
Chapter 3
State of the Art in Image Blending
Techniques

Abstract In this chapter the main state-of-the-art techniques are presented and
described. There are three main groups of blending algorithms, each of them show-
ing some benefits and drawbacks. On the one hand, transition smoothing methods
minimize the visibility of the seams between two images fusing the image informa-
tion of the common overlapping area. A drawback of this group of methods is that
geometrical image misalignments and moving objects may cause the visualization
of artifacts on the overlapping regions. On the other hand, optimal seam finding
methods compute the optimal placement of the seam in order to minimize the pho-
tometric differences along the path. In the case of this group of methods, problems
may appear when joining images acquired with changing illumination conditions or
different time exposures. Finally, hybrid methods combine both strategies by fus-
ing the image information around an optimally computed seam. This last group of
methods allows avoiding the above mentioned problems. The chapter also proposes
a classification of the methods of the literature based on their nature and capabilities.
The aim of this classification is to discern the optimal strategy to blend large-scale
high-resolution underwater photo-mosaics.
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Stitching two or more images together to create a photo-mosaic that enables the
interpretation of the benthos by a scientist (biologist, geologist, archeologist, etc.)
requires the use of a blending technique to obtain a seamless mosaic (see Fig. 3.1).

Building a photomosaic requires performing a geometrical registration to align
the images involved as well as a photometrical registration to equalize color and
luminance appearances [1]. Both kinds of registrations may lead to image inconsis-
tencies in the mosaic. The visibility of such inconsistencies should be minimized
in order to provide the mosaic with a homogeneous appearance, which is important
from not only the aesthetical but also the cognitive point of view. Geometrical mis-
alignments result in distinguishable object discontinuities and incongruence, while
photometrical misalignments make the visibility of seams more evident, reducing
the consistency of the global appearance of the mosaic.
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Fig. 3.1 Photo-mosaic built from six images of two megapixels. The mosaic shows noticeable
seams in (Left), where the images have only been geometrically transformed and sequentially
rendered on the final mosaic canvas, the last image on top of the previous one. After applying a
blending algorithm, the artifacts (image edges) disappear from the resulting mosaic (Right). Images
courtesy of Dan Fornari (Woods-Hole Oceanographic Institution)

Due to the above stated reasons, there are three main concepts guiding image
blending algorithms. Firstly, the effects of different illumination or exposure times
between images should beminimized. Secondly, an adequate seam should be found in
order to reduce the visibility ofmicro-registrationmisalignments andmoving objects.
Lastly, a smooth transition along the selected seam must be applied to reduce the
prominence of transitions between images.

The basic principles of image blending where established four decades ago [2]
and include twomain concepts which lead to two groups of algorithms [3]: transition
smoothing and optimal seam finding. On the one hand, transition smoothingmethods
(also known as feathering [4] or alpha blendingmethods [5]) attempt tominimize the
visibility of seams by smoothing the common overlapping regions of the combined
images. On the other hand, optimal seam finding methods place the seam between
images where photometric differences in their joining boundaries are minimal
[6, 7]. Image blending methods often combine the benefits of both groups of algo-
rithms (e.g. [2, 8]) in order to produce more plausible results and to reduce to an even
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higher degree the noticeability of the joining regions. A smooth transition between
the fused images is applied, but along an optimally selected seam, a combination
which helps to avoid double contours and blurring effects when image registration
is not accurate enough. This group of methods will be called from now on hybrid
methods.

This chapter provides a review of the most relevant blending techniques in the
literature since 1975. The methods listed are divided into three different groups,
corresponding to its main principle: transition smoothing methods, optimal seam
finding methods and hybrid methods. A classification of the approaches according
to several features and properties is also proposed in order to highlight their benefits
and drawbacks in different scenarios.

3.1 Transition Smoothing Methods

The main concern of transition smoothing methods is to produce a non-perceptible
transition between two images over a given overlapping region (see Fig. 3.2). The
information of this common area is fused in such a way that the boundaries of the
images involved become invisible. Even though a totally indistinguishable transition
may be achieved, the content and coherency of the overlapping region is not guar-
anteed, as the information is fused without taking into account the content of the
scene.

In the early 70s, D. Milgram [2] addressed the problem of the seamless com-
bination of two satellite images. The approach was intended to deal with only one
pair of images horizontally registered, which is a limiting factor for the application
of the method to different and more complex scenarios. This constraint lead to a
method which searches for the smoothest transition in a row-wise manner. An arbi-
trary surrounding range is defined at each row around a given selected seam pixel,
allowing to smooth the transition in that direction using a weighted average of the
luminance values. Consequently, the method achieves a smooth transition in the hor-
izontal direction, but this smoothness cannot be guaranteed in the vertical direction.
The weighted average of luminance values (of grayscale images) became the first
approach to the transition smoothing problem and a basic principle used by several
methods that arose in the following decades.

