Ludovico Piccinato

Abstract

The Bayesian approach for statistical inference is examined, pointing out also
the differences among the many Bayesian philosophies. Moreover comments are
given about topics where the Bayesian approach seems (at least to Bayesians)
more suitable than the alternatives. At last the decision-theoretic approach is
shortly discussed.

1 An Historical Outline

In the second half of the nineteenth century the dominant approach to statistical
inference was the framework originated by P.S. Laplace, where an honour place
was given to Bayes theorem. Both Bayes and Laplace are sometimes mentioned as
supporters of a very strict approach to probability and inference: for the classical
problem of the probability of causes, they would assume an equal probability
for the causes, so that, in a modern language, the final probabilities would be
proportional to the likelihoods. As shown by authoritative historians, this picture
is not correct. Indeed Bayes in his famous 1763 posthumous paper assumed
equal prior predictive probabilities (that is probabilities of observables) so that
the equiprobability of causes was derived as a consequence (Stigler 1982, 1986).
The Principle of Indifference formulated by P.S. Laplace in 1774 states that the
ratio of the final probabilities of two causes A; and A; conditional on an event
E equals the likelihood ratio P(E|A;)/P(E|A;). This amounts to say that the
initial probabilities of the causes are equal. But in many places Laplace himself
explains that when the cases at hand are not equally possible, one has to subdivide
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or join them to reach a set of equipossible cases. Therefore, even for Laplace,
equiprobability is the result of an elaboration, not an aprioristic assumption. It has
also been observed (Stigler 1986, p. 135) that in some occasions Laplace explicitly
adopted non-uniform priors. Also Karl Pearson in most of his works is clearly
sympathetic with the approach based on the so-called inverse probabilities (see,
e.g., Dale 1991), and his influence was relevant at least until the first decades of
the twentieth century. Moreover many authors suggest the use of an uniform prior
because it is approximately justified in the case of large sample size, a position that
was deepened in modern times.

The break in the tradition is due to the work of Fisher. His main theoretical
contribution in this period is Fisher (1922), where Sect.1 starts with a severe
criticism of a famous paper by Pearson (1920). Fisher’s offensive, followed after a
few years by the well-known contributions of J. Neyman and E.S. Pearson, provoked
an eclipse of the Bayesian approach for about three decades (Zabell 1989). This
does not mean that in the same period remarkable developments in the Bayesian
framework did not occur. On the contrary, in the same period, important works by
H. Jeffreys, 1.J. Good, F.P. Ramsey and B.de Finetti were published; the point is
that the statistical community paid very few attention to such arguments, whose
relevance was recognized only many decades later. The change occurred since the
1950s (of the twentieth century) with the work of some scholars, including L.J.
Savage, H. Raiffa and R. Schlaifer, D.V. Lindley (de Finetti 1959; Lindley 1965;
Ramsey 1926; Savage 1954, 1962). English translations of some key works of de
Finetti were provided. In the 1970s several books were published where a definitive
setting was given to the Bayesian theory. These include DeGroot (1970), de Finetti
(1970), Box and Tiao (1973), Lindley (1972), Berger (1985) and, for the Italian
literature, Daboni and Wedlin (1982) and Cifarelli and Muliere (1989). For more
bibliographical details see Fienberg (2005); extensive historical information is given
in Fienberg (1992) and Fienberg (2006).

Let us assume a standard statistical model, say {p(x|f),x € 2,0 € O},
where x is the possible result, 6 is the unknown parameter, p is a density or a
mass function, and let xqs the observed result. If the goal is to make inferences
on the unknown parameter 6, a Bayesian statistician of any century should first
of all complete the model adding a probability law (the prior distribution) for
the parameter, say w (). Then he/she can use the celebrated Bayes’ formula
(0 xops) o 7w(0)p(xobs|@) which provides the posterior probability distribution
for the parameter, i.e. the probability distribution updated with the acquired
information. The use of priors is the most evident difference between Bayesian and
non-Bayesian methods and a more detailed analysis will be given in the next section.

