
Chapter 4
Proposed Framework

Abstract This chapter describes the full photo-mosaicing pipeline proposed in this
monograph. This pipeline is intended to process datasets of thousands of images
from large-scale underwater optical surveys. Thefirst stages of the process involve the
input sequence preprocessing, required to reduce artifacts such as the inhomogeneous
lighting of the images, mainly due to the use of limited-power artificial light sources
and the phenomenon of light attenuation and scattering. In this step, a context-
dependent gradient based image enhancement is proposed, with allows equalizing
the appearance of neighboring images when those have been acquired at different
depths of with different exposure times. The pipeline follows with the selection
of each image contribution to the final mosaic, based on different criteria, such as
image quality and acquisition distance. Next, the optimal seam placement for all the
images is found. A gradient blending, in a narrow region around the optimally found
seam, is applied in order minimize the visibility of the joining regions, as well as
to refine the appearance equalization along all the involved images. Finally, a novel
strategy allowing to process giga-mosaics composed of tenths of thousands of images
in conventional hardware is proposed. The technique divides the whole mosaic in
tiles, processing them individually and seamlessly blending all of them again using
a technique that requires low computational resources.

Keywords Image preprocessing · Inhomogeneous lighting compensation · Image
enhancement · Gradient domain blending · Tone mapping · Giga-mosaicing

A full photo-mosaicing pipeline has been developed, conceived to address the most
relevant specific problems of underwater imaging. Nevertheless, the application field
of the proposed approach can be extended to the generation of conventional panora-
mas or maps from terrestrial or aerial images. Figure 4.1 shows the sequence of steps
that are performed by our approach, which are intended to build high resolution
blended photo-mosaics of the deep-seafloor.
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Fig. 4.1 Full processing
pipeline of the proposed
underwater photo-mosaicing
approach. Some of the
processing steps can be
executed using parallel
computing techniques to
increase the performance of
the algorithm
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4.1 Input Sequence Preprocessing

Inherent underwater optical imaging problems have already been described in
Sect. 1.2. Aside from exposure variations, which are a common issue in terres-
trial images, other important problems are not directly addressed by conventional
panorama generation software. To deal with these, image pre-processing is required,
and is becoming a key step with a strong impact on the quality of the final photo-
mosaic rendering.

4.1.1 Inhomogeneous Lighting Compensation

The lighting inhomogeneity problem indeepwaters ismainly due to the lackof natural
global lighting, and to the necessary use of artificial light sources with limited power.
Illumination systems are often rigidly attached to the AUV or ROV and light sources
typically concentrate the rays into a given area where the camera is focused. The
acquired image borders suffer from darkening due to light attenuation, principally
induced by the light absorption of the water. The effect is similar to vignetting,
although the phenomenon is not produced by the camera lens but by the medium
itself. All images from a given sequence are affected, to some degree, by this factor.
The illumination distribution from artificial light sources changes with the distance
from the camera to the seafloor. Colors are also affected due to light absorption,
resulting in depth-dependant color profiles of the images acquired.

Imaging conditions hinder the application of a single compensation function on all
the images acquired in absence of precise information about the placement and nature
of the light sources, the distance from the camera to the seabed, and the 3D structure
of the scene. This circumstance results in the loss of a global terrain perception,
which is a cognitive sensation factor highly dependant on lighting coherency [1].

A feasible correction of lighting inhomogeneity and vignetting-like artifacts in a
single step consists of the application of a 2D “inverse illumination distribution” to
the original input images [2–5]. The main aim of this operation is to enhance the
luminance of the darkened image borders in order to obtain uniform illumination
throughout the image. If a high sensitivity camera with a high pixel depth (>8 bpp)
is available, not only the luminance but also the richness of detail can be enhanced
in the region affected by the light absorption.

