
123

S P R I N G E R  B R I E F S  I N  CO M P U T E R  S C I E N C E

Ricard Prados
Rafael Garcia
László Neumann

Image Blending 
Techniques and 
their Application 
in Underwater 
Mosaicing



SpringerBriefs in Computer Science

Series editors

Stan Zdonik, Brown University, Providence, USA
Shashi Shekhar, University of Minnesota, Minneapolis, USA
Jonathan Katz, University of Maryland, College Park, USA
Xindong Wu, University of Vermont, Burlington, USA
Lakhmi C. Jain, University of South Australia, Adelaide, Australia
David Padua, University of Illinois Urbana-Champaign, Urbana, USA
Xuemin (Sherman) Shen, University of Waterloo, Waterloo, Canada
Borko Furht, Florida Atlantic University, Boca Raton, USA
V. S. Subrahmanian, University of Maryland, College Park, USA
Martial Hebert, Carnegie Mellon University, Pittsburgh, USA
Katsushi Ikeuchi, University of Tokyo, Tokyo, Japan
Bruno Siciliano, Università di Napoli Federico II, Napoli, Italy
Sushil Jajodia, George Mason University, Fairfax, USA

For further volumes:
http://www.springer.com/series/10028

http://www.springer.com/series/10028


Ricard Prados • Rafael Garcia
László Neumann

Image Blending Techniques
and their Application in
Underwater Mosaicing

123



Ricard Prados
Rafael Garcia
László Neumann
University of Girona
Girona
Spain

ISSN 2191-5768 ISSN 2191-5776 (electronic)
ISBN 978-3-319-05557-2 ISBN 978-3-319-05558-9 (eBook)
DOI 10.1007/978-3-319-05558-9
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014934137

� The Author(s) 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



To my mother, R. P.
To Àlex, Laia and Yolanda, R. G.
To my father, L. N.



Preface

Underwater surveys have numerous scientific applications in the fields of
archeology, geology, and biology, involving tasks such as ancient shipwreck
prospection, ecological studies, environmental damage assessment, and detection
of temporal changes. When diving at extreme depths or during long periods of
time, underwater surveys are nowadays carried out by Underwater Vehicles (UV).
These vehicles are often equipped with advanced navigation sensors, including
optical cameras. Optical imaging provides short-range, high-resolution visual
information about the ocean floor.

Scientists can benefit from these images as they provide, from the cognitive
point of view, the most precise and accurate representation of the areas surveyed,
enabling a detailed analysis of the structures of interest. The underwater medium
adds particular challenges to the image acquisition task, and phenomena such as
light attenuation enforce it to be performed as close to the seabed as possible.
Hence, optically mapping large seafloor areas can only be achieved by building
image mosaics from a set of reduced-area pictures, i.e., photo-mosaics. Unfortu-
nately, the seams along image boundaries are often noticeable, due to photometrical
and geometrical registration inaccuracies. Image blending is the merging step in
which those artifacts are minimized. Processing bottlenecks and the lack of medium
specific processing tools have restricted underwater photo-mosaics to small areas
despite the hundreds of thousands of m2 that modern surveys can cover. Large
underwater photo-mosaics are in increasing demand for the characterization of the
seafloor for scientific purposes. Producing these mosaics is difficult due to the
challenging nature of the underwater environment and of the image acquisition
conditions, including extreme depth, scattering and light attenuation phenomena,
and difficulties in vehicle navigation and positioning.

This book proposes strategies and solutions to tackle the problem of building
photo-mosaics of very large underwater optical surveys, i.e. Giga-mosaics,
presenting contributions in the image preprocessing, enhancing, and blending
steps, and resulting in an improved visual quality of the final photo-mosaic.

First, a comprehensive review of the current and most prominent state-of-the-
art mosaicing and blending techniques is provided in Chap. 3, in order to evaluate
their application in the underwater imaging context. A classification criterion for
the existing methods is presented, based on their main features and performance.
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Second, a full approach for large-scale underwater image mosaicing and
blending is proposed. In the image preprocessing step, a depth-dependent illu-
mination compensation function is used to solve the nonuniform illumination
appearance due to light attenuation. Additionally, if depth information is not
available, a depth estimation based on the size of the image projection (once
registered) is exploited in different steps of the pipeline. Concerning image
enhancement, the image contrast variability due to different acquisition altitudes is
compensated using an adaptive contrast enhancement based on an image quality
reference selected through a Total Variation (TV) criterion. This criterion is also
applied to give a higher priority to the information coming from higher quality
images, making the contribution from sharper and more informative images higher
than that of contrastless or poorly detailed ones. In the blending step, a graph-cut
strategy operating in the image gradient domain over the overlapping regions is
proposed. This approach allows finding an adequate seam even if the overlapping
images have been acquired with different exposures. A smooth transition around
the optimally selected seams is performed in a narrow strip, ensuring the maxi-
mum possible sharpness and avoiding double contouring problems. Finally, an out-
of-core blending strategy for very large-scale photo-mosaics is presented and
tested on real data, generating images surpassing the giga-pixel order, and having,
as its only limitation, the maximum size of the tile that can be processed in the
computer’s memory.

The performance of the proposed approach and the benefits of using blended
gigamosaics for interpretation tasks are evaluated in Chap. 5. The results obtained
by the proposed method are discussed and compared with other state-of-the-art
approaches, using a series of challenging large-scale underwater datasets.
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Chapter 1
Introduction

Abstract This chapter introduces the reader to the problem of high-quality
large-scale underwater optical mapping, as well as to the need for blending tech-
niques to improve the quality of the generated maps. Underwater surveys are nowa-
days carried out byUnderwaterVehicles (UVs),which allowdiving at extreme depths
during long periods of time. Optical imaging provides short-range high-resolution
visual information of the ocean floor. Unfortunately, several medium-specific phe-
nomena, such as light attenuation and scattering, constrain the acquisition by limit-
ing the maximum area covered by a single image. Hence, optically mapping large
seafloor areas can only be achieved by building image mosaics from a set of reduced
area pictures, i.e. photo-mosaics. Blending techniques provide a set of heteroge-
neously appearing images of a given map with a continuous and consistent appear-
ance. Beyond visual appearance, blending techniques are also important for proper
interpretation and scientific exploitation of seafloor imagery. Finally, the book struc-
ture is outlined at the end of the chapter.

Keywords Underwater mapping · Photo-mosaicing · Blending techniques · Light
attenuation · Scattering

1.1 Background

Seafloor exploration is an ancient activity that started thousands of years ago with
human shallow diving [1]. Nowadays, underwater surveys have numerous scientific
applications in the fields of archeology [2], geology [3, 4] and biology [5], involving
tasks such as ancient shipwreck prospection [6], ecological studies [7, 8], environ-
mental damage assessment [9, 10] or detection of temporal changes [11], just to
name a few.

Due to human limitations when diving at extreme depths or during long periods
of time, underwater surveys are nowadays carried out by UVs. UVs can be either

R. Prados et al., Image Blending Techniques and their Application in Underwater 1
Mosaicing, SpringerBriefs in Computer Science, DOI: 10.1007/978-3-319-05558-9_1,
© The Author(s) 2014
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Fig. 1.1 Illustration of an underwater vehicle acquiring images at low altitude due to the constraints
imposed by the medium. Poor lighting conditions require the use of artificial lighting, which in
addition to light attenuation leads to non-uniform lighting and induced shadows in the acquired
images. Scattering andmoving objects, such as fish or algae are some of the other specific challenges
that appear due to the particularities of the acquisition medium

Autonomous Underwater Vehicles (AUVs) or Remotely Operated Vehicles (ROVs),
which are manually controlled by a pilot. These vehicles are often equipped with
advanced navigation sensors. Typical sensor suites may include an Ultra Short Base
Line (USBL), a Long Base Line (LBL), a Doppler Velocity Log (DVL), accelerom-
eters, inclinometers, acoustic imaging sensors and optical cameras, among others,
depending on the type, size and cost of the vehicle.

Among the sensors listed above, optical imaging provides short-range high-
resolution visual information of the ocean floor. In the scientific scope, archeolo-
gists, geologists and biologists can benefit from these images as they provide the
most precise and accurate representation of the areas surveyed, from the cognitive
point of view, enabling a detailed analysis of the structures of interest.

Nevertheless, the underwater medium adds particular challenges to the image
acquisition task (see Fig. 1.1). When an underwater vehicle acquires images in deep
waters, light attenuation has a huge impact on the visibility range and color reproduc-
tion, especially when the vehicle navigates at changing altitude (i.e. distance from the
camera to the seafloor). Due to the light attenuation phenomenon, image acquisition
needs to be performed close to the seabed, considerably limiting the maximum area
covered by a single photograph. Hence, optically mapping large seafloor areas can
only be achieved by building image mosaics from a set of reduced-area pictures.

The history of large-scale, deep-sea optical mapping starts with the French-
American Mid-Ocean Undersea Study (FAMOUS) project [12], in 1974. In this
survey, theAlvin submersible explored the great rift valley of theMid-AtlanticRidge,



1.1 Background 3

southwest of the Azores. The cruise was planned based on large sequences of images
supplied by the US Navy, which were manually aligned on a gymnasium floor, i.e.
a photo-mosaic.

Over the last decade, the relevance of photo-mosaicing has grown significantly. As
a clear example, numerous off-the-shelf still cameras now include built-in algorithms
to fuse several pictures from a panoramic sequence into a single wide-angle view.
Furthermore, gigapixel photo-mosaics [13] of the entire Earth are easily available
through the Internet, using a limited bandwidth connection. In most cases, such large
mosaics are created from terrestrial, aerial or space related imagery. The common
photo-mosaicing problems for this kind of image, comprehending the compensa-
tion of different exposures and non-uniform illumination, have been treated in the
literature [14–20].

Unfortunately, performing underwater image surveys is a challenging task with
a much higher level of complexity than conventional terrestrial or aerial image
photo-mosaic generation. As stated in [21], and due to constrained image acquisi-
tion conditions, both the navigation data and the images acquired have to be used to
recover an accurate estimate of the camera poses during the survey. This information
fusion is often performed by means of Global Alignment (GA) techniques [21–24].
This is a mandatory step before generating precise visual maps of the seafloor. In
most cases, the short distance between the camera and the seafloor produces paral-
lax effects (see Fig. 1.2), which considerably affect 2D mosaicing approaches due to
the violation of the planarity assumption, i.e. the assumption of a flat scene, which
allows the computation of 2D transformations between images. Furthermore, sus-
pended particles causing the scattering phenomenon [25] are commonly present.
Moving elements, such as fish and algae, are examples of other common issues in
underwater image processing.

Using the navigation data collected by the UV allows us to estimate the camera
poses during the acquisition. Consequently, from these camera poses the vehicle
trajectory can also be recovered. Once an initial guess of this trajectory is obtained,
it can be refined through global alignment techniques by using the information from
the acquired images. As a result of this processing pipeline, the acquired images can
be projected and rendered into a single and common reference frame. Nevertheless,
it is necessary to perform one last step to give the heterogeneously appearing image
dataset a continuous and uniform appearance in the form of a single large mosaic.
This is achieved by means of image blending techniques (see Fig. 1.3).

Apart from the visual appearance, blending techniques are also important for
proper interpretation and scientific exploitation of seafloor imagery (e.g. [26, 27]).
The structures and objects of interest may cover a wide range of scales, from a few
centimeters, i.e. macrofauna or rocks which would appear in individual images, to
several tens or hundreds of meters, i.e. topographic scarps or fractures spanning
thousands of images. To correctly analyze such varying features, and to understand
the spatial relationships that may exist (e.g. faunal assemblages associated with
geological features), it is preferable to have a single, wide area photo-mosaic, in
which imaging artifacts are minimized, and identified features of interest may be
accurately represented regardless of their size and imaging conditions.
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Fig. 1.2 Sequence corresponding to a straight trajectory of anAUVdepicting the parallax problems.
It shows the side and camera views of the robot’s trajectory. One side of the chest disappears from
the frame while the other arises due to the parallax effect

1.2 Challenges of Underwater Optical Imaging

According to John F. Brown [28], the first underwater picture (Fig. 1.4) was taken by
WilliamThompson in February 1856 inDorset (England). The photographer lowered
a housed 5” × 4” plate camera to the seabed in Weymouth Bay and operated the
shutter from an anchored boat. The exposure time used to acquire the picture was
10 min during which time the camera flooded, however the film was salvaged. Scuba
diving, which can be intuitively considered as a more conventional way to acquire
underwater images, did not exist as a common activity until several years later.

Acquiring optical images underwater is significantly more difficult than perform-
ing conventional land photography. Submerging a camera underwater using an ade-
quate housing andmaneuvering it appropriately is a complex task by itself. However,
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Fig. 1.3 Underwater mosaic of a dam and zoomed detail before (top) and after (bottom) the appli-
cation of an image blending technique. In the blendedmosaic, the elements on the damwall (mainly
algae) are clearly visible, whereas in the non-blended mosaic they are hardly distinguishable

the most important challenges are imposed by the underwater medium properties
affected by several phenomena which condition the acquisition procedure. The two
main underwater phenomena strongly affecting image quality and consequently the
acquisition task are light attenuation and scattering [19].

Apart from these two main phenomena, the camera parametrization is another
key point affecting image quality. When acquiring images underwater using a still
camera, the automatic adjustment mechanism may try to slow the shutter speed and
increase the aperture in order to better deal with the low light conditions. This setup
is very sensitive to camera movement and thus, unsuitable for a camera mounted on
an AUV or ROV. When the acquisition is performed in shallow waters, the ambi-
ent light can be sufficient to acquire quality images, but when performed in deep
waters high power artificial light sources are required. Using artificial light, typically
consisting of one or more directional sources, leads to another problem affecting
images, especially when registering them to build a mosaic, which is non-uniform
illumination of the scene. Finally, when using artificial lighting, the shadows induced
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Fig. 1.4 The first underwater
image in history taken
by William Thompson in
February 1856 in Dorset
(England) with an
almost totally submerged
photographic camera (source
Christian Petron, History of
Underwater Image, Digital
Edition, 2011)

on the scene create an apparent motion which is opposite to the real motion of the
camera.

Light Attenuation

Sunlight wavelengths in the visible spectrum for a typical human eye range from
390nm (violet tones) to 770nm (reddish tones) [29]. Light attenuation is due to
the light absorption by water, which increases exponentially with depth and affects
all wavelengths to varying degrees, and depends on the different water bodies [30].
Therefore, sun light cannot penetrate to any great depth and artificial lighting systems
are required when acquiring images several meters below the surface (see Fig. 1.6).
When using artificial light sources, such as continuous lights or strobes, the acquired
images show brighter and richer detail information in the region on which these
lights are focused, while rendering a darker and contrastless appearance of the sur-
roundings (Fig. 1.5-bottom-right). This effect is accentuated due to the vignetting
caused by the camera optics. Light attenuation also leads to color loss (Fig. 1.5-
bottom-left). The longer wavelengths corresponding to the reddish tones are the first
to be attenuated, while the shortest ones corresponding to the bluish tones are the
last. This loss is the reason for the greenish or bluish appearance of objects in under-
water scenes as the distance between object and camera increases. Some organic
particles, such as phytoplankton frequently found in coastal waters, absorb light pre-
dominantly in the shortest wavelengths (corresponding to the blue and violet tones),
allowing only the greenish tones to persist. In order to deal with light attenuation in
seafloor mapping, high power and appropriately distributed artificial light sources
should be used, and image acquisition should be performed as close to the seabed as
possible.
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Fig. 1.5 (Top-left) Example of backward scattering due to the reflection of rays from the light
source on particles in suspension, hindering the identification of the seafloor texture. (Top-right)
Example of forward scattering caused by the local inter-reflection of light on the suspended particles,
hiding the terrain behind them. (Bottom-left) Image depicting the effects of light absorption in the
underwater medium, where longer wavelengths are first absorbed, causing the bluish appearance
of the scene structures at a lower depth. (Bottom-right) Effects produced by light attenuation of the
water resulting in an evident loss of luminance in the regions farthest from the focus of the artificial
lighting

Scattering

The presence of organic and inorganic particles suspended in the volume of water
intersected by the field of view of the camera and the illumination source (see “scat-
tering volume” in Fig. 1.7) is the cause of the light scattering phenomenon. This is
illustrated in Fig. 1.5-top. It can be strongly noticeable when caused by a suspended
sediment load (also known as turbidity). The degree of scattering depends on the
distance, the wavelength, and the characteristics of the particles (i.e. shape, density
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Fig. 1.6 Light attenuation in the visible spectrum range (from 390nm to 770nm) prevents sun
light wavelengths from reaching long distances below the water surface. The longer wavelengths
corresponding to the reddish tones are thefirst to be attenuated,while the shortest ones corresponding
to the bluish tones are the last

and refractive index). There are two types of scattering. On the one hand, backward
scattering is an additive noise in the form of “marine snow” patterns which appear
due to the reflection of the light from a given natural or artificial source on the sus-
pended particles in the direction of the camera. On the other hand, forward scattering
appears due to the inter-reflections of local light among the particles, and becomes
the most significant source of image degradation leading to a non-uniform loss of
contrast, definition and color fidelity. The scattering phenomenon can significantly
affect the acquisition of images at a short distance from seabed. The vehicle carrying
the camera may also cause the displacement of particles or soil lying on the ground,
increasing the probability of backward scattering.

1.3 Objectives

Thenumerous scientific applications of underwater optical imaging require providing
experts with the most informative and visually pleasant representations possible of
the seafloor. Underwater surveys carried out by both AUVs or ROVs generate a
large volume of navigation and optical imaging data. This information needs to be
post-processed and managed in such a way that makes its study by the scientists
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Fig. 1.7 The scattering effect
appears in the volume of
water intersected by the field
of view of the camera and the
illumination source

Light
Source

Camera
(FOV)

Scattering
Volume

(e.g. [26]) as easy as possible or even just feasible. In that sense, photo-mosaics are
an adequate way to manage, unify and consistently fuse all this optical imaging data
and unite it with the navigation data to generate georeferenced maps. Providing the
maps generated with a convincing and reliable appearance has not only aesthetic but
cognitive purposes. The interpretation of a given scene becomes more intuitive and
effective when its representation emphasizes its features and has a global smooth
and continuous overall appearance.

Building a photo-mosaic from a large set of underwater images is a challeng-
ing task. The quality of every single picture might change considerably along the
sequence due to the underwater lighting phenomena described above. Furthermore,
the computational requirements to process this large amount of data from a given
imaging survey limit the maximum size of the map generated.

Consequently, the goal of this book is to propose a complete blending approach
using state-of-the-art methods capable of generating and blending large scale opti-
cal maps. The blending technique developed is focused on two main ideas. Firstly,
the richness of detail in the original images should not only be preserved but also
enhancedwhenpossible. Secondly, the algorithms should be able to dealwith datasets
of thousands of images covering large areas of the seafloor (to the order of several
hundreds of thousands of m2). Consequently, the processing strategy needs to deal
with underwater imaging while being well-suited for large input sequences.