Automatically, the use of Bayes’ formula implies that the values p(x|8) with
X # Xobs have no effect on the analysis. On the contrary the frequentist approach
to statistical inference produces conclusions which depend on the whole statistical
model, not only on the likelihood function L(6|xops) = p(Xobs|6). In this writer’s
opinion this aspect, that is the violation of the so-called Likelihood Principle, is what
mostly moves the frequentist approach away from the Bayesian approach. More
comments will be given in Sect. 3.
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2 Prior Probabilities

In the first decades of the twentieth century the concept of probability was studied in
great depth. One well-known approach sees the probability as a limit of observable
frequencies, an interpretation which is not suitable for the Bayesian methodology
because of its lack of generality. On the contrary, the probability as a measure of
belief in the occurrence of an uncertain event (subjective or personal probability)
has clearly a general applicability. A way to evaluate a probability is a comparison
with a standard (see Bertrand 1907, and for a more recent version Lindley 2006).
Another approach, developed independently by F.P. Ramsey (1926) and by B. de
Finetti (1931) specifies the probability as the fair price of an unitary stake in a
bet on an uncertain event. Then de Finetti introduced the principle of coherence,
i.e. that a subject must avoid bets where he would lose whatever the result and
showed that such principle is equivalent to the standard Kolmogorov axioms of
probability (not considering the complete additivity, which turns out to be a possible
but non necessary choice). Moreover de Finetti formulated the problem of inference
as prediction of future results given a partial initial trajectory of the stochastic
process of the observations (de Finetti 1937). This formulation does not introduce
unknown parameters and replaces the standard notion of random sampling with
the concept of exchangeability. At a first sight this approach is radically different
from the standard one, popularized by Fisher and Neyman and based on the usual
statistical models. However the celebrated de Finetti representation theorem shows
that exchangeability corresponds to conditional independence so that the procedure
based on prior plus likelihood is essentially equivalent to the completely predictive
approach, since the assumptions on the process also determine prior and likelihood.

The collaboration between de Finetti and Savage in the 1950s contributed very
much to the revival of the Bayesian approach in general, in particular to the
acceptance of subjective probabilities. Note that in the Chap.XII of de Finetti
(1970), after a short premise about its connection with the predictive approach,
the problem of inference is directly treated in the current model-based framework.
A common way to respect the original predictive approach by de Finetti is to
“justify” the model-based approach through the representation theorem; see, e.g.,
Dawid (1982). The most systematic treatment in this framework was given by
Bernardo and Smith (1994). A claim in favour of the predictivistic approach
was presented by Cifarelli and Regazzini (1982) and remarkable methodological
researches were conducted under this perspective. For instance, in Regazzini (1999)
such approach is explored in a nonparametric context. Less common are treatments
oriented to applied problems; the exceptions include Muliere and Petrone (1993)
and Spizzichino (2001). A general analysis of de Finetti’s work in mathematical
statistics cannot be given here, and we refer to Piccinato (1986), Cifarelli and
Regazzini (1996), Bernardo (1998) and the references therein. The implementation
of the subjectivistic paradigm requires a new interest for the problem of elicitation,
i.e. how to put in a probabilistic form the knowledge owned by the experts. Many
papers were dedicated to this topic, starting with de Finetti and Savage (1962); a
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basic remark is that it is often easier to give a probability to the observables than to
unknown parameters. For a recent systematic review see O’Hagan et al. (2006).

A concept by de Finetti which found only a limited acceptance among statisti-
cians was finite additivity (for a deepening see Cifarelli and Regazzini 1996). It is
known, however, that complete additivity allows to use properties which hold in the
finite problems (for instance, conglomerability) so that its adoption is natural when
infinity appears essentially as an approximation of large or unprecised numbers. For
special problems, when infinity has its own specific role, resorting to finite additivity
can be clarifying also in practical settings (see, e.g., Scozzafava 1984).

In the 1960s the classical argument about the almost irrelevance of the prior
in the presence of a significant experimental information (the Principle of Precise
Measurement) was reconsidered and clarified (Edwards et al. 1963; Savage 1962).
This topic has a connection with the recurrent idea of using noninformative priors.
In the classic period the uniform distribution was often and naively used in this
sense, though many authors remarked that the uniformity is not maintained under
one-to-one transformations, while on the contrary noninformativity should remain.
H.Jeffreys introduced in the 1930s his invariant rule, which satisfies this property.
The concept of noninformativeness, to take it seriously, has surely very weak
bases: a probability distribution always represent an information. This explains
why a multiplicity of different proposals were advanced in the years (see Kass
and Wasserman 1993). One of these proposals, cautiously named reference prior,
is based on the idea of minimizing the missing information; it partially extends
Jeffrey’s rule and is now almost a standard. The proposal originated by a paper
by J.M. Bernardo (1979) and was later developed in particular by J. Berger. For
more recent treatments see Berger and Bernardo (1992) and Berger et al. (2009). A
criticism to the method is that it entails a violation of the Likelihood Principle, since
the posterior distribution depends not only on the likelihood function but also on the
model (see, e.g., the discussion by Lindley of Bernardo 1979). It could be remarked
that this kind of prior (as Jeffreys’) is necessarily connected with the model since
it is obviously impossible to speak of minimal information in an absolute sense;
compatibility with the Likelihood Principle is, however, hold by Bernardo (2005,
Sect. 3.6).

