Automatic Linear Robot Control Synthesis
Using Genetic Programming

Tiberiu S. Letia and Octavian Cuibus

Technical University of Cluj Napoca, Cluj Napoca, RO 400114, Romania
Tiberiu.Letia@aut.utcluj.ro, ocuibus@yahoo.com

Abstract. An automatic controller synthesis method for a single axe
linear robot is considered. The robot motions are modeled by a Delay
Time Petri Net (DTPN). The search refers to automatically finding a
controller modeled by a Time Petri Net (TPN) that fulfills some spec-
ified requirements. The controller model is synthesized using a Genetic
Programming (GP) method. The mapping between TPN model and the
tree representation of individual genotypes is performed using a formal
language named here TPNL (Time Petri Net based Language). This lan-
guage is suited for formal description of the controller behavior traits like
sequential, concurrent, selection, loop or input/output. The use of control
traits guaranties the construction of individuals that are capable and use-
ful to control the robot moves. To diminish the search durations, besides
the usual genetic operators like mutation, permutation and crossover, a
new atrophy operator was introduced.

Keywords: linear robot, control synthesis, genetic programming, Petri
nets, formal language, control traits.

1 Introduction

Robot control generally concerns path planning, decision making and motion
control, depending on the problems the applications solve. Robots are enhanced
with sensors to get the environment structure or to observe its behavior. Robots
have tasks to fulfill and they have to react to environment or other system par-
ticipant behaviors. Some applications use robots in a Flexible Manufacturing
System (FMS) that is capable to process parts performing different activities
according to their specified technologies. A FMS can process concurrently dif-
ferent parts involving different sequences of activities. Some types of parts could
be manufactured once, and others repeatedly. Flexibility means to change as
quickly as possible the scheduling and accept the processing of new parts involv-
ing other technologies; meantime the previous demands are not terminated. In
such applications, the robots react to the environment demands and changes.
The structure of the considered FMS composed of one single axe linear robot
(R) that moves parts to a set of machine tools (positioned in the places p1, pa,
ps and p4) performing different activities is represented in Fig. 1. The number of
places is reduced for presentation purposes. The job of the robot is to precisely

J.-H. Kim et al. (eds.), Robot Intelligence Technology and Applications 2, 601
Advances in Intelligent Systems and Computing 274,
DOI: 10.1007/978-3-319-05582-4 52, (© Springer International Publishing Switzerland 2014

602 T.S. Letia and O. Cuibus

set a part in the processing place and then the control system can start the
processing activity. Until an activity is finished, the robot can move other parts to
different places. The robot moves from one place to another could have different
durations depending on the distance it has to cover. The positioning of the robot
in front of a place or the demand for a new task can be signaled to the robot
control system. The robot obeys to left, right and halt control signals.

left halt right
- —»
R
Sy Sa Sa S.
‘J—I__I_I ITI
O
a) The linear robat and its signals b} The robot environment

Fig. 1. The application architecture

The controller (C) receives the demands to move parts from one place to
another and controls the robot moves taking into account the position signaled
by the plant (P).

The current research problem is to synthesize automatically the controller
behavior using the robot and plant model and some performance evaluations.

2 Related Works

The current application consisting of a single axe linear robot and some machine
tools is transformed into a Discrete Event System (DES). An automatic synthesis
control method for a kind of DES is based on bipartite directed graphs that
yield the feasible control trajectories and their corresponding states [1]. This is
combined with the supervisory synthesis.

The design of logic controllers for event-driven systems that relies on intuitive
methods leads to control codes that require extensive verification and are hard
to maintain and modify, and may even fail at times. Supervisory control theory
provides a formal approach to logic control synthesis. This is used to derive a
supervisor that enforces the specifications offering maximum flexibility [2].

2.1 DPetri Nets

Some methods of synthesis use Petri nets to prevent the entrance into forbidden
state and construct maximally permissive controllers [3].

Automatic Synthesis 603

More complex Petri nets models enhanced with time are introduced like Delay
Time Petri Nets (DTPNs) [4] or Time Petri Nets (TPNs) [5]. Reduction methods
are used to get more simple models and analysis methods based on reachability
serve to model behavior verification.

