
Chapter 2

Charge Exchange: Atomistics

Abstract This chapter addresses primarily the process of charge exchange and cross
sections for electron capture. The theory of electron loss, which is similar to the
theory of target ionization, is indicated only briefly in this chapter. The treatment of
charge exchange includes classical and quantal theory of the Thomas process as well
as other classical models by Bohr and others. Essential steps are described in the
development of the quantum theory of charge exchange for light ions, in particular
problems encountered with the Brinkman-Kramers theory and the significance of
first- vs. second-order perturbation theory in charge exchange. Brief accounts are
given of the distorted-wave and eikonal approximations to charge exchange as well
as the process of radiative electron capture. The chapter concludes with a list of data
sources.

2.1 Introductory Comments

An ion penetrating through a gaseous or condensed material can experience a
change in its charge by losing or capturing one or more electrons in collisions with
the constituents of the medium. Such events affect the stopping and scattering of
the penetrating particle and, therefore, more or less directly, the induced radiation
effects.

Electron loss in a collision may be viewed as an ionization event, where the
roles of the projectile and the target are interchanged. This implies that much of
the theory described in other chapters of Volumes 1 and 2 of this monograph can
be applied to electron loss. However, the particle that loses electrons is typically
positively charged now rather than neutral. Conversely, the particle that gives rise to
electron loss is a target atom which, in the context of this monograph, is most often
electrically neutral.

There is no analog to electron capture in what we have looked at so far. However,
the jump of an electron from one atom or ion to another one is one of the central
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46 2 Atomistics

problems in many areas of science, especially in chemistry and biochemistry, plasma
physics, biophysics and astrophysics.

From an atomic-collision physics point of view, a charge-exchange process be-
tween two atomic particles may be viewed from any frame of reference. In other
words, the theory of the process

AC CB0 ! A0 C BC (2.1)

is independent of whether AC or B0 is viewed as the target. Therefore, in atomic-
collision physics the term ‘charge exchange’ denotes what is called ‘electron cap-
ture’ in particle penetration. In particle penetration, on the other hand, ‘charge ex-
change’ denotes the exchange of an electron between the projectile and the medium,
and hence the interplay of capture and loss of electrons by the projectile.

The phenomenon of electron capture was predicted by Flamm and Schumann
(1916) and discovered experimentally by Henderson (1923) who identified the pres-
ence of HeC ions in a beam of alpha particles penetrating through a gas. A first
attempt of a theoretical explanation was made by Thomas (1927) on the basis of
classical collision theory, and the quantal approach was pioneered by Oppenheimer
(1928) and Brinkman and Kramers (1930).

Renewed interest in charge-changing processes in connection with particle pen-
etration arose with the discovery of nuclear fission. Fragments from a fission reac-
tion are fairly heavy, highly-charged ions with atomic numbers around 40 and 50,
respectively, with initial velocities v=v0 � 10. The importance of charge-exchange
processes in the slowing down of such fragments was recognized by Bohr (1940,
1941) immediately after the discovery of fission. This was followed up in extensive
measurements by Lassen (1951a,b) which were mentioned in the previous chapter.

When particle accelerators became available for atomic-physics experiments,
measurements on charge exchange became a favoured subject, as is evidenced in
early reviews by Allison (1958), Nikolaev (1965) and Betz (1972) that are still
worthwhile reading. In the meantime the literature has exploded, but the present
survey will focus on topics that are of importance in particle penetration. Amongst
central theoretical references I like to mention classic papers by Thomas (1927),
Brinkman and Kramers (1930), Bell (1953) and Bohr and Lindhard (1954), and
more recent comprehensive reviews by Bransden and McDowell (1992), Dewangan
and Eichler (1994) and Tolstikhina and Shevelko (2013).

While the theory of charge exchange is one of the most challenging areas in
atomic-collision physics, a reader interested mostly in applications may jump over
this chapter on first reading and return to specific sections as the need arises.

2.2 Charge-Changing Events

Let us first consider the simple case of a stripped ion, e.g., a swift proton meeting a
free electron. Can the electron be captured by the proton? Well, if no other particle
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Fig. 2.1 Left: Electron emission by Auger process; right: Electron capture by inverse Auger re-
combination. Symbols A–D indicate energy levels

is involved, the process is forbidden by the conservation laws of energy and mo-
mentum: If it were allowed, the reverse process would likewise be allowed, where a
hydrogen atom spontaneously emits its electron without any external action.

To be more precise, consider the process in the rest frame of the ion: A free
electron approaching the nucleus has a positive energy, and hence will be scattered
rather than captured. Hence, in order to be captured, the electron must have a way
to get rid of its energy.

Let us see what happens if a third particle is involved. This could be a photon.
Indeed, if the collision is accompanied by the emission of a photon, excess energy
can be carried away so that the electron can end up in a bound state. This is called
radiative recombination (Oppenheimer, 1928) or ‘radiative electron capture’ (REC).
While the cross section for such a process is negligible at velocities v � c, radiative
electron capture is an important process in the relativistic regime.

Restrictions imposed by conservation laws can also be overcome if the ion car-
ries electrons to start with. The kinetic energy of the captured electron may be
transmitted to one or more electrons which get excited. You may view this as an
inverse Auger process. Figure 2.1(left) illustrates an Auger process, where an elec-
tron jumps from a level C to a lower level B, thereby giving its energy to another
electron that can jump from level C to the continuum. The inverse process, i.e.,
inverse Auger recombination, is illustrated on the right diagram in Fig. 2.1.

More important in the context of particle penetration is the charge exchange be-
tween two or more atomic particles. In that case, energy and momentum conserva-
tion are taken care of primarily by the motion of the recoiling nuclei which, as a first
approximation, is independent of the behaviour of the electrons. These nuclei pro-
vide a time-dependent potential that governs the motion of the electrons, somewhat
similar to what happens in a molecule. In close collisions, electron orbits may even
temporarily resemble those in a ‘united atom’, i.e., an atom with atomic number
Z1 CZ2. An electron bound to one atom before a collision has a statistical chance
to be bound to the other one at the time of separation. This process has high proba-
bility if it can proceed without a major change in orbital speed. Therefore, the cross
section for the process decreases rapidly when the projectile speed does not match
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Fig. 2.2 Double-scattering
process leading to electron
capture according to Thomas
(1927)
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an orbital speed. A proper description of this type of resonant process invokes the
laws of quantum mechanics.

At high relative velocities, multiple collisions between an electron and the col-
liding nuclei may end up with an electron bound to the projectile. This process will
be discussed in the following section.

Special considerations may be necessary for particles penetrating through con-
densed matter, where the question of whether or not an electron is bound to a projec-
tile may not have a unique answer. This is not only of theoretical interest: Swift ions
emerging from a foil are accompanied by electrons. As mentioned in Sect. 1.5.3, the
energy spectrum of these emitted ‘secondary electrons’ frequently shows a ‘convoy
peak’ in the beam direction at an energy � mv2=2, where v is the velocity of the
emerging ion beam. Such convoy or ‘cusp’ electrons, which may reflect ‘capture
into continuum’ or ‘loss into the continuum’ may have travelled in the vicinity of
the ion for a certain pathlength.

In this connection an operational definition of the charge of an ion travelling
through a material is needed. This may be achieved with X-ray spectroscopic meth-
ods: Since the energy of an X-ray emission line depends on the charge of the emit-
ting atom, X-rays emitted from penetrating ions will be split into a family of satellite
lines reflecting the charge states involved (Knudson et al., 1974, Horvat et al., 1995).

2.3 Early Estimates

2.3.1 Double Scattering: The Thomas Process

A simple process leading to electron capture was proposed by Thomas (1927), see
Fig. 2.2. A projectile 1 moves with a speed v toward a target atom 2 and hits a
target electron e which is kicked off with a recoil speed ve. If the electron can be
considered initially at rest, the relation between the recoil angle � and the electron
energy reads

1

2
mv2e D 2mv2 cos2 � : (2.2)
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according to (3.7) and (3.8), Vol. 1. Hence, for � D 60ı we have

ve D v : (2.3)

This is a necessary condition for the electron to be captured by the projectile, but not
a sufficient one, since the direction of motion does not match that of the projectile.
However, if the spatial configuration allows a subsequent collision with the target
nucleus, the electron may scatter another 60ı with negligible energy loss. If this
happens in the same scattering plane, and if the kinetic energymu2=2 in a reference
frame moving with the projectile is lower than the binding energy, the electron can
be considered as being captured.

Up to this point the argument rests on conservation laws of energy and momen-
tum and is, therefore, independent of whether a classical or quantal description is
adopted. When it comes to the evaluation of the cross section, there is, however, a
difference. Thomas (1927) evaluated a cross section for this process on the basis
of classical collision theory. His derivation hinges heavily on the relation between
impact parameter and scattering angle for the two consecutive collisions. The ne-
glect of the orbital motion implies that the theory can only be valid for v 	 v0. In
that velocity range a classical description of electron motion becomes questionable
according to Sect. 2.3.6, Vol. 1. The predicted capture cross section, which will not
be derived here, reads

�c D 64
p
2

3
�a20Z

2
1Z

7=2
2

�
a0

b1

�7=2 �v0
v

�11
(2.4)

for alpha particles in hydrogen, where b1 D 2Z1e
2=mumax and umax is the maxi-

mum allowed relative speed where the electron still is bound to the projectile.
Equation (2.4), when taken literally as the theory of charge exchange at high

velocity, was found to predict cross sections several orders of magnitude smaller
than measured. This, however, does not imply that the process does not exist:

1. The predicted velocity dependence / v�11 of the capture cross section was sub-
sequently found to describe the behaviour of the total capture cross section in the
limit of high but nonrelativistic projectile speed (Drisko, 1955).

2. Despite a low total capture cross section the process leaves a signature in the
differential cross section, i.e., the cross section at a given scattering angle of the
projectile. Indeed, since the electron carries away a lateral momentummv sin �,
the Thomas process should be observable at an angle

 ' m

M1

sin � D
p
3

2

m

M1

(2.5)

from the incident-beam direction. This peak was found in experiments by Horsdal-
Pedersen et al. (1983) on HC-He and HC-H2 and by Vogt et al. (1986) on HC-H,
as is illustrated in Fig. 2.3.
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Scattering angle [mrad]

Fig. 2.3 Differential cross section for single-electron capture in 7.5 MeV HC-He collision. Empty
symbols: Measurements of Horsdal-Pedersen et al. (1983). Solid symbols: Measurements of Fis-
cher et al. (2006). Solid line: Measurements of Fischer et al. (2006) convoluted with experimental
resolution of Horsdal-Pedersen et al. (1983). From Fischer et al. (2006)

3. Double scattering processes may be treated in second-order quantal perturba-
tion theory. Such calculations have been performed and will be discussed in
Sect. 2.4.5.1.

