
Frabjous: A Declarative Domain-Specific
Language for Agent-Based Modeling�

Ivan Vendrov, Christopher Dutchyn, and Nathaniel D. Osgood

University of Saskatchewan
firstname.lastname@usask.ca

Abstract. Agent-based modeling (ABM) is a powerful tool for the study
of complex systems; but agent-based models are notoriously difficult to
create, modify, and reason about, especially in contrast to system dy-
namics models. We argue that these difficulties are strongly related to
the choice of specification language, and that they can be mitigated by
using functional reactive programming (FRP), a paradigm for describing
dynamic systems. We describe Frabjous, a new language for agent-based
modeling based on FRP, and discuss its software engineering benefits
and their broader implications for language choice in ABM.

Keywords: functional reactive, functional programming, simulation,
dynamic model, domain-specific language, agent-based simulation, agent-
based modeling.

1 Introduction

For systems that evolve continuously in space and time, the language of differen-
tial equations—honed by centuries of application to the physical sciences—has
no substitute. Its syntax is extremely terse, with precise mathematical semantics
that permit sophisticated analysis.

There are, however, a number of processes that are difficult to express with
differential equations, such as those involving networks, history dependence, or
heterogenous populations[8, 11]. The need to model these processes is addressed
by agent-based modeling (ABM), a more general approach which involves spec-
ifying the behavior of individuals and allowing the global dynamics to emerge
from their interactions.

This generality comes with a number of costs. With existing tools and frame-
works, agent-based models are significantly harder to create, extend, and under-
stand; and significantly more expensive to calibrate and run relative to models
based on systems of differential equations [11, 12].

Although the increased cognitive and computational costs of agent-based
models are to some degree unavoidable due to their increased complexity and
generality, we argue that these costs have been greatly compounded by the
use of imperative object-oriented languages such as Java and C++ to express
� This work was funded in part by an NSERC Undergraduate Student Research Award.

W.G. Kennedy, N. Agarwal, and S.J. Yang (Eds.): SBP 2014, LNCS 8393, pp. 385–392, 2014.
© Springer International Publishing Switzerland 2014

386 I. Vendrov, C. Dutchyn, and N.D. Osgood

model logic. As used in modern ABM frameworks, these languages force mod-
elers and users to think at a low level of abstraction, and fail to cleanly sepa-
rate domain-level structure from implementation details such as input/output,
the time-stepping mechanism, and the data structures used, which obscures the
essential model logic [11].

On the other hand, the underlying language of ODE models is not imperative
but declarative: rather than describing rules by which model variables change,
differential equations specify relationships between model variables that hold at
all times. We believe that the declarative nature of ODE models accounts for
much of their success by simplifying model creation, modification, and analysis.
It then stands to reason that ABM could be similarly simplified by basing it
on an appropriate declarative language. To support this hypothesis, we devel-
oped Frabjous, a new declarative language for ABM. In this paper, we describe
Frabjous and demonstrate its benefits on a standard example model.

2 Background

In this section, we briefly describe the existing languages and technologies we
employ to create Frabjous, as well as explain why we chose them.

2.1 Haskell

Haskell is a purely functional programming language; that is to say, a Haskell
program is a list of equations, each defining a value or a function.

Since Haskell lacks a mechanism for changing the value of a variable, it comes
very close to the declarative ideal - specifying what things are, not how they
change - and reaps the associated benefits: Haskell programs are often an order of
magnitude shorter than programs written in imperative languages, are clearer to
read, and are much easier to analyze mathematically. For these reasons, Haskell
is the base language of Frabjous: Frabjous code is largely composed of segments
of Haskell code, and compiles directly to Haskell.

2.2 Functional Reactive Programming

An apparent weakness of Haskell is the difficulty of representing systems that
vary with time, since there is no mechanism for changing state. As pioneered
by Elliott and Hudak, functional reactive programming (FRP) is a paradigm
that augments functional programming with time-varying values as well as a
set of primitive operations on these values [4]. Arrowized functional reactive
programming (AFRP) is a version of FRP that shifts the focus onto functions
between time-varying values, called signal functions[9].

The simplest AFRP operator is constant, which defines a constant signal
function. So the output of the signal function constant 1 is 1 at all times, and
for all inputs. Integration over time can also be viewed as a signal function, since
it operates on a function of time and produces a function of time. So

Frabjous: A Declarative Domain-Specific Language 387

integral . constant 1

is a signal function that ignores its input and outputs the current time (‘.’ is
the Haskell function composition operator).