In the current research relative to the TPN the following semantics are
used. The TPN controller models are deterministic and fulfill the following
assumptions:

1. The TPN has no conflicts or free elections (see Figure 2).

2. If more than one timed transition is executable from the same marking, the
transition with the shortest delay is first chosen for execution;

3. If the TPN model has conflicts or free elections, the following semantics are
accepted: the order of transitions chosen for execution is given by their index;

4. The system works with reserved tokens. A transition that started the exe-
cution cannot be cancelled by another one with a shorter delay;

5. The places of the input and output interface sets (Po andPg in Figure 7)
are used exclusively only for input or output operations respectively.

6. The transitions correspond to actions and their executions have no durations.

o o TO P3 T2
T2
ez (%) |

conflict free election

Fig. 2. Conflict and free election TPN structures

2.2 Genetic Programming

The problem of automatic control of a robot model in an arbitrary two-
dimensional environment can be obtained based on behavior evolution with the
use of GP [6]. This allows different behaviors suited to the environment and
user requirements. One of the difficult problem of the GP is the uncontrolled
growth of the program size (i. e. bloat). This is usually directly linked to the
genotype dimension. Many methods to control the bloat are proposed [7]. An
efficient bloat control mechanism is based on examining each function node in
the programs. The nodes without contribution are removed before the creation
of offspring [8].

3 Robot and Plant Model

The control synthesis requires (is based on) the robot and the plant model. This
was constructed taking into account their specifications. The DTPN model is

604 T.S. Letia and O. Cuibus

presented in Figure 3. The delays are not represented to diminish the figure
complexity for the presentation and understanding purposes. There can be seen
the control signals left, halt or right and the sensor signals activated when the
robot reaches a place p1, p2,ps or ps. These places model and store the robot
position; meantime the upper part of Figure 3 describes the robot behavior when
it receives the control signals.

Two plant constructions can be used. One construction signals the reach of
each place separately, and another signals when any place is reached. From
another point of view, the plant states can be accessible or not. The two con-
structions involve different efforts for the control synthesis.

right r_d t1 stopped t2 I_d left

moveRight . I I . . moveleft
halt -‘v = h*

click signal

Fig. 3. The robot and the plant DTPN model

4 Control Synthesis

To get the controller behavior the GP was used [9]. The controller behavior
is modeled by a TPN. So, the controller solution is a GP individual. As has
been mentioned above, GP methods code the individual genotype using a tree
structure. The mapping between TPN model and its GP genome is performed
by TPNL.

GP operators, selected based on performance evaluation functions, act on
genotypes. The performance evaluations use the robot-plant model, the con-
troller TPN model and some parameters that increase the search speed.

Automatic Synthesis 605

: 2
P4
PE 4
18
PT :
P8 :
F'11:

Fig. 4. Example of a TPN

4.1 Time Petri Net Based Language (TPNL)

The role of TPNL is to transform TPN models into string expressions that can
be transformed later into the Lisp-S expressions required by the GP algorithms.
The transformation of the TPNL expressions into Lisp-S expressions can be
performed automatically by changing the operator positions. TPNL uses the
following operator symbols:

— ¥ for sequence,

— ’4 for selection,
— &’ for concurrency and
— ’# for the loop composition.

Considering the example in Figure 4, the following relations describe:

— t9 % t3 the sequence of t5 and t3,

— (ta xt3) # (t4 x t5) the loop of two sequences,

— (te * tg) + (t7 * tg) the selection between two sequences and

— ((t2 * t3)#(ta x 15))&((te * ts) + (t7 * tg)) the concurrent composition.

The sequence generated by the entire TPN can be described by the expression:

o =to* ((((ta * t3)#(ta * t5))&((te * ts) + (t7 * tg))))#(t11 * t12)) (1)

The timings (delays) are not represented in figure and not given in the previous
formula for simplification reasons.

