
Chapter 6

Interatomic Potentials, Scattering and Nuclear
Stopping

Abstract This chapter focuses on interatomic potentials of interest in single and
multiple scattering of heavy charged particles and the associated energy loss. In the
keV energy range and above it is commonly assumed that binary elastic scattering
on central potentials makes up an adequate description. Limitations of this descrip-
tion are mentioned. Classical scattering for screened-Coulomb interaction is out-
lined, and special attention is given to scaling properties, in particular for Thomas-
Fermi-type interaction. Power-law scattering is mentioned as a convenient tool for
rough estimates. Comparisons between different theoretical estimates as well as be-
tween measured and calculated cross sections are presented, and attempts to directly
invert a measured cross section into the underlying potential are reported. The chap-
ter concludes with explicit results for nuclear stopping and straggling including per-
tinent experiments.

6.1 Introductory Comments

Elements of classical and quantal scattering theory for central-force potentials have
been presented in Chap. 3, Vol. 1, with applications mainly to Coulomb interaction
between point charges. The present chapter addresses interactions between screened
ions and atoms as well as between neutral atoms. In the field of radiation physics
such screened-Coulomb forces are most often expressed in terms of central pairwise
potentials, but more sophisticated descriptions may be appropriate, in particular for
collisions at energies in the eV and lower-keV range.

A simple estimate presented in Sect. 2.3, Vol. 1 suggests the stopping cross sec-
tion for electronic collisions to exceed that for elastic nuclear collisions by 3–4 or-
ders of magnitude. This result holds for interactions between practically free point
charges within an energy regime where stopping cross sections decrease monotoni-
cally with increasing energy. You have seen in Chap. 4 that the electronic stopping
cross section actually experiences a maximum and, from there, decreases monoton-
ically toward zero with decreasing energy. We shall see that the nuclear stopping
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236 6 Potentials and Scattering

cross section exhibits a similar behaviour, but at a lower energy and with a differ-
ent height. In general there exists a cross-over point between electronic and nuclear
stopping at some energy which, for not too light ions, lies in the keV or lower-MeV
range. For collision cascades governing radiation effects such as defect formation
and sputtering, discussed briefly in Chap. 1, Vol. 1, nuclear stopping is most often
the dominating process.

At higher beam energies, where electronic stopping dominates energy loss, an-
gular deflections are governed by the interaction with the nuclei, as you have seen in
Chap. 2, Vol. 1. For small-angle deflections—which determine multiple scattering—
it is essential that screening of the interaction be taken properly into account.

6.2 Potentials

Calculating the interaction force between two (neutral or charged) atoms is in prin-
ciple a problem of quantum chemistry, but the type of questions asked in radiation
physics is different from standard problems treated in quantum chemistry. Most of
all, the range of internuclear distances of interest in scattering problems differs from
that in molecular physics: Atoms moving with kinetic energies in the keV regime or
above may approach each other to internuclear distances much smaller than those
of atoms bound in a molecule. From this follows that interaction forces of interest
are predominantly repulsive, while in traditional quantum chemistry it is more the
equilibrium range that is of interest.

Moreover, the range of relative velocities of interacting atoms may lie several
orders of magnitude above what is of interest in molecular spectroscopy and chem-
ical reaction kinetics. In quantum chemistry and molecular-beam physics, adiabatic
potentials, based on the ground-state configuration of the combined electron cloud
of two collision partners, are typically a good first estimate. Conversely, once the
relative speed between the colliding nuclei exceeds characteristic orbital velocities
of the target and projectile electrons, it may be more appropriate to consider the op-
posite extreme, ignore any deformation of the electron clouds during collision and,
instead, determine the interaction between undisturbed atomic-electron configura-
tions.

Within the scope of this book, more emphasis will be laid on general behaviour
than on element-specific details. Therefore, scaling laws valid for a wide range of
elements and their experimental verification will receive attention. This, in fact, is
dictated by necessity: There are about 104 ion-target systems if only atomic beams
and elemental targets are taken into consideration. If molecular and cluster beams
are allowed for as well as alloyed and compound targets, the variety of systems to
be treated ab initio becomes rapidly prohibitive from the point of view of computa-
tional capacity and manpower.

The main justification of various adopted screening functions and screening
radii is their ability to accurately describe pertinent experimental results. Those in-
clude measurements of elastic ion-atom scattering distributions under single- and/or
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multiple-collision conditions as well as range distributions of ions in solids. Exper-
iments in the former category will be mentioned later in this chapter, whereas the
physics of ion ranges will be the subject of Chap. 9.

6.2.1 Bohr’s Estimate

Bohr (1948) presented a first estimate of the interaction potential between two atoms
on the basis of the electrostatic interaction energy of two stiff charge distributions,

V.R/ D �e
Z

d3r �1.r/ˆ2.r/ ; (6.1)

where �1.r/ D �1.r1/ and �2.r/ D �2.r2/ denote the charge density and electro-
static potential of the respective collision partners,

r1 D jr � R1j r2 D jr � R2j (6.2)

and R D jR1 � R2j their internuclear distance. Yukawa-type charge distributions
were assumed with Thomas-Fermi-type screening radii

a1 D a0

Z
1=3
1

I a2 D a0

Z
1=3
2

: (6.3)

You are encouraged to determine V.R/ by solving Problem 6.1. If both collision
partners are neutral atoms, the result is

V.R/ D Z1Z2e
2

R
g.R/ (6.4)

g.R/ D a22e�R=a1 � a21e�R=a2

a22 � a21
: (6.5)

Equation (6.5) has been plotted in Fig. 6.1 for a series of values of the ratio a1=a2.
The distance R is taken relative to the Bohr screening radius defined by

1

a2
D 1

a21
C 1

a22
: (6.6)

As you could expect, for large values of a1=a2, atom 1 acts similar to a point charge,
so that curves approach Bohr’s expression

g.R/ D e�R=a : (6.7)

Scaling with a according to (6.6) is obeyed approximately for R=a � 1, but in-
creasing differences are seen in the tails.
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Fig. 6.1 Screening function g.R/ of the interaction potential between two neutral atoms according
to (6.5). Numbers in the legend refer to different values of a1=a2. The solid curve refers to Bohr’s
estimate, (6.7)

The potential used in a series of papers by Lindhard and coworkers, especially
Lindhard et al. (1968), differs from Bohr’s estimate in two respects,

� The exponential screening function was replaced by the neutral-atom screen-
ing function either for the Thomas-Fermi or the Lenz-Jensen atom discussed in
Sect. 1.4.4, and

� The screening radius was replaced by the aj D 0:8853a0=Z
1=3
j .

Figure 6.1 refers to the interaction between two neutral atoms. In the literature
you will see potentials of this type also applied to interactions between positively
and even negatively charged ions and atoms. This is plausible for not too highly-
charged ions, since substantial deflection and/or energy transfer in elastic collisions
implies impact parameters smaller than outer-shell radii.

To study this point further, you may use the result of Problem 6.1 which, for a
nonvanishing ion charge q1e, yields a screening function

g.R/ D 1

1 � a21=a22

��
1 � q1

Z1

�
e�R=a1 C

�
q1

Z1
� a21
a22

�
e�R=a2

�
: (6.8)

For a meaningful plot you need to make some assumptions on the dependence
of the screening radius a1 on the ion charge. This can be done by matching the
screening functions shown in Fig. 1.8 by an exponential

g.r=a/ ' .1 � q=Z/e�r=a : (6.9)

Within the accuracy of an exponential fit to the potential we may write (Sigmund,
1997)

a ' aTF.1 � q=Z/˛ : ˛ ' 1 (6.10)
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Fig. 6.2 Dependence of the Thomas-Fermi screening radius on the charge state of a positive ion.
Upper graph: Comparison between (6.8) (triangles) and (6.9) (line). Lower graph: Points from
Fermi and Amaldi (1934). Lines: .1�q=Z/˛ with ˛ D 0:5; 1 and 1.5, cf. (6.10). From Sigmund
(1997)

A more rigorous argument in support of (6.10), which does not make use of an
exponential approximation, goes back to Fermi and Amaldi (1934). Their result is
likewise shown in Fig. 6.2.