The illuminationpattern describing the “inverse illuminationdistribution” function
can be estimated from a subset of images showing low texture and reduced 3D struc-
ture (i.e. flat, sedimented terrain). As this function changes with the distance from
the light source to the seabed, a three-step approach is proposed (Fig. 4.2) to correct
the lighting artifacts. It is based on two main ideas: (1) the application of a depth
dependant inverse illumination distribution, and (2) the automatic selection of the
images to compute this pattern in a given depth-range based on the Total Variation
(TV ) metrics [6], as described below.

http://dx.doi.org/10.1007/978-3-319-05558-9_1
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Fig. 4.2 Lighting pattern
compensation procedure. The
images of a sequence are
classified into depth subsets,
and a different lighting pat-
tern compensation function
is computed for each one.
The figure shows a set of n
images from which the n/2
images having the lowest
TV value have been selected.
Next, the images are averaged
and the result normalized and
smoothed using a Gaussian
filter with an adaptively
selected σ

Average of
Selected Images

Gaussian
Smoothing

Depth Image Subset (n)d

Selected Images (n / 2)

Quasi-Altitude Estimation

Underwater image acquisition platforms often record not only image sequences but
also other synchronized data like heading, acoustic positioning, surface Global Posi-
tioning System (GPS) positioning and altitude, among others. Unfortunately, camera
altitude is not always available for every data set. Consequently, as a first step, the
images of a given sequence should be classified according to altitude in order to
apply a different lighting correction function to each one, but assuming that precise
information about distance from the camera to the seafloor may not be available.
In order to solve that issue, a quasi-altitude estimation is now proposed to be used
instead.

Given a sequence of images and its corresponding registration parameters onto
the photo-mosaic frame, it is possible to determine which ones were acquired closer
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to the seabed and which ones further away by computing the size or scale of the
image once registered to the 2D photo-mosaic coordinate system. Specifically, it is
possible to consider only the diameter of the transformed pictures (i.e. the size of
the longest diagonal) since this scale and the altitude are highly correlated when the
focal length of the camera is assumed constant. Once an image list has been built
and sorted according to their diagonal length, the images can be classified in subsets
of similar altitudes.

Depth Sliding Window Strategy

The “inverse illumination distribution” changes with the distance from the cam-
era to the seafloor, inasmuch as the light sources are rigidly attached to the UV.
Consequently, this distribution should dynamically vary to compensate for depth
fluctuations. In that sense, a depth sliding window strategy can be used. Given all
the images of a given data set, the first step consists of sorting them by altitude,
using sensor-acquired depth information or the quasi-depth estimation measure. The
second step consists of opening a window centered on a given reference image in the
sorted set with and arbitrary size depending on the frequency of the depth changes.
The images in this window will be used to compute the “inverse illumination dis-
tribution” to be applied to the image on which the window is centered. With this
strategy, a smooth variation of the function is ensured. Nevertheless, to avoid exces-
sive computations, the step between reference images can be set to N instead of one
image, and the function can be applied not only to the reference image but also to
a small temporal neighbourhood determined by the value of N . In any case, this
strategy will obtain an acceptably smooth variation of the function, in contrast with
other strategies using a single function for all the images in the sequence, or those
determining an arbitrary number of image depths.

Image Selection

For each image window, a distinct compensation function for the light distribu-
tion should be computed from images with a low texture content and homogeneous
appearance. Low textured images are the best suited for this estimation due to their
low average gradient length. An adequate ranking metric for the selection of these
images is the TV.

T V = 1

W · H

W−1∑

x=1

H−1∑

y=1

‖g(x, y)‖ (4.1)

Equation 4.1 shows the computation of the normalized TV for a given image,
where W and H are the width and height sizes and ‖g‖ notates the L1 or L2 norm of
the g gradient vector. The T V values for the last row and column of a given image
are set to 0.