1.4 Outline of the Approach

A single, large image, i.e. a photo-mosaic, is easier to interpret than a long sequence
of consecutive pictures or even a video record, inasmuch as it offers a spatially and
photometrically consistent representation of the seabed. In order to ensure this image
consistency, blending techniques are required. These techniques, which produce a
seamless mosaic, enable the interpretation of the benthos by a scientist (biologist,
geologist, archeologist, etc.).
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There are three main concerns guiding image blending algorithms. Firstly, the
effects of different illumination or exposure times between images should be mini-
mized. Secondly, an adequate seam should be found in order to reduce the visibility
of micro-registration misalignments and moving objects. Lastly, a smooth transition
along the selected seam must be applied to reduce the visibility of seams between
images.

The topology of a mosaic is initially estimated based on the navigation data and
a feature-based pair-wise image registration. After this initial estimation, a global
alignment strategy [21, 22] is required to reduce the cumulative error of a simple
sequential pair-wise registration. The strength of the global alignment arises from
closing-loops, because they allow us to significantly improve the camera’s trajectory
estimate when re-visiting an already mapped area. In the absence of loop-closings,
and considering input sequences of thousands of images, the drift accumulated by
the pair-wise transformations leads to significantly inconsistent (missaligned) photo-
mosaics.

Aside from exposure variations, which are a common issue in terrestrial images,
the remaining problems are not directly addressed by conventional panorama gen-
eration software. To better deal with the inherent underwater imaging problems
(non-uniform illumination, light attenuation, scattering, exposure variations, etc.),
we perform image pre-processing, which, in our experience, is a key step, strongly
impacting the quality of the final photo-mosaic rendering. A depth adaptive inhomo-
geneous lighting compensation algorithm is proposed to deal with the non-uniform
distribution of the artificial light sources in the scene whose effects are emphasized
due to the light attenuation phenomenon. Concerning image detail enhancement, a
gradient based image enhancement depending on the distance from the camera to
the seabed, has also been proposed. Both scattering and light absorption phenom-
ena may lead to highly variable appearances for images depicting the same area
but acquired at significantly different depths. The aim of this enhancement is to
bring the closest appearance to the involved images in order to achieve a consistent
fusion.

Once the images have been preprocessed, thus making them more suitable for an
adequate blending, an image selection algorithm based on image quality is applied,
with two main aims. Firstly, to reduce the number of images to be processed with
the next step algorithm and consequently reduce the computational cost. Secondly,
to avoid lower quality images negatively affecting the appearance of the regions also
covered by higher quality ones.

Next, a hybrid luminance-gradient graph-cut based optimal seam finding algo-
rithm is proposed to locate the seams which minimize the photometric and mor-
phological differences in the image boundaries. The proposed algorithm is able to
robustly deal with differently exposed images, thanks to the gradient term, especially
when image preprocessing is not enough to palliate these differences.

Then, we apply a gradient blending strategy in a narrow region around the opti-
mally computed seams in order to ensure a smooth transition between the image
patches involved. Additionally, the gradient nature of the blending also allows us to
compensate eventual exposure differences between images.



1.4 Outline of the Approach 11

Finally, a gigamosaic generation strategy is presented, based on the decomposition
of the large-dimension mosaics into tiles of reasonable size that can be processed in
conventional computers without large amounts of resources.

1.5 Contributions

The main contributions of this book can be summarized as follows:

• A novel full mosaicing and blending pipeline optimized for underwater imaging is
proposed. The effects of underwater phenomena such as non-uniform illumination
and scattering are compensated for in an adaptive way, with the main aim of not
only preserving, but also emphasizing, image detail richness.

• An adaptive image enhancement algorithm has been developed tomake fine image
details sharper, also providing a continuous and consistent appearance to thewhole
mosaic image. The enhancement of a given image is determined by the detail
richness of the adjacent images, but avoids overemphasizing the result.

• The optimal seam finding algorithm used to determine the most adequate path
for the cut between images is based on both luminance and gradient information.
This domain combination allows us to ensure not only the lowest photometric
differences along the path but also to avoid cutting objects, even in the case of
significant exposure differences between images.

• In order to address the problem of processing large datasets, a strategy allowing
us to independently process different regions of the final mosaic is proposed. The
area corresponding to a large dimension mosaic is divided into a regular grid of
tiles, which are then individually processed, temporarily stored and finally fused
to obtain the final single image. The appearance consistency between individual
tiles is ensured thanks to an exposure equalization mechanism.

• The full processing pipeline has been devised to use parallel processing in every
step where possible in order to improve the overall performance of the approach.

1.6 Book Structure

The book is divided into the following chapters:

Chapter 2 presents an introduction to a feature-based 2D mosaicing framework.
The main concepts of planar motion estimation and global alignment are
introduced.

Chapter 3 reviews the state of the art in image blending techniques, presenting the
twomain principles guiding the algorithms. A classification of techniques
is also proposed, based on theirmain features. The benefits and drawbacks
of the different methods are discussed, as well as their suitability for
underwater imaging purposes.
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Chapter 4 details the proposed processing pipeline optimized for high resolution
underwater image blending. All the steps involved, including original
image preprocessing, image registration and global alignment, selection
of image contribution, optimal seam finding strategy and gradient domain
image blending, are described. Finally, a giga-mosaic blending strategy
is presented.

Chapter 5 shows some experimental high-resolution results, based on large datasets,
which are also discussed and compared to results obtained by other state-
of-the-art approaches.

Chapter 6 presents the conclusions of this work, summarizes the contributions and
identifies some future research directions.
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Chapter 2
Underwater 2D Mosaicing

Abstract The current chapter describes themain steps involved in the photo-mosaic
building process. These steps comprehend the geometrical registration and warping
of the images into a single common reference frame, along with an estimation of
the topology of the trajectory performed by the UV, and a global alignment of the
recovered trajectory. A widely extended geometrical registration strategy consists
of identifying common image features between the involved images, using different
image feature detectors. These image features, once identified, become correspon-
dences that are used to estimate the camera motion between consecutive images, as
well as to perform a global alignment of the estimated trajectory. Global alignment
of all the involved images allows providing geometrical consistence to the underwa-
ter map. At the end of the chapter the problems and issues of the photo-mosaicing
process are pointed out, with the aim of demonstrating the relevance of image blend-
ing techniques as a final step of the photo-mosaicing process.

Keywords Photo-mosaicing · Image registration · Image alignment · Image warp-
ing · Topology estimation · Global alignment · Deep-ocean surveys

Building a photo-mosaic is a task involving two main steps. Firstly, the images
should be geometrically registered and warped accordingly into a single common
reference frame. Secondly, the rendering of the mosaic should be performed through
blending techniques, which allow us to deal with photometric differences and reduce
the visibility of registration inaccuracies between the images involved (see Fig. 2.1).

In the context of large-scale underwater photo-mosaicing, deep-ocean surveys are
typically composed of hundreds to hundreds of thousands of images. These images
are affected by several underwater phenomena, such as the aforementioned scatter-
ing and light attenuation, and the sequences may present small or even nonexistent
overlaps between consecutive frames. For these reasons, navigation data coming from
acoustic positioning sensors (USBL, LBL), velocity sensors (DVL), inclinometers or
gyroscopes might be used to estimate the trajectory of the vehicle. This trajectory can

R. Prados et al., Image Blending Techniques and their Application in Underwater 15
Mosaicing, SpringerBriefs in Computer Science, DOI: 10.1007/978-3-319-05558-9_2,
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Fig. 2.1 Underwater mosaicing pipeline scheme. The Topology Estimation, Image Registration,
and Global Alignment steps can be performed iteratively until no new overlapping images are
detected

be later refined by computing pair-wise alignment and applying a global alignment
method [1–7].

2.1 Topology Estimation

When lacking sensor positioning data, such as USBL, LBL or DVL, using time-
consecutive image registration, assumed to have an overlapping area,maybecome the
only strategy to estimate the trajectory of the robot and, thus, themotionof the camera.
This dead-reckoning estimate suffers froma rapid accumulation of registration errors,
leading to drifts from the actual trajectory, but it does provide useful information for
non-time-consecutive overlapping images. Matching non-time-consecutive images
is a key step in refining the trajectory followed by the robot using global alignment
methods. With the refined trajectory, new-non time-consecutive overlapping images
can be predicted and attempted to match. This iterative matching and optimization
process continues until no new overlapping images are detected. The procedure
described is known as topology estimation [8, 9] (see Fig. 2.2). If navigation data is
available, the topology estimation remains as an indispensable step to obtain globally
consistent mosaics and accurate trajectory estimates, specially when dealing with
sequences of a large number of images.

Deep-ocean surveys composed of thousands of images make any kind of all-
to-all image pair matching strategy to perform a topology estimation unfeasi-
ble. Therefore, more sophisticated approaches are needed to perform this task.
Elibol et al. [8] proposed an Extended Kalman Filter (EKF) framework, aimed at
minimizing the total number of matching attempts and simultaneously obtaining the
best possible trajectory. Potential image pairs are predicted by taking into account
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Fig. 2.2 Topology estimation scheme. (Top-left) Final trajectory obtained by the scheme proposed
in [8]. The first image frame is chosen as a global frame and all images are then translated in order
to have positive values in the axes. The x and y axes are in pixels and the scale is approximately
150 pixels per metre. The plot is expressed in pixels instead of metres since the uncertainty of
the sensor used to determine the scale (an acoustic altimeter) is not known. The red lines join the
time-consecutive images while the black ones connect non time-consecutive overlapping image
pairs. The total number of overlapping pairs is 5,412. (Top-right) Uncertainty in the final trajectory.
Uncertainty of the image centres is computed from the covariance matrix of the trajectory [5].
The uncertainty ellipses are drawn with a 95% confidence level. (Bottom) Mosaic built from the
estimated trajectory
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Fig. 2.3 Geometric registration of two different views of the same underwater scene by means of
a planar transformation

the uncertainty of the trajectory. Additionally, a different solution to the topology
estimation problem in a Bundle Adjustment (BA) framework was proposed in [10].
To obtain a tentative topology, a fast image similarity criterion combined with a
Minimum Spanning Tree (MST) solution are used. The topology is improved by
attempting image-matching with the pairs of images for which there is the most
overlapping evidence.

2.2 Image Registration

Aligning in 2D two or more images taken from different viewpoints consists of
finding an appropriate planar transformation which allows overlaying them into a
single and common reference frame (see Fig. 2.3). This step, essential in the image
mosaicing pipeline, is known as the image registration problem [11] and has been
greatly discussed in the literature [12, 13].

The geometrical registration can be performed by means of direct methods or
feature-based methods. Sections 2.2.1 and 2.2.2 present these two main groups of
image registration methods.

2.2.1 Direct Methods

This first group of algorithms, also known as feature-less methods, compute the
transformation between images by maximizing the photometric consistency over the
whole overlapping image regions, and are found to be useful for large overlapping
regions as well as small translations and rotations [12, 14, 15]. These methods can
be classified in turn into frequency domain based methods and optical flow methods.
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Frequency Domain

Methods based on the frequency domain originally used phase-correlation to estimate
the shifts (translations) between an image pair. Later, extensions to account for rota-
tion and scale transformations [16] and affine transformations [17] using log-polar
coordinates were also proposed. In practice, the number of authors proposing the use
of frequency domain methods for underwater image registration is small [18, 19].
This group of methods are computationally expensive, as they require Fast Fourier
Transform (FFT) to be computed over all the images involved.

Optical Flow

Optical flow methods are based on the estimation of the disparity (i.e. apparent
motion) of pixels between image pairs. Generally, the optical flow estimates the flow
field using the Brightness Constancy Model (BCM), in which it is assumed that
the photometric properties of image pixels (luminance and color) remain constant.
There are twomain groups of algorithms estimating the optical flow.On the one hand,
global methods such as Horn and Schunck [14] yield dense flow fields, while, on the
other hand, local methods such as Lucas and Kanade [20, 21] produce non-dense
regularized grid flow fields but are less robust to noise. Over the last years, some
authors have proposed more robust alternatives to BCM that assume linear changes
in illumination, using the Generalized Dynamic Image Model (GDIM) [22, 23] and
the color information [24, 25]. Due to the formulation of the problem, optical flow
methods are not suited for disparities that exceed 1 pixel. To overcome this issue,
multi-resolution approaches such as [26] have been proposed. In this case, the images
are gradually decimated and the optical flow is computed from coarse levels towards
fine levels. Unfortunately, the method also has some drawbacks. Firstly, it is slow
because the optical flow has to be computed at each level. Secondly, the maximum
pixel disparity has to be known a priori in order to set the number of decimation
levels. Furthermore, multi-resolution approaches are very sensitive to noise, since
errors in the estimation of optical flow at coarse levels propagate to the fine levels.

2.2.2 Feature-Based Methods

The second group of methods rely on the computation of a transformation between
images using a sparse set of points [27–31] and correspondences. Contrarily to direct
methods, feature based methods do not require a high frame-rate to ensure a high
percentage of overlap between consecutive images. For these reasons, feature-based
methods are the most widely used in the literature to perform image registration, and
are also used in the work presented, as described in the following sections.

There are twomain strategies concerning feature-based pair-wise image alignment
(see Fig. 2.4). The first strategy consists of locating the interest points in one image of
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Outlier Rejection

I1

I 2

Motion Estimation

Feature Matching

I1 I2

Feature Extraction Image WarpingorFeature Extraction

Fig. 2.4 Main steps involved in the pair-wise registration process. The Feature Extraction step can
be performed in both images of the pair, or only in one. In this last case, the features are identified
in the second image after an optional Image Warping based on a transformation estimation

the pair using some feature detector, such as Harris and Stephens [27], Beaudet [28]
or Lindeberg [29], and identifying these in the other. The correspondence problem
is solved using cross-correlation or a Sum of Squared Differences (SSD) measure,
which is computed using the information of the pixels surrounding the feature, and
compared to the value of thismeasure for a givenwindowof pixels in the other image.
The procedure has the advantage of obtaining highly accurate correspondences when
changes in rotation and scale aremoderate.As a drawback, this strategy requires some
prior knowledge to determine the estimated translation between images and the size
of the search window, in addition to not being suitable for large changes in rotation
and scale. For these reasons, this approach might be used as a refinement step of
certain feature-based image alignment strategies [5], after an appropriate warping of
the image in which the features found should be identified.
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The second strategy is based on the detection of features in both images using
invariant feature descriptors, such as SIFT [30], its faster variant SURF [31] (which
uses an approximation of the Laplacian andHessian detectors respectively) or others,
and performing the matching, comparing their descriptor vectors. The SIFT descrip-
tor is based on Histograms of Gradient (HOGs) computed in the area surrounding the
detected interest points, while SURF describes a distribution of Haar wavelet [32]
responses within the neighborhood of the interest point. These feature detectors and
descriptors are known to show invariance to a wider range of geometrical and pho-
tometrical [33] transformations of the images than the detectors mentioned above.
Therefore, these detector and descriptor properties allow us to obtain very robust
results, even in the case of strong rotations or scale changes between frames and
significant illumination inhomogeneities.

2.3 Motion Estimation

2.3.1 Planar Homography

The planar transformation between two different views of the same flat scene can be
described by means of a planar homography matrix [34, 35]. This homography is
able to describe a motion with up to eight Degrees of Freedom (DOF).

Let us consider a point p, belonging to a 2D plane σ in 3D space. Then, the
projections of p into two different images I1 and I2 are given in x1, x2 ◦ R

3 in
homogeneous coordinates. Also let the coordinate transformation between the two
frames be

X2 = RX1 + T (2.1)

where X1, X2 ◦ R
3 are the 3D coordinates of p relative to camera frames 1 and

2, respectively, taken at times t1 and t2. The two projections x1, x2 of p in images
I1 and I2 satisfy the epipolar constraint [34]

xT
2 E x1 = xT

2
̂T Rx1 = 0 (2.2)

where E is the essential matrix, containing information about the relative position
T and orientation R between the two camera frames 1 and 2, and T̂ is the skew-
symmetric matrix codifying position T [35].

However, for points on the same plane σ, their images will share an extra
constraint that makes the epipolar constraint alone no longer sufficient.

Let N = [n1, n2, n3]T ◦ S
2 be the unit normal vector of the plane σ with respect

to the first camera frame, and let d > 0 denote the distance from the plane σ to the
optical center of the first camera. Then we have
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N T X1 = n1X + n2Y + n3Z = d ⇔ 1

d
N T X1 = 1, ∇X1 ◦ σ (2.3)

Substituting Eq. (2.3) into Eq. (2.2) gives

X2 = RX1 + T = RX1 + T
1

d
N T X1 =

(

R + 1

d
T N T

)

X1 (2.4)

Then matrix H is defined as follows

H = R + 1

d
T N T ◦ R

3x3 (2.5)

where H is the (planar) homography matrix, since it denotes a linear transformation
from X1 ◦ R

3 to X2 ◦ R
3 as

X2 = HX1 (2.6)

Note that the matrix H depends on the motion parameters R, T as well as the
structure parameters N , d of the plane σ. Due to the inherent scale ambiguity in the
term 1

d T in Eq. (2.5), one can at most recover from H the ratio of the translation T
scaled by the distance d.

From

λ1x1 = X1, λ2x2 = X2, λ2x2 = HX1 (2.7)

we have

λ2x2 = Hλ1x1 ⇔ x2 ∼ H x1 (2.8)

where we recall that ∼ indicates equality up to a scale factor. Often, the equation

x2 ∼ H x1 (2.9)

itself is referred to as a (planar) homography mapping induced by a plane σ.
The homography matrix H encodes information about the camera motion and the

scene structure, a fact that facilitates establishing correspondence between points in
the first and second images. H can be computed in general from a small number of
corresponding image pairs.

2.3.2 Planarity Assumption

The homography matrix allows the description of 2D transformations between
images. This motion estimation assumes that the scene is planar (i.e. flat), but this
scenario is rare in practice. Nevertheless, it is possible to apply a homography matrix



2.3 Motion Estimation 23

to register different views of the same scene, even if it is not planar, under certain
conditions.

On the one hand, it is possible to use a homography matrix to model the trans-
formation between images when the camera only describes a rotation or change in
scale around the same optical center. On the other hand, it can also be assumed that
a scene is planar when the camera describes a translation but the magnitude of the
scene relief is negligible compared to the distance between the camera and the scene.
In any other cases images show the parallax effect, i.e. the difference in the apparent
position of an object viewed along two different lines of sight, measured by the angle
of inclination between those two lines.

The parallax effect impacts both the registration and blending steps. When reg-
istering a pair of images showing parallax, the computed homography will try to
encode the dominant motion between both views. In that case, if the structures caus-
ing the parallax are large enough with respect to the image size, errors in the motion
estimation may arise. Furthermore, if two images suffering from parallax are suc-
cessfully registered, i.e. the dominant motion has been correctly estimated, evident
misalignments may appear when overlying both views. This scenario is common in
underwater imagery, where the distance between the camera and the scene is not
always as important as desired, and consequently image blending techniques have
to deal with this problem.