TPNL can describe the relation between a controller and a plant. For the
model presented in Figure 5 containing a plant and its controller, the descriptions
using TPNL are:

606 T.S. Letia and O. Cuibus

[, [10,phi]

CONTROLLER

Fig. 5. Controller - plant example

Ocontroller = (tO [27 C] * 11 [Ta ¢D#t2 [103 (ﬂ (2)
Oplant = (t3 [C, (b} * 1y [(bv ’I“])#t5 [(ba (b} (3)

The first argument of the transition symbol ¢;[a, b] represents a (time) delay or
an event signaled by an input channel a. The second argument corresponds to
an event signaled by the current component through the output channel b. The
¢ symbol is used to specify an inexistent channel (i. e. the lack of an input event,
time or output event).

GP is used here to guide the search of the controller solution through a huge
space. TPNL can be used to perform the bijective mapping between genotypes
and individuals. For example, for the TPN controller model presented in Figure
5, the TPNL expression can be transformed into the following Lisp-S expression:

Ocontroller = #(*to [2a C}a tl [Ta ¢])a t2 [103 Qﬂ (4)

The tree representation of the above genotype is given in Figure 6. The TPNL
operators become nodes; meantime the transition arguments become leaves.

N
AYWAN
/A ./\

Fig. 6. The simple controller genotype tree representation

Automatic Synthesis 607

4.2 Controller Model Synthesis

Figure 7 depicts the general interfaces between the (robot and) plant and its
controller. In the general case of a discrete event system, the plant is modeled
by a DTPN and the controller by a TPN. The notations in the figure are:

— P¢ denotes the set of control places

— T¢ denotes the set of controlled transitions

— T denotes the set of reaction transitions and
— Pg the set of reactive places.

For the current problem they are:

— Te = {right, left, halt}
— Tr = {click}

Another application variant includes the robot position signals, too.

Controller
Pc Pr
Tc Tr
Plant

Fig. 7. Controller - plant (the robot is included too) interfaces

The synthesis problem refers to the conceiving of a TPN that has the interface
sets Po and Pr and that maximizes some given performance criteria for the given
plant model.

The analysis of the robot-plant model presented in Figure 3 shows that it is
a system that has memory. Many discrete event plants provide memory traits.
The construction of the plant-controller interfaces can be done to provide the
plant current state or not. The current research focuses on the following types
of controllers.

First type controller (FTC) uses an interface that provides the plant internal
state. This leads to a controller that receives a demand, reacts accordingly and
does not (need to) store the plant final state to be able to perform the next
request.

Second type controller (STC) does not use an interface that provides the plant
internal state, but it is enhanced with a structure that models the plant state.
STC is started simultaneously with the plant having specified the plant initial
value. STC receives a demand and at the end of fulfilling the requirement, the
controller has to store the plant observed state for use in the next demands.

608 T.S. Letia and O. Cuibus

Third type controller (TTC) does not have any information about the plant
structure and its initial state value. TTC has to be constructed such that it
maintains the plant state information and gets the plant initial state. TTC re-
ceives demands, performs their requirements and stores the plant state for future
use.

The GP algorithm involves the following activities:

the random creation of the initial population

the individual evaluations

the random individual selection for reproduction

the creation of the offspring using randomly genetic operators (mutation,
crossover and permutation)

5. the selection of the solution (the individual that won the competition)

Ll e

Steps 2-4 are executed until a stopping criterion is fulfilled.

The three GP operators act on the genotype trees. The crossover uses two se-
lected individuals (parents), it chooses in each parent a subtree and interchanges
them.

Figure 8 shows the TPN models of two selected parents. The TPNL descrip-
tions are:

Parent 1 PN model Parent 2 PN model

Fig. 8. T'wo parents PN models

o1 = (tz&t3)#t5 (5)
oy = (t1 * ((te * t7) + (ts * to)))#t10 (6)
Transforming the TPNL descriptions into Lisp expressions gives:

O1Lisp = #(&ta, t3), 15 (7)

Oarisp = #(xt1, (+(xtg, t7), (¥ts, t9))), tio (8)

It is supposed the random crossover chooses the subtree ¢t from Parent 1 and
the subtree (+(xtg, t7), (xts,t9)) from Parent 2 for spring construction. Figure 9
represents the two parent trees and the selected subtrees for crossover.