4. Spruch (1978) demonstrated that the classical treatment of the Thomas process is
valid when applied to the charge exchange between highly excited, high-angular-
momentum quantum states.

2.3.2 Bohr’s Model

A characteristic feature of the Thomas model is the fact that the orbital motion of
the target electron in its initial state is left out of consideration in the kinematics of
the capture process. Instead, the electron speed is adjusted to that of the projectile
by the first of two collision events. This feature also enters into an early estimate
by Bohr (1948) which, like the Thomas model, addressed electron capture by swift
alpha particles. Bohr notes that the cross section for acceleration to � v is given by

�v � �b2 (2.6)

with b D 2Z1e
2=mv2 (cf. Problem 3.7, Vol. 1). The criterion for capture, however,

is quantal and requires the electron to be confined to a sphere with a radius a0 �
�=mv around the projectile nucleus. The probability P for this to happen is given
by the ratio .a0=a/3, where a D a0=Z1 is the orbital radius in the projectile ground
state, i.e.,
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P �
�
Z1v0

v

�3
: (2.7)

On the basis of a simple atomic model, Bohr argued that the number of target elec-
trons that could be captured by this process was given by

n � Z
1=3
2

v

v0
: (2.8)

Collecting these factors, Bohr obtained a capture cross section

�c � 4�a20Z
5
1Z

1=3
2

�v0
v

�6
: (2.9)

While Bohr reported reasonable agreement with early measurements on alpha-
particle ranges by Rutherford (1924), we need to keep in mind that direct mea-
surements of capture cross sections did not exist at the time of writing1.

2.4 Quantum Theory of One-Electron Capture ?

2.4.1 A Qualitative Estimate

An essential feature of both the Thomas and the Bohr model is the need to accelerate
the electron in the capture process. However, regardless of the magnitude of the
projectile speed v, there is a probability for an electron in an atom to have an orbital
speed ve of the order of or even exceeding v, although this probability decreases
rapidly as v exceeds the mean velocity of the tightest-bound electrons. Therefore,
quantum theory allows charge exchange by a process where the electron velocity in
the target frame matches an orbital velocity in the projectile.

Figure 2.4 illustrates this process in classical terms: An electron with an orbital
speed ve, bound to a target nucleus 2, has a velocity ve � v relative to a penetrating
projectile 1. Let us assume the two nuclei to be identical, e.g. hydrogen. Then, if

jve � vj D ve ; (2.10)

the electron may orbit around the projectile nucleus 1 after the collision without
having to get rid of (or gain) kinetic energy.

From (2.10) you easily derive

v � ve D v2=2 : (2.11)

This condition can only be fulfilled if

ve � v=2 : (2.12)

1 Bohr’s paper, although printed in 1948, had been essentially finished about a decade earlier.
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Fig. 2.4 Classical illustration
of resonant electron capture.
See text
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Now, in classical mechanics, orbital radius and speed are uniquely related by Ke-
pler’s third law. Therefore this process is only possible for a distinct configuration in
space (impact parameter) and time. In quantum mechanics the uncertainty principle
allows these conditions to relax. We may then estimate a capture cross section

�c / �r20P1.v=2/P2.v=2/; ; (2.13)

where

P2.v=2/ D
Z
ve>v=2

d3vef2.ve/ ; (2.14)

is the probability for a target electron to have an orbital speed exceeding v=2.
Here f2.ve/ is the velocity distribution in the initial state, P1.v=2/ is the analog
of P2.v=2/ for the projectile, and

r0.v/ � 2�

v
(2.15)

is a representative radius defining the area in which capture is possible.
For Z1 D Z2 and hydrogenic 1s wave functions with a screening radius a you

may like to estimate the probability P2.v=2/ in Problem 2.4. For v 	 v0=Z you
find

P2.v=2/ D 4

5�

�a0v0
av

�5
: (2.16)

With this, (2.13) reduces to

�c � 222

25�
a20Z

10
�v0
v

�12
: (2.17)

Apart from a numerical factor, this is identical with the result of the rigorous quantal
calculation by Brinkman and Kramers (1930) which will be sketched below.

Note distinctly different dependencies on the projectile speed v in (2.4), (2.9) and
(2.17), providing stringent experimental tests on existing theories.
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2.4.2 General Considerations

We shall now have a look at charge exchange from a similar starting point as in
Sect. 4.3, Vol. 1, where the Bethe theory of excitation and energy loss was presented
on the basis of quantal perturbation theory. Charge exchange is more complex, since
the initial and final wave functions belong to different basis sets generated by dif-
ferent hamiltonians, dependent on whether it is the target or the projectile that binds
an electron.

Unlike the Bethe theory which, in its original form, is still today a quantitative
tool in the description of stopping for a considerable fraction of the pertinent param-
eter space in particle penetration, the original theory of charge exchange, initiated by
Oppenheimer (1928) and Brinkman and Kramers (1930), encountered unexpected
problems, the solution of which turned out to be a longlasting, somewhat painful
but also illuminating process. You may find a clear and encyclopedic description of
this development, summarizing contributions from over 400 references to the perti-
nent literature, in a review by Dewangan and Eichler (1994). The discussion in the
following two sections relies heavily on this work, but I shall shortcut the historical
development and try to arrive at the simplest conclusions more or less directly, still
following Dewangan and Eichler (1994) in numerous details.

The notation in this chapter will be more similar to the one adopted in Volume 1
than to the standard notation that has developed in the literature on charge exchange
over the years.

2.4.3 Semiclassical Theory

We shall consider a three-particle system consisting of a target nucleus with atomic
number Z2 located in the origin, a projectile nucleus with atomic number Z1 in
uniform motion,

R.t/ D p C vt ; (2.18)

and an electron bound initially to the target nucleus. Equeation (2.18) implies that
we operate in the semiclassical (or impact-parameter) picture. You may recall from
Sects. 4.3 and 4.4, Vol. 1 that apart from terms of the order ofm=M1 andm=M2, the
semiclassical picture delivers the same excitation cross sections as a fully quantal
description involving an incident plane wave. The same can be shown to be true in
charge exchange (Crothers and Holt, 1966, Dewangan and Eichler, 1994) but will
not be detailed here.

2.4.3.1 The Hamiltonian

The hamiltonian of the system may be written in the form
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H D p2

2m
C V2.r/C V1.jr � Rj/C V12.R/ ; (2.19)

where

V2.r/ D �Z2e
2

r
I V1.jr � Rj/ D � Z1e

2

jr � Rj I V12.R/ D Z1Z2e
2

R
: (2.20)

The interaction potential V12.R/ between the nuclei does not produce a force on the
electron, but it has been included nevertheless because it depends on time through
R.t/. The kinetic energy of the projectile nucleus, on the other hand, is taken con-
stant here and can, therefore, safely be neglected.

In the absence of the projectile, electron motion is governed by the hamiltonian

H D p2

2m
C V2.r/ (2.21)

with eigenstates uj .r/ and energies 
j .
We now split the hamiltonian H according to

H D H2 C V1 ; (2.22)

where
H2 D H C V12.R/C V1.R/ (2.23)

and
V1 D V1.jr � Rj/� V1.R/ : (2.24)

Here, a term V1.R/ has been added to the unperturbed hamiltonian and subtracted
from the perturbation. This innocently-looking step was first proposed by Bates
(1958), but it was Cheshire (1964) who recognized its central significance. Since
it causes the perturbation V1 to decrease as R�2 for large R, it removes undesired
consequences of the long range of the Coulomb force of the type encountered in
Sect. 3.5.1, Vol. 1.

2.4.3.2 Unperturbed Wave Functions

Let us first determine the unperturbed eigenstates of

H2 D H C f .t/ (2.25)

with

f .t/ D V12.R/C V1.R/ D Z1.Z2 � 1/e2

R
: (2.26)

Since f .t/ does not contain the electron coordinate r , it will make itself noticed as
a phase factor e�i˛.t/ in the wave function with
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˛.t/ D 1

�

Z t

dt 0 f .t 0/ D 1

�

Z t

dt 0
Z1.Z2 � 1/e2p
p2 C .vt 0/2

(2.27)

or

˛.t/ D ��1 ln
R � vt

p
C ˛0 ; (2.28)

where

�1 D Z1.Z2 � 1/e2
�v

; (2.29)

and ˛0 is an arbitrary constant which can be set equal to zero.
With this, eigenstates to H2 may be written as

 j .r ; t/ D ei�1 lnŒ.R�vt/=p
e�i�j t=�uj .r/ : (2.30)

Although we are now ready in principle to perform a perturbation expansion in
terms of V1, we need a valid description of the end configuration, where the electron
is bound to the projectile. To this end we split the hamiltonian according to

H D H1 C V2 ; (2.31)

where

H1 D p2

2m
C V1.jr � Rj/C V12.R/C V2.R/ (2.32)

and
V2 D V2.r/ � V2.R/ ; (2.33)

in strict analogy to (2.22)–(2.24).
Denoting eigenstates and energies of an electron in a projectile atom at rest as

v`.r/ and �`, respectively, an alternative basis set for the entire three-body system,
making reference to bound projectile states, reads

�`.r; t/ D ei�2 lnŒ.R�vt/=p
e�i	`t=�v`.r � R/ ei.k�r�!t/ ; (2.34)

where

�2 D Z2.Z1 � 1/e2

�v
: (2.35)

The last factor in (2.34) accounts for the uniform motion of the projectile. You may
verify in problem 2.1 that

�k D mvI �! D mv2=2 : (2.36)

2.4.3.3 Transition Amplitude

Since the �`.r; t/ form a complete basis set for the hamiltonian H, they can serve
as a basis for expansion of the exact wave function  .r ; t/ of the system,
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 .r ; t/ D
X
`

c`.t/ �`.r; t/ (2.37)

with coefficients

c`.t/ D
Z

d3r ��
` .r ; t/  .r ; t/ (2.38)

which, in addition to time, depend on velocity v and impact parameter p. The prob-
ability for the electron to be bound to the projectile into a state ` after the collision
is given by

P`.p; v/ D jc`.1/j2 : (2.39)

We may write the transition amplitude in the form

c`.1/ D
Z C1

�1
dt

d

dt

Z
d3r ��

` .r; t/ .r ; t/ ; (2.40)

since the overlap integral between the unperturbed initial target state and the unper-
turbed final projectile state, both taken at t D �1, vanishes.

