
Chapter 4

Magnetic Charged System Search

4.1 Introduction

This chapter consists of two parts. In first part, the standard Magnetic Charged

System Search (MCSS) is presented and applied to different numerical examples to

examine the efficiency of this algorithm. The results are compared to those of the

original charged system search method [1].

In the second part, an improved form of the MCSS algorithm, denoted by

IMCSS, is presented and also its discrete version is described. The IMCSS algo-

rithm is applied to optimization of truss structures with continuous and discrete

variables to demontrate the performance of this algorithm in the field of structural

optimization [2].

4.2 Magnetic Charged System Search Method

One of the most recent metaheuristic algorithms is the Charged System Search

(CSS) presented in Chap. 3, which uses the Coulomb and Gauss laws from physics

and Newtonian laws from mechanics to guide the Charged Particles (CPs) to

explore the locations of the optimum [3].

In this chapter, an improved CSS algorithm which is called Magnetic Charged

System Search (MCSS) is presented. The new algorithm utilizes the governing laws

for magnetic forces, and includes magnetic forces in addition to electrical forces.

The movements of CPs due to the total force (Lorentz force) are determined using

Newtonian mechanical laws.
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4.2.1 Magnetic Laws

4.2.1.1 Magnetic Fields

There is a relation between electric and magnetic forces and these forces are called

electromagnetic forces. The region surrounding any stationary or moving charged

particle contains electric fields. In addition to electric field, the region surrounding

any moving charged particle also contains magnetic fields. The existence of the

magnetic field near the moving charged particles was Oersted’s discovery in 1819.

He has shown that a compass needle deflected by a current-carrying conductor.

Shortly after this discovery, Biot and Savart proposed a mathematical expression

so-called Biot-Savar law that provides the magnitude of magnetic field at any point

of the space in terms of the electric current that produces the field, Fig. 4.1. Biot-

Savar law is expressed [4] as:

dB ¼ μ0
4π

Ids� r̂

r2
ð4:1Þ

Here, dB is the magnetic field at point P and μ0 is a constant called the

permeability of free space, and r is the distance between ds to P.
Consider a straight wire with radius of R carrying electric current of magnitude

I which is uniformly distributed through the cross-section of the wire, Fig. 4.2a. By
utilizing Biot-Savar law, the magnetic field produced by wire at a point like

P outside the wire, can be determined as:

B ¼ μ0
2π

I

r
when r � R ð4:2Þ

The magnitude of the magnetic field inside the wire can be obtained using

Ampère’s law,

B ¼ μ0
2π

I

R2

� �
� r when r < R ð4:3Þ

With this formulation for magnetic field, the magnitude of the field inside the

wire increases linearly from r ¼ 0 to r ¼ R (B / r), and outside of the wire, it is

inversely proportional to the distance (B / 1/r), and decreases by increasing the

distance. When r ¼ R, the (4.2) and (4.3) have an overlap, and both give identical

magnitude for the magnetic field. A plot of these two equations from [4] is shown in

Fig. 4.2b.

If there are many wires in a space, in order to calculate the total magnitude of the

magnetic field in a specified point, the equivalent magnetic field should be calcu-

lated by considering the principle of superposition, and summing the magnetic

fields produced by each wire. Therefore, the total magnetic field at a specified point

P, due to a group of wires, can be obtained as:
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BP ¼
Xn
i¼1

Bip ð4:4Þ

where BP is the total magnetic field at point P, n is the number of wires in the space,

and Bip is the magnetic field created by the ith wire at point P which can be

expressed as:

Bip ¼

μ0
2π

I

r
for r � R

μ0
2π

I

R2

0
@

1
A� r for r < R

8>>>>><
>>>>>:

ð4:5Þ

4.2.1.2 Magnetic Forces

When a charged particle moves in a magnetic field, a magnetic force FB will be

imposed on that moving charged particle. Experiments on charged particles moving

in a magnetic field results in the following:

• The magnitude of the magnetic force FB exerted on the charged particle is

proportional to the charge q and to the speed v of the particle.
• The magnitude and direction of the magnetic force FB depend on the velocity of

the particle and magnitude and direction of magnetic field B.

Fig. 4.1 The magnitude of

the magnetic field dB at

point P due to current

I through a length element

ds given by Biot-Savar law

[1]

Fig. 4.2 (a) A wire

carrying electric current

I that is uniformly

distributed in its cross-

section. (b) A plot of

distribution of magnetic

field produced by a wire in

the space [1]
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By summarizing these observations, an expression for calculating the magnetic

force is obtained [4] as:

FB ¼ qv� B ð4:6Þ

where B is the magnetic field exerted on the particle. Here, the only source of the

magnetic field is the magnetic field produced by the wires. Thus, the magnitude of

the B can be calculated using (4.5).

4.2.2 A Brief Introduction to Charged System Search
Algorithm

The Charged system search (CSS) algorithm, as explained in Chap. 3, takes its

inspiration from the physic laws governing a group of charged particles, CPs. These

charge particles are sources of the electric fields, and each CP can exert electric

force on other CPs. Using the Newtonian mechanic laws, the movement of each CP

due to the electric force can be determined. The CSS algorithm is summarized in a

step-by-step form as follows:

Step 1. Initialization

The initial positions of the CPs are randomly determined using a uniform source,

and the initial velocities of the particles are set to zero. A memory is used to save

a number of best results. This memory is called the Charged Memory (CM).

Step 2. Determination of electric forces and the corresponding movements

• Force Determination. Each charged particle imposes electric forces on the

other CPs according to the magnitude of its charge. The charge of the each CP

is:

qi ¼
fit ið Þ � fitworst

fitbest� fitworst
ð4:7Þ

where fit(i) is the objective function value of the ith CP, fitbest and fitworst are the
so far best and worst fitness among all of the CPs, respectively.

In addition to electric charge, the magnitude of the electric forces exerted on the

CPs is depended on their separation distance that is,

rij ¼
Xi � Xj

�� ���� ������ Xi þ Xj

� �
=2� Xbest

����þ ε
ð4:8Þ

where Xi and Xj are the position of the ith and jth CPs, and rij is the separation

distance these CPs. Xbest is the position of the best current CP, and ε is a small

positive number to prevent singularity.
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The probability of the attraction of the ith CP by the jth CP is expressed as:

pij ¼
1 , fit ið Þ � fitbest

fit jð Þ � fit ið Þ > rand, or, fit jð Þ > fit
�
i
�

0 , else:

8<
: ð4:9Þ

The electric resultant force FE,j, acting on the jth can be calculated by the

following equation:

FE, j ¼ qj
X
i, i 6¼j

qi
a3

rij � w1 þ qi
rij2

� w2

� �
� pji

� Xi � Xj

� �
,

w1 ¼ 1,w2 ¼ 0 , rij < R
w1 ¼ 0,w2 ¼ 1 , rij � R
j ¼ 1, 2, . . . ,N

8<
: ð4:10Þ

• Movements Calculations. According to the determined forces, each CP

moves to its new position, and attain velocity as:

Xj,new ¼ randj1 � ka � Fj

mj
� Δt2 þ randj2 � kv � Vj,old � Δtþ Xj,old, ð4:11Þ

Vj,new ¼ Xj,new � Xj,old

Δt
ð4:12Þ

where randj1 and randj2 are two random numbers that uniformly distributed in the

range (0, 1). ka is the acceleration coefficient, kv is the velocity coefficient, and mj is

the mass of particle that is considered equal to qj. The magnitudes of the ka and kv
are set to 0.5 which are linearly increased and decreased as:

ka ¼ 0.5(1 + iter/itermax), kv ¼ 0.5(1 � iter/itermax) (4.13)

where iter is the current iteration number, and itermax is the maximum number of

iterations.