The availability of an agreed default rule, where no effort of elicitation is
required, suggested an approach which is now called Objective Bayesian Analysis.
For a comparison of the contrasting arguments see Berger (2006), Goldstein (2006)
and the related discussion. Authoritative proponents of the objective approach
(Berger et al. 2009) remark that the term “objective” means that the procedure only
depends on the model assumed and the data obtained, so that the kind of objectivity
is simply the same of the frequentist statistics. There are significant practical
and logical differences with a pure subjectivistic approach, but, in the present
writer’s opinion, these are only variants of a more general Bayesian framework. As
mentioned before, I think that the qualification “Bayesian” is due when we assume
that any uncertain event has a probability. It is not necessary that there exists a
subject who has actually such information. In any case the Bayes theorem explains
how to update an information, be it effective or conventional.
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In order to simplify the elicitation process many suitable partial formalizations
are in use. Among the most known tools there are the conjugate classes of priors.
The concept had a systematic treatment by Raiffa and Schlaifer (1961) but the same
idea (often limited to the binomial model) appeared many times much before. Until
the availability of the MCMC techniques it was often difficult to get the posterior
distributions unless the prior was a member of a conjugate class. Using the de Finetti
theorem Lindley (1965) represented exchangeable parameters through a hierarchical
model. This allowed a very convenient Bayesian treatment of the general linear
model (see Lindley and Smith 1972 for a generalization).

In the last decades procedures pointing at conventional priors were suggested and
proved useful in applications. For instance, the book (Spiegelhalter et al. 2004) made
popular the use of sceptical priors, mainly in a clinical context. Another technique
of modelling the prior is the use of power priors, initially proposed in Ibrahim and
Chen (2000), that is suitable, for instance, when there are historical data similar to
those at hand but not such to justify the assumption of exchangeability (see also De
Santis 2007).

Another departure from an ideal subjectivistic practice is the distinction, now
very much used, between design prior and analysis prior. This idea appears from
the first time in Tsutakawa (1972) and was developed with various motivations, as
the necessity of having a proper prior in the stage of design (while in the stage of
analysis an improper prior is often preferred) or of privileging the region of the
parameter space which could make the results more interesting (see Etzioni and
Kadane 1993; Wang and Gelfand 2002).

3 Statistical Models and Likelihood Principle

In the framework of a standard statistical model the Likelihood Principle has its own
strength even without reference to the Bayesian paradigm. Savage, in the discussion
of Birnbaum (1962), writes that he came to Bayesian statistics seriously only
through recognition of the Likelihood Principle. The issue is, however, controver-
sial; for instance, Cox (2006, p. 47) comments that the principle is convincing in its
weak version (two results under the same model are equivalent when the likelihood
functions are proportional) but qualifies “less compelling” the strong version (when
it is not required that the model is fixed). It is well known that among the merits
of Fisher there is the introduction of the likelihood function (Fisher 1922). His
attitude about the Likelihood Principle has been largely discussed; for a thorough
analysis see Savage (1976). The formal definition is due to Birnbaum (1962), but the
argument was already informally in use. Many Bayesian authors stress the relevance
of the principle in the context of a Bayesian analysis, see, e.g., Edwards et al. (1963)
and Lindley (1972); moreover the likelihood literature is a source of interest for the
Bayesian school (we could mention at least Basu 1975, Royall 1997). A definitive
treatment is Berger and Wolpert (1988).

A Bayesian attitude is also indirectly favoured by the apparent necessity of using
sometimes at least a partial conditioning. One of the most famous examples, the
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case of the two laboratories, was published by D.R. Cox (1958). The example
shows that a rigid applications of the frequentist rule, which implies an exclusive
attention to the long run performances of the statistics, can be untenable, while
if one conditions on a suitable ancillary statistic the paradox disappears, as it
automatically happens in a Bayesian analysis. This kind of examples took many
years to became popular (with the exception of the Bayesian literature), at least
in the textbooks. I can just mention that E.L. Lehmann, in the second edition of
his classic Testing Statistical Hypotheses, added a last chapter where the topic is
thoroughly examined and a serious comment on the suitability of the unconditional
approach is provided (Lehmann 1986, p. 541): “if repetitions [...] are potential
rather than actual interest will focus on the particular event at hand, and conditioning
seems more appropriate”. Therefore the comparison among the main theories of
inference involves more the comparison between choosing a conditioning statistic
and choosing a prior distribution, than adopting an objective or a subjective
approach. Let us finally mention that recent researches by Bayesian authors about
the relationships between the different inferential approaches give a special role just
to the conditional frequentist approach (Bayarri and Berger 2004; Berger 2003).
The main advantage of the model-based approach is the possibility of separating
the different sources of information, i.e. the pre-experimental information, inbedded
in the prior, and the experimental information, inbedded in the likelihood function
(in the framework of the model). However, this approach is not completely
general for inference problems. Difficulties in finding an agreed specification of
the likelihood function were, for instance, considered in Bayarri et al. (1988). In
any case, however, a Bayesian can resort to the completely predictive approach in
the sense of de Finetti, though this could force to reformulate inferential problems.

