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Abstract
Bayesian and non-bayesian approaches to statistical inference are compared
giving particular attention to the emerging field of causal statistical inference
and causal statistical decision theory. After a brief review of the evolution of
statistical inference, as extraction of information and identification of models
from data, the problematic issues of causal inference and causal decision theory
will be reviewed. The aim is to provide some basic ideas for unifying the different
approaches and for strengthening the future of statistics as a discipline.

Prologue

Hume (2003) argued that induction is irrational. This view, often called Humean
irrationalism, conflicts with the empiricist view that affirms that science proceeds
in a rational and inductive way. Many attempts have been made to refute Hume.
One of the earliest is due to Bayes (1763) and Laplace (1812). According to Bayes,
rational learning proceeds by assigning probabilities Keynes (1921), usually called
prior probabilities, to hypotheses. Using Bayes’s theorem, these prior probabilities
are then updated in the light of experience. To determine these probabilities, Laplace
used what is often called the principle of insufficient reason.

Subsequently, the Laplacian account of rational learning was criticized as
applying the same intuition to a different representation of the problem often yields
different probabilities. Keynes (1921) and Carnap (1950) tried to improve Laplace’s
approach by interpreting the prior probabilities as a measure of quantifying logical
relations between statements. Fisher (1930, 1935, 1956) and Popper (1959) sharply
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rejected the Bayes–Laplace tradition and proposed other solutions to the problem
of rational learning. With his theory of significance testing, Fisher revolutionized
statistical theory and practice. Meanwhile, Popper developed the falsificationist
methodology and had a similar influence on the philosophy of science. Both
solutions to the problem of rational learning are based on the same principle, namely,
that it is rational to accept hypotheses if they have survived rigorous testing. In
Popper’s terminology, such hypotheses are called corroborated. A similar approach
is due to Gini (1943)1 and Pompilj (1952, 1961).

1 Introduction

The history of statistical inference is marked by controversies about its fundamental
principles. Historically, one can consider roughly four principal approaches to
statistical inference.

The first approach is called Fisherian. Fisher has emphasized the need for
a variety of approaches for different problems; he was dismissive of axiomatic
arguments. A second approach due to Neyman and Pearson (1928), initially devel-
oped to explain Fisher’s ideas more concretely, is strongly based on the frequency
theory of probability and emphasize operational concepts. A third approach, where
probability represents a rational degree of belief, in which different people faced
by the same evidence share the same probability, goes back to Laplace and his
predecessors and in its modern form it is associated with Carnap and, especially,
with Jeffreys (1931). This (objective) approach has been extended by specific
characterization of probability in which the degree of belief is constrained only
by the requirement of self-consistency. In this fourth approach, (personalistic or
subjective), associated with Ramsey (1931), Good (1960), De Finetti (1937) and
Savage (1951, 1954), there is no assumption that different people with the same
knowledge express the same probability on a specified event.

In the first two approaches, usually referred to as classical theory of statistical
inference, the procedures are justified by their performance under hypothetical repe-
titions of the experiment, i.e. frequency properties. The differences between the two
are minor and are essentially the following: (a) in the Fisherian approach, emphasis
is placed on the simple test of significance, on the likelihood function and principles
as sufficiency; (b) in the Neyman–Pearson approach, operational requirements, such
as power and other explicit indicators of sensitivity, are emphasized and confidence
interval and acceptance and rejection of hypotheses terminology are introduced.

Jeffreys’s approach to inference has the same target as Fisher’s: what can be
reasonably learned about a parameter of the hypothesized model from the data? But,
in contrast to Fisher, Jeffreys argues that a different notion of probability is needed
to achieve this, specifically, a reasonable degree of belief computed by means of

1On the contributions of Gini to the foundations of probability and statistical inference I strongly
recommend a forthcoming paper by Piccinato (2011).
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Bayes’s rule; the a priori distribution is taken, in accordance with Laplace, to be
dispersed, representing lack of knowledge.

Jeffreys’s and the personalistic approach are often referred to as Bayesian
(or neo-bayesian) approaches to statistical inference. Although they are formally
the same, there are some fundamental and philosophical differences: the personal-
istic degree of belief, in contrast to the reasonable degree of belief, measures how
strongly you believe in something in the light of the model for the data; the direct
consequence is that the choice of the prior is substantially different.

There are other approaches to statistical inference. The most relevant are: fiducial
inference, likelihood inference, plausibility inference, structural inference, pivotal
inference, prequential inference, and predictive inference.

All the approaches to statistical inference utilize some kind of information to
obtain a description (through a statistical model) of the phenomenon under study.
In my view, every approach based on mathematical models should accommodate all
the different approaches and provide tools for making comparative analyses. Such
an approach is the decision approach substantially already present in the Fisher
and Neyman–Pearson theories. Moreover, the decision approach gives a satisfactory
solution so far, at the so-called pragmatic problem of induction.

