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Abstract
In recent years permutation testing methods have increased in number of
applications and in solving complex multivariate problems. When available they
are essentially of an exact nature in a conditional context, where the conditioning
is on the pooled observed data which in general are a set of sufficient statistics in
the null hypothesis. The application of the conditionality principle of inference
provides this approach with important and useful properties.

1 Introduction

In recent years permutation testing methods have increased both in number of appli-
cations and in solving complex multivariate problems. Most of testing problems may
also be effectively solved using traditional parametric or rank-based nonparametric
(NP) methods, although in relatively mild conditions their permutation counterparts
when available are asymptotically as good as the best ones (Hoeffding 1952).
Permutation tests (PTs) are essentially of an exact NP nature in a conditional
context, where the conditioning is on the pooled observed data which, under
randomization of units to treatments, are always a set of sufficient statistics in the
null hypothesis. On the one hand, the application of the conditionality principle
(CP) of inference provides the PT approach with important and useful properties.
On the other, the reference null distribution of most parametric tests, with the
exception of rather simple situations, is only known asymptotically. Thus, for
most sample sizes of practical interest, the possible lack of efficiency of PTs
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may be compensated by the lack of approximation of parametric counterparts.
There are many complex multivariate problems (common in biostatistics, clinical
trials, experimental data, pharmacology, psychology, social sciences, etc.) which
are difficult, if not impossible, to solve outside the CP and in particular outside
the method of nonparametric combination (NPC) of dependent PTs (Pesarin and
Salmaso 2010).

Frequently parametric methods reflect a modelling approach and generally
require a set of quite stringent assumptions, which are often difficult to justify.
Sometimes these assumptions are merely set on an ad hoc basis: too often and
without any justification researchers assume multivariate normality, random sam-
pling from a target population, homoscedasticity of responses also in the alternative,
random effects independent of units, etc. In this way consequent inferences have
no real credibility. On the contrary, NP approaches try to keep assumptions at
a lower workable level, avoiding those which are difficult to justify. Thus, they
are based on more realistic foundations, are intrinsically robust and consequent
inferences credible. For instance, PT comparisons of means do not require data
homoscedasticity in the alternative, provided that random effects are either negative
or positive.

Our point of view, however, is that statisticians should have in their tool-kit of
methods both the parametric, including the Bayesian, and the NP, because in their
life they surely meet with problems which are difficult, if not impossible, within
one approach and others which in turn are difficult, if not impossible, within the
other. For some examples as well as for the literature on the subject matter, we refer
to Pesarin and Salmaso (2010) and references therein.

Here we discuss main properties of PTs derived by direct application of
sufficiency principle (SP) and CP. The outline includes: a discussion of data model
which extends that commonly used by parametric approaches; a presentation of SP
and CP and their involvement in the PT principle; notation, definitions, and main
properties (exactness, similarity, uniform unbiasedness, consistency) of PTs; and
the extension of conditional to unconditional inference.

2 The Data Model

Without loss of generality we refer to the two-sample one-dimensional design as a
guide. Extensions to one-sample and multi-sample designs are straightforward. The
extension to multivariate designs requires the NPC (Pesarin and Salmaso 2010).

Let us assume that a variable X takes values on sample space X ; and
that associated with .X; X / there is a parent distribution P member of an NP
family P . “A family P of distributions is NP when it is not possible to find
a finite-dimensional space � (the parameter space) such that there is a one-to-
one relationship between � and P; in the sense that each member P of P
cannot be identified by only one member � of �, and vice versa.” In practice
parametric families only contain distributions defined by a well-specified finite set
of parameters; whereas families of distributions in which parameters are infinitely
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many or are unspecified are NP. Each P 2 P gives the probability measure to
events A member of a suitable collection A of events. Family P may consist
of distributions of real (continuous, discrete, mixed) and/or categorical (nominal,
ordered) type of variables. It is assumed that P admits the existence of a dominating
measure �P in which respect the density fP .X/ D dP.X/=d�P is defined. The
density on every observed sample point X 2 X is assumed satisfying to fP .X/ > 0

(we do not distinguish between a variable X and its observed sample points, the
context suffices to avoid misunderstandings).

