, t) + ∂ · ∇x f (x, ∂, t) = 1

ν
(G f (x, ∂, t) − f (x, ∂, t)) (1)

where ν is the relaxation time and G f is the Gaussian distribution function, obtained
as follows:

G f (x, ∂, t) = Ω(x, t)√
det(2ΣT (x, t))

exp
⎧

− (∂ − U (x, t))T (x, t)−1(∂ − U (x, t))T

2

⎪

(2)

where R is the universal gas constant, T (x, t), U (x, t), Ω(x, t) are the macroscopic
values of temperature, velocity, density respectively. The tensor T is defined with
the opposite stress tensor Λ(x, t) and the identity matrix I as:

T (x, t) = 1

Pr
T (x, t)I + (1 − 1

Pr
)Λ(x, t) (3)

Macroscopic quantities are calculated from the moments of f defined by:

⎨

⎩
⎩


Ω(x, t)
Ω(x, t)U (x, t)

E(x, t)
Ω(x, t)Λ(x, t)





 =

∫

RN
f (x, ∂, t)m(∂)d∂ with m(∂) =

⎨

⎩
⎩
⎩


1
∂

1

2
| ∂ |2

c ⊗ c








(4)

Here c is the relative microscopic velocity (∂ − U (x, t)), E is the total energy.
We consider a mono-atomic gas for which the ratio of specific heats is ξ = 5/3
and N = 3. Hence, this model does not take into account other energy degrees of
freedom like in the case of a polyatomic gas.
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The relaxation time for the ES-BGK model can be written in dimensionless form
as:

ν−1 = kΩT 1−δ with k = RT δ
0

Prμ0
= 1

Pr K n∞
(5)

where δ is the exponent of the viscosity law of the gas, μ0 is the reference viscosity
of the gas at the reference temperature T0 and K n∞ the Knudsen number in reference
conditions and Pr is the Prandtl number.

3 Space and Time Discretization

The physical space π is discretized on a Cartesian grid with n × m cells:

π =
⋃

i=1..n
j=1..m

πi, j =
⋃

i=1..n
j=1..m

[xi−1/2, xi+1/2] × [y j−1/2, y j+1/2]

such that (xi , y j ) are the coordinates of the center of cell (i, j) and (xi+1/2, y j ) are
the coordinates of the center of the interface between cells (i, j) and (i + 1, j). On a

space cell πi, j =
⎜
xi − Δx

2
, xi + Δx

2

⎟
×

⎜
y j − Δy

2
, y j + Δy

2

⎟
, Eq. (1) is integrated

with a finite volume method:

φ fi, j

φt
+ ∂ ·

∫

φπi, j

f nφπi, j dσ = 1

νi, j
(G fi, j − fi, j ) (6)

where fi, j = 1

|πi, j |
∫

πi, j
f dxdy and G fi, j = 1

|πi, j |
∫

πi, j
G f dxdy.

Since a uniform Cartesian grid is considered, the equation can be simply rewritten
in terms of fluxes at each numerical interface (between two cells):

φ fi, j

φt
+ 1

Δx
(Fi+ 1

2 , j − Fi− 1
2 , j + Fi, j+ 1

2
− Fi, j− 1

2
) = 1

ν
(G fi, j − fi, j ) (7)

with Fi+ 1
2 , j the numerical flux between cell πi, j and cell πi+1, j (with a similar

notation for the other fluxes) which is expressed as :

Fi+ 1
2 , j = max(0, ∂u) fl + min(0, ∂u) fr (8)

with fr and fl the values of f on the two sides of the interface and ∂u the first
component of the microscopic velocity. The numerical expression of the distribution
functions fl , fr depends on the reconstruction used at the numerical interface. For
a first order reconstruction, fl = fi, j and fr = fi+1, j . For second order accuracy, a
MUSCL reconstruction with slope limiters (MinMod for example) is employed.
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In principle, the time discretization can be performed for all terms explicitly. But
in this case, the time step will be determined by the space discretization (Δx), the
maximum velocity of the velocity grid and the relaxation time ν . For small Knudsen
numbers, the relaxation part becomes very stiff (ν very small) and imposes a very
strong restriction on the time step. Asher et al. [2] first presented IMEX schemes to
cure this issue. Here, the IMEX scheme [6] is chosen. The relaxation term is treated
implicitly while the convective part is non stiff but highly non linear which means
that an explicit scheme is more efficient.

The time integration for a δ-stages IMEX Runge-Kutta scheme reads as follows:

f n+1
i, j = f n

i, j − Δt
δ∑

k=1
γ̃k∂∇x f (k)

i, j + Δt

ν

δ∑

k=1
γk(G

(k)
fi, j

− f (k)
i, j )

f (k)
i, j = f n

i, j − Δt
k−1∑

l=1
Ãk,l∂∇x f (l)

i, j + Δt

ν

k∑

l=1
Ak,l(G

(l)
fi, j

− f (l)
i, j )

f (1)
i, j = f n

i, j + Δt

ν
A1,1(G

(1)
fi, j

− f (1)
i, j )

(9)

where A and Ã are δ × δ matrices, with Ãi,s = 0 if s ≥ i and Ai,s = 0 if s > i .
These coefficients are derived from a double Butcher’s tableaux. Here we take the
second-order scheme of [11].

4 The Level Set Function

When an immersed solid is considered on a Cartesian grid, one needs to apply the
wall boundary condition on a surface that is arbitrarily crossing the grid. To this end,
the domain is decomposed in a fluid part and a solid part. In the solid the values
of the physical variables are imposed in each cell since there is no calculation to
perform. Such cells are called penalized cells. To decide whether or not a cell is
penalized on a Cartesian mesh and to improve accuracy at the boundaries, we use the
signed distance between a grid point and the immersed body. Introduced by Osher
and Sethian [10], the level set function implicitly defines the solid interface ω in the
computational domain by its zero isoline. It is defined by:

φ(x) =
{

distω(x) outside the solid
−distω(x) inside the solid

and n(x) = ∇φ(x)

|∇φ(x)| (10)

where distω(x) is the minimum distance between the point considered (with coor-
dinates x) and the solid interface ω, n(x) is the unit normal to the distance isoline
pointing towards the fluid. In particular, for φ = 0, nw(x) is the normal to the
boundary pointing towards the fluid.

In the following test case of the nozzle plume, the contour of the jet is modeled
as a moving boundary. The level set function defining such boundary is convected
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with the imposed boundary velocity uφ :

φtφ + uφ · ∇φ = 0 (11)

This equation is solved with a WENO5 [8] discretization scheme in space and a
standard Runge-Kutta 4 scheme for the integration in time.

Integrating (11) in time does not preserve the distance property of φ. Therefore,
a reinitialisation step is performed after each time integration step starting from the
boundary (φ = 0). In our case, this is done via a Fast Marching algorithm [12].

5 Wall Conditions

Two kinds of boundary conditions for kinetic models are usually found in the
literature: the diffuse boundary condition and the specular reflection. In the following
we consider only the specular reflection.

In the classical specular reflection, each particle hitting the wall is immediately
reflected by the wall with the same tangential velocity and the opposite normal
velocity: ∂re f l = ∂ − 2((∂ − Uw) · nw)nw, with ∂re f l the particle velocity after
reflection, ∂ the particle velocity before reflection, Uw the wall velocity and nw the
normal to the wall pointing towards the fluid. This holds true for each particle such
that ∂ · nw > 0. For ∂ · nw < 0, the distribution function on the boundary is already
known and equal to the one reconstructed at the boundary. The entire distribution
function fs enforcing the boundary condition is then:

fs =
{

f for ∂ · nw < 0
f (∂re f l) for ∂ · nw > 0

(12)

However, because of the discretization of the velocity space, one needs to compute
f (∂re f l) where in general ∂re f l does not correspond to a collocation point. Therefore
∂re f l must be interpolated. This creates spurious mass and energy fluxes due to
interpolation errors that can only be removed at significant cost (finer grid or higher-
order interpolations), see [3].

To handle this problem, in the hydrodynamic limit, we have devised a new Euler-
AP boundary condition. Let us assume that, in the fluid, the distribution function is
a Gaussian (K n number close to 0). Then, imposing the impermeability condition
at the wall corresponds to impose a Gaussian distribution function. However, in
this case tangential velocity and temperature should be taken from the fluid and the
velocity must have a zero wall-normal component. Therefore, tangential velocity
and temperature are extrapolated from the fluid to the wall at the desired order. The
density is computed invoking mass conservation. Finally, the same procedure as
in (12) is applied to obtain the boundary condition fM .

To build a fully asymptotic preserving boundary condition valid in more rarefied
regimes, this model is added with the classical specular reflection with a coefficient
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Π: fb = Π fs + (1 − Π) fM with Π ∈ [0, 1] and such that it is close to zero in the
inviscid limit for K n → 0. If K n is not close to zero, the classic specular reflection
correctly takes over.

To set the value of Π we emphasize that fM corresponds to the specular reflection
only when the distribution function in the fluid is close to the Gaussian. If it is not
the case, the specular reflection is computed with fs (in particular in the rarefied
regime). In our model, Π is set as follows:

Π = min
⎧

1,
|| f − G f ||L2

max( f )tol

⎪
(13)

with tol a tolerance on the distance in L2 norm between the closest interior domain

distribution function f and its corresponding Gaussian. Thus, if
|| f − G f ||L2

max( f )
<<

tol, the specular reflection fully corresponds to the Euler-AP boundary condition. In
the following, tol = 10−3.

6 Numerical Example: Unsteady Nozzle Plume

We consider a qualitative validation of this numerical model against experimental
data. A flow expands at the outlet of a nozzle in a low pressure atmosphere. Exper-
iments by Latvala et al. in [9] were performed for different ambient pressures to
determine the angle of the jet at the outlet of the nozzle. The area ratio between
the throat and the outlet of the nozzle is 4.8. Here, we impose the total pressure
(Ptot = 1) and the total temperature (Ttot = 0.6) at the inlet of the nozzle. The 1D
isentropic flow formula gives M=3.7763, T=0.1738 and p=0.0126 at the outlet.
This pressure is called the adaptation pressure Pc.

We obtain the jet angle by tracking the contact discontinuity between the gas
coming from the nozzle and the gas initially outside the nozzle with a level set
function keeping fixed the point at the extremity of the nozzle (x = 2). At each time
step, the level set function is transported according to the velocity of the fluid with the
procedure described in Sect. 4 for moving boundaries. The velocity of the contact
discontinuity is computed thanks to a Riemann problem where only the ambient
pressure Patm is imposed.

At the initial state, the nozzle is filled with a gas at rest with p = 1 and T = 0.6.
Outside of the nozzle, the gas is also at rest, with p = Patm and T = 0.6.

The solution for Pc/Patm = 2000 is shown on Figs. 1 and 2 for different times.
First, the flow goes out of the nozzle and turns back because of the abrupt expansion
(t = 1.2 and t = 5). Then, when the flow stabilizes in the nozzle, a shock propagates
from the inlet towards the outlet. On Fig. 2, at t = 11.1 the shock is at x = 2.7 and
establishes the angle of the jet with the nozzle outlet.

Figure 3 shows the angle δ of the jet at the outlet for different pressure ratio
Pc/Patm , for ES-BGK and compressible Euler models. These results can be
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qualitatively compared with the experimental results obtained by Latvala et al. in
[9] where it is shown, for ξ = 7/5, that the evolution of the jet angle is linear with
the logarithm of the pressure ratio. The same behaviour is observed in Fig. 3 for the
ES-BGK model. The quantitative results cannot be directly compared to experiments
since within the limit of our model, ξ = 5/3. In order to consider ξ = 7/5, one
should include additional terms in the model as done in [1].
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For small pressure ratios (<10) the ES-BGK and compressible Euler models
give the same angle. When the ratio increases, the difference becomes larger and the
kinetic model stays very close to a straight line. For this kind of pressure ratio, the local
relaxation time increases outside the nozzle and becomes too large to consider the
fluid at equilibrium. Thus, the continuum model tends to give a different solution. This
emphasizes the necessity of using a kinetic model with an AP boundary condition
since this problem cannot be solved with a continuum model for high pressure ratio.
Also, a solution computed with a standard specular reflection wall condition in the
nozzle would significantly pollute the simulation [3].

7 Conclusion

We have presented an integration scheme for the ES-BGK model discretized on
Cartesian meshes. The scheme is second-order accurate in space and time. The wall
condition is such that the hydrodynamic limit is preserved without spurious effects
due to the discretization. The scheme is accurate and yet easily implemented in actual
applications as shown by the nozzle plume case presented.
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On the Use of the HLL-Scheme
for the Simulation of the Multi-Species
Euler Equations

Phillip Berndt

Abstract The HLL approximate Riemann solver is a reliable, fast and easy to
implement tool for the under-resolved computation of inviscid flows. When applied
to multi-species flows, it generates pressure oscillations at material interfaces. This is
a well-known behaviour of conservative solvers and has been addressed as a problem
by several authors before. We show that for this particular solver, the generation of
pressure oscillations can be desired and is consistent with the underlying physics.

1 Introduction

The HLL solver, proposed by Harten, Lax and van Leer in [4] and later enhanced by
Einfeldt with proper signal velocity estimates in [2], is based on the reduction of the
Riemann problem to its two dominating waves. By demanding that the conservation
law is fulfiled, the single intermediate state in between the waves is defined to be

qη = f (ql) − f (qr ) − slql + sr qr

sr − sl
, (1)

where ql and qr denote the left and right state, s1 and s2 are the dominating signal
speeds and f denotes the differential flux function of any one dimensional hyperbolic
equation of the form qt + f (q)x = 0. A numerical flux can then be defined by either
calculating a finite volume’s average at time φt , as in the classical Godunov scheme,
or by another application of the conservation law. In both cases, the numerical flux
is found to be the upwind flux if either sr < 0 or sl > 0, and
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F(ql , qr ) = sr f (ql) − sl f (qr )

sr − sl
+ sr sl

sr − sl
(qr − ql) (2)

for sl < 0 < sr . We will for f only consider the Euler equations, augmented with
advection equations for the mass fractions (∂Yi ) of the individual species and a
thermally perfect1 equation of state.

When these equations were first discussed, it was soon found that this extension
of the Euler equations introduces some new numerical issues. Maintaining positivity,
which had been a problem for density and pressure before, now also became relevant
for the individual species’ masses. This problem has been successfully addressed
by Larrouturou [5], who suggested to define the species’ mass density fluxes as the
product of the density flux and the upwind mass fractions. A second problem can
be readily observed when one tries to simulate two separated species in pressure
equilibrium, moving with a common velocity. If the temperatures and gas constants
differ, conservative simulations create pressure oscillations at the interface, which
are not predicted by the equations. Several authors approached this problem, most
notably R. Abgrall and S. Karni. Their paper [1] gives an overview on the different
approaches in 2000. They all amount to the application of some non-conservative
correction. To our knowledge, no satisfactory solution has been proposed since.

In the following, we will discuss both issues for the HLL solver and thermally
perfect gas mixtures. We will show that a Larrouturou-type correction is not required
to preserve positivity and that this correction would in fact increase the second
problem. We will then argue that in the light of the HLL-scheme, it is an option
not to apply any correction to stop the pressure oscillations. To conclude, we will
elaborate on a test case demonstrating the downside of such corrections.

2 Positivity of the Mass Fractions

To show that the scheme preserves mass fraction positivity, it suffices to show that
the intermediate states qη preserve it. The remainder of the scheme boils down to
updating every cell with a convex combination of its old time level’s state and the
surrounding qη’s.

Einfeldt defined the two signal speeds to be

s1 = min{ul − cl , ū − c̄} (3)

s2 = max{ur + cr , ū + c̄}, (4)

where u denotes the velocity, c the speed of sound and ū, c̄ Roe-averaged velocity and
sound speed. Note that c̄ is always positive. (See e.g. [2] or [6].) For s1 > 0∨ s2 < 0,
the flux simplifies to upwinding, which obviously preserves mass fraction positivity

1 i.e. e(T, Y ) = ⎧
i

⎪ T Yi cv,i (T ) dν , p = ∂RT . Some authors call this “ideal”.
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if the CFL condition is fulfilled. In the other case, the mass fractions of qη are,
according to Eq. (1),

(∂Y )η = ul − sl

sr − sl
(∂Y )l + sr − ur

sr − sl
(∂Y )r . (5)

The denominator is always positive because of the constraint that sl < 0 < sr . We
have to show that the numerators are also positive. For the first factor, Eq. (3) gives
us two cases: If ul − cl is smaller than ū − c̄, the factor is trivially positive. In the
other case,

ul − sl = ul − (ū − c̄) > (ul − cl) − (ū − c̄) > 0. (6)

The argument for sr − ur is analogous. Since (∂Y )η is the sum of two positive mass
fraction vectors, weighted by positive factors, it must remain positive. This concludes
the proof.

We showed that Larrouturou’s correction is not required to preserve mass fraction
positivity in the HLL solver. Now we proceed to show that applying it would actually
worsen the second problem. To this end, consider the following Riemann problem:
Two species are initially separated and in pressure and temperature equilibrium. For
now, let them be at rest. This problem is in equilibrium, so nothing should happen.
The first term in the HLL flux from Eq. (2) vanishes, but the second one is a diffusion
term, which will smear the discontinuity. The according update step amounts to a
convex combination of conserved quantities. It is straightforward to show that the
following statements hold for thermally perfect gas mixtures:

Theorem 1 Let (Ωi ) label the coefficients of a linear combination of states rep-
resented by the conserved quantities. Furthermore assume that the states have a
common velocity.

1. The combined state preserves temperature equilibria
2. For initially equal pressures p0, the combined state has a pressure of

p =
⎨

i

Ωi∂i Ri T = p0

⎨

i

Ωi
T

Ti
. (7)

In particular, if the states are in temperature equilibrium and the combination is
convex, the pressure is maintained.

See below for a proof. By the theorem, the smearing of the discontinuity introduced
by the HLL solver does not disturb the pressure and temperature equilibria. If one
applies the Larrouturou correction to the flux, this changes: What has been a purely
diffusive term ((∂Y )l − (∂Y )r ) in the flux formula before, now becomes

⎩
(∂Y )l if ∂l > ∂r ,

(∂Y )r else,
(8)
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so that the update no longer amounts to a linear combination and therefore introduces
a pressure oscillation, which in the next time step also disturbs the temperature
equilibrium. For non-vanishing velocities, the correction to the flux’s advective terms
introduces the same problem, so applying the correction solely to them would not
resolve the problem.

While we only carried out this computation for the HLL scheme, other schemes
which do not necessarily advect the species’ mass fractions with the correct velocity
might be affected as well. The two goals of maintaining positivity and preventing
pressure oscillations can therefore not generally be treated independently.

Proof (of Theorem 1) We denote the different state variables going into the linear
combination with subscript indexes and use superscript indexes for the different mass
fractions Y j . For the final state, we omit the subscript. First, assume that Ti = T0 for
all states i . For the internal energy

∂e = ∂

∫ T

cv(ν ) dν = ∂
⎨

j

Y j
∫ T

c j
v (ν ) dν =

⎨

i

Ωi∂i

∫ T

cv,i (ν ) dν (9)

holds. Note that the upper integral bound is the final temperature T and not the states’
temperature Ti . Since we do not consider different velocities, the internal energy is
a conserved quantity, so

⎨

i

Ωi∂i

∫ T

cv,i (ν ) dν =
⎨

i

Ωi∂i ei (10)

must hold for any choice of Ωi . Consequently, the integrals must be equal to the
corresponding energies. Finally, since energy is an injective function of T , T = T0.
For the pressure relations, assume pi = p0 for all i . By applying the ideal gas law,
p = ∂RT ,

p =
(

⎨

i

Ωi∂i

) 

R̂
⎨

j

1

m j

⎧
i Ωi∂i Y

j
i⎧

i Ωi∂i



⎜ T =


R̂
⎨

j

1

m j

⎨

i

Ωi∂i Y
j

i



⎜ T

=


R̂
⎨

i

⎨

j

Ωi∂i X j
i

mi



⎜ T =
⎨

i

Ωi∂i Ri T =
⎨

i

Ωi pi
T

Ti
. (11)

In the last equation, R̂ denotes the universal gas constant, X j the mole fractions,
m j the species’ molar masses, and mi the mean molar mass of the i th state. The
expression is already in the form stated in the theorem. If Ti = T for all i the fraction
cancels and we establish our final claim. �
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3 Pressure Oscillations at Species Interfaces

As sketched above, we prototypically investigate the simulation of two separated
gases of different temperatures in pressure equilibrium, moving at a constant velocity.
The Euler equations predict for this situation that the material interface moves at
the given velocity. Godunov-type schemes fail to simulate them correctly for CFL
numbers other than one, because the solution inside the finite volume containing the
contact wave is projected to a single constant state. As has been stated in Theorem 1,
this projected state does not generally have the same pressure the original states had.
It is an interesting observation that this result is physically sound.

To illustrate this, assume in a gedankenexperiment that one could physically per-
form the Godunov method. The only requirement for this is that one must be able
to instantaneously place and remove isolating walls in/from the domain of interest.
By switching coordinate systems we can view the interface as being at rest and the
position of the walls to change with each time step. If one removes those walls, the
evolution step of the scheme takes place. After the walls are replaced, thermal and
species diffusion equilibrate the volumes, corresponding to the scheme’s projection
step. The only difference to a simulation is that the dynamics is not governed by the
Euler equations, but by real physics. The equilibrating is what concerns us here. From
the solution of the Riemann problem, the content of a cell at the start of the equili-
bration is known: The material wave has progressed a fraction of Ω into the cell. On
either side are the two gases, which we denote by subscripts 1 and 2. Thermodynam-
ics allows us to split the equilibration into two processes: First, each gas isothermally
expands to the whole finite volume. By Boyle’s law, the final pressures are p1 = p0Ω

and p2 = p0(1 − Ω). The sum of the partial pressures equals the original pressure
p0, as one would expect from Dalton’s law. In the second step, the temperatures iso-
chorically equilibrate. By the ideal gas law we expect φpi = ∂i RiφTi . The pressure
remains constant if and only if

∂1 R1φT1 = −∂2 R2φT2. (12)

For the equilibration, on the other hand,

∂1cv,1(T1)dT1 = −∂2cv,2(T2)dT2 (13)

holds, following the definition of a thermally perfect gas. The pressure is therefore
generally not maintained, but will change due to thermal equilibration. A calculation
using the convex combination of states from Theorem 1 leads both qualitatively and
quantitatively to the same result. We showed that we are in the situation that the
scheme exhibits an effect which is physically sound but does not comply with the
model equations. In other words:

A physical phenomenon which is not contained in the model equations was used
to discretize said equations.
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Table 1 Strength of pressure oscillations for different discontinuity widths

Initial width of the Max. pressure Relative error
interface (cells) deviation (Pa)

1 4306.777902 4.306778 · 10−02

10 628.360586 6.283606 · 10−03

20 172.625298 1.726253 · 10−03

50 20.347418 2.034742 · 10−04

100 4.701430 4.701430 · 10−05

150 1.673772 1.673772 · 10−05

Initial values Riemann problem with Ar at 1200 K and N2 at 300 K, both at 1 bar and at rest.

The obvious analogy to the role of diffusion for the traditional equations raises
the question whether one should always counteract the pressure oscillations: With
the traditional equations, it was found that the model’s lack of diffusion is a source
for well-posedness problems and that the qualitative insertion of the missing effect
is required to ensure that the scheme converges to the physically relevant solution.
(e.g. [7].) On the other hand, diffusion has to be kept as small as possible to comply
with the model equations which do not predict it.

The HLL-solver can be interpreted as a scheme embracing one of the two pos-
sible extremes: It discards the whole jump discontinuity as a model phenomenon,
prevented by diffusion from existing in real systems, and replaces it by a smeared
state to introduce the maximal physically reasonable amount of diffusion.2 If one
takes this position, the pressure oscillations turn into an effect of a desired solver
property and it becomes sensible not to counteract them at all.

We do not expect long-time contamination of the pressure field from the lack of a
correction, because the effect is self-weakening: The scheme’s diffusion is what leads
to the oscillations, but it also smoothenes the contact discontinuity. As it smoothenes,
adjacent gas constants become increasingly similar. By expanding Eq. (7) in R, we
see that

p = p0 + O(
⎨

i

(Ri − R)). (14)

To quantify this relation, see the exemplary calculation in Table 1. A consequence of
this observation is that schemes which try to maintain the contact discontinuity (but
do not track it) will introduce more pressure oscillations compared to those which
quickly dissolve it. We would like to again emphasize that these thoughts do only
make sense in the context of miscible species and where Dalton’s law holds. Also,
the statement that small pressure oscillations do not contaminate the field for long

2 This thought led to the HLLE scheme, where Einfeldt reintroduced the contact wave as a linear
growth rather than a sharp discontinuity into the Riemann fan. [3]
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Table 2 Riemann test problems for species diffusion

Variable Left IV Right IV Equilibrium Equilibriuma

(actual) (HLL-scheme)

p 1 bar 1 bar 0.9994 bar 0.9994 bar
T 300 K 800 K 436.11 K 436.11 K
X C Ar — —
p 1 bar 1 bar 0.9227 bar 0.9220 bar
T 300 K 600 K 369.08 K 368.99 K
X N2 Ar — —
p 1 bar 1 bar 0.8423 bar 0.8408 bar
T 300 K 2000 K 439.47 K 439.30 K
X N2 Ar — —
p 1 bar 1 bar 0.8207 bar 0.8191 bar
T 300 K 4000 K 458.09 K 457.92 K
X N2 Ar — —
a The simulations were carried out with 10 cells per species at cfl = 0.5 and stopped when the mass
fractions were close to being homogeneous at t = 0.298 s.

times is only valid if a simulation is sufficiently under-resolved for highly active
source terms (e.g. kinetics) to equilibrate before any incoming pressure waves can
fasten the reaction.

4 Species Diffusion Test Case

The Riemann problem with which we began our investigation can be used as a test
case: Two initially separated species at different temperatures are set up in a confined
volume with impenetrable, isolating, reflecting boundaries. Due to species diffusion,
this experiment will physically eventually reach the equilibrium state we derived
above. We enforce numerical diffusion by overlaying the initial values with a small
acoustic field at one of the domain’s resonance frequencies, such that the field does
not alter the average pressure. The mean pressure and temperature of any physically
consistent scheme should reach said equilibrium values.

We have employed the HLL solver in a MUSCL-scheme with a second-order
reconstruction in the primitive variables pressure, temperature, velocity and the mass
fractions. The minmod-Limiter was used. For handling the multi-species EOS, an
in-house chemical kinetics library using the GRI 3.0 mechanism was included with
strang-splitting. The results for this scheme are given in Table 2.

The numerical equilibrium values are close to the predictions, which is the
expected behaviour. A pressure-correcting scheme, in contrast, cannot be expected to
reproduce the correct result, because it is designed to maintain the original pressure.
Since it would still diffuse the species, its result would be neither physically correct
nor in agreement with the Euler equations.
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5 Conclusions

We have introduced a different view on the multi-species problems for the special case
of thermally perfect gas mixtures and suggested that it might not always be desired
to correct the pressure oscillations. We proved that the first-order HLL scheme pre-
serves mass fraction positivity. This result is still incomplete: It remains to be shown
whether the scheme is also monotonicity preserving and whether the second-order
extension we have employed in the test section requires special treatment to preserve
the positivity. The latter is not obvious for the forward-in-time reconstruction, since
the mass fractions enter as dY/dt = −u dY/dx. We plan to accordingly extend the
result in a future contribution.
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A Conservative Well-Balanced Hybrid SPH
Scheme for the Shallow-Water Model

Christophe Berthon, Matthieu de Leffe and Victor Michel-Dansac

Abstract A scheme defined by a hybridization between SPH method and finite
volume method is considered. The aim of the present communication is to derive
a suitable discretization of the source term to enforce the required well-balanced
property. To address such an issue, we adopt a relevant reformulation of the flux
function by involving the free surface instead of the water height. Such an approach
gives a natural discretization of the topography source term in order to preserve the
lake at rest. Moreover, we prove that the scheme is in conservative form, which is,
in general, a very difficult task since we do not impose restrictive assumptions on
the SPH method. Several 1D numerical experiments are performed to exhibit the
properties of the scheme.

1 Introduction

The present work concerns the numerical approximation of the well-known shallow-
water model. The model under consideration is given as follows:

⎧
∂t h + ∂x (hu) = 0,

∂t (hu) + ∂x (hu2 + g
2 h2) = −hg∂x Z ,

(1)
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where h ∨ 0 denotes the water height, u ∈ R is the water velocity in the x direction,
and g > 0 stands for the gravity constant. The function Z denotes the smooth
topography. To shorten the notations, the system is rewritten in the following form:

∂tΦ + ∂x f (Φ) = S, Φ =
⎪

h
hu

⎨

, f (Φ) =
⎪

hu
hu2 + g

2 h2

⎨

, S =
⎪

0
−hg∂x Z

⎨

.

(2)
By adopting a finite volume method to approximate the weak solutions, a usual
property to be satisfied concerns the lake at rest preservation. Indeed, the stationary
solution given by u = 0 and h+ Z = cst, must be exactly preserved by the numerical
method (for instance, see [2, 3, 5] and references therein).

Here, we do not consider a classic finite volume scheme, but we adopt a hybrid
method deriving from the SPH techniques. More precisely, the SPH method (issuing
from the particle methods) involves a like interface numerical flux function. Accord-
ing to [7, 14], this like interface flux function is substituted by a like finite volume
flux function derived from approximate Riemann solvers [5, 9, 12].

In the present paper, we exhibit a source term discretization to make well-balanced
this hybrid numerical technique. The paper is organized as follows. In the next section,
we briefly recall the gradient evaluation derived from the SPH technique, and the
hybrid version by considering approximate Riemann solvers. Next, in Sect. 3, after
[4], we adopt a relevant reformulation of the model to introduce a suitable well-
balanced discretization of the topography source term. The full discrete scheme is
proved to preserve the required lake at rest, and it is in conservation form without any
additional assumptions. In Sect. 4, numerical experiments are performed in order to
illustrate the relevance of the scheme. A short conclusion is given in the last section.

2 Introduction to the SPH Method and Finite Volume
Hybridization

The Smoothed Particle Hydrodynamics (SPH) method was introduced to perform
astrophysical simulations. Recent works (for instance see [13] and references therein)
extend the SPH method in the field of CFD. Now, we present the derivation of the
SPH scheme to approximate the weak solutions of (2).

First, it is worth noticing that, for all real functions f : R ⊃ R, we have the
following relation: f (x) = ( f ⊂ δ)(x) = ⎩

R
f (y)δ(x − y)dy, with δ the Dirac

measure. The particle approximation relies on a suitable regularization of this Dirac
measure.

To address such as issue, after [10, 11], a kernel W ∈ C1
0(R) ∞ L1(R) is intro-

duced, which is usually some bell-shaped function, depending on both center x
and smoothing length h. It must satisfy the consistency conditions [11] given by⎩

R
W (x, h)dx = 1 and

⎩

R
W ≤(x, h)dx = 0.
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Now, after [10, 11], the particle approximation of f , given by ( f ⊂ W )(x) =⎩

R
f (y)W (x − y, h)dy, is nothing but a second-order accurate approximation of

the function f . Using the Green formula, we easily deduce an approximation of f ≤,
given by

⎩

R
f (y)W ≤(x − y, h)dy.

Unfortunately, this particle approximation involves integrals which cannot be
exactly evaluated. As a consequence, a quadrature formula is adopted as follows:⎩

R
f (x)dx ∀ ∑

j∈P ω j f j , where x j are the quadrature points, f j denotes the
evaluation of f at point x j , and ω j stands for the associated weight. Within the
SPH method, the quadrature points are made of particles xi with volume ωi , and P
denotes the set of interacting particles x j close enough to the particle xi . We then
get the following approximation:

Πh( f )i =
∑

j∈P
ω j f j Wi j , Πh( f ≤)i =

∑

j∈P
ω j f j W ≤

i j , Wi j = W (xi − x j , h).

(3)
From now on, let us underline that a natural property to be satisfied by this particle

approximation is Πh(1) = 1 and Πh(1≤) = 0, which reads

∑

j∈P
ω j Wi j = 1 and

∑

j∈P
ω j W ≤

i j = 0. (4)

Such relations are not always satisfied by usual choices for the kernel W (see [13]).
By adopting the derivative discretization formula (3), the SPH scheme for a general

set of equations (2) is given by

1

Δt
ωi

(
Φn+1

i − Φn
i

)
+

∑

j∈P
ωiω j ( f n

i + f n
j )W ≤

i j = ωi Sn
i ,

with f n
i = f (Φn

i ), Δt the time step, and ωiΦ
n
i the vector of conserved variables for

the particle xi .
Concerning the source term discretization Sn

i , one may adopt the particle approx-
imation (3). However, in order to satisfy the required well-balanced property, we will
introduce a specific approximation of the topography in the next section.

To conclude this brief presentation of the SPH scheme, we now show the finite
volume approximate Riemann solver hybridization as introduced in [14]. Indeed,
the derivative discrete operator involves an interface flux approximation given by
1
2 ( f n

i + f n
j ). In [14], this flux approximation is substituted by the numerical flux

function coming from usual Godunov-type scheme (for instance Godunov, HLL,
HLLC, Roe scheme [8]). As a consequence, we consider the following modified
hybrid SPH scheme:
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⎜

⎟

1

Δt
ωi

(
hn+1

i − hn
i

)
+

∑

j∈P
2ωiω j (hu)i j W ≤

i j = 0,

1

Δt
ωi

(
hn+1

i un+1
i − hn

i un
i

)
+

∑

j∈P
2ωiω j

(
hu2 + g

2
h2

)

i j
W ≤

i j = ωi Si ,
(5)

where f Δx (Φn
i , Φn

j ) = ((hu)i j ,
(
hu2 + g

2 h2
)

i j ) stands for the numerical flux
function issuing from a usual finite volume scheme.

3 A Well-Balanced Scheme

Neither usual SPH techniques (for instance Monaghan SPH formulation [11], Vila
formulation [13]) nor the here presented hybrid schemes combining SPH and
Riemann solvers [14] are able to preserve the lake at rest steady state.

In order to derive a lake at rest preserving scheme, we adopt a recent equivalent
reformulation of the PDE. After [7, 14], the flux function, which is in the center of
the hybridization, is reformulated by considering the free surface H = h + Z and the
velocity. Indeed, within the required lake at rest, these two quantities stay constant,
which is of prime importance in the numerical flux definition.

Here, we assume H > 0 and we introduce X = h/H a water height like fraction.
To shorten the notations, we set V = t (H, Hu). In the following statement, by
considering V , we reformulate the system (1) (see [3, 4]).

Lemma 1 The weak solutions of (1) satisfy the following system:

{
∂t h + ∂x (X (Hu)) = 0,

∂t (hu) + ∂x

(
X (Hu2 + g

2
H2)

)
= g

2 ∂x (h Z) − gh∂x Z .
(6)

Let us emphasize that these reformulations involve the flux function but for the
new variables V . As a consequence, as soon as a lake at rest is considered, this flux
function only involves constant states (see (10) later on). This turns out to be the
main ingredient to get the required well-balanced property.

Now, we suggest to adopt the hybrid scheme (5) but for the equivalent formulation
(6). As a consequence, the hybrid SPH scheme under consideration now reads


⎜

⎟

1

Δt
ωi

(
hn+1

i − hn
i

)
+

∑

j

2ωiω j Xi j (Hu)i j W ≤
i j = 0,

1

Δt
ωi

(
hn+1

i un+1
i − hn

i un
i

)
+

∑

j

2ωiω j Xi j

⎪

Hu2 + g
H2

2

⎨

i j
W ≤

i j

= ωi
( g

2 ∂x (h Z) − gh∂x Z
)

i .

(7)
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Concerning the here involved numerical flux function ((Hu)i j , (Hu2+gH2/2)i j ),
we directly adopt f Δx (Vi , Vj ). To complete the scheme, we characterize the new
formulation of the source term. Let us first notice the following easy relation:

g

2
∂x (h Z) − gh∂x Z = g

2
∂x

(
H2 X (1 − X)

)
− gH X∂x (H(1 − X)) .

In fact, a straightforward application of the SPH discretization is not relevant and
we need to consider an additional correction term. We thus adopt the following SPH
like discretization of the source term:

ωi

(g

2
∂x (h Z) − gh∂x Z

)

i
= g

2

∑

j

2ωiω j

(
Xi j Hi j − 2H̄i X̄i

)(
Hi j

(
1 − Xi j

) )
W ≤

i j

+ g
∑

j

2ωiω j H̄2
i X̄i (1 − X̃i )W ≤

i j , (8)

where H̄i , X̄i and X̃i are averages to be defined. Let us remark that the correction
term g

∑
j 2ωiω j H̄2

i X̄i (1− X̃i )W ≤
i j vanishes as soon as the kernel function satisfies

the consistency conditions (4). This correction term is, in fact, a representation of
zero.

Equipped with the hybrid SPH scheme (7)–(8), we now exhibit a suitable definition
for X̄i to enforce the expected well-balanced property.

Theorem 1 Assume both free surface averages to satisfy:

Hi j = H̄i = H, as soon as Hi = Hj = H.

Assume X̄i is defined by

X̄i = 1

2

∑
j ω j X2

i j W ≤
i j

∑
j ω j

(
Xi j − 1

)
W ≤

i j + (X̃i − 1)
∑

j ω j W ≤
i j

. (9)

Then the scheme (7)–(8) preserves the lake at rest.

Proof At time tn , we assume the approximate solution Φn
i be given by the lake at

rest. Then, for all i in Z, we have hn
i + Zi = H a positive constant and un

i = 0. The
proof consists in establishing Φn+1

i = Φn
i . Since the numerical flux function f Δx is

consistent, it preserves the constant states. Hence, we have the following sequence
of equalities:

f Δx (Φn
i , Φn

i+1) = f Δx
⎪⎪

H
0

⎨

,

⎪
H
0

⎨⎨

= f

⎪
H
0

⎨

=
⎪

0

g H2

2

⎨

. (10)

From the water height evolution issuing from (7), we immediately get hn+1
i = hn

i .
Next, concerning the discharge evolution, because of the consistency properties of



822 C. Berthon et al.

the involved average functions, Hi j and H̄i , the source term discretization (8) now
reads

ωi

( g

2
∂x (h Z) − gh∂x Z

)

i
= g

2
H2

∑

j

2ωi ω j

( (
Xi j − 2X̄i

) (
1 − Xi j

) + X̄i (1 − X̃i )
)

W ≤
i j .

Finally, by definition of X̄i , given by (9), a straightforward computation gives
ωi

( g
2 ∂x (h Z) − gh∂x Z

)

i = g
2 H2 ∑

j 2ωiω j Xi j W ≤
i j . As a consequence, the updated

discharge, given by (7), gives un+1
i = 0, and the proof is achieved. ∩→

Let us underline that the formula (9), to define X̄i , is consistent with an evaluation
of X at particle xi . Indeed, from the SPH space derivative approximation (3), we
notice that 1

2

∑
j ω j X2

i j W ≤
i j is consistent with 1

2∂x X2 while
∑

j ω j (Xi j − 1)W ≤
i j

is consistent with ∂x (X − 1). Since
∑

j ω j W ≤
i j is consistent with zero, then X̄i is

consistent with 1
2∂x X2/∂x (X − 1) = X .