Many authors (Cox 1958; Smith 1961) affirm that a distinction must be made
between statistical inference and statistical decision theory. But other authors such
as Lindley (2006), and this is also my opinion, consider statistical decision theory
as one of the possible extensions of statistical inference. Moreover, the decision
approach, combining various theories of statistical inference, avoids dogmatisms
that can lead to paradoxical situations. It is free from logical error, is more effective
in applications, and treats successfully a broader range of problems than competing
approaches.

2 Bayesianism

Even if the most influential version of neo-bayesianism has been proposed by
Savage, the term Bayesianism is used in a wider sense than Savage’s approach.
It includes the logical probability, frequentist probability, and some other attempts
to objectify prior probabilities. Savage showed that a reasonable preference order
over the set of all conceivable strategies can be represented by expected utilities of
strategies, where now not only the utilities but also the probabilities for computing
the expectations can be derived from the preference order. Substantially, Savage
provided a general theory of rational learning and decision making. The relevance
of neo-bayesianism, where all probabilities are the subjective degrees of belief,
lies in the fact that it is a very general philosophy that seamlessly covers science
and decision making starting from the problem of induction. Bayesian rationality
constitutes progress beyond Humean irrationalism. Even if Bayesianism is not
helpful when nothing is known, it might be helpful in the case of partial rather
than complete prior information (Joyce 2010).
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Real-world decision problems often have to be simplified to become tractable.
According to contemporary model-building wisdom, finding the right simplifica-
tions is an art, not a science; it involves knowledge and requires experts in the
field, this conviction is widely shared by experts. Bayesianism, it seems, gives
the experts a possibility to bring their experience to bear on the problem. They
can choose a prior probability measure in the light of their experience. Given this
choice, which can be communicated to others, decision making can proceed, if the
computations are feasible; if not, one can try to find an approximation. Indeed,
model building is itself a matter of approximation; Bayesian experts might construct
simplified models by excluding possibilities that they assign, in the light of their
experience, a low prior probability. Thus, it could be argued that Bayesianism
describes a rational way of expressing partial expert knowledge that cannot easily
be expressed in another way. However, Bayesianism leaves in the dark how experts
proceed when trying to transform experience into a prior. On the other hand, experts
might learn from experience in a rational fashion. In this case, we already know how
ideal Bayesian experts proceed. They start with a prior probability before making
experiences, updating their prior, and when after some time they are viewed as
experts, the prior they bring to a new problem is actually a posterior probability
measure embodying their experience. The problem with this analysis is, however,
that the everything-goes theorem implies that the expert’s posterior is arbitrary.
According to Bayesianism, all conclusions drawn from experience are equally
reasonable or unreasonable.

3 Decision Theory and Utility

The foundations of the (normative) modern statistical decision theory is due to Von
Neumann and Morgenstern (1947), for the so-called Expected Utility (EU) and
Savage for the Subjective Expected Utility (SEU). These authors, on the basis of
a series of postulates, or rational axioms of behavior of the decision maker, prove
the existence of a real-valued utility function that can be derived from the betting
rule.

Decision theory recommends an act that maximizes utility, that is, an act whose
utility equals or exceeds the utility of every other act. It evaluates an act utility
by calculating the act expected utility. It uses probabilities and utilities of an act
possible outcomes to define an act expected utility.

Since people usually do not behave in ways consistent with the axiomatic rules
and hence lead to violations of optimality, there is a related area of study, called a
descriptive decision theory, attempting to describe what people actually do.

A series of criticisms (particularly Allais 1953 and, for an up-to-date and
reasonably extended review, Chiandotto and Bacci 2004) have been made against
EU and SEU. The criticisms regards, mostly, the empirical relevance of the rational
axioms of behavior.

Even if the problem of the importance of the axioms on the behavior of the
decision maker has to be viewed not in the sense of a good description, but in that
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of a good rule (i.e., it concerns identifying the best decision to take, assuming an
ideal decision maker who is fully informed, able to compute with perfect accuracy
and full rationality) different authors have proposed alternative systems of axioms
less restrictive and more compatible with the actual behavior of decision makers.

To generalize the normative decision theory, some authors adopted different
terminology like prescriptive decision theory (Bell et al. 1988), constructive
decision theory (Roy 1993; Tsoukiàs 2007). These approaches hypothesize weaker
axioms than the classic ones; in particular, since the more frequently violated axiom
is independence, the new theories release the property of linearity in the probability.
Machina (1982) develops a utility theory without the presence of the independence
axiom. Other theories, instead, do not include the axiom of transitivity (Fishburn
1973). Among the more interesting theoretical proposals (generalization of utility
theories) we should include the rank-dependent utility (Quiggin 1993), the prospect
theory (Kahneman and Tversky 1979), and cumulative prospect theory (Tversky
and Kahneman 1992). Aiming at giving to decision theory useful operating tools, it
must be considered the so-called causal approach to the theory of the decisions. This
approach, although mainly developed in the context of the philosophical reflection,
results of large interest for his statistical implications.