2.3.3 Outlier Rejection

The homography accuracy [36] is strongly tied to the quality of the correspondences
used for its calculation. The homography estimation algorithms assume that the only
source of error is themeasurement of the locations of the points, but this assumption is
not always true inasmuch asmismatched pointsmay also be present. There are several
factors that can influence the goodness of the correspondences detected. Images can
suffer from several artifacts, such as non-uniform illumination, sun flickering (in
shallow waters), shadows (specially in the presence of artificial lighting) and digital
noise, among others, which can make matching fail. Furthermore, moving objects
(including shadows) may induce correspondences which, despite being correct, do
not obey the dominant motion between the two images. These correspondences are
known as outliers. Consequently, it is necessary to use an algorithm able to discern
right and wrong correspondences. There are two main strategies to reject outliers
widely used in the bibliography [37]: Random Sample Consensus (RANSAC) [38]
andLeastMedian of Squares (LMedS) [39]. LMedS efficiency is very low in presence
of Gaussian noise [40, 41]. For this reason, RANSAC has been selected as outlier
rejection method in the presented framework.

RANSAC is a robust estimator intended to fit a model to experimental data and is
able to smooth data containing a significant percentage of gross errors. This feature
makes the approach suitable for image processing applications, where error-prone
data is quite frequent. As stated in [38], contrary to other smoothing techniques,
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instead of using as much data as possible to obtain an initial solution and then
attempting to eliminate the invalid data, RANSAC uses a small set of data as a point
of departure and enlarges this set with consistent data when possible. When there
is enough data, RANSAC can use a smoothing technique, such as least squares, to
compute an improved estimate for the parameters of the model with the mutually
consistent data which has been identified. The RANSAC paradigm is tuned up by
three parameters: the error tolerance used to determine the compatibility of a given
data point to the model, the number N of subsets Si with size s used to instantiate
the model and the threshold T that determines the number of points required to
consider that a correct model has been found. RANSAC tries to compute a model
candidate based on a set of s data points from S selected randomly. The model is
next applied to the rest of the data in order to determine the set of points Si that are
within a distance of a defined threshold. If the size of Si is greater than any predefined
threshold T , the model can be re-estimated with the points in Si . Otherwise, if the
size of Si is lower than T , a new subset is selected and the process is repeated. After N
trials, the largest consensus set Si is selected and the model is re-estimated. Reliable
RANSAC estimates requires that at least one of the candidate models contains the
correct parameter values, otherwise the estimator loses its effectiveness.

2.4 Global Alignment

Pair-wise registration of images acquired by an underwater vehicle equipped with a
down-looking camera cannot be used as an accurate trajectory estimation strategy.
Image noise, illumination issues and the violation of the planar assumption may
unavoidably lead to an accumulative drift. Therefore, detecting correspondences
between non-consecutive frames becomes an important step in order to close a loop
and use this information to correct the estimated trajectory.

The homography matrix 1Hk represents the transformation ot the kth image with
respect to the global frame (assuming the 1st frame frame as a global frame) and
is known as absolute homography. This 1Hk matrix is obtained as a result of the
concatenationof the relative homographies k−1Hk between the kth and k−1kth images
of a given time-consecutive sequence. As mentioned above, relative homographies
have limited accuracy and computing absolute homographies by cascading them
results in cumulative error. This drift will cause, in the case of long sequences,
the presence of misalignments between neighboring images belonging to different
transects (see Fig. 2.5).

The main benefit of global alignment techniques is the use of the closing-loop
information to correct the pair-wise trajectory estimation by reducing the accumu-
lated drift.
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Fig. 2.5 Example of error accumulation from registration of sequential images. The same benthic
structures appear in different locations of the mosaic due to error accumulation (trajectory drift)

2.4.1 Global Alignment Methods

There are several methods in the literature intended to solve the global alignment
problem [42]. Global alignment methods usually require the minimization of an
error term based on the location of the image correspondences. These methods can
be classified according to the domain where this error is defined, leading to two main
groups: image framemethods [1, 5, 43, 44] andmosaic framemethods [2, 4, 45–48].

Concerning the group of image frame based methods, Davis [45] faced the
problem of a camera rotating around its optical axis without translation. The
absolute homography was obtained as an accumulation of relative homographies
(see Eq. 2.10), and computed solving a sparse linear systems of equations.

1Hi =
i

∏

j=2

j−1H j i ≥ 2 (2.10)

Any image i of a given sequence can be projected to another image space j or to
the global frame using the absolute homography of image j , i.e. 1Hi = 1H j · j Hi ,
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where 1Hi and 1H j are unknown and j Hi is a relative homography. When a closing
loop happens, the number of relative homographies becomes greater than the number
of images, leading to an over-determined system. Unfortunately, the over parame-
terization of the system might lead to overfitting if an adequate parametrization of
the resolution method is not used.

Another image frame based method was proposed by Shum and Szeliski [49],
who defined the error function as:

min
1H2,1H3,...,1HN

∑

k

∑

m

n
∑

j=1

‖k x j −1 H−1
k · 1Hm · m x j‖2 (2.11)

where k x j and m x j are the j th correspondence between images k and m having an
overlap area,n the number of correspondences and‖·‖2 theEculideannorm.Calculat-
ing the solution by means of a non-linear least squares minimization has a drawback:
the gradients with respect to the motion parameters are quite complicated and have
to be provided for the minimization method chosen, e.g. Levenberg-Marquadt.

In the group of mosaic frame based methods, Sawhney et al. [2], proposed a
method based on the following error function:

E1 = min
1H2,1H3,...,1HN

∑

k

∑

m

n
∑

j=1

‖1Hk · k x j −1 Hm · m x j‖2 (2.12)

Nevertheless, this solution suffers from what is known as scaling effect of a mosaic-
based cost function if no constraints are imposed. This is due to the fact that the
cost function has lower values when the image size is smaller, and consequently the
function tends to reduce this image size. For that reason, Sawhney et al. [2] extended
the method by introducing another term for controlling the scaling effects:

E2 =
N

∑

i=1

(‖1Hi · xtr − 1Hi · xbl − (xtr − xbl)‖2 + ‖1Hi · xtl − 1Hi · xbr − (xtl − xbr )‖2
)

(2.13)
where xtr , xbl , xtl and xbr denote the top-right, bottom-left, top-left and bottom-
right coordinates of the image corners. E2 tries to minimize the difference in the
diagonal length between the original image size and the image size once projected
on the mosaic frame. Nevertheless, this constraint may lead to image misalignments
because it violates the distance minimization between correspondences. Aweighting
factor for this penalization is used, which can be fixed or proportionally grow along
the sequence due to error accumulation. The final error function E is the result of
the addition of both E1 and E2 terms, i.e. E = E1 + E2. The minimization of this
function leads to solutions related by a common translation and rotation that have the
same minima [50]. Therefore, Sawhney et al. [2] proposed a new term H1 · (0, 0, 1)T

to be added to the error function, in order to fix the problem with the translation of
the first image and find only a single solution set. Another solution for this issue has
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been proposed by Gracias et al. [4], who fixed one of the image frames as the global
mosaic frame and aligned all the images with respect to this one.

Sawhney et al. [2] proposed a graph-based representation of the mosaic for closed
loop trajectories. In this case, each node of the graph represents an image whilst each
edge represents overlapping areas between the images. Initially, the graph is built only
with edges between consecutive images. Edges between non-consecutive images can
be added by measuring the distances between the image centers. The goal of this
graph is to reduce the total number of products by searching for the optimal path
while computing absolute homographies through relative homographies [44, 46],
with the aim of reducing the accumulated drift and image distortions.

In the graph representation context, Kang et al. [46] presented an approach to solve
the global alignment problem also based on graphs to define the temporal and spatial
connectivity between images. Initially, a regular grid of the global frame is defined.
Each node of the graph contains a list of corresponding grid points and several lists
with the correspondences between these grid points and the points in other images.
The correspondences are computed bymeans of normalized correlation, and the error
function is defined as the photometric luminance differences between the points in
the mosaic and their projection in other images:

E =
∑

i

(Im(p) − Ii (p′))2 (2.14)

where Im(p) is the luminance value of p in the mosaic and Ii (p′) is the luminance of
the projection p′ =m Hi · 1p in the i th image. This error function is used to find all
the correspondences of each point in the initial grid. The global registration of the
different frames is performedby searching for the optimal path connecting each frame
to the reference frame. This path, in its turn, is computed by the geometric distance
and correlation score between each grid point and its correspondences. Once the
images have been registered to the global frame, the location of grid points is adjusted
using as a weighting average factor the correlation score between correspondences.
Finally, the absolute homographies computed from the accumulation of the relative
ones can be recomputed by means of an adjustment transformation, using a linear
transformation between the refined grid points and their correspondences.

Marzotto et al. [44] presented a solution close to their of Sawhney et al. [2], which
adds another measure to the overlap measure in:

di j = max(|xi − x j | − |ri − r j |/2)
min(ri , r j )

(2.15)

where xi and x j are warped image centers and ri and r j are warped image diameters.
This additional measure is defined as:

βi j = δi j

�i j
(2.16)
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where δi j is the overlap measure and �i j is the cost of the shortest path between
nodes i and j . The optimal path is found by using β values, and the cost is calculated
from the weights, d, on the edges. The absolute homographies are obtained as a
result of the product of relative homographies through the optimal path. The main
advantage of this method to compute the optimal path is that the homographies are
less affected by cumulative errors. Similarly to [2], the error function used in the
global alignment is defined over a set of grid points, being the error of a given grid
point xk :

Ek = 1

n

∑

i

∑

j

‖xk − mHi · i H j · H−1
j xk‖2 (2.17)

where n is the number of edges between images containing the grid point xk and
mHi and mH j denote absolute homographies. The error function is defined as:

min E =
m

∑

i

E2
i (2.18)

where m is the total number of grid points. Unfortunately, there are two main draw-
backs to this approach. The first is that point locations have to be carefully selected
to ensure enough grid points in both images and overlapping regions in order to
compute the homography. The second is that arbitrarily distributed points may fall
into textureless areas, making the location of matchings difficult.

With the aim of minimizing both the homography elements and the position of
features in themosaic, Capel [3] proposed amethod based on the tracking of features,
which requires identifying the same feature in all the different views. Lets consider
t xi as the coordinates of a given i th point defined in the coordinate system of image
t and the projection of point m x j in the mosaic, which is called the pre-image point
and is usually projected in different views. All image points corresponding to the
projection of the same pre-image point are called N -view matches. This approach
proposes the following cost function to be minimized:

ε1 =
M

∑

j=1

∑

t xi ◦η j

‖t xi − t Hm · m x j‖2 (2.19)

where M is the total number of pre-image points, n j is the set of N -view matches
and t Hm is mosaic-to-image homography. Knowing that the homographies and the
pre-image points are unknowns, the total number of unknowns can be be obtained
as n = nDO F × nview + 2 × n points , where nDO F are the number of Degree Of
Freedoms (DOFs) of the homography, nviews is the total number of views and n points

is the total number of pre-image points. The fact of measuring the error term ε1 in
the image frame but being parameterized with points defined in the mosaic frame,
allows us to avoid image an scaling bias that appears when measured in the mosaic
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frame. As a drawback, the number of unknowns increases significantly as the size of
the dataset grows, making it unsuitable for datasets with thousands of images.

BA is a technique to solve the problem of refining visual reconstruction to produce
jointly optimal 3D structure and viewing parameter estimates (camera pose and/or
calibration) [51, 52]. The solution is intended to be optimal with respect to both
structure and camera variations. BA minimizes the reprojection error between the
image correspondences. This minimization is defined as the sum of squares of a
large number of nonlinear, real-valued functions, and is achieved using nonlinear
least squares methods. Concerning image mosaicing, the target of BA is to find
optimal camera motion parameters in order to compute absolute homographies [53].
Gracias et al. [54] presented an approach based on the minimization of the following
cost function:

E =
∑

i, j

n
∑

k=1

(

‖i xk −i H j · j xk‖2 + ‖ j xk −i H−1
j · i xk‖2

)

(2.20)

where n is the number of matches between images i and j . The total number of
unknowns is 6× (nviews −1)+2. The method requires knowing the intrinsic camera
parameters and has high computational requirements due to the use of nonlinear
optimization algorithms.

For further details of advantages and disadvantages of the different GA methods
the reader is addressed to [55].

2.5 Conclusions

Building photo-mosaics of underwater image surveys is a complex task that faces
medium-specific challenges not present in terrestrial or aerial panorama generation.
Due to the lack of natural light in deep waters, the UVs should integrate artificial
lighting systems. The power of the light sources is limited, specially due to autonomy
reasons, and typically does not allow uniform illumination of the whole area covered
by a picture. The effects of this lack of power are accentuated by the underwater
phenomenon of light attenuation, which leads to a noticeable non-uniform illumina-
tion in the images, and constrains the acquisition to a few meters from the seabed.
The scattering phenomenon [56], due to suspended particles, is another phenomenon
affecting underwater images, and is also affected by artificial lighting inasmuch as
light rays collide with the suspended particles. As a result of these phenomena,
underwater images suffer from poor and non-uniform illumination and frequently
present bright spots due to backward scattering, and lack of sharpness due to forward
scattering. The images affected by these problems make the detection of features and
consequently the pair-wise registration difficult, giving rise at this point to the impor-
tance of the navigation data. The short distance between the camera and the seafloor
favours the presence of parallax, which affects the 2Dmosaicing approach due to the
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Fig. 2.6 Small area of a mosaic generated from an image set corresponding to a shipwreck in
Pianosa (Italy). In the initial mosaic (left), before the application of a blending technique, the
amphoras and white labels laying on the seafloor appear truncated. In the blended mosaic (right),
the scene is easily understandable and the discontinuities have disappeared. Images courtesy of
Pierre Drap (LSIS, CNRS)

violation of the planar assumption. The parallax effects, in addition to any moving
elements in the scene, also impact image registration, and have consequences in the
image rendering step. All these factors make the topology estimation and the global
alignment [5–8], in conjunction with the use of the available navigation data, very
relevant steps to achieve accurate photo-mosaics when dealing with thousands of
images.

Given the heterogeneous appearance of the acquired images, and problems such
as the planar assumption violation or the presence of moving objects, the use of
image blending techniques is required. Apart from the visual appearance, blending
techniques are also important for proper interpretation and scientific exploitation of
seafloor imagery (e.g. [57, 58]). The structures, objects and areas of interest may
cover a wide range of scales, from a few centimeters, i.e. microfauna or rocks, which
would appear in individual images, to several hundreds of meters, i.e. topographic
scarps or fractures, spanning several frames. The relevance of image blending arises
at this point so that the photo-mosaics generated with these techniques present a
consistent and uniform appearance (see Fig. 2.6). The blended photo-mosaic, where
imaging artifacts have been minimized, allows us to analyze the features of interest,
regardless of their size and imaging conditions.

Summarizing, the use of blending techniques in underwater 2D mosaicing is a
crucial step when generating high-quality large-scale photomosaics. Preprocessing
the images in order to correct non-uniform illumination and enhance their detail also
becomes a key step in the mosaicing procedure. Enhanced images are best suited for
the feature detection and correspondence finding steps. Providing the images with a
good appearance is relevant not only from the aesthetical point of view but also from
a functional one.

The problems of image blending and image quality enhancement are treated in
the next chapters.
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Chapter 3
State of the Art in Image Blending
Techniques

Abstract In this chapter the main state-of-the-art techniques are presented and
described. There are three main groups of blending algorithms, each of them show-
ing some benefits and drawbacks. On the one hand, transition smoothing methods
minimize the visibility of the seams between two images fusing the image informa-
tion of the common overlapping area. A drawback of this group of methods is that
geometrical image misalignments and moving objects may cause the visualization
of artifacts on the overlapping regions. On the other hand, optimal seam finding
methods compute the optimal placement of the seam in order to minimize the pho-
tometric differences along the path. In the case of this group of methods, problems
may appear when joining images acquired with changing illumination conditions or
different time exposures. Finally, hybrid methods combine both strategies by fus-
ing the image information around an optimally computed seam. This last group of
methods allows avoiding the above mentioned problems. The chapter also proposes
a classification of the methods of the literature based on their nature and capabilities.
The aim of this classification is to discern the optimal strategy to blend large-scale
high-resolution underwater photo-mosaics.

Keywords Image blending · Transition smoothing · Optimal seam finding

Stitching two or more images together to create a photo-mosaic that enables the
interpretation of the benthos by a scientist (biologist, geologist, archeologist, etc.)
requires the use of a blending technique to obtain a seamless mosaic (see Fig. 3.1).

Building a photomosaic requires performing a geometrical registration to align
the images involved as well as a photometrical registration to equalize color and
luminance appearances [1]. Both kinds of registrations may lead to image inconsis-
tencies in the mosaic. The visibility of such inconsistencies should be minimized
in order to provide the mosaic with a homogeneous appearance, which is important
from not only the aesthetical but also the cognitive point of view. Geometrical mis-
alignments result in distinguishable object discontinuities and incongruence, while
photometrical misalignments make the visibility of seams more evident, reducing
the consistency of the global appearance of the mosaic.

R. Prados et al., Image Blending Techniques and their Application in Underwater 35
Mosaicing, SpringerBriefs in Computer Science, DOI: 10.1007/978-3-319-05558-9_3,
© The Author(s) 2014
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Fig. 3.1 Photo-mosaic built from six images of two megapixels. The mosaic shows noticeable
seams in (Left), where the images have only been geometrically transformed and sequentially
rendered on the final mosaic canvas, the last image on top of the previous one. After applying a
blending algorithm, the artifacts (image edges) disappear from the resulting mosaic (Right). Images
courtesy of Dan Fornari (Woods-Hole Oceanographic Institution)

Due to the above stated reasons, there are three main concepts guiding image
blending algorithms. Firstly, the effects of different illumination or exposure times
between images should beminimized. Secondly, an adequate seam should be found in
order to reduce the visibility ofmicro-registrationmisalignments andmoving objects.
Lastly, a smooth transition along the selected seam must be applied to reduce the
prominence of transitions between images.

The basic principles of image blending where established four decades ago [2]
and include twomain concepts which lead to two groups of algorithms [3]: transition
smoothing and optimal seam finding. On the one hand, transition smoothingmethods
(also known as feathering [4] or alpha blendingmethods [5]) attempt tominimize the
visibility of seams by smoothing the common overlapping regions of the combined
images. On the other hand, optimal seam finding methods place the seam between
images where photometric differences in their joining boundaries are minimal
[6, 7]. Image blending methods often combine the benefits of both groups of algo-
rithms (e.g. [2, 8]) in order to produce more plausible results and to reduce to an even



3 State of the Art in Image Blending Techniques 37

higher degree the noticeability of the joining regions. A smooth transition between
the fused images is applied, but along an optimally selected seam, a combination
which helps to avoid double contours and blurring effects when image registration
is not accurate enough. This group of methods will be called from now on hybrid
methods.

This chapter provides a review of the most relevant blending techniques in the
literature since 1975. The methods listed are divided into three different groups,
corresponding to its main principle: transition smoothing methods, optimal seam
finding methods and hybrid methods. A classification of the approaches according
to several features and properties is also proposed in order to highlight their benefits
and drawbacks in different scenarios.