Step 3. Charged Memory (CM) Updating

If among all of the new CPs, there are better CP or CPs that have better objective

function value than the worst ones in the CM, these should be included in the

CM, and the worst ones in the CM are excluded from the CM.

Step 4. Checking the Termination Criteria

Steps 2 and 3 are reiterated until one of the specified terminating criteria is

satisfied.
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4.2.3 Magnetic Charged System Search Algorithm

4.2.3.1 Combination of Magnetic and Electric forces

The inspiration of the standard CSS algorithm is based on a group of charged

particles that exert electric forces on each other based on their charges and their

separation distances. After computing the electric forces, each particle moves and

its movement is calculated by using Newtonian mechanics laws. Therefore, we

have charged particles that move in the search space. In physics, it has been shown

that when a charged particle moves, it produces magnetic field. This magnetic field

can exert a magnetic force on other charged particles. Thus, in addition to the

electric forces we should consider magnetic forces. In physics, when a charged

particle moves with velocity v in the presence of both an electric field E and a

magnetic field B, experiences both an electric force qE and a magnetic force

qv � B. The total force, known as the Lorentz force [4], exerting on the charged

particle is: X
F ¼FB þ FE ¼ qv� Bþ qE ¼ q � v� Bþ Eð Þ ð4:14Þ

Where F is the Lorentz force. Thus, MCSS, considers the magnetic force as an

additional force with the purpose of making the new algorithm closer to the nature

of the movement of charged particles. From optimization point of view, this new

force records additional information about the movement of the CPs, and it

improves the performance of the standard CSS.

4.2.3.2 MCSS Algorithm

The MCSS algorithm is based on its original version, standard CSS. The difference

between these two algorithms is that CSS only considers the electric force, but

MCSS includes magnetic forces besides electric forces. The main structure of the

algorithm is the same as the standard CSS, but in MCSS changes are made in part of

the algorithm where the forces are computed. By using the aforementioned physical

laws about magnetic fields and forces, the magnetic forces are determined. Each

solution candidate Xi known as CP (charged particle) contains electrical charge.

These CPs produce electric fields, and exert electric forces on each other. When a

CP moves, it creates a magnetic field in the space, and this magnetic field imposes

magnetic forces on other CPs.

As explained previously, the source of the magnetic fields is the movement of

the CPs. For computing these fields, we assumed that CPs move in virtual straight

wires with radius of R. Thus, the path of movement of each particle consists of

straight wires. These straight wires change their directions by each movement of the

CPs, but during the movement, each wire remains straight, Fig. 4.3. The places that

a wire changes its direction, is the position of the CP at the end of its movement.
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When the CP starts a new movement, the direction of its movement may differ from

its previous one, so the direction of the wire which includes the CP during its

movement also changes. According to magnetic laws presented in Sect. 4.2.1, a

conducting wire carrying electric current can creates magnetic fields in the space.

Now our virtual wires contain charged particles that move on them. By each

movement of the CPs, their charges are altered, so during the movement the

magnitude of the charge is not constant, and changes during the movement. This

movement of CPs can be comprehended as an electric current in the virtual wire.

The current of a wire is the rate at which charge flows through one specified cross-

section of the wire. If Δq is the amount of charge that passes through this area in a

time interval Δt, the average current Iavg will be equal to the charge that passes

through the cross-section per unit time:

Iavg ¼ Δq
Δq

ð4:15Þ

Since the time intervals of each movement are set to unity, the average current

will be equal to the variation of the charge. For computing the variation of the

charges, we consider the start and the end points of the movement of CPs. By taking

these assumptions into account, (4.15) can be written as:

Iavg
� �

ik
¼ qi

k � qi
k�1 ð4:16Þ

where (Iavg)ik is the average current in the ith wire of ith CP in the kth movement

(iteration), and qi
k � 1 and qi

k are the charges of the ith CP at the start and end of its

kth movement, respectively. Equation (4.16) shows that by this definition for the

electric current, the concept of quantity represents the variation of the objective

function of each CP in each movement. By this definition, the electric current can

be both positive and negative values. A positive one indicates that the movement

produced an improvement in the charge of the CP. In other words, since the charge

of a CP is a quantity of its quality or objective function value, a positive electric

current means an improvement and a negative electric current means an deteriora-

tion in the quality of the CP.

Charge of the CPs is defined by (4.7). This expression for computing electric

charges results in values between 0 to 1. This is due to normalization of the

1+k
iq

k
iq

2+k
iq

3+k
iq

4+k
iqFig. 4.3 The schematic

view of a virtual wire

(movement path of a CP),

qi
k is the charge of the ith

CP at end of the kth
movement (kth iteration) [1]
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objective function of each CP in that expression. Therefore, the charges of the worst

and best CP are always zero and unity, respectively. Now, consider the situation

that the worst CP moves in the search space, at the end of the movement, it may

attain a better objective function value, but it may still be the worst CP, so its charge

will still be zero. This means that there may be some situations that the objective

function of a CP improves but its charge does not change because charge is a

relative quantity. It seems necessary to modify the electric current expression in a

way that the concept of electric current is saved, and the aforementioned problem is

solved. In relation with this problem, two alternative expressions for computing

electric current are proposed. The first one is:

Iavg
� �

ik
¼ qi,k � qi,k�1

qi,k
ð4:17Þ

Where qi,k and qi,k � 1 are the charge of the ith CP at the start of the kth and k – 1th
iterations, respectively. This equation gives a normalized value for the variation of

the ith CP. The second proposed relation is expressed as:

Iavg
� �

ik
¼ sign df i,k

� �� df i,k
�� ��� dfmin,k

dfmax,k � dfmin,k

ð4:18Þ

df i,k ¼ fitk ið Þ � fitk�1 ið Þ ð4:19Þ

where dfi,k is the variation of the objective function in the kth movement (iteration).

fitk(i) and fitk � 1(i) are the values of the objective function of the ith CP at the start

of the kth and k – 1th iterations, respectively. The quantity dfi,k can attain both

positive and negative values. If we consider absolute values of df for all of the
current CPs, dfmax,k and dfmin,k will be the maximum and minimum values among

these absolute values of df, respectively. Therefore, dfmax,k and dfmin,k are always

positive quantities. It should be noted that here the second expression (4.18) and

(4.19) is utilized for the computation of the electric current.

For computing the magnetic field in place of each particle, one must compute the

distance of that particle from the virtual wire. This distance is assumed to be the

same as (4.8). Thus, rij now means the distance between the ith wire and ith virtual

CP to the jth charged particle.

In the expression for computing the magnetic force, (4.6), we should consider

the velocity of the movement of CPs. In this case, due to the movements of both CPs

(CP in the virtual wire and CP in the space) the relative velocity, vrel, is considered

as:

vrel ¼ Xi � Xj

Δt
ð4:20Þ

where Xi and Xj are the positions of the ith and jth CPs, the Δt is the time step that is

set to unity. Therefore the relative velocity can be rewritten as:
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vrel ¼ Xi � Xj ð4:21Þ

By considering these assumptions, the magnetic force FB,ji exerted on the jth CP
due to the magnetic field produced by the ith virtual wire (ith CP) can be expressed
as:

FB, ji ¼ qj �
Ii

R2
rij � z1 þ Ii

rij
� z2

� �
� pmji

� Xi � Xj

� �
,

z1 ¼ 1, z2 ¼ 0 , rij < R
z1 ¼ 0, z2 ¼ 1 , rij � R

�
ð4:22Þ

where qi is the charge of the ith CP, R is the radius of the virtual wires, Ii is the
average electric current in each wire, and pmji is the probability of the magnetic

influence (attracting or repelling) of the ith wire (CP) on the jth CP. This term can

be computed by the following expression:

pmji ¼ 1 , fit ið Þ > fit
�
j
�

0 , else

�
ð4:23Þ

where fit(i) and fit(j) are the objective values of the ith and jth CP, respectively. This
probability determines that only a good CP can affect a bad CP by the magnetic

force. This magnetic probability is slightly different from the electric probability

expressed by (4.9). The electric probability considers a chance for both good and

bad CPs to attract each other, but the magnetic probability has allocated this chance

only to good CPs. The purpose of this definition of magnetic probability is to reduce

the parasite magnetic fields and reinforce the efficiency of the magnetic forces.