4 The Development of Bayesian Methodology

Many hints to the development of Bayesian methodology were provided by the
existing frequentist methodology: problems having a solution in a non-Bayesian
approach had to be revised and reformulated. I shall comment some examples.

One of these themes is robustness, that was initially considered in the Bayesian
literature mainly in relation to the choice of the prior. Instead of considering a
single prior, classes of priors were taken into account in order to check the resulting
differences. Beyond parametric classes, attention was drawn also to nonparametric
or to partially nonparametric classes, as the class of monotone distributions, of
symmetric distributions, or contaminated distributions, quantile classes and so on
(for reviews see Berger et al. 1996, Rios Insua and Ruggeri 2000). This rich
literature allowed to move from mathematical convenience to much more realistic
formulations of prior uncertainty. The proposal of interactive procedures (as in Liseo
et al. 1996) was a further step in this direction.

Another topic inherited by the frequentist statistic is the issue of model testing
and selection. In a controversial paper Box (1980a,b) claimed that the Bayesian
analysis is fully adequate within a given model but is not useful for model criticism.
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His proposal for model criticism is based on the prior predictive distribution and
has a clear frequentist flavour, together with an analogy with the classical p-value.
This proposal suggested many developments in different directions. From one hand,
letting aside the traditional criticism to the theory of significance from a Bayesian
viewpoint (a seminal paper is Berger 1986), new concepts of Bayesian p-values
were introduced, with application to the case of composite hypotheses and to the
model criticism (Bayarri and Berger 2000). When the goal is to choose one model
many authors suggest an explicit decision setting; see, for instance, San Martini
and Spezzaferri (1984), Key et al. (2001), Walker et al. (2001), Barbieri and Berger
(2004). The most natural Bayesian approach to compare many models, when one is
considered “true” (the so called M-closed setup), is however to attach probabilities
to every model, in order to account for model uncertainty, and proceed with the
standard probability rules. A general exposition of the Bayesian model averaging is
Hoeting et al. (1999). An alternative path is the use of Bayes factors for comparing
models without assigning prior probabilities to the model themselves. This was,
for instance, proposed by O’Hagan in the discussion of Box (1980b). Problems
associated with the Bayes factors should, however, be considered; see Lavine and
Schervish (1999) about their use as measures of evidence and Carota and Parmigiani
(1996) about their use with nonparametric models. For general treatments refer to
Kass and Raftery (1995) and Berger (1999). In the comparison of models it may
be desirable to assign improper priors to the parameters of each model. Apart from
special situations (e.g., Consonni and Veronese 1991), a general solution is resorting
to the so-called partial Bayes factors; for different proposals and discussions see
Berger and Pericchi (1996), O’Hagan (1995) and De Santis and Spezzaferri (1997).
For the general topic of model selection, including also the assumption of a Model-
open setting, that is when it is not assumed that the set of models contains the “true”
model, see Racugno (1997), Lahiri (2001), Kadane and Lazar (2004) and Clyde and
George (2004).

As another example, let us mention nonparametric inference. The mathematical
modeling of the problem requires the use of probability measures on function spaces
so that the practical understanding of the prior assumptions is quite demanding and a
Bayesian treatment was delayed for a long time. Lindley (1972, p. 66) wrote “this is
a subject about which the Bayesian method is embarrassingly silent”. This was true,
at those times, although in a very short paper, many years before, de Finetti (1935)
outlined the issue in a Bayesian framework (comments on this in Cifarelli and
Regazzini 1996). A turning point was the approach by Ferguson (1973) through the
so-called Dirichlet process, which gave rise to many of the contemporary researches.
Many different extensions and alternatives were since then proposed (see, e.g.,
Walker and Muliere 1997, Lijoi and Priinster 2000).