3.1 Transition Smoothing Methods

The main concern of transition smoothing methods is to produce a non-perceptible
transition between two images over a given overlapping region (see Fig. 3.2). The
information of this common area is fused in such a way that the boundaries of the
images involved become invisible. Even though a totally indistinguishable transition
may be achieved, the content and coherency of the overlapping region is not guar-
anteed, as the information is fused without taking into account the content of the
scene.

In the early 70s, D. Milgram [2] addressed the problem of the seamless com-
bination of two satellite images. The approach was intended to deal with only one
pair of images horizontally registered, which is a limiting factor for the application
of the method to different and more complex scenarios. This constraint lead to a
method which searches for the smoothest transition in a row-wise manner. An arbi-
trary surrounding range is defined at each row around a given selected seam pixel,
allowing to smooth the transition in that direction using a weighted average of the
luminance values. Consequently, the method achieves a smooth transition in the hor-
izontal direction, but this smoothness cannot be guaranteed in the vertical direction.
The weighted average of luminance values (of grayscale images) became the first
approach to the transition smoothing problem and a basic principle used by several
methods that arose in the following decades.

Still in the context of low-scale (order of mega-pixels) aerial photo-mosaicing, the
limitation of using only two overlapping images was addressed in the first instance
by Peleg [9], who introduced the concept of Seam-Eliminating Function (SEF). The
SEF is based on a luminance smoothing function (i.e. a weighting map), obtained
using a computationally expensive iterative relaxation algorithm, which is used to
smooth the transition from an arbitrary number of overlapping images (although the
overlapping information is not used and the seams used are not optimal), setting the
intensity differences along the seams at zero. The main advantage of the method is
that the gradual, smooth change does not affect the detail nor the picture near the
seams. Nevertheless, in lack of an optimal seam finding strategy, images suffering
from vignetting may lead to mosaics with noticeable illumination artifacts.
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Fig. 3.2 Example of the
application of a transition
smoothing method on the
overlapping area of two
images. The images show
different exposures and sig-
nificantly different sizes once
registered. As a result of the
blending algorithm, the tran-
sition between both images is
smooth though noticeable

Transition Smoothing
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In 1983, Burt and Adelson [10] introduced the concept of image spline to obtain a
smooth transition among several images. The approach was multipurpose, extending
its fields of application to any imaging scenario, as opposed to Milgram’s [2] who
focused on satellite imaging. It was also the first approach to image compositing, i.e.,
the first method able to seamlessly fuse several images from different and unrelated
scenes. The images to be fused are decomposed into a set of band-pass component
images, and a separate spline with an appropriate transition width is applied to each
band. The goal is to fuse the features from the same scale at each band-pass level.
Finally, the splined band-pass components are recombined into the desired mosaic
image using a simple addition. The method suppresses the visibility of the seams
and reduces the noticeability of the misalignments when registration is imperfect.
However, it leads to double contouring and ghosting effects when the misalignment
is significant (see Fig. 3.3). In 1996, Hsu and Wu [11] extended the idea of Burt
and Adelson [10] by applying the method to wavelet subspaces with the aim of
avoiding the undesired oversampling nature of the Laplacian pyramid. Although the
improvement on the results obtained is negligible, similar results are obtained despite
the higher computational cost.
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Fig. 3.3 Sample photo-mosaic region with (a) and without (b) ghosting and double contouring
in the transition region due to registration inaccuracies. Seabed structures 1 and 2 are noticeably
blurry in (a) while having a sharp appearance in (b). (c) shows two overlapping images of a
given photo-mosaic (I1 and I2) represented in the red (I1) and green (I2) channels. Consequently,
perfectly registered regions should appear in yellow, while the regions affected by misalignments
present a reddish or greenish appearance. The image without ghosting and double contouring has
been obtained using the blending approach proposed in this book. Images courtesy of Dan Fornari
(Woods-Hole Oceanographic Institution)
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In 2003, Pérez et al. [12] proposed a generic interpolation machinery based on
solving Poisson equations for seamless editing and cloning of selection regions.
Despite the main focus of that framework being image composition, it may also
have applications in the underwater photo-mosaicing context when combined with
an appropriate optimal seam finding strategy. The approach allows us to suppress
the visibility of the seams along the joining regions. Beyond luminance and wavelet
domains, this is the first important approach to image mosaicing in the gradient
domain. The method is based on the idea that, through suitably mixing the gradi-
ent of a given image with that of another, it becomes possible to convincingly fuse
image regions (namely objects) with a transparent appearance. The framework is
based on the partial differential equation with Dirichlet boundary conditions which
specifies the Laplacian of an unknown function over the domain of interest, along
with the unknown function values over the boundary of the domain. As an extension
of the technique presented by Bertalmio in [13], Pérez et al. proposed to modify
the problem of image interpolation through Poisson equation by introducing further
constraints in the form of a guidance field. In the same context, Levin et al. [3] pro-
posed a method based in several cost functions for the evaluation of the quality of the
stitching defined in the gradient domain. Levin et al. named GIST (Gradient-domain
Image STitching) the framework developed based on this method. GIST provides
two main approaches to image stitching. In the first one, images are combined in the
gradient domain, reducing global inconsistences between the stitched parts due to
illumination changes and variations in the camera photometric response. The stitched
image is computed by minimizing a cost function evaluating the dissimilarity mea-
sure between the derivatives of the stitched image and the derivatives of the input
images. In the second one, the mosaic image is inferred by optimization over image
gradient, reducing seam artifacts and edge duplications. In this case, the stitching is
performed using feathering, pyramid blending [14] or optimal seam [15]. The draw-
backs of the methods working exclusively on the gradient domain are the important
computational resources required to deal with large datasets.

Following the idea of gradient domain image blending, Agarwala et al. proposed
a technique in 2004 that combined methods belonging to the two main classes of
blending algorithms [8]. Firstly, graph-cut optimization [16, 17] was used to find the
optimal place for the seamwithin the overlapping region. Secondly, gradient-domain
fusion [12] was applied to reduce or remove any remaining visible artifacts along the
image seams. The method has multiple applications in the image photomontage field
and achieves convincingly seamless results. The framework developed was mainly
intended to require user guidance to select the interest image regions, thus being
unsuited for the automatic generation of photo-mosaics. In 2007, Agarwala [18]
presented a hierarchical approach to improve the efficiency of gradient-domain
compositing. The efficiency increase was achieved by observing that the difference
between a simple color composite and its associated gradient-domain composite is
largely smooth, and the pattern of this smoothness can be predicted a priori. This dif-
ference is solved by adaptively subdividing the domain using a quadtree hierarchical
structure [19]. Unfortunately, the increases in efficiency with this method only occur
if the problem can be transformed into a space where the solution is mostly smooth,
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and the pattern of this smoothness can be predicted a priori. Consequently, when
the number of overlapping images increases and the overlapping regions become
smaller, the performance of the methods also decreases. In 2011, Szeliski et al. [20]
presented a technique for fast Poisson blending and gradient domain compositing
which associates, to each input image, a separate low-resolution offset map, that
can be represented using a low-dimensional spline. The resulting linear system is
much smaller than either the original Poisson system or the quadtree spline approx-
imation of a single offset map. Since each of the offset fields is represented using a
low-dimensional spline, the resultant representation is called multi-spline.

Still in the context of gradient domain blending, Su et al. [21] proposed a method
based on the minimization of a blending energy function, considering not only gra-
dient values but also luminance. Within this blending energy function, indented to
combine low-level image properties, two variation terms are measured and mini-
mized: image value variation and first derivative variation. Image value variation
measures the difference between corresponding pixel values of the images to be
combined and the photo-mosaic itself. On the other hand, first derivative variations
measure the difference between the blended values of each respective first derivative
and the first derivative of the mosaic. The resultant image can be effectively obtained
by minimizing the blending energy function. Unfortunately, the computational cost
of themethod (according to the authors, between six and eight times slower than [10])
makes it unsuitable for large image datasets.

The problem of stitching images in real time for online photo-mosaicing was
addressed by Zhao [22] in 2006. The author proposed an efficient image blending
method for creating good-quality and real-time dynamic image mosaics from an
arbitrary number of input images. There are three main advantages with the flexi-
ble blending technique: (a) good results and possible implementation in embedded
systems for real-time performance, (b) comprehensive treatment of geometry, time
and user control and (c) capability of handling exposure imbalance among frames.
Flexible blending has its basis in the sequential implementation of image blend-
ing features. Unfortunately, there are some drawbacks preventing its application in
large scale underwater mosaicing. Firstly, the blending step is based on an improved
multi-resolution weighted average [10] which prioritizes pixels close to the image
centers, but does not offer good enough results when registration problems appear.
Secondly, the exposure correction mechanism takes as a reference the exposure of
the photo-mosaic built until a new image is added. This fact may lead to a global
exposure degeneration when some of the implied images are over or underexposed.
Lastly, the method is intended to deal with small input images, but its behavior when
confronted with large input images sequences is unknown.

Few approaches in the literature have specifically dealt with the problem of under-
water imagery mosaicing. Gu and Rzhanov [23], proposed as a blending step the
application, around an optimally found boundary, of a pure gradient domain fusion
of the boundary pixels only. The method claims to overcome the short comings of
gradient domain fusion, which produce blurring in the case of misalignment inas-
much as is uses information from all the implied images to build the fused gradient
field. The authors do not define a criteria for selecting the contributing image in
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the case where multiple images overlap the same region. Thus, [23] is limited to
panoramic mosaics where only two images overlap over the same area. The color
treatment is not performed, being assumed that the method is gray-scale intended.

3.2 Optimal Seam Finding Methods

The objective of optimal seam finding methods is to find an optimal placement for
a seam line through a given overlapping region between two images (see Fig. 3.4).
This seam should minimize the photometric differences on both sides of the line and
determine the contribution of the involved images to the final mosaic. Unlike tran-
sition smoothing techniques, optimal seam finding approaches consider the content
of the scene in the overlapping region, allowing us to deal with problems such as
moving objects or parallax. In contrast, no information is fused, and the step between
the images can be easily noticeable when illumination conditions or exposure times
change from frame to frame.

Milgram [2] proposed a non-optimal seam definition strategy that searches the
seam pixel offering the smoothest transition in a row-wise manner, inasmuch as it
is intended to deal only with pairs of images horizontally registered. This random
positioning of the edge was referred to as “feathering”, and was claimed to help
reduce visual cues, but with the disadvantage of introducing discontinuities in the
vertical direction. In order to deal with this drawback, a restriction of the candidate
seam points, depending on the magnitude of the minimum edge difference, was
imposed. This restriction allows us to obtain a more continuous and consistent seam
line. The same author later proposed an improved approach, adding a pixel selection
criterion in the illumination compensation step in order to deal with shadows and
moving objects and considering only the most informative gray level values [24].
Furthermore, a cost function was included in the seam definition strategy, permitting
to control of the origin and the final pixel coordinates in the optimal seam path.

The problem of non-static objects in the overlapping regions was addressed by
Davis [6] in 1998, who found an optimal seam using Dijkstra’s algorithm [25]
through the photometric differences computed between two registered images. The
path obtained tends to cut around the moving object, leaving it either totally in or out
of the final mosaic image. As a drawback, at least one imagemust contain a complete
view of themoving object so as not to bisect it. Furthermore, some photometric issues
that can disturb the seam localization, such as automatic exposure or vignetting, are
not taken into account by the method.

Focusing mainly on the panoramic imaging context using a rotating camera,
Uyttendaele et al. [4] proposed, in 2001, a method to suppress the ghosting effect in
mosaic images due to moving objects, along with a procedure to adjust the exposure
over multiple images to eliminate visible shifts in brightness and hue. The aim of
the method is to deal with the complicated problem of multiple overlapping regions
with moving objects. When confronted with ghosting artifacts, the authors proposed
a search for Regions of Difference (RODs) in the overlapping areas in order to use
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Fig. 3.4 Example of the
application of an optimal
seam finding method on the
overlapping region between
two images. The images
show different exposures and
significant different sizes
once registered. As a result
of the blending algorithm,
the transition between both
images is still noticeable due
to the different exposures and
different sizes, which leads to
a visible contrast concerning
detail richness

Optimal Seam Finding
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information from only one image per ROD. Hence RODs are defined in different
images to be corresponding, i.e. to belong to the same scene object, if they have any
overlap at all. Regions of Difference (RODs) are then used to build a graph in which
the minimum weight vertex cover [26] must be computed. However, this method
is not entirely robust and situations can appear where a wrong elimination of ROD
causes holes in the mosaic image. Nevertheless, according to the authors, conflic-
tive situations are rare in practice. Concerning the exposure artifacts, a block-based
exposure adjustment technique was applied. The exposure compensation solution
obtains smooth but still noticeable transitions between images in some cases.

In the context of image compositing, Agarwala et al. [8] proposed, in 2004, a
technique which combined methods belonging to the two main classes of blending
algorithms. Concerning the seam finding strategy allowing the selection of the image
regions which will contribute to the composite, a graph-cut optimization [16] was
used. This graph-cut was guided, depending on user preferences, by several features,
such as color, luminance or likelihood, among others. The method has multiple
applications in the image photomontage field and achieves convincingly seamless
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results. The framework developed was mainly intended to require user guidance to
select the interest image regions, thus being unsuitable for the automatic generation
of photo-mosaics.

Regarding the computational and memory cost reduction of Dijkstra’s based opti-
mal seam finding, Gracias et al. [27] proposed a method using watersheds and graph
cuts intended to achieve execution speed when building large photo-mosaics. The
use of watershed segmentation to find possible cuts over areas with low photometric
differences allowed their algorithm to reduce the search to a smaller set of watershed
segments, at the cost of sacrificing a certain degree of precision of the computed
path, which is conditioned by the initial watershed segmentation. Furthermore, the
use of graph cuts over image pairs guarantees a globally optimal solution for each
intersection region.While the authors applied the algorithm developed to underwater
images, the method can be extended to other contexts.

Eden et al. [28] presented, in 2006, a blending approach that included a two-step
graph cut procedure to deal with both highly different exposures and misregistration
problems, and work on a global radiance space for all the images involved. This is
one of the first methods applied to the global radiance space domain. Firstly, the
positions of the moving objects in the scene are defined (manually or automatically).
Secondly, the entire available dynamic range is used to render the photo-mosaic.
Therefore, a High Dynamic Range (HDR) image can be obtained from the photo-
mosaicing process. Furthermore, two kinds of costs are introduced. Firstly, a data
cost is computed to insure consistency and a high signal-to-noise ratio. Secondly, a
seam cost is applied to favor smooth transitions. Nonetheless, such extreme exposure
differences are not common in underwater photo-mosaicing. The gradient blending
step is performed as in [8].

More recently, Mills and Dudek [29] presented a combination of techniques to
create good quality image mosaics despite the presence of moving objects in the
scene. The technique uses heuristic measures to determine the optimal seam, in both
intensity and gradient domains, combined with a multiresolution splining [10] algo-
rithm to refine the results around the selected seam. Concerning underwater imagery,
the strong differences in appearance between images and the sequential nature of the
approach may prevent its application. The exposure compensation of new added
images is performed based on the already generated photo-mosaic, which may lead
to mosaic degeneration as the amount of stitched images grows. Furthermore, the
blending method used by the approach may lead to double contouring, specially in
the presence of complex seabed structures.

In the underwater context, Gu and Rzhanov [23], similar to [3], proposed a graph-
cut technique in order to select the optimal seam between two images, and the
application of a pure gradient domain fusion around this boundary. The graph-cut
is performed in the gradient domain with the aim of correctly dealing with images
showing inhomogeneous illumination, but as opposed to [3], is performed on the
overall image values, being more flexible in defining the cut area according to the
authors.
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Fig. 3.5 Example of the
application of a hybrid
method. A multiresolution
spline [10] is applied around
a seam determined by the
distance from the pixels to
the corresponding image cen-
ters in order to give more
weight to the pixels close to
the optical axis. The images
show different exposures and
significantly different sizes
once registered. As a result
of the blending algorithm,
the transition between both
images is smooth although not
perfect, and the difference in
detail richness between them
is still noticeable

Hybrid

I1 I2

I1

I2

3.3 Hybrid Methods

The third group of methods, which we refer to as hybrid methods, is in fact not com-
posed of any novel blending method, but of a set of appropriate transition smoothing
and optimal seam finding techniques combinations. This group of approaches typ-
ically applies a transition smoothing method around an optimally calculated (or
selected by some criterion) seam in order to improve the quality of the image regions
joined reducing its noticeability to an even higher degree. As a result of the com-
bination, problems such as blurring or double contouring presented by transition
smoothing methods, and others such as different exposures presented by optimal
seam finding methods, can be reduced or even totally avoided. One of the (evident)
drawbacks of hybrid methods is their computational cost, inasmuch as at least two
different strategies should be sequentially applied.

In fact, and as mentioned above, one of the pioneers in the image blending field,
Milgram [2, 24], had already proposed, in 1975 and later updated in 1977, a hybrid
approachbasedon the selection, in a row-wisemanner, of anoptimal seam (in termsof
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photometric differences) and the application around this seam of a weighted average,
allowing a noticeable reduction of the image transition. Furthermore, a “zero-order”
adjustment to compensate illumination differences between images was also used.
This strategy was intended for satellite imaging and limited to grayscale images
registered horizontally (regardless of rotation or scale changes). Nevertheless, it
dealt with the most relevant concerns of image blending, i.e. the equalization of
image appearance over a sequence (a pair of images in that case), the selection of a
seam that minimizes photometric differences at the boundary and the application of
a smoothing method around the seam to make the transition even less noticeable.

Agarwala et al. [8] proposed, as an optimal seam finding strategy, a graph-cut
optimization [16] guided by several parameters, such as color, luminance or like-
lihood, among others. The transition smoothing in this case is performed in the
gradient domain [12, 30]. Using the same labeling obtained after the graph-cut, the
color gradients are used to form a composite vector field. The best-fit image in a
least-squares sense is thereafter calculated by solving a discretization of the Poisson
equations. Each color channel is processed independently, and in order to keep color
channel coherency, the color of a given pixel is added to the Poisson equations to
constrain the linear system. No overlap information around the boundaries is used,
and according to the authors, in case of high-gradient edges, complications such as
objectionably blurring artifacts may appear. In order to solve this problem, the lin-
ear constraints corresponding to these problematic pixels are removed. The gradient
blending method acts in practice as an exposure compensation mechanism when all
the images of the composite belong to the same scene. The approach of Agarwala
is intended for image compositing, requiring human intervention when selecting the
image regions to be fused, and consequently, is not suitable for automatic image
mosaicing. Furthermore, performing the blending in the gradient domain regardless
of any pixel overlap information, even if the equations corresponding to problematic
pixels are dropped from the linear system, cannot guarantee a smooth transition in
all scenarios.