You may rewrite the time derivative making use of the Schrödinger equation,
noting that  .r ; t/ is governed by H and �`.r ; t/ by H1,

c`.1/ D 1

i�

Z C1

�1
dt
Z

d3r ��
` .r ; t/.H � H1/ .r ; t/

D 1

i�

Z C1

�1
dt
Z

d3r ��
` .r; t/V2 .r ; t/: (2.41)

If you miss some details in this derivation, go to Problem 2.2.

2.4.3.4 Perturbation Expansion

Equation (2.41) is an exact relationship. In order to determine c`.1/ we need to
find the function  .r ; t/, which is a solution to the Schrödinger equation for the
three-particle system. An impressive arsenal of theoretical/computational methods
has become available for this purpose (Bransden and McDowell, 1992, Dewangan
and Eichler, 1994). Here we apply a perturbation expansion in powers of V1 which,
according to (4.36)–(4.38), Vol. 1 can be written in the form

 .r ; t/ D  0.r ; t/C
X
j

d
.1/
j .t/ j .r ; t/C : : : (2.42)

with

d
.1/
j .t/ D 1

i�

Z t

�1
dt 0
Z

d3r  �
j .r ; t

0/V1.r; t 0/ 0.r; t 0/ : (2.43)

With this we find
c`.1/ D c

.1/

`
.1/C c

.2/

`
.1/ : : : ; (2.44)
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where

c
.1/

`
.1/ D 1

i�

Z C1

�1
dt
Z

d3r ��
` .r ; t/V2 0.r ; t/ (2.45)

and

c
.2/

`
.1/ D � 1

�2

X
j

Z 1

�1
dt
Z

d3r ��
` .r; t/V2.r; t/ j .r ; t/

Z t

�1
dt 0
Z

d3r 0  �
j .r

0; t 0/V1.r 0; t 0/ 0.r 0; t 0/: (2.46)

While evaluating the leading term c
.1/

`
.1/ is by no means trivial, the form of the

second term indicates that the analytical complexity will increase rapidly with in-
creasing order.

2.4.4 First-Order Perturbation

Ignoring the second-order term for a while let us focus on the first-order term

 .r ; t/ '  0.r ; t/ ; (2.47)

where n D 0 denotes the initial state, so that

c`.1/ D 1

i�

Z C1

�1
dt
Z

d3r ��
` .r ; t/

�
Z2e

2

R.t/
� Z2e

2

r

�
 0.r ; t/ : (2.48)

This result, reflecting the B1B or ‘boundary-corrected first Born approximation’,
was demonstrated by Dewangan and Eichler (1986) to produce results in good
agreement with measurements of charge-exchange cross sections. The fact that valid
predictions may emerge already from the first Born approximation was in contrast
to the accepted view for many years.

You may wonder why it is the potentialV2 that appears in the transition amplitude
equation (2.41) rather than the perturbing potential V1. Well, the projection of  on
�` with  j as the initial state is the same as the projection of  on  j if �` is the
final state. If you adopt the latter description, you end up with (2.41), but with V2

replaced by V1, as you may verify by working on Problem 2.2.
Dual descriptions of scattering processes play a key role in the literature. This

has given rise to a special nomenclature which, however, will not be followed here,
because we are not going deeply enough into this subject matter to justify the effort.
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2.4.4.1 Resonance Charge Exchange

Evaluation of the multiple integral equation (2.48) is complicated in general, but
suitable tools have been developed for fully analytical evaluation in special cases,
and accurate numerical evaluation in others. As an example we shall have a look at a
relatively simple case, so-called resonance charge exchange, where Z1 D Z2 D Z

and charge exchange is considered between equivalent levels 0 ! 0. Then, by
insertion of (2.34), (2.48) reduces to

c0.1/ D 1

i�

Z 1

�1
dt
Z

d3r e�i.k�r�!t/u�
0.r � R/

�
Ze2

R
� Ze2

r

�
u0.r/ ; (2.49)

where the t-dependent phase factors ˛.t/ have dropped out. Now, since�
� �

2

2m
r2 � Z2e

2

r

�
u0.r/ D 
0u0.r/ ; (2.50)

where 
0 is the energy of the initial (and final) state we may replace�
Ze2

R
� Ze2

r

�
u0.r/ D

�
Ze2

R
C 
0 C �

2

2m
r2

�
u0.r/ : (2.51)

After introduction of the Fourier transform

u0.r/ D 1

.2�/3=2

Z
d3q u0.q/e

iq�r (2.52)

you find

c0.1/ D 1

.2�/3i�

Z 1

�1
dt
Z

d3r
Z

d3q
Z

d3q0e�i.k�r�!t/

� e�iq0 �.r�R/u�
0.q

0/
�
Ze2

R
C 
0 C �

2

2m
r2

�
u0.q/eiq�r : (2.53)

Here you may carry out the r2-operation and integrate over r . As a result you will
identify a Dirac function ı.�k�q0 Cq/. After integration over q0 you then arrive at

c0.1/ D 1

i�

Z 1

�1
dt ei!t

Z
d3q

� ei.q�k/�R u�
0.q � k/

�
Ze2

R
C 
0 � �

2q2

2m

�
u0.q/: (2.54)
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2.4.4.2 Brinkman-Kramers Approximation

Recalling that R depends on time, cf. (2.18), you will find it reasonable to split
(2.54) into two,

c0.1/ D cBK
0 .1/C�c0.1/ ; (2.55)

where cBK
0 .1/ originates in the term 
0 � �

2q2=2m and �c0.1/ in Ze2=R. The
superscript ‘BK’ stands for Brinkman-Kramers2. Considering the former term we
may integrate over time and obtain

cBK
0 .1/ D

Z
d3q ei.q�k/�p ı.q � v � k � v C !/ f0.q/ (2.56)

with

f0.q/ D 2�

i�
u�
o.q � k/

�

0 � �

2q2

2m

�
u0.q/: (2.57)

In the original work of Oppenheimer (1928) and Brinkman and Kramers (1930), the
term�c0.1/ was absent. If we ignore it for a moment we may go over to the cross
section

�BK
0 D

Z
d2p

ˇ̌
cBK
0 .1/

ˇ̌2
(2.58)

or, after insertion of (2.56) and integration over p,

�0 D .2�/2

v

Z
d3q ı.q � v � k � v C !/ jf0.q/j2 (2.59)

according to a procedure which was used in Sect. 4.3.4, Vol. 1.
Noting first that ! � k � v D ��k2=2m we recognize that the Dirac function

under the integral implies that q � k D k2=2 and thus,

.q � k/2 D q2: (2.60)

Since �q is the initial momentum of the target electron and �.q � k/ the final mo-
mentum of the captured electron seen from the laboratory frame, we learn from
(2.60) that charge exchange in this model is only possible in case of exact velocity-
matching. This is a quantification of the process sketched in Sect. 2.4.1, in particular
Fig. 2.4. Note the equivalence of (2.60) with (2.10).

Equation (2.60) also tells us that for s-states, all angular dependence is contained
in the Dirac function. Integration over the angular variable then leads to

2 In the literature, the term OBK, which stands for Oppenheimer-Brinkman-Kramers, occurs fre-
quently instead of BK. Both schemes, Oppenheimer (1928) and Brinkman and Kramers (1930)
operate in the first Born approximation without the term Ze2=R in the brackets, and in both
schemes, (2.49) plays a central role, although Oppenheimer (1928) derived it from the plane-wave
Born approximation, while Brinkman and Kramers (1930) started from the semiclassical impact-
parameter description. However, while the explicit evaluation by Brinkman and Kramers (1930)
involves exact integrations as described below, the evaluation by Oppenheimer (1928) invokes ap-
proximations which lead to drastic discrepancies.
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�BK
0 D .2�/5

�2v2

Z 1

k=2

q dq ju0.q/j4
�

0 � �

2q2

2m

�2
: (2.61)

For the 1s state of a hydrogen-like atom with

u0.r/ D 1p
�a3

e�r=a (2.62)

you may derive (Problem 2.3) the particularly simple result

�BK
0 D �a202

8 v
2
0

v2

Z 1

qDk=2

d.qa/2

.1C q2a2/6
(2.63)

or, after integration,

�BK
0 D �a20

218Z10v120
5v2.v2 C 4Z2v20/

5
: (2.64)

For v 	 2Z2v0 this result differs from the qualitative estimate (2.17) by a factor
of 5�2=16 D 3:1. As we shall learn shortly, (2.64) predicts a too large value, and
(2.17) comes closer to the correct result.

From a physical point of view, the steep decrease of the capture cross section with
increasing projectile speed reflects the fact that the process involves exclusively the
far tails of the velocity distribution of the electron in the target and projectile state.

This calculation can be generalized to capture into an excited state with the prin-
cipal quantum number n > 1. For a one-electron system with arbitrary Z1; Z2 one
finds (McDowell and Coleman, 1970)

�BK
n D �a20

218.Z1Z2/
5v8v120

5n3
�
v4 C 2.Z22 CZ21=n

2/v2v20 C .Z22 �Z21=n
2/2v40

	5 : (2.65)

Setting Z1 D Z2 you may recognize that the cross section for capture into excited
states falls off approximately as n�3.

2.4.4.3 Relativity

Equation (2.64) experiences a major change at beam velocities approaching the ve-
locity of light (Mittleman, 1964, Shakeshaft, 1979, Moiseiwitsch, 1980, Bransden
and McDowell, 1992). Calculations on the basis of the Dirac equation show a dif-
ference between charge exchange with and without spinflip, which increases with
increasing energy up to a factor of � 4 in the extreme relativistic regime. Available
analytic estimates are based on approximations valid in the moderately relativistic
range and differ from author to author. Moiseiwitsch (1980) reports capture cross
sections which can be written in the form

�c;direct D 27�

5
a20

˛12

	 � 1
�

	 C 1

	 � 1C 2˛2

�5
(2.66)
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for capture without spinflip and

�c;spinflip D 23�

5
a20˛

12 .	 C 1/3

.	 � 1C 2˛2/4
(2.67)

for capture with spinflip. Here, ˛ D v0=c D 1=137 is the fine structure constant and
	 D 1=

p
1 � v2=c2.