Following the Netwire version of AFRP[14], we allow signal functions to some-
times not produce values. For example, rate is a signal function that takes a
time-varying number and produces a value at a rate specified by that number,
so rate . constant 2 produces twice (on average) in a given time unit. This
allows us to model, for example, the Poisson process:

poisson lambda = count (rate . constant lambda)

where count is an operator that counts the number of instants that its argument
produces a value, and lambda is the rate parameter of the Poisson process.

Another common signal operator is after, which starts producing values after
a given delay. Two signal functions can be combined in parallel using the <|>
operator, which acts like its left hand side when it produces, and like its right
hand side otherwise, so

constant 1 . after 3 <|> constant 0

is a signal function that produces 0 for the first three time units, then 1 forever.
We base Frabjous on FRP because its declarative nature provides the clarity

and concision associated with declarative modeling [10, 11]. The utility of FRP
as a specification language for complex systems has been demonstrated in a
number of domains, including graphics [4], robotics [5], and games[3].

2.3 Frabjous

The generality of FRP comes at a cost, however. Understanding the syntax used
in existing FRP libraries such as Netwire or Yampa [3] requires familiarity with
advanced functional programming concepts such as monads [15] and arrows [6].
While these concepts allow for a great deal of conceptual elegance and generality,
a domain-specific language that packages those portions relevant to ABM is
desirable.

To explore this, the original version of Frabjous[13] realized concision and
clarity compared to the popular AnyLogic framework. However, it placed severe
restrictions on agent behavior and network structure. In this paper, we com-
pletely redesign Frabjous to yield a language that is still concise and readable,
but is general enough to describe, in principle, any agent-based model.

3 The Frabjous Modeling Language

At the top level, a Frabjous model consists of a set of populations evolving in
time. Each population is a dynamic collection of agents. Each agent comprises
a set of time-varying values (such as income, age, or educational level) called
attributes. Agents can be added to and removed from populations by processes

388 I. Vendrov, C. Dutchyn, and N.D. Osgood

such as birth, death, and migration. Any pair of populations can be linked to-
gether by a network, which represents relationships between agents.

Time-varying values are not specified in Frabjous directly, but implicitly by
means of signal functions (introduced in 2.2). In particular, the dynamics of an
agent attribute are specified by a signal function whose input is the entire agent.

Normally one defines signal functions by combining simpler functions with
one of the provided operators. For example, we might define the attribute age of
an agent as the amount of time elapsed since the agent was added to the model:

age = integral . constant 1

But how would we declare an attribute isAdult, which should be False during
the first 18 years of the agent’s life, and True from the 18th birthday on? This
is a special case of a functional dependency between signal function, which is
declared by appending (t) to all signal functions in the declaration:

isAdult(t) = age(t) ≥ 18

which makes explicit the signal functions’ dependence on time.

4 An Extended Example: The SIR Model

In this section, we use Frabjous to implement an adaptation of the classic Sus-
ceptible, Infectious, Recovered (SIR) model of the spread of infectious disease,
then extend it in a number of directions. Our purpose is to give examples of
the clarity, concision, and flexibility of Frabjous models, paving the road for a
deeper discussion in Section 5.

Our basic agent type is called Person, with an attribute for the agent’s current
infection state. In Frabjous we declare this as follows:

data State = Susceptible | Infectious | Recovered
agent Person { infectionState :: State}

where data is a Haskell keyword that creates a new type with a given set of named
values, similar to C++ or Java enum, agent declares a new agent type with the
given name and list of attributes, and :: means “is of type”. We also declare, for
convenience, a boolean-valued helper function that determines whether a given
Person is currently infectious:

infectious person = (get infectionState person) == Infectious

To capture the structured character of human contact patterns, we introduce
a neighbor relation between people: a network which has an edge between two
people if they come into contact on a regular basis. We do this by amending the
agent declaration for Person:

agent Person { infectionState :: State,
neighbors :: Vector Person}

where Vector is a standard Haskell collection, similar to a C++ vector - so each
person has a reference to a collection of other people in the population. Now the
core dynamics of the model can be specified by defining infectionState:

Frabjous: A Declarative Domain-Specific Language 389

infectionState = hold . repeatedly transition
where

transition person =
case (get infectionState person) of

Susceptible → constant Infectious . rate .
infectionRate

Infectious → constant Recovered . rate .
constant recovery_rate

Recovered → never
infectionRate = per_contact_rate ∗ numContacts

numContacts(t) = count infectious neighbours(t)

The interesting part here is the transition function, which selects (using Haskell’s
case statement, an analogue to C++ or Java switch) between three possible
evolution paths depending on the current state of the person.

A Susceptible person becomes Infectious with a rate determined by mul-
tiplying its count of infected neighbours by per_contact_rate. An Infectious
person will recover at a constant rate of recovery_rate, and if the current state
is Recovered, the person’s infectionState will never change.