Similar to Agarwala et al. [8], Eden et al. [28] combined the benefits of both an
optimal seam finding strategy using a two-step graph-cut, and an optional transition
smoothing method on the gradient domain. The main novelties of this approach are
the use of a global radiance space for all the images involved, and the possibility of
obtaining an HDR image as a result. In the first step of the graph-cut, the optimal
boundaries are found in the same way as in Agarwala et al. [8] but in the radiance
domain over a subset of geometrically and photometrically registered images cov-
ering the full field of view. After this step, the position of moving objects is defined,
and can be manually changed or automatically selected. In the second step, an image
selection strategy is applied, which determines the best radiance values in all the
images of a given patch after the graph-cut in order to provide more detail, if pos-
sible, to the final composite. A secondary labeling is performed based on two cost
functions; one determining the data cost of adding a given image pixel to the com-
posite, and another determining the seam cost over each neighbor of this pixel. The
goal of this second step of the image selection is to find the labeling of the final
composite that minimizes both data and seam costs. Finally, the final composite can
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be obtained by either directly copying the corresponding radiance values into the
final HDR mosaic after the graph-cut labeling, or applying a gradient blending of
the original images using the Poisson equations [3, 8, 12]. Additionally, in order to
visualize the final HDR image, a tone mapping algorithm is used [30–32].

Gu and Rzhanov [23] proposed, as an optimal approach for underwater image
blending, a graph-cut strategy in the gradient domain in order to find the optimal
seam placement, and a gradient domain blending as a transition smoothing method.
The authors argued that performing a graph-cut on the gradient domain allows deal-
ing with different exposures and inhomogeneous illumination more robustly than
in the luminance domain, inasmuch as gradients are not affected by these fac-
tors. The gradient domain transition smoothing is performed in a similar way as
[8, 12, 30], but applying a weight to a few pixels around the seam in order to reduce
the artifacts caused by simple gradient blending, specially in presence of misalign-
ments. In practice, the weighting leads to the usage of the average value of the
gradients of pixels around the chosen seam. Nevertheless, this weighting is not able
to get fully rid of ghosting artifacts around the image boundaries.

In 2009,Mills andDudek [29] presented a fullmosaicing approach to create pleas-
ant and physically consistent image mosaics despite the presence of moving objects.
The authors proposed performing a graph-cut along the differences between the lumi-
nance of two registered images in order to find an optimal seam. This graph-cut is
computed, similarly to Davis [6], using Disjkstra’s [25] algorithm. As a transition
smoothing strategy, themultiresolutions splining of Burt andAdelson [10] is applied,
which, in contrast to some gradient domain methods, uses the common overlapping
pixels to smooth the transition. Inasmuch as the graph-cut is performed in the lumi-
nance differences domain, it cannot appropriately deal with different exposures or
changes in the illumination conditions in the scene. On the other hand, the multires-
olution splining strategy may lead to ghosting and double contouring in the case of
misregistration, and cannot deal with different image exposures or illuminations.

3.4 Classification

The list of papers that form the state of the art in image blending is large, and
the main requirements for conventional image panorama generation have been
satisfyingly addressed by several of them. Unfortunately, blending in underwater
photo-mosaicing is a specific application that has not been deeply treated in the lit-
erature. Consequently, not all the methods are appropriate for this context. In order
to highlight the properties, benefits and drawbacks of the current methods, and to
evaluate their suitability for underwater mosaicing, a classification is proposed.

There are several criteria that determine the behavior and performance of a given
blending algorithm, including its capability of dealing with high resolution under-
water photo-mosaics. Table 3.1 provides a comprehensive comparison of the most
relevant blending techniques proposed in the literature. The specially important cat-
egories for underwater applications (mostly working with monochrome images) are
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exposure correction and elimination of ghosting and double contouring, concerning
image quality, and scalability, concerning large scale photo-mosaicing.

3.4.1 Basic Principle

Two main groups of algorithms can be found in the literature in the context of image
blending [3]: transition smoothing methods (also known as feathering [4] or alpha
blending methods [5]) and optimal seam finding methods [6, 7]. The benefits of both
groups of algorithms are combined into a third group, the hybrid methods [2, 8],
in order to produce more plausible results and to reduce to an even higher degree
the noticeability of the joining regions. Additionally, those methods avoid double
contours and blurring effects when image registration is not accurate enough.

Each method uses a basic approach (Principle): Transition Smoothing (TS); Opti-
mal Seam Finding (OS); or an appropriate Hybrid combination (OS/TS). The first
set of methods (TS) often suffers from Ghosting, which concerns image blurriness
of the finest details (i.e. low frequency image components), and Double Contouring,
consisting in practice of a partial duplication of certain scene structures (i.e. high
frequency image components), if registration is not accurate enough or the scenario
considerably violates the planar scene assumption for 2D mosaicing. The second set
(OS) is not able to deal with images with different Exposures, as is often the case in
underwater imagery due to 3D relief, oblique terrain, variations in vehicle altitude,
etc. Finally, Hybrid methods are able to compensate for these drawbacks to a certain
degree.

Concerning the main principle of the techniques, the combination of a transition
smoothing around an estimated boundary seems to be themost adequate approach and
has been the most popular methodology in the literature since 2004, independent of
the application context. The tolerance to moving objects is tied to this main principle.
Optimal seam finding based methods naturally deal with this problem. In most cases,
this tolerance is not actively treated, but is a result of the optimal seam search, which
tends to make the cut in areas where photometric differences are small; overlapping
areas with moving objects will thus be avoided.

3.4.2 Domain

The Domain in which the process is carried out (Luminance/Radiance, Wavelet or
Gradient), has a double effect on the blending process. On the one hand, the image
domain strongly influences the properties of the blending that will be performed. As
an example, Gradient blending methods are able to unify different Exposures seam-
lessly and can lead implicitly to a high dynamic range from a set of low dynamic
range images. However, Gradient methods require solving large sparse equation
systems to recover the Luminance from the gradient vectors, and thereby their
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computational cost is significant. In contrast, Luminance based methods typically
have lower computational requirements.

Luminance and gradient domains are widely used, and the second has become
the preferred method in the latest publications [29, 51, 54]. This is due to the nature
of the domain, which allows easy reduction of the exposure differences between
neighboring images. Nevertheless, methods actively applying an exposure correction
algorithmobtainmore visually pleasant results. The ability to remove ghosting effects
and the fact of presenting double contouring are complementary, and are avoided
jointly.

3.4.3 Scalability

A particularly important property of blending methods is the Scalability, which we
define as the ability to deal with more than two overlapping images. This property
might be constrained by two main factors. The first one is the nature of the method
itself, as in [2, 11, 24], which cannot work with more than two overlapping images.
The second one is related to computational requirements: non-optimized Gradi-
ent algorithms suffer from poor computational scalability when the input dataset is
extremely large, as in the case of Giga-Mosaics.

Leaving aside the first blending methods in the literature [2, 10, 11, 24], through-
out the last decade most of the approaches have been scalable up to a certain point.
Approaches such as [51] are intended to reduce computer requirements allowing
the efficient processing of high resolution photo-mosaics. Unfortunately, these ben-
efits only appear in the case of mosaics with images showing low overlap. In that
case is possible to avoid storage and computations for image regions that remain
unchanged after blending. This situation mainly happens in image panoramas, but
not in underwater mosaics, where image registrations are unpredictable and geomet-
rically non-uniform.

3.4.4 Color and Dynamic Range

Color is another critical factor when building visually plausible images. Colors
change significantly as a function of the distance between the camera and the seafloor
(known as robot altitude) due to the wavelength-dependent spectral absorption of the
media. Mosaic blending techniques generally use a Channel Wise approach, where
three color channels are processed independently and later reunified into a single
color image. These methods have no control over perceptual color attributes. Several
approaches in the literature address the color balancing problem in the image photo-
mosaicing pipeline, based on exposure compensation in single [4, 37] or multiple
channels [38, 59], and based on color transfer techniques [60, 61]. Unfortunately,
dealing with extremely large datasets to generate photo-mosaics of large dimensions
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and keeping the consistency of the global image appearance is a difficult task when
using methods available in the literature.

The treatment of color channels is common to all themethods in the literature,with
the blending always being performed separately over each channel, independently
of the number of channels of the source images. Consequently, a different smooth
transition and location of the optimal seam are calculated for each channel. In this
sense, Agarwala et al. [8] requires user intervention to specify some preferred color
values, and [51] adds some constraints to the color variations in order to avoid
significant color shifting. These corrections are performed channel-wise and do not
treat the deep nature of the real colors. As a consequence, their performance when
dealing with images evidencing different appearances due to light attenuation and
illumination inhomogeneities is unpredictable.

The Dynamic Range of the image and the quantization of the data provided by
the camera sensor strongly influence the accuracy of the final scene representation.
Despite some of the methods reviewed being be able to work with high dynamic
range images (with more than the common 8 bits per pixel and channel), they are not
reported to do so. In fact, any High Dynamic Range blending method will require a
Tone Mapping algorithm in order to display the High Dynamic Range mosaic image
into a Low Dynamic Range device, such as conventional screens or printers [28].

Few blending methods claim to work with high dynamic range images. Neverthe-
less, gradient based blending methods are able to intrinsically deal with this kind of
imagery, requiring the application of tone mapping algorithms to the mosaic image
generated in order to visualize the results. A high dynamic range should be reduced
so as to be displayed in low dynamic range devices.

3.4.5 Multiresolution

The use of a Multiresolution approach was first published in 1983 by Burt and
Adelson [10]. Its main advantage is the significant reduction, but not suppression,
of the noticeability of Double Contours due to registration inaccuracies. Under this
approach, the images are decomposed into a set of band-pass components. For each
different band, an appropriately selected width for the transition region T is applied,
ensuring a smooth fusion at this spatial frequency band. An important shortcoming
is that the method requires keeping several representations of the same image in
memory, increasing memory requirements. The price of the seamless appearance is
the loss of high frequency details. The multiresolution approach, based on the idea
of Burt and Adelson [10], is applied by Su et al. [21] to the wavelet domain, but is
the only variation of this idea in the literature.
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3.4.6 Local/Global and Real-Time Operation

With respect to the Locality of the methods, Global methods require knowing all
the final mosaic information a priori in order to perform the blending procedure,
while Local methods can work on small parts of the final photo-mosaic, joining
them together upon completion. Obviously, Global methods often require higher
computational resources than Local ones, while Local methods may not be able
to solve some problematic situations, such as loop closing, i.e. visiting twice or
more a given scene region, or exposure compensation during a pair-wise sequential
processing.

Methods that are able to deal with most of the mosaicing and blending issues in
Real Time [22], though uncommon, are optimized towards high performance for large
sequences. The results obtained are not as accurate as those from off-line approaches,
but acceptable when on-line feedback is required. Real-time techniques are typically
based on the Sequential Processing of the input data. Somemethods, likeMilgram [2]
or Hsu and Wu [11], can process the images pair-wise and add the result to a final
mosaic canvas. The pair-wise processing is a limiting factor for the scalability of these
methods, which are not appropriate for sequences where a given place is visitedmore
than once as the drift accumulated due to the sequential registration, without a global
alignment correction, results in inconsistent overlapping regions. Methods that do
not perform a sequential processing are better positioned to deal with problems like
exposure compensation and ensure global appearance consistency.

3.4.7 Relevant Visual Performance Criteria

Different exposures between images are especially common in underwater imaging.
Frequently, the AUV or ROV cannot keep a perfectly constant altitude (distance to
the seafloor) during the survey, requiring the automatic adjustment of the exposure
time between frames. The exposure correction might be performed actively, by pre-
processing the image sequence to be blended, but may also be corrected by means
of gradient domain techniques, inasmuch as this domain is not sensitive to time
exposure.

As already pointed out above, ghosting and double contouring are mainly due to
geometrical registration inaccuracies. When two overlapping images are not prop-
erly aligned, non-coincident features are smoothed, and thereby ghosted, when fused,
while strong contours appear twice in the blended photo-mosaic. Underwater, the
forward scattering phenomenon is responsible for loosing contrast [62] and, there-
fore, ghosting appears when merging images with significantly different depths (see
Fig. 3.6).Double contouring underwater is sometimes unavoidable due to the limited
camera distance to the seabed leading to parallax.

Moving objects often appear in underwater imaging, e.g. fish, algae, crustacea and
other life forms or floating objects. Most of the Optimal Seam Finding algorithms
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Fig. 3.6 Registration of two images acquired at significantly different altitudes. The image acquired
at higher altitude shows strong light attenuation and scattering. These effects cause a noticeable
different appearance between the two images

are able to deal with moving objects, actively or passively, and cut them out of the
overlapping regions, keeping a single representation of each object in the final map.

Finally, the parallax robustness determines the ability of a given blending algo-
rithm to deal with a sequence where the 2D assumptions were considerably violated.
Underwater scenarios are characterized by frequent seabed depth-changes, as well
as the direction of shadows produced by the artificial lighting systems of the AUV
or ROV. Optimal Seam Finding techniques are typically the most indicated methods
to deal with this problem.

The parallax robustness is strongly related to its tolerance towardmoving objects,
and methods able to deal with moving objects are often able to handle parallax. In
fact, parallax robustness can be considered in practice as the ability of a method to
avoid repeated objects or shapes.
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3.5 Conclusions

The generation of terrestrial and aerial photo-mosaics from a set of images is a
problem widely treated in the literature. The number of approaches confronting this
problem is large and the main imaging issues, such as exposure variations, vignetting
effects and the presence moving objects, have been mainly solved.

Nevertheless, the underwater medium presents additional problems which tend
to make the common approaches fail when applied in this context. The problems of
extreme non-uniform illumination, backward and forward scattering and parallax, in
addition to significant exposure variations and frequent moving objects, are specific
to the medium, and few approaches have been presented in that direction.

Consequently, a different processing pipeline is required to deal with all the
problems affecting underwater imagery. This pipeline should also be computation-
ally efficient to allow processing large data sets, whose images might be affected
to various degrees by the underwater phenomena presented. Obtaining consistent
high-resolution large-scale geo-referenced photomosaics is the goal of the devel-
oped pipeline, comparable in terms of visual agreeability to terrestrial and common
aerial photo-mosaics.
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Chapter 4
Proposed Framework

Abstract This chapter describes the full photo-mosaicing pipeline proposed in this
monograph. This pipeline is intended to process datasets of thousands of images
from large-scale underwater optical surveys. Thefirst stages of the process involve the
input sequence preprocessing, required to reduce artifacts such as the inhomogeneous
lighting of the images, mainly due to the use of limited-power artificial light sources
and the phenomenon of light attenuation and scattering. In this step, a context-
dependent gradient based image enhancement is proposed, with allows equalizing
the appearance of neighboring images when those have been acquired at different
depths of with different exposure times. The pipeline follows with the selection
of each image contribution to the final mosaic, based on different criteria, such as
image quality and acquisition distance. Next, the optimal seam placement for all the
images is found. A gradient blending, in a narrow region around the optimally found
seam, is applied in order minimize the visibility of the joining regions, as well as
to refine the appearance equalization along all the involved images. Finally, a novel
strategy allowing to process giga-mosaics composed of tenths of thousands of images
in conventional hardware is proposed. The technique divides the whole mosaic in
tiles, processing them individually and seamlessly blending all of them again using
a technique that requires low computational resources.

Keywords Image preprocessing · Inhomogeneous lighting compensation · Image
enhancement · Gradient domain blending · Tone mapping · Giga-mosaicing

A full photo-mosaicing pipeline has been developed, conceived to address the most
relevant specific problems of underwater imaging. Nevertheless, the application field
of the proposed approach can be extended to the generation of conventional panora-
mas or maps from terrestrial or aerial images. Figure 4.1 shows the sequence of steps
that are performed by our approach, which are intended to build high resolution
blended photo-mosaics of the deep-seafloor.
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Mosaicing, SpringerBriefs in Computer Science, DOI: 10.1007/978-3-319-05558-9_4,
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Fig. 4.1 Full processing
pipeline of the proposed
underwater photo-mosaicing
approach. Some of the
processing steps can be
executed using parallel
computing techniques to
increase the performance of
the algorithm
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4.1 Input Sequence Preprocessing

Inherent underwater optical imaging problems have already been described in
Sect. 1.2. Aside from exposure variations, which are a common issue in terres-
trial images, other important problems are not directly addressed by conventional
panorama generation software. To deal with these, image pre-processing is required,
and is becoming a key step with a strong impact on the quality of the final photo-
mosaic rendering.

4.1.1 Inhomogeneous Lighting Compensation

The lighting inhomogeneity problem indeepwaters ismainly due to the lackof natural
global lighting, and to the necessary use of artificial light sources with limited power.
Illumination systems are often rigidly attached to the AUV or ROV and light sources
typically concentrate the rays into a given area where the camera is focused. The
acquired image borders suffer from darkening due to light attenuation, principally
induced by the light absorption of the water. The effect is similar to vignetting,
although the phenomenon is not produced by the camera lens but by the medium
itself. All images from a given sequence are affected, to some degree, by this factor.
The illumination distribution from artificial light sources changes with the distance
from the camera to the seafloor. Colors are also affected due to light absorption,
resulting in depth-dependant color profiles of the images acquired.

Imaging conditions hinder the application of a single compensation function on all
the images acquired in absence of precise information about the placement and nature
of the light sources, the distance from the camera to the seabed, and the 3D structure
of the scene. This circumstance results in the loss of a global terrain perception,
which is a cognitive sensation factor highly dependant on lighting coherency [1].

A feasible correction of lighting inhomogeneity and vignetting-like artifacts in a
single step consists of the application of a 2D “inverse illumination distribution” to
the original input images [2–5]. The main aim of this operation is to enhance the
luminance of the darkened image borders in order to obtain uniform illumination
throughout the image. If a high sensitivity camera with a high pixel depth (>8 bpp)
is available, not only the luminance but also the richness of detail can be enhanced
in the region affected by the light absorption.

The illuminationpattern describing the “inverse illuminationdistribution” function
can be estimated from a subset of images showing low texture and reduced 3D struc-
ture (i.e. flat, sedimented terrain). As this function changes with the distance from
the light source to the seabed, a three-step approach is proposed (Fig. 4.2) to correct
the lighting artifacts. It is based on two main ideas: (1) the application of a depth
dependant inverse illumination distribution, and (2) the automatic selection of the
images to compute this pattern in a given depth-range based on the Total Variation
(TV ) metrics [6], as described below.

http://dx.doi.org/10.1007/978-3-319-05558-9_1
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Fig. 4.2 Lighting pattern
compensation procedure. The
images of a sequence are
classified into depth subsets,
and a different lighting pat-
tern compensation function
is computed for each one.
The figure shows a set of n
images from which the n/2
images having the lowest
TV value have been selected.
Next, the images are averaged
and the result normalized and
smoothed using a Gaussian
filter with an adaptively
selected σ

Average of
Selected Images

Gaussian
Smoothing

Depth Image Subset (n)d

Selected Images (n / 2)

Quasi-Altitude Estimation

Underwater image acquisition platforms often record not only image sequences but
also other synchronized data like heading, acoustic positioning, surface Global Posi-
tioning System (GPS) positioning and altitude, among others. Unfortunately, camera
altitude is not always available for every data set. Consequently, as a first step, the
images of a given sequence should be classified according to altitude in order to
apply a different lighting correction function to each one, but assuming that precise
information about distance from the camera to the seafloor may not be available.
In order to solve that issue, a quasi-altitude estimation is now proposed to be used
instead.