4 Causality

In spite of the innumerable developments, generalized utility theories are still not
able to solve in a satisfactory way operative decision-making problems. In fact such
theories discuss situations in which the consequences of acts are dependent on the
state of the world whenever the action chosen has no effect on such state. This
hypothesis in many contexts is not satisfied. In fact, in many situations the choice
made by the decision maker has a, sometime, relevant effect on the state of nature
(the act causes the state). Therefore, to solve decision problems, the analysis of
causality becomes relevant in its theoretical aspects and in its operative implications.

Regarding causality, the paper of Freedman (1999) and three contributions of
Mealli et al. (2011), Cox and Wermuth (2004), and of Frosini (2006) are especially
useful. This latter author presents a synthetic but exhaustive panorama of the
developments of the concept of causality: starting from the Aristotelian doctrine
of causation he arrives to the more recent developments on relevant aspects to
statistical modeling and, particularly, on acyclic graphical models (Directed Acyclic
Graphs—DAGs). Also Cox and Wermuth, after an interesting close examination
of three different definitions of causality, analyze graphical models focusing on
the concepts of statistical independence and particularly on the difference between
conditioning and intervention.

The paper of Mealli, Pacini, and Rubin gives a complete and up-to-date
account of the so-called Neyman–Rubin–Holland model of causality. The frame-
work proposed especially by (Holland and Rubin 1988; Rubin 1974, 2004) is very
powerful and general, it provides a definition of causal effects in terms of potential
outcomes, as well as a general statement of the assumptions, sufficient to make
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causal inferences possible, even with observational data. Unfortunately, because of
its generality the standard Neyman–Rubin–Holland model operates at a level of
abstraction that is far away from the underlying mechanisms and processes that
account for how observational data are generated. While such generality makes
the model very powerful, its agnosticism about the underlying causal mechanisms
can make it difficult to be applied in settings that are not close to a well-designed
experiment.

Graphical models (Lauritzen and Richardson 2002) represent a generalization of
the graphs of influence (Dawid 2002; Howard and Matheson 1984) that represent
an extension of the path diagrams proposed by Wright (1921). In path analysis,
the connections among the variables of interest are expressed in a graphical form,
allowing to distinguish spurious from causal, direct and indirect effects, of variables.
Other very interesting contributions to the statistical analysis of causality are Dawid
(2000); Holland (1986); Pearl (1995, 2009); Spirtes et al. (2000) and, above all,
Woodword (2003).

Woodword collects in his volume a 30-year of research activity presenting a
new theory of causality that he considers superior to the counterfactual theory of
causality developed by Lewis. The contribution of Woodword is placed in line with
the studies of Spirtes, Glymour, and Scheines and of Pearl. While these latter authors
concentrate their attention on the theoretical–methodological aspects, Woodword
deals particularly with the philosophical foundations of the reasoning introducing
a simple, but clear, definition of causality: C causes A if and only if the value
of A is modified by an intervention on C. Woodword presents the tools for the
analysis, graphics, and equations, for proceeding to the development of its theory of
manipulation.

The different approaches to causality outlined above are characterized by
specificities that are considered by the authors themselves not compatible: each
author considers his own approach to be superior to the others. In my opinion, this
position does not appear acceptable, as many of them are compatible at least in some
fundamental aspects. Regarding superiority, there does not exist a statistical tool of
universal validity able to give a satisfactory solutions in all research frameworks.
The combined use of different approaches (Lauritzen 2004; White and Chalak 2006)
seems the correct route to pursue for achieving the more interesting and significant
results.

5 Causal Decision Theory

How much what we have said about causality can be relevant in the decision-
making context? Causal decision theory adopts principles of rational choice that
attend to an act consequences. It maintains that an account of rational choice must
use causality to identify the considerations that make a choice rational. An act
expected utility is a probability-weighted average of its possible outcome utilities.
Possible states of the world that are mutually exclusive and jointly exhaustive, and
so form a partition, generate an act possible outcomes. An act-state pair specifies an
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outcome. Each product specifies the probability and utility of a possible outcome.
The sum is a probability-weighted average of the possible outcomes utilities, where
the probabilities depend casually on the act, probability are causal rather than merely
evidential.