To conclude this section, we remark that the required well-balanced property
is established independently of the definitions of Xi j and H̄i . Here, we adopt the
averages introduced in [3, 4]: H̄i = hn

i + Zi and Xi j = Xi if (Hu)i j > 0, X j

otherwise.
In fact, at this level, we notice that the proposed scheme satisfies an additional

stronger property. Indeed, when adopting SPH type scheme to approximate the solu-
tion of homogeneous hyperbolic systems (i.e. with vanishing source term), in general
it is not possible to preserve the constant solutions. By considering an initial data
made of a uniform constant state, the SPH approach makes some particles move and
the constant initial data is no longer preserved. Since the derived scheme is well-
balanced, it obviously preserves such constant solutions as soon as the topography is
flat, i.e. Z = cst. Moreover, we can exhibit a precise definition of the average func-
tions to preserve the conservation form of the scheme:

∑
i∈Z ωi h

n+1
i = ∑

i∈Z ωi hn
i

and
∑

i∈Z ωi h
n+1
i un+1

i = ∑
i∈Z ωi hn

i un
i . The conservation of the water height is

directly deduced from the evolution law for hn+1
i given by (7). Next, considering the

updated formula for the discharge, we easily obtain

∑

i∈Z
ωi h

n+1
i un+1

i =
∑

i∈Z
ωi h

n
i un

i − g
∑

i∈Z
ωi H̄i X̄i

∑

j

2ω j Hi j (1 − Xi j )W ≤
i j

+ g
∑

i∈Z
ωi H̄2

i X̄i (1 − X̃i )
∑

j

2ω j W ≤
i j

Now, we have to define the average functions (Hi j , H̄i , X̄i and X̃i ) such that the
discharge conservation is recovered as soon as the topography function is a given
constant Z . Of course, providing that the consistency conditions (4) holds true, we
have just to consider average functions such that Hi j (1 − Xi j ) = Z .

If (4) is not satisfied, we enter the delicate problem of the inconsistency of the
SPH technique. Let us assume that the average functions satisfy the following con-
dition as soon as the topography is a given constant Z : Hi j (1 − Xi j ) = Z and
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Fig. 1 Left free surface profile for the lake at rest with the above defined topography. Right velocity
and free surface errors for this lake at rest. Both graphs show the solutions at time t = 600 s

Fig. 2 From left to Right, the three test cases defined in [6], respectively G1, G2, G3. The dashed
line represents the free surface and the full line is the topography. The graphs show the solutions at
time t = 600 s

H̄i (1 − X̃i ) = Z . Then we immediately recover the expected conservation of the
discharge. Such average functions can be easily obtained. For instance, let us set
H̄i = hn

i + Zi , X̃i = hn
i /(hn

i + Zi ) and Hi j = Hi if (Hu)i j > 0, Hj otherwise.

4 Numerical Experiments

We now illustrate the relevance of the proposed SPH scheme. For all the tests, the
computational domain is [0, 25], 200 particles are used, and the gravity constant is
equal to 9.81.

To test the well-balanced property, we consider a topography defined by Z(x) =
0.4e(sin(x)−1). The initial conditions are h(x, 0) + Z(x) = 0.5, and u(x, 0) = 0.

Figure 1 shows that the free surface is unperturbed with an oscillating topography.
The velocity is, as expected, close to 0, up to 10−15. The perturbations appearing
the in the velocity are of the order of magnitude of the machine precision, which is
confirmed by a simulation in quadruple precision, where the perturbations are close
to 0, up to 10−33.

The next three test cases come from [6]. The topography is flat with a bump for
x ∈ [8, 12], as follows: Z(x) = 0.2 − 0.05(x − 10)2. The transcritical flow without
shock (G1), with shock (G2) and subcritical flow (G3) test cases are performed
according to the initial and boundary conditions given by [6].

Figure 2 shows good agreement with the exact results (see [3, 6] for instance).
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Table 1 Discharge errors for the three test cases described above. Comparisons between three
schemes: the modified SPH scheme as well as the ones introduced in [1, 3]

Test case Hydrostatic reconstruction Hydrostatic upwind SPH scheme
L2 error L√ error L2 error L√ error L2 error L√ error

G1 4.35E-2 1.92E-2 5.98E-2 1.87E-2 5.67E-2 1.85E-2
G2 4.88E-2 3.31E-2 4.68E-2 2.85E-2 5.50E-2 4.02E-2
G3 9.62E-2 3.07E-2 9.78E-2 2.70E-2 9.83E-2 2.74E-2

In Table 1, the discharge errors turn out to be similar to other methods like hydro-
static reconstruction.

5 Conclusion

By adopting a suitable reformulation of the shallow-water model, we have derived
a relevant discretization of the topography source term to enforce a hybrid SPH
scheme (introduced in [7, 14]) to be well-balanced. Numerical simulations have been
performed to illustrate the interest of such a topography source term discretization.
Indeed, usual and hybrid SPH schemes are known to not preserve the constant state
because of the kernel function which does not satisfy the consistency conditions (4).
The proposed technique corrects such a failure.
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1 Introduction

Particle systems appearing in several physical applications like plasma or radiative
transfer can be studied at different scales. A kinetic description is necessary when the
system is far from thermodynamical equilibrium. It is based on the representation
of the set of particles by a distribution function f depending on time t , space x
and velocity v, f verifying a partial differential equation of Vlasov-type. When the
system stays near equilibrium, the problem can be reduced using a macroscopic
description, only depending on t and x . Several strategies can be used to solved
multiscale problems (see for example [8, 9, 11] or [2]), among them, the micro-macro
decomposition introduced in [1] leads to a coupling of two equations: a macroscopic
one for the mean part of f (in velocity) and a microscopic one for the remainder part
(called perturbation).

This work is devoted to the design of an Asymptotic-Preserving (AP) scheme
(see [10]) for the following kinetic equation in the diffusion scaling

ηt f + 1

φ
vηx f + 1

φ
Eηv f = 1

φ2 (∂M − f ), (1)

where x ∨ [0, Lx ], ∂ = ⎧
f dv is the charge density, E is the electric field given

by the Poisson equation ηx E = ∂ − 1, M is either the absolute Maxwellian (in
the BGK-case v ∨ R) or equal to 1 (in the radiative transport equation (RTE)-case
v ∨ [−1, 1]) and φ is the Knudsen number, parameter of the frequency of collisions
between particles, that may be of order one or tend to zero in the diffusion limit.

The strategy will be the use of the micro-macro decomposition. However, follow-
ing [5], we want to use particles to discretize the micro part so that in the limit regime,
the numerical cost is reduced since a few number of particles will be necessary to
sample the (small) non equilibrium part. The main difficulty compared to phase space
grid approaches [6, 13] remains in the fact that the use of particles requires a splitting
between transport and source terms whereas in [6, 13], the stiffest (source) term is
used to stabilize the stiff transport term.

The outline of the paper is the following. We derive the micro-macro model in
Sect. 2 and its numerical discretization in Sect. 3. Some numerical results are given
in Sect. 4. Section 5 is devoted to the conclusion and some perspectives.

2 Derivation of the Micro-Macro Equations

This section is devoted to the derivation of the micro-macro model. Let us
first introduce a velocity-set V = R in the Vlasov-Poisson-BGK-case and V =
[−1, 1] in the RTE-case and define the null space of the linear collisional BGK-
operator Q ( f ) = ∂M − f by N = Span {M} = { f = ∂M, with ∂ = ∈ f ⊃},
where ∈h⊃ := ⎧

hdv and M (v) = 1⊂
2ν

exp
⎪
− v2

2

⎨
is the absolute Maxwellian in the
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Vlasov-Poisson-case or M = 1 in the RTE-case. We now define the orthogonal pro-
jector Ω in L2

⎩
M−1dv

)
onto N as Ωh := ∈h⊃M . Following [6, 13], we decompose

f as f = ∂M + g, where ∂ := ∈ f ⊃ and g := f − ∂M , and rewrite the kinetic
equation (1) into the equivalent micro-macro model






ηt∂ + 1

φ
ηx ∈vg⊃ = 0,

ηt g + 1

φ
(I − Ω)[vηx (∂M + g) + Eηv(∂M + g)] = − 1

φ2 g.

(2)

The micro equation on g makes appear stiff terms that need a particular treatment
in order to get an AP scheme. The strategy of [12] is used and recalled here. We
rewrite the flux term of the micro equation

(I − Ω)(vηx (∂M + g)) = vMηx∂ + vηx g − ηxΩ(vg),

(I − Ω)(Eηv(∂M + g)) = Eηv(∂M + g) = −vM E∂ + Eηvg,

so that the micro equation becomes

ηt g + 1

φ
[vMηx∂ + vηx g − ηx ∈vg⊃M − vM E∂ + Eηvg] = − 1

φ2 g. (3)

Starting from (3), we rewrite it as

ηt (e
t/φ2

g) = −et/φ2

φ

[
vMηx∂ + vηx g − ηx ∈vgn⊃M − vM E∂ + Eηvg

⎜
.

Integrating in time between tn and tn+1 leads to

etn+1/φ2
gn+1 = etn/φ2

gn− 1

φ

⎟ tn+1

tn
et/φ2

dt
[
vMηx∂

n

+ vηx gn − ηx ∈vgn⊃M − vM En∂n + Enηvgn⎜ ,

and multiplying by e−tn+1/φ2
gives

gn+1 = e−Σt/φ2
gn− φ(1 − e−Σt/φ2

)
[
vMηx∂

n

+ vηx gn− ηx ∈vgn⊃M − vM En∂n+ Enηvgn⎜ .

By using the discrete time derivative, we finally get

gn+1 − gn

Σt
= (e−Σt/φ2 − 1)

Σt
gn − φ

(1 − e−Σt/φ2
)

Σt

[
vMηx∂

n + vηx gn

− ηxΩ(vgn)M − vM En∂n + Enηvgn
⎜
,
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which we approximate, up to terms of order O(Σt2), by

ηt g = e−Σt/φ2 − 1

Σt
g

− φ
1 − e−Σt/φ2

Σt
[vMηx∂ + vηx g − ηxΩ(vg)M − vM E∂ + Eηvg] . (4)

Let us remark that this equation does not contain any stiff term. Moreover, the two
following properties are verified:

• consistency: ∞φ > 0 fixed, as Σt ≤ 0, we recover the initial micro equation (3),
• AP property: ∞φ > 0 fixed, as φ ≤ 0, we get g = −φ(vMηx∂ − vM E∂),

which injected in the macro equation provides the right limit model given by
ηt∂ − ηx (ηx∂ − E∂) = 0 (see [6]).

The Sect. 3 is devoted to the numerical discretization of the modified micro-macro
model

ηt∂ + 1

φ
ηx ∈vg⊃ = 0,

ηt g = e−Σt/φ2 − 1

Σt
g − φ

1 − e−Σt/φ2

Σt
[vMηx∂ + vηx g − ηxΩ(vg)M − vM E∂ + Eηvg]

(5)
by an hybrid scheme, that couples finite volumes for the macro part ∂ to a particle

method for the micro part g. As in [5], where the hydrodynamic limit was studied,
we expect a reduction of computational time when φ ≤ 0, related to the few number
of particles needed to represent g at the limit.

3 Finite Volumes/Particles Discretization

We present in this section the Finite Volumes/Particle-In-Cell (PIC) coupling devel-
oped for solving (5). Such a coupling is explained in more details in [5] for the
hydrodynamic limit.

Let us consider a classical uniform discretization of the spatial domain x ∨ [0, Lx ]
denoted by (xi )0∀i∀Nx and the following approximations: ∂n

i ∩ ∂(tn, xi ) and En
i ∩

E(tn, xi ). The Poisson equation ηx E = ∂−1 for E is solved thanks to finite volumes
without difficulty. We now focus on the two other Eq. (5).

3.1 Particle Approximation for g

Our goal is to extend the particle discretization developed in [5] to the diffusion
scaling. To that purpose, we exploit the reformulation (4). As already said in [5],
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we have to use a splitting procedure between the transport part and the source part.
Then, the algorithm is the following

• solve ηt g + φ
(1−e−Σt/φ2

)
Σt vηx g + φ

(1−e−Σt/φ2
)

Σt Eηvg = 0,

• solve ηt g = (e−Σt/φ2 −1)
Σt g − φ

(1−e−Σt/φ2
)

Σt [vMηx∂ + ηx ∈vg⊃M − vM E∂].

In the PIC method (described for example in [3]), the distribution function g is
represented by a set of N particles of position xk , velocity vk and weight Λk and
approximated by g (t, x, v) = ∑N

k=1 Λk (t) ξ (x − xk (t)) ξ (v − vk (t)). Then, the
transport part is solved with the (non stiff) characteristics

ẋk = φ
(1 − e−Σt/φ2

)

Σt
vk, v̇k = φ

(1 − e−Σt/φ2
)

Σt
E(t, xk), (6)

E(t, xk) being computed by a deposition step knowing En
i on the mesh. The source

part is solved using the equation satisfied by the weights

Λ̇k = (e−Σt/φ2 −1)
Σt Λk − φ

(1−e−Σt/φ2
)

Σt [vk M(vk)(ηx∂(t, xk)

−E(t, xk)∂(t, xk)) + ηx ∈vg⊃(t, xk)M(vk)] .
(7)

In more details, from an initial repartition of the N particles (x0
k , v0

k) in the phase-
space domain of size Lx × Lv, with Λ0

k = g(t = 0, xk, vk)Lx Lv/N , (6) is approxi-
mated by

xn+1
k = xn

k + φ(1 − e−Σt/φ2
)vn

k , vn+1
k = vn

k + φ(1 − e−Σt/φ2
)En(xn

k ). (8)

Then, we compute the momentum ∈vgn+1/2⊃ of gn+1/2 using this new position:

∈vgn+1/2⊃|x=xi ∩
N∑

k=1

Λn
k Bδ(xi − xn+1

k )vn+1
k , (9)

Bδ → 0 is a B-spline function of order δ:

Bδ(x) = (B0 √ Bδ−1)(x), with B0(x) =
{ 1

Σx if |x | < Σx/2,

0 else.
(10)

We rewrite the weight equation as

Λn+1
k = Λn

k + (e−Σt/φ2 − 1)Λn
k − φ(1 − e−Σt/φ2

)
[
πn

k + Δn
k

⎜
, (11)

with πn
k = vk M(vk)[ηx∂

n(xk) − En(xk)∂
n(xk)] Lx Lv

N and Δn
k = ηx ∈vgn⊃(xk)M(vk)

Lx Lv
N .
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To compute πn
k (resp. Δn

k ), since ∂n (resp. ∈vgn⊃) is known on the spatial grid, we

approximate ηx∂
n (resp. ηx ∈vgn⊃) by centered finite differences: (ηx∂

n)i ∩ ∂n
i+1−∂n

i−1
2Σx

(resp. (ηx ∈vgn⊃)i ∩ ∈vgn⊃i+1−∈vgn⊃i−1
2Σx ) and evaluate at x = xk using an interpolation.

Remark We have now a new approximation of gn+1 given by its particle dis-
cretization. We have to ensure that the micro-macro structure f = ∂M + g with
∂ = ⎧

f dv is preserved numerically. To do that, we correct the weights Λn+1
k , adapt-

ing an idea of [7]. We do not detail this procedure here but refer the reader to [5].

Chapman-Enskog expansion When φ goes to zero, we immediately observe that
Λn+1

k = −φπn
k + O(φ2) (since Λn

k = O(φ) ∞n → 1). Computing the momentum of
gn+1 means that we use (9) with gn+1, or in the limit regime

∈vgn+1⊃|x=xi ∩ −φ

N∑

k=1

πn
k Bδ(xi − xk)vk + O(φ2),

∩ −φ
⎛
∈v2 M⊃(ηx∂

n − En∂n)
⎝
|x=xi + O(φ2)

∩ −φ(ηx∂
n − En∂n)(xi ) + O(φ2).

Injecting in the macro equation then leads to a discretization of ηt∂−ηx (ηx∂ − E∂) =
0, which corresponds to the right asymptotic model (see [6]).

3.2 Coupling Strategy

After the computation of gn+1 by the PIC method, we compute ∂n+1 thanks to a
standard finite volume method. We use for example the following scheme:

∂n+1
i = ∂n

i − 1

φ

Σt

Σx

⎪
∈vgn+1⊃i+ 1

2
− ∈vgn+1⊃i− 1

2

⎨
, (12)

where ∈vgn+1⊃i+ 1
2

is computed with (9).
Finally, the algorithm reduces to:

• Initialization of (xk, vk) and Λk .
• (1) Advance micro part:

– advance the characteristics with (8),
– compute ∈vgn⊃ with (9),
– advance the weights equation with (11).

• (2) Correction step for preserving the micro-macro structure as in [5].
• (3) Advance macro part:

– compute ∈vgn+1⊃ with (9),
– compute ∂n+1 with (12).
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Fig. 1 Landau damping test case. MiMa-Part compared to MiMa-Grid. Electric energy as a function
of time t for φ = 1 on the left and φ = 0.5 and 10−2 on the right

4 Numerical Results

We validate our model, denoted by MiMa-Part, on two classical test cases and com-
pare it to a full particle method ( f is discretized by particles and not only g, see [3])
denoted by Full-PIC and to a micro-macro scheme using a Eulerian discretization of
phase space, denoted by MiMa-Grid (which corresponds to the scheme developed
in [6]).

We first consider the linear Landau damping case, where f is initially given by

f (0, x, v) = 1⊂
2ν

exp
⎪
− v2

2

⎨
(1 + π cos (kx)), x ∨ [

0, 2ν
k

⎜
with periodic condi-

tions in x and v ∨ R (cut to [−10, 10], assuming that the number of gas particles
having a larger absolute velocity is negligible). We take here k = 0.5 and π = 10−2.
The hybrid MiMa-Part scheme is compared to MiMa-Grid for different values of
φ, from 10−2 to 1, in Fig. 1. We look at the time evolution of log ||E(t)||L2 which
is known to decrease linearly in time. The kinetic regime (φ = 1—on the left) is
well described but the number of needed particles is quite big: N = 5 × 105. For
φ = 0.5 (on the right), we note that the boundary layer is captured by both methods.
For small values of φ (for example 10−2 but decreasing φ does no more change the
curves - on the right), MiMa-Part leads to the diffusion limit, as well as MiMa-Grid.
But here, 200 particles are sufficient to represent in a good way the perturbation g
and to capture the limit. The cost of MiMa-Part then reduces as φ ≤ 0, whereas
MiMa-Grid keeps the same complexity.

We then consider the RTE-testcase given by f (0, x, v) = 1 + cos
⎩
2ν

⎩
x + 1

2

))
,

E = 0 ∞t , x ∨ [0, 1] with periodic conditions in x and v ∨ [−1, 1].
Results obtained at t = 0.1 are presented in Fig. 2. On the left, MiMa-Part is compared
to MiMa-Grid for φ = 1 and φ = 10−2. In both regimes, our hybrid scheme gives a
good representation of the density ∂(x). These results can also be compared to those
of [12]. On the right, we compare MiMa-Part to a full PIC method when φ = 1.
From the PIC point of view, our hybrid scheme can be seen as a δ f method (see [4]
for example). We thus take the same advantages: the noise due to the probabilistic
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Fig. 2 RTE-testcase. Density ∂ as a function of x at time t = 0.1. MiMa-Part compared to
MiMa-Grid for φ = 1 and 10−2 on the left and compared to a full PIC method for φ = 1 on the
right

character of the particles discretization is reduced since it affects only the perturbation
g, and not the whole function f . This noise appears on the representation of ∂

when N is too small, and for example in the black curve obtained with Full-PIC
and N = 5 × 104. With the same order of N , the black line labeled with crosses
corresponding to MiMa-Part and N = 4 × 104 is not affected by this noise. Finally,
for obtaining a smooth curve with Full-PIC, we have to take N = 5 × 105 (see
the dashed line). The cost of the model is directly linked to N . To obtained the two
smooth curves for φ = 1, the computational time is 0.12 s for MiMa-Part and 0.47 s
for Full-PIC.

5 Conclusion and Perspectives

A first extension of the AP hybrid method developed in [5] is presented in this paper,
concerning the diffusion scaling. Same conclusions are observed: the scheme is AP
and the number of needed particles to represent g in a good way decreases as φ ≤ 0.
The cost of the hybrid method reduces then at the diffusion limit, whereas it does
not depend on φ in standard phase-space grid methods.

Other possible extensions may be considered and will be the subject of future
works. First, it would be interesting to deal with Dirichlet boundary conditions
(instead of periodic ones) for enlarging the application field. For the same reason,
more general collision operators should be considered, combining this approach with
relaxation techniques as in [12]. Extension to higher dimensions of the phase-space is
also possible and a comparison with semi-Lagrangian schemes would be interesting.
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Some Applications of a Two-Fluid Model

Fabien Crouzet, Frédéric Daude, Pascal Galon, Jean-Marc Hérard,
Olivier Hurisse and Yujie Liu

Abstract We present in this paper some comparisons of numerical results and
experimental data in some two-phase flows involving rather high pressure ratios.
A two-fluid two-phase flow model has been used herein, but we also report a few
results obtained with some simpler single-fluid two-phase flow models.

1 Introduction

The correct modelling of two-phase flows still requires a further investigation of
models and methods, but also demands more details and a thorough comparison
with available experimental data. For most of the water-vapour applications arising
within the framework of nuclear power plants, the vapour phase is dilute; however,
the mean flow may sometimes contain a much larger amount of vapour (this may
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occur in the upper part of steam generators, or more likely in some severe accident
configurations following the boiling crisis, or in water-hammer situations), and thus
relative velocities may become large. This, among other reasons, has motivated the
focus on a class of two-fluid models for which the numerical simulation of highly
unsteady flows is relevant. Actually, when restricting to the statistical averaging
formalism, we know that standard tools may be used in order to derive meaningful
models, in order to tackle unsteady and inhomogeneous two-phase flow patterns.

The two-fluid two-phase flow model discussed herein belongs to a wider class
that has been investigated in [3, 4, 8, 10, 11, 16, 17] among other references. It
requires the computation of seven unknowns (statistical void fraction of the vapour,
mean densities, mean velocities and mean pressures). As recalled in [7, 15] for
instance, partial differential equations may be derived for statistical void fractions,
and partial mass, momentum and total energy within each phase ; equations of state
which provide the mean internal energy within each phase must be prescribed, and
some other closure laws for cross-correlations and interfacial transfer terms are also
necessary.

We recall in Sect. 2 the governing equations and their main properties ; afterwards
we briefly describe the basics of the Finite Volume scheme that is used for numerical
simulations. Then we focus on the main part, which consists in reporting some
numerical results that have been obtained in [18], thus including a comparison with
experimental data [19, 21], but also with other numerical results.

2 Governing Equations

Classical notations are used, hence αk(x, t) will denote the statistical void fraction
of phase k = l, v, and will comply with the constraint αl(x, t) + αv(x, t) = 1.
Variables ρk, Uk, Pk respectively denote the mean density, the mean velocity, the
mean pressure within phase k, and we define partial masses mk = αkρk . The total
energy Ek within phase k = l, v is defined by: Ek = ρkek(Pk, ρk) + ρk(U 2

k )/2,
where ek(Pk, ρk) stands for the internal energy. The state variable W will be noted:

W t = (αv, ml , mv, mlUl , mvUv, αl El , αv Ev)

Thus, when neglecting the contribution of viscous effects and turbulence, the form
of the governing equations of mean quantities in the two-fluid model is, for k = l, v:

∂t (αv) + Vint (W )∂x (αv) = φv(W )

∂t (mk) + ∂x (mkUk) = Γk(W )

∂t (mkUk) + ∂x
⎧
mkU 2

k

⎪ + ∂x (αk Pk) − Πint (W )∂x (αk) = Dk(W ) + Γk(W )U int

∂t (αk Ek) + ∂x (αkUk(Ek + Pk)) + Πint (W )∂t (αk) = ψk(W ) + Uint Dk(W ) + Γk(W )Hint

(1)

Contributions Γk(W ), Dk(W ) and ψk(W ) take interfacial mass transfer, drag
effects and interfacial heat transfer into account. Besides, the term φk(W )arising
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in the governing equation of the statistical void fraction αk is due to the statistical
averaging [7, 15] of the topological equation. The following constraints also hold:

⎨

k=l,v

Γk(W ) = 0 ;
⎨

k=l,v

ψk(W ) = 0 ;
⎨

k=l,v

Dk(W ) = 0 ;
⎨

k=l,v

φk(W ) = 0.

(2)
and we define: Uint = (Ul + Uv)/2 and: Hint = UlUv/2. Furthermore, we define
Vint (W ) as:

Vint (W ) = ξ(W )Ul + (1 − ξ(W ))Uv . (3)

where ξ(W ) lies in [0, 1]. Physically relevant functions ξ(W ) have been proposed
in [8], and will be recalled at the end of this section. We also introduce the specific
entropy Sk(Pk, ρk) in each phase, which complies with:

c2
k∂Pk (Sk) + ∂ρk (Sk) = 0 (4)

-noting ck(W ) the speed of acoustic waves within phase k- and temperatures: 1/Tk =
∂Pk (Sk) /∂Pk (ek) ; we also set: μk = ek + Pk/ρk − Tk Sk . Besides, source terms
Γl(W ), φl(W ), ψl(W ), Dl(W ) are defined as (see property 1):

Γl(W ) = KΓ (W )(μv(W )/Tv − μl(W )/Tl) ; Dl(W ) = KU (W )(Uv − Ul) ;
ψl(W ) = KT (W )(Tv − Tl) ; φl(W ) = K P (W )(Pl − Pv)

The first three closure laws are in agreement with classical formulations (see [7, 16]),
and the last one for φl(W ) is physically relevant: it simply means that the statistical
void fraction of the liquid phase locally increases when Pl > Pv. The -positive-
scalar functions in the drag contribution and in the heat transfer closure law may be
chosen as:

KU (W ) = mlmv((ml + mv)τU (W ))−1,

KT (W ) = mlmvCl−v((ml + mv)τT (W ))−1,

K P (W ) = αlαv((Pl + Pv)τP (W ))−1.

Here, τU,P,T (W ) denote velocity-pressure-temperature relaxation time scales, and
we also set : KΓ (W ) = K ∨

Γ (W )/τΓ (W ). Closure laws for τU,P,T,Γ (W ) can be
found in the literature (see [9] for a review concerning τP ). Eventually, we assume
that Πint (W ) is a convex combination of both pressures, thus:

Πint (W ) = χ(W )Pl + (1 − χ(W ))Pv (5)

with:

χ(W ) = (1 − ξ(W ))/Tl

(1 − ξ(W ))/Tl + ξ(W )/Tv
(6)
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Property 1:
For smooth solutions W of (1) with closure laws (3), (5), (6), the governing equation
of the entropy of the two-fluid model η(W ) = ⎩

k=l,v mk Sk is:

∂t (η(W )) + ∂x




⎨

k=l,v

mkUk Sk



 =Γl(W )(μv(W )/Tv − μl(W )/Tl)

+ Dl(W )(Uv − Ul)(1/(2Tv) + 1/(2Tl))

+ ψl(W )(Tv − Tl)/(TvTl)

+ φl(W )(Pl − Pv)((1 − χ(W ))/Tv + χ(W )/Tl)

Obviously, when ξ(W ) = 0 (or ξ(W ) = 1), one retrieves the standard Baer-Nunziato
model [3], where the interface velocity Vint (W ) corresponds to the mean velocity of
the vanishing phase [3, 4, 10, 17]. We finally recall two basic properties:

Property 2: The set of equations associated with the left-hand side of (1) has seven
real eigenvalues which read:

λ1 = Vint (W ) (7)

λ2 = Uv, λ3 = Uv − cv(W ), λ4 = Uv + cv(W ), (8)

λ5 = Ul , λ6 = Ul − cl(W ), λ7 = Ul + cl(W ) (9)

Associated righteigenvectors span the whole space R7, if: |Uk − Vint (W )|/ck ∈= 1.

Property 3: Fields associated with eigenvalues λ2,5 are linearly degenerate. Other
fields associated with eigenvalues λ3,4,6,7 are non linear. The 1-field is linearly degen-
erate if: ξ(W )(1 − ξ(W )) = 0, or if: ξ(W ) = ml/(ml + mv).

If the 1-field is linearly degenerate, unique jump conditions can be written within
each single field. Thus, for schemes that provide convergent approximations when
the mesh is refined, we expect that approximations converge towards the unique
shock solution. Other properties can be found in [5].

3 Finite Volume Scheme

The basic algorithm that is used to compute approximations of the whole system
relies on an entropy-consistent fractional step method including an evolution step
and a relaxation step. Details on schemes can be found in references [8, 12–14].

• Evolution step
This step computes approximate solutions of the homogeneous system:
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⎜

⎟

∂t (αv) + Vint (W )∂x (αv) = 0
∂t (mk) + ∂x (mkUk) = 0
∂t (mkUk) + ∂x

⎧
mkU 2

k

⎪ + ∂x (αk Pk) − Πint (W )∂x (αk) = 0
∂t (αk Ek) + ∂x (αkUk(Ek + Pk)) + Πint (W )∂t (αk) = 0

(10)

through the time interval [tn, tn + Δt], with given initial values W n . The Finite
Volume solver that is used to compute interface fluxes either relies on a non-
conservative version of the Rusanov scheme, on the approximate VFRoe-ncv
Godunov scheme (see [8]), or on the relaxation scheme introduced in [20]
(see [1, 2] too). An explicit CFL condition enforces the time step. This provides a
set of approximations W̃ . An extensive verification of convective schemes can be
found in [6], with focus on solutions on one-dimensional Riemann problems.

• Relaxation step
Given discrete cell values of W̃ , we compute approximations of the coupled set of
ODEs corresponding to relaxation terms, that is:


⎜

⎟

∂t (αv) = φv(W )

∂t (mk) = Γk(W )

∂t (mkUk) = Dk(W ) + Γk(W )Uint

∂t (αk Ek) + Πint (W )∂t (αk) = ψk(W ) + Uint Dk(W ) + Γk(W )Hint

(11)

The most difficult task in the building of the Finite Volume solver is due to the
mass transfer term and to the contribution φk . In particular, difficulties arise when
enforcing the conservative form for the mixture, and meanwhile requesting that
void fractions and pressures should remain in their physical range. Many details
on this part of the algorithm can be found in [12–14].

4 A Comparison of Computational Results with Experimental
Data

We provide numerical results and a comparison with experimental data for two dis-
tinct cases characterized by high pressure variations. A stiffened gas equation of state
(EOS) has been used in the liquid phase, whereas a perfect gas EOS is retained for
the vapour phase. A non-conservative version of the Rusanov scheme has been used
for all numerical experiments presented in the sequel. As mentionned before, other
stable and accurate schemes proposed in the literature may be used, but we empha-
size that one of the most difficult tasks also consists in building efficient schemes in
order to account for mass transfer and pressure relaxation.
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Fig. 1 Time evolution of the pressure P = αv Pv + (1 − αv)Pl in Simpson experiment (orange
squares). Numerical results: Red triangles—two-fluid model with fluid-structure interaction, Green
line—five-equation homogeneous model with fluid-structure interaction, Light blue line—two-
fluid model without fluid-structure interaction, Dark blue line—three-equation homogeneous model
without fluid-structure interaction

4.1 Simpson experiment

This experiment is described in [21]. A big tank is filled with water that flows in a
small pipe, the diameter of which is 19 mm; at the very beginning of the recording,
the velocity of the fluid is equal to 0.4 m/s, the pressure in the tank is 3.419×105 Pa,
the temperature is T = 296 K. The pipe of 36 m length is suddenly closed at its
right end; thus it results in a violent water-hammer. A shock wave is created and
propagates to the left towards the tank. Three pressure captors have been inserted
along the pipe, and focus is given here on the one that is close to the right closed
exit. The one-dimensional mesh in the pipe contains 12000 regular cells, and the
CFL has been set to 1/2. Numerical results obtained with a finer mesh with 36000
cells hardly differ from the latter -absolute differences are less than 1 %. In Fig. 1,
the time evolution of the mean pressure P = αv Pv + (1 − αv)Pl for this captor has
been displayed (orange squares), and a comparison with numerical results obtained
with the two-fluid approach on the fine mesh can be done (light blue line). The red
triangles refer to the two-fluid approach when one accounts for the elasticity of the
pipe (see [18]). Obviously, the prediction of maximum and mimimum values in the
transient, as well as occurences of sudden increases and decreases, highly depends
on the elasticity of the pipe, and whether it has been accounted for or not in the whole
model. This pattern is even emphasized in some other experiments (for instance in
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Fig. 2 Time evolution of the pressure P = αv Pv +(1−αv)Pl in Canon experiment (black squares).
Numerical results: Dark blue—two-fluid model/Green—five-equation homogeneous model, Light
blue—three-equation homogeneous model
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Fig. 3 Time evolution of the vapour statistical fraction in Canon experiment (orange crosses for dif-
ferent runs). Numerical results: Dark blue triangles—two-fluid model, Green dots—five-equation
homogeneous model, Light blue—three-equation homogeneous model

Romander experiment, where a wave propagates in a pipe including a rigid section
and an elasto-plastic section, see [18]).
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4.2 Canon experiment

In this second experiment [19], a closed rigid pipe initially filled with pressurized
water is suddenly opened at its right end. This results in a sudden vaporisation of
the fluid, and a left-going rarefaction wave is propagating in the liquid region. The
initial pressure P = αv Pv + (1−αv)Pl in the pipe is 32×105 Pa, the initial uniform
temperature is Tv = Tl = 493 K, and the fluid (αv = 10−3) is at rest: Uv = Ul = 0.
The same EOS have been used within the liquid and vapour phases for this second
experiment, and the time step is still chosen in agreement with the constraint: CFL =
1/2. The mesh for which results are displayed contains 8000 cells along the pipe
axis. Several data have been collected, and results presented in Fig. 2 (black squares)
correspond to the time evolution of the pressure close to the right end. A sudden
decrease can be oberved first, followed by an almost contant state corresponding
to the saturation pressure; afterwards a second smooth decrease occurs, together
with an intense vaporization (see Fig. 3), until the atmospheric pressure is reached.
Vapour statistical fractions have been recorded at the same place as time goes on,
for different experimental runs (orange crosses in Fig. 3). Numerical results obtained
with the two-fluid model on a fine mesh have been plotted on both Figs. 2 and 3,
together with approximations provided by two different homogeneous models (a
five-equation model and a three-equation model). Obviously the vaporization occurs
sooner in the simulation than in the experiment.

Acknowledgments The last author received a financial support by ANRT through an EDF-CIFRE
contract 732/2010. Computational facilities were provided by EDF. Numerical simulations have
been performed with the Europlexus code.
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Numerical Simulation of Flow in a Meridional
Plane of Multistage Turbine

Jiří Fürst, Jaroslav Fořt, Jan Halama, Jiří Holman, Jan Karel,
Vladimír Prokop and David Trdlička

Abstract The paper presents a numerical method, which simulates the circumfer-
entially averaged steady flow of a compressible fluid in a multistage turbine. The
method is considered in the analytic mode with known geometry. It is intended as
a fast tool to turbine designers, which provides the distribution of the flow parame-
ters in the meridional plane, gives the information about mass flow and estimates
the efficiency of turbine. The method is based on the solution of the circumferen-
tially averaged three-dimensional Euler equations complemented by the source terms
related to the turbine geometry and to the loss prediction model. The meridional plane
is discretized by a structured grid. Equations are solved by a finite volume method
with the AUSM type numerical flux. Examples including the transonic flow in a
turbine stator and in a stage are presented.

1 Introduction

The design of a multi-stage turbine is a very complex problem. Designers at a certain
step propose setups from typical turbine components to meet the given operating con-
ditions. This step usually brings necessity to simulate the flow inside a multi-stage
turbine for different geometries and flow parameters. Methods based on the stream-
line curvature and stream functions were widely used in the past. They are unfortu-
nately not able to handle transonic flow and they cannot guarantee the conservation of
transported quantities. Fully three-dimensional simulations of the turbulent flow are
still inapplicable in this initial step of design, mainly due to the excessive CPU time.
The desirable method must have the low CPU time consumption and it should deliver
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results ‘close’ to the three-dimensional simulations. There is a variety of simplified
approaches ranging from a quasi 1D solvers, e.g. [4], to circumferentially aver-
aged Euler solvers, e.g. [3] or to circumferentially averaged Navier-Stokes solvers,
e.g. [6]. Neglected phenomena (averaging, viscous effects, ...) are included in the
form of source terms, e.g. [2] or [7]. The presented method is based on the idea
of [3]. It solves the circumferentially averaged three-dimensional Euler equations
coupled with different loss prediction models (dissipation phenomena). It is able to
simulate the flow field in the meridional plane. The choice of equations permits the
use of rather coarse grid (no need for the grid refinement along the walls). This is
important, since the low CPU time consumption is one of the key requirements for
the presented method. The given blade geometry defines the shape of the midplane
between the pressure and the suction sides of blades. The shape of the midplane con-
trols the direction of the flow. The loss prediction model includes also an incidence
and a deviation corrections.

2 Model of the Circumferentially Averaged Flow

Consider the Euler equations in the frame defined by the cylindrical coordinates
attached to the respective blade row (the relative frame of reference)

∂W
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+ 1

r
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r
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,

where r , ϕ, z denote the cylindrical coordinates, t denotes the time, ρ is used for
the density, vr , vϕ and vz are the velocity components, e is the total energy per unit
volume, p is the pressure and ω is the angular velocity (it is equal to zero for the stator
cascade). Assume one blade passage as the solution domain D = {[r,ϕ, z] ∈ R

3;
[r, z] ∈ Drz, ϕ1(r, z) < ϕ < ϕ2(r, z)}, where Drz = {[r, z] ∈ R

2; r1(z) <

r < r2(z), z1(r) < z < z2(r)} is the projection of D onto the meridional plane
(zr -plane). The discretization of the domain D is based on the idea of having single
cell in the circumferential direction and a common finite volume discretization of
the domain Drz . Let us denote the projection of an arbitrary finite volume from D
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into Drz by K . Then one can integrate the Eq. (1) with limits [r, z] ∈ K ⊂ Drz and
ϕ1(r, z) < ϕ < ϕ2(r, z)

∫∫

K

ϕ2(r,z)∫

ϕ1(r,z)
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(2)
Integration with respect to ϕ yields to
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where b = ϕ2 −ϕ1 and ni = (∂ ϕi /∂r,−1/r, ∂ ϕi /∂z) is the normal vector on
the boundary ∂Dϕ,i = {[r,ϕ, z] ∈ R

3; [r, z] ∈ Drz, ϕ = ϕi (r, z)} for i = {1, 2}.
Consider the finite volume K downstream the leading and upstream the trailing
edges, then the non-permeability condition applied on ∂Dϕ,i yields (Fi , Gi , Hi )ni =
[0, pi ni , 0]T , i.e. the right hand side of the Eq. (3) can be written as
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The above form of the right hand side of the Eq. (3) is also valid for the part of
∂Dϕ,i , where the periodicity conditions (F1, G1, H1) = (F2, G2, H2), n1 = n2 and
p1 = p2 are considered. The resulting form of the governing equations is
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Considering a common explicit finite volume method, one obtains
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l Δzl

⎤ + (br Q)n
K + SK ,

(5)
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where the subscript ·l denotes the edges of volume K , n is the time level and SK =
[0, ρf tot , 0]T is the additional source term, where f tot = f b +f d . The external force
f b is applied between blades and it is perpendicular to the middle plane defined as
ϕ(r, z) = (ϕ1(r, z) + ϕ2(r, z))/2 + ϕcor . The role of f b is to force the fluid to flow
along the middle plane, which is given by the blade geometry and it is modified
by the incidence and the deviation corrections ϕcor coming from the loss prediction
model. The external force f d has the direction of flow and its magnitude is given by
the loss prediction model, i.e. it decelerates the flow (dissipation of kinetic energy).