66 4 Proposed Framework

(a) (b) (c)

Fig. 4.3 a Example of back-scattering due to the reflection of rays from the light source on particles
in suspension, hindering the identification of the seafloor texture. b Example of forward scattering
caused by the local inter-reflection of the light suspended particles, hiding the terrain behind them.
c Effects produced by light absorption of the water resulting in an evident loss of luminance in the
regions farther from the focus of the artificial lighting

Equation 4.1 can be used with both L1 or L2 norms. In our experiments, we
have selected the L2 norm, i.e. Euclidean metrics, to evaluate the homogeneity of
the images, because it allows characterizing the magnitude of the neighboring pixel
variations (i.e. gradient vectors). Once the TV measure has been computed for all
the images of a given altitude subset, an image subset of low TV is used to esti-
mate the light distribution. The aim of the measure is to identify images containing
structures rich in details. The presence of high frequency noise, mainly due to scat-
tering onmacroscopical particles in suspension of scattering (see Fig. 4.3), may skew
the image quality evaluation. The TV magnitude of the image may inappropriately
increase leading to scenarios where the dominant part of the metrics comes from
high frequency noise. Nevertheless, the unwanted effects of the high frequency com-
ponents can be avoided by building lower resolution images from the originals with
N × N super-pixels. This simple approach significantly reduces the effects of the
high frequency components in both the image and the TV measure. In practice, 8×8
linearly averaged super-pixels may produce good results for images of 1,024×1,024
pixels, which are reduced to 128×128 pixels. The images obtained save every impor-
tant seabed feature but cancel the effects of the scattering phenomena, allowing the
use of the TV as an image quality evaluation metrics. For each depth-range, the
images with a TV value below the median can be used to compute the illumination
correction function. To obtain this function, the selected images are averaged and
the result is smoothed by a low-pass filter to reduce the remaining high frequency
components, as explained below.

Compensation of Lighting Inhomogeneities

In order to compensate the light attenuation problems and obtain an image with a
homogeneous illumination lH , the acquired luminance values are divided by a given
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compensation mask as shown in Eq. 4.2

lH (x, y) = l(x, y)

lG(x, y)
(4.2)

where l is the image luminance values, lG corresponds to the illumination pattern
and lC is the lighting compensation pattern before the Gaussian smoothing.

lC (x, y) = 1

N

N∑

k=1

lk(x, y) (4.3)

Equation 4.3 computes the average value for every pixel position given a stack of
N images. Finally, the compensation mask lC obtained is smoothed with a low-pass
Gaussian filter to obtain the illumination distribution lG function. This distribution
is then used for the lighting inhomogeneity compensation, as per Eq. 4.4, where 〈〉
denotes Gaussian smoothing.

lG(x, y) = 〈lC 〉 (4.4)

The value for σ used in the Gaussian convolution is selected adaptively for each
altitude subset. Starting from the average image lC in Eq. 4.3, a set of increasing
values σ1, σ2, . . . , σk will be sequentially applied to it until the smoothed TV value
is under a threshold T V (lG(σ )) < ε. Values in the range of d

256 ,
d
128 , . . . ,

d
32 , where

d is the shortest dimension of a given image, offer good results in practice. With this
threshold condition the appropriate smoothness and uniformity of the blurred image
are ensured.

4.1.2 Gradient-Based Image Enhancement

As the altitude of the robot increases, the effects of the previously mentioned back-
scattering, forward scattering and light absorptionphenomenabecomemore evident.
The strategy proposed to enhance the high frequency details affected by these phe-
nomena is a simple and global approach, selecting the highest quality image in a
given surrounding region from the whole set, and using it as a contrast or gradi-
ent reference. To avoid unpredictable visual effects, the non-global approaches of
homomorphic filtering [7, 8], Contrast Limited Adaptive Histogram Equalization
(CLAHE) [9] (Fig. 4.4) and histogram specification [10] are not used, due to the
following reasons. On the one hand, homomorphic filtering may lead to an exces-
sively homogeneous appearance of the filtered image and to a loss of global con-
sistency in the appearance of the photo-mosaic. The suppression of low frequencies
performed by this kind of filter may provide some advantages in the visibility of local
details, but in giga-mosaicing, depending on the zoom factor, every spatial frequency
can be important to recognize and understand the nature andmorphological attributes
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Fig. 4.4 (Top-left) Image lacking contrast on its left side. (Top-right) Image processed with a
CLAHE algorithm, showing enhanced details in the originally lower-contrast regions. sssThe
appearance of the processed image is less realistic than the original due to an aggressive level
of local filtering. (Bottom-left) Image processed with a Butterworth homomorphic filter. The image
evidences a generalized lack of contrast. (Bottom-right) Image resulting from the histogram speci-
fication of an apparently uniformly illuminated image into the test image. The image obtained has
better contrast than the original, but still evidences problems in the darkest areas

