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Abstract. The ability to learn network structure characteristics and disease dy-
namic parameters improves the predictive power of epidemic models, the un-
derstanding of disease propagation processes and the development of efficient 
curing and vaccination policies. This paper presents a parameter estimation me-
thod that learns network characteristics and disease dynamics from our esti-
mated infection curve. We apply the method to data collected during the 2009 
H1N1 epidemic and show that the best-fit model, among a family of graphs, 
admits a scale-free network. This finding implies that random vaccination alone 
will not efficiently halt the spread of influenza, and instead vaccination and 
contact-reduction programs should exploit the special network structure.   
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1 Introduction 

Many diseases spread through human populations via contact between infective indi-
viduals (those carrying the disease) and susceptible individuals (those who do not 
have the disease yet, but can catch it) [1]. These contacts form a social network, along 
which disease is transmitted. Therefore, it has long been recognized that the structure 
of social networks plays an important role in understanding and analyzing the dynam-
ics of disease propagation [2]. In this paper, we present an algorithm to estimate the 
structure of the underlying social network and the dynamics of an infectious disease. 
Better understanding the social network and transmission parameters will help public 
officials devise better strategies to prevent the spread of disease. 

Many previous studies of disease propagation assume that populations are “fully 
mixed,” meaning that an infective individual is equally likely to spread the disease to 
any other susceptible member of the population to which he belongs [3]. In the same 
line of work, Larson et al. enriched the aforementioned models by incorporating dif-
ferent types of agents [4]. In these works, the assumption of “full mixing” allows one 
to generate nonlinear differential equations to approximate the number of infective 
individuals as a function of time, from which the behavior of the epidemic can be 
studied.  However, this assumption is clearly unrealistic, since most individuals have 
contact with only a small fraction of the total population in the real world.  
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Building on this insight, a number of authors have pursued theoretical work consi-
dering network implications. These models replace the “fully mixed” assumption of 
differential equation-based models with a population in which contacts are defined by 
a social network [2, 5-9]. Nonetheless, to the best of our knowledge, there hasn’t been 
work on inferring network structure characteristics from epidemics data.   

Another strand of work employed large-scale experiments to map real networks by 
using various sources of data such as email address books, censuses, surveys, and com-
mercial databases. However, this often requires extensive amount of time and resources 
collecting, manipulating, and combining multiple data sources to capture large size 
networks and estimate connections within those networks [10-12, 24, 25]. In this work, 
we use much lower dimensional data, temporal infection data, to infer the network cha-
racteristics assuming the network follows scale-free or small-world model.  

The contribution of our paper is twofold. Firstly, we develop a method to extract the 
network structure from the observed infection data. Specifically, our approach assumes 
a parameterized network model and disease process parameters to simulate expected 
infection curve. Then, the algorithm greedily searches for the parameter values that will 
generate an expected infection curve that best fits the estimated real infection curve. We 
demonstrate that our suggested algorithm, assuming a scale-free network, closely esti-
mates the network characteristics and disease dynamic parameters for the 2009 H1N1 
influenza pandemic. Our results confirm that the network-based model performs better 
in estimating the propagation dynamics for an infectious disease compared to the  
differential equation-based models with the “fully mixed” assumption. 

Secondly, given this finding we shed light on designing efficient control policies: 
For example, due to high asymmetry in degree distribution for scale-free graphs, de-
gree vaccination will be superior to random vaccination in stopping the spread of 
disease.  

The outline of the paper is as follows. In Section 2 we introduce the disease spread 
model and the proposed estimation algorithm. In Section 3 we evaluate the perfor-
mance of the algorithm and suggest efficient control policies to mitigate the disease 
spread. In Section 4 we provide our conclusions. 

2 Methods 

In this section, we describe a discrete-time stochastic multi-agent SIR model, and 
propose a corresponding inference algorithm to fit the disease dynamics generated by 
the model to real H1N1 infection data. The inference algorithm learns the social net-
work structure and key disease spread parameters, such as the rate of infection and the 
rate of recovery, for a given infectious disease. This enables us to make useful predic-
tions about the contact network structure and disease propagation for similar types of 
diseases and allows us to devise appropriate control strategies. 