3 Numerical Method

The numerical solution is based on a finite volume method for the system (5) coupled
with some empirical loss prediction model and the definition of the geometry of a
channel. The computational domain (subset of meridional plane) is discretized by
the structured quadrilateral grid. The finite volume method uses the AUSM type flux.
The coupling between the finite volume method and the loss prediction model has
the following steps. Consider the solution W n

i, j at the point [zi , r j , tn] is known. The
computational grid has the uniform spacing in the radial direction, therefore grid
lines j = const can be roughly considered as streamlines. The solution W n

j for each
particular j = const line is used as an input data for the loss prediction model,
which returns the value of the total pressure loss, which is further expressed as the
entropy rise Δsloss

j . We further compute the entropy rise Δsn
j related to the solution

W n
j . The solution should satisfy lim Δsn

j = Δsloss
j for n → ∞, i.e. to have solution

with the prescribed losses. The correction of external force Δf d
j is related to the

difference Δsloss
j −Δsn

j . Once the entropy of the solution and from the loss prediction

model are equilibrated, the force f d becomes constant. The force f d
j is appropriately

distributed along j = const line between leading and trailing edges. The loss model
also gives the correction of the flow direction ϕcor . The component of the velocity,
which is normal to the midplane ϕ(r, z) = (ϕ1(r, z) + ϕ2(r, z))/2 + ϕcor , defines
the correction of force Δf b

i, j , which eliminates this normal component. If the normal

component is equal to zero, which is the desired state, the force f b becomes constant.
The force f b is applied between leading and trailing edges to mimic the guidance
of the flow by the blades. Currently, constant loss model without ϕcor correction
and AMDC-KO [2] loss model are implemented. Next step of numerical algorithm
is the evaluation of values in ghost cells (implementation of boundary conditions).
Finally W n+1

i, j is computed using explicit two stage Runge–Kutta time integration.
To enhance the robustness of the proposed method, the addition of external forces is
relaxed.
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Fig. 1 The middle section from the 3D Euler simulation (left), the meridional plane for the
circumferentially averaged simulation (right)

Fig. 2 The Mach number contours in the meridional plane. Full 3D Euler simulation (left), the
circumferentially averaged simulation (right)

4 Results of Simulations

The first example represents the flow in the stator cascade from the low pressure part
of a steam turbine. The Fig. 1 shows the the shape of the ‘middle’ plane between
blades and the discretization of domain for the presented method (projection of one
blade passage into the meridional plane). The Fig. 2 compares the numerical results
achieved by the solution of the full 3D Euler equations and by the circumferentially
averaged 3D Euler equations (the presented method without any loss model). The
qualitative comparison of the Mach number contours in the meridional plane for the
3D Euler simulation and for the presented method (‘single cell’ in circumferential
direction) gives an idea, how well can the presented method simulate the transonic
flow for a complex shape of the meridional section.
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Fig. 3 The shape of the middle section for the high pressure core stage of a gas turbine

Fig. 4 The Mach number contours in the meridional plane for the high pressure core stage
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Fig. 5 The distribution of the pressure along the stator blade profiles at three radial locations.
a Hub. b Mid. c Tip

The second example is the flow in the high pressure core stage of a gas turbine,
see the Fig. 3. The stage geometry and experimental data are available in [5]. The
presented results correspond to the cold air test described in [5]. Some results are also
compared with the results of the 3D Euler simulation from [1]. The considered inlet
total pressure is the atmospheric pressure 101.3 kPa and the inlet total temperature
is 288.2 K. The flow at the stage inlet has axial direction. The rotor rotates with
8081 rev/min. The ratio of the static pressure behind the stage to the inlet total pressure
is 0.225. The total pressure loss has been set 5.5 % for each cascade, it corresponds to
the design efficiency considered in [5]. The Fig. 4 shows the contours of the relative
Mach number in the meridional plane. The stator blades are prismatic, therefore there
is no significant gradient of the solution in the radial direction. The maximum of the
Mach number at the hub downstream the stator cascade corresponds to the design
value. The Figs. 5 and 6 show the pressure distribution along the blade profiles for
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Fig. 6 The distribution of the pressure along the rotor blade profiles at three radial locations. a
Hub. b Mid. c Tip
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Fig. 7 The radial distributions of the relative flow angle in three axial locations (upstream the stator
cascade, in the gap between stator and rotor and downstream the rotor)

the stator and the rotor at three different radial locations. The full line is used for
the results of the 3D Euler simulation [1], which gives usually the realistic values
of the pressure for the design conditions (no flow separation). The dashed line is
the result of the presented method with the single cell in circumferential direction.
Due to the single cell, there is only one dashed line, which can be understood as
a certain average of the pressure between the pressure and the suction sides—the
dashed line should be somewhere in the middle between the both full lines. This
may not be true in the vicinity of the leading and trailing edges. It is important, that
the presented method is able to approximate well the expansion through the blade
channel. This is the main advantage with respect to former methods, which did not
take into account the blade geometry. The radial distributions of the flow angles
(measured from the axial direction) are plotted in the Fig. 7. The absolute and the
relative flow angles in the gap between the stator and the rotor (α1 and β1) and the
relative flow angle downstream the rotor (β2) at the hub, middle section and tip are
summarized in the Table 1 together with the value of the total mass flow through the
stage. Results achieved by the presented method are compared with the design values
and the measured values presented in [5] and with the results of three-dimensional
simulation based on the solution of the Euler equations [1]. The agreement between
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Table 1 Comparison of the mass flow and the flow angles

Case ṁ αH
1 αM

1 αT
1 βH

1 βM
1 βT

1 βH
2 βM

2 βT
2

(kg/s) (deg) (deg) (deg) (deg) (deg) (deg) (deg) (deg) (deg)

The design value [5] 3.708 74.4 73.0 71.8 59.3 50.8 39.3 58.7 59.6 60.7
The experiment [5] 3.856 72.2 48.3 56.4
3D Euler [1] 3.950 72.7 48.0 55.0
The presented method 3.768 73.5 73.0 73.0 59.5 52.2 44.2 58.8 59.7 60.6

The absolute and the relative flow angles downstream the stator are denoted by α1 and β1 respec-
tively. The relative flow angle downstream the rotor is denoted by β2. The superscripts ·H , ·M

and ·T refer to hub, mid and tip locations

all results is good. Certain differences can be found for inlet relative flow angle to the
rotor, where the presented method gives a slightly higher value at the tip. Nevertheless
one has to remember, that even in the original paper [5] there is a difference in stator
outlet angle between the design and the real geometry used in experimental setup.

5 Conclusions

The presented method based on the iterative coupling of the circumferentially aver-
aged Euler equations with a loss model is able to simulate the transonic flow in the
meridional plane of a multistage turbine. Since all viscous effects are modeled by
the loss prediction model, the computational grid has less cells compared to methods
based on the averaged Navier–Stokes equations. It allows to obtain results for the
flow in a multi-stage turbine in a relatively short time (several minutes on today
PC’s). The value of a loss given by the prediction model is included in the form
of external force f d , which has the same direction as the flow, i.e. it decelerates the
flow. Entropy produced by a numerical method (numerical diffusion) is compensated
using the same source term. The developed method has a modular character, user can
choose from several thermodynamic models (the perfect gas, the steam according to
IAPWS IF-97) and from several loss prediction models. First tests have shown, that
the presented method is able to provide a reliable information about the mass flow
and the radial profiles of the flow angles, of the pressure and of the velocity.
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Application of a Two-Fluid Model to Simulate
the Heating of Two-Phase Flows

Jean-Marc Hérard, Olivier Hurisse, Antoine Morente and Khaled Saleh

Abstract This paper is dedicated to the simulation of two-phase flows on the basis
of a two-fluid model that allows to account for the disequilibrium of velocities, pres-
sures, temperatures and chemical potentials (mass transfer). The numerical simula-
tions are performed using a fractional step method treating separately the convective
part of the model and the source terms. The scheme dealing with the convective part
of the model follows a Finite Volume approach and is based on a relaxation scheme.
In the sequel, a special focus is put on the discretization of the terms that rule the mass
transfer. The scheme proposed is a first order implicit scheme and can be verified
using an analytical solution. Eventually, a test case of the heating of a mixture of
steam and water is presented, which is representative of a steam generator device.

1 Introduction

Most of the industrial processes used for generating electricity require the use of
fluids, and especially water. The water is used either as a coolant fluid or to ensure the
production of mechanical work through the turbines which are motionned by steam.
If we focus on a nuclear power plant based on a Pressurized Water Reactor (PWR),
the water is used as liquid or vapour depending on the circuit under consideration.
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In particular, the secondary circuit of a nuclear power plant contains steam and liquid
water. Moreover, vaporization and condensation phenomena take place in different
parts of that circuit. In this industrial context, the two fluid approach is often retained
to perform fine 3D simulations in complex geometries.

For instance, the well-known standard two-fluid model [9] is widely used in indus-
trial numerical codes. This model allows to deal with the velocity and temperature
disequilibrium, and to take into account the mass transfer between the phases by a
source term measuring the distance to the saturation (most of the time in terms of
enthalpy or temperaure). In this model, the pressure is assumed to be the same for the
two phases at every point and every time. This pressure equilibrium is based on the
mechanical assumption of large interfaces between the two phases [9] and it neglects
the thermodynamical aspect of the pressure equilibrium. Indeed, the classical ther-
modynamics theory states that two phases of the same fluid are in equilibrium if and
only if: the pressures, the temperatures and the chemical potentials are equal for the
two phases. In our opinion, it is crucial to recover this equilibrium condition in a
model used to perform numerical simulations of two-phase flows, mainly if mass
transfer is an important feature of the problem. We thus choose a model that also
takes explicitely into account the pressure disequilibrium between the phases.

The two-fluid model used in the sequel is related to the so-called Baer-Nunziato
model [1, 10]. Its formal derivation has been performed following a statistical
approach in [8]. In one space dimension, the corresponding system possesses seven
independent variables: the statistical fraction of liquid, the statistical mean tempera-
tures, the statistical mean pressures and the statistical mean velocities. The space-time
evolution of these variables is described by a set a PDEs whose convective part is
hyperbolic and whose source terms are chosen to comply with the entropy inequality,
based on the physical mixture entropy. Non-conservative products are present in the
equations but some specific closures [4] allow to define discontinuous solutions in a
unique manner.

The whole numerical scheme proposed here is based on a operator-splitting
method [15]. We first account for the convective part of the system thanks to the
explicit relaxation scheme proposed in [2, 13]. The source terms are then successively
discretized by four implicit ODE schemes. Very good agreement with experiments
has been found in [11] (using a Rusanov scheme for the convective part) focusing on
situations where the mass transfer occurs due to a pressure drop. We propose here a
one-dimensional test case close to the OECD test case [14]: the mass transfer is due
to the heating of saturated water which flows in a pipe.

2 The Two-Fluid Model

The system of PDEs governing the time-space evolution of the variables is:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t (αv) + Vi (W )∂x (αv) = φv(W ),

∂t (ml) + ∂x (mlUl) = −Γv(W ),

∂t (mlUl) + ∂x (mlUl
2 + αl Pl) − Pi (W )∂x (αl ) = −Dv(W ) − Γv(W )U int,

∂t (αl El) + ∂x (αlUl(El + Pl)) + Pi (W )∂t (αl) = −ψv(W ) − V int Dv(W ) − Γv(W )Hint,

∂t (mv) + ∂x (mvUv) = Γv(W ),

∂t (mvUv) + ∂x (mvUv
2 + αv Pv) − Pi (W )∂x (αv) = Dv(W ) + Γv(W )U int,

∂t (αv Ev) + ∂x (αvUv(Ev + Pv)) + Pi (W )∂t (αv) = ψv(W ) + V int Dv(W ) + Γv(W )Hint,

(1)
where αk denote the statistical fractions and satisfy αl + αv = 1, ρk denote the
densities, mk = αkρk are the partial masses, Uk the velocities, Pk the pressures
and Ek the total energies which read Ek = ρk(ek + U 2

k /2). The specific internal
energies ek are obtained through an EOS defined with respect to the pressures and
densities: ek = ek(ρk, Pk). Closure laws have to be provided for the velocities Vi (W ),
V int(W ), U int(W ), for the pressure Pi (W ) and for the energy Hint(W ), where W =
(αl , ml , mlUl , αl El , mv, mvUv, αv Ev). We follow the choice proposed in [4, 6, 7]:
Vi (W ) = Uv, Pi (W ) = Pl , U int = V int = (Ul +Uv)/2 and Hint = UlUv/2. We also
define the total mass m = ml + mv, the mean velocity U with mU = mlUl + mvUv,
and the total energy of the mixture E = αl El + αv Ev.

The source terms for the pressure relaxation φv(W ), for the mass transfer Γv(W ),
for the drag force Dv(W ) and for the heat exchange ψv(W ) are then chosen according
to the entropy inequality for the mixture s = mlsl(ρl , Pl) + mvsv(ρv, Pv) and the
associated entropy-flux ηs = mlUlsl(ρl , Pl) + mvUvsv(ρv, Pv), where sk are the
physical phasic specific entropies. The source terms can then be chosen as:

Γv(W ) = 1
τg(W )

ml mv
(ml+mv)(|μv|/Tv+|μl |/Tl )

(μl/Tl − μv/Tv),

Dv(W ) = 1
τu(W )

ml mv
ml+mv

(Ul − Uv),

ψv(W ) = 1
τt (W )

ml CV,l mvCV,v
ml CV,l+mvCV,v

(Tl − Tv),

φv(W ) = αlαv
K p(W )

(Pv − Pl),

(2)

with the positive characteristic time scales τg , τu , τt , and the positive parameter K p

which has the dimension of a kinematic vicosity [5]. The chemical potentials are
denoted by μk = ek + Pk/ρk − Tksk , Tk = Tk(ρk, Pk) stand for the temperatures
and CV,k are the specific heat capacities.

Model (1) with the closures proposed above is defined for a statistical liquid
fraction in ]0, 1[. Otherwise, if for instance αl = 0, the quantities ρl , Ul and el are
not defined in a unique manner. It is important to note that due to the choice of the
closures for (1), αl remains in ]0, 1[ if the initial condition for αl belongs to ]0, 1[
everywhere on the spacial domain and if αl is in ]0, 1[ on the boundary of the domain
(especially at the inlets). Other properties of this model can be found in [3, 4, 8].

With this model, the thermodynamical equilibrium is reached if and only if the
temperatures, the pressures and the chemical potentials are equal. In the pressure-
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temperature plane, the set of couples (P, T ) which are solutions of the system:

Tl = T = Tv, Pl = P = Pv,
μl (Tl ,Pl )

Tl
= μv(Tv,Pv)

Tv
∨ μl(T, P) = μv(T, P),

(3)
represents the so-called saturation curves for which the two phases co-exist in a
stable manner. For any couple (P, T ) which is not solution of (3), only one of the
two phases is stable (i.e. the other one tends to vanish). When considering Stiffened
Gas EOS in the pressure-temperature plane, the chemical potential reads:

μk (Tk ,Pk )
Tk

= γkCV,k − sk(Tk, Pk),

sk(Tk, Pk) = sk,0 + γkCV,k ln (CV,k Tk) − (γk − 1)CV,k ln
(

Pk+Pinf,k
γk−1

)
,

(4)

where γk > 1, CV,k and Pinf,k are constant. We can exhibit explicitely the saturation
curve for the temperature with respect to the pressure. It is defined only if γvCV,v ∈=
γlCV,l and reads:

Tsat(P) = e

(
βl −βv+γvCV,v−γl CV,l

γvCV,v−γl CV,l

) (
(P+Pinf,v)

(CV,v(γv−1))

(P+Pinf,l )
(CV,l (γl −1))

)
(

1
γvCV,v−γl CV,l

)

, (5)

where βk = sk,0 +γkCV,k ln (CV,k)+ (γk −1)CV,k ln (γk − 1) are the constant parts
of the entropies sk(Pk, Tk). The saturation curve for the pressure with respect to the
temperature can not be written explicitely.

3 Discretization Scheme

The overall scheme is based on a fractional step method [15]. We first account for
the convection terms, which corresponds to system (1) with Γv(W ) = Dv(W ) =
ψv(W ) = φv(W ) = 0. In the sequel, this step is achieved using the relaxation
scheme described in [2]. It is not recalled here and the convergence curves obtained
for analytical test cases can be found in [12]. This scheme has proven to be accurate
and has shown good capability to treat small values of αk , which are very important
features for industrial simulations.

In the second step of the algorithm, source terms Γv(W ), Dv(W ), ψv(W ) and
φv(W ) are accounted for successively through the corresponding ODE system with
the time step Δt fixed by the convection scheme. The corresponding schemes for
Dv(W ), ψv(W ) and φv(W ) are implicit and are described in [7, 11, 12]. For each
source term, analytical solutions can also be found in these references. We focus
here on the scheme that handles the mass transfer term Γv(W ). Paying attention to
the properties of mass, momentum and total energy conservation for the mixture, the
ODE system for the mass transfer obtained from system (1) is:
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⎧
⎪⎪⎨

⎪⎪⎩

∂t (αvρv) = Γv,

∂t (αvρvUv) = U intΓv,

∂t (αv Ev) = HintΓv,

∂tαv = ∂t (m) = ∂t (mU ) = ∂t (E) = 0.

(6)

Starting from an initial value W n of W at time tn , we describe now how the value
W n+1 is computed at time tn+1 = tn + Δt .

We first approximate system (6) by taking τg = τg(W (t = 0)). The solutions
for the statistical fractions are obvious: αk(t) = αk(t = 0), which enables to write
the source term Γv as a function of the densities and the specific internal energies:
Γv = Γ̃v(ρl , el , ρv, ev). Moreover, thanks to the closures for U int and Hint , the
internal energies remain constant:

∂t (mvev) = 0 and ∂t (mlel) = 0. (7)

If we now use the fact that the mass of the mixture is conserved, Γv can be written
as a function of ml(t) (or mv(t)) and the initial conditions:

Γv = Γ̃v(ρl , el , ρv, ev)

= Γ̃v

(
ml

αl (t=0)
,

(ml el )(t=0)
ml

,
(ml+mv)(t=0)−ml

αv(t=0)
,

(mvev)(t=0)
(ml+mv)(t=0)−ml

)

= Γ̄v(ml).

(8)

A straightforward consequence of this property is that the mass equation (i.e. the first
equation of (6)) can be solved independently of the other equations. In general, the
source term Γv can not be explicitely integrated. We thus solve the mass equation
using one time-step Δt of the Euler implicit scheme:

mn+1
l = mn

l − ΔtΓ̄v(m
n+1
l ), with mn+1

l ⊃ [0, mn
l + mn

v ]. (9)

The solution mn+1
l at the end of the time step may be computed by a dichotomy

algorithm. The function Y ⊂ Γ̄v(Y ) is non-linear and might be non smooth. We can
state the following result setting F(Y ) = mn

l − Y − ΔtΓ̄v(Y ). Since Γv vanishes for
ml = 0 or mv = 0 we obviously have F(0) = mn

l and F(mn
l + mn

v ) = −mn
v . If we

assume that Y ⊂ Γ̄v(Y ) is continuous, its form ensures that if the masses mn
k are

positive, then the masses mn+1
k are also positive. Finally, if F is continuous and strictly

monotone on [0, mn
l +mn

v ], there exists a unique solution to (9) in ]0, mn
l +mn

v [. Once
the mass mn+1

l has been computed, the term Γ̄v(m
n+1
l ) and the remaining equations

can be updated using one step of the implicit Euler scheme:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

αn+1
l = αn

l , mn+1
l = mn

l − ΔtΓ̄v(m
n+1
l ), mn+1

v = mn − mn+1
l ,

(mlUl)
n+1 = (mlUl)

n − ΔtU
n+1
int Γ̄v(m

n+1
l ), (mvUv)

n+1 = mUl
n − (mlUl)

n+1,

(αl El)
n+1 = (αl El)

n − Δt H
n+1
int Γ̄v(m

n+1
l ),

(αv Ev)
n+1 = (αv Ev)

n + (αl El)
n − (αl El)

n+1.

(10)
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Fig. 1 Sketch of the test case:
geometrical domain and time-
schedule of the heating
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In fact, the two momentum equations form a 2 × 2 linear system whose determinant
ΔG,u is always positive if and only if the partial masses are positive, since: ΔG,u =
(mn

l mn+1
v + mn+1

l mn
v )/2. Once the velocities U n+1

k are known, the update of the
total energies En+1

l and En+1
v is straightforward. This scheme is a first-order scheme

which ensures the conservation of the total mass, the total momentum and the total
energy of the mixture. The positivity of the fractions and the partial masses is ensured.

4 Heated Saturated Water in a Pipe

The test case is derivated from the OECD/CSNI benchmark problem [14]. It consists
in heating saturated water flowing in a one-dimensional pipe. The increase of heat
of the fluid leads to vaporization of the water which is advected. The sketch of the
case is depicted in Fig. 1. Since we do not account for the head loss in the pipe -
as proposed in the OECD/CSNI benchmark problem - we do not need to wait for a
stationnary state to be established in the pipe before beginning to heat the fluid. In
fact the initial conditions given below already represent a stationnary state. Hence
the time schedule of the present case is slightly different.

The initial conditions are chosen at a pressure of P = 71.0 bars and a tem-
perature close to the saturation temperature T = 559.75 K. They are: αl = 0.99,
ρl = 739.8 kg/m3, ρv = 37.1 kg/m3, Ul = Uv = 1.468 m/s, Pl = Pv = 71.0 bars.
The EOS parameters are chosen to get these values and to recover the values of
the phasic celerities and a temperature saturation-curve (5) close to the real one in
the vicinity of the pressure P = 71.0 bars and the temperature T = 559.75 K. It
yields: CV,v = 1329.45 J/kg/K, γv = 1.257, Pinf,v = 0, s0

v = −16274.14 J/kg/K,
CV,l = 285.14 J/kg/K, γl = 3, Pinf,l = 2.29×108 bars, s0

l = 0. The saturation curve
is shown on Fig. 2 together with a tabulated saturation curve. The difference is not
negligible. Actually, due to the higher slope of the stiffened gas saturation curve, we
may underestimate the vapour production. For the inlet boundary-condition the val-
ues are the same as the initial condition values. These values provide an equilibrium
state since velocities, pressures, temperatures and chemical potentials are equal.
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Fig. 2 Saturation curves for
the temperature with respect
to the pressure on the interval
[ 50, 90 bars]. The plain
line represents a reference
saturation curve, whereas the
dashed line represents the
saturation curve obtained with
our stiffened gas EOS
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Fig. 3 Thermodynamical
variables along the x-axis at
time t = 10 s. The plain lines
represent the liquid variables
and the dashed lines represent
the vapour variables
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Fig. 4 Liquid statistical
fraction, vapour mass fraction
and mixture mass flow rate at
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We are interested in the stationnary state that is reached after 10 s of physical
time. The results obtained with the code presented in the previous sections are given
on Figs. 3 and 4. They correspond to an industrial mesh with 200 uniform cells.
The CFL condition 1/2 applied to the convection scheme leads to a time step of
1.5 × 10−5 s. The latter is smaller than the time scales which are: τg = 2.0 × 10−4 s
and τt = 1.0×10−4 s. The parameter for pressure relaxation is chosen in accordance
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with [5]: K p = 1.226 10−4. Figure 3 represents the thermodynamical variables along
the x-axis at time t = 10 s and Fig. 4 gives the vapour mass fraction and the mixture
mass flow rate at the outlet of the domain for the whole simulation time. It can be
noticed that the heating mainly results in the increase of the temperature and that
the pressures do not vary a lot. At the outlet of the domain, the liquid fraction starts
to evolve at time t = 1 s, which corresponds to the time necessary for the vapour
generated to reach the outlet (the vapour travels at almost 1.4 m/s and there is almost
1.4 m between the downstream edge of the heating zone and the outlet).
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Modeling Phase Transition and Metastable
Phases

François James and Hélène Mathis

Abstract We propose a model that describes phase transition including metastable
phases present in the van der Waals Equation of State (EoS). We introduce a dynam-
ical system that is able to depict the mass transfer between two phases, for which
equilibrium states are both metastable and stable states, including mixtures. The
dynamical system is then used as a relaxation source term in a isothermal two-phase
model. We use a Finite Volume scheme (FV) that treats the convective part and the
source term in a fractional step way. Numerical results illustrate the ability of the
model to capture phase transition and metastable states.

1 Introduction

Metastable vapor is a gaseous state where the pressure is higher than the saturation
pressure. Such states are very unstable and a very small perturbation brings out a
droplet of liquid inside the gas. Such a phenomenon can appear at saturated pressure
(or at saturated temperature for metastable liquid) for instance inside a nozzle such as
a fuel injector or in a cooling circuit of pressurized water reactor. In the last decades
considerable research has been devoted to the modeling of two-phase flows with
phase transition. However the exact expressions of the mass transfer term are usually
unknown (see [2]). In particular, to our knowledge, there is very few literature about
the transfer term able to depict metastable states. In [7] and [8] the authors consider
a 6-equation model where relaxation to equilibrium is achieved by chemical and
pressure relaxation terms whose kinetics are considered infinitely fast.
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We intend here to provide a new model able to depict phase transition and
metastable states with non-infinite relaxation speed. It is based on the use of the
van der Waals EoS, that is well-known to depict stable and metastable states below
the critical temperature. However this EoS is not valid in the so-called spinodal zone
where the pressure is a decreasing function of the density. This leads to instabilities
and computational failure and most commonly the pressure is corrected using the
Maxwell equal area rule construction to recover a constant pressure. However such
a correction removes the metastable regions. We propose transfer terms obtained
through an optimization problem of the Helmholtz free energy of the two-phase
system. For sake of simplicity we assume the system to be isothermal. We obtain
a dynamical system that is able to depict mass transfer including metastable states
and that dissipates the total Helmholtz free energy. The equilibria of the dynamical
system are either stable states or metastable states or a mixture state that satisfies
the pressures and chemical potentials equalities. This dynamical system is used as
a transfer term in a isothermal two-phase model in the spirit of [6] and [1]. We use
a classical FV scheme that treats the convective and the source terms in a splitting
approach.

Section 2 is devoted to the thermodynamics of a binary mixture and presents the
major properties of the van der Waals EoS. Section 3 is devoted to the construction
of the dynamical system based on results of the previous section. In particular we
show that metastable states are attractors of the dynamical system. In Sect. 4 we
briefly present the splitting FV scheme we use and give numerical results where
some metastable vapor appears.

2 Thermodynamics and van der Waals Equation of State

In this Section we first recall the thermodynamics theory for a single isothermal fluid
and introduce the different potentials of the van der Waals EoS, then we state the
mathematical framework for the thermodynamics of immiscible binary mixtures.

2.1 Thermodynamics of a Single Phase

Consider a single fluid of mass M > 0 occupying a volume V > 0. At constant
temperature if the fluid is homogeneous and at rest, its behavior is entirely described
by the Helmholtz free energy function E(M, V) which belongs to C2(R+ × R+)

and is positively homogeneous of degree 1 (PH1). Thus, at fixed volume V , one
can introduce the specific Helmholtz free energy f and the specific energy e that are
functions of the density ρ = M/V

f (ρ) = E(ρ, 1), ρe(ρ) = E(ρ, 1). (1)
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Fig. 1 Phase diagram for
the van der Waals EoS in
the (p, ρ) plan. Below the
critical point C, the isotherm
curve decreases in the so-
called spinodal zone delimited
by the densities ρ− < ρ+.
In that area the isotherm
is commonly replaced by
an horizontal segment that
coincides with the isobaric
line at constant pressure p∨.
Such a construction defines
the two densities ρ∨

1 and ρ∨
2

We also introduce the pressure p and the chemical potential μ that are partial deriv-
atives of the free energy E, respectively with respect to V and ρ. By homogeneity
these can be written as functions of ρ solely:

p(ρ) = −∂V E(ρ, 1), μ(ρ) = ∂ME(ρ, 1). (2)

Again thanks to the homogeneity of the energy function, one has

f (ρ) = ρμ(ρ) − p(ρ), f ∈(ρ) = μ(ρ). (3)

Stable pure phases are characterized by a convex energy function, which leads to
a nondecreasing pressure law. We consider a classical example of a fluid that may
experience phase transitions, namely the van der Waals monoatomic fluid. At fixed
temperature T its Helmholtz free energy is given by

E(M, V) = −aM2

V
+ RT

(

M log
M

V − Mb
− M

)

, (4)

where R stands for the perfect gas constant and a and b are positive constants,
a accounts for binary interactions and b is a specific covolume. Below a critical tem-
perature TC the associated pressure is not monotone with respect to (wrt) the density
(see Fig. 1): in a region called the spinodal zone, delimited for a given temperature
by the densities ρ− < ρ+, the pressure decreases wrt the density, thus leading to
unstable states. In that region the isotherm is commonly replaced by the Maxwell
area rule in order to recover that phase transition happens at constant pressure and
constant chemical potential. However this construction removes admissible regions
where the pressure law is still nondecreasing. Such regions are called the metastable
regions (see Fig. 1).
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2.2 Equilibrium of a Two-Phase Mixture

We consider now two immiscible phases of a same pure fluid of total mass M and
volume V at a fixed subcritical temperature. Each phase i = 1, 2, is depicted by its
mass Mi ⊃ 0 and its volume Vi ⊃ 0. We assume that both phases are characterized
by the same van der Waals extensive Helmholtz free energy E function of Mi and
Vi, given by (4). By the conservation of mass, the mass of the binary system is
M = M1 + M2 and immiscibility implies V = V1 + V2.

According to the second principle of thermodynamics (see [4]), for fixed mass
M and volume V the stable equilibrium states of the system are the solutions to the
constrained optimization problem

inf{E(M1, V1) + E(M2, V2)| V1 + V2 = V , M1 + M2 = M},
which can be rewritten using (1) in term of the specific Helmholtz free energy at
fixed density ρ:

inf{α1f (ρ1) + α2f (ρ2)| α1 + α2 = 1, α1ρ1 + α2ρ2 = ρ}, (5)

where αi = Vi/V ⊂ [0, 1] denotes the volume fraction and ρi = Mi/Vi is the
density of the phase i = 1, 2. In the sequel the fractions αi are written as functions
of ρ, ρ1 and ρ2 such that α1(ρ, ρ1, ρ2) = (ρ − ρ2)/(ρ1 − ρ2) and α2(ρ, ρ1, ρ2) =
1 − α1(ρ, ρ1, ρ2).

Note that α1 and α2 are simultaneously non zero if and only if ρ1 ∞= ρ2. In that
case we shall always assume without loss of generality that ρ1 < ρ2 and ρ ⊂ [ρ1, ρ2].
The total Helmholtz free energy F : R3+ ≤ R of the binary system is given by

F(ρ, ρ1, ρ2) = α1(ρ, ρ1, ρ2)f (ρ1) + α2(ρ, ρ1, ρ2)f (ρ2). (6)

Depending on the saturation of the volume fractions, one can characterize the equi-
libria of the optimization problem (5).

Proposition 1

1. Pure states: if α1 = 0 (resp. α2 = 0) then only the phase 2 (resp. 1) is stable.
2. Mixture: if α1α2 ∞= 0, then the equilibrium state is characterized by one of the

following equivalent properties

a. equality of the chemical potentials and the pressures

μ(ρ1) = μ(ρ2) = μ∨, p(ρ1) = p(ρ2) = p∨, (7)

b. Maxwell area rule on the chemical potential

∫ 1

0
μ(ρ2 + t(ρ1 − ρ2))dt = μ(ρ1) = μ(ρ2) = μ∨. (8)

The densities such that (7) or (8) holds are denoted ρ∨
1 and ρ∨

2 , see Fig.1.
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The most important consequence of this result is that in the metastable zones there are
two possible equilibrium states corresponding to a pure metastable state and a stable
mixture state. Hence the EoS at equilibrium is not single-valued. The difference
between stable and metastable states lies in their dynamical behaviour with respect
to perturbations, see [5].

3 Dynamical System and Phase Transition

We turn now to the study of dynamical stability of equilibrium states. First we address
the homogenous case, introducing a dynamical system for which the equilibria are
both stable and metastable states as well as states in the spinodal area such that (7)
or (8) is satisfied. Next the dynamical system is plugged as a relaxation source
terms in a isothermal two-fluid model. Some properties of the full model are given:
hyperbolicity, existence of an energy function that decreases in time.

3.1 Dynamical System

Assuming that ρ, ρ1 and ρ2 are only time-dependent, we introduce the following
dynamical system, which derives from the optimality conditions of Proposition 1:

ρ̇ = 0,

ρ̇1 = −(ρ − ρ1)(ρ − ρ2) (ρ2(μ(ρ2) − μ(ρ1)) + p(ρ1) − p(ρ2)) , (9)

ρ̇2 = (ρ − ρ1)(ρ − ρ2) (ρ1(μ(ρ1) − μ(ρ2)) − p(ρ1) + p(ρ2)) .

Straightforward computations show that the total Helmholtz free energy F defined
by (6) decreases in time along the solutions of this system. It can also be proved that
if ρ1(0) < ρ2(0) then ρ1(t) < ρ2(t) for all t > 0. Hence one can assume without
loss of generality that

ρ1(t) < ρ2(t), ρ1(t) ∀ ρ ∀ ρ2(t). (10)

We focus now on the equilibria which can be reached by the model.

Theorem 1 Under assumption (10), the equilibrium states of system (9) are

1. Pure states: α2 = 0, ρ = ρ1, any ρ2 ∞= ρ (resp. α1 = 0, ρ = ρ2, any ρ1 ∞= ρ).
More precisely,

a. if ρ ∞⊂ [ρ−, ρ+], then the equilibrium is an attractor and corresponds to
monophasic stable or metastable states (see Fig.1),

b. if ρ ⊂]ρ−, ρ+[, then the equilibrium is a repeller and corresponds to non
admissible states belonging to the spinodal zone,



870 F. James and H. Mathis

2. Mixture states: the unique state such that 0 < α1 < 1 and relation (7) or (8) is
satisfied.

A remarkable feature of this system is that a perturbation of a pure metastable state
involving the other phase leads to a mixture equilibrium state, corresponding to the
definition of metastable state [5].

3.2 The Isothermal Model

The previous dynamical system (9) is now coupled with a modified version of the
isothermal two-phase model proposed in [1] (see also [6]). Now the unknowns
ρ, ρ1, ρ2 are functions of time t and space x. The model admits a mixture pressure
α1p(ρ1) + α2p(ρ2) and one velocity u for both phases. It reads

∂tρ + ∂x(ρu) = 1

ε
ρ̇ = 0,

∂tρi + ∂x(ρiu) = 1

ε
ρ̇i, i = 1, 2 (11)

∂t(ρu) + ∂x(ρu2 + α1p(ρ1) + α2p(ρ2)) = 0,

where the source terms are given by the dynamical system (9) and account for
mass and mechanical transfer. The parameter ε > 0 is a relaxation parameter that
represents the relaxation time to reach thermodynamical equilibrium.

If ρ, ρ1, ρ2 ∞⊂ [ρ−, ρ+] then the convective part of the model (11) is hyperbolic
with the eigenvalues

λ1 = u − c, , λ2 = λ3 = u, λ4 = u + c, (12)

where the sound velocity is c =
√

1

ρ
(α1ρ1p∈(ρ1) + α2ρ2p∈(ρ2)).

Proposition 2 The function E (ρ, ρ1, ρ2, u) = ρu2

2
+ α1f (ρ1) + α2f (ρ2), satisfies

the following equation

∂t(E ) + ∂x(u(E + α1p(ρ1) + α2p(ρ2)) = (∂ρ1F)ρ̇1 + (∂ρ2 F)ρ̇2 ∀ 0. (13)

Note that E is not an entropy of the system since f is a non-convex function of the
density.
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Fig. 2 First line: density ρ (left) chemical potential μ (right). Second line: fraction α1 (left),
velocity u (left)

4 Numerical Illustration

We present here numerical results that assess the ability of the model to capture phase
transition including metastable states. We use a standard FV method to approximate
the Cauchy problem

∂tW + ∂xF(W) = S(W), W(0, x) = W0(x), x ⊂ R, (14)

where W = (ρ, ρ1, ρ2, ρu)T , F(W) = (ρu, ρ1u, ρ2u, ρu2 + α1p(ρ1) + α2p(ρ2))
T ,

and S(W) = (0,
1

ε
ρ̇1,

1

ε
ρ̇2, 0)T . Neumann boundary conditions are implemented.

We use a fractional step approach. We denote Δt the time step and Δx the length of
the cell (xi−1/2, xi+1/2) on the regular 1D-mesh. Let Wn be the FV approximation
at time tn = nΔt, n ⊂ N. The first step corresponds to the approximation of the
convective part which provides the solution Wn,− at time tn,−. It is treated by a
classical Rusanov scheme. The second step is the approximation of the source terms
(relaxation), at this stage we merely use an explicit Euler method.

We consider the van der Waals equation (4) in its reduced form, see [5], with
R = 8/3, a = 3 and b = 1/3 at constant subcritical temperature T = 0.85. The
extrema of the isotherm curve are ρ− = 0.581079 and ρ+ = 1.488804. The Maxwell
construction on the chemical potential defines the densities ρ∨

1 = 0.319729 and ρ∨
2 =

1.807140 such that μ(ρ∨
1 ) = μ(ρ∨

2 ) = −3.977178 and p(ρ∨
1 ) = p(ρ∨

2 ) = 0.504492.
If the Riemann problem consists in an initial constant pressure and constant chemical
potential state, the numerical scheme preserves this state exactly as it is expected.
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Another test case consists in an initial constant pressure state which is subjected
to a disequilibrium in chemical potential. The initial data are ρL = ρ1,L = ρ−,
ρ2,L = 1.6, ρR = ρ2,R = 1.837840, ρ1,R = 0.2 and uL = uR = 0. The discontinuity
is applied at x = 0 in the domain [−1, 1]. The mesh contains 2000 cells and the time
of computation is t = 0.2. Note that ρ2,L belongs to the metastable liquid region
and ρ2,R belongs to the pure liquid region such that p(ρ2,R) = p(ρ−) = p(ρ1,L) and
ρ1,R belongs to the pure gaseous region. Figure 2 presents the results for ε = 10−3

and ε = 10−4. The main feature to notice here is that the relaxation approximation
introduces a mixture zone on both sides of the interface, which eventually fills the
whole domain as time evolves. The velocity of the waves delimiting this zone is
faster when ε goes to 0. Within this zone, there are variations of the velocity, which
remains compressive (u > 0 for x < 0, u < 0 for x > 0).