Automatic Synthesis 609

AN
N

Fig. 9. Parent trees and crossover marking

Performing the crossover, the children described by o3 and o4 are obtained:

o3Lisp = #(&(+(xts, t7), (¥ts, t9)), t3), 5 9)
O4Lisp = FF(*t1,12), t10 (10)

o3 = (((tg * t7) + (tg * tg))&t3)#t5 (11)
o4 = (t1 * ta)#t1o (12)

The children trees are given in Figure 10 and their TPN models in Figure 11.

#
o &
& ts " to
/N
p// \h t 12
/N
/\ /N
ts bty o
Fig. 10. Crossover resulted children trees
The mutation genetic operator acts on a node changing the TPNL operator,

or on a leaf changing the input channel, the delay duration or the output channel.
The TPN model presented in Figure 12 is chosen to show the operator mutation.

610 T.S. Letia and O. Cuibus

[21] t1 P1 t2 P2

Child 1 PN model Child 2 PN model

Fig. 11. Children PN models

Fig. 12. PN model for operator mutation

The TPNL description of TPN model chosen for operator mutation is:
o=ty % ((t3 x t1)&((t5 * tg) + (t7 * t3)))
The transformation into Lisp expression provides:

OLisp = *(¥t1, (&(*t3,14), (+(xt5,t6), (*t7,18))))

(13)

(14)

The corresponding tree is drawn in Figure 13. The node ’&’ was chosen ran-

domly to be replaced with the operator #.
The Lisp expression of the mutated individual model is:

OnewLisp = *(*tlv (#(*ti’n t4)7 (+(*t57 tﬁ)’ (*t77 tS))))

The mutated individual model can be transformed into:

Onew = t1 % ((t3 * t4)#((ts * te) + (t7 x tg)))

Figure 14 presents the TPN model obtained after operator mutation.

(15)

(16)

Automatic Synthesis 611

N
SN/
AVAN

Fig. 13. The tree representation for operator mutation

3 i:] t4
PT L

PO P14 6 t5 Pa

=8l

P&

8 : L&

Fig. 14. PN model of operator mutation result

r

ol

[r1.phi] £ [r1,phi]

[phic1]

PO 2 P4

t4 [_[5,ph]

L

Fig. 15. PN model of leaf mutation

Figure 15 presents a TPN model that has to suffer mutations on transition
arguments. The TPNL description and Lisp expression are:

o = (t1[r1, @] * ta[r1, @] * t3], c1])#ta[5, 9] (17)

OLisp = #(*(*tl [Tl, ¢], t2 [Tla ¢D’ t3 [¢a ClD’ t4 [5’ (rb] (18)

612 T.S. Letia and O. Cuibus

ri
ol

(r1,phi] [3,phi] [phict]

PO P4

[5,phi]

Bl

Fig.17. PN model of argument mutation result

The mutation of the first argument of transition ¢ is supposed to change the
input channel r; into a 3 time units delay. That is described by:

OnewLisp — #(*(*tl [Tla Qﬂ’ to [3’ (,25]), t3 [¢a Cl])a t4[5’ (rb] (19)
Onew = (t1[r1, @] x t2[3, @] * t3[¢, c1])##t4[5, ¢] (20)

The mutation is represented on the tree in Figure 16. The result obtained after
first argument mutation of the transition ¢, is drawn in Figure 17. Similar results
are obtained if the mutation genetic operator acts on the second arguments, but
in this case the control signal channel is changed.

The permutation changes within the same individual one node to another
node or one leaf to another leaf. The TPN model used to apply the permutation
is the Child 1 in Figure 11. It is supposed that the permutation interchanges the
operators &’ and '+’ that leads to the o5 expressions and consequently the tree
presented in Figure 18.

OsLisp = #(+(&(*te, t7), (*ts, t9)), t3), t5 (21)

o5 = ((tﬁ * t7)&(t8 * tg)) + t3)#t5 (22)

Automatic Synthesis 613

N
NG

& £ ts

m/ *
YA

Fig. 18. Permutation representation on the tree

Fig. 19. Resulted PN model after permutation

After the permutation, the TPN model in Figure 19 is obtained.