of the seabed structures. On the other hand, histogram specification is highly depen-
dent on the reference image, and therefore the modified image may often loose its
realistic appearance. Therefore a simple but robust local contrast stretching can be
applied to equalize a given sequence of images.
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Image Quality Estimation

There is not a single and objective criterion to identify the image with the highest
visual quality fromagiven set because the concept of “quality” involves different cog-
nitive aspects. However, phenomena affecting image detail richness and sharpness,
such as scattering and light absorbtion, are known to grow with the distance from
the camera to the seabed.

This simple and fast approach may lead to poor results when the selected image
presents an over-exposed region, for example, due to being acquired too close to the
seabed under strong illumination. A more robust selection of the reference image
is to use TV to rank image quality also. Thus, the image with the highest TV may
be selected as the reference image while ensuring that over-exposed regions do not
affect this selection. According to our experimental validation, the image with the
highest TV coincides in most cases with the closest one to the seabed on a given
survey, and with the second or the third closest images in the few remaining cases.

Global Contrast Stretching

The TV value of the reference image selected is used to compute the stretching
factors that will be applied for a global contrast (or gamma amplification) on all the
other images. This stretching factor should be selected below a given threshold Ts to
avoid overamplification of areas of poor contrast, e.g. textureless sediment-covered
regions. Ts depends on the Signal-to-Noise Ratio (SNR) of the image, which can
vary highly according to water quality, lighting intensity, and/or the camera sensor.
Despite the application of these gradient corrections, the merging of images from
highly different depth categories will unavoidably produce noticeable seams due to
their distinct blurring levels. The stretching factor

T V re f erence
T V (k)

is applied to enhance
the x and y gradient components of the k-th image.

4.2 Image Registration with Global Alignment

While image registration is not directly related to the blending procedure and, there-
fore, is not at the core of the work presented here, the accuracy of image registration
will significantly affect the final quality of the photo-mosaic rendered.

Even when navigation data (such as USBL positioning, heading, depth, etc.) are
available, pair-wise image registration is still required to ensure a precise camera
motion estimation. Pair-wise registration can be performed using a feature-based
approach, involving the well known image feature detectors and descriptors of
Harris [11], SIFT [12] and SURF [13], among others. When building a 2D photo-
mosaic from a set of images acquired by a camera close to the seabed, the planar
assumption of the scene can be violated due to the microbathymetry of the seafloor.
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As already stated in Sect. 2.3.2. The 3D geometry of the scene, in addition to the
short camera distance, results in parallax. This problem increases the difficulty of
estimating the 2D planar transformation between consecutive images, often leading
to misregistrations, resulting in double contour effects during blending.

A global alignment strategy [14, 15] is required to reduce the inaccuracies of
a simple sequential pair-wise registration, as explained in Sect. 2.4. The strength
of the global alignment arises from closing-loops because they allow a significant
improvement of the camera trajectory estimate when re-visiting an already mapped
area. In absence of loop-closings, and considering input sequences of thousands of
images, the drift accumulated by the pair-wise transformations leads to significantly
inconsistent (missaligned) photo-mosaics.

4.3 Image Contribution Selection

The parallax effect will influence both image registration and image blending pro-
cedures. On the one hand, image panorama software often fails to register sequences
with strong parallax since they assume camera rotation only. On the other hand, and
even using the best possible registration, the double contouring problem will appear
when merging two or more images if the vehicle (and the camera) translates and the
scene is not perfectly planar.