With this, Fig. 6.3 has been based on the relation

a1

a2
D 1 � q1

Z1
; (6.11)

The dependence onZ1 andZ2 indicated in (6.3) is rather weak and has been ignored
here. You may note that for a nearly-stripped ion the interaction potential depends
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Fig. 6.3 Screening function for the interaction between a neutral atom and an ion with charge q1e
for Z1 D Z2 and q2 D 0 according to (6.8)

sensitively on the charge, while such a dependence is barely visible for R=a2 � 0:5

and quite small further up to R=a2 � 1:5.

6.2.2 Thomas-Fermi Theory

Although a derivation of the interatomic potential proposed by Lindhard and Scharff
was never published, an unpublished draft existed which, as far as the theoretical ba-
sis is concerned, was very similar to that underlying the theory of Firsov (1957b,a).
Actually, both theories rely heavily on the work of Lenz (1932) and Jensen (1932)
on the interaction between Thomas-Fermi atoms and ions as summarized by Gom-
bas (1949).

You may recall from the discussion in Sect. 1.4 that the energy of a Thomas-
Fermi atom contains a kinetic contribution, (1.15), in addition to potential (elec-
trostatic) energy. This contribution also affects the interaction between two atoms
but has been neglected in Bohr’s estimate. It represents a quantum effect and takes
into account that a straight overlap between stiff charge distributions may not be
allowed by the Pauli principle, so that some electrons have to move up to higher
(unoccupied) states.

Let us consider the energy of a diatomic molecule in the Thomas-Fermi model.
An appropriate starting point is (1.18) which we may rewrite in a generalized form,
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Fig. 6.4 The contribution of the kinetic-energy correction to the screening function for exponential
atomic charge distributions

E D �k

Z
d3r �.r/5=3 � e

Z
d3r �.r/ˆn.r/

C e2

2

Z
d3r

Z
d3r 0 �.r/�.r

0/
jr � r 0j (6.12)

for v D 0, where the potential Z1e=r of the nucleus has been denoted by ˆn.r/.
In this form (6.12) may also describe the electron energy of a molecule, with the
replacement

ˆn.r/ D Z1e

r1
C Z2e

r2
: (6.13)

You could try to determine an equilibrium configuration of the electrons in a
molecule by applying the variational principle, just as has been done in case of
an atom. The interaction energy between the two atoms/ions could then be found
by adding the Coulomb interaction between the nuclei and subtracting the energies
of the two isolated atoms. The resulting expression would represent an adiabatic
potential in the Thomas-Fermi approximation.

Lenz (1932) and Jensen (1932) as well as Gombas (1949), aiming at this adia-
batic potential, argued that a first approximation for this quantity could be found by
superposition of undisturbed atomic charge distributions,

�.r/ ' �0.r/ D �1.r1/C �2.r2/ ; (6.14)

since the difference ı� D � � �0 will enter in the second order into the error in the
energy.

As indicated above, with increasing relative velocity of two collision partners,
straight superposition may become a more appropriate representation of the poten-
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tial than adiabatic interaction. Therefore, the error made by adopting (6.14) will be
even smaller in the present context.

Within this picture we may subtract the energies of the constituent atoms from
(6.12) and obtain

V.R/ D Z1Z2e
2

R
C �k

Z
d3r

h
.�1.r1/C �2.r2//

5=3 � �1.r1/
5=3 � �2.r2/5=3

i

�
Z

d3r
�
Z1e

2

r1
�2.r2/C Z2e

2

r2
�1.r1/

�

C
Z

d3r
Z

d3r 0 e2

jr � r 0j �1.r1/�2.r
0
2/: (6.15)

for the interaction energy of two atoms. Figure 6.4 shows the contribution

�gkin D R

Z1Z2e2

� �k
Z

d3r
h
.�1.r1/C �2.r2//

5=3 � �1.r1/
5=3 � �2.r2/

5=3
i

(6.16)

to the screening function for a Yukawa-type charge density with Bohr’s screening
radius. With this choice, the result depends only on R=a and Z1=Z2, and the de-
pendence on Z1=Z2 is not very pronounced.

Comparison of Fig. 6.4 to Fig. 5.17 indicates that the contribution of �gkin to
the screened potential increases with increasing distance and eventually dominates.
If you have difficulties in appreciating this, you are encouraged to look into Prob-
lem 6.3.

Equation (6.15) has served as the theoretical basis for numerous computations of
interatomic potentials. Apart from computational details, theoretical schemes differ
in the input, especially

� atomic charge distributions and
� possible inclusion of exchange and correlation terms.

This author is unaware of a fully analytical evaluation of the kinetic-energy contribu-
tion, (6.16). Although authors invested considerable effort in preparing the double
integral for numerical evaluation, there is little reason to go into details, because
straight numerical integration is no particular challenge on present-day computers.

6.2.2.1 Firsov’s Estimate

The central study in the present context is the theory of Firsov (1957b,a). Note first
that in quantum mechanics, an approximate solution of the Schrödinger equation
leads to an overestimate of the energy of the considered system. This feature also
prevails in Thomas-Fermi theory. A simple proof, following Firsov (1957b) has been
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Fig. 6.5 Comparison between Bohr or Lindhard-Scharff and Firsov screening radii. Top: Fig-
ure 6.1 redrawn employing the Firsov screening radius as the abscissa variable. Bottom: Same
as Fig. 6.4 for Firsov case

sketched in Problem 6.4. Superposition of atomic charge distributions is an approxi-
mation to the true charge density. Therefore, the resulting interaction potential must
lead to an overestimate of the total electronic energy of the system of two atoms or
ions. Firsov (1957b) also found an expression very similar to (6.15) which delivers
an upper bound to the total energy. He also found that the difference between the
two expressions, when evaluated with Thomas-Fermi input, does not exceed 5%.
Note that this assumes the ‘true’ potential to be adiabatic.

Numerical evaluation of the two resulting potentials led Firsov (1957a) to pro-
pose

g.R/ D g0.R=a/ (6.17)
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as an interpolation formula, where g0 denotes the Thomas-Fermi screening function
for a neutral atom and

a D 0:8853a0�
Z
1=2
1 CZ

1=2
2

�2=3 : (6.18)

Firsov’s expression differs from Lindhard’s choice only in the screening radius. You
may easily convince yourself that the ratio aLindhard=aFirsov decreases from 1.12 to
1.04 for Z1=Z2 increasing from 1 to 100.

Figure 6.5 demonstrates the consequences on the scaling of the potential for
Yukawa-type electron densities. The upper graph shows clearly improved scaling
compared with Fig. 6.1, in particular for R=a � 1, where scaling is essentially per-
fect. On the other hand, no significant improvement of scaling is found in the kinetic
contribution in comparison with Fig. 6.4.

6.2.2.2 Thomas-Fermi-Dirac Approach

Firsov’s approach was extended by Abrahamson et al. (1961) to the Thomas-Fermi-
Dirac scheme by including an exchange contribution in the Thomas-Fermi energy
in accordance with Sect. 1.8.2. Again a maximization principle was employed in ad-
dition to the energy expression which provides a minimum. As a result of extensive
numerical operations the authors suggested an interpolation formula,

V.R/ D Z1Z2e
2

2R

�
g0

�
R

a1

�
C g0

�
R

a2

��
� �2a
120�k

.Z1 CZ2/C Nƒ.R/ ; (6.19)

where aj D 0:8853a0=Z
1=3
j are Thomas-Fermi radii and g0 is the Thomas-Fermi

function of a neutral atom. The last two terms in this expression, the first of which
is independent of the internuclear distance R, represent the effect of the exchange
term via the constant �a defined in (1.91).