Let Xj D fXji; i D 1; : : : ; nj g 2 X nj be the independent and identically
distributed (IID) sample data of size nj coming from Pj 2 P , j D 1; 2.
A notation for data sets with independent samples is X D fX11; : : : ; X1n1 ,
X21; : : : ; X2n2g 2 X n, whose related model, with clear meaning of the symbols,
is .X; X n; A .n/; P .n/ 2 P .n//, where n D n1 C n2, and P .n/ D P

n1

1 � P
n2

2 . To
denote data sets in the PT context it can be useful referring to the unit-by-unit
representation: X D X.n/ D fX.i/; i D 1; : : : ; n; n1; n2g, where it is intended
that first n1 data in the list belong to first sample and the rest to the second. Indeed,
denoting by ˘.u/ the set of permutations of unit labels u D .1; : : : ; n/ and by u� D
.u�

1 ; : : : ; u�
n/ 2 ˘.u/ one of its members, X� D fX�.i/ D X.u�

i /; i D 1; : : : ; n;
n1; n2g is the related permutation of XI so that X�

1 D fX�
1i D X.u�

i /, i D 1; : : : ; n1g
and X�

2 D fX�
2i D X.u�

i /, i D n1 C 1; : : : ; ng are the two permuted samples,
respectively. Of course, in multivariate problems data vectors associated with units
are then permuted.

We discuss testing problems for stochastic dominance alternatives (one-sided) as
are generated by treatments with nonnegative random shift effects �. In particular,
the alternative assumes that two treatments produce effects �1 and �2, and that

�1

d
> �2; where

d
> stands for stochastic (or distributional) dominance. Thus,

the hypotheses are H0 W X1
dD X2 � P1 D P2; and H1 W .X1 C �1/

d
>

.X2 C �2/; respectively. Extensions to nonpositive and two-sided alternatives are
straightforward. Note that under H0 data of two samples are exchangeable, in
accordance with the notion that units are randomized to treatments. Without loss

of generality, we assume that effects in H1 are such that �1 D �
d
> 0 and

Prf�2 D 0g D 1. This condition agrees with the notion that an active treatment
is only assigned to units of first sample and a placebo to those of the second.
Moreover, � can depend on units and on related null deviates X , so that pairs
.X1i ; �i /, i D 1; : : : ; n1, do satisfy .X1i C �i / � X1i with at least one strict

inequality. In this situation the induced stochastic dominance .X1C�/
d
> X2 D X is

compatible with heteroscedasticities in the alternative. Thus, H0 can also be written

as H0 W �
dD 0. Other than measurability, no further distributional assumption on

random effects � is required. It is required that null deviates X and test statistics
T W X n ! R1 are measurable in H0. To emphasize the roles of sample sizes
and effects, we may use the notation X.n/.�/ D fX11 C �1; : : : ; X1n1 C �n1 ,
X21; : : : ; X2n2g to denote data sets; and so X.n/.0/ denotes data in H0. It is worth
noting that the pooled data X.n/.0/ is always a set of sufficient statistics for P in
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H0. Indeed, since f
.n/

P .X/=f
.n/

P .X/ D 1, the conditional distribution of X given X
is independent of P: Furthermore, when P is NP or the number of its parameters is
larger than sample size or when it lies outside the regular exponential family, X is
minimal sufficient.