The pure random creation of an individual could lead to many individuals
that will not survive (aborted being useless) due to the fact that they do not
have at least the compulsory control traits. For this reason some control traits
are conceived and they have specified probabilities to be used for initial individ-
ual creation or by mutation operator during the reproduction phase. These are
introduced in the so called trait pool.

In the current research the used trait pool is presented in Table 1. There t;
represents transitions and o;(i = 1,2) correspond to sequences of transitions.
Different probabilities are assigned for trait use depending on the used model of
the plant.

4.3 Controller Behavior Evaluation

According to GP the fitness function plays an important role for the individ-
ual selection and this guides indirectly the search for the desired solution. The
evaluation is achieved using the concurrent simulation of the (robot plus) plant

614 T.S. Letia and O. Cuibus

Table 1. Trait pool

Trait Coding Probability
input tila, @] 12
output ti[o, b] 12
input-output ti[a, b] 12
loop o1#02 10
concurrency 01&o2 10
selection o1+ o2 10
memory (ti[r, s] x t; [, o)) #(tll, s] * tr[d, 4]) 10
read (state 0) 1[0, e3] * ta[ro, ¢] 5

and controller models. In the current case, the controller receives a specified test
sequence (demands) containing the demanded movements.
An example of a demanded sequence used for controller evaluation is:

demand = b3 [Oa ¢] *P1 [5a ¢] * P2 [43 Qﬂ * p4[3a Qﬂ *P1 [Ga ¢] * D3 [4a ¢] *
b2 [23 Qﬂ *P1 [33 Qﬂ * p4[0> ¢] *P1 [7a ¢] * p3[4a Qﬂ * P2 [33 Qﬂ *P3 [3’ ¢] (23)

The durations of demands should be chosen such that the robot can perform
them under right controller supervision.
Two criteria can be used for individual evaluations:

— individual behavior evaluation
e robot reaches or not the demanded state in a specified duration
e number of transitions executed by plant or controller to reach the desti-
nations (i. e. the time to fulfill a demand)
e robustness relative to plant reaction delays
e controller reaction delays
— individual structure evaluation
e number of transitions
e number of channels used for the interfaces plant-controller or plant-
supervisor
e number of parallel threads of execution for controller implementation
e number of loops etc.

In the current research they are expressed using the following formulas:
Criterion; = a1 -target Reached — as-transition Executed — as - duration (24)

where:

— targetReached means that when the controller signals the end event, the
plant reached the target,

— transitionExecuted counts how many transitions were executed to reach the
target,

— duration counts the time (clock tic) from the start until the end signal of
each demand

Automatic Synthesis 615

Criteriony = —ay -transitionNo — as - channel No — ag - threadNo — a7 - loopN o
(25)
where:

transitionNo represents the number of transitions used for individual con-
struction,

— channelNo corresponds to the number of channels used by the controller,
threadNo counts the number of threads and

loopNo counts the number of loops.

— 4,1 =1,...,7 are weight coefficients.

4.4 Increasing the Search Speed

The search guiding can be achieved using mono or multi-objective functions.
These are used for the individual selection. On the other hand, the probabilities
of individual selection for applying the genetic operators also influence the search
directions and speeds. Different probabilities can be assigned to perform the
individual initial construction or modifications during the evolution.

In the case of GP, it can be assigned probabilities for operator selections and
constraints for the number of the operators of specified types that are accepted in
any individual during the construction of the initial population or the mutation
operation.

The two criteria proposed to guide the solution search are used for individual
selection, but the constrained numbers of the GP operators are involved too.

Besides the usual GP operators a new operator called atrophy was introduced
due to the fact that during the individual evaluations some transitions are not
used. The atrophy operator is applied (unlike the usual GP operators) after
the individual selection and it has the role to remove from the individual the
transitions that are not involved in any behavior demand. This removal further
affects the individual genotype.

To avoid the unlimited increase of an individual (that leads to bloat) and the
excessive use of some TPNL operators besides the choosing probabilities, some
constraints have been assigned as can be seen in Table 2. On the other hand,
GP operators can have different selection probabilities depending on the criterion
used for individual selection as presented in Table 3. The tests were performed
for a population of 2000 individuals and 300 generations. Table 4 contains the
parameter values of the evaluation criteria. Their value can increase or decrease
the search speed too.