At last we mention some problems that the Bayesian approach can handle
in a particularly easy way, differently from the other approaches. These include
the elimination of nuisance parameters, the possibility of a direct treatment of
prediction problems, the possibility of a complete treatment of the design of
experiments. Let us suppose that the parameter 6 is a vector, say 8 = (4, y), and
that the inference concerns only the component A. The likelihood function depends
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of course on both the components, but, given the posterior distribution, we can get a
posterior distribution for the parameter of interest alone by a simple marginalization,
that is 7w (A|Xobs) = [ 7(A, ¥|Xobs)dy. For a recent review see Liseo (2006).

A problem of prediction is characterized by a statistical model (g(y|6),y €
%,0 € 0), for the future result Y, where the “true” parameter 6 is the same
of the statistical model of the observation X. Under the only assumption of the
independence of X and Y (for a given 0) it is impossible to represent how the
knowledge of X provides information on Y. On the contrary, the introduction of
a prior distribution 7 (0) for the parameter allows us to calculate the conditional
distribution of ¥ given X, that is m(y|xeps) = [ q(¥]0)7(0]xobs)dO which is the
most natural base for a prediction of the value y. A general reference across the
different approaches, is Geisser (1993).

In a problem of design of an experiment we have a class & of possible
experiments, which can differ, for instance, for size of the sample, sequential
stopping rule, choice of the controlled variables and so on. Any choice e € &
will get an evaluation depending in general on the result x and the parameter 6,
both not known in advance. Under these conditions, general methods of eliminating
6 without an integration with respect to a prior distribution are unreasonable or
unavailable, unless there are particular patterns as it may occur with linear models
(Kiefer’s theory). The case of linear models were reformulated also in a Bayesian
setting, see, e.g., Smith and Verdinelli (1980) and Giovagnoli and Verdinelli (1983).
A particular problem, of a great practical importance, is the determination of an
optimal sample size. The diffusion of the Bayesian approach produced a lot of new
methods; a starting point for the more recent researches in this field is the issue
2, 1997 of the journal The Statistician, entirely devoted to the subject; see also De
Santis (2006) for a robust approach. Note that the choice of a design s primarily
a decision problem, though the final goal could be an inferential statement. An
excellent framework also for this particular problem is therefore given in the classic
text by Raiffa and Schlaifer (1961). For further reviews and treatments always in a
Bayesian setting see Chaloner and Verdinelli (1995) and Piccinato (2009).

5 Relations with the Decision-Theoretic Approach

The decision-theoretic approach has many merits in clarifying the differences
between the approaches. One may ask whether the reformulation in decision-
theoretic terms does not modify or restrict the aims of inference. This is surely
not true for the Neyman—Pearson—Wald school, because in that case the idea of
optimization is intrinsic to the theory. It is well known that many times Neyman
explained how inductive reasoning is often impossible since it involves events
lacking a probability; inductive behaviour, i.e. optimizing the long run performance
of procedures, would be instead the operational solution (see, e.g., Neyman 1957).
For the Bayesian approach the situation is different, since both paths are possible;
either completing the model involving also a specification of the available terminal



Bayesian Statistical Inference: An Overview 59

acts with the corresponding utilities/losses or performing a purely probabilistic
analysis, without a formal implication of any decision.

If we explicitly adopt a complete decision setting, it is natural that the Bayesian
approach aims at minimizing the expected loss of the terminal actions conditional
on a specific result, while the frequentist approach aims at minimizing the risk
of a procedure unconditionally on the result but conditionally on the unknown
parameter. Wald (1950) proved that there is a strong connection between the two
optimalities (the complete class theorem). Loosely speaking, the theorem shows
that any reasonable decision is formally Bayesian and vice versa. In the Wald’s
approach prior probabilities are only weighting devices, but this result can be
commented as a partial conciliation between the two approaches (see, e.g., de
Finetti 1951, Raiffa and Schlaifer 1961, p. 16). The calculation of the risk requires,
however, an integration on the sample space, and this is a violation of the likelihood
principle; this can imply contradictions with the basic goal of minimizing losses for
terminal acts (see, e.g., Piccinato 1980). A good long run performance is in itself
a sensible characteristic for a statistical procedure but it should not be achieved by
omitting to take into account the actual result, when available.

6 Final Remarks

The aim of the present paper is to outline the many theories and proposals framed
in the Bayesian setting (for further information see Berger 2000). We hold that all
this is a richness of the approach and does not preclude its fundamental unitariety,
based on the formal representation of the process of learning from experience.
Limitations of space and knowledge prevent here any hope of completeness. It
is worth noting that the development of simulation methods allows now to deal
with complex models, with thousands of parameters, as it occurs in the modern
applications in genomics and in environmental analysis (see, e.g., Chen et al. 2010),
while in the past mathematical tractability played a serious limiting role. In the next
future, overviews of the Bayesian approach will surely focus much more on these
aspects.
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