Still in the context of low-scale (order of mega-pixels) aerial photo-mosaicing, the
limitation of using only two overlapping images was addressed in the first instance
by Peleg [9], who introduced the concept of Seam-Eliminating Function (SEF). The
SEF is based on a luminance smoothing function (i.e. a weighting map), obtained
using a computationally expensive iterative relaxation algorithm, which is used to
smooth the transition from an arbitrary number of overlapping images (although the
overlapping information is not used and the seams used are not optimal), setting the
intensity differences along the seams at zero. The main advantage of the method is
that the gradual, smooth change does not affect the detail nor the picture near the
seams. Nevertheless, in lack of an optimal seam finding strategy, images suffering
from vignetting may lead to mosaics with noticeable illumination artifacts.
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Fig. 3.2 Example of the
application of a transition
smoothing method on the
overlapping area of two
images. The images show
different exposures and sig-
nificantly different sizes once
registered. As a result of the
blending algorithm, the tran-
sition between both images is
smooth though noticeable
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In 1983, Burt and Adelson [10] introduced the concept of image spline to obtain a
smooth transition among several images. The approach was multipurpose, extending
its fields of application to any imaging scenario, as opposed to Milgram’s [2] who
focused on satellite imaging. It was also the first approach to image compositing, i.e.,
the first method able to seamlessly fuse several images from different and unrelated
scenes. The images to be fused are decomposed into a set of band-pass component
images, and a separate spline with an appropriate transition width is applied to each
band. The goal is to fuse the features from the same scale at each band-pass level.
Finally, the splined band-pass components are recombined into the desired mosaic
image using a simple addition. The method suppresses the visibility of the seams
and reduces the noticeability of the misalignments when registration is imperfect.
However, it leads to double contouring and ghosting effects when the misalignment
is significant (see Fig. 3.3). In 1996, Hsu and Wu [11] extended the idea of Burt
and Adelson [10] by applying the method to wavelet subspaces with the aim of
avoiding the undesired oversampling nature of the Laplacian pyramid. Although the
improvement on the results obtained is negligible, similar results are obtained despite
the higher computational cost.
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Fig. 3.3 Sample photo-mosaic region with (a) and without (b) ghosting and double contouring
in the transition region due to registration inaccuracies. Seabed structures 1 and 2 are noticeably
blurry in (a) while having a sharp appearance in (b). (c) shows two overlapping images of a
given photo-mosaic (I1 and I2) represented in the red (I1) and green (I2) channels. Consequently,
perfectly registered regions should appear in yellow, while the regions affected by misalignments
present a reddish or greenish appearance. The image without ghosting and double contouring has
been obtained using the blending approach proposed in this book. Images courtesy of Dan Fornari
(Woods-Hole Oceanographic Institution)
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In 2003, Pérez et al. [12] proposed a generic interpolation machinery based on
solving Poisson equations for seamless editing and cloning of selection regions.
Despite the main focus of that framework being image composition, it may also
have applications in the underwater photo-mosaicing context when combined with
an appropriate optimal seam finding strategy. The approach allows us to suppress
the visibility of the seams along the joining regions. Beyond luminance and wavelet
domains, this is the first important approach to image mosaicing in the gradient
domain. The method is based on the idea that, through suitably mixing the gradi-
ent of a given image with that of another, it becomes possible to convincingly fuse
image regions (namely objects) with a transparent appearance. The framework is
based on the partial differential equation with Dirichlet boundary conditions which
specifies the Laplacian of an unknown function over the domain of interest, along
with the unknown function values over the boundary of the domain. As an extension
of the technique presented by Bertalmio in [13], Pérez et al. proposed to modify
the problem of image interpolation through Poisson equation by introducing further
constraints in the form of a guidance field. In the same context, Levin et al. [3] pro-
posed a method based in several cost functions for the evaluation of the quality of the
stitching defined in the gradient domain. Levin et al. named GIST (Gradient-domain
Image STitching) the framework developed based on this method. GIST provides
two main approaches to image stitching. In the first one, images are combined in the
gradient domain, reducing global inconsistences between the stitched parts due to
illumination changes and variations in the camera photometric response. The stitched
image is computed by minimizing a cost function evaluating the dissimilarity mea-
sure between the derivatives of the stitched image and the derivatives of the input
images. In the second one, the mosaic image is inferred by optimization over image
gradient, reducing seam artifacts and edge duplications. In this case, the stitching is
performed using feathering, pyramid blending [14] or optimal seam [15]. The draw-
backs of the methods working exclusively on the gradient domain are the important
computational resources required to deal with large datasets.