Equation (6.19) has been applied to evaluate interaction potentials between rare-
gas atoms by Abrahamson (1963b,a). The focus of those calculations was on inter-
nuclear distances far beyond the Thomas-Fermi screening radius, typically up to 6
Bohr radii, where potentials discussed here cannot be expected to provide a realistic
estimate of the interaction.

Figure 6.6 shows an example for He-Ne. The potential is close to exponential for
R > a0, softer than Bohr’s expression but harder than Thomas-Fermi screening.

As pointed out by Günther (1964), Firsov’s variational principles lead to ques-
tionable results when applied to the Thomas-Fermi-Dirac model due to the finite di-
mensions of the atomic charge densities. Rather than abandoning the TFD model al-
together, Nikulin (1971) proposed to keep the TFD functional and to insert Hartree-
Fock atomic electron densities without the use of variational parameters.
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Fig. 6.6 Interaction poten-
tial between neutral He and
Ne atoms according to the
Thomas-Fermi-Dirac model.
Also included potentials of
Amdur and Mason (1956)
and Srivastava (1958). From
Abrahamson (1963a)

6.2.3 Other Binary Potentials

6.2.3.1 Hartree-Fock Estimates

If we accept the point of view of Firsov (1957b) that the electron density enter-
ing into the energy expression is a trial function, any physically acceptable expres-
sion for the electron density can be adopted, so that there is no reason to restrict
to Thomas-Fermi-type input. Thus we can just as well apply accurate atomic elec-
tron distributions available from the literature. However, as long as interaction en-
ergies are determined by the Thomas-Fermi expression, with or without exchange-
correlation, the error in such computations is substantial. In other words, subtleties
in atomic wave functions will be immaterial.

The first attempt to improve the accuracy of the Thomas-Fermi model in this way
were the calculations of molecular electron densities by Lenz (1932) and Jensen
(1932), where a trial function, (1.59) was adopted which was not a solution of the
Thomas-Fermi equation but a better approximation to reality. In the present context
this idea was taken up by Wedepohl (1967) who applied electron densities calculated
by Hartree and Hartree (1938) and empirical densities deduced from X-ray diffrac-
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Fig. 6.7 Interaction potential between two argon atoms according to Wilson and Bisson (1971),
compared with four potentials deduced from scattering measurements and three calculated poten-
tials (Abrahamson, 1963b, Gilbert and Wahl, 1967, Wedepohl, 1967). From Wilson and Bisson
(1971)

tion measurements (Witte and Wölfel, 1958). Interaction energies were calculated
including the exchange term.

Wilson and Bisson (1971) applied the same scheme but used tabulations by Her-
man and Skillman (1963) for several homonuclear atom pairs. An example is shown
in Fig. 6.7. This work was continued by Wilson et al. (1977), and results were pa-
rameterized in terms of a screening function

g.R/ D
X

Cj e�bjR=a ; (6.20)

which was first introduced by Molière (1947), who operated with three pairs of
constants .Cj ; bj /, cf. Table 6.1 and the Bohr screening radius. Results of Wilson

et al. (1977) were plotted in terms of R=aFirsov with aFirsov D 0:8853a0=.Z
1=2
1 C
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Table 6.1 Constants defining screening function (6.20) according to Molière (1947), Wilson et al.
(1977) (Kr-C) and Ziegler et al. (1985) (ZBL)

Potential Molière Kr-C ZBL

C1 b1 0.35 0.3 0.190 945 0.278 544 0.028 17 0.201 62
C2 b2 0.55 1.2 0.473 674 0.637 174 0.280 22 0.402 90
C3 b3 0.10 6.0 0.335 381 1.919 249 0.509 86 0.942 29
C4 b4 0.181 75 3.199 8

Fig. 6.8 Screening function for several atom pairs due to Wilson et al. (1977). See text. From
Wilson et al. (1977)

Z
1=2
2 /2=3, but with three pairs of constants .Cj ; aj / for each atom pair. The data set

for the Kr-C pair (cf. Table 6.1) yields the so-called krypton-carbon potential, which
has been frequently applied also to other atom-atom or ion-atom pairs. Examples are
the data points in Fig. 6.8.

Similar computations were performed by numerous authors (Kim and Gordon,
1974, Dedkov, 1984, 1989), where also charged ions, in particular alkalis, were
studied. A comprehensive review with a special emphasis on radiation physics is
due to Dedkov (1995).

The work of Wilson et al. (1977) was extended to a large number of atom-atom
pairs by Biersack and Ziegler (1982) and Ziegler et al. (1985), and an interpolation
formula of the type of (6.20) was established with constants listed in Table 6.1 and
commonly referred to as the ZBL potential.
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Fig. 6.9 Screening functions for Au-C and Kr-C interaction potentials. Solid circles: DFT(RESC);
Empty circles: HF(RESC); solid lines: ZBL; dotted lines: Molière. From Kuzmin (2006)

6.2.3.2 Ab Initio Calculations

More recently, quantum chemistry codes have been applied to calculate interatomic
potentials. The standard procedure here is to determine the ground-state energy of
a molecule for a given configuration of the nuclei and to subtract the energy of the
isolated atoms, i.e., one deals with adiabatic potentials. Apart from computational
aspects the result of such calculations depends mainly on the basis set of atomic
wave functions. Also relativistic effects may be taken into account.
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Figure 6.9 shows two examples. Good agreement is found for R � a0 between
the results of two different codes, Density Functional Theory (TFD-RESC)1 and
Hartree-Fock (HF-RESC) as well as the Molière potential, whereas ZBL shows a
slight difference. At larger distances substantial differences are found.

6.2.4 Nonbinary Potentials

6.2.4.1 Embedded-Medium Potentials

A useful theoretical basis for calculating interactions especially inmetals is found in
condensed-matter theory. The starting point is the problem of the electronic state of a
foreign atom in a solid or at a solid surface. In the so-called effective-medium theory,
the solid is replaced by a free electron gas (Nørskov, 1977, Nørskov and Lang, 1980,
Stott and Zaremba, 1980, Nørskov, 1982, Daw and Baskes, 1983, 1984). The energy
of such a system can be calculated by various methods, including density-functional
theory. As a result one may find formation energies of point defects, chemisorption
energies and the like.

Daw (1989), Adams and Foiles (1990) considered the effective interaction of two
atoms embedded into an electron gas. This results in an embedded-atom potential
taking proper care of the attractive part of the interaction force as well as the chem-
ical properties of the interacting atoms.

This aspect will be discussed in some detail in connection with radiation effects
in Volume 3 of this monograph.

6.2.4.2 Empirical Potentials

When simulating collision processes in solids or liquids you may need a realistic
description of the equilibrium state of the medium. A convenient way to achieve
such a description is to find a reasonable trial function with a number of parame-
ters that can be fitted such as to match the known structure as well as mechanical
and/or thermal properties of the material as closely as desirable. Such potentials
must be attractive over a certain range of distances. An early example is the well-
known Lennard-Jones or 6–12 potential (Lennard-Jones, 1924) with constants fitted
to the van der Waals constants of real gases. Another empirical potential is the Born-
Mayer potential, describing ionic crystals by a sum of a repulsive exponential and
the Coulomb attraction between anions and cations (Born and Mayer, 1932).

More complicated structures may be described by means of many-body poten-
tials. A useful example is the Stillinger-Weber potential characterizing silicon (Still-
inger and Weber, 1985),

V D V2 C V3 ; (6.21)

1 Relativistic scheme of elimination of small components (RESC) of the four-component Dirac
equation.
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where V2 is a two-body potential with five free parameters and

V3.Ri ;Rj ;Rk/

D h.Rij ; Rik; 
j ik/C h.Rj i ; Rjk ; 
ijk/C h.Rki ; Rkj ; 
ikj / (6.22)

a three-body potential expressed by two interatomic distances and one angle, where

j ik is the angle between Rj i and Rki . Expressing a three-body potential in this
way facilitates the search for parameters reproducing the crystal structure.

For silicon, different sets of trial functions have become commonly used, de-
veloped by Stillinger and Weber (1985) and by Tersoff (1986). For monoatomic
materials at least seven adjustable parameters enter, and a correspondingly higher
number for heteroatomic substances.