Both expressions are seen to go as � 1=	 with increasing projectile energy, i.e.,
inversely proportional to the beam energy, in contrast to the steep decrease in the
nonrelativistic limit.

While (2.66) approaches (2.64) for v=c � 1, (2.67) reads

�c;spinflip
v=c�1D 210�

5
a20˛

4

�
v20

v2 C 4v20

�4
: (2.68)

The factor ˛4 makes this a very small quantity.

2.4.4.4 B1B Approximation

You may recall that (2.64) stems from ignoring the term Ze2=R in (2.54) or (2.49).
The term�c0.1/ in (2.55) has been evaluated by Jackson and Schiff (1953) and by
Bates and Dalgarno (1952). Instead of going through a rather cumbersome integra-
tion procedure I shall try to demonstrate how it happens that incorporation of this
term reduces the cross section (2.64) substantially in case of the H-H system.

For clarity, change the spatial variable in (2.49) according to r ! r C R=2, so
that

c0.1/ D 1

i�

Z 1

�1
dt e�i.k�R=2C!t/

Z
d3r e�ik�r

u�
0.r � R=2/

�
Ze2

R
� Ze2

jr C R=2j
�
u0.r C R=2/; (2.69)

Figure 2.5 shows plots of the function u�
0.r � R=2/u0.r C R=2/ for the ground

state of hydrogen for R=a D 2 and 1/2. You may identify a horizontal ridge along
the connection line between the two nuclei and otherwise a strong decrease. Taylor
expansion of the factor Ze2=R�Ze2=jr C R=2j around the midpoint between the
nuclei, which is r D 0 in (2.69), leads to

Ze2

R
� Ze2

jr C R=2j ' Ze2

R
� 2Ze2

R

�
1 � 2

R � r

R2
: : :

�
: (2.70)

Here, the leading term for large R is �1=R. If we had failed to include the first
term in (2.70), the result would have been �2=R instead. Since the cross section
is governed by the square of the transition amplitude, we may expect a substantial
correction.
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Fig. 2.5 Plots of the function u�
0.r � R=2/u0.r C R=2/ for the 1s state of a hydrogen-like

atom. Left: a=R D 1=2; right: a=R D 2. x denotes the component of r in the direction of R in
units of a. y denotes a component perpendicular to R in units of a
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Fig. 2.6 The ratio �B1B=�BK according to Jackson and Schiff (1953) for the HC-H system, cf.
(2.71). The dashed line indicates the regime where relativistic corrections need to be considered

According to Jackson and Schiff (1953), the ratio between the complete B1B
cross section and the BK result reads
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�
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�
31C 32

v20
v2

C 16
v40
v4

�
(2.71)

for the HC-H system. This function is shown in Fig. 2.6. Evidently, the B1B correc-
tion causes a decrease by up to an order of magnitude below the BK result in the
pertinent velocity range v � v0.
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Relativistic calculations have been performed by Eichler (1987). For the HC-H
system, corrections to Figure 2.6 amount to a few per cent in the upper end of the
graph but become very substantial for heavy ions.

2.4.4.5 Problems with the Brinkman-Kramers Approximation

For a full description of the historical development the reader is referred to the ar-
ticle by Dewangan and Eichler (1994). In brief, measurements on charge exchange
in HC-H collisions by Keene (1949) and Ribe (1951) demonstrated that the predic-
tions of Brinkman and Kramers (1930) overestimated the capture cross section by
about a factor of four at beam energies ranging from a few keV to over 100 keV.
Almost simultaneously, Bates and Dalgarno (1952) and Jackson and Schiff (1953)
pointed out that this discrepancy could be removed by adding a term e2=R to the
perturbing potential �e2=jr � Rj. The justification of this term was the fact that the
hamiltonian equation (2.19) of the three-body system contains the internuclear in-
teraction Z1Z2e2=R. While it was unclear why the internuclear interaction should
have such a drastic influence on the electronic transition probability, the agreement
with experiment was very convincing over an energy range from � 30 to 150 keV. It
seemed plausible that poor agreement at lower velocities was due to insufficiencies
of the Born approximation.

As a test of the validity of this model it was applied to heavier ions, in casu C6C,
N7C and F9C on Ar by Halpern and Law (1975). Here, cross sections calculated
in the modified BK approach overestimated existing experimental values by two
to three orders of magnitude. From the above derivation you may recognize that
this was caused by incorporation of a term Z1Z2e

2=R instead of Z2e2=R in the
perturbation. Therefore, this extension of the Brinkman-Kramers scheme could not
be taken as an acceptable solution of the charge-exchange problem.

In Sect. 2.3.1 we have seen that the Thomas capture mechanism invokes two
scattering events by the electron. It seemed reasonable, therefore, to assume that a
quantal description of charge exchange would warrant a treatment up to the second
order in the perturbation expansion (Drisko, 1955). A wealth of clever theory has
been developed based on this assumption over almost half a century, cf. the review
by Dewangan and Eichler (1994). And indeed, second-order terms in the BK expan-
sion may well be dominating over those of first order. However, once second-order
terms become comparable in magnitude with first-order terms the question becomes
relevant whether third- and higher-order terms ever become negligible. Indeed, even
the convergence of the Born expansion itself has been questioned many years ago
(Aaron et al., 1961).

It was Cheshire (1964) who identified the long range of the Coulomb interaction
as the cause of the problem and who showed how to eliminate it by rearranging
the hamiltonian, adding and subtracting the term Z2e

2=R. However, only HC-H
was addressed, wherewith the results of Bates and Dalgarno (1952) and Jackson
and Schiff (1953) were reproduced. As a consequence, the true scope of this was
only slowly recognized in the subsequent development (Belkić et al., 1979). The
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breakthrough came with a paper by Dewangan and Eichler (1986) that produced a
fairly reasonable description of charge exchange in the HC-Ar system already in the
first Born approximation.

2.4.4.6 Heteronuclear Systems

Electrons may be captured into a variety of final projectile states, particularly in
heteronuclear collision systems, i.e., for Z1 ¤ Z2, where the resonance condition

j D �` is normally not fulfilled. Exact analytical calculations, asymptotic expan-
sions and accurate numerical evaluations may be found in the literature, and again
Bransden and McDowell (1992) and Dewangan and Eichler (1994) are very valu-
able sources for a literature search. Several comparisons with experimental data are
shown there, which demonstrate good agreement between theory and experiment for
charge exchange between bare Z1-ions (Z1 > 1/ and hydrogen as well as between
protons and the K-shell of an atom (Z2 > 1).

Here I like to briefly discuss features that deserve attention in this context, in
particular the role of the phase factor ˛.t/.

Keeping within first-order perturbation theory, we may go back to (2.48) which,
after insertion of (2.30) and (2.34) reads

c`.1/ D 1

i�

Z C1

�1
dt
Z

d3r ei� lnŒ.R�vt/=p
 ei.	`��0/t=�

� v�
` .r � R/ e�i.k�r�!t/

�
Z2e

2

R.t/
� Z2e

2

r

�
u0.r/; (2.72)

where

� D �1 � �2 D .Z2 �Z1/e2
�v

: (2.73)

You may note that the terms going as Z1Z2, expressing the interaction V12.R/
between the target nuclei and which enter �1 and �2, have dropped out in the differ-
ence �. While this was to be expected, it appears gratifying nevertheless. However,
a phase factor exp.i� lnŒjR � vt j=p� has to be dealt with for heterogeneous systems
(Z1 ¤ Z2). To this adds a phase factor exp.i Œ�` � 
0�t=�/.

Note also that the p-dependence in (2.72) gives rise to a phase factor e�i� lnp.
This complicates calculations on differential cross sections for charge exchange.
This phase factor drops out when the capture probability jc`.1/j2 is determined,
which leads to the total cross section for charge exchange.

It is of interest to study the role of the phase factor exp.i� lnŒ.R � vt/=p�/.
Figure 2.7 shows the function

ln
R � vt
p

D ln
�p

1C .vt=p/2 � vt=p
�

(2.74)
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Fig. 2.7 The function ln.
p
1C .vt=p/2 � vt=p/ governing the phase factor exp.i� lnŒ.R �

vt/=p
/ in (2.72)

versus vt=p. You may note that except in the vicinity of t D 0, this phase factor
gives rise to rapid oscillations of the integrand, indicating that the time interval in
which capture is likely, narrows in as Z1 increases with Z2 kept constant3.

Figure 2.8 shows the real and imaginary part of the phase factor for � D 1=2

and 2, respectively. The theory as presented above is a high-speed theory. Hence,
small values of � appear most representative. Evidently, rapid oscillations in this
case complicate the evaluation and require reliable computational methods.

2.4.5 Beyond First-Order Perturbation Theory

In addition to straight second-order perturbation theory, an impressive number of
attempts has been made to explain and repair the discrepancies between calculated
and measured cross sections for charge exchange. Dewangan and Eichler (1994) list
and discuss twenty-one theoretical schemes. Many of them exist in a ‘boundary-
corrected’ version, where the electron wave function carries a phase factor of the
type of ˛.t/, (2.28) with an arbitrary constant ˛0, and an uncorrected version,
where such a factor is missing. In view of the central importance of the Coulomb
boundary correction, uncorrected versions may be considered inadequate, except for

3 In the literature you will most often find a slightly different form of this phase factor, which is
found by replacing p in the denominator by another constant, in casu the de Broglie wavelength
̄ D �=mv, so that

ln
R � vt
p

! ln
mv.R � vt/

�
; (2.75)

which is the form proposed by Cheshire (1964). This replacement reflects a different choice of the
constant ˛0 mentioned in (2.28) and does not affect the final result, unless an approximation is
made that spoils this invariance.
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Fig. 2.8 Real and imaginary part of the phase factor exp.i� lnŒ.R � vt/=p
/ entering the tran-
sition amplitude for heterogeneous collision systems, Z1 ¤ Z2. Upper graph: � D 2; Lower
graph: � D 1=2

Z1 D Z2, where the phase factors cancel out. Amongst eight schemes for which a
boundary-corrected version exists, I wish to give preference to the CDW (continuum
distorted wave) picture and the eikonal approximation.