The solution to avoid ghosting artifacts is the use of information from a single
image for each pixel of the final photo-mosaic whenever possible. Blending is per-
formed in a narrow region around the optimally computed seams, and consequently
information from more than one image is fused only in a small fraction of the final
photo-mosaic. Ghosting may occur in those regions, but its noticeability is signifi-
cantly localized and dependent on the width of the transition region.

4.3.1 Image Discarding

Each pixel of the photo-mosaic is obtained from a single image pixel whenever
possible. To maximize the quality of the final photo-mosaic, the contribution from
sharper and informative images should be prioritized. Image blending algorithms
take into account the information of all the available images. Unfortunately, this may
lead to unnecessary contributions of low quality images even when higher quality
information is available in a given area. Therefore, discarding low quality images
will ensure that their information is not taken into account in any sense. Furthermore,
ignoring these images will also impact the optimal seam finding step, reducing the
number of paths to be computed, and consequently speeding up the process. The
developed discarding procedure is described below.

First, the frames of the original images are mapped into the global photo-mosaic
frame using the image registration parameters in order to know their shape and

http://dx.doi.org/10.1007/978-3-319-05558-9_2
http://dx.doi.org/10.1007/978-3-319-05558-9_2
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area coverage in the final photo-mosaic coordinate system. The depth estimation is
computed, assuming that depth information is not available in the navigation data. It is
possible to discard low quality images covering a region of the scene if higher quality
ones are available for that area. The discarding procedure is performed using logical
operations on the polygons describing the images, which is an efficient approach
requiring few resources.

Each image is defined as a trapezoid described by four vertices corresponding to
the four image corners once registered to the photo-mosaic frame. Additionally, the
polygons are sorted decreasingly according to their corresponding image TV value.
At each step of the iterative process, a new image trapezoid of the sorted list is added
to the final photo-mosaic polygon using simple binary operators. If the area covered
by the new trapezoid has already been fully covered by the photo-mosaic polygon
(i.e. the trapezoid does not intersect the photo-mosaic polygon and lies inside this
one), the image is discarded because this same region is supposed to have already
been covered by higher quality images. Otherwise, if the image to be added contains
information from a non-covered area, the photo-mosaic polygon is updated and the
image is accepted.

4.3.2 Pixel-Level First-Closest and Second-Closest Maps

The proposed blending methodology determines the first and second closest maps
at pixel level. The first closest map contains, for each pixel coordinate of the photo-
mosaic, the index of the image whose center is closest (see Fig. 4.5). The second
closest map does the same, but with the second closest image indices. Similar to [16],
the overlap of these two maps will use a graph-cut algorithm to compute the seam-
strips for blending. For every seam pixel two image indices are selected. Therefore,
every pixel outside the seams (most of the photo-mosaic) is associated to a single
image.

The Euclidean distance between a pixel I M (x, y) in the photo-mosaic frame and
the center of a given n-th image I n(x, y) is weighted by a factor wn(s), as shown in
Eq. 4.5:

dn
M (x, y) = wn(s) ·

√
(xM − xn)2 + (yM − yn)2 (4.5)

where the scalar factor wn(s) is a size-ratio between the n-th image and the image
having the smallest area once registered. For time efficiency reasons, the ratio is
not computed based on the area of the warped images, but on the length of their
diameters, as explained in Sect. 4.1.1, to obtain a rough but fast approximation, as
shown in Eq. 4.6:

wn(s) = smin/sn (4.6)

where smin is the diameter of the smallest image for a given set and sn is the diameter
of a given n-th image.

http://dx.doi.org/10.1007/978-3-319-05558-9_4
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(a) (b) (c)

Fig. 4.5 a First closest map and b second closest map corresponding to the registered images
finally blended into the c photo-mosaic.The blue level of every pixel in the closest maps represents
the index of the image having the closest and second closest image centers. The distance measure
gives more priority to pixels belonging to images which have been acquired at a lower altitude,
consequently showing a higher level of detail

This weighting prioritizes pixels from images acquired at low altitudes, close to
the seabed, and consequently less affected by underwater imagery artifacts. This
weighting also maximizes the contribution of “higher-quality” images to the final
photo-mosaic image. Therefore, in cases like the one shown in Fig. 4.6, only a small
percentage of the pixels from the smaller overlapping image are lost while computing
the smooth transition, while the most significant percentage of the original image is
preserved.