Following the idea of gradient domain image blending, Agarwala et al. proposed
a technique in 2004 that combined methods belonging to the two main classes of
blending algorithms [8]. Firstly, graph-cut optimization [16, 17] was used to find the
optimal place for the seamwithin the overlapping region. Secondly, gradient-domain
fusion [12] was applied to reduce or remove any remaining visible artifacts along the
image seams. The method has multiple applications in the image photomontage field
and achieves convincingly seamless results. The framework developed was mainly
intended to require user guidance to select the interest image regions, thus being
unsuited for the automatic generation of photo-mosaics. In 2007, Agarwala [18]
presented a hierarchical approach to improve the efficiency of gradient-domain
compositing. The efficiency increase was achieved by observing that the difference
between a simple color composite and its associated gradient-domain composite is
largely smooth, and the pattern of this smoothness can be predicted a priori. This dif-
ference is solved by adaptively subdividing the domain using a quadtree hierarchical
structure [19]. Unfortunately, the increases in efficiency with this method only occur
if the problem can be transformed into a space where the solution is mostly smooth,
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and the pattern of this smoothness can be predicted a priori. Consequently, when
the number of overlapping images increases and the overlapping regions become
smaller, the performance of the methods also decreases. In 2011, Szeliski et al. [20]
presented a technique for fast Poisson blending and gradient domain compositing
which associates, to each input image, a separate low-resolution offset map, that
can be represented using a low-dimensional spline. The resulting linear system is
much smaller than either the original Poisson system or the quadtree spline approx-
imation of a single offset map. Since each of the offset fields is represented using a
low-dimensional spline, the resultant representation is called multi-spline.

Still in the context of gradient domain blending, Su et al. [21] proposed a method
based on the minimization of a blending energy function, considering not only gra-
dient values but also luminance. Within this blending energy function, indented to
combine low-level image properties, two variation terms are measured and mini-
mized: image value variation and first derivative variation. Image value variation
measures the difference between corresponding pixel values of the images to be
combined and the photo-mosaic itself. On the other hand, first derivative variations
measure the difference between the blended values of each respective first derivative
and the first derivative of the mosaic. The resultant image can be effectively obtained
by minimizing the blending energy function. Unfortunately, the computational cost
of themethod (according to the authors, between six and eight times slower than [10])
makes it unsuitable for large image datasets.

The problem of stitching images in real time for online photo-mosaicing was
addressed by Zhao [22] in 2006. The author proposed an efficient image blending
method for creating good-quality and real-time dynamic image mosaics from an
arbitrary number of input images. There are three main advantages with the flexi-
ble blending technique: (a) good results and possible implementation in embedded
systems for real-time performance, (b) comprehensive treatment of geometry, time
and user control and (c) capability of handling exposure imbalance among frames.
Flexible blending has its basis in the sequential implementation of image blend-
ing features. Unfortunately, there are some drawbacks preventing its application in
large scale underwater mosaicing. Firstly, the blending step is based on an improved
multi-resolution weighted average [10] which prioritizes pixels close to the image
centers, but does not offer good enough results when registration problems appear.
Secondly, the exposure correction mechanism takes as a reference the exposure of
the photo-mosaic built until a new image is added. This fact may lead to a global
exposure degeneration when some of the implied images are over or underexposed.
Lastly, the method is intended to deal with small input images, but its behavior when
confronted with large input images sequences is unknown.

Few approaches in the literature have specifically dealt with the problem of under-
water imagery mosaicing. Gu and Rzhanov [23], proposed as a blending step the
application, around an optimally found boundary, of a pure gradient domain fusion
of the boundary pixels only. The method claims to overcome the short comings of
gradient domain fusion, which produce blurring in the case of misalignment inas-
much as is uses information from all the implied images to build the fused gradient
field. The authors do not define a criteria for selecting the contributing image in
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the case where multiple images overlap the same region. Thus, [23] is limited to
panoramic mosaics where only two images overlap over the same area. The color
treatment is not performed, being assumed that the method is gray-scale intended.

3.2 Optimal Seam Finding Methods

The objective of optimal seam finding methods is to find an optimal placement for
a seam line through a given overlapping region between two images (see Fig. 3.4).
This seam should minimize the photometric differences on both sides of the line and
determine the contribution of the involved images to the final mosaic. Unlike tran-
sition smoothing techniques, optimal seam finding approaches consider the content
of the scene in the overlapping region, allowing us to deal with problems such as
moving objects or parallax. In contrast, no information is fused, and the step between
the images can be easily noticeable when illumination conditions or exposure times
change from frame to frame.