Given a sequence of images and its corresponding registration parameters onto
the photo-mosaic frame, it is possible to determine which ones were acquired closer
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to the seabed and which ones further away by computing the size or scale of the
image once registered to the 2D photo-mosaic coordinate system. Specifically, it is
possible to consider only the diameter of the transformed pictures (i.e. the size of
the longest diagonal) since this scale and the altitude are highly correlated when the
focal length of the camera is assumed constant. Once an image list has been built
and sorted according to their diagonal length, the images can be classified in subsets
of similar altitudes.

Depth Sliding Window Strategy

The “inverse illumination distribution” changes with the distance from the cam-
era to the seafloor, inasmuch as the light sources are rigidly attached to the UV.
Consequently, this distribution should dynamically vary to compensate for depth
fluctuations. In that sense, a depth sliding window strategy can be used. Given all
the images of a given data set, the first step consists of sorting them by altitude,
using sensor-acquired depth information or the quasi-depth estimation measure. The
second step consists of opening a window centered on a given reference image in the
sorted set with and arbitrary size depending on the frequency of the depth changes.
The images in this window will be used to compute the “inverse illumination dis-
tribution” to be applied to the image on which the window is centered. With this
strategy, a smooth variation of the function is ensured. Nevertheless, to avoid exces-
sive computations, the step between reference images can be set to N instead of one
image, and the function can be applied not only to the reference image but also to
a small temporal neighbourhood determined by the value of N . In any case, this
strategy will obtain an acceptably smooth variation of the function, in contrast with
other strategies using a single function for all the images in the sequence, or those
determining an arbitrary number of image depths.

Image Selection

For each image window, a distinct compensation function for the light distribu-
tion should be computed from images with a low texture content and homogeneous
appearance. Low textured images are the best suited for this estimation due to their
low average gradient length. An adequate ranking metric for the selection of these
images is the TV.

T V = 1

W · H

W−1
∑

x=1

H−1
∑

y=1

◦g(x, y)◦ (4.1)

Equation 4.1 shows the computation of the normalized TV for a given image,
where W and H are the width and height sizes and ◦g◦ notates the L1 or L2 norm of
the g gradient vector. The T V values for the last row and column of a given image
are set to 0.



66 4 Proposed Framework

(a) (b) (c)

Fig. 4.3 a Example of back-scattering due to the reflection of rays from the light source on particles
in suspension, hindering the identification of the seafloor texture. b Example of forward scattering
caused by the local inter-reflection of the light suspended particles, hiding the terrain behind them.
c Effects produced by light absorption of the water resulting in an evident loss of luminance in the
regions farther from the focus of the artificial lighting

Equation 4.1 can be used with both L1 or L2 norms. In our experiments, we
have selected the L2 norm, i.e. Euclidean metrics, to evaluate the homogeneity of
the images, because it allows characterizing the magnitude of the neighboring pixel
variations (i.e. gradient vectors). Once the TV measure has been computed for all
the images of a given altitude subset, an image subset of low TV is used to esti-
mate the light distribution. The aim of the measure is to identify images containing
structures rich in details. The presence of high frequency noise, mainly due to scat-
tering onmacroscopical particles in suspension of scattering (see Fig. 4.3), may skew
the image quality evaluation. The TV magnitude of the image may inappropriately
increase leading to scenarios where the dominant part of the metrics comes from
high frequency noise. Nevertheless, the unwanted effects of the high frequency com-
ponents can be avoided by building lower resolution images from the originals with
N × N super-pixels. This simple approach significantly reduces the effects of the
high frequency components in both the image and the TV measure. In practice, 8×8
linearly averaged super-pixels may produce good results for images of 1,024×1,024
pixels, which are reduced to 128×128 pixels. The images obtained save every impor-
tant seabed feature but cancel the effects of the scattering phenomena, allowing the
use of the TV as an image quality evaluation metrics. For each depth-range, the
images with a TV value below the median can be used to compute the illumination
correction function. To obtain this function, the selected images are averaged and
the result is smoothed by a low-pass filter to reduce the remaining high frequency
components, as explained below.

Compensation of Lighting Inhomogeneities

In order to compensate the light attenuation problems and obtain an image with a
homogeneous illumination lH , the acquired luminance values are divided by a given
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compensation mask as shown in Eq. 4.2

lH (x, y) = l(x, y)

lG(x, y)
(4.2)

where l is the image luminance values, lG corresponds to the illumination pattern
and lC is the lighting compensation pattern before the Gaussian smoothing.

lC (x, y) = 1

N

N
∑

k=1

lk(x, y) (4.3)

Equation 4.3 computes the average value for every pixel position given a stack of
N images. Finally, the compensation mask lC obtained is smoothed with a low-pass
Gaussian filter to obtain the illumination distribution lG function. This distribution
is then used for the lighting inhomogeneity compensation, as per Eq. 4.4, where ⇔∇
denotes Gaussian smoothing.

lG(x, y) = ⇔lC ∇ (4.4)

The value for σ used in the Gaussian convolution is selected adaptively for each
altitude subset. Starting from the average image lC in Eq. 4.3, a set of increasing
values σ1, σ2, . . . , σk will be sequentially applied to it until the smoothed TV value
is under a threshold T V (lG(σ )) < ε. Values in the range of d

256 ,
d
128 , . . . ,

d
32 , where

d is the shortest dimension of a given image, offer good results in practice. With this
threshold condition the appropriate smoothness and uniformity of the blurred image
are ensured.

4.1.2 Gradient-Based Image Enhancement

As the altitude of the robot increases, the effects of the previously mentioned back-
scattering, forward scattering and light absorptionphenomenabecomemore evident.
The strategy proposed to enhance the high frequency details affected by these phe-
nomena is a simple and global approach, selecting the highest quality image in a
given surrounding region from the whole set, and using it as a contrast or gradi-
ent reference. To avoid unpredictable visual effects, the non-global approaches of
homomorphic filtering [7, 8], Contrast Limited Adaptive Histogram Equalization
(CLAHE) [9] (Fig. 4.4) and histogram specification [10] are not used, due to the
following reasons. On the one hand, homomorphic filtering may lead to an exces-
sively homogeneous appearance of the filtered image and to a loss of global con-
sistency in the appearance of the photo-mosaic. The suppression of low frequencies
performed by this kind of filter may provide some advantages in the visibility of local
details, but in giga-mosaicing, depending on the zoom factor, every spatial frequency
can be important to recognize and understand the nature andmorphological attributes
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Fig. 4.4 (Top-left) Image lacking contrast on its left side. (Top-right) Image processed with a
CLAHE algorithm, showing enhanced details in the originally lower-contrast regions. sssThe
appearance of the processed image is less realistic than the original due to an aggressive level
of local filtering. (Bottom-left) Image processed with a Butterworth homomorphic filter. The image
evidences a generalized lack of contrast. (Bottom-right) Image resulting from the histogram speci-
fication of an apparently uniformly illuminated image into the test image. The image obtained has
better contrast than the original, but still evidences problems in the darkest areas

of the seabed structures. On the other hand, histogram specification is highly depen-
dent on the reference image, and therefore the modified image may often loose its
realistic appearance. Therefore a simple but robust local contrast stretching can be
applied to equalize a given sequence of images.
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Image Quality Estimation

There is not a single and objective criterion to identify the image with the highest
visual quality fromagiven set because the concept of “quality” involves different cog-
nitive aspects. However, phenomena affecting image detail richness and sharpness,
such as scattering and light absorbtion, are known to grow with the distance from
the camera to the seabed.

This simple and fast approach may lead to poor results when the selected image
presents an over-exposed region, for example, due to being acquired too close to the
seabed under strong illumination. A more robust selection of the reference image
is to use TV to rank image quality also. Thus, the image with the highest TV may
be selected as the reference image while ensuring that over-exposed regions do not
affect this selection. According to our experimental validation, the image with the
highest TV coincides in most cases with the closest one to the seabed on a given
survey, and with the second or the third closest images in the few remaining cases.

Global Contrast Stretching

The TV value of the reference image selected is used to compute the stretching
factors that will be applied for a global contrast (or gamma amplification) on all the
other images. This stretching factor should be selected below a given threshold Ts to
avoid overamplification of areas of poor contrast, e.g. textureless sediment-covered
regions. Ts depends on the Signal-to-Noise Ratio (SNR) of the image, which can
vary highly according to water quality, lighting intensity, and/or the camera sensor.
Despite the application of these gradient corrections, the merging of images from
highly different depth categories will unavoidably produce noticeable seams due to
their distinct blurring levels. The stretching factor

T V re f erence
T V (k)

is applied to enhance
the x and y gradient components of the k-th image.

4.2 Image Registration with Global Alignment

While image registration is not directly related to the blending procedure and, there-
fore, is not at the core of the work presented here, the accuracy of image registration
will significantly affect the final quality of the photo-mosaic rendered.

Even when navigation data (such as USBL positioning, heading, depth, etc.) are
available, pair-wise image registration is still required to ensure a precise camera
motion estimation. Pair-wise registration can be performed using a feature-based
approach, involving the well known image feature detectors and descriptors of
Harris [11], SIFT [12] and SURF [13], among others. When building a 2D photo-
mosaic from a set of images acquired by a camera close to the seabed, the planar
assumption of the scene can be violated due to the microbathymetry of the seafloor.
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As already stated in Sect. 2.3.2. The 3D geometry of the scene, in addition to the
short camera distance, results in parallax. This problem increases the difficulty of
estimating the 2D planar transformation between consecutive images, often leading
to misregistrations, resulting in double contour effects during blending.

A global alignment strategy [14, 15] is required to reduce the inaccuracies of
a simple sequential pair-wise registration, as explained in Sect. 2.4. The strength
of the global alignment arises from closing-loops because they allow a significant
improvement of the camera trajectory estimate when re-visiting an already mapped
area. In absence of loop-closings, and considering input sequences of thousands of
images, the drift accumulated by the pair-wise transformations leads to significantly
inconsistent (missaligned) photo-mosaics.

4.3 Image Contribution Selection

The parallax effect will influence both image registration and image blending pro-
cedures. On the one hand, image panorama software often fails to register sequences
with strong parallax since they assume camera rotation only. On the other hand, and
even using the best possible registration, the double contouring problem will appear
when merging two or more images if the vehicle (and the camera) translates and the
scene is not perfectly planar.

The solution to avoid ghosting artifacts is the use of information from a single
image for each pixel of the final photo-mosaic whenever possible. Blending is per-
formed in a narrow region around the optimally computed seams, and consequently
information from more than one image is fused only in a small fraction of the final
photo-mosaic. Ghosting may occur in those regions, but its noticeability is signifi-
cantly localized and dependent on the width of the transition region.

4.3.1 Image Discarding

Each pixel of the photo-mosaic is obtained from a single image pixel whenever
possible. To maximize the quality of the final photo-mosaic, the contribution from
sharper and informative images should be prioritized. Image blending algorithms
take into account the information of all the available images. Unfortunately, this may
lead to unnecessary contributions of low quality images even when higher quality
information is available in a given area. Therefore, discarding low quality images
will ensure that their information is not taken into account in any sense. Furthermore,
ignoring these images will also impact the optimal seam finding step, reducing the
number of paths to be computed, and consequently speeding up the process. The
developed discarding procedure is described below.

First, the frames of the original images are mapped into the global photo-mosaic
frame using the image registration parameters in order to know their shape and

http://dx.doi.org/10.1007/978-3-319-05558-9_2
http://dx.doi.org/10.1007/978-3-319-05558-9_2
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area coverage in the final photo-mosaic coordinate system. The depth estimation is
computed, assuming that depth information is not available in the navigation data. It is
possible to discard low quality images covering a region of the scene if higher quality
ones are available for that area. The discarding procedure is performed using logical
operations on the polygons describing the images, which is an efficient approach
requiring few resources.

Each image is defined as a trapezoid described by four vertices corresponding to
the four image corners once registered to the photo-mosaic frame. Additionally, the
polygons are sorted decreasingly according to their corresponding image TV value.
At each step of the iterative process, a new image trapezoid of the sorted list is added
to the final photo-mosaic polygon using simple binary operators. If the area covered
by the new trapezoid has already been fully covered by the photo-mosaic polygon
(i.e. the trapezoid does not intersect the photo-mosaic polygon and lies inside this
one), the image is discarded because this same region is supposed to have already
been covered by higher quality images. Otherwise, if the image to be added contains
information from a non-covered area, the photo-mosaic polygon is updated and the
image is accepted.

4.3.2 Pixel-Level First-Closest and Second-Closest Maps

The proposed blending methodology determines the first and second closest maps
at pixel level. The first closest map contains, for each pixel coordinate of the photo-
mosaic, the index of the image whose center is closest (see Fig. 4.5). The second
closest map does the same, but with the second closest image indices. Similar to [16],
the overlap of these two maps will use a graph-cut algorithm to compute the seam-
strips for blending. For every seam pixel two image indices are selected. Therefore,
every pixel outside the seams (most of the photo-mosaic) is associated to a single
image.

The Euclidean distance between a pixel I M (x, y) in the photo-mosaic frame and
the center of a given n-th image I n(x, y) is weighted by a factor wn(s), as shown in
Eq. 4.5:

dn
M (x, y) = wn(s) ·

√

(xM − xn)2 + (yM − yn)2 (4.5)

where the scalar factor wn(s) is a size-ratio between the n-th image and the image
having the smallest area once registered. For time efficiency reasons, the ratio is
not computed based on the area of the warped images, but on the length of their
diameters, as explained in Sect. 4.1.1, to obtain a rough but fast approximation, as
shown in Eq. 4.6:

wn(s) = smin/sn (4.6)

where smin is the diameter of the smallest image for a given set and sn is the diameter
of a given n-th image.

http://dx.doi.org/10.1007/978-3-319-05558-9_4
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(a) (b) (c)

Fig. 4.5 a First closest map and b second closest map corresponding to the registered images
finally blended into the c photo-mosaic.The blue level of every pixel in the closest maps represents
the index of the image having the closest and second closest image centers. The distance measure
gives more priority to pixels belonging to images which have been acquired at a lower altitude,
consequently showing a higher level of detail

This weighting prioritizes pixels from images acquired at low altitudes, close to
the seabed, and consequently less affected by underwater imagery artifacts. This
weighting also maximizes the contribution of “higher-quality” images to the final
photo-mosaic image. Therefore, in cases like the one shown in Fig. 4.6, only a small
percentage of the pixels from the smaller overlapping image are lost while computing
the smooth transition, while the most significant percentage of the original image is
preserved.

4.3.3 Regions of Intersection

The overlap between the first and second closest maps determines the regions where
the pixel level graph cut should be performed. Therefore, for each overlapping patch,
the texture from the two best-quality images is available, and the graph cut is used
to find the optimal boundary seam, determining the contribution of each one in the
final photo-mosaic. Each region of intersection ROIi, j between the two images i and
j , where i is the closest image, j is the second closest image, and Ri, j denotes the
photo-mosaic region where i and j coincide, is defined as ROIi, j = Ri, j ∼ R j,i .
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Fig. 4.6 Example of a pixel level graph-cut performed between two overlapping images acquired
at different altitudes, and consequently evidencing differences in appearance. a Result of the graph
cut performed on the images without enhancement, b depicts, in white, the narrow strip (20 pixels
on each side of the cut) where the gradient domain blending is performed and c shows the blended
image pair.d is the result of the graph cut performed on the images after being enhanced according to
the proposed neighboring based enhancement approach, e depicts, in white, the narrow strip where
the gradient domain is performed and f shows the blended image pair. Notice that the results of the
pixel-level graph-cuts are different before and after the application of the image enhancements

4.4 Gradient Domain Blending

4.4.1 Pixel-Level Graph-Cut

The proposed blending strategy uses an optimal seam finding algorithm to compute
the best boundaries in the overlapping image areas. A pixel level graph cut is per-
formed on the regions of intersection determined by the first and second closestmaps.
In contrast to [16], the graph-cut is performed at the pixel level in order to guarantee
maximum accuracy of the cut, given that the main aim of the algorithm is to achieve
a high image quality. The algorithm searches for the boundary that minimizes the
cost of the transition from one side to the other of the border line for every pair of
pixels. The function has three weighted terms controlling the behavior of the cut:

C = μ1 · f (I1, I2) + μ2 · s(g1, g2) + μ3 · L (4.7)

The first term μ1 · f (I1, I2) measures the intensity differences between overlap-
ping pixels. The second term μ2 · s(g1, g2) measures the gradient vector differences
along the boundary B seam. Finally, the third termμ3 ·L measures the length L of the
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seam. The three weighting factorsμ1,μ2 andμ3 control the behavior of the cut. The
gradient term, which is not been used in such a way in the literature [16], allows us
to deal with differently exposed overlapping regions. Here an intensity-based graph
cut will consider that the differences between neighboring pixels are large even if
the registration is accurate, and thereby avoid those regions where the cut should be
performed. Instead, if the difference between the gradient vectors along the seam
path is used, the optimal seam will be found independently of the differences of
image exposure. In the case of misregistration of moving elements in the scene, the
term μ2 · s(g1, g2) avoids bisecting those elements by having the seam line by-pass
them. This is due to the fact that even a large value of L in the by-pass has less
cost than crossing a double contour with large gradients of a given structure. The
gradients are also less sensitive to other illumination issues, such as those caused
by artificial lighting and non-uniform lighting. Furthermore, working in the gradient
domain compensates the exposures when recovering the luminance images from the
gradient vectors. Despite the benefits of the gradient term, the intensity term is kept
in order to favor low photometric differences when registration is highly accurate.
Therefore, a weighted addition between both intensity and gradient domain terms is
proposed.

The effects of parallax and registration inaccuracies areminimized since the graph
cut tends to place the seam in textureless regions where morphological differences
are low. For the same reason, cuts over moving objects tend to be avoided, thus
benefiting the visual consistency of the blended results.

Performing a graph cut, especially at pixel level, is usually a computationally
expensive operation when the size of the region to process is significantly large.
Nevertheless, the regions on which the graph cut is working, determined by the
intersection between the first and second closest maps, are rarely large. Furthermore,
this process can be parallelized, taking advantage of recent multi-core processors, to
speed up the execution in one of the main bottlenecks of the processing pipeline.

4.4.2 Gradient Blending Over Seam Strips

Once an optimal seam has been estimated, a smooth transition between neighboring
regions needs to be performed. Even for sequences where the images have been
preprocessed to solve non-uniform illumination problems such exposure artifacts and
contrast level equalization, the graph cut result may lead to an image with noticeable
seams. Therefore, smoothing the transition between the image patches is required.
The image fusion around the computed seams should be performed in a limited
region, being both wide enough to ensure a smooth transition and narrow enough
to reduce the noticeability of ghosting and double contouring. According to our
experience, a transition strip of 10 pixels at each side of the seam (i.e. a 20 pixels
transition region) has been demonstrated to be appropriate for sequences of 1-Mpixel
images.
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Anew transition smoothing approach is proposed in this book.The appliedmethod
is a weighted average around the seams in the gradient domain, as shown in Eq. 4.8,
where g1x , g

1
y , g

2
x and g

2
y are the x and y gradient fields for the two involved images, ĝx

and ĝy are the x and y gradient fields after the blending and μ is the smoothing tran-
sition function. Concretely, a 3rd order Hermite function is applied. The advantage
of performing the weighted average in the gradient domain is the automatic com-
pensation for different exposures between neighboring images when the luminance
image is integrated from the gradients as a final step.

gx (x, y) = μ · g1x (x, y) + (1 − μ) · g2x (x, y)

gy(x, y) = μ · g1y(x, y) + (1 − μ) · g2y(x, y)
(4.8)

4.5 Luminance Recovery from Gradient Fields

After independently processing each overlapping strip region around the seams, the
resulting patches need to be unified into a single, larger image. Each patch processed
should be updated on the final photo-mosaic image, while informationwhich belongs
to regions without overlap should be recovered from the corresponding original
images.