PT lie within the conditional method of inference, the conditioning being on the
observed data set X: The related conditional reference space is denoted by X n

=X.
Essentially X n

=X is the set of points of sample space X n which are equivalent to
X in terms of information carried by the associated underlying likelihood. Thus,
it contains all points X� such that the likelihood ratio f

.n/
P .X/=f

.n/
P .X�/ is P -

independent, and so it corresponds to the orbit of equivalent points associated with
X. Given that, under H0, the density f

.n/
P .X/ D Q

ji fP .Xji/ is by assumption

exchangeable in its arguments, because f
.n/

P .X/ D f
.n/

P .X�/ for every permutation
X� of X; then X n

=X, or X=X by suppressing superscript n, contains all distinct
permutations of X. That is X=X D fSu�2˘.u/ŒX.u�

i /; i D 1; : : : ; n�g. Therefore,
since every element X� 2 X=X is a set of sufficient statistics for P in H0, X=X

is a sufficient space. Conditional reference spaces X=X are also called permutation
sample spaces. Moreover, since 8A 2 A the conditional probability Pr.AjX/ D
Pr.AjX=X/ in H0 is P -independent (P.1 in Sect. 4), the pooled data set X can
be considered as playing the role of ancillary statistics for the problem. And so,
when X is minimal sufficient it is also maximal ancillary and unique, except for a
permutation.

In paired-data designs what is essential is that in H0 the distribution of X is
symmetric with respect to 0 (Pesarin and Salmaso 2010). This condition can be
achieved in two main instances: (a) when data are exchangeable within each unit,

i.e. when Y1i
dD Y2i 8i D 1; : : : ; n; the Y s being paired responses, in which the

difference of any two individual observations in H A
0 W Y1

dD Y2 is symmetrically
distributed around 0, and the set of differences X D fXi D Y1i � Y2i ; i D 1; : : : ; ng
is sufficient for P ; (b) when Y1i is symmetric around �1i and Y2i around �2i without
being homoscedastic (and so not exchangeable), then their difference Y1i � Y2i is
symmetric around 0 in H B

0 W .�1i � �2i D 0, i D 1; : : : ; n/. In both instances,
however, X=X D fSS�2Œ�1;C1�n ŒXi S

�
i ; i D 1; : : : ; n�g contains all points obtained

by assigning signs S D .C1,�1/ to differences in all possible ways. By the way,
paired-data designs show that the exchangeability property is sufficient but not
necessary for the PT approach.

The fact that random effects � may depend on null deviates X can be viewed as
an improvement with respect to traditional parametric approaches, though this may
imply evident difficulties for estimation and prediction. On the one hand, this leads
to assumptions that are much more flexible and closer to reality. There are indeed
many real problems in which the assumption of independence of effects on null
deviates cannot be justified, as, for instance, when data are obtained by measurement
instruments based on nonlinear monotonic transformations ' of underlying deviates
Y . Indeed, with clear meaning of the symbols �'0.Y C c�/ D X.�/ � '.Y /;

which depends on Y D '�1.X/ and �. On the other hand, it is noticeable that in
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PTs the separate estimate of variance components is not required. Consequently, the
modeling may better fit physical requirements, results of analyses are more credible
and their interpretation more clear. In addition, it is to be emphasized that in the NP
framework, more than on parameters, the inferential interest is on functionals, i.e.
on functions of all parameters such as the so-called treatment effect �. And so it
can be impossible to separate the role of parameters of interest from the nuisance
ones since they could be confounded in �.

Moreover, when the data set X is minimal sufficient in H0, even if the parent
likelihood model depends on a finite set of parameters only one of which is of
interest, univariate statistics capable of summarizing the contained information do
not exist. So no parametric method can claim to be uniformly better than others.
Indeed, conditioning on X=X, i.e. by considering PT counterparts, improves the
power behavior of any unbiased test statistic (via Rao-Blackwell). However, to
reduce the loss of information associated with using one single statistic, it is possible
to find solutions within the so-called multi-aspect methodology and based on the
NPC of several dependent PTs, each capable of summarizing information on a
specific aspect of interest for the analysis (Pesarin and Salmaso 2010). A procedure
which may improve efficiency and interpretability of results. For instance, when of
two unbiased partial PTs only one is consistent, their NPC is consistent.

3 Conditionality, Sufficiency, and Permutation
Testing Principles

Let us briefly recall the CP and the SP, as are used in parametric inference (Cox and
Hinkley 1974). We consider these principles as key guides also for the NP approach
and relate them to the PT principle.