2.1 Data 

We obtained data from state health departments, including the weekly percentage of all 
hospitalizations and outpatient visits resulting from influenza-like illness (%ILI) over 
the 2009-2010 flu seasons [14, 15]. Each point on the %ILI temporal curve represents 
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the percentage of the total number of hospitalizations and outpatient visits that are spe-
cific to H1N1. We also obtained total estimated cases of H1N1 and total estimated 
H1N1 related hospitalizations from the Center for Disease Control [15]. Using these 
data, we estimated the number of H1N1 infections for each week as follows: 

Assuming that the flu wave first grows then declines after the peak of the infection 
while the number of non-H1N1 hospitalizations remains relatively stable, we estimate 
the number of non-H1N1 hospitalizations. Finally, the above allow us to estimate the 
number of H1N1 related hospitalizations during each period.  

Given the number of H1N1 related hospitalizations during each period and the total 
estimated cases of H1N1, we can estimate the number of H1N1 infections at each 
period, assuming that the number of H1N1 infections are proportional to the number 
of H1N1 related hospitalizations [4]. (Refer to the Epidemic curve estimation section 
of [4] for more details.)  

We used the estimation method described above to estimate the infection curve for 
the state of Massachusetts, in which the estimated true infection curve includes the 
effects of vaccines as administered. Figure 1 shows the estimated temporal infection 
curve and the temporal curve of vaccines as administered [17].   

 

 

Fig. 1. The infection curve estimated from %ILI data and the number of vaccines administered 
during the observation period (October, 2009 – December, 2009) for Massachusetts 

2.2 Disease Process 

We employ a variation of susceptible-infective-removed (SIR) model first proposed 
by Kermack and McKendrick [13]. Individuals in the network, represented by nodes, 
are assigned one of the three states: the susceptible state (S) in which individuals are 
not infected but could become infected, the infective state (I) in which individuals are 
currently carrying the disease and can spread the disease to susceptible individuals 
upon contact, and the recovered state (R) in which individuals have either recovered 
from the disease and have immunity or have died. Edges connecting nodes in the 
network indicate contacts between individuals – contacts may occur through conver-
sation between friends, co-workers, family members, etc. Alternatively, contacts can 
also occur between two strangers passing by chance. When a contact occurs between 
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an infective individual and a susceptible individual, the susceptible will become infec-
tive with probability β. Each infective individual recovers from the disease and be-
comes immune with probability δ after a period of time, a week in our case. 

There exists a population of individuals,V connected by a graph G ൌ ሺV, Eሻ. We 
define ௜ܺሺݐሻ א ሼS, I, Rሽ to be the state of individual i א V at time t. And let η௜ሺݐሻ ൌ∑ ॴሺ௝\௜ሻאா ௝ܺሺݐሻ ൌ  where ॴ is the indicator function, denote the number of infected ,ܫ
neighbors the individual i has at time t. Then given that the individual i is susceptible 
at time t, he will become infected at time t+1 with the following probability:                                Զሺ ௜ܺሺݐ ൅ 1ሻ ൌ |ܫ ௜ܺሺݐሻ ൌ Sሻ ൌ 1 െ ሺ1 െ βሻ஗೔ሺ௧ሻ (1) 

since with probability ሺ1 െ βሻ஗೔ሺ௧ሻ all infection attempts fail. Given that the individu-
al i is infected at time t, he will recover at time t+1 with the probability: 

 Զሺ ௜ܺሺݐ ൅ 1ሻ ൌ ܴ| ௜ܺሺݐሻ ൌ Iሻ ൌ δ.  (2) 

We assumed independence in infection attempts between neighbors. We also assume 
that if a susceptible individual is vaccinated, then he or she will immediately become 
immune to the disease and the individual’s state will change to recovered state. Given 
a network and set of initial infections, the disease propagation process can be  
simulated according to the described probabilities.  

2.3 Estimation Algorithm 

The estimation algorithm uses the disease process described above to simulate infec-
tions. The simulated results are compared to the real H1N1 infection data, and we 
optimize over the network and disease spread parameters to obtain a best-fit simulated 
curve. The purpose of the algorithm is to find network characteristics, such as degree 
distribution, and disease spread parameters, β and δ that will help us make useful 
predictions about the network and how the disease spreads within the community. 

Many real-world social networks such as citation networks, internet and router to-
pologies, sexual contact networks are expected to exhibit small-world or scale-free 
properties [9-12, 18-20]. We tested both small-world and scale-free networks in our 
algorithm for the contact network. 