Once the final gradient domain photo-mosaic has been composed after the “strip-
blending”, a non-integrable or inconsistent gradient field is obtained. In order to
recover the luminance values from the gradient fields, a multigrid Poisson solver
[17] is used.

4.6 Tone Mapping

The solution provided by the gradient solver is defined up to a free additive term on
the recovered intensity value. Consequently, a mapping algorithm such as Minimum
Information Loss [18] should be applied to determine this factor. The main goal
of the mapping algorithm is to appropriately manipulate the dynamic range of the
computed image in order to make it fit into the limited range of a display device
while keeping the maximum amount of detail information.

4.7 Giga-Mosaic Unification

The photo-mosaicing pipeline described is currently implemented inMatlabtm, using
Matlab EXecutable (MEX) files and parallel computing when possible. This allows
the efficient blending of photo-mosaics up to 60 Mpixels in a standard personal
computer with 4 GB of RAM in less than 5 min. Nevertheless, this mosaic size
(i.e. <0.1 Gpixels) is small at the gigapixel scale in which this work is interested, and
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a solution should be used to reach the desired 5–15 Gpixels required to process the
currently available data sets.

The amount of RAM may become a limitation when dealing with gigapixel
images, especially if the images have more than 8 bpp (e.g. 16-bpp grayscale images
or 24/48-bpp color images). The strategy proposed to reduce the computer require-
ments consists of decomposing the problem into sub-problems (i.e. rectangular tiles)
in order to sequentially solve them and finally unify them into the final mosaic image.

The price of this decomposition is the need of a second level of blending of the
tiles. This one is similar to the “strip-blending” presented in Sect. 4.4.2 applied
to the optimal seams, but is performed in the intensity domain. This second level
of blending is performed only in the intensity domain for computational reasons.
When compared with gradient domain operations, intensity blending is inexpensive
and can deal with large amounts of data. Furthermore, this method does not lead
to loss of quality due to the particular conditions in which it is applied. There are
two reasons for the need of a blending step between neighboring tiles. The first is
the different free factor of every tile after the luminance recovery using the Poisson
solver since this factor is multiplicative when working with log I values. The second
is the nature of the Poisson solver which spreads the inconsistency of the gradient
fields along the whole area recovered. After multiplying the pixel intensities of every
tile with the corresponding constant factor, a tile-overlap intensity blending has
to be performed. This kind of blending will compensate the gradient differences
of overlapping tiles coming from different Poisson solutions. The decomposition
necessarily differs from the theoretically exact Poisson solution, given that the errors
due to gradient inconsistencies will be differently spread by the solver in both cases.
Nevertheless, these differences are negligible in practice.

Although the tile-level pipeline described above is straightforward, its technical
implementation deserves further clarifications owing to the need to manage available
computational resources with such large problems (i.e. gigapixel photo-mosaics).

The rectangular “canvas” of the full photo-mosaic is divided into a regular grid of
overlapping tiles in order to process it using an out-of-core algorithm [19]. The size
of the tiles depends on the available RAM. For time efficiency, the space required to
store a single tile and a full global-strip (i.e. a row of tiles) is allocated to memory,
avoiding an excessive amount of slow hard drive sequential accesses.

A weighted average smoothing in the intensity domain is used to join neighboring
tiles in a given rectangular overlapping region. In our experiments, the size of the
overlapping regions varied between 15 and 25 % of the tile size depending on the
initial spatial image arrangement. Once a tile has been processed, it is stored in
the current global-strip, performing a blending with the previously processed one
(when available). When a single global-strip has been processed, it is stored in
the hard drive to save RAM space and the same procedure is repeated on the next
one. The strategy used to blend two neighboring tiles is also used to blend two
neighboring global-strips. Performing the blending in this structured way avoids the
problem of simultaneously fusing more than two images of a given region, which
may make the computation of a transition function of the overlapping areas more
complex. Figure 4.7 shows the giga-mosaic unification strategy described above.
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Fig. 4.7 Tiling scheme for the
gga-photo-mosaic blending.
Each tile is processed as an
independent photo-mosaic
and blended with previously
processed neighboring ones
in a given global-strip (i.e. a
row of blended tiles), using
a weighted average in the
luminance domain. Next,
each two neighboring rows
are blended using the same
approach. The Giga-photo-
mosaic is the result of joining
all the global-strips
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4.8 Conclusions

The main underwater imaging issues affecting underwater photo-mosaicing have
been treated by the approach presented. For each one of the specific underwater
imagery problems, a working solution has been presented and a new processing
pipeline has been defined. In the preprocessing stage, an adaptive non-uniform illumi-
nation compensation based on a sliding window on the depth sorted image sequences
has been proposed. This function allows not only giving an homogeneous appear-
ance to a sequence of images, but also enhances hidden details in the case of high
dynamic range images. Concerning exposure variations, the blending strategy based
on the image gradients allows the avoidance of dealing with this problem, inasmuch
as gradientmethods are not sensitive to exposure variations. In the context of gradient
domainmethods, a novel hybrid luminance and gradient based graph-cut strategy has
been presented, allowing the avoidance of problems concerning exposure variations
and moving objects in the scene. Light attenuation and forward scattering lead to
loss of contrast and poor detail in the images. In order to solve this issue, an adaptive
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image enhancement, based on the selection of the highest quality image in a given
surrounding as the image sharpness reference, has been presented. The approach
allows giving an homogeneous appearance to the images involved, and to enhance,
up to a reasonable level, the sharpness of the original images. Finally, and aiming to
efficiently generate high-resolution large-scale mosaics, a method to subdivide the
mosaic into smaller and easily processable tiles has been presented.
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Chapter 5
Results

Abstract This chapter validates the proposed processing pipeline across several
seafloor datasets, in order to evaluate its performance in different scenarios. The
three first datasets belong to large-scale optical surveys of the Mid-Atlantic Ridge,
and where acquired by the VICTOR-6000 ROV during three different scientific
cruises over the last 8years. These datasets are composed by thousands of grayscale
images and cover hundreds of square meters. These datasets allow demonstrating
the suitability of the proposed solution when facing large datasets of images affected
by the previously described underwater phenomena, and consequently showing con-
stantly varying appearances. The pipeline is also used to process a shipwreck dataset
acquired by the Girona 500 AUV, in order to test its performance when facing high-
resolution color images. The relevance of the proposedblendingpipeline for scientific
purposes is demonstrated, with applications such as change detection and monitor-
ing of interest areas over time. Finally, the obtained results are summarized and
evaluated.

Keywords High-quality photo-mosaic ·Large-scale underwater surveys ·Temporal
variations

The algorithms making up the proposed processing pipeline have been conceived to
address several specific underwater imagery problems. These problems are present
in the various underwater sequences used to test the performance of the approach.
Some of themain sequence properties are the large number of images (from hundreds
to tens or hundreds of thousands), the image acquisition using artificial light and at
frequently changing depths, the presence of particles in suspension and moving
objects (mainly fishes and algae, but also warm water outflow) and the significant
relief changes inducing parallax effects.

In the following sections, the datasets used for testing purposes are described and
their main properties are pointed out. The problems present in each are listed as
well, and the performance of the approach developed is evaluated. Given the nature
of the datasets, a comparison of the results obtained with a known groundtruth is
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not feasible. Consequently, a numerical evaluation of the results cannot be provided.
Therefore, the goodness of the results is measured based on several aspects such as
the consistency of the appearance of the mosaic obtained over the area covered, the
avoidance of double contours or structures and the ability to keep the most infor-
mative data in those areas where images of different quality overlap. Furthermore,
comparisons with some of the most widely used [1] and best performing [2] state-
of-the-art methods are also presented.

5.1 Testing Datasets

The developed processing pipeline has been tested in two different kinds of datasets.
Firstly, the algorithms have been applied to several extensive image surveys intended
to characterize and monitor the evolution of hydrothermal sites along the Mid-
Atlantic Ridge. Secondly, a very-high resolution color image dataset belonging to
the seventeenth century LaLune shipwreck (Toulon, France) prospection has been
also used, to verify the performance of the proposed approach when dealing with
color images.

Hydrothermal activity along mid-ocean ridges accounts for ∼30% of the Earth’s
oceanic heat flux, a third of which takes place on or near the mid-ocean ridge axes
[3, 4]. As explained in [5], photo-mosaics of large seafloor areas in repeated surveys
can be used for temporal studies of active processes. Imagery provides constraints
of temporal variability at two time-scales. On the one hand, based upon changes
in individual outflow features identified in mosaics acquired in different years, it is
possible to monitor the evolution of diffuse outflow throughout the vent field over
time. On the other hand, photo-mosaics reveal broad patches of seafloor which can be
interpreted as fossil outflow zones owing to their association with extinct chimneys
and hydrothermal deposits. The structures are not recognizable from video imagery
alone, or from photomosaics with less efficient removal of artifacts (e.g. ghosts
and seams). Repeated image surveys with adequate processing can be routinely
performed to characterize and study the temporal variability of a broad range of
sites hosting active processes (e.g., cold seeps, hydrothermal fields, gas outflows,
etc.), opening the possibility of better understanding the dynamics of fluid flows in
the sub-seafloor as well as quantification of fluxes, among many active processes
occurring at the seafloor.

Over the last 14 years, numerous surveys of theLuckyStrike hydrothermal field on
theMid-Atlantic Ridge south of the Azores Islands have been performed. During this
period, the threemajor vent fields,Menez Gwen (average depth 850m), Lucky Strike
(average depth 1650m) and Rainbow (average depth 2300m) were discovered along
the Mid-Atlantic Ridge and extensively studied from the biological and geological
points of view. Lucky Strike mosaics, generated from >56,000 images acquired
in 1996, 2006, 2008 and 2009, reveal the distribution and type of diffuse outflow
throughout the field and their association with high-temperature hydrothermal vents.
The 1996 and 2008 surveys were the most extensive for the Lucky Strike field giving
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Fig. 5.1 ROV VICTOR 6000 (IFREMER, France), with the geophysical survey module, being
deployed at theLuckyStrike area along theMid-AtlanticRidge, during one of the surveys carried out
as a part of theMOMAR08-Leg1 Cruise (CNRS/IFREMER, France). Copyright: CNRS/IFREMER

a detailed characterization of actively venting areas, including the spatial distribution
of outflow zones, their type, as well as their relationship to substrate and structure [5].
Nevertheless, the 1996 survey, which optical imagery was acquired by a different
camera than the subsequent ones, is not taken into account hereinafter, given the
aggressive level of local filtering that suffer all its images.

The datasets presented belowwere collected by theVictor-6000ROV [6] (Fig. 5.1)
deployed by the oceanographic vessel Pourquoi pas? from IFREMER, during the
various MoMAR (Monitoring the Mid-Atlantic Ridge) cruises (CNRS/IFREMER,
France). The acquisition was performed with a grayscale, high sensibility camera
system (OTUS) installed in the geophysical mapping payload (Module Route) at
an altitude of ∼5–10m from the seafloor. The OTUS camera features a Thompson
MPP CCD grayscale sensor with a resolution of 1 Mpixel and 14 bits per pixel. The
frequency of the acquisition was 1 image every 5 s and the optical data was stored in
TIFF format. The payload also included 4 Flashes (1,200J), a RESON Seabat 7125
multi-beam echo sounder and a SIMRADEK60 echo sounder altimeter. The onboard
navigation system also included an RDI Doppler Velocity Log (DVL), an iXSEA
OCTANS fiber-optic gyrocompass and a Paroscientific depth sensor. A calibration
to obtain the intrinsic parameters of the OTUS camera was performed based on the
Bathyluck 2009 images, with a calibration pattern deployed at the seafloor, and then
used for the 2006, 2008 and 2009 mosaics.

5.2 MoMARETO’06 (Dataset #1)

The dataset consists of 4,628 grayscale images of 1 Mpixel with 14 bits of color
depth and stored in 16-bit TIFF format. During the cruise the three major vent fields
(Menez Gwen, Lucky Strike and Rainbow) were visited. The images suffer from
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Fig. 5.2 Subset of 9 images belonging to the MoMARETO’06 (IFREMER, France) cruise dataset.
The dataset consists of 4,628 grayscale images of 1 Mpixel with 14 bits of color depth and stored
in 16-bit TIFF format. During the cruise the three major vent fields (Menez Gwen, Lucky Strike
and Rainbow) were visited

non-uniform illumination, depict frequent slopes that emphasize the effects of light
attenuation, and present sporadic moving fishes (see Fig. 5.2). Despite the fact that
the area covered by the exploration was extensive (larger than 1 km2), the acquisition
was very sparse, and rarely more than two parallel transects overlap.

The resulting blended mosaic for the Lucky Strike hydrothermal field was
rendered with a resolution of 10 mm/pixel, resulting in an image of 117,836 ×
85,924 pixels stored using 16-bit per pixel (≈9.4GPixels), i.e. 18.8 GBytes of RAW
data (see Fig. 5.3). The benefits of the blended version of the mosaic when compared
with the non-blended one are evident (see Fig. 5.4). Blending does not only allow
obtaining a more visually agreeable, continuous and consistent representation of the
seafloor, but also emphasizes several structures and details in the scene. Thanks to



5.2 MoMARETO’06 (Dataset #1) 83

100 m

10 m 1 m

Fig. 5.3 MoMARETO’06 blended full mosaic at the Lucky Strike vent field and detailed region.
The mosaic contains 4,628 grayscale images of 1 Mpixel with 14 bit of color depth and has been
rendered at 10 mm/pixel, resulting in an image of 117,836 × 85,924 pixels

the prioritization carried out by both the image discarding mechanism and the image
weighting performed during the pixel level graph cut, the images with higher qual-
ity also have a higher contribution to the final rendering than the lower and less
informative ones.

From a cognitive point of view, the proposed pipeline emphasizes fine details, in
contrast to other state-of-the-artmethods, such as [2], as can be seen in Fig. 5.5. In this
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Fig. 5.4 MoMARETO’06 detailed region 1. The left image shows the mosaic region rendered by
drawing one image on top of the previous one (Last In approach). The image boundaries are obvious,
especially due to their darker corners. Moreover, the global appearance of the photo-mosaic is not
consistent, presenting regions with more contrast than others. The right image shows the mosaic
region renderedwhen using the proposed approach. In this case, the image boundaries are not visible
and the appearance is consistent throughout the whole area. Furthermore, some details obfuscated
in the Last In rendering show clearly in the blended version, thanks to the quality based image
selection mechanism

case, although both methods obtain very convincing results, the proposed approach
helps the interpretation task by keeping small structures visible and selecting the
most contrastful view of the scene’s elements, better defining small details on the
seafloor.
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Fig. 5.5 MoMARETO’06 detailed region 2. The left image shows the result obtained by Szeliski’s
method [2] and the right image shows the result of the proposed pipeline. Despite both being very
convincing, it can be seen that the quality based image selection mechanism of the proposed method
has allowed highlighting some of the details in the murky regions as well as sharply defining the
features with higher contrast in the rest of the image

5.3 MoMAR’08 (Dataset #2)

The dataset consists of 21,635 images of 1 Mpixel with 14 bits of color depth
and stored in 16-bit TIFF format. A 3-day survey of the Lucky Strike hydrother-
mal field was performed in order to acquire all the optical data. As with dataset
#1, the images suffer from non-uniform illumination, depict frequent slopes that
emphasize the effects of light attenuation, and present sporadic moving fishes (see
Fig. 5.6). Nevertheless, in this case, the density of the acquisition in the interest area
(larger than 1km2) is considerably high, presenting common overlaps between two
or more parallel transects.

The resulting blended mosaic was rendered with a resolution of 10mm/pixel,
resulting in an image of 78,651×62,722 pixels stored using 16 bits per pixel (≈ 4.6)
GPixels, i.e. 9.2 GBytes of RAW data (see Fig. 5.7). As in dataset #1, the blended
version of the mosaic shows a consistent appearance throughout the whole area
surveyed. When compared with state-of-the-art methods, the proposed approach
shows several advantages. On the one hand, it hides any visible seams when the
appearance of neighboring images is significantly different, which is the common
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Fig. 5.6 Subset of 9 images belonging to the MoMAR’08 (CNRS/IFREMER, France) cruise
dataset. The dataset consists of 21,635 grayscale images of 1 Mpixel with 14 bits of color depth
and stored in 16-bit TIFF format

case when images acquired at different distances from the seafloor are combined.
In that case, methods based on setting the gradient values around the optimal seam
boundary to zero [7] lead to clearly noticeable seams and result in a non-continuous
image (see Fig. 5.8-left). On the other hand, the presented pipeline avoids ghosting
and double contouring effectswhen image registration or parallax happen, as opposed
to some transition smoothing methods such as a weighted average in the gradient
domain performed on all the available overlapping pixels [8] (see Fig. 5.8-center).
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Fig. 5.7 MoMAR’08 blended full mosaic and detailed region. The mosaic contains 21,635
grayscale images of 1Mpixel with 14 bits of color depth and has been rendered at 10mm/pixel,
resulting in an image of 78,651 × 62,722 pixels
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Fig. 5.8 MoMAR’08 detailed region 1. Detail of a given overlapping region blended with three
different gradient approaches. Left shows the result of setting the gradient values around the optimal
seam boundary at zero [7] in order to enforce continuity through the joint. Center shows the result
of a weighted average gradient blending performed on all the available overlapping pixels [8].
Right shows the result of the proposed approach, which only performs a gradient blending on a
narrow region around the optimal computed seam. The transition is sufficiently smooth to provide a
sensation of consistency in the imagewhile avoidingghosting anddouble contours in the overlapping
areas

1 m 1 m

Fig. 5.9 MoMAR’08 detailed region 2. Left Detail of an underwater photo-mosaic region gener-
ated with Szeliski’s method [2] (direct result of Microsoft ICE software) without automatic image
enhancement. Right the result obtained by our approach with adaptive contrast enhancement. The
global appearance of the image is uniform and the central part of the photo-mosaic is perceptually
more informative after the contrast improvement
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Fig. 5.10 MoMAR’08 detailed region 3. Left Detail of an underwater photo-mosaic region using
Szeliski’s method. Right the result obtained by our approach with contributing image selection
based on a quality rank estimation. The approach proposed leads to an image richer in detail and
with higher contrast

Differences in appearance beetween neighboring images are specially frequent
when a given area is surveyed twice or more times in a given exploration. Concerning
this problem, not only bringing a similar appearance to all the involved images but
also selecting the higher quality, most informative one is a relevant task. The pipeline
proposed prioritizes these images in order to use these pixels in the final mosaic.
An example of the difference between the obtained results by the presented method
and other state-of-the-art methods can be seen in Figs. 5.9, 5.10, 5.11.