Potentials describing material properties near equilibrium need to be amended
such as to properly describe the behaviour at small internuclear distances. It is a
requirement on the chosen parametrization that a smooth transition between the two
regimes is obtainable.

6.2.5 Power Potentials

For rough estimates it is frequently useful to approximate the screening function in
power form (Bohr, 1948),

g.�/ ' ks

s
�1�s : (6.23)

Here the exponent s and the magnitude ks can be determined in principle by match-
ing (6.23) in power and slope to the actual potential. This, however, is rarely done in
practice. A more efficient procedure will be mentioned in Sect. 6.4.2. Independent
of the applied procedure, the exponent s depends on the range of distances where
the screening function is supposed to be matched. For exponential screening, (6.5),
s can take any value � 1, while the Thomas-Fermi function mentioned in Sect. 6.2.2
behaves as / R�3 at large distances, so the range of s-values is limited to 1 � 3.

6.3 Screened-Coulomb Scattering

The basic tools for characterizing elastic scattering have been collected in Chap. 3,
Vol. 1. The present section serves to provide specific results for ion-atom scattering
under screened-Coulomb interaction.
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Fig. 6.10 Modified Bohr criterion for elastic scattering. See text

6.3.1 Limitations of Classical Elastic-Scattering Theory

It is a common procedure in the theory of heavy-ion penetration to treat nuclear
scattering and stopping by classical scattering theory assuming elastic collisions.
According to the Bohr criterion derived in Sect. 2.3.6, Vol. 1, classical scattering
theory should be valid for

2Z1Z2e
2

�v
	 1 : (6.24)

This defines an upper velocity limit, above which quantal scattering theory needs
to be applied. That limit increases rapidly with increasing atomic numbers of the
collision partners involved.

Nevertheless, some caution is indicated. Firstly, (6.24) has been derived for un-
screened Coulomb interaction. An extension to screened-Coulomb interaction is ev-
idently needed. Secondly, (6.24) assumes small-angle scattering. To what extent
does it apply at large scattering angles? Thirdly, to what extent can electronic exci-
tation and charge exchange be neglected? Let us briefly look into these aspects.

6.3.1.1 Generalization of the Bohr Criterion

A generalization of (6.24) was provided by Lindhard (1965). Figure 6.10 illustrates
the scattering in the centre-of-mass frame of reference. A particle with reduced mass
m0 and velocity v passes through an aperture of width 2ıp at an impact parameter p
to a scattering centre C. According to the uncertainty principle, this implies a spread
in transverse momentum

ıP1 � �

2ıp
; (6.25)

which is equivalent to a spread in scattering angle‚,
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Fig. 6.11 Modified Bohr criterium. See text

ı‚1 � ıP1

m0v
: (6.26)

Conversely, the spread in impact parameter ıp leads to a spread in scattering angle

ı‚2 D
ˇ̌̌
ˇd‚dp

ˇ̌̌
ˇ ıp : (6.27)

The total spread is then found as

ı‚2 D ı‚21 C ı‚22 : (6.28)

This quantity has a minimum at

ıp2 D �

2m0vjd‚=dpj ; (6.29)

where

ı‚2min D �jd‚=dpj
m0v

: (6.30)

According to Bohr (1948), a classical description is approximately valid if the
spread in scattering angle ı‚ is small compared to the scattering angle ‚ itself.
The resulting criterion can be written in the formˇ̌̌

ˇ d

dp
1

‚.p/

ˇ̌̌
ˇ � m0v

�
: (6.31)

You can easily convince yourself that this reduces to (6.24) for Coulomb interac-
tion. However, the fact that the scattering angle occurs in the denominator in (6.31)
indicates a modification in particular at small angles.

As an example, consider two particles interacting via the Bohr potential



6.3 Screened-Coulomb Scattering 253

V.R/ D Z1Z2e
2

R
e�R=a ; (6.32)

cf. (6.7). In problem 6.5 you will find that, for large impact parameters or small
angles, (6.31) reduces to

� � 2Z1Z2e
2

�v
	
ˇ̌̌
ˇ d
d.p=a/

1

K1.p=a/

ˇ̌̌
ˇ ; (6.33)

where K1.z/ is a modified Bessel function in standard notation (Abramowitz and
Stegun, 1964).

The function on the right-hand side of (6.33) has been drawn up in Fig. 6.11. You
may note that the quantity on the left side of (6.33) is Bohr’s kappa as introduced in
(2.80), Vol. 1. For Coulomb interaction that quantity needs to exceed 1, the stipled
line in Fig. 6.11. For screened interaction no change occurs at small impact param-
eters, p � a, where the potential is Coulomb-like (cf. the stipled line), while the
solid line, valid for the Bohr potential, rises steeply fromp=a � 1 on, thus making it
increasingly difficult to fulfill the modified Bohr criterion. However, for heavy col-
lision partners and v � v0, a situation typical for applications in radiation damage,
ion implantation etc, � is much greater than 1. Therefore it makes sense to extend
the ordinate scale in Fig. 6.11 to the level indicated in the graph.

6.3.1.2 Quantal Effects

The assumption of small-angle scattering is not critical to the derivation of the mod-
ified Bohr criterion presented in the previous section. Moreover, Fig. 6.11 does not
give rise to concern about larger scattering angles (or smaller impact parameters).
An exception is straight backscattering at 180ı, where one might be concerned about
interference between the incoming and outgoing wave (Sect. 7.8.3).

Quantal effects are, however, observable in the scattering of heavy particles. One
of the most drastic ones is charge exchange, discussed in Chap. 2. Charge exchange
may show pronounced variations with beam energy and scattering angle (Ziemba
and Everhart, 1959, Lockwood et al., 1963). This implies that dependent on the
detection device, measured distributions in angle or energy may deviate dramatically
from the smooth spectra expected from classical scattering theory.

Inelastic energy loss by electron excitation or ionization affects conservation laws
and thus angular as well as energy distributions of scattered particles. In fact, inelas-
tic energy losses can be determined experimentally in this way, as was discussed in
Problems 3.4 and 3.5, Vol. 1.
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6.3.2 Recapitulation

6.3.2.1 Classical Scattering Integral

The central result of classical binary scattering theory is contained in (3.34) and
(3.35), Vol. 1, which relates the scattering angle ‚ in the centre-of-mass frame to
the impact parameter p by

‚ D � � 2p

Z 1

Rm

dR
R2

�
1 � V.R/

Er
� p2

R2

��1=2
; (6.34)

where Er D m0v
2=2 is the relative kinetic energy and Rm the closest distance of

approach that satisfies the relation

1 � V.Rm/

Er
� p2

R2m
D 0 : (6.35)

For screened-Coulomb interaction (6.4) or

V.R/ D Z1Z2e
2

R
g.R=a/ ; (6.36)

(6.34) reduces to

‚ D � � 2p
Z 1

Rm

dR
R2

�
1 � a


R
g

�
R

a

�
� p2

R2

��1=2
(6.37)

with


 D aEr

Z1Z2e2
(6.38)

in accordance with (3.50), Vol. 1. Introducing a dimensionless impact parameter

� D p

a
(6.39)

you find

‚ D � � 2�

Z 1

�m

d�
�2

�
1 � g.�/


�
� �2

�2

��1=2
; (6.40)

where �m D Rm=a.

6.3.2.2 Scaling Properties

Equation (6.40) expresses the scattering angle as a function of 
 and �,

‚ D ‚.
; p=a/ : (6.41)
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You may write this relation in the form

p D ah

�

; sin

‚

2

�
; (6.42)

and thus

d� D
ˇ̌
�dp2

ˇ̌
D �a2g1

�

; sin2

‚

2

�
d sin2

‚

2
; (6.43)

where h and g1 are functions determined by the screening function g.
The relation to the energy transfer is given by (3.8), Vol. 1,

T D 	E sin2
‚

2
(6.44)

with

	 D 4M1M2

.M1 CM2/2
(6.45)

for nonrelativistic collisions.