Finally, the first line defines the overall behavior of infectionState: an evolu-
tion path is repeatedly selected using the transition function, holding the most
recently produced value (the value of the last transition taken). Both hold and
repeatedly are FRP operators in the Frabjous standard library.

4.1 Adding Time-Varying Infectiousness

An implicit assumption of the SIR model is that all Infectious people are equally
infectious at all times. In ODE models, relaxing this assumption and allowing
infectiousness to vary over time has been shown to yield a more accurate model
for the spread of diseases such as HIV[7]; how can we relax it in Frabjous?

The first step is to add a new attribute, infectiousness, to Person:
agent Person { ... , infectiousness :: Double}

Then we specify infectiousness after infection as an explicit function of time,
perhaps linearly decreasing over three days:

after_infection t = if t < 3 then 1 - t/3 else 0

then convert it to a time-varying value with the Frabjous operator timeFunction,
which yields the following definition:

infectiousness = trigger (edge infectious)
(timeFunction after_infection)

where edge is an FRP operator that only produces a value at the instant that its
argument becomes True, and trigger produces nothing until its first argument
(the “trigger”) produces a value, then acts as dictated by its second argument.
In this case, infectiousness will stay at its initial value (presumably 0) until the
agent first becomes infectious, at which point it will behave like after_infection
- jumping to 1, then declining back to 0.

390 I. Vendrov, C. Dutchyn, and N.D. Osgood

Finally, we change the calculation of infectionRate to be the sum of the
infectiousness values of the person’s neighbors:

infectionRate(t) = sumBy (get infectiousness) neighbors(t)

4.2 Adding Dynamic Networks

So far we have not bound the neighbors attribute to any value. In fact, if all we
want is a static network, we need not specify it at all, since a Frabjous model
only describes change, not initial state. But we often do want the network to
vary with time, whether randomly or in response to local changes in the agents.

We cannot specify the dynamics of a network by binding neighbors to a time-
varying value as we would with any other attribute, since agents need to agree on
network structure. Instead, we recognize that dynamic networks involve global
interactions between agents, and specify them at global scope. For example,
suppose we want neighbors to describe a random, dynamic network where each
link has a 30% probability of existing at any point in time. We start by attaching
an explicit name, people, to a population of Persons:

population people of Person

and declare the network as follows:
network people neighbours by randomLinks (const 0.3)

where randomLinks is a Frabjous standard library operator that creates dynamic
networks by connecting two agents with a given probability. Using the standard
Haskell const function gives equal weights to all pairs; a different function could
be used to implement preferential mixing.

Networks can also be described between two different populations, which al-
lows the specification of hierarchical models (e.g. persons within neighborhoods
within cities within countries).

4.3 Usage

The Frabjous compiler currently generates, for every model, a single Haskell
function that takes four arguments—the initial state (all the agent populations),
the timestep, the amount of time for which to run the model, and a function that
specifies the desired output (e.g. all the agent states, or the percent of agents
currently infected)—and returns an array of the desired outputs.

5 Discussion

As a language for ABM, Frabjous is distinguished by two key properties: the
high-level constructs it provides to hide the computational details of common
ABM mechanisms (state-charts, event queues, functional dependencies), and the
language’s declarative nature. These properties provide a number of important
benefits, which we discuss below:

Frabjous: A Declarative Domain-Specific Language 391

Concision. The use of a high-level language allows models to be expressed
more concisely, as can be seen from the example implementation of a fairly
sophisticated SIR model in only 14 lines of code. The program reads like an
executable specification, going to the heart of the unique, defining characteristics
of the model rather than low-level implementation details.

This offers a major benefit for scientific communication. One of the great
challenges of conducting research with agent-based models is that they are hard
to communicate in a fully transparent and reproducible way. By contrast, models
written in Frabjous are sufficiently short and free of boilerplate that many of
them can be feasibly provided in complete form within papers introducing them.

Clarity. The key benefit of Frabjous’ declarative nature is that models are ex-
pressed directly in terms of processes rather than as sequences of imperative state
changes. Since Frabjous models are composed of equations linking processes, the
dynamic hypotheses made about the world are laid clear.

Correctness. The encapsulation of common ABM mechanisms together with
greater code clarity both help reduce the risk of error during model creation.
Concision and clarity together lead to fewer places where bugs can arise, and
make it easier to perceive the essential governing logic of the model, which eases
developing confidence in a model’s correctness. Contrast this to an approach
which interleaves the model logic with implementation and visualization details,
where the low-level code must be understood in order to gauge correctness.