Investigating different terms of the magnetic force shows how this force can help

the standard CSS algorithm. If Ii, electric current in virtual ith virtual wire is

negative, according to the concept of the electric current, a negative value means

that the ith CP did not experienced an improvement in the value of its objective

function. Thus, a negative value will be multiplied by (Xi � Xj), so this produces a

repelling force. In this case, it is an ideal force. On the other hand, if the ith CP

experiences an improvement in its movement, it will attract the jth CP. From

optimization point of view, this kind of force can help the algorithm. It stores and

applies the information of the movement of each CP. This information is lost in the

standard CSS, but MCSS utilizes this information and increases the efficiency of

algorithm.

Now by considering the group of the charged particles, the resultant magnetic

force acting on each CP can be calculated using the following expression:
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FB, j ¼ qj �
X
i, i6¼j

Ii

R2
rij � z1 þ Ii

rij
� z2

� �
� pmji

� Xi � Xj

� �
,

z1 ¼ 1, z2 ¼ 0 , rij < R
z1 ¼ 0, z2 ¼ 1 , rij � R
j ¼ 1, 2, . . . ,N

8<
: ð4:24Þ

where FB,j is the resultant magnetic force exerted on the jth charged particle.

The quantity R is the radius of the virtual wires, and if a charged particle places

outside or inside of a virtual wire, the magnetic force that exerted on it is computed

differently. With this formulation for magnetic force, in the early iterations where

the agents are far from each other, their distances will be large values, and the

magnetic force in this case will be inversely proportional to the distances. As a

result, the magnitude of the magnetic force is relatively small, and this feature of the

algorithm provides a good situation for search ability of the CPs in the early

iterations which is ideal for optimization problems. After a number of iterations,

CPs search the search space and most of them will be gathered in a small space.

Now, the distances between CPs are decreased and a local search starts. In this case,

if the magnetic force computed based on the inverse relation between distances, the

magnitude of the forces will be increased due to decrease of the distances. These

large forces may prevent the convergence of the algorithm in the local search. One

of the solutions that can be proposed is that when the distances are relatively small,

the magnetic force should be computed using the linear formulation of magnetic

fields (4.3). This means that the formulation of the magnetic force for global and

local phases should be separated, (4.24). A suitable value for R in (4.24) can be

unity. However, by more investigating in the magnetic force formulation, it could

be understood that the aforementioned problem can be solved automatically. If the

value of the R is taken as zero, all of the magnetic fields produced by virtual wires

can be calculated based on (4.2) Using this equation for small distances gives large

values for the magnetic field, but when the values of distances are small, it means

that the CPs are collected in a small space and their movements are small (Local

Search). Thus, both Xi � Xj and Ii are small values. By considering (4.24) for

calculating the magnetic forces, it can be noted that a large value is multiplied by

two small values, so the final value (magnetic force) is a normal value which helps

the algorithm. Due to the ease of implementation, and better convergence rate the

second solution is selected in this part and the magnetic force is revised in (4.25).

The term pmji, in the expression for calculating the magnetic force, provides

competition ability for the CPs. According to the concept of the magnetic force in

this algorithm, when a CP experience an improvement in its value of the objective

function, should attract another CPs, regardless to its previous and current charge.

However, by considering the term pmji, CPs with larger charges have more ten-

dency to attract other CPs. The reason is that by considering this term, the redundant

and parasite magnetic fields made by bad CPs are eliminated and it helps the

efficiency of the algorithm.
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It should be noted that in implementing the MCSS, the part of CSS algorithm

related to computing forces should be changed. Both magnetic and electric forces

should be computed, and superposed. The Lorentz force (total force) will be

expressed as:

X
Fj ¼ FB, j þ FE, j ¼ qj

X
i, i6¼j

Ii
rij

� pmji þ qi
a3

rij � w1 þ qi
rij2

� w2

� �
� pji

� �

� Xi � Xj

� �
,

w1 ¼ 1,w2 ¼ 0 , rij < R
w1 ¼ 0,w2 ¼ 1 , rij � R
j ¼ 1, 2, . . . ,N

8<
: ð4:25Þ

where Fj is the resultant Lorentz force (total force) acting on the jth CP.

Consider the ith CP among all of the CPs; this CP has a charge which is larger

than a number of other CPs charge. Considering the rules of the CSS, the ith CP

attracts all other CPs that have smaller charges. After computing the electric forces,

all of the CPs move around the search space. Now, the ith CPs also moved to a new

position. In this movement, the ith particle may experience deterioration in its

objective function value. Due to this decrease, the new charge of the ith particle will
be decreased, but its charge may still be larger than a number of CPs. According to

the CSS algorithm, the ith particle still attracts all other CPs with smaller charges

regardless of the failure of the ith CP in its last movement. From one perspective,

this is logical that a good CP can attract bad CPs. This feature ensures the

competition ability of the algorithm. However, from another point of view, if no

attention is paid to the success or failure of the CPs in their last movement, a lot of

useful information in optimization process will be lost. Thus, in the MCSS algo-

rithm, magnetic forces are included to prevent the loss of this kind of information

which benefits the algorithm. By this concept, the ith particle which has experi-

enced a failure in its last movement, exerts repelling magnetic forces on the other

CPs. In this situation, the direction of the magnetic forces and electrical ones that

are acted on CPs by the ith CP is opposite.

That was a special case that the magnetic and electric forces were against each

other. Most of the times, the magnetic and electric forces are in the same direction

and they reinforce the effect of each other. Consequently, the exploitation ability of

the algorithm is mostly reinforced. Because of this increase in exploitation ability,

we can slightly modify kv in (4.14) to increase the exploration ability of the

algorithm. In fact, the MCSS algorithm guides the CPs with more information

and the efficiency of the algorithm including a fast convergence is improved, and in

comparison to the standard CSS, a better exploitation and exploration are provided.
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4.2.4 Numerical Examples

In order to ensure the efficient performance of the MCSS algorithm, some numer-

ical examples are solved and the results are compared to those of the standard CSS

algorithm. The examples consist of 18 mathematical functions. The numerical

examples are presented in Sect. 5.2.4.1. In Sect. 5.2.4.2 the results of the MCSS

are presented and compared to those of the CSS and other optimization algorithms

in the literature. Finally, in Sect. 5.2.5 three well-studied engineering design

problems are solved by MCSS and the results are compared to those of the CSS.

4.2.4.1 Mathematical Benchmark Functions

Comparison Between MCSS, CSS and a Set of Genetic Algorithms

In this section, some mathematical benchmarks are chosen from [5], and optimized

using the MCSS algorithm. The description of these mathematical benchmarks is

provided in Table 4.1.