6.3.2.3 Classical Small-Angle Scattering

In Chap. 3.3.6, Vol. 1, an expansion of the classical scattering integral, (6.40) in pow-
ers of the interaction was found. The first term in this expansion, called momentum
approximation, reads

‚ D � 1

pEr

Z 1

p

drp
1 � p2=r2

d
dr

�
rV.r/

	
(6.46)

or, for screened-Coulomb interaction,

‚ D � 1


p=a

Z 1

p=a

d�p
1 � .p=a/2=�2

dg.�/
d�

: (6.47)

Equation (6.47) must be expected to accurately characterize the scattering law at
sufficiently small angles.

6.3.3 Lindhard-Scharff Scaling

In addition to (6.43), which is an exact scaling property for classical elastic scatter-
ing on a screened Coulomb potential, Lindhard et al. (1968) derived an approximate
scaling relationship which reduces the function g.
; sin2‚=2/ to a function of just
one variable.
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6.3.3.1 Power Potential

Following their argument, consider first the case of a power potential, where

g

�
R

a

�
D ks

s

� a
R

�s�1
; (6.48)

where s > 1 and ks a constant. With this, (6.47) reduces to

‚ D .s � 1/ks
s
.p=a/s

Z 1

1

dt
t1�s

p
t2 � 1

: (6.49)

The integral may be reduced to a standard form by substituting t D 1= sinu. With
this you find

‚ D ks	s




�
a

p

�s
; (6.50)

where

	s D 1

2
B

�
1

2
;
s C 1

2

�
(6.51)

and B.x; y/ is the beta function

B.x; y/ D
Z 1

0

dt tx�1.1 � t/y�1 D �.x/�.y/

�.x C y/
: (6.52)

in the conventional definition (Abramowitz and Stegun, 1964).

6.3.3.2 Extrapolation

Equation (6.50) has a divergence at p D 0 instead of the expected result ‚ D � . In
order to correct for this, Lindhard et al. (1968) made a bold wide-angle approxima-
tion by replacing

‚ ! 2 sin‚=2 (6.53)

p !
q
p2 C p20 (6.54)

with a quantity p0 to be determined by the requirement that ‚ D � for p D 0, so
that

2
 D ks

2
B.1=2; .s C 1/=2/.a=p0/

s : (6.55)

The substitution (6.54) has the convenience that p0 drops out in the differential cross
section with ‚ as a variable, since

2�pdp � �dp2 � �d.p2 C p20/ : (6.56)
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Fig. 6.12 Differential cross section for the Thomas-Fermi potential plotted in Lindhard-Scharff
units. See text

With this, one may expect that the function g.
; sin‚=2/ is approximately a
function of the product 
 sin‚=2, which approaches 
‚=2 implied by (6.50) in the
small-angle limit.

6.3.3.3 Verification

The standard form of the Lindhard-Scharff scaling relation reads as

d�.‚/ D �a2
d



 sin ‚

2

�

2 sin2 ‚

2

f

�

 sin

‚

2

�
(6.57)

with a yet unknown function f .
 sin‚=2/.
Scattering angles for the Sommerfeld approximation of the Thomas-Fermi po-

tential have been evaluated numerically and tabulated by Robinson (1970). These
cross sections have been plotted in Fig. 6.12 for 
 ranging from 0.01 to 10. It is seen
that Lindhard-Scharff scaling is fulfilled within a 10–20% error margin. A similar
result was found for the Bohr potential in the original paper (Lindhard et al., 1968).

6.3.3.4 Magic Formula

While exact evaluation of scattering integrals is no longer a challenge, an accurate
analytical approximation is still attractive. A ‘magic formula’ found by Lindhard
et al. (1968) takes its starting point at the power law (6.50).
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Fig. 6.13 The function �s , (6.51) (solid line) compared with the approximation � 0
s , (6.58) (points)

Figure 6.13 shows that the function 	s is accurately approximated by the expres-
sion

	 0
s D 1

s

r
3s � 1
2

: (6.58)

Inserting 	 0
s for 	s and noting that the function 1=sps is proportional to the potential,

you may write (6.50) in the form

‚2 D �3
4
p3

d
dp

�
p2=3V.p/2

�
: (6.59)

This may be extrapolated to large angles in the way sketched in Sect. 6.3.3.2, but as
mentioned there, this extrapolation does not affect the differential cross section.

The result of applying the magic formula to the Thomas-Fermi potential has been
included in Fig. 6.12.

6.3.4 Comparison of Differential Cross Sections

The function f .�/ with

� D 
 sin
‚

2
(6.60)

is a convenient tool to compare differential cross sections originating in different
scattering potentials. A convenient parametrization of f .�/was found by Winterbon
et al. (1970),

f .�/ ' ��1�2m�
1C �

2��2.1�m/	q�1=q ; (6.61)
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Table 6.2 Coefficients entering scaling function f.	/ for differential scattering cross section,
(6.61) according to Winterbon (1972)

Screening function u m q 


Thomas-Fermi 0.333 0.667 1.309
Thomas-Fermi-Sommerfeld 0.311 0.588 1.70
Lenz-Jensen 0.191 0.512 2.92
Molière 0.216 0.570 2.37
Bohr 0.103 0.570 2.37

0
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η=εsinΘ/2

f(
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Fig. 6.14 Reduced differential cross section for several screened-Coulomb potentials, (6.61) with
coefficients from Table 6.2

and parameters for several screening functions may be found in Table 6.2.

6.3.5 Inversion

Equation (6.34) expresses the scattering angle by the impact parameter and the beam
energy, if the potential is given as a function of distance. You may ask whether that
relation can be inverted, such that the potential can be determined from scattering
measurements.

This type of inversion problem occurs in many fields of science. In the present
context, relevant information can be found by varying the beam energy at a fixed
scattering angle or vice versa, or a combination of the two. A scheme operating at a
fixed scattering angle was proposed by Hoyt (1939), based on the solution of a re-
lated problem by Klein (1932). For the case of fixed beam energy and variable angle
a similar scheme has been developed by Firsov (1953) and applied successfully in
the analysis of experimental data.
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In deriving Firsov’s formula I am following Lane and Everhart (1960). Starting
at (6.34) we may introduce a function

‰.R/ D R2
�
1 � V.R/

Er

�
; (6.62)

so that

‚.p/ D � � 2p
Z 1

Rm

dR
R

1p
‰.R/� p2

(6.63)

Replacement of R by ‰ as the integration variable leads to

‚.p/ D � � 2p

Z 1

p2

d‰p
‰ � p2

d.lnR.‰//
d‰

; (6.64)

since ‰.Rm/ D p2, as follows from (6.34).
Now, the constant � can be expressed as

� D p

Z 1

p2

d‰p
‰ � p2

d ln‰
d‰

; (6.65)

as you may verify by carrying out the integration on the right-hand side. With this
we arrive at

‚.p/ D p

Z 1

p2

d‰0p
‰0 � p2

d
d‰0 ln

�
‰0

R.‰0/2

�
; (6.66)

where the integration variable has been renamed to ‰0.
After multiplying this equation by 1=

p
p2 �‰ and integrating from p D p

‰

to infinity, and interchanging the order of integrations you find

Z 1
p
‰

dp
‚.p/p
p2 �‰

D

1

2

Z 1

‰

d‰0 d
d‰0

�
ln

‰0

R.‰0/2

�Z ‰0

‰

dp2p
.‰0 � p2/.p2 �‰/

: (6.67)

Since the integral over dp2 reduces to � , we arrive atZ 1
p
‰

dp
‚.p/p
p2 �‰

D �

2

�
ln

‰0

R.‰0/2

�1

‰0D‰
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2

�
ln
‰.R0/
R02

�1

R0DR
(6.68)

or Z 1
p
‰

dp
‚.p/p
p2 �‰

D �

2
ln
�
R2

‰

�
: (6.69)

Note that ‰.R/=R2 approaches 1 for large R according to the definition.
Equation (6.69) expresses R as a function of ‰ and, hence, of V=Er . You may

verify its validity on the example discussed in Problem 6.7.
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Lane and Everhart (1960) have demonstrated that an interaction potential actually
can be extracted by inversion of scattering data. However, the procedure is by no
means trivial in practice. The first step is to express a measured differential cross
section in centre-of-mass coordinates. The second step is an integration according toZ �

‚0D‚
d�.‚0/ D

Z p

0

2�p0dp0 : (6.70)

Typically the coverage with data points in the interval 0 
 ‚ 
 � is incomplete.
As a minimum, this limits the range of distances or energies covered by the deduced
potential. Next, in order to allow integration as required in (6.69), some inter- or
extrapolation may have to made, and finally, the potential has to be extracted from
an implicit connection between ‰ and R.