The benefits of using blending techniques arise during the image interpretation
task performed by the experts. For example, darker seafloor areas visible in the
final gigamosaic are not recognizable in the original imagery (see Fig. 5.12). These
structures have been interpreted as fossil hydrothermal areas, and provide a view
of the evolution of the hydrothermal system over long geological periods of time.
This imagery can thus be exploited to provide a comprehensive view of the different
kinds of hydrothermal outflow in the Lucky Strike area, their distribution, and their
relative abundances [5, 9]. The areas of active focused and diffuse hydrothermal
discharge, located within the areas of fossil outflow (dark seafloor), were identified
and manually marked (or digitized) in the blended photo-mosaic. Bacterial mats are
reliable indicators of zones of hydrothermal outflow, primarily diffuse, with fluid
temperatures as high as 150 ◦C locally, and thus reflect active venting. Actively
venting areas can be readily identified through visual inspection of photo-mosaics.
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Fig. 5.11 MoMAR’08 detailed region 4. Comparison of our approach with common state-of-the-
art methods in terms of graph-cut performance. Left-top and bottom details of an underwater mosaic
region blended using an intensity based graph-cut algorithm and Right-top and bottom the result
obtained by the proposed gradient based graph-cut strategy.Left-top the shadow in the top left corner
region has been interpreted differently by both approaches, leading, in the case of our graph-cut
Right-top, to an unshadowed valley. The highlighted regions in image Left-bottom present object
doubling that has been suppressed in image Right-bottom. The graph-cut shows a different behavior
in both cases, leading to a noticeable difference in the image contribution selection

Using dedicated image-viewing software (see [10] for details), the limits of individual
features where digitized when possible, based on the full-resolution mosaic scenes
(areas ∼10 m wide, with a pixel resolution of 5−10 mm). Hydrothermal fluids may
outflow along individual fissures or networks of fractures, around which bacterial
mats and hydrothermal deposits concentrate. A kind of these fissures, called cracks,
can also be seen in Fig. 5.15. The non-blended photo-mosaic suffers from uneven
illumination in the individual images as well as a lack of contrast. Moreover, some
images acquired from a far distance from the seafloor hide the information of others
acquired at a closer distance. These circumstances make the identification of the
interest image features difficult, whereas they are easily recognizable in the blended
photo-mosaic.
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Fig. 5.12 Detail of the non-blended photo-mosaic of the southeastern part of Lucky Strike
hydrothermal field (Top) and identified hydrothermal features, both active and inactive, in the
blended photo-mosaic (Bottom) obtained from image mosaic interpretation and in situ observa-
tions [5]. The appearance consistency and emphasized details of the blended photo-mosaic facilitate
the interpretation of the scene, and consequently the identification of all the active focused and dif-
fuse hydrothermal discharge located within the areas of fossil outflow (dark seafloor). The seafloor
imagery in the blended photo-mosaic corresponds to the MoMAR’08 survey, complemented in the
background by the 2006 and 2009 mosaics to reduce imaging gaps. TE symbolizes Tour Eiffel
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5.4 BATHYLUCK’09 (Dataset #3)

The dataset consists of 21,614 images also acquiredwith theOTUS camera (1Mpixel
resolution with 14 bits of color depth and stored in 16-bit TIFF format) over the Luck
Strike area. Similar to dataset #1 and dataset #2, the images suffer from non-uniform
illumination, depict frequent slopes that emphasize the effects of light attenuation,
and present sporadic moving fishes (see Fig. 5.13). The density of the acquisition
in the interest area (larger than 1 km2) is high in some regions but sparse in others,
presenting extensive areas where overlaps between two or more parallel transects are
sporadic.

The resulting blended photo-mosaic has been rendered with a resolution of
10mm/pixel, resulting in an image of 138,502 × 232,626 pixels stored using 16

Fig. 5.13 Subset of 9 images belonging to theBATHYLUCK’09 (CNRS/IFREMER,France) cruise
dataset. The dataset consists of 21,614 grayscale images of 1 Mpixel with 14 bits of color depth
and stored in 16-bit TIFF format
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Fig. 5.14 BATHYLUCK’09 blended full mosaic and detailed region. The mosaic contains 21,614
grayscale images of 1 Mpixel with 14 bits of color depth and has been rendered at 10 mm/pixel,
resulting in an image of 138,502 × 232,626 pixels
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Fig. 5.15 BATHYLUCK’09 detailed region 1. The left image shows the mosaic region rendered by
drawing one image on top of the previous one (Last In). The image boundaries are clearly visible,
especially due to their darker corners, and the global appearance is not consistent, evidencing lack
of contrast in several regions. The right image shows the mosaic region rendered by using the
approach proposed. The image boundaries are not visible, the appearance of the image is uniform,
and the fine details of the seabed structures are sharp in contrast and thereby easily distinguishable

bits per pixel (≈30.0 GPixels), i.e. 60.0 GBytes of RAW data (see Fig. 5.14). As in
the previous cases, the blended version of the mosaic shows a consistent appearance
throughout the whole area surveyed.

In the areaswhich have been surveyed several times (i.e. zones covered bymultiple
images), the image quality assessment mechanism allows selecting and emphasizing
information corresponding to the seabed structures. The improvement of the results
over a simple Last In rendering are demonstrated in Figs. 5.15, 5.16, 5.17 and 5.18.
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Fig. 5.16 BATHYLUCK’09 detailed region 2. The top image shows the mosaic region rendered by
drawing one image on top of the previous one (Last In). The image boundaries are clearly visible,
especially due to their darker corners, and the global appearance is not consistent, evidencing lack
of contrast in several regions. The bottom image shows the mosaic region rendered by using the
approach proposed. The image boundaries are not visible, the appearance of the image is uniform,
and the fine details of the seabed structures are sharp in contrast and thereby easily distinguishable
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Fig. 5.17 BATHYLUCK’09 detailed region 3. The top image shows the mosaic region rendered by
drawing one image on top of the previous one (Last In). The image boundaries are clearly visible,
especially due to their darker corners, and the global appearance is not consistent, evidencing lack
of contrast in several regions. The bottom image shows the mosaic region rendered by using the
approach proposed. The image boundaries are not visible, the appearance of the image is uniform,
and the fine details of the seabed structures are sharp in contrast and thereby easily distinguishable
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Fig. 5.18 BATHYLUCK’09 detailed region 4. Left-top wire-frame representation of a mosaic
generated from three pictures acquired at significantly different depths. Right-top Last-In repre-
sentation of the mosaic. The image acquired closer to the seabed is significantly sharper than the
others. Left-middle and Right-middle photo-mosaics generated using Szeliski’s method [2] and the
approach proposed. Left-bottom and Right-bottom detail of the central part of the mosaics, where
the three pictures overlap. The result of the proposed approach keeps the information from the
images acquired closer to the seabed, resulting in a sharper and higher contrast representation than
that obtained by the other method
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5.5 LaLune’12 (Dataset #4)

The dataset consists of 845 very high-resolution color images (21 Mpixel with 8 bits
of color depth and stored in 8-bit JPEG format). A survey covering the area corre-
sponding to the shipwreck of La Lune was performed in August 2012 by the Girona
500 AUV (Fig. 5.19). The shipwreck was discovered by chance in 1993 by Ifremer,
in the context of the ESSAUV12-2 mission, during a IFREMER Nautile submarine
test dive, at a 90m depth at the end of the roadstead of Toulon [11]. This three-masted
vessel of Louis XIV’s fleet sank in 1664 with a crew of more than 800 hands. The
aim of the survey was the detailed documentation of the finding and scheduling of
an excavation carried out in October 2012 (Fig. 5.20).

The resulting blended mosaic was rendered with a resolution of 2.5 mm/pixel,
resulting in an image of 23,267 × 22,751 pixels stored using 8 bits per pixel
(≈ 0.5 GPixels), i.e. 18.8 GBytes of RAW data (see Fig. 5.21). The benefits of the
blended version of the mosaic when compared with the non-blended one are evident
(see Fig. 5.21). Blending does not only obtain a more visually agreeable, continu-
ous and consistent representation of the seafloor, but also picks out and emphasizes
several structures and details in the scene. Thanks to the prioritization carried out by
both the image discardingmechanism and the image weighting performed during the
pixel-level graph cut, the images with a higher quality have also a higher contribution
to the final rendering than the lower and less informative ones.

Fig. 5.19 Girona 500 AUV autonomously performing an optical seafloor survey in the
Mediterranean sea
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Fig. 5.20 Subset of 23 images belonging to the La Lune 2012 cruise dataset. The dataset consists
of 845 grayscale images of 21 Mpixel with 8 bits of color depth and stored in 8-bit TIFF format

From the cognitive point of view, the proposed pipeline emphasizes fine details in
contrast to other state-of-the-art methods, such as [2], as can be seen in Fig. 5.22. In
this case, even though both approaches obtain very convincing results, the approach
proposedhelps the interpretation taskbymaking small structures visible and selecting
the most contrasting view of the scene elements.
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Fig. 5.21 La Lune 2012 blended full mosaic. The mosaic contains 845 color images of 21 Mpixel
with 8 bits of color depth and has been rendered at 2.5mm/pixel, resulting in an image of 23,267×
22,751 pixels

1 m 1 m 1 m

Fig. 5.22 La Lune 2012 detailed region. Left blended mosaic of two images obtained by the
Microsoft ICE software. Center blended mosaic of two images using multiband blending. Right
blended mosaic of two images obtained by the approach proposed. The result obtained by the
approach proposed shows a stronger contrast and sharper appearance than that obtained by the
Microsoft ICE software and the multiband blending approaches. This is due not only to the adaptive
image enhancement mechanism but also to the quality based image selection in the overlapping area
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5.6 Temporal Variations

As early stated, the use of blended Giga-mosaics allows an appropriate interpre-
tation of the benthos by the scientists. These large-scale, underwater mosaics are,
likewise, accurately geo-referenced. Consequently, these factors makes feasible to
monitor temporal variations among repeated surveys of the same interest areas, as
demonstrated in [5].

Thanks to the image quality equalization performed by the blending pipeline, the
comparison of optical imagery information along the time becomes an easier task

MoMARETOÊ06 MoMARÊ08 BATHYLUCK’09

Fig. 5.23 Examples of temporal variability documented by three repeated image surveys and for
four selected sites of Lucky Strike. Observed changes in the white areas (diffuse outflow) include
an overall reduction or increase of their size, changes in their continuity and intensity, or ultimately
the appearance or disappearance of active areas. The first and second rows represent sites with a
decreasing activity along the years, the third row shows a site with increasing activity, and the fourth
row depicts an stable site
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than a simple study of the original, non-preprocessed images. These images typically
show strongly uneven appearances between surveys, in as much as the acquisition
conditions such as depth and illumination conditions may change.

An example on temporal monitoring of four interest areas, corresponding to
four activity sites, and belonging to the previously presented MoMARETO’06,
MoMAR’08 and BARHYLUCK’09 surveys, can bee seen in Fig. 5.23. Observed
changes in the white areas (diffuse outflow) include an overall reduction or increase
of their size, changes in their continuity and intensity, or ultimately the appearance or
disappearance of active areas. Specifically, the first and second sites show a decreas-
ing hydrothermal activity along the three successive surveys, the third site shows an
increasing activity, and the fourth site depicts an stable area. Due to the sparseness
of the acquisition, the optical imagery for some interest areas is missing.

5.7 Summary

A summary of the main properties of the processed datasets is presented in Table 5.1.
Three of the four presented datasets consist of a large number of grayscale 1-Mpixel
images, while the last one is composed of a smaller number but in color and with a
resolution of 21 Mpixels. Consequently, all the generated mosaics are in the GPixel
order, although the coverage percentage varies between datasets.

The approach proposed has demonstrated a consistent behaviour throughout all
the processed sequences, in both grayscale and color images. The high quality pixel
prioritization in combination with the automatic image discarding mechanism and
the context based image enhancement allows improving, in most cases, the results
obtained by the state-of-the-art methods. When dealing with images showing a sim-
ilar appearance, i.e. acquired at similar depths and with the same illumination condi-
tions, the improvement versus the state of the art may be small. However, when these
acquisition conditions vary, which is common in underwater imagery, and specially
when the same area is imaged twice or more times, the benefits of the proposed
specific pipeline become obvious. In some cases, the number of images overlapping
in the same area is high, although this does not happen frequently. Methods lacking
from a pixel prioritization policy or an image discarding mechanism lead to image
degradation and smoothing when the information from all the images is merged
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in the same area. This issue is avoided by the approach proposed. Concerning the
huge quantity of images in the datasets tested and the large dimensions of the final
mosaics, none of the softwares used to perform the state-of-the-art tests have been
able to process the whole sequence. These softwares are not intended to deal with
navigation data, becoming the registration step an impossible task. For that reason,
the comparisons presented, despite being representative, have been performed only
in selected areas involving a reduced number of images. The improvement in terms
of image understanding and interpretation are clear when comparing the blended and
non-blended versions of the same mosaic.
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Chapter 6
Conclusions

Abstract This chapter summarizes the contents and contributions of thismonograph.
First, the need of an specific processing pipeline for large-scale underwater photo-
mosaicing is pointed out. Next, the requirements of a optimal blending technique
obtained from the analysis of the state-of-the-art methods and the proposed classi-
fication are detailed. Then, the contributions of the work in the different steps of
the proposed processing pipeline are enumerated. Finally, the performance of the
proposed framework is discussed.

Keywords Photo-mosaicing · Blending techniques

In this book a full approach for large-scale underwater image mosaicing and blend-
ing has been proposed. The presented pipeline extends the common photo-mosaicing
techniques to the more complex and challenging underwater medium. The aim is the
generation of giga-photo-mosaics over large areas (in the km2 range), allowing the
broad scale monitoring of seafloor extensions for geological, biological and environ-
mental purposes, among others.

Deep-ocean imaging suffers from specific problems that require the application
of specific solutions. The contributions of this book concern all the photo-mosaicing
steps (image preprocessing, enhancing and blending) that can significantly improve
the final image quality and visual pleasantness. Nevertheless, and without loss of
generality, this pipeline can also be applied to the generation of terrestrial or aerial
image panoramas.

Image blending is conceived as a set of stages that can be inserted into a 2Dmosaic-
ing pipeline in order to improve and enhance the quality of the final photo-mosaic.
In Chap. 2, the common steps of image mosaicing were described, focusing on the
particularities of their application in the underwater medium. Therefore, the use of
navigation data and a topology estimation method as key steps in the registration
process were also described. Furthermore, the proposed non-uniform illumination
compensation strategy can also be used as a preprocessing step, allowing improve-
ment of the quality in pair-wise image registration.

R. Prados et al., Image Blending Techniques and their Application in Underwater 105
Mosaicing, SpringerBriefs in Computer Science, DOI: 10.1007/978-3-319-05558-9_6,
© The Author(s) 2014
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A comprehensive state of the art in image blending techniques in 2D has been
presented inChap. 3. Themost relevantmethods intended to dealwith aerial and satel-
lite mapping, conventional terrestrial landscape panoramas and underwater imagery
have been described, pointing out their strengths and weaknesses concerning their
application in underwater photo-mosaicing. There are three main groups of blend-
ing methods in the literature. On the one hand, transition smoothing methods rely
on fading the transition between neighboring images by appropriately fusing the
overlapping pixel information around an arbitrarily selected seam. On the other
hand, optimal seam finding methods are intended to find an optimally placed seam
that minimizes the photometric or gradient differences between neighboring pix-
els around its path. Hybrid methods combine the benefits of both approaches by
smoothing the transition along an optimally placed seam, and become the most ade-
quate strategy to perform image blending in 2D, specially when dealing with images
acquired in the underwater medium.

This book contributes to the state-of-art in large area imagemosaicingmethods for
underwater surveys, focusing on the visual consistency and the detail enhancement
of the generated photo-mosaics. The proposed framework, presented in Chap. 4,
includes several steps that are inserted into the 2D mosaicing pipeline. In the pre-
processing stage, a depth dependent illumination compensation function is com-
puted and applied to the original images in order to solve the non-uniform illumi-
nation appearance due to light attenuation. This strategy uses a varying illumination
compensation function based on a spatial sliding window, ensuring an appropriate
compensation for images acquired at significantly different depths. Additionally, if
precise depth information is not available, an altitude estimation based on the pro-
jection image size (once registered) has been proposed to be used at different steps in
the pipeline. Concerning image enhancement, the contrast variability due to different
acquisition altitudes has been compensated using an adaptive contrast enhancement,
based on an image quality reference selected through a Total Variation (TV) crite-
rion. This criterion has also been applied to prioritize the information coming from
the higher quality images when building the first and second closest maps, which
allows us to perform the graph cut on the overlapping regions. Consequently, the
contribution from sharper and more visually pleasant images is higher than from
contrastless or poorly detailed ones. In the blending step, the proposed graph-cut
strategy operates in both the image intensity domain and the image gradient domain
over the overlapping regions, in contrast with several state-of-the-art [1–3] meth-
ods working only in the intensity domain image differences. This approach allows
finding an adequate seam even if the overlapping images have been acquired with
different exposures. For a given image region acquired with two different exposures,
an intensity domain approach will find photometric differences between pixels that
do not correspond to real scene structure misalignments. A gradient domain method
is unaffected by this problem since gradient values are not exposure dependent. The
smooth transition around the optimally selected seam is performed in a narrow strip,
ensuring the maximum sharpness possible and avoiding double contouring in that
region. This smoothing is also performed in the gradient domain, as it also compen-
sates for the possible different exposures between images. Finally, an out-of-core
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blending strategy for very large-scale photo-mosaics, i.e. Giga-photo-mosaics, has
been developed and tested with real data, generating images in excess of 5 GPixel,
and having, as the only limitation, the maximum size of the tile that can be processed
in a given amount of RAM.

The approach proposed has been tested in several image sequences in Chap. 5,
each one showing several specific underwater imagery problems. The large number
of images in the sequences and their size lead to high dimension photo-mosaics,
i.e. Giga-photo-mosaics. This fact has allowed the testing of the effectiveness of the
out-of-core processing strategy proposed. Furthermore, the results obtained by the
approach presented have been compared in selected areas with the results obtained
by some of the most representative state-of-the-art blending methods. Our method
has demonstrated to be as good as, or better than, the state-of-the-art techniques,
outperforming them in many cases.

In the case of the Lucky Strike datasets, full scientific interpretation has been
carried out [4, 5]. The benefits of using blended gigamosaics for interpretation tasks
has been demonstrated in some examples. This imagery provides a view of the evo-
lution of the hydrothermal system over long geological periods of time, and can thus
be exploited to provide a comprehensive view of the different kinds of hydrothermal
outflow in the Lucky Strike area, their distribution, and their relative abundances
[4, 5], which was not available prior to obtaining these mosaics. In the case of the
shipwreck survey, the photomosaicwas the basis for planning archeological activities
subsequently.
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