Milgram [2] proposed a non-optimal seam definition strategy that searches the
seam pixel offering the smoothest transition in a row-wise manner, inasmuch as it
is intended to deal only with pairs of images horizontally registered. This random
positioning of the edge was referred to as “feathering”, and was claimed to help
reduce visual cues, but with the disadvantage of introducing discontinuities in the
vertical direction. In order to deal with this drawback, a restriction of the candidate
seam points, depending on the magnitude of the minimum edge difference, was
imposed. This restriction allows us to obtain a more continuous and consistent seam
line. The same author later proposed an improved approach, adding a pixel selection
criterion in the illumination compensation step in order to deal with shadows and
moving objects and considering only the most informative gray level values [24].
Furthermore, a cost function was included in the seam definition strategy, permitting
to control of the origin and the final pixel coordinates in the optimal seam path.

The problem of non-static objects in the overlapping regions was addressed by
Davis [6] in 1998, who found an optimal seam using Dijkstra’s algorithm [25]
through the photometric differences computed between two registered images. The
path obtained tends to cut around the moving object, leaving it either totally in or out
of the final mosaic image. As a drawback, at least one imagemust contain a complete
view of themoving object so as not to bisect it. Furthermore, some photometric issues
that can disturb the seam localization, such as automatic exposure or vignetting, are
not taken into account by the method.

Focusing mainly on the panoramic imaging context using a rotating camera,
Uyttendaele et al. [4] proposed, in 2001, a method to suppress the ghosting effect in
mosaic images due to moving objects, along with a procedure to adjust the exposure
over multiple images to eliminate visible shifts in brightness and hue. The aim of
the method is to deal with the complicated problem of multiple overlapping regions
with moving objects. When confronted with ghosting artifacts, the authors proposed
a search for Regions of Difference (RODs) in the overlapping areas in order to use
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Fig. 3.4 Example of the
application of an optimal
seam finding method on the
overlapping region between
two images. The images
show different exposures and
significant different sizes
once registered. As a result
of the blending algorithm,
the transition between both
images is still noticeable due
to the different exposures and
different sizes, which leads to
a visible contrast concerning
detail richness

Optimal Seam Finding
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information from only one image per ROD. Hence RODs are defined in different
images to be corresponding, i.e. to belong to the same scene object, if they have any
overlap at all. Regions of Difference (RODs) are then used to build a graph in which
the minimum weight vertex cover [26] must be computed. However, this method
is not entirely robust and situations can appear where a wrong elimination of ROD
causes holes in the mosaic image. Nevertheless, according to the authors, conflic-
tive situations are rare in practice. Concerning the exposure artifacts, a block-based
exposure adjustment technique was applied. The exposure compensation solution
obtains smooth but still noticeable transitions between images in some cases.

In the context of image compositing, Agarwala et al. [8] proposed, in 2004, a
technique which combined methods belonging to the two main classes of blending
algorithms. Concerning the seam finding strategy allowing the selection of the image
regions which will contribute to the composite, a graph-cut optimization [16] was
used. This graph-cut was guided, depending on user preferences, by several features,
such as color, luminance or likelihood, among others. The method has multiple
applications in the image photomontage field and achieves convincingly seamless
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results. The framework developed was mainly intended to require user guidance to
select the interest image regions, thus being unsuitable for the automatic generation
of photo-mosaics.

Regarding the computational and memory cost reduction of Dijkstra’s based opti-
mal seam finding, Gracias et al. [27] proposed a method using watersheds and graph
cuts intended to achieve execution speed when building large photo-mosaics. The
use of watershed segmentation to find possible cuts over areas with low photometric
differences allowed their algorithm to reduce the search to a smaller set of watershed
segments, at the cost of sacrificing a certain degree of precision of the computed
path, which is conditioned by the initial watershed segmentation. Furthermore, the
use of graph cuts over image pairs guarantees a globally optimal solution for each
intersection region.While the authors applied the algorithm developed to underwater
images, the method can be extended to other contexts.

Eden et al. [28] presented, in 2006, a blending approach that included a two-step
graph cut procedure to deal with both highly different exposures and misregistration
problems, and work on a global radiance space for all the images involved. This is
one of the first methods applied to the global radiance space domain. Firstly, the
positions of the moving objects in the scene are defined (manually or automatically).
Secondly, the entire available dynamic range is used to render the photo-mosaic.
Therefore, a High Dynamic Range (HDR) image can be obtained from the photo-
mosaicing process. Furthermore, two kinds of costs are introduced. Firstly, a data
cost is computed to insure consistency and a high signal-to-noise ratio. Secondly, a
seam cost is applied to favor smooth transitions. Nonetheless, such extreme exposure
differences are not common in underwater photo-mosaicing. The gradient blending
step is performed as in [8].