5 Conclusion and Prospects

The first tests with this model show that it is able to cope with phase transitions
with metastable states using a van der Waals EoS, even though the behaviour of the
mixture zone around the interface has to be investigated in more details. The explicit
treatment of the stiff relaxation term enforces tough constraints on the time step, we
plan to implement a semi-implicit scheme in the spirit of [3]. Finally, we attend to
include temperature dependance to obtain a fully heat, mass and mechanical transfer
model in order to compare our results to those of [7] and [8].
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GEONUM.
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Almost Parallel Flows in Porous Media

Alaa Armiti-Juber and Christian Rohde

Abstract This paper considers a reduced two-phase model for mostly unidirectional
porous media flows. It is a nonlinear conservation law, in which velocity depends
nonlocally on the unknown saturation, see [6]. We aim to construct and analyze
a finite-volume scheme for the model. For the analysis, the main difficulty is the
reduced regularity in the transverse velocity component. The upwind finite-volume
scheme is used to prove the existence of weak solutions of a regularized Cauchy
problem in the framework of functions of bounded variations. Then, we consider
the limit of vanishing regularization parameter. Numerical examples that analyze the
efficiency of the approach are also presented.

1 Introduction

The process of fluid displacement in a heterogeneous porous medium by another
immiscible fluid belongs to the general field of multiphase flow. Assuming incom-
pressible fluids, constant medium’s porosity, and negligible gravity and capillary
pressure forces, the standard two-phase flow model, in fractional flow formulation,
see [2], is given by:

∂t S + div(v f (S)) = 0,
in D × (0, T ),

v = λ(S)K∨ p, div(v) = 0
(1)
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where the spatial domain D is defined as D := (0, H) × (0, L), with H, L > 0
being the domain’s width and length, respectively. The unknowns in this model
are saturation S = S(x, y, t) ∈ [0, 1], global pressure p = p(x, y, t) ∈ R and
the total velocity v = v(x, y, t) ∈ R

2, for (x, y, t) ∈ D × [0, T ], T > 0. The

intrinsic permeability tensor K = K(x, y) :=
(

K1(x, y) 0
0 K2(x, y)

)

with K1, K2

being the permeabilities in x-, y-direction, respectively, is given. The total mobility

λ : [0, 1] ⊃ (0,⊂) is given by λ(S) := krw(S)

μw
+ krn(S)

μn
, where krw, krn are the

wetting, nonwetting relative permeabilities and the constants μw, μn > 0 are the
wetting-, nonwetting-phase viscosities, respectively. The flux f : [0, 1] ⊃ R is also
a given function of the unknown S.

Many interesting porous media formations satisfy the geometrical property
H ∞ L , where most of the fluid flows in horizontal direction. In other words, a
vertical (transverse) equilibrium assumption can be applied. Yortsos in [6] uses this
assumption to derive a reduced model. By setting γ := H/L and rescaling the
variables x, y, t, v, K1, K2, p in (1) into other corresponding dimensionless ones
denoted in the same way, model (1) is transformed into the dimensionless model,

∂t Sγ + ∂x (uγ f (Sγ )) + 1

γ
∂y(wγ f (Sγ )) = 0,

∂x uγ + 1

γ
∂ywγ = 0,

uγ = −λ(Sγ ) K1 ∂x pγ , γ wγ = −λ(Sγ ) K2 ∂y pγ

in D × (0, T ), (2)

where D = (0, 1) × (0, 1) ≤ R
2 and uγ , wγ are the flux velocity components in

the main-, transverse-direction (or equivalently, x-, y-direction), respectively. This
model still has saturation Sγ and pressure pγ as unknowns, but depends on the
scaling parameter γ > 0. So, Yortsos in [6] applies formal asymptotic analysis for
γ ⊃ 0 and eliminates pressure pγ from the flux velocity (uγ , wγ )T . He derives a
nonlinear nonlocal transport equation for the limit saturation S := limγ⊃0 Sγ alone:

∂t S + ∂x (u[x, y; S] f (S)) + ∂y(w[x, y; S] f (S)) = 0 in D × (0, T ), (3)

u[x, y; S] = λ(S)K1(x, y)
∫ 1

0 λ(S)K1(x, y)dy
, w[x, y; S] = −∂x

∫ y
0 λ(S)K1(x, q)dq

∫ 1
0 λ(S)K1(x, y)dy

. (4)

One can easily check that the velocity vector (u, w)T defined in (4) is divergence
free. We call (3), (4) vertical equilibrium (VE)-model.

The goal of this paper is to design and analyze a finite volume scheme for the
initial value problem (3), (4). For the sake of simplicity in this contribution, we choose
the domain D = R

2. The main analytical difficulty is the reduced regularity of the
velocity component w due to the existence of the derivative ∂x . Therefore, in Sect. 2,
we convolute the velocity components (4) in the x-direction. Then, in Sect. 3, we
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suggest a finite-volume scheme for the regularized Cauchy problem (7), (8) with the
property of being locally mass conservative. The existence of weak solutions for the
regularized Cauchy problem is established in Sect. 4 in the framework of functions
of bounded variation. After that, we consider the limit of vanishing regularization
parameter. Finally, in Sect. 5 numerical examples, that illustrate the efficiency of the
VE-model as a reduced model are presented.

2 Regularized Model and Weak Solutions

The conditions (A1), (A2) are supposed to hold throughout the paper:

(A1) The initial saturation S0 satisfies S0 ∈ BV(R2) and S0(x, y) ∈ [0, 1] for almost
all (x, y) ∈ R

2.
(A2) The flux function satisfies f ∈ C1([0, 1]). The functions λ ∈ C1([0, 1]),

K1 ∈ L⊂(R2) are strictly positive with K1(x, .) ∈ L1(R) for almost all
x ∈ R.

The transverse velocity component w has reduced regularity because of the ∂x

derivative in its definition together with the high heterogeneity of the medium and
the expected low regularity of solutions of the VE-model. Therefore, we suggest
to convolute the velocity components in the x-direction. Consider a smooth kernel
function ψ ∈ C⊂

0 (R) such that supp(ψ) ≤ (−1, 1). By (A2), u[., y; Z ] ∈ L1
loc(R)

holds for almost all y ∈ R, Z ∈ [0, 1]; therefore,

uε[x, y; Z ] := (ψε ∀ u)[x, y; Z ] =
∫

R

ψε(x − η)u[η, y; Z ]dη, (5)

wε[x, y; Z ] := −1

ε

∫ ⊂

−⊂

∫ y

−⊂
(ψ ∩)ε(x − η)u[η, q; Z ]dqdη (6)

are well-defined for all y ∈ R, Z ∈ [0, 1], where ψε(x) := 1

ε
ψ(

x

ε
). For ε > 0, the

regularized Cauchy problem for the unknown Sε is given by:

∂t Sε+∂x
(
uε[x, y; Sε] f (Sε)

)+∂y
(
wε[x, y; Sε] f (Sε)

) = 0 in R
2×(0, T ), (7)

Sε(x, y, 0) = S0(x, y) in R
2. (8)

The regularized velocity satisfies also div(uε[x, y; Sε], wε[x, y; Sε])T = 0.

Definition 1 For ε > 0, a function Sε = Sε(x, y, t), with Sε(., ., t) ∈ BV (R2) →t ∈
(0, T ) and Sε(x, y, t) ∈ [0, 1] for almost all (x, y, t) ∈ R

2 × (0, T ) is called a weak
solution of the regularized Cauchy problem (7), (8) if
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∫ T

0

∫

R2
Sε(x, y, t)∂tφ(x, y, t)dxdydt +

∫

R2
S0(x, y)φ(x, y, 0)dxdy

= −
∫ T

0

∫

R2

(
uε[x, y; Sε] f (Sε)∂xφ(x, y, t) + wε[x, y; Sε] f (Sε)∂yφ(x, y, t)

)
dxdydt

holds for every function φ ∈ C⊂
0 (R2 × [0, T )).

3 The Finite-Volume Scheme

For ε > 0, we construct a finite-volume scheme for the regularized Cauchy problem
(7), (8). For h > 0, consider the uniform Cartesian grid

T = {
Ti, j = [(i − 1/2)h, (i + 1/2)h) × [( j − 1/2)h, ( j + 1/2)h

) | (i, j) ∈ Z
2)},

with |Ti, j | := h2. The set of edges of the cell Ti, j is denoted by {El |l ∈ θi, j } for
θi, j := {(i − 1

2 , j), (i + 1
2 , j), (i, j − 1

2 ), (i, j + 1
2 )}. We also define the set of neighbor

cells of Ti, j as {T(i, j)l | l ∈ θi, j }, where T(i, j)l is the neighbor cell to Ti, j with the
common edge El . Then, for √t > 0, the Finite-Volume Scheme in Ti, j is given by:

Sε,n+1
i, j = Sε,n

i, j − √t

h

∑
l∈θi, j

F ε
l (Sε,n

i, j , Sε,n
(i, j)l

),

S0
i, j = 1

h2

∫

Ti, j
S0(x, y)dxdy,

(9)

where Sε,n
(i, j)l

is the saturation in the cell T(i, j)l and F ε
l is an upwind numerical flux

function. For any P, Q ∈ [0, 1], it is defined by

F ε
l (P, Q) := max{nl · vε,n

l , 0} f (P) + min{nl · vε,n
l , 0} f (Q), (10)

where, nl is the outer normal to the edge El of Ti, j and vε,n
l = (uε,n

l , wε,n
l )T is the

discrete velocity vector. At the edge Ei+ 1
2 , j , we define:

uε,n
i+ 1

2 , j
:= h

⊂∑

r=−⊂
ψε

i+ 1
2 −r

un
r, j , wε,n

i+ 1
2 , j

:= 0, (11)

for ψε

i+ 1
2 −r

= 1
2 (ψε

i−r +ψε
i+1−r ), and ψε

i−r is the averaged integral of the Kernel ψε

in the sub-interval [(i − 1
2 − r)h, (i + 1

2 − r)h]. We choose the mid-point quadrature
formula to discretize the y-integral and the centered difference quotient to discretize
(ψ ∩)ε. Then, at the edge Ei, j+ 1

2
, we define:

wε,n
i, j+ 1

2
:= h

⊂∑

r=−⊂

j∑

k=−⊂

(

ψε

i+ 1
2 −r

− ψε

i− 1
2 −r

)

un
r,k, uε,n

i, j+ 1
2

:= 0. (12)
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Using the finite-volume scheme (9), we introduce the discrete solution

Sε
h(x, y, t) := Sε,n

i, j →(x, y) ∈ Ti, j , t ∈ [tn, tn+1).

It is straightforward to prove the following properties:

Lemma 1 (Mass-Conservation) If the numerical flux function is defined as in (10),
then the finite-volume scheme is mass conservative. i.e.,

∑

i, j

Sε,n+1
i, j =

∑

i, j

Sε,n
i, j , n = 0, 1, 2, ...NT . (13)

Lemma 2 (Lipschitz-Continuity) For all (Z1, Z2), (Q1, Q2) ∈ (0, 1)2, there exists
a constant C = C

(
supS∈[0,1] ≥u[., .; S]≥L⊂(R2), ≥ f ∩≥L⊂([0,1]), ≥(ψ ∩)ε≥L⊂(R)

)
> 0,

such that the following properties are satisfied

|F ε

i+ 1
2 , j

(Q1, Q2) − F ε

i− 1
2 , j

(Z1, Z2)| ≤ C

(

|Q1 − Z1| + |Q2 − Z2| + h

ε

)

,

|F ε

i, j+ 1
2
(Q1, Q2) − F ε

i, j+ 1
2
(Z1, Z2)| ≤ C

ε
(|Q1 − Z1| + |Q2 − Z2| + h) .

Lemma 3 (Incompressibility) If the discrete modified velocity vε,n
l = (uε,n

l , wε,n
l )T ,

l ∈ θi, j , is defined as in (11), (12), then
∑

l∈θi, j
nl · vε,n

l = 0.

We define the map G : [0, 1]5 ⊃ R such that,

Gn
i, j = G(Sε,n

i, j , Sε,n
i+1, j , Sε,n

i−1, j , Sε,n
i, j+1, Sε,n

i, j−1) := Sε,n
i, j − √t

h

∑

l∈θi, j

F ε
l (Sε,n

i, j , Sε,n
(i, j)l

). (14)

Then, Eq. (9) can be rewritten as follows:

Sε,n+1
i, j = G(Sε,n

i, j , Sε,n
i+1, j , Sε,n

i−1, j , Sε,n
i, j+1, Sε,n

i, j−1). (15)

By Lemma 3 and for any S := (S, S, S, S, S) ∈ [0, 1]5 the map G satisfies the
consistency property:

G(S) = S. (16)

Lemma 4 (Monotonicity) If the CFL-condition

√t ≤ h

2 maxi, j |uε,n
i+ 1

2 , j
| maxS∈[0,1] | f ∩(S)| + h

2 maxi, j |wε,n
i, j+ 1

2
| maxS∈[0,1] | f ∩(S)|

(17)
is satisfied, then the map G in (14) is increasing with respect to its arguments.
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4 Convergence Analysis for ε > 0

In this section we study the convergence of the finite-volume scheme to the regu-
larized Cauchy problem (7), (8) as h ⊃ 0. The main theorem is stated as follows:

Theorem 1 Assume that the CFL condition (17) is satisfied for each ε > 0. Then,
there exists a function Sε satisfying Sε(., ., t) ∈ BV (R2) for all t ∈ (0, T ) and
Sε(x, y, t) ∈ [0, 1] for almost all (x, y, t) ∈ R

2 × (0, T ) such that, up to a sub-
sequence,

{
Sε

h

}

h>0 converges to Sε in L1
loc(R

2 × (0, T )). Moreover, Sε is a weak
solution of the Cauchy problem (7), (8).

A sketch of the proof follows, which is based on a classical BV analysis. Therefore,
we prove the following a priori-estimates on the discrete solution Sε

h .

Lemma 5 (L⊂-Estimate) If the conditions in Theorem 1 are satisfied, then the
discrete solution satisfies Sε

h(x, y, t) ∈ [0, 1] →(x, y, t) ∈ R
2 × (0, T ).

Proof We prove the upper bound, the lower follows similarly. Define the vec-
tors S = (S1, S2, S3, S4, S5) := (Sε,n

i, j , Sε,n
i+1, j , Sε,n

i−1, j , Sε,n
i, j+1, Sε,n

i, j−1), Smax :=
(Sk, Sk, Sk, Sk, Sk) such that Sk := max{Si , i = 1, 2, ..., 5}. Then, Eq. (15),
Lemma 4 and Eq. (16), yield:

Sε,n+1
i, j = G(S) ≤ G(Smax ) = Sε,n

r,k →(i, j) ∈ Z
2.

By induction, we get:

supi, j Sε,n+1
i, j ≤ supi, j Sε,n

i, j ≤ · · · ≤ supi, j S0
i, j ≤ 1 →(i, j) ∈ Z

2, n = 0, 1, ..., NT .

��
Lemma 6 (BV-Estimate) If the conditions in Theorem 1 are satisfied, then the dis-
crete solution satisfies |Sε

h(., ., t)|BV (R2) ≤ |S0|BV (R2) for all t ∈ (0, T ) and h > 0.

Proof We prove the statement for variation in x-direction, the variation in y-direction
is similar. Define the vectors:

S = (S1, S2, S3, S4, S5) := (Sε,n
i+1, j , Sε,n

i+2, j , Sε,n
i, j , Sε,n

i+1, j+1, Sε,n
i+1, j−1),

Ŝ = (Ŝ1, Ŝ2, Ŝ3, Ŝ4, Ŝ5) := (Sε,n
i, j , Sε,n

i+1, j , Sε,n
i−1, j , Sε,n

i, j+1, Sε,n
i, j−1),

S̄ = (S̄1, S̄2, S̄3, S̄4, S̄5), such that S̄i := max{Si , Ŝi }, i = 1, 2, 3, 4, 5.

Then using Eq. (15), we write

|Sε,n+1
i+1, j − Sε,n+1

i, j | = |G(S) − G(Ŝ)|.
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The definition of S̄ and Lemma 4 give:

|G(S) − G(Ŝ)| ≤ |G(S) − G(S̄)| + |G(S̄) − G(Ŝ)| = (G(S̄) − G(S)) + (G(S̄) − G(Ŝ))

= (S̄1 − Sε,n
i+1, j ) + (S̄1 − Ŝ1) + [(G(S̄) − S̄1) − (G(S) − Sε,n

i+1, j )]
+ [(G(S̄) − S̄1) − (G(Ŝ) − Ŝ1)]

= |Sε,n
i+1, j − Sε,n

i, j | + [(G(S̄) − S̄1) − (G(S) − Sε,n
i+1, j )]

+ [(G(S̄) − S̄1) − (G(Ŝ) − Ŝ1)].

Then, Lemma 1 and the induction assumption yield:

∑

i, j

|Sε,n+1
i+1, j − Sε,n+1

i, j | ≤
∑

i, j

|Sε,n
i+1, j − Sε,n

i, j | ≤ · · · ≤
∑

i, j

|S0
i+1, j − S0

i, j |.

The estimate now follows using

|Sε
h(., ., t)|BV (R2) = h

∑

i, j

(
|Sε,n

i+1, j − Sε,n
i, j | + |Sε,n

i, j+1 − Sε,n
i, j |

)

h
∑

i, j

(
|S0

i+1, j − S0
i, j | + |S0

i, j+1 − S0
i, j |

)
≤ |S0|BV (R2). (18)

��
Lemma 7 (Time-Lipschitz Estimate) If the conditions in Theorem 1 are satisfied,
then, for all t1, t2 ∈ (0, T ) there exists a constant C > 0 such that,

≥Sε
h(., ., t1) − Sε

h(., ., t2)≥L1(R2) ≤ C

ε

(
|t1 − t2| + h3

)
.

Proof Assume without loss of generality that t1 > t2 with t1 = m√t, t2 = n√t for
m, n ∈ N

+. Then, (9), Lemma 2, Lemma 6 and the second part of (18) yield:

∑

(i, j)∈Z2

|Sε,m
i, j − Sε,n

i, j | ≤
m∑

k=n+1

∑

(i, j)∈Z2

|Sε,k
i, j − Sε,k−1

i, j | ≤ C

ε

(√t

h2 (m − n)|S0|BV (R2) + h

)

.

��
Proof of Theorem 1 The uniform estimates in Lemmas 5, 6 together with Kolmogorov
Compactness theorem imply that for each t ∈ [0, T ], there exists a function Sε(., ., t)
such that, up to a subsequence,

≥Sε
h(., ., t) − Sε(., ., t)≥L1

loc(R
2) ⊃ 0. (19)

as h ⊃ 0. The set Pm := {t ∈ [0, T ]| t = tn = n√tm, for n ∈ {0, 1, ..., T/√tm}}
satisfies ∪m∈NPm is dense in [0, T ]. Hence, using a standard diagonalization
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process, there exists a diagonal subsequence of {Sε
h(., ., t)}h>0 such that the conver-

gence (19) is valid for all t ∈ Pm, m ∈ N. Now, using Lemma 7, the convergence
follows for all t ∈ [0, T ]. This convergence and assumption (A2) imply a point-
wise almost everywhere convergence of the nonlinear operators uε[Sε

h] f (Sε
h), wε[Sε

h]
f (Sε

h). Finally, using a Lax-Wendroff type theorem, we show that Sε is a weak solu-
tion of the regularized Cauchy problem (7), (8). ��

It is also possible by the uniform L⊂ and BV estimates to deduce a compactness
result on the sequence of weak solutions {Sε}ε>0 similar to (19). The key point is to
prove an ε-independent Lipschitz bound on the numerical flux function, see [1]. The
limit S ∈ L⊂ ∩ BV (R2 × (0, T )) satisfies uε[Sε] ⊃ u[S] pointwise a.e., but up
to now it is not proven to have sufficient regularity (in x-direction). Consequently,
we have only wε[Sε] ⊃ w̄ pointwise a.e. for some function w̄. As a result, S is
not a standard weak solution, but can be interpreted as a measure-valued solution,
see e.g., [3].

5 Numerical Results

In this section, we present numerical results that display the practical efficiency
of the VE-model, see [5]. First, the standard two-phase model (1) is considered in
five domains D = (0, 1) × (0, L), L = 1, 2, 4, 6, 8. The domains are rescaled into
(0, 1)×(0, 1) and discretized into triangular-grids of (800×L) elements, respectively.
Using the IMPES-method, see [4], the numerical solutions of (1) are presented in
Fig. 1a, e. Then, the VE-model is considered in the scaled domain (0, 1) × (0, 1)

which is discretized into a uniform Cartesian grid of 400 elements. Using the upwind
finite-volume scheme, the numerical solution of (3) is presented in Fig. 1f.

A Dirichlet-boundary condition on the inflow boundary {(0, y)|y ∈ (0, 1)} equals
to the initial data

S0(0, y) =
{

0.1 : y ≤ 2
5 and y > 1 − 2

5 ,

0.9 : 2
5 < y ≤ 1 − 2

5 .

Zero-Neumann conditions on the edges {(x, 0) and (x, 1)|x ∈ (0, 1)} are also cho-
sen. The end time T = 0.3 is chosen such that a zero-Dirichlet condition on
{(1, y)|y ∈ (0, 1)} can be satisfied. Moreover, solutions in Fig. 1 correspond to
viscosity ratio μw/μn = 1/5.

The numerical solutions of the standard model (1), in Fig. 1a, e, converge to the
numerical solution of the VE-model, in Fig. 1f, as the domain parameter γ = (1/L)

tends to 0. Also, the spreading speed of the wetting front is captured very good by the
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(a) (b) (c)

(d) (e) (f)

Fig. 1 Solutions of the standard two-phase model versus solution of the VE-model. a Sol. of (1)
for γ = 1. b Sol. of (1) for γ = 1/2. c Sol. of (1) γ = 1/4. d Sol. of (1) for γ = 1/6. e Sol. of (1)
for γ = 1/8. f Sol. of VE-model

reduced VE-model. Moreover, with the used codes and for grids with equal number
of elements as in Fig. 1f, the computational time of the solution of the VE-model
would be 105 faster than that of the standard model (1).
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Towards a Stochastic Closure Approach
for Large Eddy Simulation

Th. von Larcher, R. Klein, I. Horenko, P. Metzner, M. Waidmann,
D. Igdalov, A. D. Beck, G. J. Gassner and C. -D. Munz

Abstract We present a stochastic sub grid scale modeling strategy currently under
development for application in Finite Volume Large Eddy Simulation (LES) codes.
Our concept is based on the integral conservation laws for mass, momentum and
energy of a flow field that are universally valid for arbitrary control volumes.
We model the space-time structure of the fluxes to create a discrete formulation.
Advanced methods of time series analysis for the data-based construction of sto-
chastic models with inherently non-stationary statistical properties and concepts of
information theory for the model discrimination are used to construct stochastic

Dr. P. Metzner was formerly associated with the University of Lugano, Switzerland.

Th. von Larcher (B) · R. Klein · M. Waidmann
Institute of Mathematics, Freie Universität Berlin, Berlin, Germany
e-mail: larcher@math.fu-berlin.de

R. Klein
e-mail: rupert.klein@math.fu-berlin.de

M. Waidmann
e-mail: waidmann@math.fu-berlin.de

I. Horenko · D. Igdalov · P. Metzner
Institute of Computational Science, Universita della Swizzerà italiana, Lugano, Switzerland
e-mail: illia.horenko@usi.ch

D. Igdalov
e-mail: dimitri.igdalov@usi.ch

A. D. Beck · C.-D. Munz
Institute of Aerodynamics and Gas Dynamics, University of Stuttgart, Stuttgart, Germany
e-mail: beck@iag.uni-stuttgart.de

C.-D. Munz
e-mail: munz@iag.uni-stuttgart.de

G. J. Gassner
Mathematical Institute, University of Cologne, Cologne, Germany
e-mail: ggassner@math.uni-koeln.de

J. Fuhrmann et al. (eds.), Finite Volumes for Complex Applications VII - Elliptic, 883
Parabolic and Hyperbolic Problems, Springer Proceedings in Mathematics & Statistics 78,
DOI: 10.1007/978-3-319-05591-6_89, © Springer International Publishing Switzerland 2014



884 Th. von Larcher et al.

surrogate models for the non-resolved fluctuations. Vector-valued auto-regressive
models with external influences (VARX-models) form the basis for the modeling
approach. The reconstruction capabilities of the modeling ansatz are tested against
fully three dimensional turbulent channel flow data computed by direct numerical
simulation (DNS). We present here the outcome of our reconstruction tests.

1 Introduction

The LES Navier-Stokes equations in their mathematical formulation incorporate the
so-called sub grid scale stress tensor, (τi j ), which links the resolved eddies on the
large scales (larger than a specific filter width) and the unresolved eddies on the small
scales (smaller than that filter width), see, e.g. [9]. The sub grid scale stress tensor,
written as

τi j = ũi u j − ũi ũ j , (1)

with ~ as the filtered quantities, implements the unfiltered velocity field, u, which
is not known a prioiri. It, therefore, has to be prescribed by an appropriate model
function. Despite the progress that has been made, determining a suitable sub grid
scale model remains a challenging task.

In this paper, we present our stochastic modelling ansatz based on the integral
conservation laws developed in preparation of a novel LES closure approach. The
reconstruction capabilities of the data-based modeling approach are tested against
three dimensional direct numerical simulation (DNS) turbulent channel flow data
computed for an incompressible, isothermal fluid at Reynolds number Reτ = 590.
Our approach is similar in spirit to earlier propositions, e.g., [10], but differs in terms
of both the stochastic modelling ansatz, and in terms of the underlying combined
Finite Volume—Discontinuous Galerkin approximation framework, e.g., [1]. We,
here, mention that our approach particularly allows for the analysis of non-stationary
and non-homogeneous data, resp. That is in contrast to stationary (homogeneous)
patterns, e.g. first order and second order statistics, that could lead to biased results
due to their inability to characterize inhomogeneous (instationary) data sufficiently.

The integral conservation laws for mass, momentum and energy of a flow field
are universally valid for arbitrary control volumes. These laws describe the time
evolution of the integral values of the conserved quantities per control volume as a
function of the associated fluxes across its bounding surfaces written as

∫

Ω

ut dx +
∮

∂Ω

fn(u) ds = 0, (2)

whith Ω and ∂Ω as the control volume and its surface, respectively, u as the conserved
quantity and fn as its normal flux across ∂Ω . The exact evolution for the mean value
of ū is given by



Towards a Stochastic Closure Approach for Large Eddy Simulation 885

ūt = − 1

|Ω|
∮

∂Ω

fn(u) ds. (3)

Thus, if the associated fluxes fn(u) across its bounding surfaces are determined
exactly, the equations capture the underlying physics of conservation correctly and
guarantee an accurate prediction of the temporal evolution of the integral mean
values.

In the discrete view, the discretization basis for the Finite Volume approach are
generally written as

ūt + 1

|Ω|
∮

∂Ω

H(ū+, ū−)ds = 0, (4)

with a numerical flux function H(ū+, ū−). Note that the arguments ū+ and ū− result
from a suitable spatial reconstruction of the mean values. Thus, a discretization error
is introduced into the evolution of ū in case H(ū+, ū−) ∨= fn(u).

With respect to the LES method, an induced flux separation can be written as

fn(u) := H(ū+, ū−) + Δ f, (5)

with H(ū+, ū−) as the coarse flux, + and − as the specific cell face side, and Δ f
as the flux correction. Thus, the reconstruction of the flux correction terms, i.e. of
the sub grid fluxes, are necessary to yield the exact evolution of the mean values.
Starting from this concept, we model the temporal structure of the fluxes to create a
discrete formulation.

2 Stochastic Modeling Approach

We use advanced methods of time series analysis for the data-based construction of
stochastic models with inherently non-stationary statistical properties to construct
stochastic surrogate models for the non-resolved fluxes and flux corrections from
specific time series (cf. [7]). Vector-valued auto-regressive models with external
influences (VARX-models) form the basis for the modeling approach. We realize
non-stationary statistical properties of these models by allowing for time dependent
switches between different fluctuation regimes which are represented by different,
but fixed, sets of the stochastic model parameters. The LES-grid-averaged conserved
quantities on the coarse grid cells in the immediate vicinity of a given LES grid cell
interface are interpreted as external influences in constructing the VARX surrogate
model. In this fashion the stochastic models incorporate the information available
from a typical numerical discretization stencil as would be used, e.g., in formulating
a classical Smagorinsky closure.

The ansatz of the VARX model reads

Δ ft,x = μ(t, x) + A(t, x)φ1(Δ ft−τ , . . . , Δ ft−mτ )x + B(t, x)φ2(ut,x) + εt,x, (6)
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where Δ ft,x is the flux correction term (t as time, x as 3D space vector), (μ, A, B)

(t, x) are time-dependent model parameters (m as the memory depth), φ1, φ2 are
model ansatz functions which are generally non-linear, ut,x denotes the external
influences (here the coarse-grid stencil data), and εt,x is the model-data discrepancy.

The basic idea of the approach is to detect the switching processes between the
fluctuation regimes and their parameters, here named (γ j (t, x),Θ j ) ( j as the cell
index), which characterize the local models. Θ j denotes K sets of k parameters
{Θ j ∈ (Θ1, . . . , Θk) j }K

j=1 representing the model parameters (μ, A, B), and γ j are

model affiliation functions with γ j (t, x) ⊃ [0, 1] and
∑K

j=1 γ j (t, x) = 1. The total
variation TV of γ j is bounded

TVt (γ j (t, x)) ⊂ C.

With (k, K , C) given, the best-fit and therefore the optimal parameters are found
with minimization of the model-data distance, i.e.

∫

t

∫

x
δt,x dx dt ∞ min

γ,Θ
where δt,x =

K∑

j=1

γ j (t, x)

∥
∥
∥ε

Θ j
t,x

∥
∥
∥ .

A balance between the requirements of high representation quality and low number
of free parameters (Occam’s razor) is achieved by involving criteria from information
theory.

An extensive study based on the information criteria on a high performance com-
puter cluster using about 280,000 CPU-hours at CSCS, Switzerland, shows that the
general model ansatz, (6), simplifies in the context of our approach and that the
optimal model is the VX approach instead of the VARX-ansatz, i.e. our modelling
approach should not include auto-regressive terms. It follows, also, that it is sufficient
to fit the cells’ time series of exact LES corrections ΔF j

exact (t) by means of an affine
linear function that depends only of the cells’ available LES observables u j (t). With
that, our model approach now reads

Δ f γ,Θ
t,x =

K∑

j=1

γ j (x)
[
μ j + B jφ2(ut,x)

]
. (7)

Thus, the resulting best-fit model takes the form of a stencil-based LES-closure that
determines the turbulent flux corrections just from the cell-averages in a finite number
of grid cells surrounding the considered grid cell interface.

The term Bφ2(u) comprises the already mentioned flux correction terms derived
from classical finite volume numerical flux functions of different order

Bφ2(u) =
(

b1ΔF1st + b2ΔF2nd + b3ΔFWENO + blinΔF lin
)

(u), (8)
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with a next-neighbour stencil for ΔF lin(u), and the term (ut,x) in (7) incorporates
coarse-grid stencil data, cf. Sect. 3.

3 Data Preprocessing

The computations of the turbulent channel flow data, described in detail in [12],
made use of the instationary Navier-Stokes equations which were solved for the wall
normal vorticity η = ∂zu−∂x w, with (u, v, w) as the velocity components in (x, y, z),
and the Laplacian of the wall-normal velocity ϕ = ≤2(v). The boundary condition
at the side walls in y-direction, normal to the main flow in x-direction, were rigid
wall no-slip conditions, and along the other (x-, z)-axes periodic boundaries were
defined. A pseudo-spectral Fourier-Chebyshev method similar to [3, 4] and [8] with
Chebyshev-tau formulation in wall-normal y-direction and Fourier representation
in the other directions was used. A third order Runge-Kutta based approach was
used for time discretization of the non-linear convective terms and an implicit Euler
approach was used for the viscous terms, cf. [13].

The data set that we use here consists of snapshots at 240 particular time steps

in terms of the wall-unit time Δt+ = 1, where t+ = t ·u2
τ

ν
, with uτ as the shear

velocity and ν as the kinematic viscosity. The spatial resolution is 600×385×600
in (x, y, z).

To focus on the aim of our study, the 3D velocity field has to be recomputed and
resampled resulting in particular spatial and temporal resolutions corresponding to
typical LES simulations. The DNS data are averaged on a coarse LES grid which is
a cartesian finite volume grid with equidistant spacing in all coordinates. Resolved
LES-grid fluxes are determined from these averages using a straight-forward finite
volume approximation for the Euler equations.

By subtracting these resolved fluxes from the DNS fluxes averaged over the cell
faces of the LES-grid, we obtain one time series of non-resolved fluxes for each
cell interface of the LES grid. In particular, we compute a so-called exact flux (Fex)
based on the preprocessed DNS data, and, furthermore, a reference flux (Fref ) and
numerical fluxes of particular order from the average velocity data on the coarse
grid. Once those flux data have been generated, flux correction terms are calculated
as follows.

For each cell C j and each face a = 1, . . . , 6 on the coarse-grid, a time series of the
following LES-observables is calculated: (a) the exact flux corrections ΔF j,a

ex (t) ⊃
R3, (b) the 1st order flux corrections ΔF j,a

1 (t) ⊃ R3, (c) the 2nd order flux corrections

ΔF j,a
2 (t) ⊃ R3, and (d) the 3rd order flux corrections ΔF j,a

3 (t) ⊃ R3, where

ΔFi = Fi − Fref , i = 1, 2, 3, ΔFex = Fex − Fref ,
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Fig. 1 Exp A: Snapshot of the DNS velocity data and the resampled LES velocity data of the
turbulent channel flow. Two left panels: main flow component (x-direction), two right panels:
secondary flow component (z-direction)

and, finally, the velocity field V j (t) ⊃ R21 consisting of the average velocity field
of cell C j and of the average velocity fields of all cells sharing a common face with
C j (neighbored cell).

Generally, the numerical flux function proposed by [2] is used to compute fluxes
of the particular order. For F1, the cell average state value is assumed to cover the
whole grid cell and, thus, the values at the cell faces are assumed to be equal to the
cell center value. Consequently, no state reconstruction is needed. However, for F2,
piecewise linear state reconstruction within the grid cells is performed direction by
direction based on the cell center values as in standard second order FV methods
using a monotonized central limiter, [6], for slope limiting during the reconstruction.
This yields higher-order accurate cell interface data. Finally, for F3, state recovery at
the cell faces is obtained via a third order WENO scheme proposed in [11]. For Fref ,
no state reconstruction or specific numerical flux function is used but the simple flux
average is calculated.

The flux correction data sets are then applied to the above mentioned stochastic
model framework. In our approach, the pre-processing is a crucial procedure which
here can be described in compressed form only, but is described more extensively in
a forthcoming paper, cf. [5].

4 Results

In our study, we focus on two particular LES grid resolutions. Therefore, the DNS
data are coarsened to a grid resolution of 25×25×25 cells and to 50×50×50 cells,
here after referred to as Exp A and Exp B. For Exp A, Fig. 1 shows a snapshot of the
recomputed (original) DNS velocity data and the corresponding LES velocity data
for the principal flow direction (x−) and for the secondary (z−) flow component.
Obviously, the main flow structures are captured in the LES data.
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Fig. 2 Fluctuation regimes for Exp A (left) and Exp B (right). The arrow indicates the main flow
direction

Fig. 3 Exp B: reconstruction of the exact flux correction terms, ΔFexact , determined with the
optimal model parameters. From left to right: a LES cell located in the boundary layer, a near-
boundary layer cell, a cell located in the flow interior. Panels show the x-component of the flux
corrections for cell face 1 that is normal to the main flow (x−) component

For both LES grid resolutions, the analysis of the data with the stochastic modeling
approach results in stationary, i.e. time-independent, models (C = 0), but the number
of the fluctuation regimes is different as two and three clusters are determined for
Exp A and Exp B, resp. For Exp A, the two clusters represent the boundary layer and
the flow interior (Fig. 2, left). For Exp B, the boundary layer and the flow interior are
also represented by two clusters, similar to Exp A, and the third regime is associated to
cells which are located close to the rigid boundary wall (Fig. 2, right). We, therefore,
call the third regime transition model.

The optimal model parameters are used to reconstruct the flux correction terms,
cf. (7), shown exemplarily for Exp B in Fig. 3. The fitted flux correction terms show
good agreement for cells located in the flow interior as well as for those cells located
in the boundary layer.

5 Concluding Remarks

In this paper, we have presented the outcome of our reconstruction test, and we show
specifically results of the non-trivial time series data analysis. We found resolution-
dependent closure regimes as a third fluctuation regime has been detected when the
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data are coarsened to 50×50×50 grid cells but only two fluctuation regimes have
been detected in Exp A.

Due to lack of space we, here, were able to present a compressed summary of
our results. We, also, have tested our approach against data of a Taylor-Green vortex
flow showing a transition from laminar to fully turbulent flow. In that test case,
our approach also captures non-stationary regimes. We refer the reader to a more
extensive description of our work, given in a forthcoming paper which has been
currently submitted to Meteorologische Zeitschrift, [5].

These results encourages us for the ambitious attempt at dynamic LES closure
along these lines.
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A Well Balanced Scheme for a Transport
Equation with Varying Velocity Arising in
Relativistic Transfer Equation

T. Leroy, C. Buet and B. Després

Abstract We are interested in the study of numerical schemes for the homogeneous
in space asymptotic limit in the non equilibrium regime of the relativistic transfer
equation. This limit leads to a frequency drift term modeling the Doppler effects
for photons, and our aim is to design costless well-balanced schemes. One difficulty
is that wave speed may vanish, which implies that standard well-balanced schemes
constructed by discretizing the source term at the interfaces and by using a Godunov
scheme may become inconsistent in this limit. This is indeed observed numerically.

1 Introduction

Our model equation comes from photons transport models with Doppler effects
[1, 2, 6]. These Doppler effects are modeled by a frequency drift term:

⎧
∂tρ = κ

3 ν∂νρ + σ(ν)(B(ν) − ρ) inR+
t × R

+
ν ,

ρ(0, ν) = ρin(ν),
(1)

with no need of boundary condition at ν = 0 since the equation is degenerate. Here
ρ = ρ(t, ν) represents the density of photons and κ is the divergence of the velocity
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of the matter. For the simplicity of the presentation, we consider in this work that
0 < κ ∨ κ∈. The coefficient σ is the emission absorption coefficient. It is known to be
very irregular with respect to the frequency. The function B is the Planck’s function:
B(ν) = ν3(eν − 1)−1. Numerical methods for the coupling of hydrodynamics and
transfer equations have been extensively studied (see for example [5, 7]) and are still
an active field of research. The model problem (1) is also representative of asymptotic
preserving issues, due to the parameter κ , the limit system being

⎧
∂tρ = σ(ν)(B(ν) − ρ) inR+

t × R
+
ν ,

ρ(0, ν) = ρin(ν).
(2)

As we explain in the next section, system (1) has stationary solutions, and our aim is to
design numerical schemes which preserve these solutions. This could be interesting
for kinetic equations for which the frequency discretization is known to be very
costly. A first approach consists to use Greenberg-Leroux [4] type schemes. These
schemes are well-balanced, but analytical and numerical studies show that they are
not consistent in the limit regime κ ⊃ 0. We propose a new scheme, for which
we prove a uniform (according to the parameter κ) convergence result. We present
numerical results which confirm this study.