The SP states that: “Suppose that we are working with the model fX .x; �/ for the
random variable X; according to which the data set X is observed, and also suppose
that the statistic S is minimal sufficient for � 2 �. Then, according to the SP, so
long as we accept the adequacy of the model, identical conclusions should be drawn
from data X1 and X2 with the same value of S:”

The CP states that: “Suppose that C is an ancillary statistic for the problem, then
any conclusion about the parameter or the functional of interest is to be drawn as if
C were fixed at its observed value.”

Basically, the rationale for adopting these principles in statistical inference
considers typical examples as the following: suppose that data X can be obtained
by means of one of two different measuring instruments, I1 and I2; and suppose
the associated normally distributed models are, respectively, X1 � N .1; �1/ and
X2 � N .2; �2/; with �1 � �2. If it is known which instrument has generated X
it seems unavoidable to condition on the related (ancillary) model in any inference
regarding �; the value of � being known or unknown. Moreover, in accordance with
the SP the statistical estimator of unknown � should be based on a, possibly minimal
complete, sufficient statistic for it. In addition, if the nuisance parameter � is
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unknown, it is wise to stay at least on invariant statistics or on the invariance of null
rejection probability (according to the notion of similarity) and so to condition on a
possibly minimal sufficient statistic for it. Indeed, by acting outside these principles
related inferential conclusions can be biased, misleading and maybe impossible to
be correctly interpreted.

Thus, in the general situation it is wise to condition on its minimal sufficient
statistic in H0, i.e. to condition on the pooled observed data X which is always
sufficient for whatever P 2 P and ancillary for the inferential problem. It is to
be recognized that in the literature there is general agreement on the SP; whereas
the CP, especially when the ancillary statistic C is not unique, gives rise to known
questions and so it is somewhat doubtful (Frosini 1991). These doubts, however, do
not apply to the PT approach when X is minimal sufficient and so maximal ancillary
and unique.

This kind of conditioning implies referring to the PT principle: “If two experi-
ments, taking values on the same sample space X with underlying distributions P1

and P2 give the same data X, then two inferences conditional on X and obtained by
using the same statistic T must be the same, provided that the exchangeability of
the data is satisfied in H0.” Of course, it is intended that in order to obtain reliable
inferences there must be a form of stochastic dominance of .T jH1/ with respect to
.T jH0/.

On the one hand it should be emphasized that the PT principle works in
accordance with both CP and SP since it satisfies both. On the other hand, the
related conditional inference can be extended from the set of really observed units to
the family of all populations whose associated distributions P satisfy the condition
f

.n/
P .X/ > 0; so as to also include most of the problems in which the sample data are

obtained by selection-bias procedures from a target population. However, it should
be noted that, due to conditioning on sufficient statistics for all nuisance entities,
the extension to a family of distributions is also typical of all parametric conditional
inferences in the presence of nuisance parameters (Sect. 5). For instance, this feature
is clearly enjoyed by Student’s t whose inference can be extended from the observed
data set X to all normal populations which assign positive density to the variance
estimate O�2I thus, its inference can be extended to a family of distributions more
than to only the target one.

4 Main Properties of PTs

In this section we briefly outline main terminology, definitions, and general theory
of PTs for some one-dimensional problems. Emphasis is again on two-sample one-
sided designs in which large values of test statistics T W X n ! R1 are evidence
against H0.
• P.1. Sufficiency of X=X for P under H0 implies that the null conditional

probability of every event A 2 A ; given X=X; is independent of P ; that is,
with clear meaning of the symbols, PrfX� 2 AI P jX=Xg D PrfX� 2 AjX=Xg.
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Thus, the permutation distribution induced by any test statistic T W X n ! R1;

namely FT .t jX=X/ D F �
T .t/ D PrfT � D T .X�/ � t jX=X/g; is P -invariant.