Flexibility. Modeling is typically undertaken for the purpose of discovery,
which means that the model will frequently evolve in unexpected directions.
The flexibility of Frabjous means there is less inertia when adding features or
changing directions. For example, adding time-varying infectiousness, a drastic
change of one of the core SIR mechanics, required only 4 lines of additional code.

This flexibility is largely due to the modularity enforced by a declarative
specification: all the code that can modify a particular agent attribute must
appear in the attribute definition, easing the identification of code that needs to
change and minimizing unintended side effects from modification.

6 Future Work

The primary area for future work is to make Frabjous a more complete frame-
work, with the normal features and conveniences modelers expect, including
support for collection of statistics over agent populations, parameter calibration
and sensitivity analysis, and graphical visualization of model outputs.

This will make it Frabjous a useful language, at least for the purposes of
pedagogy and communication; it will also pave the way for a direct quantitative
and qualitative comparison to existing ABM frameworks.

To make Frabjous an industrial-strength ABM framework, performance is-
sues must also be addressed. The declarative nature of the language provides
many opportunities for optimization and parallelization. In particular, we are
exploring the possibility of leveraging Data Parallel Haskell[1] as well as GPU
acceleration[2] to speed up the execution of Frabjous models.

392 I. Vendrov, C. Dutchyn, and N.D. Osgood

References

[1] Chakaravarty, M.M., Leschinskiy, R., Peyton-Jones, S., Keller, G., Marlow, S.:
Data parallel Haskell: a status report. In: Workshop on Declarative Aspects of
Multicore Programming, pp. 10–18. ACM Press (January 2007)

[2] Chakravarty, M.M., Keller, G., Lee, S., McDonell, T.L., Grover, V.: Accelerating
Haskell array codes with multicore GPUs. In: Sixth Workshop on Declarative As-
pects of Multicore Programming, DAMP 2011, pp. 3–14. ACM, New York (2011)

[3] Courtney, A., Nilsson, H., Peterson, J.: The yampa arcade. In: 2003 ACM SIG-
PLAN Workshop on Haskell, Haskell 2003, pp. 7–18. ACM, New York (2003)

[4] Elliott, C., Hudak, P.: Functional reactive animation. In: International Conference
on Functional Programming, pp. 263–273 (1997)

[5] Hudak, P., Courtney, A., Nilsson, H., Peterson, J.: Arrows, robots, and func-
tional reactive programming. In: Jeuring, J., Jones, S.L.P. (eds.) AFP 2002. LNCS,
vol. 2638, pp. 159–187. Springer, Heidelberg (2003)

[6] Hughes, J.: Generalising monads to arrows. Science of Computer Programming 37,
67–111 (2000)

[7] Jacquez, J.A., Simon, C.P., Koopman, J., Sattenspiel, L., Perry, T.: Modeling
and analyzing HIV transmission: the effect of contact patterns. Mathematical
Biosciences 92(2), 119–199 (1988)

[8] Keeling, M.: The implications of network structure for epidemic dynamics. Theo-
retical Population Biology 67(1), 1–8 (2005)

[9] Nilsson, H., Courtney, A., Peterson, J.: Functional reactive progamming, contin-
ued. In: 2002 ACM SIGPLAN Workshop on Haskell, pp. 51–64 (2002)

[10] Osgood, N.: Systems dynamics and agent-based approaches: Clarifying the ter-
minology and tradeoffs. In: First International Congress of Business Dynamics
(2006)

[11] Osgood, N.: Using traditional and agent based toolsets for system dynamics:
Present tradeoffs and future evolution. In: 2007 International Conference on Sys-
tem Dynamics (2007)

[12] Rahmandad, H., Sterman, J.: Heterogeneity and network structure in the dynam-
ics of contagion: Comparing agent-based and differential equation models. In: 2004
International Conference on System Dynamics (2004)

[13] Schneider, O., Dutchyn, C., Osgood, N.: Towards frabjous: a two-level system
for functional reactive agent-based epidemic simulation. In: 2nd ACM SIGHIT
International Health Informatics Symposium, IHI 2012, pp. 785–790. ACM, New
York (2012)

[14] Soeylemez, E.: Netwire (2012) (accessed August 29, 2013)
[15] Wadler, P.: Monads for functional programming. In: Jeuring, J., Meijer, E. (eds.)

AFP 1995. LNCS, vol. 925, pp. 24–52. Springer, Heidelberg (1995)

	Frabjous: A Declarative Domain-Specific Language for Agent-Based Modeling
	Introduction
	Background
	Haskell
	Functional Reactive Programming
	Frabjous

	The Frabjous Modeling Language
	An Extended Example: The SIR Model
	Adding Time-Varying Infectiousness
	Adding Dynamic Networks
	Usage

	Discussion
	Future Work