2 Well-Balanced Schemes

For technical reasons, we restrict the frequency domain to D = [0, ν∈], for a given
0 < ν∈ < +⊂. Since we want to design well-balanced schemes, we are interested
in the stationary solutions of (1). We thus solve the following Cauchy problem

⎧
κ
3 ν∂νρ + σ(ν)(B(ν) − ρ) = 0,

ρ(ν∈) = ρ∈.
(3)

The positivity of the parameter κ yields a transport of the photons toward the fre-
quency ν = 0, and is the reason of the boundary data at ν∈. This is a simple O.D.E.,
and one can find the analytical solution, given by

ρ
⎪
ν; ρ∈, ν∈⎨ = ρ∈e− 3

κ

⎩ ν∈
ν

σ(s)
s ds + 3

κ

∫ ν∈

ν

σ (s)B(s)

s
e− 3

κ

⎩ s
ν

σ(τ)
τ

dτ ds. (4)

Noting that 3σ(s)(sκ)−1e− 3
κ

⎩ s
ν

σ(τ)
τ

dτ = − d
ds (e

− 3
κ

⎩ s
ν

σ(τ)
τ

dτ ), one finds

lim
κ⊃0

ρ
⎪
ν; ρ∈, ν∈⎨ = B(ν). (5)
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For 1 ∨ j ∨ N , we consider an irregular mesh defined by (N + 1) points
0 = ν 1

2
< ... < νN+ 1

2
= ν∈. We define ν j as the middle of the j-th frequency

band, i.e. ν j = (ν j− 1
2

+ ν j+ 1
2
)/2 and we denote Δν j its length. We also define

the dual ( j + 1
2 )-th frequency band as the cell [ν j , ν j+1], which length is denoted

Δν j+ 1
2

. We denote h = max
j

Δν j . We assume that there exists a constant C such

that ∞ j ≤ {1, ..N } , 0 < Ch ∨ Δν j .

2.1 A First Class of Well-Balanced Schemes

As presented in the introduction, we study a class of well-balanced schemes in the
spirit of what was introduced by Greenberg-Leroux [4] (see [3] for a recent state of
the art on the topic). It consists to localized the source term at the interfaces and to
use a Godunov method to construct a scheme for the resulting equation. For equation
(1), it yields the following scheme, denoted as WB1 in the numerical results:

d

dt
ρ j = κ

3
ν j

ρ(ν j ; ρ j+1; ν j+1) − ρ j

Δν j
, 1 ∨ j ∨ N . (6)

This scheme is well-balanced by construction. Actually, for a stationary solution
ρ j = ρ(ν j ; ρ∈, ν∈), the semigroup property yields

ρ(ν j ; ρ j+1; ν j+1) = ρ(ν j ; ρ(ν j+1; ρ∈; ν∈); ν j+1) = ρ(ν j ; ρ∈; ν∈),

and thus d
dt ρ j = 0. On the other hand, this scheme is not consistent in the regime

κ ⊃ 0. Actually taking into account the limit as κ tends to 0 of the analytical
stationary solution (5), one finds for this scheme lim

κ⊃0

d
dt ρ j = 0, which obviously is

not a consistent discretization of the limit equation (2). We propose a new construction
strategy to avoid this consistency problem.

2.2 Spectrally Well-Balanced Scheme

We study and prove several properties for the following scheme, denoted as the
Spectrally Well-Balanced (SWB) scheme:

d

dt
ρ j = σ(ν j )

1 − M(ν j+1; ν j )

(

ρ
⎪
ν j ; ρ j+1, ν j+1

⎨ − ρ j

)

, 1 ∨ j ∨ N , (7)

with the natural boundary condition ρN+1 = ρ(t, νN+1), where ρ(t, νN+1) is defined
by the formula (15). The scheme is built using the integrating factor. It is defined,



894 T. Leroy et al.

for an arbitrary ν0 ≤ D, by M(ν; ν0) = e
− 3

κ

⎩ ν
ν0

σ(s)
s ds . Multiplying equation (1) by

3σ(ν)M(ν; ν0)/κν = −M ∀(ν; ν0) yields

−M ∀(ν; ν0)∂tρ = σ(ν)

(

∂ν

⎪
M(ν; ν0)ρ

⎨ + 3σ(ν)

κν
M(ν; ν0)B(ν)

)

.

Integrating this equation between ν j and ν j+1 and discretizing each term conve-
niently, one finds

−
[

M(ν; ν0)

]ν j+1

ν j

d

dt
ρ j = σ(ν j )

([

M(ν; ν0)ρ

]ν j+1

ν j

+
∫ ν j+1

ν j

3σ(s)

κs
M(s; ν0)B(s)ds

)

.

Taking ρ(ν j+1) = ρ j+1, ρ(ν j ) = ρ j and dividing this equation by M(ν j ; ν0) and
1 − M(ν j+1; ν j ), one finds, using the relation M(ν; ν0)/M(s; ν0) = M(ν; s),

d

dt
ρ j = σ(ν j )

1 − M(ν j+1; ν j )

(

M(ν j+1; ν j )ρ j+1 −ρ j +
∫ ν j+1

ν j

3σ(s)

κs
M(s; ν j )B(s)ds

)

.

The definition of the stationary solution ρ
⎪
ν j ; ρ j+1, ν j+1

⎨ = M(ν j+1; ν j )ρ j+1 +
⎩ ν j+1
ν j

3σ(s)
κs M(s; ν j )B(s)ds yields the SWB scheme (7). The same argument than for

the scheme (6) shows that this scheme is well-balanced. We prove a uniform (in κ)
convergence result for this scheme. We define ρh = (ρ j )1∨ j∨N and the discrete
norm ∩ . ∩L2

d
such that ∩ρh∩2

L2
d

= ∑
j Δν j+ 1

2
ρ2

j . We make some assumptions:

• The initial data satisfies ρin ≤ H2(D).
• The emission absorption coefficient satisfies σa ≤ W 2,⊂(D). Moreover, there

exists a constant σ∈ > 0 such that ∞ν ≤ D, σ (ν) → σ∈.

We need the following stability result

Lemma 1 (L2 Stability) Under these assumptions, the following estimate holds,
where the constants C(T ) depends on all the parameters and the boundary condition
but is uniform in κ ≤ (0, κ∈]: ∩ρh(t)∩L2

d
∨ C(T )

⎜
1 + ∩ρh(0)∩2

L2
d

, 0 < t < T .

Proof Since the proof is rather classical, we only develop the main ideas. We want
to reveal in the SWB scheme (7) a consistent discretization of Eq. (1). Injecting the
expression of the stationary solution (4), one can write it as

d

dt
ρ j = κ

3
ν j

ρ j+1 − ρ j

Δν j+ 1
2

+σ(ν j )
⎪
B(ν j )−ρ j

⎨+σ(ν j )
⎪
ρ j+1 −ρ j

⎨
R j,1 + R j,2, (8)

with ⎟




R j,1 = 1
1−M(ν j+1;ν j )

− κν j
3σ(ν j )Δν

j+ 1
2

− 1,

R j,2 = σ(ν j )

1−M(ν j+1;ν j )

⎩ ν j+1
ν j

3σ(s)
κs M(s; ν j )

⎪
B(s) − B(ν j )

⎨
ds,

(9)
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where we used, by definition of M(s; ν j ),
⎩ ν j+1
ν j

3σ(s)
κs M(s; ν j )ds = 1−M(ν j+1; ν j ).

We introduce Bh = (B(ν j ))1∨ j∨N . Using the positivity of the coefficients κ and σ

and the Cauchy-Schwarz inequality, one finds by multiplying Eq. (8) by Δν j+ 1
2
ρ j

and adding on all the cells a positive constant C such that,

d

dt
∩ρh∩2

L2
d

∨ C
⎪
1+max

j
|R j,1|

⎨∩ρh∩2
L2

d
+∩σ∩L⊂∩B∩2

L2
d
+∩R j,2∩2

L2
d
+κ

6
ρ2

N+1. (10)

We thus need to control R j,1 and the L2
d norm of R j,2. Denoting z j = 3

κ

⎩ ν j+1
ν j

σ(s)
s ds

and using the definition of M(ν j+1; ν j ), one can write R j,1 as

R j,1 =
(

1

1 − e−z j
− 1

z j

)

− 1 +
(

1

z j
− κν j

3σ(ν j )Δν j+ 1
2

)

.

For the first term one has 1
1−e−z j

− 1
z j

∨ 1. Using a Taylor expansion of the function

ν √⊃ σ(ν)ν−1 at the frequency ν j , one finds

max
j

|R j,1| ∨ C
κ

3

∩σ∩W 1,⊂
σ 2∈

, (11)

where the constant C depends on the mesh but is independent of κ . We now turn to
the term R j,2. A Taylor expansion of the function ν √⊃ B(ν) shows

|R j,2| ∨ Δν j+ 1
2
∩B ∀∩L⊂

σ(ν j )

1 − M(ν j+1; ν j )

∫ ν j+1

ν j

3σ(s)

κs
M(s; ν j )ds.

Using the relation
⎩ ν j+1
ν j

3σ(s)
κs M(s; ν j )ds = 1 − M(ν j+1; ν j ), one finds

∩R j,2∩L2
d

∨ h
≥

ν∈∩B ∀∩L⊂∩σ∩L⊂ . (12)

Using all these results in (10), one finds a constant C such that

d

dt
∩ρh(t)∩2

L2
d

∨ C

(

1 + κ

3

∩σ∩W 1,⊂
σ 2∈

)

∩ρh(t)∩2
L2

d
+ ∩σ∩L⊂∩B∩2

L2
d

+ h2ν∈∩B ∀∩2
L⊂∩σ∩2

L⊂

+ κ

6
ρ2

N+1.

The Gronwall lemma finally gives the result.

The key point was to prove a uniform estimate for the consistency errors
R j,1 and R j,2. Actually, estimates (11) and (12) are no longer true for the WB1
scheme (6). We now turn to the uniform (in κ) convergence result of the scheme
(7). Without loss of generality, we assume that ∞ j, ρ j (0) = ρ(ν j , 0). We define
ρex (t) = (ρ(t, ν j ))1∨ j∨N .
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Lemma 2 (Uniform convergence) Under the same assumptions, the numerical
solution of the scheme (7) satisfies the following estimate, where the constant C(T )

is uniform in κ ≤ (0, κ∈]: ∩ρex (t) − ρh(t)∩L2
d

∨ C(T )h , 0 < t < T .

Proof Evaluating the solution of the P.D.E. (1) at the frequency ν j and using a Taylor
expansion of the function ν √⊃ ρ(t, ν) with integral remainder, one has

d
dt ρ(t, ν j ) = κ

3 ν j

(
ρ(t,ν j+1)−ρ(t,ν j )

Δν
j+ 1

2

− ⎩ ν j+1
ν j

ν j+1−s
Δν

j+ 1
2

∂2
ν ρ(t, s)ds

)

+ σ(ν j )

(

B(ν j ) − ρ(t, ν j )

)

.

(13)

We obtain an equation on the unknown e j (t) := ρ j (t)−ρ(t, ν j ) by deducting to the
expression (8) of the SWB scheme this equation. Multiplying the obtained equation
by Δν j+ 1

2
e j (t) and adding on all the cells, one gets

1

2

d

dt
∩eh(t)∩2

L2
d

=
∑

j

Δν j+ 1
2
e j (t)S j (t) +

∑

j

Δν j+ 1
2
e j (t)σ (ν j )

⎪
ρ(ν j+1) − ρ(ν j )

⎨
R j,1

+
∑

j

Δν j+ 1
2
e j (t)R j,2 +

∑

j

Δν j+ 1
2
e j (t)

∫ ν j+1

ν j

ν j+1 − s

Δν j+ 1
2

∂2
ν ρ(t, s)ds,

(14)

where S j (t) = κ
3 ν j

e j+1(t)−e j (t)
Δν

j+ 1
2

+ σ(ν j )
⎪
e j+1(t) − e j (t)

⎨
R j,1 − σ(ν j )e j (t) and

R j,1 and R j,2 are defined in (9). We control successively each of these terms. First,
the term S j (t) has already been studied. Using the estimate (11), one has

∑

j

Δν j+ 1
2
e j (t)S j (t) ∨ C

κ

3

∩σ∩2
W 1,⊂

σ 2∈
∩eh(t)∩2

L2
d
,

where the constant C depends on the mesh but is independent of κ . The term R j,2
have also been controlled in the previous part. The estimate (12) and the inequality
ab ∨ (a2 + b2)/2 gives

∑

j

Δν j+ 1
2
e j (t)R j,2 ∨ 1

2
∩eh(t)∩2

L2
d

+ 1

2
h2ν∈∩B ∀∩2

L⊂∩σ∩2
L⊂ .

Similar arguments associated to a Taylor expansion of the function ν √⊃ ρ(t, ν)

leads to

∑

j

Δν j+ 1
2
e j (t)σ (ν j )

⎪
ρ(ν j+1)−ρ(ν j )

⎨
R j,1 ∨ C

(

∩eh(t)∩2
L2

d
+h2∩∂νρ(t)∩2

L2(D)

)

,
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where, once again, the constant C is independent of κ . In the same way, one has for
the last term

∑

j

Δν j+ 1
2
e j (t)

∫ ν j+1

ν j

ν j+1 − s

Δν j+ 1
2

∂2
ν ρ(t, s)ds ∨ 1

2

(

∩eh(t)∩2
L2

d
+ h2∩∂ννρ(t)∩2

L2(D)

)

.

As ρ is solution of a simple linear P.D.E., one easily controls its H2 norm. Actually,
using the regularity of σ , one finds a constant C such as ∩∂νρ(t)∩2

L2 ∨ C
⎪
1 +

∩∂νρ(0)∩2
L2

⎨
and ∩∂ννρ(t)∩2

L2 ∨ C
⎪
1 + ∩∂ννρ(0)∩2

L2

⎨
. Using all these results in

(14), one finds another constant C, once again uniform in κ , such that

d

dt
∩eh(t)∩2

L2
d

∨ C
⎪∩eh(t)∩2

L2
d

+ h2⎨.

As before, the Gronwall lemma and the assumption on the initial data gives the
announced result.

3 Numerical Results

In this part we present some numerical results, computed in the L1 norm. As the
model problem is a linear transport equation with damping and a source term, one
finds the analytical solution:

ρ(t, ν) = ρin(νe
κ
3 t )e− 3

κ

⎩ νe
κ
3 t

ν σ (τ )τ−1dτ

+ ⎩ t
0 σ

⎪
νe

κ
3 s

⎨
B

⎪
νe

κ
3 s

⎨
e− 3

κ

⎩ νe
κ
3 s

ν σ (τ )τ−1dτ ds,

(15)

which is used to compute error estimates. Numerically, the integrals are approxi-
mated by classical five points Gauss Legendre formulae. All the numerical tests are
performed on a random mesh on a frequency domain D = [0, 30] with the following
data: ρin(ν) = 0 and σ(ν) = 1. We use an explicit Euler discretization for the time
derivatives. In all the following graphics we also plotted the upwind scheme, with
the source term discretized in the middle of the cell :

d

dt
ρ j = κ

3

ρ j+1 − ρ j

Δν j
ν j+ 1

2
+ σ(ν j )

⎪
B(ν j ) − ρ j

⎨
. (16)

In Fig. 1 we displayed the relative L1 error between the numerical solutions of the
schemes and the analytical solution, with N = 50 cells and κ = 1. As expected, the
SWB scheme and the WB1 scheme converge toward the analytical solution as time
goes on.
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Fig. 1 Evolution of the L1 relative error between the numerical and the analytical solutions, N = 50,
κ = 1

Fig. 2 Left: L1 error versus K, N = 50, t = 2. Right: L1 error versus N in a Log-Log scale plan,
t = 2, κ = 1

As we have seen previously, the WB1 scheme is not consistent in the regime
κ ⊃ 0. Figure 2 plots on the left side the evolution, as κ tends to 0 and at time t = 2,
of the L1 error between the solutions of the WB1, SWB and upwind schemes and
the numerical solution of the following scheme, consistent with Eq. (2):

d

dt
ρ j = σ(ν j )

⎪
B(ν j ) − ρ j

⎨
, (17)

and confirms the theoretical study. On the right side we plotted the L1 norm in a Log-
Log scale between the analytical solution and the numerical solution of the schemes
at time t = 2 and with κ = 1.
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An Arbitrary Space-Time High-Order Finite
Volume Scheme for Gas Dynamics Equations
in Curvilinear Coordinates on Polar Meshes

Bertrand Meltz, Stéphane Jaouen and Frédéric Lagoutière

Abstract We are interested in the study of numerical schemes for the resolution of
gas dynamics equations which preserve symmetric (or axisymmetric) flows. A sim-
ple way to achieve this is to derive a numerical scheme whose mesh and coordinates
system are aligned with the flow. Typically, for the simulation of cylindrical implo-
sions of gas, the cylindrical coordinate system and a polar mesh are well-suited. But
such coordinates systems introduce geometrical singularities as well as geometrical
source terms. In this paper, we investigate an arbitrary high-order space-time Finite
Volume (FV) scheme in cylindrical coordinates. Test-cases with and without polar
symmetries are studied in order to confirm the order of the scheme as well as its
robustness.

1 Introduction and Governing Equations

Symmetric (or axisymmetric) flows arise in many applications such as Inertial
Confinement Fusion (ICF) experiments, or astrophysics. Usual FV methods built
in Cartesian (or axisymmetric) coordinates and operating on slab meshes can cap-
ture these symmetries thanks to artificial viscosity models as in [6]. But such models
are quite costly. We propose to derive a numerical solver in cylindrical coordinates
using a FV method on a polar mesh. The solved equations are the Euler’s equations
which in cylindrical coordinates (r, ϕ) write:
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∂t

⎧

⎪
⎪
⎨

rρ
rρur

rρuϕ

rρe

⎩



 + ∂r

⎧

⎪
⎪
⎨

rρur

rρu2
r + r p

rρur uϕ

r(ρe + p)ur

⎩



 + ∂ϕ

⎧

⎪
⎪
⎨

ρuϕ

ρur uϕ

ρu2
ϕ + p

(ρe + p)uϕ

⎩



 =

⎧

⎪
⎪
⎨

0
p + ρu2

ϕ

−ρur uϕ

0

⎩



 . (1)

The system is closed with an Equation of State (EOS) p = p(τ = 1
ρ
, ε), with ε

denoting the internal energy. The geometric source terms come from the divergence
operator “∨·” in polar coordinates (r, ϕ) under conservative form. The terms ρu2

ϕ and
ρur uϕ are related to the centrifugal and Coriolis forces respectively. The system of
balance laws (1) is solved using a FV method, based on a Lagrange-remap formalism
together with a Directional Splitting Method (DSM) as in [2]. The DSM allows us to
build efficient 1D schemes using centered discretizations on regular structured grid.

2 Numerical Scheme

Let U be the vector of unknowns: U = (ρ, ρur , ρuϕ, ρe). Let Fr (U) be the vector
of fluxes along the radial direction, Fϕ(U) the vector of fluxes along the azimuthal
direction, and G(U) the vector of source terms. Using a DSM, the two systems to be
alternatively solved are:

∂t (rU) + ∂r (rFr (U)) = G(U), (2a)

∂t (rU) + ∂ϕ(Fϕ(U)) = 0. (2b)

Each 1D scheme, called a sweep, is based on a Lagrange-remap solver. In the sequel,
we will focus on the radial direction.

Lagrangian step: Let us introduce the Euler-Lagrange change of variable
(r, t) ∈ (R, t) defined by: dr = JdR + ur dt and dt = dt . We can rewrite the
system (2a) with Lagrangian coordinates:

∂t (RU0) + ∂R(rFr,0(U0)) = G0(U0), (3)

U0 =

⎧

⎪
⎪
⎨

ρ0τ

ρ0ur

ρ0uϕ

ρ0e

⎩



 , Fr,0(U0) =

⎧

⎪
⎪
⎨

−ur

p
0

pur

⎩



 , G0(U0) =

⎧

⎪
⎪
⎨

0
J p + Jρu2

ϕ

−Jρur uϕ

0

⎩



 , J = Rρ0

rρ
.

ρ0 denotes the density at the beginning of each time step on the regular grid:
ρ0(R, ϕ) = ρ(R, ϕ, tn).

From now on, we drop the 0 superscript indexing the Lagrangian quantities. The
system (3) is integrated over a space-time cell Ωi, j × [tn; tn+1] and divided by the
control volume |Ωi, j | × Δt = R jΔRΔϕΔt :
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U
n+1
i, j − U

n
i, j

Δt
+

Fr
i, j+ 1

2
− Fr

i, j− 1
2

R jΔR
= Gi, j

R j
, (4)

with U
n
i, j denoting the 2D cell-average of U over Ωi, j at time tn , Fr

i, j+ 1
2

is the 2D

flux which can be defined from the 1D flux Fr
j+ 1

2
(ϕ) with a transverse integration:

Fr
i, j+ 1

2
= 1

Δϕ

∫ ϕ
i+ 1

2

ϕ
i− 1

2

Fr
j+ 1

2
(ϕ)dϕ, Fr

j+ 1
2
(ϕ) = 1

Δt

∫ tn+1

tn
(r Fr(U))(Rj+ 1

2
, ϕ, t) dt.

The same applies to Gi, j which is the space-time average of G(U) over Ωi, j ×
[tn; tn+1]. The 1D fluxes are approximated using a local Taylor expansion of the
solution around (tn). For each line ϕi , we have:

Fr
j+ 1

2
(ϕi ) =

N−1∑

k=0

Δtk

(k + 1)!
∂k(rF(U))

∂tk
(R j+ 1

2
, ϕi , tn) + O(Δt N ), (5)

Note that the Eulerian coordinate r depends on time in the Lagrangian description and
must also be expanded around (tn). The numerical source terms are also computed
using a local expansion of the solution around (R j , tn). The expansions introduce
time-derivatives of thermodynamic quantities. These are replaced by spatial deriva-
tives using the so-called Cauchy-Kovaleskaya procedure as in [5]. The 1D numerical
fluxes operate on point-wise values of thermodynamic quantities at interfaces. We
first compute an N -th order approximation of point-wise values of U at cell-centers
using a conservative polynomial interpolation on a centered stencil:

Un
i j = U(R j , φi , tn) + O(ΔRN ) = pl

0U
n
i j +

l∑

k=1

pl
k

(
R j−k

R j
U

n
i, j−k + R j+k

R j
U

n
i, j+k

)

,

(6)

with l = ⊃ N
2 ⊂ and the pl

k coefficients can be found in [2]. Any thermodynamic
quantity ψ and its space derivatives are then evaluated at the appropriate order of
accuracy using centered finite differences operators with s = ∞ N

2 ≤:

⎜
∂m

R ψ
⎟n

i, j+ 1
2

= ⎜
∂m

R ψ
⎟
(R j+ 1

2
, φi , tn) + O(ΔRN−m),

=




⎛

1
ΔRm

s⎝

k=1
ds

m,k (ψn
i, j+k + ψn

i, j−k+1) if m is even,

1
ΔRm

s⎝

k=1
ds

m,k (ψn
i, j+k − ψn

i, j−k+1) if m is odd.

(7)

The ds
m,k coefficients can be found in [2]. Eulerian coordinates evolve according to

∂t (r)(R, ϕ, t) = ur . A time-integration over [tn; tn+1] gives:
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rn+1
i, j+ 1

2
− r j+ 1

2
=

∫ tn+1

tn
ur (R j+ 1

2
, ϕi , t)dt = (ur)

∀
i,j+ 1

2
Δt. (8)

Since (ur )
∀ is computed at desired order of accuracy, either are the positions of the

interfaces rn+1
i, j+ 1

2
at time tn+1.

Remap step: Once the Lagrangian step is applied, conservative variables (ρψ)

for ψ ∩ {1, u, e} are remapped on the initial grid according to the following integral
splitting:

|Ωi, j |(ρψ)
n+1
i, j =

∫ ϕ
i+ 1

2

ϕ
i− 1

2

∫ r
j+ 1

2

r
j− 1

2

(rρψ)(r, ϕ, tn+1)dr dϕ,

=
∫ ϕ

i+ 1
2

ϕ
i− 1

2

⎞

⎠

∫ rn+1
i, j− 1

2

r
j− 1

2

(rρψ) +
∫ rn+1

i, j+ 1
2

rn+1
i, j− 1

2

(rρψ) +
∫ r

j+ 1
2

rn+1
i, j+ 1

2

(rρψ)

⎢

⎣ dϕ.

(9)

By definition of the Euler-Lagrange change of variable and introducing the exact
remap fluxes, we have:

|Ωi, j |(ρ0ψ)
n+1
i, j =

∫ ϕ
i+ 1

2

ϕ
i− 1

2

∫ R
j+ 1

2

R
j− 1

2

(Rρ0ψ), and (ρψ)∀
i, j+ 1

2
=

∫ ϕ
i+ 1

2

ϕ
i− 1

2

∫ rn+1
i, j+ 1

2

r
j+ 1

2

(rρψ).

The numerical remap fluxes are evaluated using a conservative polynomial interpo-
lation together with an up-winding given by the sign of (u)∀

i, j+ 1
2

as in [6]. The remap

step then writes:

|Ωi, j |(ρψ)
n+1
i, j = |Ωi, j |(ρ0ψ)

n+1
i, j −

⎤
(ρψ)∀

i, j+ 1
2

− (ρψ)∀
i, j− 1

2

⎥
. (10)

Multidimensional extension: In order to preserve accuracy in the multidimen-
sional case, one has to compute an high-order approximation of the transverse inte-
grations. We use a conservative polynomial interpolation. For instance, computing
an N -th order approximation of the 2D numerical Lagrangian fluxes writes:

Fr
i, j+ 1

2
= ql

0Fr
j+ 1

2
(φi ) +

l∑

k=1

ql
k

⎤
Fr

j+ 1
2
(φi−k) + Fr

j+ 1
2
(φi+k)

⎥
, (11)

with l = ⊃ N
2 ⊂, and the ql

k coefficients can be found in [2].
One must also use high-order splitting sequences in order to preserve accu-

racy. Beyond the well-known Godunov (1st order) and Strang (2nd order) split-
ting sequences, high-order sequences contain necessarily negative time steps. Since
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all computations are centered, no particular treatment is needed to handle such an
unusual case. Such sequences can be found in [6] up to the 6th order.

The stability constraint is a CFL constraint which take the following form:

max
i, j

(
max(ΔR, R jΔφ)(→ui, j→ + ci, j )

|Ωi, j |
)

Δt √ 1.

Most of the time, the velocity field is regular and the physical domain includes the
pole axis. In this case, the stability constraint is computed in the vicinity of r = 0
and becomes parabolic:

max
i, j

(
(→ui, j→ + ci, j )

R jΔϕ

)

Δt √ 1.

3 Hyperviscosity Model

It is well-known that high-order schemes are subject to Gibbs phenomenon: oscilla-
tions appear in the vicinity of discontinuities and can corrupt physical values. Slope
limiters are often used in order to reduce the oscillations, but these techniques require
many conditional tests and usually break the Experimental Order of Convergence
(EOC). We rather propose to add artificial viscosity by mean of an hyperviscosity
model as in [7]. One most important feature of this technique is that EOC is pre-
served. Practically, we take into account the viscous strain tensor τ in the momentum
equation as well as its work in the energy equation. If we consider a Newtonian gas
(Stokes assumption), then the viscous strain tensor writes:

τ = ν
⎦
(∨u) + (∨u)T

]
+

(

β − 2

3
ν

)

(∨ · u) I,

ν and β denote the dynamic viscosity and the volumic viscosity respectively. Hyper-
viscosity techniques consist in replacing ν, β by artificial constants ν∀, β∀. These
are computed in the same way as [1]. In order to remain consistent with the Euler’s
equations, these constants are designed to tend to 0 as the mesh is refined:

β∀ = Cβ≥ρ|∨k S|〉Δk+2, ν∀ = Cν≥ρ|∨k S|〉Δk+2,

with S denoting S = ⎫
S : S, S = [(∨u) + (∨u)T ]/2. Cβ and Cν are user-defined

constants, and Δ is the characteristic size of a cell. In order to preserve accuracy, we
set k to 2 for the second-order scheme, and 4 for third and fourth order schemes, and
so on. The operator ≥·〉 denotes a truncated Gaussian filter discretized at cell-centers:

≥ψ〉i, j =
∑

|k|,|l|√4

f|k| f|l|ψi+k, j+l ,
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with f0 = 3565
10368 , f1 = 3091

12960 , f2 = 1997
25920 , f3 = 149

12960 , f4 = 107
103680 . Once the

artificial constants have been computed at cell-centers, one can evaluate the compo-
nents of the viscous strain tensor τ . Artificial viscosity is then added in the Lagrangian
numerical scheme. Note that computing ∨ · τ produces viscous source terms. We
choose to follow the same splitting strategy as the convective part.

4 Numerical Results

Vortex The first numerical study deals with a stationary isentropic vortex. Since
an analytical solution is available in [8], we can assess the EOC of the scheme.
Let (x0, y0) be the coordinates of the eye of the vortex in the x-y plane. Three
configurations are investigated:

1. centered configuration: the eye of the vortex is aligned with the pole of the mesh,
physical space: (r, ϕ) ∩ [0; 8] × [0; 2π ], (x0, y0) = (0, 0),

2. shifted configuration 1: the eye of the vortex is located far away from the pole,
such that we have an hydrostatic state in the vicinity of r = 0, physical space:
(r, ϕ) ∩ [0; 8(1 + √

2)] × [0; π
2 ], (x0, y0) = (8, 8),

3. shifted configuration 2: the eye of the vortex is close from the pole leading to a
non null but singular velocity field at the pole, physical space: (r, ϕ) ∩ [0; 11] ×
[0; 2π ], (x0, y0) = (1, 1).

Unless otherwise stated, the Courant number is set to 0.9 and all simulations are
carried out with the 3rd order scheme with hyperviscosity (Cβ = Cν = 1) till a time
t = 1. The error is measured by a space-time L1 norm.

Table 1 reports the EOCs for the three configurations. For the centered config-
uration, we get an EOC of 4. Indeed, in this configuration, the remap step has no
influence. Moreover, since the CFL constraint is parabolic, and all interpolations
are done on centered stencils, the overall order of the Lagrangian step is always
even. In this case, we get better results than the same simulation done with Cartesian
coordinates on a slab mesh, but the restitution time is much longer. Regarding the
first shifted configuration, we see that the theoretical order is reached. We can take
advantage of the parabolic type CFL by increasing the order of the projection step.
We ran the same simulation with a 5-th order projection step (only 2 more cells are
added to the stencil) and we get an EOC of 4. Finally, for the second shifted con-
figuration, the second order is achieved (results are not presented in this paper). But
for the 3-rd order scheme (with a 5-th order projection step), using classical Courant
number doesn’t lead to a satisfying high-order scheme. Indeed, the geometric sin-
gularity together with the singular velocity field pollute measures of the L1 norm in
the vicinity of r = 0. Reducing the Courant number lead to an effectively high-order
scheme. Another satisfying point is that hyperviscosity doesn’t affect the EOCs.

Sod shock tube We consider the well-known Sod test-case in a two-dimensional
cylindrically symmetric geometry. The physical space is: (r, ϕ) ∩ [0; 1] × [0; π

2 ],
and the initial data are configured to initially let the waves propagate toward r = 0.
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Table 1 EOCs for the vortex test-case

Mesh Config. 1 Config. 2 Config. 2 Config. 3 Config. 3
(N × N ) Proj. order 3 Proj. order 5 (CFL=0.9) (CFL=0.009)

16 2.5e-1 3.0e-0 2.8e-0 7.9e-1 7.7e-1
32 2.0e-2 3.63 5.3e-1 2.51 4.1e-1 2.79 9.7e-2 3.02 7.1e-2 3.44
64 1.4e-3 3.89 7.8e-2 2.76 3.3e-2 3.61 1.7e-2 2.53 4.5e-3 3.97
128 8.9e-5 3.96 1.1e-2 2.86 2.2e-3 3.90 3.8e-3 2.17 2.9e-4 3.98
256 5.6e-6 3.99 1.4e-3 2.95 1.4e-4 3.94 9.1e-4 2.05 2.3e-5 3.61
512 3.5e-7 3.99 1.7e-4 2.97 9.2e-6 3.97 2.3e-4 1.99

Fig. 1 Density at time t = 0.5 for the Sod test-case at third order without (left) and with (right)
hyperviscosity, zoom on the [0; 0.4]2 domain

We run computations with the 3rd-order scheme until T f = 0.5 in order to let the
shock be reflected and cross the contact discontinuity. The Courant number is set to
0.7. When hyperviscosity is enabled, we choose the following constants: Cβ = 2,
Cν = 1. Figure 1 plots the density at final time. We see that cylindrical symmetry is
preserved. Moreover, when hyperviscosity is enabled, the oscillations in the vicinity
of discontinuities are noticeably reduced.

Two-dimensional Riemann problem This test-case has been proposed in [4] and
studied in [3] in the case of cylindrical coordinates with a polar mesh. The simulation
is initialized using piece-wise constant data in each of the four quadrants defined by
the x- and y-axis. Let the north-eastern quadrant having the index 1, the others are
labeled counter-clockwise with ascending index. The initial data are:

⎞

⎬
⎬
⎠

ρ = 1
ux = 0
uy = 1
p = 1

⎢

⎭
⎭
⎣

1

,

⎞

⎬
⎬
⎠

ρ = 2
ux = 0

uy = −0.3
p = 1

⎢

⎭
⎭
⎣

2

,

⎞

⎬
⎬
⎠

ρ = 1.0625
ux = 0

uy = 0.2145
p = 0.4

⎢

⎭
⎭
⎣

3

,

⎞

⎬
⎬
⎠

ρ = 0.5197
ux = 0

uy = 0.2741
p = 0.4

⎢

⎭
⎭
⎣

4

.
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Fig. 2 Density at final time for the two-dimensional Riemann problem at first (left) and third (right)
order

With this initial data, a shock-wave propagates between quadrants 2 and 3, a rar-
efaction between 1 and 4, and two contact discontinuities between quadrants 3 and
4, and 1 and 2. In the vicinity of r = 0, the four solutions join each other and a

vortex-like flow appears. The test-case is set on the disk of
√

2
2 radius. The Courant

number is set to 0.4 and the final time to 0.2. The mesh has 282 cells in the radial
direction and 360 cells in the azimuthal direction. Figure 2 plots 30 isolines of the
density between 0.525 and 2.025 in cylindrical geometry with the 1-st order scheme
(Acoustic Riemann Solver and Godunov splitting) and the 3-rd order scheme with
hyperviscosity (Cβ = 2, Cν = 1). We see that the shock-wave is sharper for the 3-rd
order scheme than for the 1-st order scheme. Moreover, the complex flow is correctly
resolved with the 3-rd order scheme.

5 Conclusions

An arbitrary space-time high-order scheme for the resolution of Euler’s equations in
cylindrical coordinates has been proposed. Various test-cases assess the EOCs for
various order of the scheme as well as robustness. To our knowledge, it is the first
attempt to derive such a Lagrange-remap scheme for cylindrical coordinates on a
polar mesh without any polar symmetry assumptions. In following works, spherical
coordinates will be studied.
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A Combined Finite Volume Discontinuous
Galerkin Approach for the Sharp-Interface
Tracking in Multi-Phase Flow

Stefan Fechter and Claus-Dieter Munz

Abstract In this paper, a numerical method for the simulation of compressible
two-phase flows is presented. The multi-scale approach consists of several compo-
nents that allow to sharply resolve the discontinuous nature of multi-phase flow:
A discontinuous Galerkin solver for the macroscopic scales of the flow, a micro-
scale Riemann solver at the interface that supplies the necessary interfacial jump
conditions, a ghost-fluid based coupling of the interfacial conditions to the flow,
and a level-set interface tracking formalism. To be able to locally guarantee a sharp
and stable resolution at the interface, a finite volume technique on an adaptive sub-
cell refinement is applied. The capabilities of the method are demonstrated for a
three-dimensional shock-droplet interaction problem.

1 Introduction

In many technical applications, multi-phase flows meet conditions such as high
pressure environments and/or high velocities that prohibit the popular assumption of
incompressibility. Important examples for such extreme ambient conditions include
fuel injection systems of aeronautical, automotive and rocket engines that are used
at high-pressure operating conditions. The numerical simulation of compressible
multi-phase flow is much more difficult than the incompressible treatment, because
all conservation equations are coupled via the equation of state (EOS) and have to
be solved simultaneously in a consistent way. In the commonly used incompressible
treatment hydrodynamics and thermodynamics are decoupled.
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Three elements are crucial for compressible multi-phase solvers: The first is a
numerical method to cope with the large discontinuities in the flow field. The second
is the sharp resolution of the interface and the determination of the proper interfacial
conditions. Here, we apply a ghost-fluid method as in [2] and supply the interface
jump conditions by local Riemann solvers [1]. The third includes the accurate descrip-
tion and tracking of the phase interface that allows for the localisation as well as an
estimation of the interface curvature. Here, a level-set method [6] is chosen, as it is
easily applicable in the context of high-order methods.

In Sect. 2 these building blocks of the numerical method are described. In Sect. 3
the shock droplet interaction problem is shown, followed by a short conclusion.

2 Building Blocks for Sharp Interface Tracking

To be able to include local interfacial phenomena such as surface tension or phase
change into the flow simulation, a heterogeneous multi-scale approach is considered,
which is based on the solution of the Riemann problem. In the following we neglect
viscosity and consider, for simplicity, the Euler equations as macro scale model
together with suitable equation of states for the accurate description of multi-phase
flows.

The numerical solution of the macro-scale model is provided by a discontinuous
Galerkin spectral element method (DGSEM) with an explicit time approximation
as described in [3]. At the interface position a Riemann solution is calculated. In
case of phase transition the usual solution of the Riemann problem, consisting of
four constant states separated by simple waves, brakes down. Information from the
micro scale has to be used to get a thermodynamical consistent approximation. With
micro scale we denote information from smaller scales that are not resolved by the
numerical scheme, e. g. from molecular theory at the interface. Hence, the coupling
between the micro and macro scale model is done via such a solution of the Riemann
problem. The sharp approximation of the interface is accomplished in the flow solver
by shifting the interface always away from the grid cell boundary and calculating the
numerical flux within the flow solver by the classical Riemann problem only. Note
that this ghost-cell approach does not preserve the conservativity locally.