4.3.3 Regions of Intersection

The overlap between the first and second closest maps determines the regions where
the pixel level graph cut should be performed. Therefore, for each overlapping patch,
the texture from the two best-quality images is available, and the graph cut is used
to find the optimal boundary seam, determining the contribution of each one in the
final photo-mosaic. Each region of intersection ROIi, j between the two images i and
j , where i is the closest image, j is the second closest image, and Ri, j denotes the
photo-mosaic region where i and j coincide, is defined as ROIi, j = Ri, j ∪ R j,i .
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Fig. 4.6 Example of a pixel level graph-cut performed between two overlapping images acquired
at different altitudes, and consequently evidencing differences in appearance. a Result of the graph
cut performed on the images without enhancement, b depicts, in white, the narrow strip (20 pixels
on each side of the cut) where the gradient domain blending is performed and c shows the blended
image pair.d is the result of the graph cut performed on the images after being enhanced according to
the proposed neighboring based enhancement approach, e depicts, in white, the narrow strip where
the gradient domain is performed and f shows the blended image pair. Notice that the results of the
pixel-level graph-cuts are different before and after the application of the image enhancements

4.4 Gradient Domain Blending

4.4.1 Pixel-Level Graph-Cut

The proposed blending strategy uses an optimal seam finding algorithm to compute
the best boundaries in the overlapping image areas. A pixel level graph cut is per-
formed on the regions of intersection determined by the first and second closestmaps.
In contrast to [16], the graph-cut is performed at the pixel level in order to guarantee
maximum accuracy of the cut, given that the main aim of the algorithm is to achieve
a high image quality. The algorithm searches for the boundary that minimizes the
cost of the transition from one side to the other of the border line for every pair of
pixels. The function has three weighted terms controlling the behavior of the cut:

C = μ1 · f (I1, I2) + μ2 · s(g1, g2) + μ3 · L (4.7)

The first term μ1 · f (I1, I2) measures the intensity differences between overlap-
ping pixels. The second term μ2 · s(g1, g2) measures the gradient vector differences
along the boundary B seam. Finally, the third termμ3 ·L measures the length L of the
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seam. The three weighting factorsμ1,μ2 andμ3 control the behavior of the cut. The
gradient term, which is not been used in such a way in the literature [16], allows us
to deal with differently exposed overlapping regions. Here an intensity-based graph
cut will consider that the differences between neighboring pixels are large even if
the registration is accurate, and thereby avoid those regions where the cut should be
performed. Instead, if the difference between the gradient vectors along the seam
path is used, the optimal seam will be found independently of the differences of
image exposure. In the case of misregistration of moving elements in the scene, the
term μ2 · s(g1, g2) avoids bisecting those elements by having the seam line by-pass
them. This is due to the fact that even a large value of L in the by-pass has less
cost than crossing a double contour with large gradients of a given structure. The
gradients are also less sensitive to other illumination issues, such as those caused
by artificial lighting and non-uniform lighting. Furthermore, working in the gradient
domain compensates the exposures when recovering the luminance images from the
gradient vectors. Despite the benefits of the gradient term, the intensity term is kept
in order to favor low photometric differences when registration is highly accurate.
Therefore, a weighted addition between both intensity and gradient domain terms is
proposed.

The effects of parallax and registration inaccuracies areminimized since the graph
cut tends to place the seam in textureless regions where morphological differences
are low. For the same reason, cuts over moving objects tend to be avoided, thus
benefiting the visual consistency of the blended results.