The uniqueness of the inversion process has likewise been studied. Note first that
Rutherford’s cross section is identical for attractive and repulsive Coulomb interac-
tion. Apart from that, a study by Demkov et al. (1971) indicates that the procedure
becomes nonunique in case of cut-off potentials.

Figure 6.15 shows an example of a successful inversion. Lane and Everhart
(1960) measured angular distributions of ArC ions on Ar from about 1ı to 40ı.
The top graph shows the data for 25 keV. The bottom graph shows potentials ex-
tracted from cross sections measured at 25, 50, and 100 keV (solid lines), as well as
the Firsov (dotted) and Bohr (dashed) potentials. The near-coincidence of the three
extracted potentials provides confidence both in the data and the procedure. Evi-
dently, increasing the beam energy allows determination of the potential at smaller
internuclear distances.

Potentials extracted from collision experiments are needed mostly for application
in collision studies. Therefore, it appears more appropriate to compare measured to
calculated cross sections, rather than comparing potentials found by inversion to
calculated potentials.

6.3.6 Scattering Experiments

Direct measurements of differential cross sections are done on isolated target atoms.
Data exist mainly for noble-gas targets. Early systematic measurements were per-
formed by Everhart and coworkers, starting with Everhart et al. (1955), including
the study of Lane and Everhart (1960) quoted above. The focus in this program, as
well as in a parallel study by Fedorenko and coworkers (Kaminker and Fedorenko,
1955) changed gradually into inelastic processes.

Only few studies have been performed subsequently of ion-atom scattering aim-
ing at interatomic potentials in the repulsive (keV) regime. Here I like to mention a
couple of examples.
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Fig. 6.15 Inversion of ArC-Ar differential scattering cross section (top) and the resulting potential
(bottom). See text. From Lane and Everhart (1960)

6.3.6.1 Oscillatory Structure

Figures 6.16 and 6.17 show cross sections measured on xenon gas by Loftager et al.
(1979). The abscissa variable is � D 
 sin‚, and plotted is the ratio between the
measured cross section in centre-of-mass variables and the Lenz-Jensen cross sec-
tion. In Fig. 6.16, showing Ar on Xe, data referring to beam energies from 2.5 to
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Fig. 6.16 Measured differential cross sections of ArC on xenon. Plotted is the ratio between mea-
surement and the Lenz-Jensen cross section (Lindhard et al., 1968) with the adopted screening

radius a D 0:8853a0=

q
Z

2=3

1 CZ
2=3

2 . Abscissa reduced to Lindhard variable 	 D � sin‚=2.
Also included: TF (Thomas-Fermi) (Lindhard et al., 1968). r0 represents the closest distance of
approach calculated for interaction potential based on superimposed LJ (2LJ) or Hartree-Fock
(2DHFS) atomic charge densities. From Loftager et al. (1979)

400 keV fall essentially on one line, in agreement with the scaling relation (6.57).
Loftager et al. (1979) concluded from this that scattering has been elastic.

Figure 6.17 shows data for C, Ne, Kr, Xe and Cd ions on Xe. You may first notice
that with the exception of a small part of the C-Xe data, all experimental points fall
in between the Thomas-Fermi and the Lenz-Jensen curve. Moreover, within a 20%
margin, Lindhard-Scharff scaling is well obeyed for 
 sin‚=2 � 0:002, while major
differences between different ions are found in the opposite end.

All data shown in Figs. 6.16 and 6.17 show an oscillatory structure which was
found earlier (Loftager and Hermann, 1968, Afrosimov et al., 1972) and which has
been ascribed to shell effects by Afrosimov et al. (1972). There are several possible
reasons for such oscillatory structures. Very pronounced effects are found if scat-
tered particles are recorded separately according to charge states (Ziemba and Ev-
erhart, 1959, Aberth et al., 1965). Loftager et al. (1979) found that differential cross
sections for an interatomic potential allowing for shell structure (labelled DHFS in
Fig. 6.17) show weak oscillations with a phase in good agreement with experiment.
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Fig. 6.17 Same as Fig. 6.16 for different ions on xenon. Also included: TF (Thomas-Fermi) (Lind-
hard et al., 1968), WHB (Wilson et al., 1977), aLJ (suggested average). From Loftager et al. (1979)

Fig. 6.18 Angular deflec-
tion in inelastic scattering.
Schematic and exaggerated.
See text

T

An explanation of the observations in Figs. 6.16 and 6.17 in terms of inelasticity
(Afrosimov et al., 1972) appears most plausible: In Fig. 6.18 you find the sketch of
an inelastic scattering event in the centre-of-mass frame. The only difference to the
standard case of scattering on a central-force potential is an inelastic energy loss
which, for simplicity, is assumed to take place at the apsis T. When arriving at T
the particle has a certain angular momentum around the force centre which must be
conserved. Since speed is reduced, the deflection angle and the impact parameter
will increase. A quantitative discussion was given by Hartung et al. (1985) with
near-perfect agreement between experiment and theory.

An experimental and theoretical study of pertinent processes and their respective
contributions to the differential cross section, involving doubly-differential distribu-
tions in angle and energy as well as separation of charge states, has been performed
on NaC-Ne by Olsen et al. (1979). Figure 6.19 indicates that the contribution of
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Fig. 6.19 Differential cross sections for 2 keV NaC-Ne according to Olsen et al. (1979). A: Elastic;
B: One-electron processes; C: Two-electron processes. K: Elastic scattering ignoring all electronic
processes. From Olsen et al. (1979)

truly elastic collisions to the differential cross section (label A) may be very small—
� 1% in this case—while ignoring all inelasticity (label K) may well lead to a result
of the right order of magnitude (label TOTAL).

6.3.6.2 Inversion

An extensive effort to extract interatomic potentials from differential cross sections
has been made by Zinoviev (2011). Literature data for a number of ion-target combi-
nations were analyzed by the Firsov procedure described in Sect. 6.3.5. Figure 6.20
shows results plotted as a function of R=af , where af is a screening radius de-
fined as

af D 0:8853a0

.Z˛1 CZ˛2 /
ˇ

(6.71)

with ˛ D 1=2 and ˇ D 2=3.
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Fig. 6.20 Screening function g.R=a/ extracted from experimental scattering data by Firsov in-
version. af denotes the Firsov screening radius. From Zinoviev (2011)

Fig. 6.21 Shadow cone in small-angle Rutherford scattering. See text

6.3.7 Shadow Cone

Imagine a homogeneous beam of particles scattered on a hard sphere of radius a
with a mass much greater than the mass of a single projectile. Then, particles hitting
the sphere will be scattered out of the beam. As a result there will be a cylindrical
region behind the sphere where no moving particles will be detected. In other words,
the sphere generates a cylindrical shadow of radius a.