Numerical Results

In this section, the numerical results of optimization for the mathematical bench-

marks are presented. In this investigation, some parameters of the algorithm such

as, HMCR, PAR, CM size (CMS), the number of CPs, and the maximum number of

iteration are modified. For eliminating the effect of such parameters in studying the

performance of the algorithm, these parameters are considered the same as those of

[6]. It should be noted that the number of CPs is set to 20, and the maximum number

of iterations is considered as 200 for both CSS and MCSS algorithm. In Table 4.2,

the results of the MCSS are compared to the results obtained by the CSS from [6],

and GA and some of its variants derived from [5]. For a fair comparison between

MCSS and CSS, the random initial solutions of each runs are the same. The

numbers in Table 4.2 indicate the average number of function evaluation from

50 independent runs. The numbers in parenthesis, demonstrate the fraction of the

unsuccessful to successful runs. The absence of a parenthesis means that the

algorithm was successful in all of the runs. Each run of the algorithm is successful

when that run determines a local minimum with predefined accuracy, i.e., ε ¼
|fmin � ffinal| ¼ 10� 4. The results verify the efficiency of the MCSS algorithm

compared to the CSS and other Genetic algorithms. The existence of the magnetic

forces in the MCSS provides a better exploration and exploitation for the algorithm.

Thus, the convergence is speeded up. One of the important features of the MCSS

algorithm is its ability to converge to the desired optimum with a few number of

CPs and a small value for maximum number of iterations. The difference between

the CSS algorithm and MCSS algorithm becomes more obvious when the number
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of CPs and the number of iterations are set to small values. Thus, another compar-

ison is performed to show the difference between the CSS and MCSS algorithm in

unsuitable situations, i.e., small number of CPs and maximum number of permitted

iterations. Therefore, the number of CPs is set to 10 and the maximum number of

permitted iterations is considered as 100. This means that the computational cost is

one quarter of the previous comparison. The results of this comparison are

presented in Table 4.3. The numbers in the Table 4.3 are the optimum found by

each algorithm. These are the average of 100 independent runs. The accuracy of the

solutions in some cases may be unsatisfactory, but it should be noted that the

number of CPs and maximum number of iterations are small. The purpose of this

comparison is to magnify the difference between the CSS andMCSS algorithm, and

verify the better performance of the MCSS in this situation. For more detailed

presentation, Fig. 4.4 illustrates the optimization process and convergence.

Statistical Test

Now in the following we want to ensure that the results of MCSS in Table 4.3 are

better than CSS algorithm. For this purpose, we apply a multi-problem analysis

using statistical tests. We apply the test on the obtained errors by each algorithm. If

we have the normality condition for our sample of results, a parametric pair t-test

Table 4.2 Performance comparison for the benchmark problems

Function GEN GEN-S GEN-S-M

GEN-S-M-

LS

CSS

[6]

MCSS

[1]

AP 1,360(0.99) 1,360 1,277 1,253 804 437

Bf1 3,992 3,356 1,640 1,615 1,187 542

Bf2 20,234 3,373 1,676 1,636 742 556

BL 19,596 2,412 2,439 1,436 423 481

Branin 1,442 1,418 1,404 1,257 852 351

Camel 1,358 1,358 1,336 1,300 575 384

Cb3 9,771 2,045 1,163 1,118 436 288

CM 2,105 2,105 1,743 1,539 1,563 538

Dejoung 9,900 3,040 1,462 1,281 630 387

Exp2 938 936 817 807 132 183

Exp4 3,237 3,237 2,054 1,496 867 317

Exp8 3,237 3,237 2,054 1,496 1,426 659

Goldstein and

Price

1,478 1,478 1,408 1,325 682 450

Griewank 18,838(0.91) 3,111(0.91) 1,764 1,652(0.99) 1,551 1,272

Hartman3 1,350 1,350 1,332 1,274 860 344

Hartman6 2,562(0.54) 2,562(0.54) 2,530(0.67) 1,865(0.68) 1,783 908

Rastrigin 1,533(0.97) 1,523(0.97) 1,392 1,381 1,402 1,252

Rosenbrock 9,380 3,739 1,675 1,462 1,452 1,424

Total 112,311(96.7) 41,640(96.7) 29,166(98.16) 25,193(98.16) 17,367 10,773
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can be suitable. We first analyze a safe usage of parametric tests. We utilized two

normality tests including: Kolmogorov-Smirnov, and Shapiro-Wilk test. The

p-values of the normality tests over the sample results obtained by CSS and

MCSS are shown in Table 4.4. If we consider a significance level α ¼ 0.05, all of

the p-values in Table 4.4 will be less than 0.05. Thus the sample results do not

follow a normal distribution. The Q–Q plot for sample results is illustrated in

Fig. 4.5, and it can be understood that the normality conditions is not satisfied in

both CSS and MCSS algorithms. This result was predictable because the sample

size (the number of problems) is small. Therefore, a parametric test such as pair t-
test is not appropriate in this case. Therefore we use Wilcoxcon test that is a

non-parametric test for pairwise comparisons. The method of this test is described

in [7]. The result of this test can be summarized as:

• The p-value obtained by Wilcoxcon test is 0.00. Consequently, the Wilcoxcon

test considers a difference between the performance of these two algorithms

assuming a significance level α ¼ 0.05. Therefore, because of better mean value

of the MCSS algorithm results, MCSS outperforms its predecessor, CSS

algorithm.

Table 4.3 Numerical comparison of CSS and MCSS algorithms

Function Global minimum CSS MCSS CSS’s error

MCSS’s

error

AP �0.352386 �0.198721 �0.308396 0.153665 0.04399

Bf1 0.0 28.809183 0.088327 28.80918 0.088327

Bf2 0.0 8.938997 0.034876 8.938997 0.034876

BL 0.0 0.106252 6.781E-05 0.106252 6.78E-05

Branin 0.397887 3.960884 0.537231 3.562997 0.139344

Camel �1.0316 �0.866765 �1.031591 0.164835 9E-06

Cb3 0.0 0.125161 6.517E-05 0.125161 6.52E-05

CM �0.4 �0.230142 �0.352661 0.169858 0.047339

Dejoung 0.0 0.166451 6.891E-05 0.166451 6.89E-05

Exp2 �1.0 �0.999366 �0.999947 0.000634 5.3E-05

Exp4 �1.0 �0.990884 �0.999818 0.009116 0.000182

Exp8 �1.0 �0.949659 �0.999686 0.050341 0.000314

Goldstein and Price 3.0 15.729613 4.620501 12.72961 1.620501

Griewank 0.0 0.342795 0.105112 0.342795 0.105112

Hartman3 �3.862782 �3.491627 �3.816318 0.371155 0.046464

Hartman6 �3.322368 �2.054548 �3.292364 1.26782 0.030004

Rastrigin �2.0 �1.875735 �1.917121 0.124265 0.082879

Rosenbrock 0.0 19.476846 3.117751 19.47685 3.117751

Number of CPs ¼ 10, maximum number of iterations ¼ 100
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4.2.4.2 Comparison Between MCSS and Other State-of-Art Algorithms

Description of Test Functions and Algorithms

In the following section, the set of test functions designed for Special Session on

Real Parameter Optimization organized in the 2005 I.E. Congress on Evolutionary

Computation (CEC 2005) are solved by the MCSS algorithm. The detailed descrip-

tion of test functions is presented by Suganthan et al. [8]. The set of these test

functions consists of the following functions:

• 5 displaceUnimodals functions (f1–f5)

• Sphere function d.

• Schewefel’s problem 1.2 displaced.

• Elliptical function rotated widely conditioned

• Schwefel’s problem 1.2 displaced with noise in the fitness.

• Schwefel’s problem 2.6 with global optimum in the frontier.

• 20 Multimodals functions (f6–f7)

• 7 basic functions

• Rosenbrock function displaced.

• Griewank function displaced and rotated without frontiers.

• Ackley function displaced and rotated with the global optimum in the frontier.

• Rastrigin function displaced.