5 Tests and Results

The controller synthesis involves the construction of the environment and the
individuals, followed by the phenotype evaluations.

The environment was obtained by the implementation of the robot DTPN
model. This requires two matrices with dimensions equal to the number of places

616 T.S. Letia and O. Cuibus
Table 2. Operator probabilities and constraints

Operator Probablity Constraint

* 40 50
+ 20 20
& 5 50
10 10

Table 3. Genetic operator numbers used for the different criteria on a population of
2000 individuals

Criterion Mutation Crossover Permutation
Criterioni 285 850 150
Criterions 190 450 75

and the number of transitions. Two delay vectors were used, one with the di-
mensions equal to the number of transitions and the other equal to the number
of places.

The individual constructions were achieved by the implementation of the TPN
models that require two matrices with dimensions equal to the number of places
and the number of transitions (like for the DTPN model) and a delay vector
with the dimension equal to the number of transitions.

The phenotype evaluation was performed in simultaneous simulation of the
environment, individuals and their interactions.

Two separate tests were performed on a personal computer with a 2.6GHz
dual core processor:

1. The considered plant has an additional structure that can output the ex-
act state of the plant (i. e. the robot position). The read command is
denoted c3. The generated controller has 49 transitions and is made up
of traits and individual transitions, connected with operators. The perfor-
mance function evaluates the behavior of the (plant + controller) system
in 16 different scenarios (the plant is in state i, the command is to go to
state j, i,j=1..4). The solution is generated in 300 generations and it took
around 9.5 hours to run. The resulted Lisp-S expression of the solution is
(F(F (R (t1,r5,e3) (£2,0,¢1)) (+(+(+(t3,r0,e3) (*(t4,1,¢3) (t5,r2,fi))
(6.11,8)) (+(£7,1.e3) (88.10,8)))) (£(*(£9.16,¢3) (10, 1,3)) (+ (+(*(*((*
(t11,r0,£i)(t12,0,c0))(*(t13,1,e3)(t14,r1,f1)))(t15,0,c2))(t16,r1,fi))
(*(*(*(617,r2,6i) (£18,0,¢1)) (*(t19,2,¢3) (£20,r1,f1))) (t21,0,c2))) (* (* (* (*

Table 4. The value of the coefficients of the evaluation functions

Coeficient a1 as as a4 as ag ar
Value 350 80 10 20 10 10 10

Automatic Synthesis 617

(t22,r3,f1)(t23,0,c1)) (*(t24,1,¢3)(t25,r2,fi))) (*(t26,1,c¢3) (£27,r1,fi)))

(628,0,2))))) (*(*(629,r7,e3)(£30,1,e3)) (4 (+(+(*(*(*(*(£31,10,f)
(t32,0,c0))(*(£33,1,¢3) (t34,r1,fi))) (*(t35,1,c3) (t36,r2,f))) (t37,0,c2))
(FC*(*(t38,r1,f1)(t39,0,c0)) (*(t40,1,c3)(t41,r2,f1))) (t42,0,c2))) (t43,r1,1i))
(4 (5 (5 (644,13,6) (£45,0,01)) (+(£46,1,63) (t47.12,65))) (£48,0,62))))) (149,0,c0))

2. The plant is without the additional structure, the controller is forced to
track the state of the plant. Using this strategy, no result was generated in
300 generations. However, if we add the additional structure (memory) to
the trait pool (such as to let the GP algorithm include it in the controller),
the generated solution contains 39 transitions and is generated in 12 hours
running time. Here, P1,..., P4 represent the places where the state of the
plant is being stored (these places have been given as input channels for the
rest of the controller). The best solution is
(F(F(F(*(t1,emd1,f) (4 (+(+(t2,P1,stop) (*(t3,P2,left) (t4,P1,stop)))
(*(*(t5,P3,left) (t6,P2,6)) (t7,P1,stop))) (¥ (* (*(t8,P4,left) (t9,P3,fi)) (t10,P2 fi))
(t11,P1,stop)))) (*(t12,cmd2,fi) (+(+(+(*(t13,P1,right) (t14,P2,stop))
(£15,P2,stop)) (*(t16,P3,left) (t17,P2,stop))) (* (* (£18,P4,left) (£19,P3 fi))