2.4.5.1 Second-order Perturbation Theory

Contributions from second-order perturbation theory to charge exchange were dis-
cussed qualitatively right from the beginning, but interest in these contributions in-
creased dramatically as the deficiencies of the Brinkman and Kramers (1930) ap-
proach discussed in Sect. 2.4.4.5 became evident. You may have noticed in Chaps. 3
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Fig. 2.9 Total (left) and differential (right) cross section for charge exchange in the HC-H system.
BK: Brinkman and Kramers (1930); JS: Jackson and Schiff (1953); D: Drisko (1955); II: Second
Born approximation (Kramer, 1972); From Kramer (1972)

and 6, Vol. 1, and again in Sect. 2.4.3.4, that perturbation theory for collision pro-
cesses gets considerably more complex when you go from the first to higher orders.
But in hindside, the major obstacle in front of a successful theory was the lacking
recognition of the Coulomb boundary condition and the importance of the rear-
rangement of the hamiltonian expressed by (2.22).

Early second-order theories starting with Drisko (1955), Dettmann (1971) and
Kramer (1972) were straight extensions of the Brinkman-Kramers approach. Most
importantly, it was found that asymptotically the contribution to the capture cross
section from the second Born approximation behaved as v�11, in agreement with
the classical estimate of capture by double scattering (Thomas, 1927). Although the
practical significance of this result is limited because relativistic corrections were
neglected, it meant that first-order perturbation theory could not provide a quantita-
tive description.

The scheme did not lead to better agreement with experimental results than
the BK calculation. This led to an impressive theoretical effort by several re-
search groups, which resulted in a variety of theoretical schemes. In addition to
the distorted-wave and eikonal approximations to be sketched below, I like to men-
tion schemes which take into account higher-order contributions in terms of either
Z1 or Z2, whichever is bigger. Such approaches seemed appropriate for strongly
asymmetric collision partners (Briggs, 1977, Macek and Shakeshaft, 1980, Macek
and Taulbjerg, 1981). If you are interested in a comprehensive discussion of the pros
and cons of such approaches, I refer again to Bransden and McDowell (1992) and
Dewangan and Eichler (1994).
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We have seen in Sect. 2.4.4.4 that the scheme of Jackson and Schiff (1953) yields
results compatible with those of the B1B approximation when applied to HC-H.
From (2.46) you may extract that this feature also pertains in the second order.
Therefore, an early numerical evaluation by Kramer (1972) may be expected to pro-
vide valid results. Figure 2.9 shows comparisons between first- and second-order
results for both the total charge-exchange cross section and the cross section dif-
ferential in scattering angle, which reflects the dependence of the charge-exchange
probability on impact parameter.

In the total cross section (Fig. 2.9left) you see that a major improvement is the
step from the Brinkman-Kramers to the Jackson-Schiff result, while the second Born
approximation provides a further, but only minor decrease. The differential cross
section drops down to zero at some intermediate angle. This reflects a change in
sign of the transition amplitude. According to Horsdal-Pedersen (1981) this dip is a
general phenomenon related to the way how the nucleus-nucleus interaction is taken
into account in the hamiltonian.

Calculations for other systems with Z1 D Z2 were performed by Belkić et al.
(1987), and for Z1 ¤ Z2 by Decker and Eichler (1989). Note here that the number
of integrations invoked in (2.46) is prohibitively large for numerical evaluation in
general. While it is tempting, as a first step, to carry out the summation over j , this
is not straightforward since a simple closure relationX

j

 j .r; t/ j .r
0; t/ D ı.r � r 0/ (2.76)

holds only for t D t 0. Therefore, an approximation has frequently been used where
the intermediate states are approximated by free-particle wave functions,

uj .r ; t/ D 1

.2�/3=2
eiŒk�r�.�k2=2m/t � : (2.77)

With this, the sum over j reduces to an integration over k,

X
j

 j .r ; t/ 
�.r; t 0/ D 1

.2�/3
f .t; t 0/

Z
d3k eik�.r�r0/e�i.�k2=2m/.t�t 0/ (2.78)

with

f .t; t 0/ D exp
�

i�1 ln
R � vt

R � vt 0
�
: (2.79)

This integral can be evaluated in closed form (Problem 2.5), so that

X
j

 j .r; t/ 
�.r ; t 0/

D e�3i�=4

�
m

2��.t � t 0/

�3=2
f .t; t 0/ exp

�
i
m.r � r 0/2

2�.t � t 0/

�
(2.80)
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2.4.5.2 Distorted-Wave Picture

Distorted-wave scattering theories are perturbation expansions in which part of
the perturbation has been incorporated into the zero-order wave function. In other
words, an interaction potential VDW.r; t/ is adopted which allows for an analytic or
at least accurate nonperturbational determination of zero-order wave functions. The
subsequent perturbation expansion operates on the basis of an effective interaction
U.r; t/ D V.r; t/�VDW.r; t/ which is weaker than the actual interaction V.r; t/ and
therefore leads to a more rapidly converging perturbation series.

Thus, perturbation theory as outlined in Sect. 2.4.3 is a distorted-wave theory
with the special choice of UDW.r; t/ D V1.r/ � V1.R.t//. We have seen that this
rearrangement of the interaction implies the phase factor e�i˛.t/=�. However, in the
literature on charge exchange these features do not always appear together: There
are distorted-wave theories which do not incorporate a phase factor, or allow for a
phase factor only in either the incoming or the outgoing wave.

The success of a distorted-wave theory hinges on a suitable model interaction
which approximates the real interaction and, at the same time, allows to find appro-
priate wave functions in zero order, preferrably exact ones. Since deviations from
free undisturbed motion are expected to be most pronounced at maximum interac-
tion, distorted-wave potentials have typically a short range.

Calculations on charge exchange with DW models have been performed by many
authors starting from Cheshire (1964). For analytical convenience, DW potentials
frequently depend on the time variable only. A popular choice is

VDW.t/ D
Z

d3r  �
0 .r ; t/V.r; t/  0.r ; t/ (2.81)

which, for a hydrogen-like target and an interaction of the form of (2.24), leads to

VDW.t/ D Z1e
2

�
1

R.t/
C 1

a

�
e�2R.t/=a ; (2.82)

as you may find by solving Problem 2.6. Selected results will be shown below.

2.4.5.3 Eikonal Approximation

Consider the function

 eik.r ; t/ D e�iS.r;t/=� 0.r; t/ ; (2.83)

where

S.r ; t/ D
Z t

dt 0 V.r ; t/ (2.84)

and  0.r ; t/ is an eigenfunction to H0.  eik.r ; t/ is not an exact solution to the
Schrödinger equation, ŒH0 C V.r; t/� .r ; t/ D i�@ .r ; t/=@t , but you may easily
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Fig. 2.10 Left: Total capture cross section for HC-H. Solid line: B1B approximation (Belkić et al.,
1987); dotted line: CDW approximation (Belkić et al., 1979); dashed line: Eikonal approximation
(Dewangan and Eichler, 1994). Right: Same for HeCC-H. Solid line: B1B approximation (Belkić
et al., 1987); dotted line: CDW approximation (Belkić and Janev, 1973, Belkić et al., 1992). Exper-
imental data refer to atomic hydrogen quoted by Dewangan and Eichler (1994). From Dewangan
and Eichler (1994)

verify that

i�
@ eik.r; t/

@t
D Œ
0 C V.r; t/�  eik.r ; t/ : (2.85)

Therefore, eik.r ; t/will normally be a better approximation to the exact wave func-
tion than the zero-order approximation 0.r ; t/, where V.r; t/ would be missing on
the right-hand side of (2.85).

The quantity S.t/ as defined by (2.84) is called the eikonal. A similar quantity
in optics is called the optical path. The eikonal approximation (2.83) is a standard
scheme in quantum mechanics (Schiff, 1981), which was introduced into scattering
theory by Molière (1947).

In the context of (2.24), the eikonal reads

S.r ; t/ D
Z t

dt 0
�
V1.jr � R.t/j/� V1 .R.t//

�

D Z1e
2

v
ln
vjr � Rj C v � .r � R/

vR � v � R
: (2.86)

You may note that S D 0 for t D ˙1. This implies that the full phase factor
exp.�i˛.t/=� has to be added to the eikonal wave function in order that it satisfies
the Coulomb boundary condition. This condition is fulfilled if  0.r ; t/ is taken in
the boundary-corrected form, (2.30).
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Fig. 2.11 Total capture cross sections for HC-He for three energy intervals (left to right).
Solid lines: B1B; dot-dashed lines: DWBA; dashed lines: OBK; double-dot-dashed lines: eikonal
(Kobayashi et al., 1985). Experimental data quoted by Toshima et al. (1987). From Toshima et al.
(1987)

2.4.5.4 Comparison with Experiment

The unperturbed wave function  0, the CDW wave function  CDW or the eikonal
wave function  eik can all serve as first-order approximations in a perturbation the-
ory of charge exchange. Either approximation can be improved by going to the next
order or by applying other approaches such as variational procedures.

Figure 2.10 shows results for protons in hydrogen. Calculations refer to atomic
hydrogen as a target. Five sets of experimental data were likewise found with atomic
hydrogen, while the remaining six data sets refer to molecular hydrogen. The agree-
ment with experimental results appears very good, and differences between three
theoretical results are comparable with the scatter of experimental data. Note that
the cross section varies over almost nine orders of magnitude for an energy variation
over only two orders of magnitude.

Figure 2.11 shows comparisons between several calculational schemes and mea-
surements for HC-He. It appears that the best agreement with experiment is achieved
with the B1B and the eikonal method. However, calculations refer to 1s � 1s pro-
cesses only, and the calculated cross sections were multiplied by a constant factor of
1.2 to account for the fact that measured cross sections do not differentiate between
final states.