Hence, any related conditional inference is distribution-free and NP. Moreover,
since for finite sample sizes the number M D M .n/ D P

X=X
I.X� 2 X=X/ of

points in X=X is finite, a relevant consequence of both independence of P and
finiteness of M is that in H0 the permutation probability on every A 2 A is
calculated as

PrfX� 2 AjX=Xg D
X

X�2A

fP .X�/dX�
,

X

X�2X=X

fP .X�/dX� D
X

X=X

I.X� 2 A/

M
;

because 8X� 2 X=X it is fP .X�/dX� D fP .X/dX. It is worth noting here
that for calculating the conditional probability distribution it is not necessary
to make reference to the so-called hypothetical repeated sampling principle.
Actually, PrfX� 2 AjX=Xg is objectively determined by complete enumeration
of X=X which once data are observed has a physical existence, and so no
hypothetical sampling experiment is referred to in its determination. Since in
determining the permutation probability measure in H0 knowledge of P; or of
fP ; is not required, it is to be emphasized that only the existence of a likelihood
is required by the PT approach (if this existence could not be assumed, no
statistical problem would be on the stage). One more relevant consequence of
finiteness of X=X is that in H0 permutations X� are equally likely conditionally,
i.e. PrfX D xjX=Xg D PrfX� D xjX=Xg D 1=M if x 2 X=X and 0 elsewhere.
And so:

• P.2. In H0 the data set X is uniformly distributed over X=X conditionally.
• P.3. (Uniform similarity of randomized PTs). Let us assume that the exchange-

ability condition on data X is satisfied in H0, then the conditional rejection
probability Ef	R.X/jX=Xg of randomized test 	R D 1 if T o > T˛; D 
 if
T o D T˛; and D 0 if T o < T˛; is X-P -invariant for all X 2X n and all
P 2 P; where: T o D T .X/ is the observed value of T on data X, T˛ is the
˛-sized critical value, and 
 D �

˛ � Pr
˚
T o > T˛jX=X

�� ı
Pr

˚
T o D T˛jX=X

�
.

For non-randomized PTs such a property is satisfied in the almost sure form
for continuous variables and at least asymptotically for discrete variables.

Determining the critical values T˛ of a test statistic T; given the observed
data X; in practice presents obvious difficulties. Therefore, it is common to make
reference to the associated p-value. This is defined as � D �T .X/ D PrfT � �
T ojX=Xg, the determination of which can be obtained by complete enumeration
of X=X or estimated, to the desired degree of accuracy, by a conditional
Monte Carlo algorithm based on a random sampling from X=X (Pesarin and
Salmaso 2010). For quite simple problems it can be evaluated by efficient
computing routines such as those in Mehta and Patel (1983); moreover, according
to Mielke and Berry (2007) it can be approximately evaluated by using a suitable
approximating distribution, e.g. as within Pearson’s system of distributions,
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sharing the same few moments of the exact permutation distribution, when these
are known in closed form in terms of data X.

The p-value � is a non-increasing function of T o and is one-to-one related
with the attainable ˛-value of a test, in the sense that �T .X/ > ˛ implies T o <

T˛ , and vice versa. Hence, the non-randomized version can be stated as 	 D 1

if �T .X/ � ˛; and D 0 if �T .X/ > ˛; for which in H0 it is Ef	.X/jX=Xg D
Prf�T .X/ � ˛jX=Xg D ˛ for every attainable ˛. Thus, attainable ˛-values play
the role of critical values, and in this sense �T .X/ itself is a test statistic.

• P.4. (Uniform null distribution of p-values). Based on P.1, if X is a continuous
variable and T is a continuous non-degenerate function, then p-value �T .X/ in
H0 is uniformly distributed over its attainable support:

• P.5. (Exactness of permutation tests). A PT T is exact if its null distribution
essentially only depends on exchangeable null deviates X.0/.