Input 
The inputs to the algorithm include: 
─ A parameterized disease spread network structure, where nodes represent people 

and undirected edges represent contacts between people. In our simulations, the 
network structure is assumed to be either scale-free or small-world, though the 
algorithm could be applied to other network structures. 

─ Initial values of the network parameters, the average degree, ݇଴ and, for the 
small-world network structure, ݌଴, the probability of a long-range contact.  

─ Initial values of the disease process parameters β଴ and δ଴. 
─ Real temporal infection data to fit the model generated infection dynamics. 
─ Data on vaccines administered (if administered).  
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Output 
─ The algorithm outputs a simulated expected infection curve, which fits the real 

data as closely as possible, and the network and infection parameters used to 
generate the expected infection curve. 

 
Procedure 
Begin with the given initial values of the social network and disease spread parame-
ters: ݇଴, ݌଴, β଴ and δ଴. Let ∆݇, ∆݌, ∆β and ∆δ be the amounts by which ݇, ݌, β 
and δ are changed at each step in the optimization. Let ê௜  and e௜  each denote the 
number of infections for the real infection curve and the estimated expected infection 
curve at time i, respectively. We define the error, E, between the simulated expected 
infection curve and the true infection curve as:  

 E ൌ ∑ |ê௜ െ e௜|୫ୟ୶. ௣௘௥௜௢ௗ௜ୀଵ  (3) 

Repeat the following steps until the error can no longer be reduced by changes to the 
parameters (we define the optimal output parameters as ݇כ݌ ,כ, βכ and δכ):    

1. Given ݇଴, ݌଴, β଴ and δ଴, search in all possible directions to find a direction that 
improves Е. That is, evaluate E at all possible combinations of ݇, ݌, β and δ, 
where ݇ א ሼ݇଴, ݇଴ ൅ ∆݇, ݇଴ െ ∆݇ሽ ݌ , א ሼ݌଴, ଴݌ ൅ ,݌∆ ଴݌ െ ሽ݌∆ ,  β א ሼβ଴, β଴ ൅∆β, β଴ െ ∆βሽ and δ א ሼδ଴, δ଴ ൅ ∆δ, δ଴ െ ∆δሽ. Evaluate E by doing the following 
for each set of parameters: 

(a) Generate the network according to the given network type (small-world or 
scale-free) and network characteristics (݇, the average degree for a scale-free net-
work; ݇, the average degree and, ݌, the short-cut probability for a small-world 
network). 

(b) Simulate ʀ realizations of the disease process. For each realization, initialize 
the disease simulation infection by assigning ூܰ nodes to the infected states, where ூܰ is the number of people infected at the beginning of the observation period in 
the data. We assume that the initial infected nodes are selected uniformly at ran-
dom from among all the nodes.1 Update the disease states for each time period, ac-
cording to the disease process parameters and the vaccine administration data (We 
assume that those who receive vaccines at each time period are chosen uniformly 
at random). 
(c) Generate an expected infection curve by averaging the number of infected indi-

viduals at each time period over the ʀ realizations of the disease process.  
(d) Calculate E. 

2. Determine which search direction resulted in the minimum error. Update ݇଴, ݌଴, β଴ and δ଴ to the values of ݇, ݌, β and δ that achieved the lowest sum of residuals. 
The algorithm is summarized as a flow chart in Figure 2.  

 
 
 

                                                           
1 Commonly used assumption in epidemic simulation. [25] 
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Fig. 2. Flow diagram showing the estimation algorithm details 

3 Results 

We have applied our algorithm to data from the 2009 H1N1 outbreak to demonstrate 
how our algorithm finds realistic network and infection parameters that can approx-
imate the dynamics of an infectious disease. We scaled down the population size by a 
factor of 10,000 uniformly at random in order to reduce the computation time for 
infection simulation. In our simulations, we set ʀ, the number of realizations per set of 
parameters, equal to 1,000. This effects how well the simulated curve approximate the 
expected curve. We began our search with relatively large values of ∆݇, ∆݌, ∆β and ∆δ (changes in average degree, long-range connection probability, infection probabil-
ity and recovery probability, respectively) and then manually decreased them as the 
sums of residuals began to converge. Specifically, initially ∆݇ ൌ 10 ݌∆ , , ∆β , ∆δ ൌ 0.1. We narrowed the search by reducing ∆݇ to 1 and ∆݌, ∆β and ∆δ to 0.01. 