More recently, Mills and Dudek [29] presented a combination of techniques to
create good quality image mosaics despite the presence of moving objects in the
scene. The technique uses heuristic measures to determine the optimal seam, in both
intensity and gradient domains, combined with a multiresolution splining [10] algo-
rithm to refine the results around the selected seam. Concerning underwater imagery,
the strong differences in appearance between images and the sequential nature of the
approach may prevent its application. The exposure compensation of new added
images is performed based on the already generated photo-mosaic, which may lead
to mosaic degeneration as the amount of stitched images grows. Furthermore, the
blending method used by the approach may lead to double contouring, specially in
the presence of complex seabed structures.

In the underwater context, Gu and Rzhanov [23], similar to [3], proposed a graph-
cut technique in order to select the optimal seam between two images, and the
application of a pure gradient domain fusion around this boundary. The graph-cut
is performed in the gradient domain with the aim of correctly dealing with images
showing inhomogeneous illumination, but as opposed to [3], is performed on the
overall image values, being more flexible in defining the cut area according to the
authors.
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Fig. 3.5 Example of the
application of a hybrid
method. A multiresolution
spline [10] is applied around
a seam determined by the
distance from the pixels to
the corresponding image cen-
ters in order to give more
weight to the pixels close to
the optical axis. The images
show different exposures and
significantly different sizes
once registered. As a result
of the blending algorithm,
the transition between both
images is smooth although not
perfect, and the difference in
detail richness between them
is still noticeable

Hybrid
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3.3 Hybrid Methods

The third group of methods, which we refer to as hybrid methods, is in fact not com-
posed of any novel blending method, but of a set of appropriate transition smoothing
and optimal seam finding techniques combinations. This group of approaches typ-
ically applies a transition smoothing method around an optimally calculated (or
selected by some criterion) seam in order to improve the quality of the image regions
joined reducing its noticeability to an even higher degree. As a result of the com-
bination, problems such as blurring or double contouring presented by transition
smoothing methods, and others such as different exposures presented by optimal
seam finding methods, can be reduced or even totally avoided. One of the (evident)
drawbacks of hybrid methods is their computational cost, inasmuch as at least two
different strategies should be sequentially applied.

In fact, and as mentioned above, one of the pioneers in the image blending field,
Milgram [2, 24], had already proposed, in 1975 and later updated in 1977, a hybrid
approachbasedon the selection, in a row-wisemanner, of anoptimal seam (in termsof
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photometric differences) and the application around this seam of a weighted average,
allowing a noticeable reduction of the image transition. Furthermore, a “zero-order”
adjustment to compensate illumination differences between images was also used.
This strategy was intended for satellite imaging and limited to grayscale images
registered horizontally (regardless of rotation or scale changes). Nevertheless, it
dealt with the most relevant concerns of image blending, i.e. the equalization of
image appearance over a sequence (a pair of images in that case), the selection of a
seam that minimizes photometric differences at the boundary and the application of
a smoothing method around the seam to make the transition even less noticeable.

Agarwala et al. [8] proposed, as an optimal seam finding strategy, a graph-cut
optimization [16] guided by several parameters, such as color, luminance or like-
lihood, among others. The transition smoothing in this case is performed in the
gradient domain [12, 30]. Using the same labeling obtained after the graph-cut, the
color gradients are used to form a composite vector field. The best-fit image in a
least-squares sense is thereafter calculated by solving a discretization of the Poisson
equations. Each color channel is processed independently, and in order to keep color
channel coherency, the color of a given pixel is added to the Poisson equations to
constrain the linear system. No overlap information around the boundaries is used,
and according to the authors, in case of high-gradient edges, complications such as
objectionably blurring artifacts may appear. In order to solve this problem, the lin-
ear constraints corresponding to these problematic pixels are removed. The gradient
blending method acts in practice as an exposure compensation mechanism when all
the images of the composite belong to the same scene. The approach of Agarwala
is intended for image compositing, requiring human intervention when selecting the
image regions to be fused, and consequently, is not suitable for automatic image
mosaicing. Furthermore, performing the blending in the gradient domain regardless
of any pixel overlap information, even if the equations corresponding to problematic
pixels are dropped from the linear system, cannot guarantee a smooth transition in
all scenarios.