• P.6. (Uniform unbiasedness of test statistic T /: PTs for random shift alternatives

.�
d� 0/ based on divergence of symmetric statistics of non-degenerate measur-

able non-decreasing transformations of the data, i.e. T �.�/ D S1ŒX�
1 .�/� �

S2ŒX�
2 .�/�, where Sj .�/, j D 1; 2; are symmetric functions of their entry

arguments .�/, are conditionally unbiased for every attainable ˛, every popu-
lation distribution P , and uniformly for all data sets X 2 X n. In particular:
Prf�.X.�// � ˛jX=X.�/g � Prf�.X.0// � ˛jX=X.0/g D ˛; thus p-value in H1

is stochastically dominated by that in H0: �.X.�//
d� �.X.0//:

An immediate consequence of P.6 is that, if �0 d
> � and so �.X.�0//

d�
�.X.�//

d� �.X.0//; the permutation p-values of any T are stochastically
decreasingly ordered with respect to effect �. Without further assumptions,
uniform unbiasedness cannot be extended to two-sided alternatives.

It is worth observing that uniform similarity P.3 and uniform unbiasedness
P.6 since are at least satisfied for almost all data sets X under exchangeability in
H0 do not require random sampling from a population. Thus, they also work for
selection-bias sampling.

• P.7. (The empirical probability measure, EPM). For each permutation X� 2
X=X; the EPM of any A 2 A is defined as OPX�.A/ D P

i�n I.X
�
i 2 A/=n which,

since 8X� 2 X=X it is
P

i�n I.X
�
i 2 A/=n D P

i�n I.Xi 2 A/=n D OPX.A/, is
a permutation invariant function over X=X.

The latter implies that conditioning on X=X is equivalent to conditioning on
the EPM OPX.A/; which then is sufficient too.

• P.8. (The power of test T ). The (unconditional or population) power of a
PT T as a function of �; ˛; T; P; and n is defined as W.�; ˛; T; P; n/ D
EP nŒPrf�T .X.�// � ˛jX n

=Xg�: Of course, W.�; ˛; T; P; n/ � W.0; ˛; T;

P; n/ D ˛, 8˛ > 0; since, in force of P.6 the integrand is � ˛ for all X 2X n
=X,

all P 2 P; and all n.
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It is worth noting that P.8 implies unconditional unbiasedness. It is also to
be noted that the power determination of T implies referring to the hypothetical
repeated sampling principle.

To introduce the weak consistency property of PTs, stating that “if �
d
> 0;

as minŒn1; n2� ! 1 the rejection probability of test T tends to one for all
˛ > 0” , let us first consider sequences of related data sets where first n1 IID
values are from X1.�/ D X C � and the other n2 from X2 D X.0/ D X .
Such sequences are denoted by fX.n/.�/gn2N D fŒX11 C �1; : : : ; X1n1 C �n1 ,
X21; : : : ; X2n2 �g.n1;n2/2N. Of course, fX.n/.0/ D X.n/gn2N represents sequences in
H0. Besides, we assume that n ! 1 implies minŒn1; n2� ! 1.

• P.9. (Weak Consistency). Let X be any population variable and suppose that
fX.n/.�/gn2N is a sequence of data the first n1 IID from .X1.�/; X / and
independently the other n2 IID from .X; X /. Suppose that the null distribution
of X is P 2 P , and let ' W X !R1 be any non-decreasing and non-
degenerate measurable function. Suppose also that: (a) the '-mean EP Œ'.X/� D
EP Œ'.X.0//� is finite, i.e. EP Œj'.X/j� < C1; (b) the '-mean in H1 is such

that EP Œ'.X.�//� > EP Œ'.X.0//� for every �
d
> 0; (c) the PT is based on

T � D 1
n1

P
i�n1

'.X�
i /, or on permutationally equivalent statistics. Then, for

every ˛ > 0, (a)–(c) imply that the rejection probability of the PT 	, associated
with T �, converges weakly to one as n ! 1.
It is worth noting that population variable X can be either real, or ordered

categorical, and that its transformation '.X/ is real, i.e. continuous, discrete,
or mixed. As an application of P.9 we see details for proving consistency of a
test based on well-known Cramér–von Mises statistic for one-sided alternatives.