Performing a graph cut, especially at pixel level, is usually a computationally
expensive operation when the size of the region to process is significantly large.
Nevertheless, the regions on which the graph cut is working, determined by the
intersection between the first and second closest maps, are rarely large. Furthermore,
this process can be parallelized, taking advantage of recent multi-core processors, to
speed up the execution in one of the main bottlenecks of the processing pipeline.

4.4.2 Gradient Blending Over Seam Strips

Once an optimal seam has been estimated, a smooth transition between neighboring
regions needs to be performed. Even for sequences where the images have been
preprocessed to solve non-uniform illumination problems such exposure artifacts and
contrast level equalization, the graph cut result may lead to an image with noticeable
seams. Therefore, smoothing the transition between the image patches is required.
The image fusion around the computed seams should be performed in a limited
region, being both wide enough to ensure a smooth transition and narrow enough
to reduce the noticeability of ghosting and double contouring. According to our
experience, a transition strip of 10 pixels at each side of the seam (i.e. a 20 pixels
transition region) has been demonstrated to be appropriate for sequences of 1-Mpixel
images.
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Anew transition smoothing approach is proposed in this book.The appliedmethod
is a weighted average around the seams in the gradient domain, as shown in Eq. 4.8,
where g1x , g

1
y , g

2
x and g

2
y are the x and y gradient fields for the two involved images, ĝx

and ĝy are the x and y gradient fields after the blending and μ is the smoothing tran-
sition function. Concretely, a 3rd order Hermite function is applied. The advantage
of performing the weighted average in the gradient domain is the automatic com-
pensation for different exposures between neighboring images when the luminance
image is integrated from the gradients as a final step.

gx (x, y) = μ · g1x (x, y) + (1 − μ) · g2x (x, y)

gy(x, y) = μ · g1y(x, y) + (1 − μ) · g2y(x, y)
(4.8)

4.5 Luminance Recovery from Gradient Fields

After independently processing each overlapping strip region around the seams, the
resulting patches need to be unified into a single, larger image. Each patch processed
should be updated on the final photo-mosaic image, while informationwhich belongs
to regions without overlap should be recovered from the corresponding original
images.

Once the final gradient domain photo-mosaic has been composed after the “strip-
blending”, a non-integrable or inconsistent gradient field is obtained. In order to
recover the luminance values from the gradient fields, a multigrid Poisson solver
[17] is used.

4.6 Tone Mapping

The solution provided by the gradient solver is defined up to a free additive term on
the recovered intensity value. Consequently, a mapping algorithm such as Minimum
Information Loss [18] should be applied to determine this factor. The main goal
of the mapping algorithm is to appropriately manipulate the dynamic range of the
computed image in order to make it fit into the limited range of a display device
while keeping the maximum amount of detail information.

4.7 Giga-Mosaic Unification

The photo-mosaicing pipeline described is currently implemented inMatlabtm, using
Matlab EXecutable (MEX) files and parallel computing when possible. This allows
the efficient blending of photo-mosaics up to 60 Mpixels in a standard personal
computer with 4 GB of RAM in less than 5 min. Nevertheless, this mosaic size
(i.e. <0.1 Gpixels) is small at the gigapixel scale in which this work is interested, and
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a solution should be used to reach the desired 5–15 Gpixels required to process the
currently available data sets.

The amount of RAM may become a limitation when dealing with gigapixel
images, especially if the images have more than 8 bpp (e.g. 16-bpp grayscale images
or 24/48-bpp color images). The strategy proposed to reduce the computer require-
ments consists of decomposing the problem into sub-problems (i.e. rectangular tiles)
in order to sequentially solve them and finally unify them into the final mosaic image.