What form of shadow can we expect when scattering obeys Rutherford’s law
rather than billiard-ball dynamics? This question was asked by Lindhard (1965),
who provided an answer involving small-angle scattering.
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Following Lindhard’s argument, note first that for small scattering angles, (3.42),
Vol. 1, reduces to

‚ D b

p
I b D 2Z1Z2e

2

M0v2
(6.72)

or, in the laboratory frame of reference,

� D Z1Z2e
2

Ep
; (6.73)

where � is the scattering angle of the projectile,E the beam energy and p the impact
parameter. Still assuming small angles we may place a coordinate system .x; y/ in
the impact plane, so that a single trajectory may be approximated by two straight
lines

y D


p for x < 0
p C .Z1Z2e

2=Ep/x for x > 0
(6.74)

Such trajectories have been plotted in Fig. 6.21. Instead of a plain cylinder, we now
find a parabolic cylinder which follows the relation

y D 2

r
Z1Z2e2

E
x : (6.75)

Target particles lying within this ‘shadow cone’ will not be hit by the beam, regard-
less of the impact parameter. Specifically, if you want to hit a target particle at some
distance x D d behind the first target atom, you have to tilt the beam by an angle

�� > ‚c D y.d/

d
D 2

r
Z1Z2e2

Ed
: (6.76)

This is a useful relation in the study of channeling, cf. Sect.1̇.1.1, Vol. 1. We shall
come back to this in Appendix 11.

The shadow cone has come to play an important role in ion-surface scattering
at energies well below the Rutherford regime. Accurate calculations (Oen, 1983)
may have to avoid the small-angle approximation and may need to take into account
the time integral, cf. Sect. 3.3.4, Vol. 1. Alternatively, trajectories may be simulated
(Yamamura and Takeuchi, 1984).

6.4 Nuclear Stopping

According to Sects. 2.2.3-.2.2.5, Vol. 1, the energy loss in an elastic binary collision
may be characterized by the nuclear stopping force�

�dE

dx

�
n

D NSn (6.77)
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with

Sn D
Z
Tn d� (6.78)

and

Tn D 	E sin2
‚

2
; (6.79)

where 	 D 4M1M2=.M1 CM2/
2.

If you have a tabulation of the scattering integral (6.34) for a given potential, the
nuclear stopping cross section Sn can be found by integration,

Sn D 	E

Z 1

0

2�p dp sin2
‚.p/

2
(6.80)

without going over the differential cross section.

6.4.1 Scaling Properties

Conversely, making use of the scaling relations for the differential cross section in
Sect. 6.3.2.2 you find�

�dE
dx

�
n

D N�a2	E

Z �

0

g

�

; sin2

‚

2

�
d sin2

‚

2
: (6.81)

This suggests the introduction of a dimensionless measure of the pathlength x,

� D N�a2	x : (6.82)

With this, (6.81) reduces to

�d

d�

D s.
/ D 


Z �

0

g

�

; sin2

‚

2

�
d sin2

‚

2
: (6.83)

This relation is general for elastic binary scattering on a screened-Coulomb potential
in the nonrelativistic energy regime.

Specifically, with Lindhard-Scharff scaling, (6.57), this reduces to

d


d�
D 1




Z �

0

d� f .�/ ; (6.84)

where

� D 
 sin2
‚

2
D 


T

	E
; (6.85)

and f .�/ is determined by the screening function of the potential.
Figure 6.22 shows sn.
/ found by integration of the curves shown in Fig. 6.14

according to (6.84). In addition, the function
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Fig. 6.22 Stopping cross sections in universal plot for the cross sections shown in Fig. 6.14. Also
included is ZBL, i.e., the function adopted by Ziegler et al. (1985)

sn D ln.1C a
/

2.
 C b
c C d
p

/

(6.86)

from Ziegler et al. (1985) with

a D 1:1383I b D 0:01321I c D 0:21226I d D 0:19593 (6.87)

has been included. Note, however, that a comparison of the actual cross sections
would have to take into account the adopted form of the screening radius.

6.4.2 Power Cross Section

Power cross sections have been introduced as a convenient tool in the derivation
of the Lindhard-Scharff scaling relationship, (6.57). They have also been useful on
their own as model cross sections in solving transport equations, as you will see in
Chap. 9.

Going back to (6.57) and looking at Fig. 6.12 we may approximate f .�/ by

fm.�/ D �m�
1�2m (6.88)

over a limited range of �-values, so that m D 0 yields a linear increase, applying to
the low-� regime, while m D 1 characterizes the asymptotic behaviour at large �,
i.e., Rutherford scattering.

Insertion of (6.88) into (6.57) yields
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Fig. 6.23 Exponent m in power cross section extracted from stopping cross sections shown in
Fig. 6.22

d�.E; T / D CE�mT �1�mdT (6.89)

with

C D �

2
�ma

2

�
M1

M2

�m �
2Z1Z2e

2

a

�2m
; (6.90)

where the numerical coefficient�m could be determined by going back to (6.23) and
(6.50). It is, however, more efficient to determine �m by matching a power law to a
more accurately determined scattering law. This could be either the function f .�/
or the stopping cross section. The latter takes the form

S D
Z Tmax

0

T d�.E; T / D 1

1 �mC	
1�mE1�2m : (6.91)

or, in dimensionless units,

sn D �m

2.1�m/

1�2m : (6.92)

Figure 6.23 shows the variation of the exponentm found by matching the stop-
ping cross sections shown in Fig. 6.22 in value and slope by the power form (6.91).
You may note that there is a low-energy regime where a power law is a good ap-
proximation, and a high-energy regime close to Rutherford scattering.

The intermediate regime around 
 � 1 has frequently been characterized by
m D 1=2 (Bohr, 1948, Nielsen, 1956, Firsov, 1958, Lindhard et al., 1963, Winter-
bon et al., 1970). Such a cross section is approximately equivalent with a potential
/ 1=R2. Niels Bohr employed this potential to characterize the effect of ‘excessive
screening’, i.e., interactions at distances R � a and beyond. The corresponding
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Fig. 6.24 Nuclear straggling in dimensionless units, (6.94)

differential cross section d�.T / / dT=T 3=2 has convenient analytical properties.
From (6.91) the particularly valuable property emerges that the stopping cross sec-
tion becomes independent of energy for m D 1=2. The differential cross section
expressed in the scattering angle becomes d�.‚/ / d‚=‚2 at small angles. It will
turn out that also this functional shape has convenient analytic properties.

The main drawback of theR�2 potential is that with its convenient analytic prop-
erties, numerous results can be derived that seemingly depend only on one parameter
and frequently have the simple appearance of generally valid relationships. In other
words, there is a temptation to ignore the limited range of validity of this particular
interaction potential. This pitfall can be avoided with due care.

6.4.3 Straggling

The expression for straggling,

d�2

dx
D d

dx

D
.�E � h�Ei/2

E
D N

Z
T 2d�.E; T / (6.93)

may, for Lindhard-Scharff scaling, be written in the form

d

d�

D
.�
 � h�
i/2

E
D wn D 	


2

Z �

0

d� �2f .�/ ; (6.94)

where according to (6.82)
� D N�a2	x : (6.95)
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This is illustrated in Fig. 6.24 for the potentials shown in Fig. 6.14. This function
approaches the value 1/4 at high energies (cf. Problem 6.8).

You may notice, by comparing Fig. 6.24 with Fig. 6.22, that
p
wn exceeds the

stopping cross section sn for 
 > 1. This is the regime where the differential cross
section approaches the Rutherford cross section. If there were no electronic stop-
ping, straggling would be governed by an analogue of the Landau distribution dis-
cussed in Sect. 9.3.2, Vol. 1.

6.4.4 Measurements of Nuclear Stopping

6.4.4.1 Experimental Aspects

Only a minute fraction of the experimental literature on stopping cross sections is
devoted to nuclear stopping. This is by no means accidental.

Direct measurements of nuclear stopping have to take place at energies where
electronic stopping is not dominating by several orders of magnitude, and accurate
measurements require energies where nuclear stopping actually dominates. Even
then, separating electronic from nuclear stopping is not a trivial task, as you will see
in Chap. 7.

There are problems even in the absence of significant electronic stopping, which
have been discussed in detail by Sidenius (1974):

� Nuclear energy loss is coupled to angular deflection. In the standard geometry
the energy loss is measured in the beam direction with a narrow detection an-
gle. Except for M1 	 M2, ions with large energy losses will not be detected.
While this simplifies the measurement of electronic stopping cross sections, nu-
clear stopping cross sections will be underestimated. Evidently, measurements of
nuclear stopping require wide-angle detection. For M1 < M2 even detection in
the backward direction may be necessary.