Figure 2.12 shows the measured differential cross section for charge exchange in
HC-He by Fischer et al. (2006) which was already shown in Fig. 2.3, but now com-
pared with two theoretical results. Although the Thomas peak is clearly identified in
both measurement and theory, quantitative agreement with experimental data does
not appear better than about a factor of two. It is important here to note the angular
scale: Considering the necessary angular resolution, it is a remarkable achievement
by the experimentalists (Horsdal-Pedersen et al., 1983, Fischer et al., 2006) that the
peak has been identified at all.
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Fig. 2.12 Differential cross section for single-electron capture in 7.5 MeV HC-He collision. Solid
symbols: Measurements of Fischer et al. (2006). Solid line: CDW calculation (Abufager et al.,
2005); dashed line: multiple-scattering (Faddeev) calculation (Adivi and Bolorizadeh, 2004). The-
oretical calculations convoluted with the experimental resolution of the apparatus. Dotted lines:
Theory before convolution. From Fischer et al. (2006)

2.5 Multiple-Electron Systems

2.5.1 Classical Models

A number of models for electron capture in a single event have been developed on
the basis of classical collision theory. It is instructive to confront these models with
quantal estimates to be discussed in the following section.

2.5.1.1 Bell Model

The estimate of Bell (1953) addressed electron capture from light gas atoms by
fission fragments with a high projectile charge q1e. Even in a distant interaction,
the force exerted by the projectile on a target electron can exceed its binding force.
From the instant when this happens, the electron is considered only to interact with
the projectile, and the effect of the target is ignored. The electron is considered as
captured if its speed in the rest frame of the projectile is below the escape velocity.

Quantitative estimates on the basis of this model involve standard relations of
classical Kepler motion. Trends of the capture cross sections were mentioned by
Bell, but quantitative conclusions were only reported on equilibrium charges, which
also invoke a model for electron loss.

Extensive calculations on the basis of a modified Bell model were performed by
Gluckstern (1955).
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2.5.1.2 Bohr-Lindhard Model

The model of Bohr and Lindhard (1954) likewise addresses capture and loss by
fission fragments. Similar to Bell, they introduce a critical distance r0 at which the
Coulomb force due to the projectile balances the centrifugal force of the electron
in its Kepler motion around the target nucleus. While the projectile approaches the
target even further, the electron is assumed to gradually adjust its velocity toward
the projectile speed, so that at some time its energy in the rest frame (kinetic plus
potential) becomes zero. If this happens while the distance between the two nuclei
is still less than r0, the electron is considered as captured, so that the capture cross
section is �c D �r20 .

On the basis of a simple atomic model, Bohr and Lindhard (1954) find

�c D �a20q
2
1Z

1=3
2

�v0
v

�3
: (2.87)

While this formula differs from Bohr’s earlier expression, (2.9), you may recall that
(2.87) is geared toward fission fragments, while (2.9) was developed with applica-
tion to alpha particles in mind.

Bohr and Lindhard also note that the considered process favours electrons mov-
ing at a speed close to v=2, where only a minor adjustment in velocity is required
for the electron to bind to the projectile, cf. Fig. 2.4 above. This condition may be
difficult to fulfill for very light target atoms, with the consequence of electron cap-
ture becoming a rare process. By relaxing the criterion for capture, an alternative
expression was found, valid specifically for weakly-bound target electrons, where

�c D �a20q
2
1

�v0
v

�2 q22
n03 : (2.88)

Here q2e represents a screened charge of the target nucleus and n0 an effective quan-
tum number.

Knudsen et al. (1981b) applied the Bohr-Lindhard model in conjunction with
a simple atomic model to establish an approximate scaling relationship for capture
cross sections for a wide range of collision systems. Figure 2.13 shows a comparison
of their formula with a large number of experimental data. While the scaling is by no
means perfect, the formula may well provide a reliable order-of-magnitude estimate
of a capture cross section in situations where experimental data are unavailable.

2.5.1.3 Straight Simulation

Computer simulation, i.e., straight numerical solution of the pertinent equations of
motion has become increasingly successful with the development of powerful com-
puters. In the context of charge exchange, pertinent equations of motion are New-
ton’s second law as well as the Schrödinger and the Dirac equation.
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Fig. 2.13 Capture cross section for positive ions in argon. Experimental data for N, O, F, Ne, Ar,
Br, Kr, I, Xe and W ions with charges q varying from 4 to 17 from a large number of sources
quoted by Knudsen et al. (1981a) and compared with an empirical scaling relation. From Knudsen
et al. (1981a)

We have seen that a classical description may well be appropriate if certain con-
ditions are fulfilled. However, proper incorporation of the orbital motion of target
and projectile electrons makes even the simplest collision systems untractable by
conventional mathematical methods. This stimulated Abrines and Percival (1966a)
to establish a straight numerical approach, which now goes under the label CTMC,
or classical-trajectory Monte Carlo Calculation.

CTMC invokes three steps,

� the preparation of a statistical sample,
� simulating the dynamics of each configuration, and
� a statistical analysis of the outcome.

Quantum mechanics enters implicitly via input parameters such as binding energies
and velocity distributions of the electrons. Obtaining accurate results requires good
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Fig. 2.14 State-separated cross sections for charge exchange in HC-He collisions calculated by
the CTMC method compared with experimental results. From Schultz et al. (1992)

statistics and, hence, extensive computation time. On the other hand, one and the
same output obtained by this method can be used to extract a variety of quantities
of physical interest, e.g., excitation and ionization cross sections.

Abrines and Percival (1966b) applied the scheme to charge exchange in HC-H
with good success. The range of applicability of the method has been greatly ex-
panded by the work of Olson and Salop (1977), whose code has become a standard
tool in atomic-collision theory, in particular when highly-charged ions and high-Z2
targets are involved. Figure 2.14 shows an example.

Numerical solutions of the Schrödinger equation have become common in atomic-
collision physics. Such calculations can be performed by the ‘coupled-channel’
method, where the wave function is expanded in terms of some basis such as (2.37),
but instead of solving the resulting set of linear equations by perturbation expansion,
a complete numerical solution is found by defining a subset of a finite number of
states that are supposed to govern the process considered.

The number of states involved in charge-exchange and ionization processes
increases with increasing projectile velocity. Therefore, the applicability of this
method is limited by computational power to not too high projectile speeds. Dif-
ferential cross sections are less CPU-intensive than total cross sections which may
require reliable results for a wide range of impact parameters.

An example is the the END (Electron Nuclear Dynamics) code, which was de-
signed with a view to the kinetics of chemical reactions (Deumens et al., 1994). In
this code the nuclear motion is described by quantal wave packets of width zero.
The adopted formalism is a quantal version of the Lagrange formalism known from
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Fig. 2.15 Total capture cross section for HC-H. Solid curve: END (Killian et al., 2004); Experi-
mental data and other theoretical curves quoted by Killian et al. (2004). From Killian et al. (2004)

classical mechanics. The forward and backward coupling between electronic and
nuclear motion is taken into account, as well as electron-electron interaction. In that
sense, the code is suitable for application in systems containing many electrons,
but the main limitations is available computational power. An example is shown in
Fig. 2.15.

2.5.2 Data

An extensive compilation of calculated and measured capture cross sections may be
found in three articles by Janev et al. (1983), Gallagher et al. (1983) and Janev and
Gallagher (1983).

On the basis of empirical scaling relations found by Alonso and Gould (1982),
Knudsen et al. (1981a), Ryufuku (1982) and Janev et al. (1980), Schlachter et al.
(1983) proposed the empirical scaling relation

�c D
p
q1

Z1:82

1:1 � 10�8

QE4:8
�
1 � e�0:037 QE2:2

� �
1 � e�2:44�10�5 QE2:6

�
; (2.89)

where
QE D E

Z1:252 q0:71
; (2.90)
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Fig. 2.16 Scaling of electron capture cross sections according to Schlachter et al. (1983). Solid
line: (2.89). Points: Measured. From Schlachter et al. (1983)

with �c in cm2 and E in keV/u. Here, the QE�4:8 dependence determines the high-
energy behaviour for QE � 100. The second factor causes a bend-over in the interval
10 � QE � 100, and the last factor causes a further bend-over so that the function
approaches a constant for QE < 10. An example is shown in Fig. 2.16.

Comparisons with measurements on a number of systems were performed by
Shevelko et al. (2010). Two examples, referring to measurements with Ge31C on Ne
(Stöhlker et al., 1992) and Xe18C on N2 (Olson et al., 2002), are shown in Fig. 2.17.
The agreement achieved with (2.89) and theoretical estimates, CTMC and eikonal
approximation (Stöhlker et al., 1992) as well as CDW and the CAPTURE code
(Shevelko et al., 2004) illustrates the statement by Tolstikhina and Shevelko (2013)
that ‘getting an accuracy within a factor of 2 is a rather tedious task’.

2.6 Radiative Electron Capture ?

It has been mentioned in Sect. 2.2 that an ion may capture a free electron if the pro-
cess is accompanied by the emission of a photon. This process, illustrated schemati-
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Fig. 2.17 Comparison of measured single-electron capture cross sections with semi-empirical for-
mula and theoretical estimates. See text. From Shevelko et al. (2010)

cally in the left part of Fig. 2.18, is called radiative recombination. The right part of
the figure indicates that radiative recombination is the inverse of the wellknown pho-
toemission (or photoelectric emission) process. Radiative recombination can also
take place with an electron that is initially bound to another atom or molecule. Then
we talk about ‘radiative electron capture’.

The existence of this effect was deduced by Raisbeck and Yiou (1971) from
measurements of equilibrium charge states of high-energy (40–600 MeV) protons
penetrating thin metal foils.

Subsequently, Schnopper et al. (1972) found X-ray emission in experiments with
S, Cl and Br ions with energies up to 140 MeV. Ions in that energy range are highly
charged, so that the emission of characteristic X-rays is greatly reduced. Measured
continuous X-ray spectra were ascribed to radiative electron capture.

Kienle et al. (1973) made similar experiments with N, Ne and Ar beams at ener-
gies up to 288 MeV and, in addition to demonstrating convincing comparisons with
theory, identified that also Bremsstrahlung was active.

From the experimental conditions specified here you may get an impression of
radiative electron capture being a high-velocity phenomenon. Let us see how we can
get at an estimate without diving too much into relativistic collision theory.
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Fig. 2.18 Radiative recombination (left) and photoemission (right)

2.6.1 Detailed Balance

Figure 2.18 suggests a relation between photoemission and radiative recombination.
One condition that must be common to both phenomena is energy conservation,

�! D U C Ee ; (2.91)

where �! is the photon energy,Ee the kinetic energy of the free electron and U the
binding energy of the electron in the atom.