Similar to Agarwala et al. [8], Eden et al. [28] combined the benefits of both an
optimal seam finding strategy using a two-step graph-cut, and an optional transition
smoothing method on the gradient domain. The main novelties of this approach are
the use of a global radiance space for all the images involved, and the possibility of
obtaining an HDR image as a result. In the first step of the graph-cut, the optimal
boundaries are found in the same way as in Agarwala et al. [8] but in the radiance
domain over a subset of geometrically and photometrically registered images cov-
ering the full field of view. After this step, the position of moving objects is defined,
and can be manually changed or automatically selected. In the second step, an image
selection strategy is applied, which determines the best radiance values in all the
images of a given patch after the graph-cut in order to provide more detail, if pos-
sible, to the final composite. A secondary labeling is performed based on two cost
functions; one determining the data cost of adding a given image pixel to the com-
posite, and another determining the seam cost over each neighbor of this pixel. The
goal of this second step of the image selection is to find the labeling of the final
composite that minimizes both data and seam costs. Finally, the final composite can
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be obtained by either directly copying the corresponding radiance values into the
final HDR mosaic after the graph-cut labeling, or applying a gradient blending of
the original images using the Poisson equations [3, 8, 12]. Additionally, in order to
visualize the final HDR image, a tone mapping algorithm is used [30–32].

Gu and Rzhanov [23] proposed, as an optimal approach for underwater image
blending, a graph-cut strategy in the gradient domain in order to find the optimal
seam placement, and a gradient domain blending as a transition smoothing method.
The authors argued that performing a graph-cut on the gradient domain allows deal-
ing with different exposures and inhomogeneous illumination more robustly than
in the luminance domain, inasmuch as gradients are not affected by these fac-
tors. The gradient domain transition smoothing is performed in a similar way as
[8, 12, 30], but applying a weight to a few pixels around the seam in order to reduce
the artifacts caused by simple gradient blending, specially in presence of misalign-
ments. In practice, the weighting leads to the usage of the average value of the
gradients of pixels around the chosen seam. Nevertheless, this weighting is not able
to get fully rid of ghosting artifacts around the image boundaries.

In 2009,Mills andDudek [29] presented a fullmosaicing approach to create pleas-
ant and physically consistent image mosaics despite the presence of moving objects.
The authors proposed performing a graph-cut along the differences between the lumi-
nance of two registered images in order to find an optimal seam. This graph-cut is
computed, similarly to Davis [6], using Disjkstra’s [25] algorithm. As a transition
smoothing strategy, themultiresolutions splining of Burt andAdelson [10] is applied,
which, in contrast to some gradient domain methods, uses the common overlapping
pixels to smooth the transition. Inasmuch as the graph-cut is performed in the lumi-
nance differences domain, it cannot appropriately deal with different exposures or
changes in the illumination conditions in the scene. On the other hand, the multires-
olution splining strategy may lead to ghosting and double contouring in the case of
misregistration, and cannot deal with different image exposures or illuminations.

3.4 Classification

The list of papers that form the state of the art in image blending is large, and
the main requirements for conventional image panorama generation have been
satisfyingly addressed by several of them. Unfortunately, blending in underwater
photo-mosaicing is a specific application that has not been deeply treated in the lit-
erature. Consequently, not all the methods are appropriate for this context. In order
to highlight the properties, benefits and drawbacks of the current methods, and to
evaluate their suitability for underwater mosaicing, a classification is proposed.

There are several criteria that determine the behavior and performance of a given
blending algorithm, including its capability of dealing with high resolution under-
water photo-mosaics. Table 3.1 provides a comprehensive comparison of the most
relevant blending techniques proposed in the literature. The specially important cat-
egories for underwater applications (mostly working with monochrome images) are
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exposure correction and elimination of ghosting and double contouring, concerning
image quality, and scalability, concerning large scale photo-mosaicing.

3.4.1 Basic Principle

Two main groups of algorithms can be found in the literature in the context of image
blending [3]: transition smoothing methods (also known as feathering [4] or alpha
blending methods [5]) and optimal seam finding methods [6, 7]. The benefits of both
groups of algorithms are combined into a third group, the hybrid methods [2, 8],
in order to produce more plausible results and to reduce to an even higher degree
the noticeability of the joining regions. Additionally, those methods avoid double
contours and blurring effects when image registration is not accurate enough.

Each method uses a basic approach (Principle): Transition Smoothing (TS); Opti-
mal Seam Finding (OS); or an appropriate Hybrid combination (OS/TS). The first
set of methods (TS) often suffers from Ghosting, which concerns image blurriness
of the finest details (i.e. low frequency image components), and Double Contouring,
consisting in practice of a partial duplication of certain scene structures (i.e. high
frequency image components), if registration is not accurate enough or the scenario
considerably violates the planar scene assumption for 2D mosaicing. The second set
(OS) is not able to deal with images with different Exposures, as is often the case in
underwater imagery due to 3D relief, oblique terrain, variations in vehicle altitude,
etc. Finally, Hybrid methods are able to compensate for these drawbacks to a certain
degree.