� In addition to beam particles the particle flux also contains energetic recoil atoms.

6.4.4.2 Results

In order to limit straggling to an acceptable limit, targets may have to be thin. There-
fore, most direct measurements have been performed on gases.

Figure 6.25 shows measurements of Hvelplund (1975) with very heavy ions on
hydrogen gas. The large mass ratio M1=M2 facilitates the detection of the entire
scattered beam, and energies are low enough so that electronic stopping constitutes
only a minor correction. Data for individual ions seem to fall on smooth curves
which, by and large, lie in between the Thomas-Fermi and Lenz-Jensen predictions.
Data for different ions differ significantly, more than what one would expect from
universal scaling relations. Later time-of-flight data by Martini (1976) for the Pb-
H2 system (not shown in the graph) tend to agree with the data of Sidenius at the
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Fig. 6.25 Stopping cross section of heavy ions in hydrogen gas compared with theory. Data la-
belled Th, Pb, Hg and Gd: Stopping cross sections from Hvelplund (1975). Data labelled Sidenius
from Sidenius (1963). Solid line: Thomas-Fermi nuclear stopping; dashed line: Lenz-Jensen nu-
clear stopping; dash-dotted curve: Total Thomas-Fermi stopping. From Hvelplund (1975)

Fig. 6.26 Nuclear stopping cross section in Si. Comparison of various experimental results with
universal stopping formula. See text. From Grahmann and Kalbitzer (1976)

low-energy end and with those of Hvelplund in the high-energy end. On the other
hand, the difference between two data sets for Pb ions is as large as the difference
between Th and Hg, suggesting that part of the deviation from scaling may be due
to experimental error.



274 6 Potentials and Scattering

Figure 6.26 is another witness of the problematic nature of direct measurements
of nuclear stopping. Experimental data for stopping of B, C, N, Ne and Ar ions in
CH4, C, Al, Si and Ge from several sources (Ormrod and Duckworth, 1963, Orm-
rod et al., 1965, Högberg and Skoog, 1972, Sidenius, 1974, Oetzmann et al., 1975,
Grahmann and Kalbitzer, 1976) have been plotted in Lindhard-Scharff dimension-
less units and compared with the Thomas-Fermi prediction of Lindhard et al. (1968).
Apart from drastic deviations from the expected scaling behaviour you will notice
that all experimental results lie significantly below the theoretical curve, even in the
upper half of the abscissa variable, 
1=2 > 1:5, where the stopping cross section
should be independent of the adopted screening function according to Fig. 6.22.

What went wrong here? Firstly, data by Ormrod and Duckworth (1963), Ormrod
et al. (1965), Högberg and Skoog (1972) had been taken with the aim of measuring
electronic stopping. Nuclear stopping was minimized by choosing a detection angle
that eliminated particles with a high nuclear energy loss. These data should not have
been included in the graph. Secondly, data labelled ‘this work’ by Grahmann and
Kalbitzer (1976) all refer to mass ratios M1=M2 < 1, where a noticeable fraction
of the beam particles will suffer large-angle backscattering.

Conversely, the highest stopping cross sections listed in the graph refer to
M1=M2 > 1 where this effect is much less pronounced. While the observed de-
viation from the Thomas-Fermi prediction fits well into the general pattern in the
low-energy portion of the graph, the relatively small deviation found for the data
of Sidenius (1974) can be ascribed to the fact that the target is CH4, for which the
scaling behaviour of atomic targets cannot be expected to be accurately fulfilled.

In brief, what remains of Fig. 6.26 is a scatter between relevant data of the same
approximate magnitude as the one in Fig. 6.12, which serves as a theoretical basis
for Lindhard-Scharff scaling.

The technique of Doppler-shift attenuation described briefly in Sect. 7.4.4, Vol. 1,
has also been applied in low-energy stopping (Bister et al., 1975, Shane et al., 1976).
While separation of nuclear from electronic stopping is not a trivial matter, compar-
isons with the Lindhard-Scharff predictions of the total stopping cross sections are
much more favourable than what one might extract from Fig. 6.26.

6.5 Discussion and Outlook

The discussion in this chapter is based on Chap. 3, Vol. 1. Applications discussed
there were dealing mainly with plain Coulomb interaction. Tools collected in the
present chapter are quite adequate to treat scattering and nuclear stopping in the
medium to upper keV regime and above. With equivalent knowledge of electronic
stopping in this energy regime—to be discussed in Chap. 8—and suitable statistical
tools—to be collected in Chap. 9—you will be well equipped to treat several as-
pects of particle penetration. Limitations prevail to lower energies especially in the
medium and lower eV regime, where the many-body nature of collisions becomes
exceedingly important, and where many-body potentials may be needed for quan-
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titative predictions. These aspects become particularly important in the theory of
radiation effects, the main subject of Volume 3 of this series.

Problems

6.1. Estimate the interaction potential between an ion 1 with a charge q1e and a
neutral atom 2 from the electrostatic interaction energy

V.R/ D �e
Z

d2r�1.r/ˆ2.r/ (6.96)

between two stiff charge distributions, characterized by potentials

ˆ1.r/ D q1e

r1
C .Z1 � q1/e

r1
e�r1=a1 (6.97)

ˆ2.r/ D Z2e

r2
e�r2=a2 ; (6.98)

where r1 and r2 denote the distance from the respective nuclei, and a1 and a2 are
arbitrary screening radii.

6.2. Figure 6.1 indicates that the screening function (6.5) turns negative at large
values of R. Convince yourself, e.g. by looking at the limit a1=a2 D 1, that this is
not a calculational error.

6.3. Consider a neutral Thomas-Fermi atom with a Yukawa-type charge density.
Determine the kinetic energy per volume as well as the electrostatic energy per
volume and compare the dependence on the distance r from the nucleus in the two
cases. Show that regardless of atomic number and screening radius, electrostatic
energy dominates at small r , while the opposite holds at large r .

6.4. Following Firsov (1957b) show that for a neutral system, the solution of the
Thomas-Fermi equation minimizes the total energy. Hint: Set � D �0Cı�, where �0
is the charge density connected to an exact solution of the Thomas-Fermi equation
for the potential. Insert this into (1.18) for v D 0 and expand in powers of ı�.
The zero-order term represents the exact energy, the linear term vanishes, and the
quadratic term can be written in the form

ı2E D 5

9
�k

Z
d3r

ı�.r/2

�0.r/1=3
C e2

2

Z
d3rd3r 0 ı�.r/ı�.r

0/
jr � r 0j ; (6.99)

which is positive.

6.5. By solving Problem 3.8, Vol. 1, you will arrive at the scattering law for a Bohr
potential, (6.32),
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‚.p/ D 2Z1Z2

m0v2
K1

�p
a

�
(6.100)

for small scattering angles, whereK1 denotes a modified Bessel function in standard
notation (Abramowitz and Stegun, 1964). Evaluate (6.31) for this scattering law.

Write the result in the form

2Z1Z2e
2

�v
	 g2.p=a/; (6.101)

and demonstrate that g2.p=a/ � 1 for unscreened Coulomb interaction.

6.6. Khodyrev (2000) argues that the Bohr criterion (6.24) ought to be replaced by

2p 	�̄: (6.102)

Identify the difference to Bohr’s argument, and try to form an opinion on what is
most relevant.

6.7. Problem 3.6, Vol. 1, concerns the scattering integral for the potential V.R/ D
A=R2, where A is a constant. Use the solution of that problem, ‚ D �.1 �
p=
p
p2 C A=Er/, to derive the potential by means of the Firsov inversion formula,

(6.69).

6.8. Show that for Rutherford scattering, the function w.
/=	 shown in Fig. 6.24
reduces to w.
/=	 � 1=4.
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