The price of this decomposition is the need of a second level of blending of the
tiles. This one is similar to the “strip-blending” presented in Sect. 4.4.2 applied
to the optimal seams, but is performed in the intensity domain. This second level
of blending is performed only in the intensity domain for computational reasons.
When compared with gradient domain operations, intensity blending is inexpensive
and can deal with large amounts of data. Furthermore, this method does not lead
to loss of quality due to the particular conditions in which it is applied. There are
two reasons for the need of a blending step between neighboring tiles. The first is
the different free factor of every tile after the luminance recovery using the Poisson
solver since this factor is multiplicative when working with log I values. The second
is the nature of the Poisson solver which spreads the inconsistency of the gradient
fields along the whole area recovered. After multiplying the pixel intensities of every
tile with the corresponding constant factor, a tile-overlap intensity blending has
to be performed. This kind of blending will compensate the gradient differences
of overlapping tiles coming from different Poisson solutions. The decomposition
necessarily differs from the theoretically exact Poisson solution, given that the errors
due to gradient inconsistencies will be differently spread by the solver in both cases.
Nevertheless, these differences are negligible in practice.

Although the tile-level pipeline described above is straightforward, its technical
implementation deserves further clarifications owing to the need to manage available
computational resources with such large problems (i.e. gigapixel photo-mosaics).

The rectangular “canvas” of the full photo-mosaic is divided into a regular grid of
overlapping tiles in order to process it using an out-of-core algorithm [19]. The size
of the tiles depends on the available RAM. For time efficiency, the space required to
store a single tile and a full global-strip (i.e. a row of tiles) is allocated to memory,
avoiding an excessive amount of slow hard drive sequential accesses.

A weighted average smoothing in the intensity domain is used to join neighboring
tiles in a given rectangular overlapping region. In our experiments, the size of the
overlapping regions varied between 15 and 25 % of the tile size depending on the
initial spatial image arrangement. Once a tile has been processed, it is stored in
the current global-strip, performing a blending with the previously processed one
(when available). When a single global-strip has been processed, it is stored in
the hard drive to save RAM space and the same procedure is repeated on the next
one. The strategy used to blend two neighboring tiles is also used to blend two
neighboring global-strips. Performing the blending in this structured way avoids the
problem of simultaneously fusing more than two images of a given region, which
may make the computation of a transition function of the overlapping areas more
complex. Figure 4.7 shows the giga-mosaic unification strategy described above.
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Fig. 4.7 Tiling scheme for the
gga-photo-mosaic blending.
Each tile is processed as an
independent photo-mosaic
and blended with previously
processed neighboring ones
in a given global-strip (i.e. a
row of blended tiles), using
a weighted average in the
luminance domain. Next,
each two neighboring rows
are blended using the same
approach. The Giga-photo-
mosaic is the result of joining
all the global-strips
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4.8 Conclusions

The main underwater imaging issues affecting underwater photo-mosaicing have
been treated by the approach presented. For each one of the specific underwater
imagery problems, a working solution has been presented and a new processing
pipeline has been defined. In the preprocessing stage, an adaptive non-uniform illumi-
nation compensation based on a sliding window on the depth sorted image sequences
has been proposed. This function allows not only giving an homogeneous appear-
ance to a sequence of images, but also enhances hidden details in the case of high
dynamic range images. Concerning exposure variations, the blending strategy based
on the image gradients allows the avoidance of dealing with this problem, inasmuch
as gradientmethods are not sensitive to exposure variations. In the context of gradient
domainmethods, a novel hybrid luminance and gradient based graph-cut strategy has
been presented, allowing the avoidance of problems concerning exposure variations
and moving objects in the scene. Light attenuation and forward scattering lead to
loss of contrast and poor detail in the images. In order to solve this issue, an adaptive
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image enhancement, based on the selection of the highest quality image in a given
surrounding as the image sharpness reference, has been presented. The approach
allows giving an homogeneous appearance to the images involved, and to enhance,
up to a reasonable level, the sharpness of the original images. Finally, and aiming to
efficiently generate high-resolution large-scale mosaics, a method to subdivide the
mosaic into smaller and easily processable tiles has been presented.
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