In the following we describe the basic steps of the sharp interface treatment:

Step 1: Computation of the interfacial curvature based on the level-set solution.
Step 2: Solution of the multi-phase Riemann problem at the interface, identified

by the level-set function. The data of the Riemann solver is given by interpolated
values before and behind the interface. The Riemann solver takes the interface
curvature into account, allows a general equation of state, and in the case of phase
transition the local solution is established by additional local information from the
micro-scala, see [1]. We call this the micro Riemann solver. The local interface
velocity is an additional output parameter of the micro Riemann solver, which is
then used to describe the interface motion in the level-set equation.
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Step 3: The explicit DGSEM is used to advance the flow field to the next time level
tn+1. Via the ghost-cell approach the flow solver has only grid cells within the
bulk phases and rely on standard Riemann solvers for general equation of state.
The flux at the phase interface is given by the micro Riemann solver.

Step 4: The new position of level-set zero is used to determine the new position
of the interface. In case the interface has moved across a grid cell, the new state
is extrapolated using the adjacent grid cells with the same fluid.

Step 5: Based on the refinement indicator that takes the local level-set value as
well as a Persson oscillation indicator into account, the refinement is updated.

These are the basic steps of the sharp interface treatment, which are explained in the
following in more details.

2.1 The Discontinuous Galerkin Spectral Element Method

In this section we describe the discontinuous Galerkin spectral element method for
the flow equations. The description of the method is kept short, for more details we
refer to Hindenlang et al. [3].

The key properties of the method are the following. The three-dimensional domain
is divided into non-overlapping hexahedral elements, each mapped onto a reference
cube element E := (−1, 1)3 by a mapping ζ(x). The conservation equations on this
reference element read as

JU t + div F(U ) = 0 (1)

with a flux F(U ) = ⎧
F1(U ), F2(U ), F3(U )

⎪
and with Jacobian J of the transfor-

mation onto the reference cube. The approximate solution has the form

Uh(t, ζ ) =
N⎨

i, j,k=0

ˆU (t)i jkψi jk(ζ ), ψi jk(ζ ) = li (ζ
1)l j (ζ

2)lk(ζ
3) , (2)

where l j (ζ ) are 1D Lagrange polynomials of degree N defined as:

l j (ζ ) =
N⎩

i=0
i ∨= j

ζ − ζi

ζ j − ζi
, j = 0, . . . , N . (3)

Here the points ζ j , j = 0, . . . , N are the Gauss-Legendre or Gauss-Legendre-
Lobatto points in the reference cube E . These points are named interpolation
points, the basis is the corresponding tensor product basis, and Û(t)i jk are the time-
dependent degrees of freedom. Multiplying (1) with a test function φ and integration
by parts of the second term leads to three contributions: A volume integral of the
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time derivative term (a), a surface integral term (b) and a volume integral term (c),
which now contains the gradient of the test function φ:

∂

∂t

∫

E
JU hφdζ

︸ ︷︷ ︸
a

+
∫

∂ E

⎧
F∈ · N

⎪
φdS

︸ ︷︷ ︸
b

−
∫

E
F(Uh) · grad(φ) dζ

︸ ︷︷ ︸
c

= 0 . (4)

Volume as well as surface integrals are approximated by Gauss-Legendre or Gauss-
Legendre-Lobatto quadrature. Hence, the quadrature points coincide with the inter-
polation points. As no continuity constraint is enforced between the elements, the
flux function F(U ) at the cell boundaries is replaced by a numerical flux function
F∈(U−, U+) depending on the left and right adjacent states U− and U+.

In the Galerkin approach the test functions are identical to the basis functions
φ = ψi jk . All the integrals are split in the different coordinate directions and approx-
imated by Gauss-Legendre (-Lobatto) quadrature, which introduces the integration
weights ωi , i = 0, . . . , N . As the quadrature points are chosen to be the same as
the interpolation points, the Lagrange property l j (ζi ) = δi j ; i, j = 0, . . . , N can be
exploited. The final semi-discrete form of the DGSEM scheme reads as

(
Ûi jk

⎜

t
= − (Ji jk)

−1

⎟

−
N⎨

λ=0

ωλ

ωi
Diλ F1

λ jk −
N⎨

μ=0

ωμ

ω j
D jμ F2

iμk −
N⎨

ν=0

ων

ωk
Dkν F3

i jν

+
(

[F∈ŝ]+ζ 1

jk
li (1)

ωi
− [F∈ŝ]−ζ 1

jk
li (−1)

ωi

)

+
(

[F∈ ŝ]+ζ 2

ik
l j (1)

ω j
− [F∈ ŝ]−ζ 2

ik
l j (−1)

ω j

)

+
(

[F∈ŝ]+ζ 3

i j
lk(1)

ωk
− [F∈ŝ]−ζ 3

i j
lk(−1)

ωk

) ⎛

.

The numerical fluxes F∈ are evaluated at the faces of the reference element in each
coordinate direction. These terms are denoted by []−ζ 1

and []+ζ 1
for the left and

right face in ζ 1-direction and analogously for ζ 2 and ζ 3. With Di j = dl j (ζ )/dζ |ζ=ζi

a differentiation matrix is denoted, which is needed for the integrand of the volume
integral. This semi-discrete formulation is then approximated in time by an explicit
fourth-order Runge-Kutta scheme.

2.2 Adaptive Mesh Refinement (AMR) and Finite Volume Subcells

The advantage of the DG scheme is that high-order approximations can be applied
on coarse grids, which is very efficient with respect to the computational effort. With
this approach difficulties occur at any discontinuity as e.g. at a phase interface. The
continuous in-cell resolution of the DG scheme is not favorable to resolve jump at
the phase interface. Our approach to overcome this problem is to replace the coarse
DG grid cells by multiple subcells on which a second-order finite volume scheme is
applied in the vicinity of the phase interface. The subcell refinement is done such that
the number of the degrees of freedom remain the same to avoid a negative impact
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Fig. 1 Schematic representation of a typical setting in our sharp interface approach, involving the
liquid-vapor interface, approximated by the zero level-set Φ = 0, the computationally approximated
computational interface aligned with the element boundaries and the different ways to apply the
numerical fluxes provided by either a standard Riemann solver (bulk phase) or the micro Riemann
solver at the computational interface. The white dots visualize the surface integration points

to the global time step restriction. The refinement and the flux calculation at the
interface are visualized in Fig. 1 by showing the difference in the interface resolution
with and without use of finite volume subcells.

This approach can be efficiently included into the DGSEM description. The coarse
grid cell is now considered as a subdomain, in which a finite volume scheme is
applied. The coupling to the neighbors is simply the weak coupling of the DG
approach. Inside the grid cell the spectral scheme is replaced by a finite volume
scheme on the sub-grid. The subcell ansatz enters the DGSEM description (4) in
terms of a modified volume integral only. Instead of the continuous DG volume
integral we calculate the sum of surface contributions for the equidistant subcell FV
cells. This can be written in the following way

∫

E
F(U ) · grad(φ) dζ =

N⎨

i, j,k=1

∫

∂e
F̃ · ñξ d S, (5)

where ∂e is the surface area of the subcell FV-cell e. This approach allows disconti-
nuities between each subcell as no continuity constraint is enforced. At the interface
between DG and FV cells, a conservative flux projection and interpolation method
is chosen.

2.3 The Level-Set Interface Tracking Method

For interface tracking an additional conservation equation is solved. The level-set
advection equation as introduced by Sussman [6] is recast to a conservation equation.
This is done to be able to solve this equation with the DGSEM allowing for a high
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order approximation. As compressible flow is considered here, an additional right-
hand side term has to be solved that can be estimated using the high-order ansatz
polynomials

∂Φ

∂t
+ div (sPBΦ) = Φ div(sPB) . (6)

The level-set distribution is solely important within a small region around the
interface, where geometry and the secondary interface quantities are needed. Outside
this region only the sign of the level-set function is important but not the magnitude.
A narrow-band approach is used for the advection of the level-set function Φ.

Every 50–100 iterations (depending on the problem), the level-set is redistanced
to a signed distance function to be able to accurately estimate the curvature κ (second
derivative of the level-set function). This procedure resets the level-set function to a
numerically preferable shape. The used algorithm is based on the constrained level-
set reinitialization equation [6] that is discretized with a 5th order WENO scheme as
described by Jiang and Peng [5].

For an accurate estimation of the curvature, the discontinuous Galerkin level-set
solution is reconstructed using a PnPm method to a polynomial of M = 3N . This
is done to enhance the accuracy of the curvature calculation. The reconstruction
reduces the negative impact of the discontinuous states at the element boundaries
and allows for a element-local gradient estimation.

2.4 Coupling at the Phase Interface

The consistent numerical and thermodynamic approximation of the phase interface
is provided by the solution of an approximate Riemann problem as described in [1].
The used linearized Lax curve Riemann solver has comparatively low computational
costs and solely needs an estimation of the sound speed in both bulk phases at the
interface. The effects of phase transfer can be included into the Riemann solution as
described by Zeiler and Rohde in [7] for the isothermal case.

Surface tension effects are taken into account by a pressure jump according to the
Young-Laplace law, for which the mean curvature at the interface is needed as input
parameter. The user interface approximation is based on the use of non-conservative
fluxes to ensure a sharp interface at all times. The interface propagation velocity
sPB is an additional output parameter and this approach allows for a more general
treatment of the interface.

3 Computational Results

We show the capabilities of the numerical method by a shock-droplet interaction
problem. The equation of state of a perfect gas is applied in the gaseous phase,
while the Tait equation is used in the liquid phase. The initial conditions of the
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Fig. 2 Result of a 3D water droplet interacting with a planar shock at various time instances. Left
pressure contours in the range of −20 to 40 atm. The solid white line indicates the interface position.
Right Schlieren type image of the logarithmic density gradient log(⊃ρ + 1)

pre- and post-shock states are chosen according to Hu [4] featuring a Ma = 3
shock wave impacting on a initially spherical droplet. We consider here a three-
dimensional shock-droplet interaction problem. At the domain boundaries in y and
z-direction a wall boundary condition is assumed. The droplet’s initial position is
(0.55, 0, 0), the initial position of the planar M = 3 shock is set to x = 0.35 inside
a computational domain that extends (0,−0.7,−0.7) × (1.2, 0.7, 0.7). The non-
dimensional parameters as described by Hu [4] are used in this test case. The chosen
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numerical resolution was 80 × 90 × 90 grid cells in the respective axis directions
with a DG approximation of order four.

A Persson indicator based on the density is used for shock capturing purposes,
which reliably detects the shock position. Depending on the indicator value, the time
update is calculated using the fourth order accurate DG scheme in smooth regions
or otherwise the TVD stable second order finite-volume scheme, which copes with
strong discontinuities and shocks.

The results for simulation times of 2, 4 and 8µs are shown in Fig. 2 in terms of
a pressure plot and a Schlieren-type density gradient visualization. The introduced
deformations of the droplet as well as the pressure and density-gradient visualization
are in agreement to the reference simulations of Hu [4]. They conducted a higher
resolved 2D simulation of the problem whereas here a slightly lower resolved 3D
problem is considered.

4 Conclusion

In this paper, we introduced a numerical method for compressible two-phase flows
using a sharp interface method. We applied the method to the simulation of a three-
dimensional shock-droplet interaction. The present numerical approach allows for
high order of accuracy as well as efficient calculations. The high order is especially
advantageous in smooth parts of the flow and for the resolution of the interface as well
as its curvature within the level-set approach. The sharp resolution of the interface
is established by ideas from the ghost-fluid approach, adapted to the discontinuous
Galerkin framework. At the interface the solution of a two-phase Riemann problem
is used to get information about the interface states and propagation velocity.

References

1. Fechter, S., Jaegle, F., Schleper, V.: Exact and approximate Riemann solvers at phase boundaries.
Comput. Fluids 75, 112–126 (2013)

2. Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to inter-
faces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152(2), 457–492 (1999)

3. Hindenlang, F., Gassner, G., Altmann, C., Beck, A., Staudenmaier, M., Munz, C.D.: Explicit
discontinuous Galerkin methods for unsteady problems. Comput. Fluids 61, 86–93 (2012)

4. Hu, X.Y., Adams, N.A., Iaccarino, G.: On the HLLC Riemann solver for interface interaction
in compressible multi-fluid flow. J. Comput. Phys. 228(17), 6572–6589 (2009)

5. Jiang, G.S., Peng, D.: Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci.
Comput. 21(6), 2126–2143 (2000)

6. Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incom-
pressible two-phase flow. J. Comput. Phys. 114(1), 146–159 (1994)

7. Zeiler, C., Rohde, C.: A relaxation Riemann solver for compressible two-phase flow with phase
transition and surface tension (2013)



Numerical Simulation of an Incompressible
Two-Fluid Model

Michael Ndjinga, Thi-Phuong-Kieu Nguyen and Christophe Chalons

Abstract We investigate some finite volume methods for the numerical simulation
of a flow involving two incompressible phases in mechanical disequilibrium. The
model consists of two hyperbolic equations with characteristic fields that are neither
linearly degenerate nor genuinely nonlinear. We show that the system may involve
sonic points, hence the importance of using entropic schemes to accurately capture
the volume fraction waves. We propose a Godunov scheme and a Roe scheme with
a Harten type correction and compare them on test cases involving the transition
between two phase and single phase flows.

1 The Model

The flow regime involved in nuclear reactor thermalhydraulics may be single or two
phase. More precisely the flow in the reactor core is purely liquid in normal operating
condition, a liquid-gas mixture in incidental conditions or purely gaseous in the case
of a severe accident involving a total core dewatering. The simulation of the single
phase/two phase transition is numerically challenging and has been a major difficulty
in the design of new simulation platforms based on advanced two-fluid models (see
[3, 5]). Roe type schemes give unphysical solutions, sometimes with negative volume
fraction.
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We consider a one dimensional isentropic two phase flow involving two fluids 1
and 2 with pressures P1 and P2, densities ρ1(P1) and ρ2(P2), sound speeds c1(P1)

and c2(P2), volume fractions α1 and α2 (with α1 +α2 = 1), and velocities u1 and u2.
The phasic mass and momentum balance equations yield the following four equation
model (see [3, 5, 6, 9])

⎧
⎪⎪⎨

⎪⎪⎩

∂tα1ρ1 + ∂x (α1ρ1u1) = Γ1,

∂t (α1ρ1u1) + ∂x (α1ρ1u2
1) + α1∂x P1 = α1ρ1g + Γ1uint ,

∂tα2ρ2 + ∂x (α2ρ2u2) = Γ2 = −Γ1,

∂t (α2ρ2u2) + ∂x (α2ρ2u2
2) + α2∂x P2 = α2ρ2g + Γ2uint ,

(1)

where g is the gravitational acceleration. The phase change is considered through the
function Γ1(x) = −Γ2(x), and the interfacial velocity is chosen to be uint = α1u2 +
α2u1. Unlike [3, 5, 9] we do not introduce an interfacial pressure default ∨p∂xαk ,
but instead a non zero pressure difference of the form P1 − P2 = ρ1ρ2

2(ρ1−ρ2)
(u1 −u2)

2

which yields a hyperbolic system. This pressure gap corresponds to a dynamic surface
tension model accounting for the fact that velocity shear yields an increase of the
microscale interfacial curvature via the well-known Kelvin-Helmholtz instability
(see [1]). Taking into account surface tension, the increase of local curvature results
in a pressure difference via the Laplace law P1 − P2 = γ σ which should vanish

only when u1 = u2. The kinetic energy gap 1
2ρ1u2

1 − 1
2ρ2u2

2 = 1
2

(ρ1u1−ρ2u2)
2

ρ1−ρ2
−

1
2

ρ1ρ2(u1−u2)
2

ρ1−ρ2
, is related to the momentum gap ρ1u1 − ρ2u2 and to the velocity gap

u1 − u2. In this first study, we make the simple assumption that the pressure gap
exactly compensates the contribution of the velocity gap to the kinetic energy gap.

The system (1) has four main unknowns: α1, P1, u1, u2. The other unknowns can
be obtained using the equations of state ρk(Pk), ck(Pk) and the pressure gap law
P1 − P2 = ρ1ρ2

2(ρ1−ρ2)
(u1 − u2)

2.

Defining the mixture sound wave cm =
√

(α1ρ2+α2ρ1)c2
2c2

1
α1ρ2c2

2+α2ρ1c2
1

, we can compute the

Taylor expansion of the system eigenvalues when u1 − u2 ∈ cm and the system has

four real eigenvalues: two acoustic waves α1ρ2u1+α2ρ1u2
α1ρ2+α2ρ1

± cm + O
(

u1−u2
cm

)
and two

volume fraction waves ρ1u1−ρ2u2
ρ1−ρ2

(
1 − ρ1ρ2

(α1ρ2+α2ρ1)2

)
+ O

(
u1−u2

cm

)
and ρ1u1−ρ2u2

ρ1−ρ2
+

O
(

u1−u2
cm

)
.

In order to study more precisely the volume fraction waves involved in our appli-
cations, we follow [6] and assume that both phases are incompressible with constant
densities ρ1 and ρ2. It is then possible to reduce the number of equations to two by
setting

K = α1u1 + α2u2, β = α1ρ2 + α2ρ1, ω = ρ1u1 − ρ2u2.

Combining the two mass balance equations in (1) and using α1 + α2 = 1 yields
∂x K = Γ1

ρ1
+ Γ2

ρ2
. We thus obtain K (x, t) = ∫ x

0 ( 1
ρ1

− 1
ρ2

)Γ1(x, t)+α1(0, t)u1(0, t)+
α2(0, t)u2(0, t) which is entirely determined by the boundary conditions. Using the
new unknowns β and ω, we can rewrite the system (1) as:
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∂tU + ∂x F(U ) = G(U ), with (2)

U =
(

β

ω

)

, F(U ) =
⎜ −Kρ1ρ2

β
+ (β−ρ1)(β−ρ2)ω

β(ρ1−ρ2)
ω2

2(ρ1−ρ2)

⎟

, G(U ) =
(

0
g(ρ1 − ρ2).

)

.

In the theoretical analysis [8], the existence of a positive solution (α1, α2 ⊃ [0, 1])
to the Riemann problem was proven for the model (2) in the case where Γ1 = Γ2 = 0.
In this case, ∂x K = 0 and assuming that the boundary conditions are constant we
obtain that K is a constant function of time and space. Using a Galilean change of
coordinate u1 ⊂ u1 − K , u2 ⊂ u2 − K with the constant velocity K we can assume
that K = 0. In this case the Jacobian matrix ∞F has two real eigenvalues

λ1 = ω

ρ1 − ρ2

(

1 − ρ1ρ2

β2

)

, λ2 = ω

ρ1 − ρ2
,

and is diagonalisable provided (β, ω) belongs to the state space (]ρ1, ρ2[×R
≤) ∀

({ρ1}×R)∀ ({ρ2}×R). λ1, λ2 correspond to the volume fraction waves of (1) when
c1, c2 ⊂ ∩ and the corresponding eigenvectors are

r1 = t(1, 0), r2 = t(β(β − ρ1)(β − ρ2), ρ1ρ2ω).

Since the sign of λ1 and λ2 is not clear we may expect numerous sonic points (λ1 = 0
or λ2 = 0) during the numerical simulation of the system. Moreover the signs of
∇λ1 · r1 = 2ρ1ρ2ω

(ρ1−ρ2)β3 and ∇λ2 · r2 = ρ1ρ2ω
ρ1−ρ2

are not clear, so the characteristic fields
associated to λ1 and λ2 are neither genuinely non linear nor linearly degenerate in
general. We may therefore expect a non classical wave structure in the solutions for
the Riemann problem. This is for instance the case when a pure phase appears in the
solution of the Riemann problem (see Fig. 1 in the next section).

2 Numerical Schemes

We now investigate the numerical simulation of the system (2) and show that the basic
Roe scheme fails to capture the expected dynamics whereas the Godunov scheme
and the Roe scheme with a Harten type correction capture the analytical solution.

We consider a uniform mesh of the computational domain [0, 1] whose N cells
are centered at xi , i = 1, . . . , N . The space step Δx = xi − xi−1 is constant whereas
the time step Δt (U n) > 0 depends on the discrete field U n = (U n

i )i=1,...,N which

approximates the exact solution U (x, t) at cells i and time tn = ∑n−1
k=0 Δt (U k). The

time step should satisfy the following CFL condition in order to ensure the stability
of the explicit schemes: Δt → Δx

maxi {λ1(Ui ,Ui+1),λ2(Ui ,Ui+1)} , where λk(Ui , Ui+1) is
the largest value of |λk | on the path connecting Ui to Ui+1 using the rarefactions
and admissible shock waves defined in [8]. We point out that λk(Ui , Ui+1) may
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be different from |λk(Ui )| and |λk(Ui+1)| because the characteristic fields are non
genuinely nonlinear.

We consider conservative finite volume schemes in the following explicit form:

U n+1
i = U n

i − Δt

Δx

(
Φn

i+1/2 − Φn
i−1/2

)
+ ΔtG(U n

i ), (3)

where Φn
i+1/2 is the numerical flux function at the interface between cells i and i +1,

and at time tn . We compute the numerical flux Φn
i+1/2 using one of the following

Riemann solvers.

Godunov scheme
Φn

i+1/2 = F(U≤(U n
i , U n

i+1)),

where U≤(U n
i , U n

i+1)) is the value taken by the solution of the Riemann problem
between the left state U n

i and the right state U n
i+1 at x = 0.

Roe scheme with a Harten type correction

Φn
i+1/2 = F(U n

i ) + F(U n
i+1)

2
−

(
|ARoe(U n

i , U n
i+1)| + harn

i,i+1Id
)
·
(

U n
i+1 − U n

i

2

)

,

where ARoe(U n
i , U n

i+1) is the Roe matrix, (see the Appendix for its expression),
and harn

i,i+1 = C max (|λ1(U n
i ) − λ1(U n

i+1)|, |λ2(U n
i ) − λ2(U n

i+1)|). If C = 0 we
recover the standard Roe scheme. However it is well-known that the Roe scheme may
capture non admissible solutions (see [4]). Hence we used a constant value C = 1

5
to include a Harten type entropic correction in the Roe scheme.

3 Numerical Results

We present some numerical results obtained with the constant densities ρ1 = 1,
ρ2 = 3, which give a good overview of the wave structure. We first show that the
Godunov scheme and the Roe scheme with Harten type correction are able to capture
the non classical wave structure arising in the Riemann problem involving a pure
phase intermediate state. Then we take into account a momentum source term through
the classical and challenging case of two phase sedimenting under gravity. In the last
test we consider a mass source term modeling the drying out of a liquid occurring in
the central part of a nuclear reactor vessel. In all these cases the numerical values of
α1 and α2 remain between 0 and 1.

3.1 The Riemann Problem

The Riemann problem consists in solving the system (2) with K = g = 0 and the
initial data
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Fig. 1 The solution of the Riemann problem at time t = 0.1 for the initial data α1 = α2 = 0.5 and
ωL = −ωR = −5 (left), ωL = −ωR = 5 (right)

U (x, 0) =
{

(βL , ωL) if x → 0,

(βR, ωR) if x > 0.
(4)

In [8] we proved that this problem admits a unique admissible solution satisfying
Liu’s criterion (see [7]) with α1, α2 ⊃ [0, 1]. In the special case where ωL = −ωR ,
the solution involves a pure phase: the heavier if ωL < 0, and the lighter if ωL > 0.
It consists of three shocks waves in the former case and two transonic rarefactions in
the latter (see Appendix). We present in Fig. 1 the numerical results obtained using
the Godunov scheme, the Roe scheme, and the Roe scheme with the Harten type
entropy correction presented at Sect. 2. In the second case (ωL > 0, the original
Roe scheme is unable to capture the admissible solution and captures instead an
undercompressive shock.

3.2 The Sedimentation Problem

This is a classical test case in the assessment of numerical methods in the modelling
of counter-current two phase flows with steep transition (see [5]). We consider the
model (1) with K = 0, Γ1 = −Γ2 = 0, g = −10 m/s2 and the following initial and
boundary data for x ⊃ [0, 1]
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Fig. 2 Volume fraction α1 for the sedimentation problem, transient (left) and stationary (right)
solutions

Initial data: u1(x, 0) = 0, u2(x, 0) = 0.1, α1(x, 0) = 0.5, α2(x, 0) = 0.5.
Wall boundary conditions: u1(0, t) = u2(0, t) = u1(1, t) = u2(1, t) = 0.
The stationary state expected is α1 = 0 on [0, 0.5] and α1 = 1 on [0.5, 1]. The

transient result in Fig. 2 (left) shows that the Roe scheme captures an undercompres-
sive shock departing from x = 1. This is consistent with the results shown in the
previous section since the Riemann problems at the walls yield pure phases inter-
mediate states and a transonic rarefaction fan for the lighter phase. However, the
Roe scheme with Harten entropic correction gives a similar result to the Godunov
scheme, both of them being consistent with the analysis of the Riemann problem.

We remark that the pure liquid wave and the pure gas wave have different struc-
tures, the former being a shock wave and the latter a rarefaction wave. However in
some publications [2, 5] the “analytical” solution for this problem is claimed to be
composed of two shock waves and used to study the convergence of the numerical
methods. We do not believe this statement is true and this is confirmed by the theo-
retical results in [8] and by other numerical results obtained with the compressible
model (1) where we used an interfacial pressure term ∨p similar to [2, 3, 5, 9].

3.3 The Boiling Channel Problem

The boiling channel test case is a simplified description of a nuclear vessel ther-
malhydraulics in incidental conditions. The inlet water is assumed at saturation and
remains liquid in the lower part of the vessel. Due to the heating source term in the
core the liquid undergoes phase change and may be purely gaseous in the upper part
of the vessel (see for example [3]).

We consider the model (1) with g = 0 and the piecewise constant phase change
function Γ1(x) = −Γ2(x) = Γ01[ 1

3 , 2
3 ](x), for x ⊃ [0, 1]. This is a simple 1D

description of a nuclear core dewatering, where we do not detail the energy transfers
involved in the phase change but only consider a non zero mass source term Γk √= 0.
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Fig. 3 The stationary state for the boiling channel problem

In the following numerical test, we choose Γ0 = 3ρ2 with the following initial
and boundary conditions

Initial data: α1(x, 0) = 0, u1(x, 0) = 1, u2(x, 0) = 1, ≥x ⊃ [0, 1].
Boundary conditions: inlet at x = 0 with u1(0, t) = u2(0, t) = 1, α1(0, t) = 0

and outlet at x = 1 with Neumann condition.
Figure 3 shows that the Roe scheme and the Roe scheme with a Harten type

correction give similar results very close to the analytic solution. This could be
expected since this problem involves no transonic rarefaction.

4 Conclusion

We have shown in this paper that finite volume Riemann solvers are able to solve
systems of balance laws in complex configurations. Our system has non genuinely
nonlinear characteristic fields and many sonic points but the Godunov scheme as
well as the Roe scheme with Harten type correction give satisfactory results with
positive volume fractions, provided the time step is carefully chosen. The ability of
Riemann solvers to accurately propagate waves in the computational domain is an
important advantage when it comes to simulating boiling or condensation fronts in
the nuclear energy thermalhydraulics.
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Appendix: The Roe matrix

We used the Roe matrix ARoe(UR, UL) =
(

a b
c d

)

, where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

a = wL + wR

2(ρ1 − ρ2)

(

1 − ρ1ρ2

βLβR

)

,

b = 1

2(ρ1 − ρ2)

[
(βL − ρ1)(βL − ρ2)

βL
+ (βR − ρ1)(βR − ρ2)

βR

⎛

,

c = 0,

d = ωL + ωR

2(ρ1 − ρ2)
.

If ωL +ωR √= 0, the Roe matrix is diagonalisable. However when ωL +ωR = 0, the
eigenvalues are real (0, 0) but the matrix is not diagonalisable because of a Jordan
block. This is consistent with the continuous model (2) being not hyperbolic for
ω = 0. Whenever ωL + ωR = 0 we take a Roe matrix ARoe(ω = 0) = 0.
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On Boundary Approximation for Simulation
of Granular Flow

David Neusius, Sebastian Schmidt and Axel Klar

Abstract We introduce a Cartesian cut-cell method to numerically solve a system of
granular equations in complicated domains. A non-Newtonian Navier-Stokes model
is used, which covers both the dense and dilute regime of granular flow. In a Cartesian
cut-cell method, one starts from a Cartesian grid and modifies cells that intersect
the boundary. In contrast to adaptive or boundary fitting grids, the cutting process
yields only local modifications. Thus, the simple Cartesian finite volume structure
can be sustained on the interior. To ensure stability in the presence of arbitrarily
small cut cells, a merging process will be used, which will result in a combination
of the discretization equations on the algebraic level. An interpolation is used to
ensure first order convergence near the boundary. We restrict the presentation of
numerical examples to two dimensions, while the method derivation includes the
three dimensional case.

1 Introduction

Designing robust methods for simulations of complex non-Newtonian fluids on
complicated geometries is not trivial. It is a common approach to choose a sim-
ple Cartesian or rectilinear grid, possibly with local refinement. When this is used on
complicated domains, a smooth boundary is discretized as a “stair”-like structure, if
the boundary is not parallel to the Cartesian grid. For a compressible fluid this results
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in an error in density. Since the fluid properties of the macroscopic granular flow ([6]
and Sect. 2) are dependent on the density, this density error easily results in a global
error. Thus, in order to obtain a consistent Cartesian grid method on a complicated
domain it is necessary to use some modification at the boundary. These approaches
are summarized under the expression “Immersed Boundary Methods”. Our aim is to
develop an immersed boundary method that is applicable to the three dimensional
macroscopic granular equations.

Mittal [8] has categorized these methods into continuous and discrete forcing
approaches. Methods of the former type have either issues with stiffness or become
increasingly complicated with the complexity of the model. Since we apply our work
to complex fluids we want to avoid this and have chosen direct imposition. The finite
volume version of this, which is called the cut-cell method, is, furthermore, the only
of the named approaches that retains strict conservation of all state variables [8].

There have been many applications of the Cartesian cut-cell method in the last
decade. It has mostly been used for compressible non-viscous flows, e.g. [5]. Many
papers have also shown its applicability to incompressible viscous flows, see [1, 3,
11]. Only very recently people have started using it on the compressible viscous
Navier Stokes Equations, see [4]. As far as we know, it has not been applied to non-
Newtonian fluids, yet. For a more detailed technical report of our cut-cell method
see [9].

2 Simplified Hydrodynamic Granular Model

In general, simulation of granular materials is interesting due to its widespread use in
industrial processes. When an inside view into a production process is not possible,
a simulation is important for better understanding and optimization.

Particle-based simulations of granular material are limited in particle numbers by
computation time and storage. This limit may be too small to simulate a complete
production process. Furthermore, complex non-spherical and non-uniform particles
pose difficult modeling challenges.

The continuum model [6], which is shortly presented here, does not scale in run-
time with the number of particles. Moreover, the granular properties required for the
simulation, e.g. shear stresses, can be obtained from macroscopic lab experiments.
Multiphase flows involving fluids are also possible. For ease of presentation, the
method is described via a simplified model.

2.1 Continuous Equations

The general framework of the model is the isothermal compressible viscous Navier-
Stokes equations, having as unknowns the density ρ and the momentum ρu. The
density is scaled to a dimensionless volume fraction, such that ρ ∈ [0, ρC ), with
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ρC < 1, see Sect. 2.1. Including some volume force f , e.g. the gravity, the general
continuous equations are

∂tρ + ∇ · (ρu) = 0

∂t (ρu) + ∇ · (ρuu) − ∇ · σ + ∇ p − f = 0, (1)

with the asymmetric (2) stress strain relation

σ = ηκ κi j = ∂ui

∂x j
. (2)

Closure

We first require the concept of a granular temperature T , as introduced in [2, 6].
T resembles the energy of “random movement” of particles, similar to the tempera-
ture being a measure of the random movement of molecules. This similarity indicates
that the temperature dominates the dilute regimes, where granulate behaves in many
respects like a gas. Thus, it will be a major contribution to all kinetic terms that are
introduces later. The higher the granular temperature the more often particles, just
as molecules would, will interact.

Interactions between granular particles are non-elastic collisions. This leads to a
constant loss of energy. Without outer sources the granular temperature will always
converge to zero.

The equation for T is omitted in the simplified model and is in the numerical results
replaced by an application dependent constant. One could also use an asymptotic
temperature formula in a dense slow regime as given in [12].

A further magnitude required is that of a maximum density ρC . As the material
of which the particles are composed is assumed to be incompressible, there is a
maximum packing one can reach without destruction of particles. This value is

mainly used within the radial distribution function g(ρ) =
(

1 − ρ
ρC

)−1
. Having

only a continuously resolved particle distribution we need this function to measure
the probability of having particles in collision range. An infinite g(ρ) implies a
probability of one. Using these, we can define the first part of the pressure pk =
Tρg(ρ), the kinetic pressure. For low density and constant temperature this resembles
the ideal gas law.

With increasing density, the finite radius of our particles requires additional forces
that are not present in standard fluid equations. Any material whose temperature
approaches zero Kelvin will contract strongly. This does not apply, if a granulate
comes to a rest, i.e. the granular temperature converges to zero. Instead, if the gravity
is the only external force, it will have a density of no more than half the possible
maximum density ρC . This equilibrium is numerically not reproducible as long as
the pressure is always proportional to T . Thus, a second part of the pressure, py or
the yield pressure is introduced:
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p = py + pk where
pk = Tρg(ρ)

py = Θ(ρ − ρC0)T0(ρ − ρC0)g(ρ)
(3)

The parameters T0 and C0 are material dependent and may be functional. Among
other criteria, they have to be determined by the existence of the previously described
equilibrium at the correct density.

Similarly, one can derive a kinetic [2] and yield [10] viscosity.

η = ηk + ηy = ηk

(

1 + py

pk

)

where
ηk = η0

√
T ρg(ρ)

ηy = η0Θ(ρ − ρC0)
T0√

T
(ρ − ρC0)g(ρ).

(4)

Stress Strain Relation

The advantage and main reasoning for using a symmetric stress strain relation is that
it ensures conservation of angular momentum. Physically, this conservation cannot
be observed in granular flow. Angular momentum can be converted into rotation of
a single particle since rotation of single particles in our model will be a temperature
rather than a velocity. Thus, as both, the symmetric and the asymetric stress strain
relation are not completely correct, we choose the easier asymmetric one which leads
to a decoupling of the velocities in the implicit part of the numerical method.

2.2 Discrete Equations

Using the asymmetric stress-strain relation, we derive the discrete equations

VC
∂ρC

∂t
+

∑

f ∈faces

(
A f ρ(n f · u f )

) = 0 (5)

VC
∂(ρu)C

∂t
+

∑

f ∈faces

A f

(

η f (ρ, T )
∂u

∂n
− p(ρ, T )n f · I − ρu(n f · u f )

)

= 0,

(6)

where VC is the volume of the cell, A f the area of a face and n f and u f are the
normal and velocity on a face. Regarding the temporal derivative we use a partly
implicit scheme. The advection and pressure are using pure explicit Euler, while the
velocity in the diffusion is split as u = (ρu)/ρ. The former part is linear and we
can thus easily apply the implicit Euler method, while the latter part is again treated
explicitly.

As long as only a Cartesian grid without cut-cell is used, the face velocity and the
arguments of the pressure function will be the average of the two adjacent cell-center
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values. The state variables in the advection term are chosen according to the upwind-
scheme. The temporal and the normal derivatives require the cell-center values for
the current and the next time step. Simple cell-center values do not suffice to achieve
a higher convergence using the cut-cell method, see Sect. 3.3.

3 Cut Cell Method

To apply the cut-cell method we have to consider three main tasks. The first is the
creation of a boundary representing mesh, this is called the cutting procedure. The
second task is to ensure stability properties similar to the standard Finite Volume
methods. As small cut cells would prevent this, they are merged with larger cells.
Since the changes done in the first two tasks lead to shifted center points of cells
and faces and even the creation of new boundary faces, it is furthermore necessary
to apply an interpolation to ensure first order convergence near the boundary.

3.1 Mesh Creation

The target of the cutting process is a simple automatically constructed grid, which
represent the actual boundary up to a continuous and piecewise linear accuracy, see
Fig. 1. The simplest way would be to restrict ourselves to one additional face per cell.
The most complicated on the other hand would allow faces to have corners in the
interior of the Cartesian cell, as e.g. done by Ahmadi [1]. As an intermediate approach,
we allow the triangulation possibilities of the Marching Cubes/Squares algorithm [7].
Thus, a slightly modified version of this algorithm can be applied to compute the
cut-faces. In other words our cutting should have the following properties:

We assume that each cut cell is a subset of the underlying Cartesian cell. In 2D,
we further assume that each cell is a polygon whose corners are located on the edges
of the Cartesian cell and no more than one corner plus the two endpoints are allowed
per edge. In 3D, the cell is assumed to be simply connected and its boundary must
be a union of polygons, with the same properties as the polygon in the 2D case. The
limit on the number of distinct corners per edge is applied on the set of corners of
all these polygons.

3.2 Merging of Small Cells

At first sight it might be useful to keep each cut-cell as a separate cell in order to
achieve a good approximation at a complicated boundary. Yet, a few very small cells
are created by the cutting and would globally require a very low time-step, as e.g.
seen in the CFL-condition. There are many ways to counter this: Klein et al. [5] use
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Fig. 1 Illustration of a cut-cell grid around one cell

a flux balancer to stabilize these areas. Tucker et al. [11] sacrifice exact conservation
by simply interpolating the values on small cut-cells instead of using the governing
equations. As most people, we will use a cell merging instead, where it is necessary
to state a lower bound on the volume on every non-merged cell.

This lower bound is a design parameter: One can see that by decreasing the small-
est allowed cell size the L∞-error decreases. This improvement varies for different
examples, depending on how many cells are affected. On the other hand, the larger
differences in cell sizes will increase the L2 and L1 errors. A short convergence study
for a Newtonian example is done in [9].

The merging of two neighboring cells can be seen as the unification of their
volumes. The new center point, where the state variables are saved, will be in the
centroid of the unified cell. The fluxes on the faces of both cells will now contribute
to the same discrete equations. Fluxes on the face between the two merged cells
cancel out.

3.3 Interpolation

Let us motivate the necessity of an interpolation of quantities by illustrating a very
noticeable error that can be observed if we just use cell wise constant quantities.

This can for instance be seen in an example, where we have a straight channel with
no-slip boundary condition. In the analytical solution, the velocity would increase
with the distance to the channel boundary, but would remain constant if we move
parallel along the boundary. Thus, velocity gradients that are almost parallel to the
boundary should be very small. This should hold for the normal gradient of the edges
w and e in Fig. 2.