Concerning the main principle of the techniques, the combination of a transition
smoothing around an estimated boundary seems to be themost adequate approach and
has been the most popular methodology in the literature since 2004, independent of
the application context. The tolerance to moving objects is tied to this main principle.
Optimal seam finding based methods naturally deal with this problem. In most cases,
this tolerance is not actively treated, but is a result of the optimal seam search, which
tends to make the cut in areas where photometric differences are small; overlapping
areas with moving objects will thus be avoided.

3.4.2 Domain

The Domain in which the process is carried out (Luminance/Radiance, Wavelet or
Gradient), has a double effect on the blending process. On the one hand, the image
domain strongly influences the properties of the blending that will be performed. As
an example, Gradient blending methods are able to unify different Exposures seam-
lessly and can lead implicitly to a high dynamic range from a set of low dynamic
range images. However, Gradient methods require solving large sparse equation
systems to recover the Luminance from the gradient vectors, and thereby their
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computational cost is significant. In contrast, Luminance based methods typically
have lower computational requirements.

Luminance and gradient domains are widely used, and the second has become
the preferred method in the latest publications [29, 51, 54]. This is due to the nature
of the domain, which allows easy reduction of the exposure differences between
neighboring images. Nevertheless, methods actively applying an exposure correction
algorithmobtainmore visually pleasant results. The ability to remove ghosting effects
and the fact of presenting double contouring are complementary, and are avoided
jointly.

3.4.3 Scalability

A particularly important property of blending methods is the Scalability, which we
define as the ability to deal with more than two overlapping images. This property
might be constrained by two main factors. The first one is the nature of the method
itself, as in [2, 11, 24], which cannot work with more than two overlapping images.
The second one is related to computational requirements: non-optimized Gradi-
ent algorithms suffer from poor computational scalability when the input dataset is
extremely large, as in the case of Giga-Mosaics.

Leaving aside the first blending methods in the literature [2, 10, 11, 24], through-
out the last decade most of the approaches have been scalable up to a certain point.
Approaches such as [51] are intended to reduce computer requirements allowing
the efficient processing of high resolution photo-mosaics. Unfortunately, these ben-
efits only appear in the case of mosaics with images showing low overlap. In that
case is possible to avoid storage and computations for image regions that remain
unchanged after blending. This situation mainly happens in image panoramas, but
not in underwater mosaics, where image registrations are unpredictable and geomet-
rically non-uniform.

3.4.4 Color and Dynamic Range

Color is another critical factor when building visually plausible images. Colors
change significantly as a function of the distance between the camera and the seafloor
(known as robot altitude) due to the wavelength-dependent spectral absorption of the
media. Mosaic blending techniques generally use a Channel Wise approach, where
three color channels are processed independently and later reunified into a single
color image. These methods have no control over perceptual color attributes. Several
approaches in the literature address the color balancing problem in the image photo-
mosaicing pipeline, based on exposure compensation in single [4, 37] or multiple
channels [38, 59], and based on color transfer techniques [60, 61]. Unfortunately,
dealing with extremely large datasets to generate photo-mosaics of large dimensions
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and keeping the consistency of the global image appearance is a difficult task when
using methods available in the literature.

The treatment of color channels is common to all themethods in the literature,with
the blending always being performed separately over each channel, independently
of the number of channels of the source images. Consequently, a different smooth
transition and location of the optimal seam are calculated for each channel. In this
sense, Agarwala et al. [8] requires user intervention to specify some preferred color
values, and [51] adds some constraints to the color variations in order to avoid
significant color shifting. These corrections are performed channel-wise and do not
treat the deep nature of the real colors. As a consequence, their performance when
dealing with images evidencing different appearances due to light attenuation and
illumination inhomogeneities is unpredictable.

The Dynamic Range of the image and the quantization of the data provided by
the camera sensor strongly influence the accuracy of the final scene representation.
Despite some of the methods reviewed being be able to work with high dynamic
range images (with more than the common 8 bits per pixel and channel), they are not
reported to do so. In fact, any High Dynamic Range blending method will require a
Tone Mapping algorithm in order to display the High Dynamic Range mosaic image
into a Low Dynamic Range device, such as conventional screens or printers [28].

Few blending methods claim to work with high dynamic range images. Neverthe-
less, gradient based blending methods are able to intrinsically deal with this kind of
imagery, requiring the application of tone mapping algorithms to the mosaic image
generated in order to visualize the results. A high dynamic range should be reduced
so as to be displayed in low dynamic range devices.