3.1 Estimation Algorithm Results 

Figure 3 shows the resulting infection curves generated by the algorithm, compared to 
the estimated infection curve from data and from using differential equations with 
“fully-mixed” assumption. In addition to the error measure described above, we used 
the difference in total expected number of infections,                                   ห∑ ê௜௠௔௫.  ௣௘௥௜௢ௗ௜ୀଵ െ  ∑ e௜௠௔௫.  ௣௘௥௜௢ௗ௜ୀଵ ห (4) 

and the difference in peak number of infections to compare the curves:                          |ê௪ െ e௪|, where ݓ represents the time period of infection peak (5) 

For the small-world network, the estimated parameter values were 8 for average de-
gree, 0 for short-cut probability, .2 for infection probability (β), and .35 for recovery 
probability (δ). The error measured was close to 25 infections, which is 35% of total 
number of infections. Compared with the data-generated infection curve, the simulated 
infection curve for the small-world network had an 8% lower expected total number of 
infections and a 43% lower expected peak infections. Overall, the small-world network 
model did not provide a good fit to the estimated infection curve from data. 

 
 
 
 
 
 
 

 

Construct network 
with given network 
type and network 
parameters  

Simulate expected 
infection curve(s) 
using the network 
and disease pa-
rameters  

Compare with real 
infection curve and 
compute error(s); 
find the minimum 
error  

if the new min. error 
exceeds previously 
computed error 

um 
else 

Update the parameters that generated the smallest error as a new baseline 
parameters, ݇଴ ଴݌ , , β଴  and δ଴, and repeat the simulations for all possible 
combinations of ݇, ݌, β and δ . 

݇଴ ݌଴ β଴  δ଴ 
 ∗β∗ δ ∗݌ ∗݇
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On the other hand, the best-fit infection curve generated using a scale-free network 
fits the data well. The estimated parameter values were 2 for average degree (݇), .43 
for infection probability (β), and .62 for recovery probability (δ). Measured error was 
about 9 infections, constituting 12% of the total infections. Compared to the estimated 
infection curve from data, we measured a 1.3% difference in the expected total num-
ber of infections and a 2.1% difference in the expected peak infections. This result is a 
significant improvement over the estimation under the “fully-mixed” assumption, 
which had a measured error of 26 infections (36% of total infections), a 25.7% differ-
ence in the expected total number of infections, and a 10% difference in the expected 
peak infections.  

 

 

Fig. 3. Best fit curves generated by the algorithm using small-world network (green) and scale-
free network (blue) compared to the estimated infection curve from data (black) and from using 
differential equations with “fully-mixed” assumption (red). 

 

Fig. 4. A simulated curve that closely reflects the estimated infection curve from data with 
random vaccination scheme (blue) is compared to simulated curves with no vaccination (red) 
and degree-based targeted vaccination (green). 

3.2 Control 

Understanding the network structure and disease dynamics facilitates the adoption of 
efficient control measures to contain or stop the propagation of the disease on the 
network. Many studies have shown that, since scale-free networks have some nodes 
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with a very large number of connections compared to the average degree, targeting 
those high-degree nodes to vaccinate will effectively reduce the propagation of the 
disease [21-23].  

Now that our algorithm has successfully learned contact network and disease dy-
namics parameters, we can use the model to study the effect of different control  
methods. Figure 4 compares the disease processes with no vaccination, random vacci-
nation, and targeted vaccination (where we selectively vaccinate those individuals 
with high degree). These results validate the claim that vaccinating high-degree nodes 
with very large connections is effective in stopping the disease propagation. Random-
ly vaccinating individuals reduced the expected number of infections by about 22%, 
whereas targeting highly connected nodes for vaccination reduced the expected  
number of infections by around 88%.  

4 Conclusions 

Understanding the network structure and the disease dynamics on the network has 
important implications both for refining epidemic models and for devising necessary 
control measures in order to effectively utilize resources to prevent the spread of  
disease. The spread of infection is often complex to analyze due to the lack of infor-
mation about the contact network on which it occurs. This paper showcases a metho-
dology to learn network and disease propagation parameters of an infectious disease, 
H1N1 influenza. The findings for H1N1 give us useful insight into the infection  
dynamics of similar diseases and assist in analyzing effect of different vaccination 
policies. We hope that this study will benefit future efforts in infection prevention. 
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