Using no interpolation, the discretization of the gradient ∂uw

∂nw
≈ u P2 −u P1

h would

indeed be very small. Yet, the discrete normal gradient at e, ∂ue
∂ne

≈ uM −u P2
h would
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Fig. 2 Example, where interpolating the velocity on a cut-face by two center points fails at a
non-slip boundary

h Cartesian Cut cell

h 1
10π L1

1
10 L∞

10− 3

π L1
1

100 L∞
Density Errors

1/50 2.09 2.25 9.03 1.00

1/100 1.54 3.19 5.82 0.852

1/200 1.06 3.54 2.81 0.513

1/400 0.760 3.76 1.60 0.249

Density Convergence Rate

1/100 0.445 -0.500 0.634 0.235

1/200 0.539 -0.150 1.05 0.731

1/400 0.476 -0.0873 0.810 1.04

Fig. 3 Rotation of granular material induced by a uniform tangential velocity on a circular no-
slip boundary. Uniform initial condition ρ = 0.4, u = 0. Granular parameters T = 10−5, ρC =
0.8, ρC0 = 0.3, T0 = 1. Left Cartesian grid. Right Presented cut-cell method with lower volume
bound (see Sect. 3.2) 1/4, yielding the expected result. Table Errors and convergence rates for this
example using different uniform grid sizes h in both coordinate directions. A Cut-cell solution with
h = 10−3 has been used as reference. A Cartesian reference solution cannot be used since there is
convergence in L∞ norm. We have used h = 0.01 for the plots

be very large: The centroid M has a much higher velocity than P2, since it is further
away from the boundary.

Since these discrete normal gradients have to be used in the diffusion term, this
discrepancy would lead to an overly strong diffusion flux on edge e. It would cause
an artificially high velocity in cell P2 and in the long term an increased density in
cell M . We have also proofed, see [9], that this error does not decrease with smaller
spatial step sizes. Similar errors can be found in other terms of the equation.

An interpolation will be necessary in all face flux terms, if the according face is
adjacent to any non-Cartesian cell. It does not disturb conservation, as it is only used
for these fluxes that are used in both adjacent cells with a different sign.

The necessary interpolation can be done by a polynomial fit, see e.g. [3], or by
a nearest neighbor interpolation, which utilizes a Voronoi partition and is described
here shortly: We want to interpolate a quantity x at some arbitrary point P while we
know its value on a number of data points D0, . . . , Dn , which are all center points
and possibly boundary face values. We first construct a Voronoi partition V0 from
these data points, which can be used multiple times for any P . Adding P to V0 we
receive a new Voronoi partition VP and the interpolation formula:
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x(P) =
n∑

i=0

(ADi ,V0 − ADi ,VP )x(Di ), (7)

where AD,V is the Voronoi cell area/volume (3D) of data point D in Voronoi partition
V . Since adding P only changes the Voronoi partition locally, it can be inserted with
effort O(1) and only very few summands are non-zero.

4 Numerical Example: Rotating Cylinder

In many applications if suffices to add some normal information of the curved domain
to a standard Cartesian Finite Volume solver in order to achieve satisfying result. Yet,
there are some examples where it fails completely if the cut cell method is not used.
In Fig. 3 the density and velocity norm should only depend on the radial distance. Yet,
we have unrealistic piling of material in the solver that does not utilize the cut-cell
method.
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Comparison of Realizable Schemes for the
Eulerian Simulation of Disperse Phase Flows

Macole Sabat, Adam Larat, Aymeric Vié and Marc Massot

Abstract In the framework of fully Eulerian simulation of disperse phase flows,
the use of a monokinetic closure for the kinetic based moment method is of high
importance since it accurately reproduces the physics of low inertia particles with
a minimum number of moments. The free transport part of this model leads to a
pressureless gas dynamics system which is weakly hyperbolic and can generate
δ-shocks. These singularities are difficult to handle numerically, especially without
globally degenerating the order or disrespecting the realizability constraints. A com-
parison between three second order schemes is conducted in the present work. These
schemes are: a realizable MUSCL/HLL finite volume scheme, a finite volume kinetic
scheme, and a convex state preserving Runge-Kutta discontinuous Galerkin scheme.
Even though numerical computations have already been led in 2D and 3D with this
model and numerical methods, the present contribution focuses on 1D results for
a full understanding of the trade off between robustness and accuracy and of the
impact of the limitation procedures on the numerical dissipation. Advantages and
drawbacks of each of these schemes are eventually discussed.

1 Introduction

The study of two-phase flows is needed for a wide range of applications such as
fluidized beds, spray dynamics, atomization of fuel in combustion chamber, alumina
particles in rocket engines, cosmology, etc. In the present contribution, we focus on
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the Eulerian resolution of the disperse phase using the kinetic-based moment method
(KBMM). It approximates the solution of the Williams-Boltzmann equation (WBE)
[12] at a macroscopic level using a finite set of integrated quantities over the phase
space, called moments. The closure of the KBMMs is based on the choice of a
presumed shape in the velocity space for the number density function (NDF), having
as many parameters as the number of moments one needs to control [8, 11]. The main
advantages of KBMMs are the (weakly)-hyperbolic character of the resulting system
and the close link between the transported moments and the physics contained in the
underlying NDF. This is of critical importance for numerical scheme design.

In the present work, we consider the case of high Knudsen number where the
particle-particle collisions are negligible. Moreover, since one of the most delicate
steps in the Eulerian modeling is the velocity closure for the convective part, we will
focus only on the transport term in the WBE. It is essential to note that this term is
the building block for all the KBMMs. The model studied in this work is the monoki-
netic closure model (MK) obtained by assuming that the velocity distribution is a
Dirac measure [2, 8]. In 1D, it leads to a two equation weakly hyperbolic pressure-
less gas dynamics (PGD) system. Since the velocity is locally uniquely defined, this
model correctly reproduces the dynamics of low inertia particles when no trajectory
crossing occurs. The main features of the solution of this model are stiff accumu-
lations regions and large depletion zones, what justifies the search of accurate and
robust numerical methods. Indeed, the numerical scheme used can highly influence
the captured physics and should not degenerate in the presence of void regions and
singularities. In addition, moment methods require that the numerical scheme sat-
isfies the realizability condition (every set of moments has to be associated with a
positive NDF) in each cell. This realizability condition translates into the positivity
of density for PGD. In the literature, the resolution of the PDG system has already
been studied among others by Bouchut et al. [3], Larat et al. [7] and Yang et al. [13].

The main contribution of this work is to compare, for a physical model that
takes into account the key part of the transport of the disperse phase, one of the
latest developments in the field of numerical methods, a realizable new class of
RKDG with a convex projection strategy, to better known methods such as a realiz-
able MUSCL/HLL finite volume scheme (MUSCL/HLL) [11] and a finite volume
kinetic scheme (FVKS) [3]. For the FV schemes the limitation strategy is assessed
by comparing the minmod and the monotonized central-difference (MC) limiters [9].
Given the challenging aspect of the simulation of Dirac solutions, and for the sake
of simplicity of the qualitative, quantitative and individual properties comparisons,
only 1D space test cases are presented hereafter. The methods generalize to higher
space dimensions and higher order KBMM models, the research on which has been
fostered by SAFRAN. However, the key features of the methods can be characterized
already in 1D, which is the purpose of the present contribution.
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2 KBMM and Mono-Kinetic Closure Based Model

The first step of modeling is the kinetic approach inspired by the kinetic theory of
gases. A statistical description of the disperse phase is used through a NDF f (t, x, ξ),
where t is the time, x the position and ξ the internal phase space. The sole choice of
the phase space is strongly related to the physics one wants to describe. For example,
if we consider that the particles are spherical, ξ = (c, S, T ) is the phase space
composed of velocity, size and temperature. In this case, the statistical approach
leads to a mesoscopic description given by the WBE [12]. This equation contains
the free transport of the discrete phase, a term for the acceleration of the particles,
a term relative to the evaporation rate, an expression of the rate of change of the
particle temperature and the source terms due to breakup and coalescence. Since
our focus is on the free transport we will only deal with this part of the WBE (see
Eq. (1)) in 1D. Furthermore, for simplicity we will consider a monodisperse phase
even though polydispersity could be included through a Multi-Fluid size phase space
discretization [8], for example. The transport part of the WBE reads:

∂t f + ∂x (c f ) = 0 (1)

After integrating Eq. (1) over the phase space, one gets a system of moment equations
with Mi = ⎧

Ui f dU being the general i th order moment in velocity:

∂t Mi + ∂x (Mi+1) = 0. (2)

This system is not closed: for every set of N + 1 moments, the moment of order
N +1 is required as the N -th moment flux (F (Mi ) = Mi+1) [11]: a closure relation
MN+1 = f (M0, . . . , MN ) has to be provided to model the unknown flux. Such a clo-
sure depends on the physics one needs to describe. We focus here on the mono-kinetic
closure [2, 8]. It correctly reproduces the formation of depletion zones and accumula-
tions regions in the case of low inertia particles for which no particle trajectory cross-
ing occurs [4, 11]. The NDF is assumed to write f (t, x, c) = ρ(t, x)δ(c − u(t, x)),
where u(t, x) is the mean velocity of the dispersed phase. The system of moments
closes at first order i.e. N = 1 and we get therefore the two equation PGD system:

⎪
∂tρ + ∂x (ρu) = 0 ; ∂t (ρu) + ∂x (ρu2) = 0.

⎨
(3)

This system is weakly hyperbolic and can generate δ-shocks [2]. These singularities
are difficult to handle numerically, especially without globally degenerating the order
of accuracy. In addition, the physical meaning of the numerical solution relies on
the realizability condition: every pair of moments (ρ, ρu) is associated with a pos-
itive NDF. As a result, the positivity of the number density ρ should be preserved.
Moreover, the velocity u has to respect a maximum principle [2, 3].
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3 Numerical Schemes

Three second order schemes are tested here in order to check their ability to
meet the accuracy, realizability and robustness requirements. The first scheme is
a MUSCL/HLL finite volume scheme [1, 10, 11]. This scheme is obtained using
the MUSCL strategy [10] with a linear conservative reconstruction of the primitive
variables (U = (ρ, u)) within each cell in order to calculate the interface values.
The evaluation of the fluxes is then done with a first order HLL flux:

2 FHLL(ML , MR) = F (ML) + F (MR) − |λm | ⎩M∨ − ML
) − |λM | ⎩MR − M∨)

(4)

where M = (ρ, ρu)T is the state of moments, ML and MR are the initial states
at each side of the interface and λM and λm are respectively the maximum and
minimum eigenvalues of the Jacobian over the cell interfaces: λM = max(F ∈

L ,F ∈
R)

and λm = min(F ∈
L ,F ∈

R). For the integration in time, a strong stability preserving
two-step Runge-Kutta (SSP2RK) method [6] is used. The resulting scheme is of
second order in time and space and preserves the realizablity of the moments. It
has already been used for example on 2D Taylor Green, and homogeneous isotropic
turbulence (HIT) test cases for different KBMMs [11]. For more information on this
scheme one may refer to the work of Vié et al. [11] and references therein.

The second scheme is the finite volume kinetic scheme (FVKS) [3]. It uses the
exact solution in time of the underlying kinetic description and is therefore intrinsi-
cally realizable. For the second order scheme, piecewise linear reconstructions are
considered for the density and velocity. This scheme was previously used to solve
3D HIT and other combustion applications ([4] and references therein).

The slope limiter used in the first two methods is either a minmod or a MC limiter
[4, 9]. These limiters are obtained from Eq. (5) by respectively taking α = 1 or α = 2
with Δ+ρ = ρn

i+1 − ρn
i , Δ−ρ = ρn

i − ρn
i−1, χ = Δx(1 + Δx Dρi /6ρn

i )

Dρi = 1

2
(sgn(Δ+ρ) + sgn(Δ−ρ)) × min

( |Δ+ρ + Δ−ρ|
2Δx

,
α|Δ−ρ|

Δx
,
α|Δ+ρ|

Δx

)

, (5)

Dui = 1

2
(sgn(Δ+u) + sgn(Δ−u)) × min

( |Δ+u + Δ−u|
2χ

,
α|Δ+u|

2Δx − χ
,
α|Δ−u|

χ
,

1

Δt

)

The last scheme is a convex state preserving Runge-Kutta discontinuous Galerkin
scheme (RKDG) [7, 14]. First, the variational formulation is conducted using k + 1
basis functions φ

j
i , polynomials of order k in cell Ci . Then, according to the clas-

sical DG formulation, Mh is the piecewise polynomial solution of the following
differential system, where M is the mass matrix and F ∨ is the numerical flux:
⊃i = 1, ..., N ; ⊃ j = 1, ..., k
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|Ci |(M jl)dt Ml
i +

(
F ∨

i+ 1
2
φ

j
i (xi+ 1

2
) − F ∨

i− 1
2
φ

j
i (xi− 1

2
)
)

=
∫

Ci

F (Mh)∂xφ
j
i dx

(6)

By summing over all the degrees of freedom of the cell, one obtains the equation of
evolution of the cell mean value. The time update is done using the same SSP2RK
method used for MUSCL/HLL. Then, by using an appropriate Gauss-Lobatto quadra-
ture rule the update of the cell mean value can be rewritten into a convex combination
of abstract first order updates in the subcells of two neighbouring quadrature points.
If the numerical flux is convex state preserving at first order (for example Rusanov
flux) the updated set of mean moments is realizable if the solution at each Gauss-
Lobatto quadrature points is realizable. This is obtained by reducing the deviation
of the local polynomial just enough so that the realizability is met and the accuracy
is not destroyed [14]. It is important to note that in the last test case an additional
modified minmod slope limiter [5] had to be used to ensure the stability of the method
when the solution becomes very singular. However this should not be the case the-
oretically. This remains an open question. This scheme was already tested on 2D
Taylor Green, and homogeneous isotropic turbulence (HIT) test cases for different
KBMMs on unstructured grid [7].

4 Results

We present here three test cases. We consider periodic boundary conditions for all
the tests with CFL = 0.5 and a mesh of 100 cells (except for convergence study).
First we want to assess the numerical method implemented with the most simplified
version of the PGD system where the velocity is everywhere equal to unity. In this
case, the linear advection equation is obtained. We consider a Gaussian-like initial
condition:

ρ(x, 0) = [cos (π(2x − 1))]4 if 0.25 < x < 0.75, 0 otherwise; and u(x) = 1
(7)

In Fig. 1 to the left, the solutions of the different schemes are represented after 10
cycles. The solutions of the schemes with the minmod limiter are clearly smeared
out. We can also observe the leading phase error for the RKDG and MUSCL/HLL
solutions which is a sign of numerical dispersion. For the FVKS MC solution we
notice a minor flattening of the bump due to slope limitation. According to these
results, the list of the schemes arranged in increasing order of numerical diffusion is:
RKDG, FVKS MC, MUSCL/HLL MC, FVKS Minmod and MUSCL/HLL Minmod.
We next perform a convergence study at t = 1 in the 2-norm, Fig. 1 right side. Correct
second order is obtained for RKDG and FVKS with MC limiter, which is not the case
for MUSCL/HLL particularly for coarse meshes. When using the minmod limiter
instead of MC, the slopes are respectively reduced by 13 and 26 % for MUSCL/HLL
and FVKS. Also an interesting feature is that RKDG maintains the exact second
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Fig. 1 Linear advection equation, to the left density at t = 10 and to the right convergence study
for RKDG, FVKS MC and MUSCL/HLL MC (2-norm)

order in the 1-norm and in the ⊂-norm, which is not the case of the two other FV
schemes.

Remaining test cases solve for the PGD system with two different initial conditions.
The second test is similar to numerical test I in Bouchut et al. [3]. The initial con-
dition, for 0 ∞ x ∞ 2, is ρ(x, 0) = 0.5 and:

u(x, 0) =
⎜
⎟



−0.4 x < 0.5 or x > 1.8,

0.4 0.5 < x < 1,

1.4 − x 1 < x < 1.8.

(8)

The density is plotted in Fig. 2 for the three schemes at t = 0.5. The RKDG
solution is obtained by guaranteeing the positivity of the density and by limiting
the absolute value of the velocity to 0.4. These two conditions define the convex
state for this method. We can notice that all the schemes create small overshoots
near the discontinuities (after x = 1.2 and before x = 1.6), these being already
observed in Bouchut et al. [3]. These overshoots have the highest amplitude for the
MUSCL/HLL (4.5 % above 1.0), are a little bit smaller for RKDG and reduce to only
1 % for the FVKS results. In addition, RKDG creates overshoots before x = 0.3 and
after x = 0.7 since no limiter is used at these points and the scheme does not ensure
local monotonicity. When FVKS gives the most satifactory solution compared to
the exact, RKDG also shows the sharpest resolution of the discontinuities. Finally,
velocity component is not shown, since it is nearly the same for all the schemes.

The last test is a more complex problem. It is a replicate, under the MK model,
of two packets of particles approaching each other with opposite velocities. For
0 ∞ x ∞ 1, the inital condition is:
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Fig. 2 Second test case: density and velocity results for the different schemes at t = 0.5
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Fig. 3 Last test case: density and velocity results for the different schemes at t = 0.5

ρ(x, 0) = [sin (2πx)]4 ; u(x, 0) =
{−1 if x > 0.5

1 otherwise
(9)

At t = 0.5, the density exact solution is a Dirac measure at x = 0.5. Therefore,
we should have all the matter concentrated in one cell at x = 0.5. RKDG result is
obtained using an additional modified minmod limiter [5] and the convex constraint
is defined as positive density and absolute velocity limited to 1.0. For this test case
we consider a mesh of 101 cell in order to have a cell center at 0.5 to check if the
schemes capture the right position of the Dirac. The numerical results are shown in
Fig. 3.

All the schemes are able to physically capture the singularity. The major part of
the matter is concentrated in three cells for RKDG ([0.4802, 0.5198]: the mid-cell
and its two neighboring cells), in two cells for MUSCL/HLL ([0.4901, 0.5198]: the
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mid-cell and its right neighbor) but it is concentrated in only one cell for the FVKS
result [0.4901, 0.5099]. The FVKS gives the highest density at x = 0.5 (37.87). At
this point the density using MUSCL/HLL and RKDG is reduced respectively by 21
and 27 %. For a density less than 10−12 we consider void and set the velocity to zero.
From the velocity results, it is seen that vacuum is not generated using FVKS. We have
void outside the interval [0.2525, 0.7475] for MUSCL/HLL and [0.3515, 0.6485] for
RKDG. The RKDG has the largest interval of vacuum but the FVKS gives the sharpest
profile near the velocity discontinuity. According to the performance of RKDG in
the previous problems, a better result was expected. For this reason, the same test
case was repeated with a CFL number small enough to run RKDG without adding a
slope limiter. In this case the results of the FVKS and MUSCL/HLL were not greatly
affected, whereas the RKDG gave a sharper profile for the velocity discontinuity
and therefore a localization of the density in two cells. The final RKDG result is
however not totally satisfactory because mass accretion in the mid-cell is not as
good as FVKS. Further investigations are needed. One possible reason being that we
are comparing a vertex-centered scheme with transported polynomial values with
cell-centered schemes with reconstructed slopes, by projecting the RKDG result as
a cell-centered one.

For the presented test cases, the RKDG and the FVKS are competitive with each
other and overpass the MUSCL/HLL. The FVKS provides slightly better results than
RKDG and we believe this is due to the exact update in time for the former.

5 Conclusion

The comparison of the different numerical schemes presented in this work is an essen-
tial step toward the ultimate goal of finding an accurate, realizable, cost effective and
parameter-free numerical scheme on unstructured grids that can be applied to the
KBMM hierarchy. The RKDG and the MUSCL/HLL were applied to higher order
models such as the isotropic Gaussian and Anisotropic Gaussian closures KBMM
while the application of the FVKS is limited to the Dirac distributions for the veloc-
ity. Therefore, even though it is remarkable that the FVKS usage is attractive for this
model, we are interested in a numerical scheme applicable to all the KBMMs and the
new class of RKDG is a promising choice. To ensure the monotonicity of the RKDG
results the best method should be found to make sure that the local maximum prin-
ciple is respected without degenerating the accuracy. The modified minmod solves
this problem but introduces a parameter depending on the initial condition. Further
inverstigation of the PGD problem generating the δ-shock should be carried out to
better understand the RKDG result deterioration. Finally, 2D test cases on HIT were
already conducted for the MUSCL/HLL and RKDG schemes (using the minmod
limiter) and RKDG was found to be competitive from a quality/cost point of view.
This study should be extended to include FVKS results, knowing that it is expected
to be more efficient for the MK model.
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Shock Capturing for Discontinuous Galerkin
Methods using Finite Volume Subcells

Matthias Sonntag and Claus-Dieter Munz

Abstract We present a shock capturing procedure for high order discontinuous
Galerkin methods, by which shock regions are refined and treated by the finite volume
techniques. Hence, our approach combines the good properties of the discontinuous
Galerkin method in smooth parts of the flow with the perfect properties of a total
variation diminishing finite volume method for resolving shocks without spurious
oscillations. Due to the subcell approach the interior resolution on the discontinuous
Galerkin grid cell is preserved and the number of degrees of freedom remains the
same. In this paper we focus on an implementation of this coupled method and show
our first results.

1 Introduction

Discontinuous Galerkin methods of high order accuracy have the problem that shock
waves travelling through grid cells introduce instabilities. The high order polynomial
in the coarse grid cell generates spurious oscillations when such an inner element
jump has to be resolved. There exist different methods to circumvent these problems.
One is the use of explicit artificial viscosity, which adds locally viscosity to the
original equations to smear the discontinuities in such a way that it can be resolved
by the numerical approximation. This was originally proposed by von Neumann and
Richtmyer [7] for finite difference schemes. Persson and Peraire [4] adapted this to
high order discontinuous Galerkin (DG) methods to eliminate the high frequencies
without widening the shock over a couple of cells. They applied this artifical viscosity
approach also on subcells. Another technique to capture shocks in a DG framework,
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which is also inspired by the finite volume methodology, is the approach of refining
the grid in shock regions, while reducing the degree of the polynomials [1, 2], often
called hp-adaption. In general the reduction of the polynomial degree decreases the
oscillations, while the resolution has to be preserved by h-refinement.

In this paper we investigate the latter approach. But, we use an inherent refinement
of the discontinuous Galerkin elements into several finite volume subcells with a
lower order approximation without changing the degree of freedoms or the general
data structure. The outline of this paper is as follows. First we summarize the basic
concepts of our DG method and define the degrees of freedom (DOF) of an element.
In Sect. 3 we then derive a finite volume method on subcells associated with one
degree of freedom within the DG grid cell. The interior FV method is capable to
capture strong shocks due to its total variation diminishing character. The following
section shows a numerical example to illustrate the effectiveness of our approach to
handle shocks.

2 The Discontinuous Galerkin Spectral Element Method

In this section we recapitulate shortly the basic ideas of the discontinuous Galerkin
method with use of spectral elements as implemented in our CFD code FLEXI. For
a detailed description we refer the reader to Hindelang et al. [3]. The general system
of conservation laws is given as

ut (x) + ∨ · F(u(x)) = 0 ∈x ⊃ Ω, (1)

where u is the vector of conservative variables, F the physical fluxes and Ω the
computational domain, which is subdivided into hexahedral elements. Mapping each
of this elements onto the reference element E = [−1, 1]2 yields

J (ξ)ut (t, ξ) + ∨ξ · F (u(t, ξ)) = 0. (2)

where J (ξ) is the Jacobian of the mapping, F are the transformed fluxes and ξ =
(ξ1, ξ2)⊂ are the coordinates in the reference space. We multiply the transformed
conservation law (2) with a test function Φ and integrate over the reference element
E to obtain, after partial integration of the second integral, the weak formulation

∫

E
JutΦ dξ +

∫

∂ E
(F · n)Φ dSξ −

∫

E
F · ∨ξΦ dξ = 0, (3)

where n is the normal vector of the reference element E . We approximate the solution
in the reference element by a polynomial tensor product basis of degree N in each
space direction

u(ξ) =
N∑

i, j=0

ûi jψi j (ξ) with ψi j = li (ξ
1)l j (ξ

2), (4)
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Fig. 1 DG reference element E with Gauss points • and locations of the boundary fluxes � at the
DG interface for N = 3 in 2D

where ûi j are the nodal degrees of freedom and li (ξ) are the one-dimensional
Lagrange interpolation polynomials defined by the Gauss nodes {ξi }N

i=0. In our spec-
tral element approach we use some sort of collocation technique. The integration in
the discontinuous Galerkin framework is approximated by Gauss quadrature based
on the same Gauss points with the Gauss weights {ωi }N

i=0. Furthermore the Galerkin
method uses the same ansatz and test functions Φ = ψi j .

In the following we concentrate on the boundary integral of (3), because neigh-
boring DG elements are coupled only by this term. Since the solution may be discon-
tinuous at the interfaces the state is given twice, by the left and by the right element.
Therefore, the flux F is approximated by a Riemann solver including the state of
the actual element u and the state of the adjacent element u+. By the tensor product
ansatz the boundary fluxes are also interpolated in Gauss points u±1, j or ui,±1 at
the left, right, top and bottom of the grid cell, respectively. The states in the Gauss
points are computed by 1D-extrapolation of the inner nodal DOFs ûi j along the ξ1

or ξ2 direction, see Fig. 1. Together with the extrapolated states u+
±1, j+ and u+

i+,±1 of
the respective adjacent element the Riemann solver then computes the approximated
fluxes f±1, j and fi,±1 at the boundary, which are than used to calculate the boundary
integral of (3) by use of a Gauss quadrature. All fluxes are computed, of course, only
once for each edge and then added to both neighboring elements. Therefore, in our
implementation at the beginning of every time stage the two states at each edge of
the mesh are extrapolated from both sides of the edge. Later on they are then inserted
into the Riemann solver to compute the fluxes at the boundaries.

Remember that DG elements are only coupled by the fluxes at the faces. Therefore
a parallelization exchanges data only over the faces laying at the MPI borders. A short
summary of the main steps of our implementation including the parallelization with
MPI reads as follows:

Algorithm 1 (DG method)

1. For each element: Extrapolate the state u to the faces.
2. For each MPI face: Send extrapolated boundary state from master to slave.
3. For each element: Compute volume fluxes and the volume integral of (3).
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Fig. 2 DG reference element splitted into FV subcells − − − with Gauss points •, Gauss weights
ωi and locations of the inner � and the interface � boundary fluxes

4. For each face (excluding MPI faces on the master): Evaluate the fluxes.
5. For each MPI face: Send flux at the face back from slave to master.
6. For each element: Calculate the boundary integral of (3).

All these steps together calculate the time derivative of the DOFs

∂ûi j

∂t
= step 1 . . . 6 ∈i, j ∈elements. (5)

We integrate this derivative with an explicit Runge Kutta method in time.

3 Shock Capturing with Finite Volume Subcells

Numerical schemes of high order accuracy often have difficulties resolving shocks
without generating new extrema or oscillations in the solution. Often seen in the
region of the shock is a reduction of the polynomial degree to handle the problem
that polynomials of higher order can’t resolve discontinuities without oscillation. To
avoid a loss in resolution this is then combined with a local mesh refinement. In this
section we present a natural way of shock capturing by constructing a refinement
of the high order discontinuous Galerkin element into several internal finite volume
elements without introducing new degrees of freedom. The fixed number of DOFs
helps us to keep the method as simple as possible and to reach a high computational
performance in the actual implementation.

For a discontinuous Galerkin element of polynomial order N we use, as described
in Sect. 2, N +1 Gauss points for interpolation and integration in each space direction.
Each of the (N + 1)2 Gauss points {xi j }N

i, j=0 of the DG reference element in 2D
is used as a node of a finite volume subcell κi j . In the DG reference element E the
i j-th finite volume subcell has the size ωi ×ω j , where ωi , ω j are the Gauss weights
corresponding to the point xi j , see Fig. 2.
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We now formulate the finite volume method for the transformed conservation law
(2) on the reference element of the discontinuous Galerkin method E . Each subcell
κi j of E is now a control volume in the finite volume context and the corresponding
equation reads after applying the divergence theorem to the second integral as

∫

κi j

Jut dξ +
∫

∂κi j

F (u) · n dSξ = 0. (6)

Since we do not introduce new DOFs, every finite volume subcell κi j contains
exactly one Gauss point xi j of the discontinuous Galerkin discretization. We use this
Gauss point as “center” of the respective finite volume subcell and therefore take the
nodal value ûi j of the DG discretization (4) as the approximative value in the FV
subcell. With the volume ωiω j of the subcell κi j the volume integral of (6) becomes

∫

κi j

Jut dξ = ωiω j Ji j
∂ûi j

∂t
, (7)

where Ji j is the average of the Jacobian J in the i j-th subelement.
Because the state in a FV subcell is constant we can replace the boundary integral

of (6) by the midpoint rule point as

∫

∂κi j

F (u) · n dSξ =ω j

(
fi− 1

2 , j (u, u+, n) + fi+ 1
2 , j (u, u+, n)

)

+ ωi

(
fi, j− 1

2
(u, u+, n) + fi, j+ 1

2
(u, u+, n)

)
,

(8)

where fi− 1
2 , j (u, u+, n) denotes the flux at the left edge of the i j-th subcell and ωi

and ω j denote and the lengths of the edges. The numerical flux is computed by a
Riemann solver involving the state u+ of the neighboring subcells. In total the finite
volume method for the i j-th subcell reads after division by the volume ωiω j and the
Jacobian Ji j as

∂ûi j

∂t
= − 1

Ji jωi

(
fi− 1

2 , j (u, u+, n) + fi+ 1
2 , j (u, u+, n)

)

− 1

Ji jω j

(
fi, j− 1

2
(u, u+, n) + fi, j+ 1

2
(u, u+, n)

)
.

(9)

Therewith we have another expression than (5) for the time derivative of the DOFs
in one DG cell, which can be directly interchanged within a time step of the explicit
time integration. Since we use the same nodal DOFs for the DG and the FV method,
the approximation can be interpreted either as DG polynomial or as set of FV values
in every stage of the Runge Kutta method.

Comparing Fig. 1 with Fig. 2 it is clear that the fluxes f±1, j and fi,±1 at the faces
of the DG element are calculated in the same points as the fluxes f0− 1

2 , j , fN+ 1
2 , j ,
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fi,0− 1
2

and fi,N+ 1
2

of the FV subcells lying directly at the DG boundary (white
squares). In both cases the boundary fluxes are evaluated by a Riemann solver using
the master and the slave state at this face, irrespective of wether they are extrapolated
from a DG element or a FV subcell.

Computing the inner fluxes of the FV subcells (gray squares in Fig. 2) is compa-
rable to the volume integral of the DG method as an absolutely local operation, not
involving any data from neighboring elements. We modify the DG method (Algo-
rithm 1) to a coupled DG / FV subcell algorithm, where the new steps are italic
printed, as follows

Algorithm 2 (Modified steps of coupled DG / FV-subelement Method)

0. For each element: Indicator based switching between DG and FV.
3a. For each DG element: Compute volume fluxes and the volume integral of (3).
3b. For each FV element: Compute inner fluxes (gray squares) and divide by weights

ωi or ω j and Jacobian Ji j (cf. equation (9)).
6a. For each DG element: Calculate the boundary integral of (3).
6b. For each FV element: Divide fluxes at the DG boundaries (white squares) by

weight ωi or ω j and Jacobian Ji j (cf. equation (9)).

As we see there are only three main differences to the previously stated DG algorithm.
The first one is the change of the volume integral into multiple inner surface integrals
evaluated with Riemann solvers (step 3). Secondly the FV subcell method uses the
same fluxes at the outer boundaries as the DG method (step 6). A difference is that in
the DG method a boundary flux affects all DOFs in that considered cell, while in the
FV subcell method the subcell adjacent to the DG boundary is influenced only. The
third change is hidden in step 1. The extrapolation to the DG faces must be modified
for FV subcells. Of course, the algorithm must be also extended by an indicator (step
0), which decides where to use DG or FV.

Remark 1 (Block unstructured FV method) This DG method with the finite volume
subcell framework in every DG element may be interpreted also as blockwise finite
volume method on unstructured curved blocks It may be also interpreted as a hetero-
geneous domain decomposition appraoch with a weak coupling of the sub-domains.
Since the DOFs of both algorithms are the same, there is no difference in data formats
and a FV subcell solution can be directly compared to the DG solution. This gives
us also the ability to investigate the advantages and disadvantages of the discontin-
uous Galerkin method by comparison with the finite volume method on the same
mesh. Another useful application of the blockwise FV subcell method is also the
stabilization at the beginning of a computation when initializing with freestream.

Remark 2 (Higher order reconstruction) In this paper we only consider the refine-
ment of DG elements with FV subcells without using a higher order reconstruction
within the finite volume method to keep the derivation of the general method as sim-
ple as possible. Of course our implementation includes a FV reconstruction coupled
with different types of slope limiters.
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Fig. 3 Density of DMR on a grid with 480 × 120 DG elements for N = 4 at t = 0.2

Fig. 4 DMR: Refined cells (black) and density in DG cells

4 Numerical Examples

The double mach reflection sends a Mach 10 shock diagonally into a reflecting wall
and was originially introduced by Woodward and Colella [8]. This problem has been
widely used as a test case for high resolution schemes in the literature. With the MPI
parallelized version of our code we computed this example on 16 cores until the time
t = 0.2 with a polynomial degree of N = 4. In Fig. 3 one can see 30 equally spaced
contour lines from ρ = 1.5 to ρ = 22.9705; Fig. 4 shows the refined regions. For
this results we used a local Lax-Friedrichs Riemann solver and in the finite volume
subcells a second order reconstruction with the Sweby slope limiter (β = 1.4) [6].
The indicator which switches between DG and FV subcells was chosen as the famous
Persson indicator [4]. The shown results are in good agreement to the results of other
groups, for example Shi et al. [5].

The second example is the forward facing step, also described by Woodward
and Colella [8]. In Fig. 5 the density at time t = 4.0 is plotted. This example was
also computed on 16 cores by using the same Riemann solver and slope limiting as
above. In this case the polynomial degree of the DG solution is N = 6 and the grid
is equidistant with h = 1/50, in total 6300 DG cells. A detail view of the FFS briefly
compares, in Fig. 6, our method with a full finite volume scheme.
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Fig. 5 Grid and density of forward facing step at t = 4.0 with N = 6. Grid lines of FV subcells
let refined cells look like black squares

Fig. 6 Comparison of hybrid DG/FV subcell method (left) against full finite volume scheme

5 Conclusion

We have presented a shock-capturing strategy for discontinuous Galerkin schemes,
which uses a natural subcell decomposition and a total variation diminishing finite
volume method on the subcells. This procedure preserves the whole data structure
of the underlying DG scheme and can be used in an adaptive way in grid cells by a
simple switch. Our discontinuous Galerkin scheme was based on spectral elements
and used the same nodal DOFs for both numerical schemes. This approach may be
considered as a combination of a DG scheme with a finite volume scheme on an
h-refined grid. In smooth parts of the flow large grid cells are used and high order
of accuracy, which is very efficient on massively parallel systems, while in troubled
cells with strong gradients we switch to a total variation diminishing finite volume
solver on subcells. In this sense the DG approach may be considered as a general
framework of a heterogeneous domain decomposition.
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A Simple Well-Balanced, Non-negative and
Entropy-Satisfying Finite Volume Scheme
for the Shallow-Water System

Emmanuel Audusse, Christophe Chalons and Philippe Ung

Abstract This work considers the numerical approximation of the shallow-water
equations. In this context, one faces three important issues related to the well-
balanced, non-negativity and entropy-preserving properties, as well as the ability
to consider vacuum states. We propose a Godunov-type method based on the design
of a three-wave Approximate Riemann Solver (ARS) which satisfies all these prop-
erties together.

1 Introduction

In this work, we look for a numerical scheme for the shallow-water equations
given by:

⎧
⎪

⎨

∂t h + ∂x (hu) = 0,

∂t (hu) + ∂x

⎩

hu2 + gh2

2

)

= −gh∂x b(x),
(1)

where b(x) is a sufficiently smooth topography, g refers to the gravitational accel-
eration, and the water height h and the velocity u depend on time t and space x ; h
and u are the primitive variables and b is given. In addition, the associated entropy
inequality is written as:
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⎧
⎪

⎨

∂tU (w) + ∂xF (w) � −ghu∂x b,

U (w) = hu2

2
+ gh2

2
, F (w) =

⎩
u2

2
+ gh

)

hu,
(2)

where w = (h, hu)T ∨ R
+ × R. The scheme should preserve three important

properties that are satisfied by the exact solution of the shallow-water equations: the
non-negativity of water heights, a discrete entropy inequality, and the steady states
of the lake at rest defined by

hL + bL = h R + bR, and uL = u R = 0, (3)

where the indices L and R refer to the left and right states in the Riemann problem
detailed later. Furthermore, it should be able to handle vacuum, in particular, the
steady state of the wet-dry transition

hL + bL � bR, h R = 0, and uL = u R = 0, (4)

There is a huge amount of work about this topic but most of the schemes fail to
satisfy these three properties at once. Up to our knowledge, four methods [2, 4,
5, 10] are proved to fulfill the three requirements but they are costly in terms of
computing runtime and/or based on quite complex algorithms. In this work, we
propose a numerical scheme adapted to vacuum that endows the three properties and
that is very cheap and simple to implement. Numerical experiments are proposed to
compare the new method with some popular non-negative and well-balanced schemes
for which no fully discrete entropy property is proved [1, 3, 7, 8].

2 Numerical Scheme

In the following, we describe a Godunov-type finite volume scheme for (1) and (2).
Let us first introduce some notations. We consider a sequence of points xi+1/2 such
that

xi−1/2 < xi+1/2 , ∈i ∨ Z

and we define the cells Ci and space steps Δxi = Δx , such that

Ci = ]
xi−1/2, xi+1/2

[
, Δx = xi+1/2 − xi−1/2.

In addition, we set xi = (
xi−1/2 + xi+1/2

)
/2.

We also introduce a time step Δt > 0 that allows to define a sequence of inter-
mediate times tn by

tn+1 = tn + Δt.
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Starting from a given piecewise constant approximate solution at time tn , we
construct the solution at time tn+1 in two steps:

• we build an approximate solution of the Riemann problem at each interface xi+1/2,
• we obtain the new solution by calculating the average value of the juxtaposition

of these solutions in each cell Ci at time tn+1.

As an approximate Riemann solution associated with initial data

(w(x, 0), b̃(x)) =
{

(wL , bL) x < 0,

(wR, bR) x > 0,
(5)

we consider a simple approximate Riemann solver composed by three waves prop-
agating with velocities λL , λ0 = 0 and λR . Note that the most simple approximate
Riemann solvers contain two waves (as the well-known HLL flux [4, 9] but are not
able to preserve steady states. The choice of a three waves solver is then a compro-
mise between simplicity and accuracy that was also adopted in [2, 7, 8]. Note also
that the quantities bL and bR have to be related to the given bottom topography b(x)

to ensure the consistency with the source term in (1)

bL = 1

Δx

⎜ 0

−Δx
b(x)dx, bR = 1

Δx

⎜ Δx

0
b(x)dx,

From [7–9], it is known that such an approximate Riemann solver is consistent in
the integral sense with (1) provided that the intermediate states satisfy the following
consistency relations:

f (wR) − f (wL) − Δx s (Δx; wL , wR, bL , bR) = λL(w⊃
L − wL) + λR(wR − w⊃

R),

(6)
with f (w) = ( f h(w), f q(w))T = (hu, hu2 + gh2/2)T and s(Δx; wL , wR, bL , bR)

is defined as an approximation of the source term in (1), since it has to satisfy:

lim
wL , wR ⊂ w

Δx ⊂ 0

s (Δx; wL , wR, bL , bR) =
⎩

0
−gh∂x b

)

. (7)

Recall also that the scheme satisfies a discrete version of the entropy inequality (2)
provided that the following conditions on the intermediate states is fulfilled

F (wR) − F (wL) − Δxσν(Δx; wL , wR, bL , bR)

� λL(U (w⊃
L) − U (wL)) + λR(U (wR) − U (w⊃

R)), (8)

where σν (Δx; wL , wR, bL , bR) has to be defined such that
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lim
wL , wR ⊂ w

Δx ⊂ 0

σν (Δx; wL , wR, bL , bR) = −ghu∂x b. (9)

We refer again to [7–9] for more details and we recall that properties (7) and (9) are
in accordance with the fact that we consider only smooth topographies.