Indeed: (1) with �
d
> 0, T �

CM D Pn
iD1Œ OF �

2 .Xi / � OF �
1 .Xi /�, where OF �

j .z/ D
Pnj

i I.X�
ji � z/=nj , j D 1; 2, is permutationally equivalent to � P

i�n
OF �
1 .Xi /=n,

since OFX.n/ .t/ D Œn2
OF �
2 .t/ C n1

OF �
1 .t/�=n is a permutation invariant function; (2)

as FP is bounded, EP .FP .X// is finite; (3) as OF �
1 is a sample mean, we have that

Prfj OF �
1 .z/ � OFX.n/ .z/j< "j OFX.n/g �! 1, 8z 2 R1 and " > 0; (4) �

d
> 0 implies

EP ŒFP .X.�//� < EP ŒFP .X.0//�. Therefore, since conditions (a)–(c) are satisfied,
T �

CM is weakly consistent.

5 Extending Permutation Inference

The non-randomized permutation test 	 associated with a given test statistic T

based on divergence of symmetric functions of the data possesses both conditional
unbiasedness and similarity properties, the former P.6 satisfied by all population
distributions P and all data sets X 2 X n, the latter P.3 satisfied for continuous,
non-degenerate variables and almost all data sets. These two properties jointly
suffice to weakly extend conditional inferences to unconditional or population ones,
i.e. for the extension of conclusions related to the specific set of actually observed
units (e.g., drug is effective on the observed units) to conclusions related to the
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population from which units have been drawn (e.g., drug is effective). Such an
extension is done with weak control of inferential errors. With clear meaning of
symbols let us observe:
• (i) for each attainable ˛ and all sample sizes n, the similarity property implies

that the power of the test under H0 satisfies W.0; ˛; T; P; n/ D ˛; because
Prf�.X.0// � ˛jX n

=Xg D ˛ for almost all samples X 2 X n and all continuous
non-degenerate distributions P , independently of how data are selected;

• (ii) the uniform conditional unbiasedness implies that the unconditional power is
W.�; ˛; T; P; n/ � ˛ (P 8) for all distributions P and, provided that f

.n/
P .X/ > 0;

independently of how data are selected.
As a consequence, if, for instance, the inferential conclusion related to actual

data X is in favor of H1; so we say that “data X are evidence of treatment
effectiveness on actually observed units,” due to (i) and (ii) we are allowed to
say that this conclusion is also valid unconditionally for all populations P 2 P

such that f
.n/

P .X/ > 0: Thus, the extended inference becomes “treatment is likely

to be effective.” The condition f
.n/

P .X/ > 0 implies that inferential extensions
must be carefully interpreted. To illustrate this aspect simply, let us consider an
example of an experiment in which only males of a given population of animals
are observed. Hence, based on the result actually obtained, the inferential extension
from the observed units to the selected sub-population is immediate. Indeed, on the
one hand, rejecting the null hypothesis with the actual data means that data are
evidence for a non-null effect of treatment, irrespective of how data are collected,
provided that they are exchangeable in the null hypothesis. On the other hand,
if females of that population, due to the selection procedure, have a probability
of zero of being observed, then in general we can say nothing reliable regarding
them, because it may be impossible to guarantee that the test statistic used for male
data satisfies conditional unbiasedness and/or similarity properties for female data
as well. For instance, effect may be positive on male and negative on female. In
general, the extension (i.e., the extrapolation or the inductive generalization) of any
inference to populations which cannot be observed can be formally done only with
reference to assumptions that lie outside those that are adopted under the control of
experimenters while working on actual data. For instance, extensions to humans
of inferences obtained from experiments on animals essentially require specific
hypothetical assumptions.

We observe that for parametric tests, when there are nuisance entities to remove,
the extension of inferences from conditional to unconditional can generally be done
only if the data are obtained through well-designed sampling procedures applied
to the entire target population. When selection-bias data X are observed and the
selection mechanism is not well designed and/or modelled there is no point in
staying outside the conditioning on the associated sufficient orbit X=X and the
related distribution induced by the chosen statistic T . On the one hand this implies
adopting the permutation testing principle; on the other, no parametric approach can
be invoked to obtain reliable inferential extensions.
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