(t20,P2,stop))))) (*(t21,cmd3,fi) (+ (4 (+(*(*(t22,P1,right) (t23,P2,fi))

(t24,P3,stop)) (*(t25,P2,right) (t26,P3,stop))) (t27,P3,stop)) (*(+28,P4,left)

(t,P3,stop))))) (*(t29,emd4,fi) (+(+(4+(*(*(*(t30,P1,right) (t31,P2,fi)) (t32,P3,fi))

(t33,P4,stop)) (*(*(t34,P2,right) (t35,P3,1i)) (t36,P4,stop))) (*(t37,P3,right)

(t38,P4,stop))) (t39,P4,stop))))

6 Conclusions

The newly introduced control traits diminish significantly the solution search
duration. A control designer usually knows the main traits of the expected con-
troller. But the probabilities of the trait appearances are unknown. These are
problem dependent.

The proposed method leads to a TPN that is equivalent to a set of intercon-
nected state machines which can be easily programmed. The obtained controller
can be implemented using a single or multi threading execution.

The TPN solution can be easily implemented on a FPGA (Field Pro-
grammable Gate Array) or on a micro-controller using their programmable lan-
guages. The execution durations of the corresponding programs are very short
relative to the robot temporal behavior, so it can be stated that a real-time
controller has been obtained.

The proposed synthesis method can be successfully applied to any discrete
event system. The controller designer should focus its efforts on specifying the
controlled part of the application and the control performance evaluation, instead
of finding a control algorithm that fulfills the specification.

References

1. Kapkovic, F.: Automatic control synthesis for agents and their cooperation in MAS.
Computing and Informatics 29, 1045-1071 (2010)

618 T.S. Letia and O. Cuibus

2. Chandra, V., Zhongdong, H., Kumar, R.: Automated control synthesis for an assem-
bly line using discrete event system control theory. IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews 33(2), 284-289 (2003)

3. Dideban, A., Alla, R.: Controller synthesis by Petri nets modeling. In: Proc. of
the 3rd International Workshop on Verification and Evaluation of Computers and
Communication Systems (2010)

4. Juan, E.Y.T., Tsai, J.P., Murata, T., Zhou, Y.: Reduction methods for real-time
systems using delay time Petri nets. IEEE Transactions on Software and Engineer-
ing 27(5), 422-448 (2001)

5. Wang, J., Deng, Y., Xu, G.: Reachability Analysis of Real-Time Systems Using
Time Petri Nets. IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics 30(5), 725-736 (2000)

6. Paic-Antunovic, L., Jakobovic, D.: Evolution of automatic robot control with genetic
programming. In: Proceedings of the 35th International Convention MIPRO, pp.
817-822 (2012) ISBN: 978-1-4673-2577-6

7. Alfaro-Cid, E., Merelo, J.J., Fernndez de Vega, F., Esparcia-Alczar, A.l., Sharman,
K.: Bloat Control Operators and Diversity in Genetic Programming: A Comparative
Study. Evolutionary Computing 18(2), 305-320 (2010)

8. Song, A., Chen, D., Zhang, M.: Bloat control in genetic programming by evaluating
contribution nodes. In: GECCO 2009: Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 1893-1894 (2009)

9. Letia, T.S., Hulea, M., Cuibus, O.: Controller synthesis method for discrete event
systems. In: IEEE International Conference on Automation Quality and Testing
Robotics (AQTR), pp. 85-90 (2012), doi:10.1109/AQTR.2012.6237680

	Automatic Linear Robot Control Synthesis
Using Genetic Programming
	1 Introduction
	2 Related Works
	2.1 Petri Nets
	2.2 Genetic Programming

	3 Robot and Plant Model
	4 Control Synthesis
	4.1 Time Petri Net Based Language (TPNL)
	–
	–
	–
	–
	–
	–
	–
	–
	4.2 Controller Model Synthesis
	–
	–
	–
	–
	–
	–
	4.3 Controller Behavior Evaluation
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	4.4 Increasing the Search Speed

	5 Tests and Results
	6 Conclusions
	References