• Rastrigin function displaced and rotated.

• Weierstrass function displaced and rotated.

• Schewefel’s problem 2.13.

• 2 expanded functions.

Fig. 4.5 Normal Q–Q plots of the sample results of the CSS and MCSS algorithms [1]

Table 4.4 Normality tests

and their p-values over
multiple-problem analysis

Algorithm Kolmogorov-Smirnov Shapiro-Wilk

CSS 0.00 0.00

MCSS 0.00 0.00
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• 11 hybrid functions. Each one of these has been defined through compositions of

10 out of 14 previous functions (different in each case).

The characteristics of this experiment is the same as what has been suggested by

Suganthan et al. [8]. Each function is solved by MCSS in 25 independent runs, and

the average error of the best CP is recorded. The number of CPs is set to 25. The

dimension of the test functions is set to 10 (D ¼ 10), and algorithm performs

10,000 function evaluation. The termination criterion is either reaching the maxi-

mum number of function evaluation or achieving error less than 10�8. Table 4.5

shows the official results of the participated algorithms obtained from Garcia

et al. [9]. The description of each algorithm is given in [19]. The results of the

MCSS algorithm are added to Table 4.5. The values of Table 4.5 indicate the

average error rate of each algorithm. This value can be considered as a means for

measuring the performance of each algorithm.

Numerical Results and Statistical Test

As the results in Table 4.5 show, MCSS has a good performance and its average

error rates are good, however, there are some cases that MCSS performs slightly

weaker than some other algorithms. For a fair comparison, we have to use statistical

test to judge about the performance of MCSS in comparison to other algorithms.

We want to find out whether the results of MCSS have a significant difference in

comparison to the other algorithms. This analysis is multiple-problem analysis;

therefore, a non-parametric test is more suitable in this case. We utilized the

Welcoxon’s test. This test performs pairwise comparisons between two algorithms.

In this test, MCSS is compared to some other remaining algorithms.

Table 4.6 summarizes the results of applying the Wilcoxin test. Table 4.6

includes sum of ranking and p-value of each comparison. The method of this test

is simply described in [7]. The significance level α is considered as 0.05. In each

comparison when the corresponding p-value is less than 0.05, it means that two

compared algorithms behave differently, and the one with smaller mean value of

error rate has a better performance.

The p-value in pairwise comparison is independence from another one. If we

draw a conclusion involving more than one pairwise comparison in Wilcoxcon’s

analysis, an accumulated error which is merged up by combination of pairwise

comparisons will be obtained. In statistics terms, the Family Wise Error Rate

(FWER) will be lost. FWER is defined as the probability of making one or more

false discoveries among all the hypotheses when performing multiple pairwise tests

(Garcia et al. [9]). The true statistical significance for combining pairwise compar-

isons is given by:
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p ¼ 1�
Yi¼k�1

i¼1

1� pHið Þ ð4:26Þ

where k is the number of pairwise comparisons considered, and pHi is the p-value of
each comparison. For more information, the reader may refer to [9].

Considering the values of Table 4.6, the p-value of all of the comparisons except

MCSS vs. G-CMA-ES is less than significance level α ¼ 0.05, it cannot be con-

cluded that MCSS is better than all of algorithms except G-CMA-ES because we

have to consider FWER in making a conclusion in multiple pairwise comparisons.

The MCSS outperforms all of the algorithms except G-CMA-ES considering

independence pairwise comparisons due to the fact that the achieved p-values are
less than α ¼ 0.05. The true p-value for multiple pairwise comparisons can be

computed using (4.26):

p ¼ 1� � 1� 0:16ð Þ � �1� 0:0
� � �1� 0:0

� � �1� 0:05
� � �1� 0:24

� � �1� 0:001
�

� 1� 0:025ð Þ � �1� 0:048
� � �1� 0:027

� � �1� 0:001
�� ¼ 0:17765

ð4:27Þ

Based on this algorithm, it can be claimed that the MCSS algorithm has a better

performance in relation with all of the algorithms except G-CMA-ES with a p-value
of 0.17765. As a result, if we consider a significance level α ¼ 0.17765, the

confidence interval for the mentioned claim will be 100(1�α) ¼ 82.23 %.

4.2.5 Engineering Examples

Three well-studied engineering design problems that have been solved by vari-

ous optimization methods in the literature are used to examine the efficiency of

the MCSS algorithm, and compare the results with those obtained by the CSS.

Table 4.6 The Wilcoxcon

test results
MCSS vs. R+ R� p-Value

BLX-GL50 46 185 0.016

BLX-MA 6 270 0.000

CoEVO 14 239 0.000

DE 59 172 0.050

DMS-L-PSO 57 196 0.024

EDA 20 211 0.314

G-CMA-ES 70 120 0.001

K-PCX 20 233 0.025

L-CMA-ES 45 165 0.048

L-SaDE 65.5 187 0.027

SPC-PNX 52 179 0.001
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For handling constrains, a simple penalty function is utilized to prevent adding

the effect of a robust constrain handling method on the performance of the

algorithm.

Example 1 A tension/compression spring design problem

This is a well-known optimization problem which has been used to evaluate the

efficiency of different optimization methods [6]. This problem is defined by

Belegundu [10] and Arora [11] as depicted in Fig. 4.6. The objective of this

optimization problem is to minimize the weight of tension/compression spring.

This minimization involves some constrains, i.e., shear stress, frequency, and

minimum deflection.

The design variables are the mean coil diameter D(¼x1); the wire diameter

d(¼x2), and the number active coils N(¼x3). By considering these decision vari-

ables, the cost function can be formulated as:

f cos t Xð Þ ¼ x3 þ 2ð Þx2x12 ð4:28Þ

g1 Xð Þ ¼ 1� x2
3x3

71785 � x14 � 0,

g2 Xð Þ ¼ 4x2
2 � x1x2

12566 � x2x13 � x14ð Þ þ
1

5108 � x12 � 1 � 0,

g3 Xð Þ ¼ 1� 140:45x1
x22x3

� 0,

g4 Xð Þ ¼ x1 þ x2
1:5

� 1 � 0:

ð4:29Þ

The decision variables are limited as:

0:05 � x1 � 2,

0:25 � x2 � 1:3,
2 � x3 � 15:

ð4:30Þ

This problem has been solved with various methods by different researchers,

Belegundu [10], Arora [11], Coello [12], Coello and Montes [13], He and Wang

[14], Montes and Coello [15], and Kaveh and Talathari [14,26]. The results of the

best solutions found by different methods are presented in Table 4.7. From Table 4.7

Fig. 4.6 A tension/compression spring
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it can be understood that the best solution found by MCSS is better than other

methods. The statistical simulation results of 30 independent runs for MCSS are

illustrated in Table 4.8 and compared to other methods.