However, also the cross sections are related. To appreciate this, consider first an
elastic collision between two particles 1 and 2. In Chap. 3, Vol. 1 we have considered
the differential cross section both classically and quantally and have moved freely
between the laboratory and the centre-of-mass frame of reference. We also made
use of a reference frame in which the projectile was at rest. The differential cross
section was expressed in various variables, but its magnitude was independent of the
frame of reference, at least in the nonrelativistic limit. Indeed, in classical nonrela-
tivistic collision theory the differential cross section is equal to an area 2�p dp, the
magnitude of which is the same, whether viewed from the laboratory, the projectile
or any other reference frame.

The process shown in Fig. 2.18 is not an elastic collision, hence the above argu-
ment does not apply here. However, the transition probability must be independent
of the arrow of the time, as long as energy conservation is fulfilled. This is called
the principle of detailed balance. You may convince yourself of this by looking into
Problem 2.7. In order to convert it into a relation between cross sections we employ
the definition emerging from (2.1), Vol. 1, where the cross section for an event was
found to be given by the ratio of the mean number of events per unit time and the
incident current density.

Following Landau and Lifshitz (1960) we consider a reaction between two parti-
cles which results in a change of their identity, so that 1 and 2 represent the state of
the system before and after the interaction. If the initial state is specified, the final
state will represent a variety of configurations, such that the probability for transi-
tion to a given state j2 is given by some function P.j1; j2/. In the reverse process,
on the other hand, it is the state j2 that is specified, while j1 comprises a variety of
configurations. The time reversal implied by the Schrödinger equation, on the other
hand, specifies both the initial and the final state.
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It is convenient to consider a finite normalization volume L3 here, as has been
done in Sect. 5.7.1, Vol. 1, so that a free particle is characterized by a wave function

 k.r/ D 1

L3=2
eik�r (2.92)

with k D .�x; �y ; �z/2�=L.
The total number of quantum states in an element d3k in momentum space (dis-

regarding spin) is then given by

�
L

2�

�3
d3k : (2.93)

We may then express the transition probability by a probability density w12,

P.j1; j2/ ! w12

�
L

2�

�3
d3k2 : (2.94)

where both the incident and the final configuration represent single quantum states.
Hence the quantity w12 so defined must satisfy detailed balance,

w12 D w21 : (2.95)

We may write the cross section d�12 in the form

d�12 D dK12ı.E1 � E2/dE2 ; (2.96)

where the Dirac function represents energy conservation, cf. (2.91), while dK12
contains all other dependencies.

The transition probability is given by the product of the cross section, and the
incident current density, so that

w12 D
�
2�

L

�3
v1N1dK12ı.E1 � E2/

dE2
d3k

; (2.97)

where N1 and v1 represent the number of incident particles per volume and their
speed, respectively.

The same relation holds for the inverse process with subscripts 1 and 2 inter-
changed. With this, (2.95) reduces to

v1 dK12
dE2

k22dk2d2�2
D v2 dK21

dE1
k21dk1d2�1

; (2.98)

where we have set N1 D N2 D 1=L3, i.e., one incident particle in either process.
Now, let state 1 represent a photon and 2 an electron, so that dK12 is the cross

section for photoemission and dK21 the cross section for radiative recombination.
Then,
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E1 D �k1cI v1 D c (2.99)

and
E2 D �

2k22=2mI v2 D �k2=m ; (2.100)

so that (2.98) reduces to

k21
dK12
d2�2

D k22
dK21
d2�1

(2.101)

or
d�RR

d�
D
�

�!

mvc

�2 d�ph

d�
(2.102)

With this, the problem has been reduced to finding a cross section for photoemission,
a classic topic from the early days of quantum theory.

2.6.2 Photoemission

In order to find the latter we have to go back to the problem of excitation of an
atom by an electromagnetic wave which has been considered in Sect. A.5.2, Vol. 1.
That treatment was based on the dipole approximation, i.e., long wavelength or
low photon energy. This assumption does not necessarily apply when we want to
consider radiative electron capture by swift ions. Here, the mismatch between the
orbital speed and the ion speed is typically so large that photon energies will lie in
the x ray or even gamma regime.

Quantal calculations of the cross section for photoemission were initiated by
Wentzel (1926) and followed up by Sommerfeld and Schur (1930) and Stobbe
(1930).

The interaction of an electron with an electromagnetic field can be described by
a hamiltonian

H D 1

2m

�
P C e

c
A
�2

� eˆ ; (2.103)

where A and ˆ denote the vector and scalar potential, respectively4 and P the
momentum.

We may describe a monochromatic electromagnetic wave by

A D A0 cos.k � r � !t/I k � A0 D 0I ˆ D 0 : (2.104)

This is equivalent with an electric field

E D E0 sin .k � r � !t/ (2.105)

for A0 D cE0=!: With this, the interaction of the wave with a Z-electron atom
may be described by a hamiltonian

4 As everywhere else in this monograph we operate in gaussian units here. For translation to SI
units refer to Sect. A.1.1, Vol. 1 or to Jackson (1975).
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H D H C V ; (2.106)

where H is the hamiltonian of the free atom and

V D e

mc

ZX
�D1

A.r� ; t/ � P� : (2.107)

We have dropped the quadratic term in A since we are only going up to the first
order in a perturbation expansion.

Assume the field to be switched on at t D 0 and to be switched off at t D t1.
Then, the transition amplitude from the initial state j0i to a state jj i is given by

cj .t1/ D 1

i�

Z t1

0

dt ei!j 0t hj jV j0i (2.108)

according to (4.37), Vol. 1, or

cj .t1/ D � e

2�mc

 *
j

ˇ̌̌
ˇ̌X
�

eik�r� A0 � P�

ˇ̌̌
ˇ̌ 0
+

ei.!j 0�!/t � 1
!j0 � !

C
*
j

ˇ̌̌
ˇ̌X
�

e�ik�r� A0 � P�

ˇ̌̌
ˇ̌ 0
+

ei.!j 0C!/t � 1
!j0 C !

!
: (2.109)

Here,
�!j0 D Ej � E0 (2.110)

represents the excitation energy. The denominator in the first term in the brackets
of (2.109) indicates that this term is going to be large when the photon energy �!

comes close to �!j0. By the same argument we may deduce that the second term,
with ! C !j in the denominator, is small by comparison in the present context and
will be neglected.

The transition probability per unit time is then given by

w D 1

t1

X
j

ˇ̌
cj .t1/

ˇ̌2 D e2

�2m2c2t1

�
X
j

ˇ̌̌
ˇ̌
*
j

ˇ̌̌
ˇ̌X
�

eik�r� A0 � P�

ˇ̌̌
ˇ̌ 0
+ˇ̌̌
ˇ̌
2  

sin .!j 0�!/t1
2

!j0 � !

!2
; (2.111)

as long as w � 1, where the sum over j goes over all states that are compatible
with energy conservation, !j0 D !.

Before evaluating the sum, let us consider the matrix element in (2.111). Since
we deal with electrons ejected at fairly high energies we may approximate the final
state as a free-electron state,
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jj i D 1

L3=2
eikj �r : (2.112)

Then, in an independent-particle model of the atom we may write*
j

ˇ̌̌
ˇ̌X
�

eik�r� A0 � P�

ˇ̌̌
ˇ̌ 0
+

D 1

L3=2

X
�

Z
d3r e�ikj �reik�rPu�.r/ ; (2.113)

where P D �i�r and u�.r/ is the wave function describing the �th initially occu-
pied single-electron state. By partial integration this reduces to*
j

ˇ̌̌
ˇ̌X
�

eik�r� A0 � P�

ˇ̌̌
ˇ̌ 0
+

D �

L3=2

X
�



A0 � kj

� Z
d3r ei.k�kj /�ru�.r/ ; (2.114)

Going back to (2.111) we need to evaluate the sum over j . The condition !j0 D !

implies that only states in a thin shell with radius
p
2m.�! � U / in k-space can be

excited. Following (2.93) we may introduce a density of states %.E/ in energy space
by means of the relation

%.Ej /dEj D
�
L

2�

�3 Z
d3k ; (2.115)

where the integration goes over all states with a specified energy. The sum over j is
the replaced by an integration overEj , which is conveniently performed by making
the replacement

x D .!j0 � !/t1=2 (2.116)

and yields

w12 D e2kj d2�j
.4�/2�mc2



A0 � kj

�2 ˇ̌̌ˇ̌X
�

Z
d3r ei.k�kj /�ru�.r/

ˇ̌̌
ˇ̌
2

: (2.117)

With a photon current density

cE20
8��!

D !A20
8��c

(2.118)

we then find the differential cross section for photoemission

d� D
e2kj k

2
jz

2�mc!
d2�j

ˇ̌̌
ˇ
Z

d3r ei.kx �kj �r/u�.r/
ˇ̌̌
ˇ
2

; (2.119)

where the x-axis denotes the direction of propagation and the z-axis the polarization
of the incident wave. This result, as well as the essence of the derivation, follows
Schiff (1981).
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Fig. 2.19 Cross section �RR for radiative recombination according to the Stobbe formula (2.122)

2.6.3 Examples

For capture into the K shell, Stobbe (1930) finds the total cross section for radiative
recombination, in the notation of Eichler and Meyerhof (1995),

�ph D 28�2

3

e2

mc!

�
�2

1C �2

�3
exp .�4� arctan.1=�//
1 � exp.�2��/ ; (2.120)

where � is the Sommerfeld parameter

� D Z1e
2

�v
: (2.121)

With this, and (2.102), the cross section for radiative recombination reads, in the
nonrelativistic limit,

�RR D 28�2

3

�!

mv2
a20˛

3

�
�2

1C �2

�3
exp .�4� arctan.1=�//
1 � exp.�2��/ ; (2.122)

where ˛ D 1=137 is the fine structure constant.
Figure 2.19 shows a universal plot of (2.122). It is seen that, due to the factor ˛3,

the absolute value of the capture cross section is small when taken in atomic units.
However, with increasing projectile speed a / v�7 dependence is approached which
is much slower than that for nonradiative capture, going as / v�11 or / v�12.