Joyce (1999) gives an account of rational decision making and probabilistic
theories of evidence and confirmation. This author begins with an historical
introduction to the topic of decision theory, including a critical discussion of
Savage’s theory, followed by a treatment of the modern evidential theory of decision
making. Two chapters are deal with causal decision theory. The final chapter reports
a unified representation theorem that simultaneously provides a firm foundation for
both evidential and causal decision theory.

The accounts of rational decision discussed by Joyce presuppose that a rational
agent should act so as to maximize some sort of “expected utility,” which is a sort
of weighted average of the utilities of the outcomes of a decision. What’s at issue
in the foundational disputes is which kind of expected utility should be maximized,
and, consequently, which weights should be used in the weighted average of the
values of the outcomes. All parties seem to agree that the weights should be set
according to the probabilities of the outcomes given that the act is performed. The
disagreement concerns how to unpack this subtle conditional-like expression for the
purpose at hand. Evidential decision theory recommends performing that act which
provides the best evidence for the good outcomes (on average). On the other hand,
causal decision theorists propose a different way of unpacking. They suggest that
we unpack this as the degree to which the act causally promotes the state. Several
interpretations of causal probability have been proposed in the literature, and the
connections between the various kinds of conditionals have been studied extensively
in recent decades.

Armendt (1986), in a paper on the foundations of causal decision theory,
distinguishes three different approaches to causal decision theory, similar in the
contents but philosophically different, that go back, respectively, to Gibbard and
Harper (1976), Skyrms (1979) and Lewis (1981). Gibbard and Harper distinguished
causal decision theory, which uses probabilities of subjunctive conditionals, from
evidential decision theory, which uses conditional probabilities. As in decision
problems probabilities of subjunctive conditionals track causal relations, using them
to calculate an option expected utility makes decision theory causal. They argued
that expected utility, calculated with probabilities of conditionals, yields genuine
expected utility. Skyrms presented a version of causal decision theory that dispenses
with probabilities of subjunctive conditionals. His theory separates factors that the
agent’s act may influence from factors that the agent’s act may not influence. Lewis
defines the expected utility of an option and his formula for an option expected
utility that is the same as Skyrms. The handy interpretation of the probability of a
state if one performs an act, however, is not completely satisfactory. A good decision
aims to produce a good outcome rather than evidence of a good outcome. Causal
decision theory interprets the probability of a state, if one performs an act, as a
certain type of causal probability rather than as a standard conditional probability.
This aspect makes expected utility track efficacy, rather than auspiciousness.
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As already outlined, Pearl, Spirtes, Glymour, and Scheines and Woodward
present methods of inferring causal relations from statistical data. They use DAGs
and associated probability distributions to construct causal models. In a decision
problem, a causal model yields a way of calculating an act effect. A causal graph
and its probability distribution express a dependency hypothesis and yield each act
causal influence given that hypothesis. They specify the causal probability of a state
under supposition of an act. An act expected utility is a probability-weighted average
of its utilities according to the dependency hypotheses that candidate causal models
represent.

Heckerman and Shachter (1995) proposed a version of Pearl’s causality defi-
nition in the decision-making framework. This formulation has been rejected by
Pearl himself. Heckerman and Shachter (2003) some years later, discussing the
work “Statistics and Causal Inference” of Pearl, say: “. . . Unfortunately, Pearl has
downplayed the strong connections between his work and decision theory as well
as the suitability of the influence diagram as a representation of causal interactions.
On the contrary, we believe that people who are familiar with decision theory will
find comfort, as we have, in these connections . . . .”

6 Conclusions

The importance of Bayesianism, in which all probabilities are subjective degrees
of belief, lies in the fact that it is a very general philosophy that seamlessly covers
science and decision making from the problem of induction, which provides the
context where it originated, to the theoretical and practical problems of statistical
inference. Bayesian rationality constitutes a progress beyond Humean irrationalism.
Even if Bayesianism is not helpful when nothing is known, it might be helpful in
the case of partial rather than complete knowledge (Joyce 2010).

Causal knowledge plays an important role in everyday reasoning, it enables to
predict future outcomes, explain past events, control the environment. Correlations
among events can often be good indicators of the presence of some causal relation,
but it is well known that observed associations are insufficient to disambiguate
causal structure. For this reason much of causal learning takes place in the context
of intervention that, in the real world often involves learning a complex network of
relations among many events (Pearl 2011). To learn from interventions one must
first decide which intervention to make.

Intervention is the central subject of the contributions of Pearl on causality. This
author, in my opinion, has given the more interesting and innovative contributions
to the analysis of causality, but his contributions, to become really useful from an
empirical point of view, must be reinterpreted, as suggested by Heckerman and
Schachter, in a decision theoretic framework. The decision-making process allows
learners to use interventions to disambiguate particular causal structures, namely,
those that they have in mind as potential models of the causal system.
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