Example 2 A welded beam design

One of the practical design problems which has been widely used as a benchmark to

test the performance of different optimization methods, is the welded beam design

problem as illustrated in Fig. 4.7. The goal of this optimization problem is to

minimize the constructing cost of a welded beam that is subjected to different

constrains, such as shear (τ) and bending (σ) stresses, buckling load (Pc), end

deflection (δ), and end side constraint. Design variables are h(¼ x1),l(¼ x2),
t(¼ x3) and b(¼ x4). By considering the set-up, welding labor, and the materials

costs, the cost function can be expressed as:

f cos t Xð Þ ¼ 1:1047x1
2x2 þ 0:04811x3x4 � 14:0þ x2ð Þ ð4:31Þ

Subjected to the following constrains:

Table 4.8 Statistical results of different methods for the tension/compression spring

Methods Best Mean Worst Standard deviation

Belegundu [10] 0.0128334 N/A N/A N/A

Arora [11] 0.0127303 N/A N/A N/A

Coello [12] 0.0127048 0.012769 0.012822 3.9390e-5

Coello and Montes [13] 0.0126810 0.012742 0.012973 5.9000e-5

He and Wang [14] 0.0126747 0.012730 0.012924 5.1985e-5

Montes and Coello [15] 0.012698 0.013461 0.16485 9.6600e-4

Kaveh and Talatahari [16] 0.0126432 0.012720 0.012884 3.4888e-5

Kaveh and Talathari (CSS) [6] 0.0126384 0.012852 0.013626 8.3564e-5

Present work [1] 0.0126192 0.012794 0.013962 5.3491e-5

Table 4.7 Optimum results for the tension/compression spring design

Methods

Optimal design variables

x1(d) x2(D) x3(N) fcost

Belegundu [10] 0.050000 0.315900 14.250000 0.0128334

Arora [11] 0.053396 0.399180 9.1854000 0.0127303

Coello [12] 0.051480 0.351661 11.632201 0.0127048

Coello and Montes [13] 0.051989 0.363965 10.890522 0.0126810

He and Wang [14] 0.051728 0.357644 11.244543 0.0126747

Montes and Coello [15] 0.051643 0.355360 11.397926 0.012698

Kaveh and Talatahari [16] 0.051865 0.361500 11.000000 0.0126432

Kaveh and Talathari (CSS) [6] 0.051744 0.358532 11.165704 0.0126384

Present work [1] 0.051645 0.356496 11.271529 0.0126192
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g1 Xð Þ ¼ τ
��

x
��� τmax � 0,

g2 Xð Þ ¼ σ
��

x
��� δmax � 0,

g3 Xð Þ ¼ x1 � x4 � 0,

g4 Xð Þ ¼ 0:10471x1
2 þ 0:04811x3x4 �

�
14:0þ x2

�� 5:0 � 0,

g5 Xð Þ ¼ 0:125� x1 � 0,

g6 Xð Þ ¼ δ
��

x
��� δmax � 0,

g7 Xð Þ ¼ P� Pc

��
x
�� � 0:

ð4:32Þ

Where

τ Xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ0ð Þ2 þ 2τ0 � τ00 x2

2R
þ τ

00
 �2s

,

τ
0 ¼ Pffiffiffi

2
p

x1 � x2
, τ

00 ¼ MR

J
,

M ¼ P � Lþ x2
2

0
@

1
A,R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

2

4
þ x1 þ x2

2

0
@

1
A

2
vuuut ,

J ¼ 2
� ffiffiffi

2
p

x1x2
� x22
12

þ x1 þ x3
2

0
@

1
A

2	�
,

σ Xð Þ ¼ 6PL

x4 � x32 , δ
�
X
� ¼ 4PL3

Ex23x4
,

Pc Xð Þ ¼
4:013E

ffiffiffiffiffiffiffiffiffi
x23x

6
4

36

s

L2
1� x3

2L

ffiffiffiffiffiffi
E

4G

s0
@

1
A,

P ¼ 6, 000 lb, L ¼ 14 in,E ¼ 30� 106psi, G ¼ 12� 106psi

ð4:33Þ

And variable boundaries are:

Fig. 4.7 A welded beam

system
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0:1 � x1 � 2,

0:1 � x2 � 10,

0:1 � x3 � 10,

0:1 � x3 � 2:

ð4:34Þ

This is a well-studied problem that is solved by different researchers using

different approaches. Regsdell and Phillips [17] solved it using mathematical-

based methods. Deb [18], Coello [12], and Coello and Montes [13], solved it

using GA-based algorithms. Also, He and Wang [14] solved it by CPSO, Montes

and Coello [15] by Evolutionary strategies, and Kaveh and Talathari [16] by ACO.

This problem is also solved by Kaveh and Talathari [6] utilizing the CSS algorithm.

The results of the best solution found by each method are listed in Table 4.9. The

best solution found by MCSS is better than other results in literature. The result of

the MCSS is slightly better than that of the CSS, but the speed of the convergence is

much higher compared to the CSS. The results of statistical simulation are

Table 4.9 Optimum results for the design of welded beam

Methods

Optimal design variables

x1(h) x2(l) x3(t) x4(b) fcost

Regsdell and Phillips [17]

APPROX 0.2444 6.2189 8.2915 0.2444 2.3815

DAVID 0.2434 6.2552 8.2915 0.2444 2.3841

SIMPLEX 0.2792 5.6256 7.7512 0.2796 2.5307

RANDOM 0.4575 4.7313 5.0853 0.6600 4.1185

Deb [18] 0.248900 6.173000 8.178900 0.253300 2.433116

Coello [12] 0.248900 3.420500 8.997500 0.210000 1.748309

Coello and Montes [13] 0.205986 3.471328 9.020224 0.206480 1.728226

He and Wang [14] 0.202369 3.544214 9.048210 0.205723 1.728024

Montes and Coello [15] 0.199742 3.612060 9.037500 0.206082 1.737300

Kaveh and Talathari [16] 0.205700 3.471131 9.036683 0.205731 1.724918

Kaveh and Talathari (CSS) [6] 0.205820 3.468109 9.038024 0.205723 1.724866

Present work [1] 0.205729 3.470493 9.036623 0.205729 1.724853

Table 4.10 Statistical results of different methods for the design of welded beam

Methods Best Mean Worst Standard deviation

Regsdell and Phillips [17] 2.3815 N/A N/A N/A

Deb [18] 2.433116 N/A N/A N/A

Coello [12] 1.748309 1.771973 1.785835 0.011220

Coello and Montes [13] 1.728226 1.792654 1.993408 0.074713

He and Wang [14] 1.728024 1.748831 1.782143 0.012926

Montes and Coello [15] 1.737300 1.813290 1.994651 0.070500

Kaveh and Talatahari [16] 1.724918 1.729752 1.775961 0.009200

Kaveh and Talathari (CSS) [6] 1.724866 1.739654 1.759479 0.008064

Present work [1] 1.724853 1.735438 1.753681 0.009527

4.2 Magnetic Charged System Search Method 113



presented in Table 4.10. Similar to the CSS algorithm MCSS has a small value for

the standard deviation.

Example 3 A pressure vessel design problem

The objective of this optimization is to minimize the cost of fabricating a pressure

vessel which is clapped at both ends by hemispherical heads as depicted in Fig. 4.8.

The construction cost consists of the cost of materials, forming and welding

[19]. The design variables are the thickness of the shell Ts (¼ x1), the thickness of
the head Th (¼ x2), the inner radius R (¼ x3), and the length of cylindrical section of
the vessel L (¼ x4). Ts and Th are integer multiples of 0.0625in, the available

thickness of the rolled steel plates, but R and L are continuous variables. The

mathematical expression of the cost function is:

f cos t Xð Þ ¼ 0:6224x1x3x4 þ 1:7781x2x
2
3 þ 3:1661x21 þ 19:84x21x3, ð4:35Þ

The constrain areas are as follows:

g1 Xð Þ ¼ �x1 þ 0:0193x3 � 0,

g2 Xð Þ ¼ �x2 þ 0:00954x3 � 0,

g3 Xð Þ ¼ �π � x23x4 �
4

3
π � x33 þ 1, 296, 000 � 0,

g4 Xð Þ ¼ x4 � 240 � 0:

ð4:36Þ

The search space is defined as:

0 � x1 � 99,

0 � x2 � 99,

10 � x3 � 200,

10 � x3 � 200:

ð4:37Þ

Fig. 4.8 A pressure vessel, and its design variables
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Various types of methods have been used to solve this problem. Some of

these approaches are as: a branch and bound method [19], an augmented

Lagrangian multiplier approach [20], genetic adaptive search [21], a GA-based

algorithm [12], a feasibility-based tournament selection scheme [13], a

co-evolutionary particle swarm method [14], an evolution strategy [15], an

improved ant colony optimization [16], and the CSS algorithm [6]. The results

of the best solution found by different methods are presented in Table 4.11.