2.1 Expression of the Solution in the Intermediate States

We propose to define the two intermediate states by imposing the consistency rela-
tions in the integral sense resulting from the Eq. (1), see (6):

⎧
⎟⎟⎟⎟⎟⎪

⎟⎟⎟⎟⎟⎨

h Ru R − hLuL = λL
(
h⊃

L − hL
) + λR

(
h R − h⊃

R

)
,

(

h Ru2
R + gh2

R

2

)

−
(

hLu2
L + gh2

L

2

)

+ gΔx {h∂x b}

= λL
(
h⊃

Lu⊃
L − hLuL

) + λR
(
h Ru R − h⊃

Ru⊃
R

)
.

(10)

The definition of the approximation of the source term {h∂x b} will be related to the
well-balanced property and is given hereafter.

In order to close this system, two relations are missing and we suggest to impose
two relations across the standing waves

{
h⊃

L + bL = h⊃
R + bR,

h⊃
Lu⊃

L = h⊃
Ru⊃

R,
(11)

which are consistent with the steady states of the system (1).
By solving the Eqs. (10) and (11), we define the water heights in the intermediate

states

h⊃
L = hH L L + λR

λR − λL
Δb and h⊃

R = hH L L + λL

λR − λL
Δb, (12)

where Δb = bR − bL and

hH L L = λRh R − λL hL

λR − λL
− 1

λR − λL
(h Ru R − hLuL) (13)

is the intermediate water height associated to the HLL solver [4, 9].
Then, from the Eqs. (10) and (11), we deduce the intermediate discharge q⊃ :=

h⊃
Lu⊃

L = h⊃
Ru⊃

R ,

q⊃ = qH L L − g

λR − λL
Δx {h∂x b} , (14)
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with

qH L L = λRh Ru R − λL hLuL

λR − λL
−

(

h Ru2
R + gh2

R

2

)

−
(

hLu2
L + gh2

L

2

)

λR − λL
,

the intermediate discharge involved in the HLL scheme [4, 9]. From now on λL and
λR refer to the values that ensure the stability properties of the classical HLL scheme
(non-negativity of the water heights but also validity of an entropy inequality as we
will need later on). In practice, we apply the following expression from [4]

λL = min
w=wL ,wR

(u − √
gh, 0) and λR = max

w=wL ,wR
(u + √

gh, 0). (15)

2.2 Properties of the Scheme: Non-negativity, Well-Balancing
and Entropy

We first study the non-negativity of the water height. In regard to the expression of
the intermediate water heights (12), it is not possible to ensure the non-negativity
of these quantities. That is why, we suggest to modify these intermediate values
depending on the sign of Δb. In the case Δb � 0, we clearly have

h⊃
R � hH L L � h⊃

L .

In order to ensure the non-negativity of h⊃
R , we introduce a cut in its definition and

we modify the definition of h⊃
L in order to still fulfill the consistency relation (10)

h̃⊃
R = max

(
h⊃

R, 0
)

and h̃⊃
L = h⊃

L − λR

λL

⎛
h⊃

R − h̃⊃
R

⎝
. (16)

Note that the expression of the discharge q⊃ is unchanged and then consistency
relation (10) remains also valid.

In practice and in order to avoid threshold values near 0 for the wave velocities,
we will exclusively work with the quantities λRh̃⊃

R and λL h̃⊃
L ,

λRh̃⊃
R = max

(
λRh⊃

R, 0
)

and λL h̃⊃
L = λL h⊃

L − λR

⎛
h⊃

R − h̃⊃
R

⎝
. (17)

The case Δb < 0 can be treated by applying the same method.
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We now turn to the well-balancing property. Preserving the steady states of a lake
at rest in the context of the proposed simple Riemann solver is an easy task. We
introduce the following natural discretization of the source term

{h∂x b} = hL + h R

2Δx
Δb. (18)

Simple computations show that this discretization preserves the steady state of the
lake at rest (3).

Note that we can also preserve the lake at rest in the case of a wet-dry transition
(4) with a slight modification of the source term.

We now turn to the study of the entropy property. The scheme is entropy preserving
if it satisfies the discrete entropy inequality (8). Inspired by [2], we will in fact prove
a variant of this entropy inequality and prove that there exists some term ε(Δx) with
property

lim
Δx⊂0

ε(Δx) = 0. (19)

such that the following relation holds

F (wR) − F (wL) − Δxσν(Δx; wL , wR, bL , bR) + Δx ε(Δx)

� λL(U (w⊃
L) − U (wL)) + λR(U (wR) − U (w⊃

R)) (20)

Indeed this correction term does not affect the validity of the Lax-Wendroff theorem,
see [2]. Note that this correction term is not related to a modification of the proposed
scheme but to the fact that, with the proposed scheme, we can not prove the classical
entropy inequality (8).

We do not have the place to detail the proof of entropy inequality (20) here. We
just mention that it is based on the fact that our scheme can be seen as a modification
of the HLL solver for which a similar entropy inequality is known to be valid. Starting
from the relation satisfied by the HLL solver, some calculation lead to the desired
property with

σν (Δx; wL , wR, bL , bR) = −gh̄
qH L L

hH L L

Δb

Δx
, (21)

which is clearly consistent with (2). We do not give the precise form of the error term
ε(Δx) but we mention that it involves the jump of bottom topography Δb. It follows
that relation (19) is fulfilled only if the topography is at least continuous.

Finally we insist on the fact that, unlike [2], the main idea of the proposed
scheme focuses on the proofs of the non-negativity and entropy-preserving prop-
erties which are obtained for λL and λR defined exactly as in the HLL scheme, and
not defined asymptotically large according to specific behaviors like −λL/λR ∞ 1
or −λR/λL ∞ 1.
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Fig. 1 Fluvial flow: Comparison of orders of error for the water height h (left) and the discharge
q (right) for different schemes

3 Numerical Results

We are interested in the behaviour of our scheme for fluvial flow regime and the way
it handles the wet-dry transition. In this aim, we propose the well-known test case
of a flow over a bump in the fluvial regime and the Thacker test case for the wet-dry
transition.

In the following, we compare the L1-errors committed by the present scheme
with the results obtained by using the HLL flux with different adaptation to the
source term such as a centered discretization, the hydrostatic reconstruction [1] and
the hydrostatic upwind scheme [3], together with the scheme proposed by Gallice
[7, 8].

For the two test cases, the number of points goes from 100 to 1,600.
In the fluvial flow test case, the steady states are governed by the following

equations

hu = K1 and
u2

2
+ g(h + b) = K2. (22)

where K1 and K2 are two constants. Here we set K1 = 1 and K2 = 25. The domain
is reduced to the interval [−2; 2] and the bottom topography is defined by

⎧
⎪

⎨

b(x) = cos (10π(x + 1)) + 1

4
, if − 0.1 < x � 0.1,

0, elsewhere.

The initial datas correspond to this steady state.
The error curves (Fig. 1) emphasize the accuracy of the proposed scheme—called

simple solver on the figures. Indeed, it gives a better approximation of the exact
solution than other existing schemes with a gain of several orders.
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Fig. 2 Thacker test case: Comparison of orders of error for the water height h (left) and the discharge
q (right) for different schemes at time T = 16

The Thacker test case brings out the ability of the scheme to handle vacuum,
especially in the case of a wet-dry and dry-wet transition. The details of this test
case are given in [6]. We can wisely precise that in this test case, the discharges are
very low which can explain the large values of the relative errors one can observe
for coarse mesh (Fig. 2).

4 Conclusion

In this paper, we have proposed what is up to our knowledge, the first simple to
implement, non-negative, entropic and well-balanced scheme for the shallow water
equations. The scheme proved to be very accurate on several typical test cases.
The very motivation of this work comes from the numerical approximation of the
solutions of the Saint-Venant–Exner equations for the problem of sediment bedload
transport, to which we would like to adapt the proposed scheme therein. This is the
matter of a work currently in progress.
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Well-Balanced Inundation Modeling
for Shallow-Water Flows with Discontinuous
Galerkin Schemes

Stefan Vater and Jörn Behrens

Abstract Modeling coastal inundation for tsunami and storm surge hazard
mitigation is an important application of geoscientific numerical modeling. While
the complex topography demands for robust and locally accurate schemes, compu-
tational parallel efficiency and discrete conservation properties of the scheme are
required. In order to meet these requirements, Runge-Kutta discontinuous Galerkin
numerical methods are attractive. However, maintaining conservation and well-
balancedness of these schemes with wetting/drying boundary conditions poses a
challenge. We address this issue by a local nondestructive modification of the flux
computation at boundary cells, which maintains accuracy, conservation and well-
balancedness. The development can be viewed as a specialized flux limiter, which
proves its usefulness with three different test cases for inundation simulation.

1 Introduction

Coastal ocean modeling becomes a more and more important field in geoscientific
research, as recent natural disasters like the 2004 Indian Ocean Tsunami, the 2011
Japan Tsunami, or the 2013 Super-Taifun Haiyan hitting the Philippines demon-
strated. Therefore, planning for hazard mitigation and achieving early warning capac-
ity heavily relies on coastal modeling [3]. The requirements for such models pose
challenging demands on the numerical schemes used therein: while high compu-
tational efficiency is required, it is paramount that the schemes are robust to spa-
tially and temporally changing irregular boundary conditions and domain shapes
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(inundation). Additionally, since the equations used in such geoscientific applications
represent sensitive geophysical balances, the numerical schemes must adhere to the
conservation of quantities and the structure of the given problem.

In this study we propose a well-balanced inundation scheme for a Runge-Kutta
discontinuous Galerkin (DG) scheme solving the 1D shallow water equations with
bathymetry. This serves as a test bed for converging robust and conservative inunda-
tion schemes in more complex near realistic models (see e.g. [11]). The system of
equations is given by

Ut + F(U)x = S(U) , (1)

where the vector of unknowns is given by U = (h, hu)T . The quantity h = h(x, t)
denotes the water height of a uniform density water layer and u = u(x, t) is the
particle velocity. The flux function is defined by F(U) = (hu, hu2 + g

2 h2)T , where
g is the gravitational constant. Furthermore, the bathymetry or bottom topography
b = b(x) is represented by the source term S(U) = (0,−ghbx )

T .
The DG method is an attractive numerical scheme for wave and fluid dynamics

modeling due to its discrete conservation property, its potential high order of accuracy,
its parallel scalability, and not least its geometrical flexibility. However, while in finite
volume methods inundation modeling has reached some kind of maturity with the
introduction of hydrostatic reconstruction [1], it is still an ongoing research topic for
DG methods [4]. A common approach is to enforce a minimum water level globally
and define a threshold for the water elevation hmin below which a cell is declared dry
[5, 7]. Another approach is based on modifying the bathymetry to achieve a globally
wet simulation [13]. Our approach strives to maintain the bathymetry and only locally
corrects the sea surface height h in order to avoid unphysical behavior. Special care
needs to be taken in order to maintain conservation and well-balancedness of the
scheme.

2 Runge-Kutta Discontinuous Galerkin Method

We briefly introduce the numerical scheme with a focus on the wetting and drying
treatment. For a more complete presentations of Runge-Kutta DG methods the reader
is referred to e.g. [9, 12].

The governing equations are solved on the one-dimensional domain [xmin, xmax],
which is divided into intervals (cells) Ii = (xi−1/2, xi+1/2). On each interval, the
Eq. (1) are multiplied by a test function ϕ and integrated. Integration by parts of the
flux term leads to the weak DG formulation

∫

Ii

Utϕ dx −
∫

Ii

ϕx F(U) dx +
[
F∗(U)ϕ

]xi+1/2

xi−1/2
=

∫

Ii

S(U)ϕ dx .

A second integration by parts on the inner part of the interval leads to
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∫

Ii

Utϕ dx +
∫

Ii

F(U)xϕ dx +
[(

F∗(U) − F(U)
)
ϕ
]xi+1/2

xi−1/2
=

∫

Ii

S(U)ϕ dx , (2)

which is the so-called strong DG formulation and will be used throughout this paper.
Note that the interface flux F∗ is not defined in general, since the solution can have
different values in the adjacent cells. This problem is circumvented in the discretiza-
tion by using the (approximate) solution of the corresponding Riemann problem.

System (2) is discretized using a semi-discretization in space with a piecewise
polynomial ansatz for the discrete solution components and test functions. To obtain
second-order accuracy, we use piecewise linear functions, which are represented by
nodal Lagrange basis functions [12]. In view of a two-dimensional extension of the
scheme, n-point Gauß-Legendre quadrature is applied to obtain an (exact) discretiza-
tion of the integral terms. The remaining system of ordinary differential equations
is then solved using Heun’s method, which is the second-order representative of
a standard Runge-Kutta total-variation diminishing (TVD) scheme [10, 16]. Well-
balancing is achieved by using the same discretization for the inner cell pressure flux
term ghhx and source ghbx in the momentum equation. At the interfaces no prob-
lems occur, since a continuous representation is used for the bottom topography. For
stabilization and to avoid spurious oscillations near discontinuities a minmod slope
limiter is applied after each internal Runge-Kutta stage [8, 15] in the hydrostatic
variables (h + b, hu).

2.1 Inundation Algorithm

In the coastal zone, where the water inundates and recedes due to wave and tidal
activity, cells repeatedly become wet and dry. At the wet/dry interface, semi-dry
cells occur, which have to be approximated by piecewise smooth functions in a DG
discretization (see Fig. 1). This may introduce an artificial height gradient which
destroys the well-balancedness of the scheme.

In the present scheme, such semi-dry cells are further distinguished into two
subclasses (cf. [2, 5]). In the first case, the highest surface elevation within the cell
is attained in a wet node. This is the so-called dambreak-type, in which the element
may undergo a rapid wetting from above, and such cells are treated in the same
manner as fully wet cells. On the other hand, flooding-type cells, where the highest
surface elevation is attained in a dry node, are treated specially. Here, the (possibly
unphysical) surface elevation gradient, which enters the momentum balance, must
be neglected to ensure well-balancedness for nearly still-water states. Furthermore,
all tendencies, which occur in an originally dry node, are redistributed to the wet
node in order to obtain mass-conservation. In the current implementation a node is
considered dry if it has a fluid height smaller than 10−8. Since slope limiting might
conflict with the treatment in a flooding-type semi-dry cell, limiting is disabled in
such cells.
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Fig. 1 Discretization of a semi-dry cell using the discontinuous Galerkin scheme with piecewise
linear elements. Note the artificial height gradient introduced by the discretization

3 Numerical Results

We present three different test cases, which show the behavior of our scheme with
respect to wetting and drying and its well-balanced property. The first test case is
the classical “lake at rest” with an island in the middle of the domain. Additionally,
the model is validated for two transient test cases with wetting and drying, for which
the analytical solution is known. In all simulations the gravitational constant is set to
g = 9.81. Here and below we omit the dimensions of the physical quantities, which
should be thought in the standard SI system with m (meter), s (seconds) etc. as basic
units. The discrete initial conditions and the bottom topography are derived from the
analytical ones by interpolation at the nodal (cell interface) points.

3.1 Lake at Rest

This test is usually conducted to illustrate the effectiveness of the discrete balance
between the flux term and the source term due to bottom topography in the momen-
tum equation. However, it is not only crucial to maintain the exact balance, but
also to show that small perturbations do not lead to an unphysical behavior of the
numerical scheme. The test is conducted on the domain [0, 1] with periodic boundary
conditions. Given r = |x − 0.5|, the bottom topography is set to

b(x) = b̃(r) =
{

a · exp(−0.5/(r2
m−r2))

exp(−0.5/r2
m )

if r < rm,

0 otherwise,

where the parameters are given by a = 1.2 and rm = 0.4. The initial height is set to
h(x, 0) = min(0, 1−b(x)), such that the bathymetry forms an island in the middle of
the domain. In a first setup the initial momentum is set to (hu)(x, 0) ≡ 0. In a second
simulation it is perturbed by a random disturbance of the order 10−8. The domain is
discretized into 50 cells, and the timestep is set to 0.002. This corresponds to a CFL
number of 0.3. The solution is integrated over 10000 timesteps until tmax = 20.
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Fig. 2 Deviation of the surface elevation (left) and momentum (right) over time for the Lake at
rest test case measured in the L∞ norm. Test initialized with zero momentum field (top) and small
deviations in the momentum field of the order 10−8 (bottom)

In Fig. 2 the deviation of the surface elevation and momentum measured in the
L∞ norm is plotted over time. As one can see, in case of initial still water (first setup)
the deviations remain at machine accuracy. In the case of the perturbed initial state
deviations can be observed in both variables, but they gradually vanish over time.

3.2 Oscillatory Flow in a Parabolic Bowl

In this problem an oscillatory flow in a domain with parabolic bottom topography is
considered. The analytical solution to this numerically challenging test was originally
derived by Thacker [17] and has been applied to several schemes (e.g. [14, 19]).
The solution involves a periodical movement of the wet/dry interface at both sides
of the basin. On the domain [−5000, 5000] the bottom topography is defined by
b(x) = h0(x/a)2, where a = 3000 and h0 = 10 define the shape of the parabolic
basin. Note that the boundary conditions for the domain should not matter since the
boundary is in the dry part of the solution. An analytic solution of the water surface
is then given by

h(x, t) + b(x) = h0 − B2

4g
(1 + cos(2ωt)) − Bx

2a

√
8h0

g
cos ωt,

where we set ω = √
2gh0/a and B = 5. The initial momentum at t = 0 is set to zero

over the whole domain. The solution is discretized using 200 cells and a timestep
0.05, which corresponds to an approximate CFL number of 0.01.
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Fig. 3 Free surface elevation of an oscillatory flow in a parabolic bowl. Initial condition (top left),
Numerical (black) and exact solution (gray dashed) at times t = 1000, t = 2000, t = 3000

The simulation is executed until tmax = 3000, when the flow has oscillated a
bit more than two periods. The initial surface elevation and the numerical solution
compared to the analytical at times 1000, 2000, 3000 is shown in Fig. 3. Only small
deviations can be observed. The largest differences arise at the wet/dry interface,
where the numerical solution lags a bit behind. This behavior probably has to do
with the limiting within the wet domain. At the end of the simulation, the total
energy E = ∫

Ω
hu2/2 + gh(h/2 + b) has only decreased by 1.2 % of its initial

value. Furthermore, we note that a relatively small time step must be chosen to get
a stable solution in this case. These problems slightly degrade the efficiency of the
scheme and are currently being investigated.

3.3 Tsunami Runup onto a Sloping Beach

In a final test case the propagation of a tsunami wave onto a uniformly sloping beach
is simulated. This benchmark problem was originally defined in [18]. Besides the
slope of the beach the initial surface elevation and momentum with (hu)(x, 0) ≡
0 is given. The solution is sought on the domain [−500, 50000] and the bottom
topography is set to b(x) = 5000 − 0.1x . On the right boundary of the domain a
simple transparent boundary condition is implemented. However, the crucial task is
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Fig. 4 Tsunami runup onto a sloping beach. Initial surface elevation at t = 0 (top left), computed
height from 1D DG method (black) compared to analytical solution (gray dashed) at times t = 160
(top right), t = 175 (bottom left), t = 220 (bottom right)

to correctly simulate the inundation process on the interval [−200, 800]. The analytic
solution at times t = 160, 175 and 220 can be derived by the initial-value-problem
technique introduced in [6] and is given in [18].

In the presented simulation, the domain is discretized into 1010 cells and the
timestep is 0.05, which approximately corresponds to a CFL number of 0.22 at
the deepest point (right side) of the domain. The results compared to the analytical
solution are displayed in Fig. 4. Considering the relatively coarse discretization, the
inundation process is well approximated with the numerical scheme. Also in this
case, a small lag at the wet/dry interface can be observed.

4 Conclusion

We introduced an efficient treatment of semi-dry cells, which occur in the coastal area
at the wet/dry interface, in a DG inundation scheme of the shallow water equations. By
neglecting possibly unphysical surface gradients, and redistributing the tendencies of
the local quantities to the wet part of the cell, we obtain an efficient, stable and robust
inundation scheme in one space dimension. Furthermore, the method conserves mass
and is well-balanced for nearly still water states. This is demonstrated by the three
test cases shown in Sect. 3, which also illustrate the scheme’s ability for long term
integrations like in the parabolic bowl test case.

Since our method does not rely on specific one-dimensional features of the dis-
cretization, we expect to generalize the findings to our triangular two-dimensional
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near-realistic setting [4]. In this respect, the combination with discretizations of other
near-coast processes like friction and non-hydrostatic effects through proper exten-
sions of the shallow water equations will be also investigated.
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Comparison of Cell-Centered
and Staggered Pressure-Correction
Schemes for All-Mach Flows

Nicolas Therme and Chady Zaza

Abstract Defining a robust scheme for solving the compressible Euler equations
at all-Mach number is a challenging issue. We consider here an original pressure-
correction scheme which solves the internal energy using a specific corrective term,
ensuring the positivity of the internal energy and the global consistency of the scheme.
The scheme has already proved its effectiveness on several Riemann problems with
both staggered and cell-centered discretizations. We test here these two discretiza-
tions against the incompressible limit of the Euler equations.

1 Introduction

We address in this paper the compressible Euler equations written with the internal
energy as energy variable:

ηtφ + div(φu) = 0, (1a)

ηt (φu) + div(φu ∨ u) + ∇ p = 0, (1b)

ηt (φe) + div(φeu) + pdiv u = 0, (1c)

p = (∂ − 1)φe, (1d)

where t stands for the time ;φ, u, p and e are the density, velocity, pressure and internal
energy respectively, and ∂ > 1 is a coefficient specific to the fluid. The problem is
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defined over ν × (0, T ), where ν is an open bounded connected subset of R
d ,

1 ∈ d ∈ 3, and (0, T ) is a finite time interval.
Defining a robust scheme for the numerical solution of the compressible Euler

equations at all Mach number is a challenging issue. Indeed, in the zero Mach limit,
the pressure gradient has a singular limit and the acoustic time scale vanishes [1].
As a result approximate Riemann solvers face severe limitations, among which the
loss of accuracy of the pressure gradient approximation and the time step limitation.
Pressure-correction methods may be relevant for addressing this issue, in particular
because of their built-in stability properties.

While pressure-correction schemes were originally introduced for the incompress-
ible Navier-Stokes equations [3, 12] many extensions to compressible flows have
been attempted [4, 9]. In this work we compare two finite volume discretizations—
staggered and cell-centered—of an original pressure-correction scheme first intro-
duced in [8, 10].

The use of the internal energy as energy variable is motivated by our will to
control its positivity through the numerical scheme. The internal energy balance
must be discretized carefully in order to force the scheme to be consistent with
the total energy equation. Indeed, similarly to the continuous case, we obtain a
(discrete) kinetic energy equation from the (discrete) momentum balance and the
(discrete) mass balance in which there is a numerical diffusion term. This term must
be compensated in the discrete internal energy balance so that the sum of the internal
and kinetic energy equations yields the correct total energy equation.

2 Pressure Correction Scheme

We first introduce the pressure correction method in a semi-discrete time setting. Let
Ωt be a time discretization step. We define the discrete time tn = nΩt with t N = T
and N = ⊃T/Ωt⊂. The pressure-correction scheme reads:

• Solve for ũn+1:

1

Ωt

⎧
φn ũn+1 − φn−1ũn

⎪
+ div

⎧
φn ũn+1 ∨ un

⎪
+

⎨
φn

φn−1 ∇ pn = 0.

• Solve for pn+1, un+1, φn+1 and en+1 the non-linear system:

φn

Ωt

⎧
un+1 − ũn+1

⎪
+ ∇ pn+1 −

⎨
φn

φn−1 ∇ pn = 0,

1

Ωt

⎧
φn+1 − φn

⎪
+ div

⎧
φn+1un+1

⎪
= 0,
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1

Ωt

⎧
φn+1en+1 − φnen

⎪
+ div

⎧
φn+1en+1un+1

⎪
+ pn+1div

⎧
un+1

⎪
= 0,

pn+1 = (∂ − 1)φn+1en+1.

The first step is a classical semi-implicit discretization of the momentum balance
to obtain a predicted velocity. The second step is a non-linear pressure correction
step which combines the mass balance and the internal energy balance. This non-
linear coupling is important to ensure the positivity of the energy. It is solved using
Newton’s method.

3 Spatial Discretization

We suppose that the boundaries of the domain are sections of hyperplanes normal to
a coordinate axis. Let M be a decomposition of ν . The cells are either rectangles
(d = 2) or rectangular parallelepipeds (d = 3). By E and E (K ) we denote the set
of all (d − 1)-faces Σ of the mesh and of the element K ∞ M respectively. The
set of faces included in the boundary of ν is denoted by Eext and the set of internal
faces (i.e. E \ Eext) is denoted by Eint; a face Σ ∞ Eint separating the cells K and L
is denoted by Σ = K |L . The outward normal vector to a face Σ of K is denoted by
nK ,Σ . For K ∞ M and Σ ∞ E , we denote by |K | the measure of K and by |Σ | the
(d−1)-measure of the face Σ . For 1 ∈ i ∈ d, we denote by E (i) ≤ E and E (i)

ext ≤ Eext
the subset of the faces of E and Eext respectively which are perpendicular to the i th
unit vector of the canonical basis of Rd . The definition of the divergence operator is
similar in both the cell-centered and the staggered scheme. For (un

Σ )Σ∞E , we set:

for K ∞ M , (div u)n
K = 1

|K |
⎩

Σ∞E (K )

|Σ | un
K ,Σ , (2)

with un
K ,Σ = un

Σ · nK ,Σ the advecting velocity.

3.1 Cell-Centered Scheme

The unknowns are associated to the cells of the mesh M and are denoted by:

{φK , eK , pK , uK , K ∞ M } .

We first explain the initial discrete conditions: φ0, p0 and u0 are given; then we set
for K ∞ M and 1 ∈ i ∈ d:
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φ0
K = 1

|K |
∫

K
φ0(x) dx, e0

K = 1

|K |
∫

K
e0(x) dx, and u0

K ,i = 1

|K |
∫

K
(u0(x))i dx.

The fully discrete scheme then reads, for n = 0, 1, . . . , N − 1:

• Velocity prediction step:

|K |
dt

(φn
K ũn+1

K − φn−1
K un

K ) +
⎩

Σ∞E (K )

ũn+1
Σ Fn

K ,Σ +
⎨

φn
K

φn−1
K

|K |(∇ p)n
K = 0. (3)

• Projection step: solve the non-linear system

un+1
K = ũn+1

K − dt

φn
K

(

(∇ p)n+1
K −

⎨
φn

K

φn−1
K

(∇ p)n
K

)

, (4a)

|K |
dt

(φn+1
K − φn

K ) +
⎩

Σ∞E (K )

Fn+1
K ,Σ = 0, (4b)

|K |
dt

(φn+1
K en+1

K − φn
K en

K ) +
⎩

Σ∞E (K )

en+1
Σ Fn+1

K ,Σ + pn+1
K

⎩

Σ∞E (K )

|Σ |un+1
K ,Σ − Sn

K = 0,

(4c)

pn+1
K = (∂ − 1)φn+1

K en+1
K , (4d)

where ũn+1
Σ in (3) is a centered interpolation of the velocity, Fn+1

K ,Σ = |Σ |φn+1
Σ un+1

K ,Σ

is the mass flux and φn+1
Σ , en+1

Σ are upwind interpolations with respect to the sign
of un+1

K ,Σ and Fn+1
K ,Σ respectively. In the expression of the advecting velocity, we use

a centered interpolation of the velocity at the face Σ . In order to ensure the consis-
tency of the scheme, the pressure gradient is constructed by duality with the discrete
divergence of the velocity and reads:

(∇ p)n
K = 1

|K |
⎩

Σ∞E (K )

|Σ |pn
Σ nK ,Σ , (5)

with pn
Σ a centered interpolation of the pressure at face Σ .

The corrective term Sn
K is defined as:

Sn
K = |K |

2 dt
φn−1

K (ũn+1
K − un

K )2. (6)
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3.2 Staggered Scheme

The space discretization is staggered, using the Marker-And Cell (MAC) scheme.
The degrees of freedom for scalar variables are still associated to the cells of the
mesh, but the degrees of freedom for the i th component of the velocity are defined at
the center of the faces Σ ∞ E (i), so the whole set of discrete velocity unknowns reads:

{
uΣ,i , Σ ∞ E (i), 1 ∈ i ∈ d

}
.

We introduce dual meshes for each direction i centered on Σ ∞ E (i), which are used
for the finite volume approximation of the time derivative and convection terms in
the momentum balance. For Σ = K |L ∞ E (i), we build a dual cell DΣ made of
two half cells DK ,Σ and DL ,Σ included in K and L respectively. Each cell DK ,Σ

is a rectangle or a rectangular parallelepiped of basis Σ and of measure |K |/2. We
denote by |DΣ | the measure of DΣ and by Λ = DΣ |DΣ ∀ the face separating DΣ and
DΣ ∀ . We denote by Ẽ the set of dual faces, Ẽ (i)

int the internal faces in the direction i

and Ẽ (DΣ ) those belonging to DΣ .
We will only point out the major changes with respect to the cell-centered scheme.

Initial conditions for the velocity differ from the cell-centered scheme only for the
velocities, which are now defined on the dual cells:

∩Σ ∞ Eint, u0
Σ,i = 1

|DΣ |
∫

DΣ

(u0(x))i dx. (7)

The definition of the divergence operator is the same as before but the discrete
gradient is now defined on the dual mesh:

∩Σ = K |L ∞ Eint, (∇ p)n
Σ = |Σ |

|DΣ | (pL − pK )nK ,Σ . (8)

Equations for scalar variables have just minor changes. Unlike the cell-centered
discretization the convective fluxes un+1

K ,Σ are obtained without interpolation as the
velocity unknowns are defined on the edges. We still use an upwind interpolation for
φΣ and eΣ in (4b) and (4c) respectively. We need to rewrite the velocity updates (3)
and (4a) on the dual mesh, which read for all i ∞ [1, d], for all Σ ∞ E (i)

int :

|DΣ |
dt

(φn
DΣ

ũn+1
Σ,i − φn−1

DΣ
un

Σ,i ) +
⎩

Λ∞Ẽ (DΣ )

ũn+1
Λ,i Fn

Σ,Λ +
√
⎜
⎜
⎟

φn
DΣ

φn−1
DΣ

|DΣ |(∇ p)n
Σ = 0, (9)

un+1
Σ,i = ũn+1

Σ,i − dt

φn
DΣ

(

(∇ p)n+1
Σ −

⎨
φn

DΣ

φn−1
DΣ

(∇ p)n
Σ

)

. (10)
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The dual fluxes Fn
Σ,Λ and densities φDΣ

are defined such that we recover a discrete
mass balance over the dual cells. As we mentioned in the introduction this is crucial
for obtaining a discrete kinetic balance. The corrective term Sn

K in the internal energy
equation reads for all K ∞ M :

Sn
K =

d⎩

i=1

Sn
K ,i , with Sn

K ,i = 1

2
φn−1

K

⎩

Σ∞E (K )→E (i)

|DK ,Σ |
Ωt

(ũn+1
Σ,i − un

Σ,i )
2. (11)

4 Discrete Properties

Thanks to the upwind choice for the density in the mass balance both schemes
preserve the positivity of the density, see [6, Lemma 2.2] for further details. With
either discretization a kinetic energy balance can be derived from the momentum
prediction equation:

Proposition 1 (Discrete kinetic energy balance for the cell-centered discretization)
A solution to the cell-centered (resp. staggered) scheme satisfies (12) (resp. (13)):

|K |
2Ωt

[
φn

K (un+1
K )2 − φn−1

K (un
K )2

]
+ 1

2

⎩

Σ∞E (K )

ũn+1
K ũn+1

L Fn
K ,Σ ,

+ un+1
K ·

⎩

Σ∞E (K )

|Σ |pn+1
Σ nK ,Σ + Pn+1

K − Rn+1
K = 0. (12)

|DΣ |
2Ωt

[
φn

DΣ
(un+1

Σ,i )2 − φn−1
DΣ

(un
Σ,i )

2
]

+ 1

2

⎩

Λ∞Ẽ (DΣ )

ũn+1
Σ,i ũn+1

Σ ∀,i Fn+1
Σ,Λ

+ ũn+1
Σ,i |DΣ |(∇ pn+1)(i)Σ + Pn+1

Σ − Rn+1
Σ,i = 0, (13)

with the following source terms:

Rn+1
K = −|K |

2Ωt
φn−1

K (ũn+1
K − un

K )2, Rn+1
Σ,i = −|DΣ |

2Ωt
φn−1

DΣ
(ũn+1

Σ,i − un
Σ,i )

2,

Pn+1
K = Ωt

2

[
1

φn
K

⎧
(∇ p)n+1

K

⎪2 − 1

φn−1
K

⎛
(∇ p)n

K

⎝2

⎞

,

Pn+1
Σ = Ωt

2

|Σ |2
|DΣ |2

[
1

φn
DΣ

⎧
(∇ p)n+1

Σ

⎪2 − 1

φn−1
DΣ

⎛
(∇ p)n

Σ

⎝2

⎞

.

For both schemes, the corrective term Sn
K in the internal energy balance is intended

to compensate the terms Rn+1
K and Rn+1

Σ which tend to zero: hence the expression of
the corrective term SK given in (6) and (11). Note that SK is always positive, which
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ensures the positivity of the internal energy thanks to the following proposition proved
in [11].

Proposition 2 (Positivity of the internal energy) If ∩K ∞ M , en
K √ 0, Sn

K √ 0
and φK > 0 then ∩K ∞ M , en+1

K √ 0.

5 Numerical Results

The two discretizations are tested with a recent benchmark introduced in [2]. This
benchmark aims at testing numerical schemes for the compressible Euler equations
against their incompressible limit when the Mach number M tends to zero. It consists
in a Taylor vortex in a unit square cavity ν = [0, 1] × [0, 1]. The initial solution
verifies the incompressible Euler equations and reads in non-dimensional variables:

φ0(x) = 1, u0(x) =
⎠

sin(ξx) cos(ξy)

cos(ξx) sin(ξy))

⎢

, p0(x) = 1

∂ M2 + 1

4
(cos(2ξx) + cos(2ξy))

However, it does not lead to a steady flow with the compressible Euler equations, as
the homogeneous density induces variations of the entropy. The main idea is to study
the behaviour of the scheme at two scales: the macroscopic scale (slow variations
associated with time variable t) and the acoustic scale (fast variations associated with
time variable δ = t/M). Each flow variable is decomposed as X (x, δ, t) = X̄(x, t)+
ΩX (x, δ, t) with X̄(x, t) its time average over the acoustic scale and ΩX (x, δ, t)
the fast time fluctuations. The asymptotic expansion of the non-dimensional flow
variables with respect to the Mach number yields [2]:

p(x, t) = p0(x) + MΩP3(x, δ, 0) + M2(P̄4(x, t) + ΩP4(x, δ, t)) + o(M2),

φ(x, t) = φ0(x) + M2φ̄2(x, t) + M3Ωφ3(x, δ, 0) + M4(φ̄4(x, t) + Ωφ4(x, δ, t)) + o(M4).

The particular field chosen for initialization allows the derivation of an analytic
solution, well suited for spectral analysis. We focus on two terms of the asymp-
totic expansion: φ̄2, associated with the slow variations and P3 = ΩP3(x, δ, 0) +
M(P̄4(x, t) + ΩP4(x, δ, t)) associated with the fast variations. In practice these two
terms are computed as φ̄2 = (φ − φ0)/M2 and P3 = (p − p0)/M .

Our numerical simulations are carried out on a 400 × 400 grid with M = 0.1
and M = 0.01. We observe very similar results for both cell-centered and staggered
discretizations. At the macroscopic scale, the upwind diffusion damps the main
modes of the density, which looks smooth at T = 8.8 (Fig. 1). As for the term φ̄2,
the oscillations of the solution are completely damped after t = 4 (Fig. 2, left). The
Mach number does not appear to have any influence on this term. At the acoustic
scale, the fluctuations of the pressure P3 on the short time interval (0, 5) are also
close with both discretizations (Fig. 2, center). After t = 0.5, the amplitude of the
main mode of P3 (frequency f = ≥

10/2) is decreased by two orders of magnitude.
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Fig. 1 Density field for the staggered discretization at t = 0.5, t = 2, t = 4 and t = 8.8 for
M = 0.1. The density fields obtained with M = 0.01 and with the cell-centered discretization are
the same
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Fig. 2 Evolution of φ̄2 (left) at position (0.5, 0.05) and P3 (middle and right) at position
(0.66, 0.05) for M = 0.1

The results of this benchmark do not feature spurious pressure modes for the
cell-centered discretization as we might have expected. Indeed the internal energy
balance (4c) can be reformulated as a non-linear equation on the pressure using the
velocity update (4a) and the equation of state (4d):

M2

⎣
⎤

⎥

|K |
Ωt

(Pn+1
K − Pn

K ) +
⎩

Σ∞E (K )

|Σ |(Pn+1
Σ − (∂ − 1)Pn+1

K )

⎦
Ωt

2
(gn+1

K ,Σ + gn+1
L ,Σ ) · nK ,Σ

+ ũn+1
K ,Σ

]

− (∂ − 1)Sn
K

⎫
⎬

⎭
+

⎩

Σ∞E (K )

|Σ |
⎦

Ωt

2
(gn+1

K ,Σ + gn+1
L ,Σ ) · nK ,Σ + ũn+1

K ,Σ

]

= 0

with the change of variables P = p − 1/(∂ M2), Pn+1
Σ the upwind interpolation

with respect to Fn+1
K ,Σ and gn+1

K ,Σ = (φn−1
K φn

K )−1/2(∇ P)n
K − (φn

K )−1(∇ P)n+1
K for

the cell-centered discretization. In the zero Mach limit this equation degenerates
to the classical Poisson equation of the projection step of incremental pressure-
correction schemes for incompressible flows. For the cell-centered discretization the
resulting discrete Laplace operator introduces a decoupling between neighboring
pressure unknowns, which is not the case with the staggered discretization. We
managed to introduce spurious pressure modes for the cell-centered discretization
by adding artificially a Dirac to the right hand side of this pressure equation at t = 0.
However, these oscillations are quickly damped by the boundary conditions. We
expect sustained spurious pressure modes in the case of an open boundary.
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