3.4.5 Multiresolution

The use of a Multiresolution approach was first published in 1983 by Burt and
Adelson [10]. Its main advantage is the significant reduction, but not suppression,
of the noticeability of Double Contours due to registration inaccuracies. Under this
approach, the images are decomposed into a set of band-pass components. For each
different band, an appropriately selected width for the transition region T is applied,
ensuring a smooth fusion at this spatial frequency band. An important shortcoming
is that the method requires keeping several representations of the same image in
memory, increasing memory requirements. The price of the seamless appearance is
the loss of high frequency details. The multiresolution approach, based on the idea
of Burt and Adelson [10], is applied by Su et al. [21] to the wavelet domain, but is
the only variation of this idea in the literature.
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3.4.6 Local/Global and Real-Time Operation

With respect to the Locality of the methods, Global methods require knowing all
the final mosaic information a priori in order to perform the blending procedure,
while Local methods can work on small parts of the final photo-mosaic, joining
them together upon completion. Obviously, Global methods often require higher
computational resources than Local ones, while Local methods may not be able
to solve some problematic situations, such as loop closing, i.e. visiting twice or
more a given scene region, or exposure compensation during a pair-wise sequential
processing.

Methods that are able to deal with most of the mosaicing and blending issues in
Real Time [22], though uncommon, are optimized towards high performance for large
sequences. The results obtained are not as accurate as those from off-line approaches,
but acceptable when on-line feedback is required. Real-time techniques are typically
based on the Sequential Processing of the input data. Somemethods, likeMilgram [2]
or Hsu and Wu [11], can process the images pair-wise and add the result to a final
mosaic canvas. The pair-wise processing is a limiting factor for the scalability of these
methods, which are not appropriate for sequences where a given place is visitedmore
than once as the drift accumulated due to the sequential registration, without a global
alignment correction, results in inconsistent overlapping regions. Methods that do
not perform a sequential processing are better positioned to deal with problems like
exposure compensation and ensure global appearance consistency.

3.4.7 Relevant Visual Performance Criteria

Different exposures between images are especially common in underwater imaging.
Frequently, the AUV or ROV cannot keep a perfectly constant altitude (distance to
the seafloor) during the survey, requiring the automatic adjustment of the exposure
time between frames. The exposure correction might be performed actively, by pre-
processing the image sequence to be blended, but may also be corrected by means
of gradient domain techniques, inasmuch as this domain is not sensitive to time
exposure.

As already pointed out above, ghosting and double contouring are mainly due to
geometrical registration inaccuracies. When two overlapping images are not prop-
erly aligned, non-coincident features are smoothed, and thereby ghosted, when fused,
while strong contours appear twice in the blended photo-mosaic. Underwater, the
forward scattering phenomenon is responsible for loosing contrast [62] and, there-
fore, ghosting appears when merging images with significantly different depths (see
Fig. 3.6).Double contouring underwater is sometimes unavoidable due to the limited
camera distance to the seabed leading to parallax.

Moving objects often appear in underwater imaging, e.g. fish, algae, crustacea and
other life forms or floating objects. Most of the Optimal Seam Finding algorithms
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Fig. 3.6 Registration of two images acquired at significantly different altitudes. The image acquired
at higher altitude shows strong light attenuation and scattering. These effects cause a noticeable
different appearance between the two images

are able to deal with moving objects, actively or passively, and cut them out of the
overlapping regions, keeping a single representation of each object in the final map.

Finally, the parallax robustness determines the ability of a given blending algo-
rithm to deal with a sequence where the 2D assumptions were considerably violated.
Underwater scenarios are characterized by frequent seabed depth-changes, as well
as the direction of shadows produced by the artificial lighting systems of the AUV
or ROV. Optimal Seam Finding techniques are typically the most indicated methods
to deal with this problem.

The parallax robustness is strongly related to its tolerance towardmoving objects,
and methods able to deal with moving objects are often able to handle parallax. In
fact, parallax robustness can be considered in practice as the ability of a method to
avoid repeated objects or shapes.
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3.5 Conclusions

The generation of terrestrial and aerial photo-mosaics from a set of images is a
problem widely treated in the literature. The number of approaches confronting this
problem is large and the main imaging issues, such as exposure variations, vignetting
effects and the presence moving objects, have been mainly solved.

Nevertheless, the underwater medium presents additional problems which tend
to make the common approaches fail when applied in this context. The problems of
extreme non-uniform illumination, backward and forward scattering and parallax, in
addition to significant exposure variations and frequent moving objects, are specific
to the medium, and few approaches have been presented in that direction.

Consequently, a different processing pipeline is required to deal with all the
problems affecting underwater imagery. This pipeline should also be computation-
ally efficient to allow processing large data sets, whose images might be affected
to various degrees by the underwater phenomena presented. Obtaining consistent
high-resolution large-scale geo-referenced photomosaics is the goal of the devel-
oped pipeline, comparable in terms of visual agreeability to terrestrial and common
aerial photo-mosaics.
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