MCSS algorithm found better solution compared to other techniques and the

standard CSS. In Table 4.12 the results of statistical simulations are listed. The

mean value of the 30 independent runs for MCSS is slightly weaker than that of

the CSS, however, the best solution and speed of the convergence for MCSS is

much higher.

Table 4.11 Optimum results for the design of welded beam

Methods

Optimal design variables

x1(Ts) x2(Th) x3(R) x4(L) fcost

Sandgren [19] 1.125000 0.625000 47.700000 117.701000 8,129.1036

Kannan and Kramer [20] 1.125000 0.625000 58.291000 43.690000 7,198.0428

Deb and Gene [21] 0.937500 0.500000 48.329000 112.679000 6,410.3811

Coello [12] 0.812500 0.437500 40.323900 200.000000 6,288.7445

Coello and Montes [13] 0.812500 0.437500 42.097398 176.654050 6,059.9463

He and Wang [14] 0.812500 0.437500 42.091266 176.746500 6,061.0777

Montes and Coello [15] 0.812500 0.437500 42.098087 176.640518 6,059.7456

Kaveh and Talatahari [16] 0.812500 0.437500 42.098353 176.637751 6,059.7258

Kaveh and Talathari (CSS) [6] 0.812500 0.437500 42.103624 176.572656 6,059.0888

Present work [1] 0.812500 0.437500 42.107406 176.525589 6,058.6233

Table 4.12 Statistical results of different methods for the design of welded beam

Methods Best Mean Worst Standard deviation

Sandgren [19] 8,129.1036 N/A N/A N/A

Kannan and Kramer [20] 7,198.0428 N/A N/A N/A

Deb and Gene [21] 6,410.3811 N/A N/A N/A

Coello [12] 6,288.7445 6,293.8432 6,308.1497 7.4133

Coello and Montes [13] 6,059.9463 6,177.2533 6,469.3220 130.9297

He and Wang [14] 6,061.0777 6,147.1332 6,363.8041 86.4545

Montes and Coello [15] 6,059.7456 6,850.0049 7,332.8798 426.0000

Kaveh and Talatahari [16] 6,059.7258 6,081.7812 6,150.1289 67.2418

Kaveh and Talathari (CSS) [6] 6,059.0888 6,067.9062 6,085.4765 10.2564

Present work [1] 6,058.6233 6,073.5931 6,108.5479 24.6712
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4.3 Improved Magnetic Charged System Search

In this part, the improved version of magnetic charged system search (IMCSS) is

presented and also utilized for optimization of truss structures. As mentioned

earlier, the standard CSS and MCSS algorithms use harmony search-based

approach for process of position correction of CPs. In this process, the CMCR

and PAR parameters help the algorithm to find globally and locally improved

solutions, respectively [22]. PAR and bw in HS scheme are very important param-

eters in fine-tuning of optimized solution vectors, and can be potentially useful in

adjusting convergence rate of algorithm to optimal solution.

The traditional HS scheme uses fixed value for both PAR and bw. Small PAR

values with large bw values can led to poor performance of the algorithm and

increase the iterations needed to find optimum solution, also on the other hand small

bw values in final iterations increase the fine-tuning of solution vectors, but in the

first iterations bw must take a bigger value to enforce the algorithm to increase the

diversity of solution vectors. Furthermore, large PAR values with small bw values

usually led to the improvement of best solutions in final iterations and converged

algorithm to optimal solution vector. To improve the performance of the HS

scheme and eliminate the drawbacks lies with fixed values of PAR and bw,

IMCSS algorithm uses an improved form of HS algorithm with varied PAR and

bw for the step of position correction. PAR and bw change dynamically with

iteration number as shown in Fig. 4.9 and expressed as follow [22]:

PAR iterð Þ ¼ PARmin þ PARmax � PARminð Þ
itermax

� iter ð4:38Þ

and

bw iterð Þ ¼ bwmaxexp c � iterð Þ, ð4:39Þ

c ¼
Ln bwmin=bwmax

 �
itermax

, ð4:40Þ

where PAR(iter) and bw(iter) are the values of the PAR and bandwidth for each

iteration, respectively, Subscripts min and max denote the minimum and maximum

values for each parameter, respectively, and iter is the current iteration number.

PAR max

PAR min

First lter
lteration

Iter max

PA
R

bw max

bw min

First lter
lteration

Iter max

bw

a b

Fig. 4.9 Variation of (a) PAR and (b) bw versus iteration number [2]
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4.3.1 A Discrete IMCSS

The IMCSS algorithm can be also applied to optimal design problem with discrete

variables. One way to solve discrete problems using a continuous algorithm is to

utilize a rounding function which changes the magnitude of a result to the nearest

discrete value [23], as follow:

Xj,new ¼ Fix randj1 � ka � Fj

mj
� Δt2 þ randj2 � kv � Vj,old � Δtþ Xj,old

� �
, ð4:41Þ

where Fix(X) is a function which rounds each elements of vector X to the nearest

allowable discrete value. Using this position updating formula, the agents will be

permitted to select discrete values.

4.3.2 An Improved Magnetic Charged System Search
for Optimization of Truss Structures with Continuous
and Discrete Variables

4.3.2.1 Statement of the Optimization Problem

The aim of size optimization of truss structures is to find the optimum values for

cross-sectional area of members Ai, in order to minimize the structural weight W,

satisfying the constraints corresponding to the response of the structure. Thus, the

optimal design problem can be expressed as:

Find X ¼ x1; x2; x3; . . . ; xn½ �
to minimize Mer Xð Þ ¼ fpenalty

�
X
��W

�
X
�

subject to σmin < σi < σmax i ¼ 1, 2, . . . , nm
δmin < δi < δmax i ¼ 1, 2, . . . , nn

ð4:42Þ

where X is the vector containing the design variables; for a discrete optimum design

problem, the variables xi are selected from an allowable set of discrete values; n is

the number of member groups; Mer(X) is the merit function; W(X) is the cost

function, which is taken as the weight of the structure; fpenalty(X) is the penalty

function which results from the violations of the constraints; nm is the number of

members forming the structure; nn is the number of nodes; σi and δi are the stress of
members and nodal displacements, respectively; min and max mean the lower and

upper bounds of constraints, respectively. The cost function can be expressed as:
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W Xð Þ ¼
Xnm
i¼1

ρi � Ai � Li ð4:43Þ

where ρi is the material density of member i, Li is the length of member i, and Ai is

the cross-sectional area of member i.
The penalty function can be defined as:

f penalty Xð Þ ¼ 1þ ε1 �
Xnp
i¼1

ϕ k
σ ið Þ þ ϕ k

δ ið Þ
 � !ε2

, ð4:44Þ

where np is the number of multiple loadings. Here ε1 is taken as unity and ε2 is set to
1.5 in the first iterations of the search process, but gradually it is increased to

3 [24]. ϕk
σ and ϕk

δ are the summation of stress penalties and nodal displacement

penalties for kth charged particle which are mathematically expressed as:

ϕσ ¼
Xnm
i¼1

max
σi
σi

����
����� 1, 0

� �
, ð4:45Þ

ϕδ ¼
Xnn
i¼1

max
δi
δi

����
����� 1, 0

� �
, ð4:46Þ

where σi, σi are the stress and allowable stress in member i, respectively, and δi, δi
are the displacement of the joints and the allowable displacement, respectively.