An extensive discussion of the relativistic case has been given by Eichler and
Meyerhof (1995), based on pioneering work by Sauter (1931a,b).

While (2.119) together with (2.98) shows essential features of radiative electron
capture, such as the dependence on the frequency ! of the emitted X-ray as well as
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Fig. 2.20 Calculated and measured differential cross section for radiative electron capture to
125 MeV S16C in carbon. Smooth curves represent strong-potential Born approximation (SPB)
and impulse approximation (IA). From Jakubassa-Amundsen et al. (1984)

the order of magnitude of the effect, detailed theory is more complex (Kleber and
Jakubassa, 1975, Eichler and Stöhlker, 2007).

Figure 2.20 shows an example of capture from carbon into the K shell of a fully-
stripped sulphur ion. You may note first that the triply-differential cross section
(solid angle and X-ray energy) is of the order of 100 b = 10�22 cm2. The peak lo-
cated between �! ' 5 and 6 is made up primarily by the kinetic energy of a target
electron in the rest frame of the ion, i.e., mv2=2=2.1 keV and the K shell binding
energy of 3.5 keV.

2.7 Electron Loss

From a theoretical point of view, electron loss is an ionization process seen from a
reference frame moving with the projectile. For passage through a gaseous medium,
the particle at rest in the moving reference frame is charged, while the one in motion
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is neutral. For passage through a conducting medium it may be necessary also to
consider ionization by free target electrons.

Both Volume 1 and the present volume in this monograph address primarily the
first and the second moment over the energy-loss spectrum. The ionization cross sec-
tion is related to the zero’th moment and, as such, is more sensitive to the behaviour
near threshold. Since ionization phenomena are central to the topic of radiation ef-
fects, the treatment of ionization cross sections and ionization thresholds will be
reserved to Volume 3. Therefore, the treatment of loss cross sections presented here
is rather superficial.

2.7.1 Single and Multiple Loss

A look at stopping cross sections for heavy ions will tell you that ionization cross
sections can be quite large, so that the probability for single, double and higher ion-
izations may become significant. This implies that we have to distinguish between
single and multiple loss events.

Consider, for simplicity, ionization of a given shell containing n electrons in
an atom at rest. In an independent-particle model, let Q.p/ be the probability per
electron to be liberated after passage of a projectile at a vectorial impact parameter
p. Then, the probability for emission of exactly one electron is

P1.p/ D nQ.p/ Œ1 �Q.p/�n�1 : (2.123)

Similarly, the probability for emission of two electrons is given by

P2.wp/ D n.n � 1/
2

ŒQ.p/�2 Œ1 �Q.p/�n�2 : (2.124)

In other words, the cross section for loss of � electrons is given by

�� D
 
n

�

!Z
d2p ŒQ.p/�� Œ1 �Q.p/�n�� : (2.125)

For not too large values of Q.p/ we may approximate the cross section for single
ionization by

�1 ' n

Z
d2pQ.p/� n.n � 1/

Z
d2p ŒQ.p/�2 (2.126)

and the cross section for double ionization by

�2 ' n.n � 1/

2

Z
d2p ŒQ.p/�2 ; (2.127)

so that
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�1 ' �I � 2�2 ; (2.128)

where

�I D n

Z
d2pQ.p/ (2.129)

is the total ionization cross section.
These considerations can be formulated such as to invoke electrons from different

shells (McGuire and Weaver, 1977). Rigourous definitions would have to involve
transition amplitudes between many-body wave functions.

2.7.2 Theoretical Schemes

In principle, any theoretical scheme to treat ionization processes should be applica-
ble to treat electron loss. This also includes theoretical schemes designed for stop-
ping, such as the Bethe theory, binary theory or CasP.

Since ionization cross sections are determined primarily by energy transfers close
to threshold, soft collisions provide the dominating contribution at least at high pro-
jectile speeds. In the present case, where the ‘projectile’ is a neutral atom, the screen-
ing of the Coulomb interaction implies that this dominance is weakened.

Figure 2.21 shows a comparison between differential energy-loss cross sections
for neutral and fully-stripped carbon ions on helium, calculated by a version of the
PASS code that generates differential energy-loss cross sections (Weng et al., 2006).
This graph includes shell and Barkas-Andersen corrections. While the spectrum for
fully-stripped C ions shows only a minor deviation from the T �2-dependence for



88 2 Atomistics

0.0001

0.01

1

100

10000

0.0001 0.01 1 100 10000

Coulomb
Yukawa

mv2a2U
J
 / 2Z

1
2e4

σ J/n
Jπa

2

Fig. 2.22 Simple estimate of single-loss cross section �J . See text

free-Coulomb scattering, the spectrum for neutral carbon is very close to a T �3=2
dependence.

The standard scheme for calculating ionization cross sections is the Born approx-
imation (Inokuti, 1971). This scheme involves quite complex calculations, once the
upper integration limit becomes essential.

It is useful here to recall the scaling properties of corrections to the straight Bethe
theory of stopping:

� The shell correction is characterized by hv2e i=v2 / Z
4=3
2 v20=v

2,
� The Barkas-Andersen correction is characterized by the inverse of the parameter

entering the Bohr stopping formula, Z1e2!=mv3 / Z1Z2v
3
0=v

3,

� The screening correction is characterized by v2TF =v
2 / Z

4=3
1 v20=v

2.

Thus, calculations on the basis of the Born approximation will be appropriate for
light ions, provided that shell corrections are taken into account. Conversely, what-
ever scheme is employed for heavy ions, projectile screening need to be considered.
The role to be assigned to the Barkas-Andersen correction depends on the desired
accuracy.

Like the Born approximation, the classical-trajectory-Monte-Carlo (CTMC) sim-
ulation method (Olson et al., 1989) differentiates between single and multiple ion-
ization events.

In the regime of dominating single ionization, classical binary scattering is most
convenient. Assume the interaction between a neutral atom and a projectile electron
to be given by

V.r/ D �Z1e2
r

�.r=a/ ; (2.130)

with a given screening function and radius, � and a, respectively. Then, from (3.76)
and (3.8), Vol. 1 you will be able to derive a relation for the energy loss

T D T .v; p/ (2.131)
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to a projectile electron, where v is the projectile speed and p the impact parameter
between a projectile electron and a target nucleus. The loss cross section for a given
shell J is then given by

�J D nJ�p
2
J ; (2.132)

where pJ is defined by
T .v; pJ / D UJ ; (2.133)

UJ being the ionization energy of the J th shell. Such a calculation includes screen-
ing but ignores Barkas-Andersen and shell corrections.

Figure 2.22 shows an example for �.r=a/ D exp.�r=a/, where the scattering
integral can be evaluated analytically (cf. Problem 2.8). Also included is the estimate
for straight Coulomb interaction,

�J D 2�nJZ
2
1e
4

mv2UJ
: (2.134)

Even though the accuracy of the Yukawa prediction deteriorates at low energies, you
will note that the difference to the Coulomb cross section becomes substantial.

2.7.3 Data

Numerous available experimental data for both capture and loss cross sections may
be found in compilations. Lo and Fite (1969) offer data for both gaseous and metal-
lic ions in gas targets over en energy range covering the keV and lower MeV region.
Dehmel et al. (1973) cover a similar energy range with many more data and include a
bibliography ordered by ion-target combination. Tables by Tawara et al. (1985) and
Janev et al. (1988), focusing on nuclear fusion, offer extensive data for charge ex-
change in atomic and molecular hydrogen as well as helium. Dmitriev et al. (2010)
provide a summary of their own data, taken over half a century and covering a broad
spectrum of ion-target combinations in the keV/u energy range.

Calculated capture and loss cross sections at higher energies can be extracted
from output of the ETACHA code (Rozet et al., 1996) forZ1 
 36. The LOSS code
by Shevelko et al. (2001) delivers calculated electron loss cross sections for heavier
ions at high energies.

2.8 Discussion and Outlook

Although the process of electron capture in atomic collisions was studied originally
in connection with particle penetration, the subject has developed its own dynam-
ics both from an experimental and a theoretical point of view. If you find that this
chapter overemphasizes charge exchange in simple hydrogen-like collision systems,
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you are unquestionably right, when comparing with monographs on related subjects
such as Kumakhov and Komarov (1981) or Nastasi et al. (1996). On the other hand,
this is only a rudimentary account of the effort spent in the field and reported by
Bransden and McDowell (1992) or Dewangan and Eichler (1994).

Just as in other areas of ion-beam physics, there is a striking contrast between
the degree of sophistication of both theory and experiment on the one hand, and the
degree of agreement between theoretical predictions and experimental results on the
other. Clearly there is space for improvement.

To the extent that charge exchange can be characterized by cross sections, the
statistical theory aiming at equilibrium charges, fluctuations and approach to equi-
librium can be developed without reference to specific ion-target combinations. This
is the topic of the following chapter.

Problems

2.1. Show that (2.34) satisfies the Schrödinger equation

H1�`.r; t/ D i�
@�`.r ; t/

@t
(2.135)

and demonstrate that the electron density is centered around the projectile position
R.t/.

2.2. Go through the derivation of (2.41) from (2.38). You need to write down the
Schrödinger equation for the two pertinent hamiltonians. You will also need the
relation Z

d 3r  �
1 .r/O 2.r/ D

Z
d 3r ŒO 1.r/�

� 2.r/ (2.136)

for hermitian operators (Schiff, 1981).

2.3. Derive (2.63) from (2.61) for the HC-H system using (2.62).

2.4. Find the velocity distribution f .ve/ for the wave function (2.62) and determine
the probability P.v=2/ D R1

v=2 f .ve/4�v
2
e dve for an electron to have a velocity

ve > v=2.

2.5. Derive (2.80) from (2.78) and demonstrate that (2.80) approaches a Dirac func-
tion ı.r � r 0/ for t ! t 0. [Hint: Show first that the integral over r 0 yields f .t; t 0/
for arbitrary t and t 0. Then study the behaviour of the function for t ! t 0].

2.6. Derive (2.82)

2.7. Demonstrate that, for an arbitrary collision event, the transition probability P12
from a state 1 to a state 2 of the particles involved, is identical with the probability
for the inverse process P21. Hint: Write  2 D S 1 and look at the properties of the
operator S . If needed, consult Landau and Lifshitz (1960).

2.8. Try to reproduce Fig. 2.22 from the information given in the text.
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