4.3.2.2 Numerical Examples

In this section, common truss optimization examples as benchmark problems are

used for optimization using the proposed algorithm. This algorithm is applied to

problems with both continuous and discrete variables. The final results are com-

pared to those of previous studies to demonstrate the efficiency of the present

method. The discrete variables are selected from American Institute of Steel

Construction (AISC) Code [25], listed in Table 4.13.

In the proposed algorithm, for all of examples a population of 25 CPs is used and

the value of CMCR is set to 0.95.

Example 1 A 10-bar planar truss structure

The 10-bar truss structure is a common problem in the field of structural optimiza-

tion to verify the efficiency of a proposed optimization algorithm. The geometry

and support conditions for this planar, cantilevered truss with loading condition is

shown in Fig. 4.10.

There are 10 design variables in this example and a set of pseudo variables

ranging from 0.1 to 35.0 in2 (0.6452 cm2 to 225.806 cm2).

In this problem two cases are considered:
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Case 1, P1 ¼ 100 kips (444.8 kN) and P2 ¼ 0, and Case 2, P1 ¼ 150 kips (667.2

kN) and P2 ¼ 50 kips (222.4 kN).

The material density is 0.1 lb/in3 (2,767.990 kg/m3) and the modulus of elasticity

is 10,000 ksi (68,950 MPa). The members are subjected to the stress limits of �25

ksi (172.375 MPa) and all nodes in both vertical and horizontal directions are

subjected to the displacement limits of �2.0 in (5.08 cm). Figure 4.11 shows a

comparison of the convergence history of both cases for MCSS and IMCSS

algorithms.

Tables 4.14 and 4.15 are provided for comparison of the optimal design results

with those of the previous studies for both cases. In both cases the HS algorithm

reach its best solutions after 20,000 analyses, and the PSO and PSOPC algorithms

after 3,000 iterations (150,000 analyses). The HPSACO algorithm finds the best

solution after 10,650 and 9,925 analyses, for Case 1 and Case 2, respectively.

Table 4.13 The allowable

steel pipe sections taken from

AISC code

No. Area (in2) Area (mm2) No. Area (in2) Area (mm2)

1 0.111 71.613 33 3.84 2,477.414

2 0.141 90.968 34 3.87 2,496.769

3 0.196 126.451 35 3.88 2,503.221

4 0.25 161.29 36 4.18 2,696.769

5 0.307 198.064 37 4.22 2,722.575

6 0.391 252.258 38 4.49 2,896.768

7 0.442 285.161 39 4.59 2,961.284

8 0.563 363.225 40 4.8 3,096.768

9 0.602 388.386 41 4.97 3,206.445

10 0.766 494.193 42 5.12 3,303.219

11 0.785 506.451 43 5.74 3,703.218

12 0.994 641.289 44 7.22 4,658.055

13 1 645.16 45 7.97 5,141.925

14 1.228 792.256 46 8.53 5,503.215

15 1.266 816.773 47 9.3 5,999.988

16 1.457 939.998 48 10.85 6,999.986

17 1.563 1,008.385 49 11.5 7,419.43

18 1.62 1,045.159 50 13.5 8,709.66

19 1.8 1,161.288 51 13.9 8,967.724

20 1.99 1,283.868 52 14.2 9,161.272

21 2.13 1,374.191 53 15.5 9,999.98

22 2.38 1,535.481 54 16 10,322.56

23 2.62 1,690.319 55 16.9 10,903.2

24 2.63 1,696.771 56 18.8 12,129.01

25 2.88 1,858.061 57 19.9 12,838.68

26 2.93 1,890.319 58 22 14,193.52

27 3.09 1,993.544 59 22.9 14,774.16

28 1.13 729.031 60 24.5 15,806.42

29 3.38 2,180.641 61 26.5 17,096.74

30 3.47 2,238.705 62 28 18,064.48

31 3.55 2,290.318 63 30 19,354.8

32 3.63 2,341.931 64 33.5 21,612.86
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The MCSS and IMCSS algorithms achieve the best solutions after 355 iterations

(8,875 analyses) and 339 iterations (8,475 analyses), respectively. The best weights

of IMCSS are 5,064.6 lb for Case 1 and 4,679.15 for Case 2.

As seen in both Tables, although the best weights of IMCSS in both cases are a

little bigger than the HPSACO, but it has lower penalty values rather than

HPSACO, and therefore IMCSS has a lower merit function than HPSACO.

Example 2 A 52-bar planar truss

The 52-bar planar truss structure shown in Fig. 4.12 has been analyzed by Lee and

Geem [27], Li et al. [28], Wu and Chow [30] and Kaveh and Talatahari [31].

The members of this structure are divided into 12 groups: (1) A1–A4, (2) A5–

A10, (3) A11–A13, (4) A14–A17, (5) A18–A23, (6) A24–A26, (7) A27–A30,

(8) A31–A36, (9) A37–A39, (10) A40–A43, (11) A44–A49, and (12) A50–A52.

The material density is 7,860.0 kg/m3 and the modulus of elasticity is

2.07 � 105 MPa. The members are subjected to stress limitations of �180 MPa.

Both of the loads, Px ¼ 100kN and Py ¼ 200kN, are considered.

Table 4.16 and Fig. 4.13 are provided for comparison of the optimal design

results with the previous studies and convergence rates for the 52-bar planar truss

structure, respectively.

Table 4.16 shows that, the best weight of MCSS and IMCSS algorithms are

1,904.05 lb and 1,902.61 lb, respectively, while for DHPSACO is 1,904.83 lb.

The MCSS and IMCSS algorithms find the best solutions after 4,225 and 4,075

analyses respectively, but the DHPSACO reach a good solution in 5,300 analyses.

As it can be seen in the results of Table 4.16, the IMCSS algorithm achieve good

optimal results than previous methods like MCSS, PSO, PSOPC, HPSO and

DHPSACO algorithms.

Fig. 4.10 Schematic of

a10-bar planar truss

structure
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Example 3 A 72-bar spatial truss

In the 72-bar spatial truss structure which is shown in Fig. 4.14, the material density

is 0.1 lb/in3 (2,767.990 kg/m3) and the modulus of elasticity is 10,000 ksi

(68,950 MPa). The nodes are subjected to the displacement limits of �0.25 in

(�0.635 cm) and the members are subjected to the stress limits of �25 ksi

(�172.375 MPa).

All members of this spatial truss are categorized into 16 groups using symmetry:

(1) A1–A4, (2) A5–A12, (3) A13–A16, (4) A17–A18, (5) A19–A22, (6) A23–A30,

a

b

Case 1
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Fig. 4.11 Convergence history for the 10-bar planar truss structure using MCSS, IMCSS [2]
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(7) A31–A34, (8) A35–A36, (9) A37–A40, (10) A41–A48, (11) A49–A52,

(12) A53–A54, (13) A55–A58, (14) A59–A66 (15), A67–A70, and (16) A71–A72.

Two optimization cases are implemented:

Case 1: The discrete variables are selected from the set D ¼ {0.1, 0.2, 0.3,

0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1,

2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2} (in2) or {0.65, 1.29, 1.94, 2.58,

3.23, 3.87, 4.52, 5.16, 5.81, 6.45, 7.10, 7.74, 8.39, 9.03, 9.68, 10.32, 10.97,

12.26, 12.90, 13.55, 14.19, 14.84, 15.48, 16.13, 16.77, 17.42, 18.06, 18.71,

19.36, 20.00, 20.65} (cm2).

Case 2: The discrete variables are selected from AISC code in Table 4.13.

Table 4.17 lists the values and directions of the two load cases applied to the

72-bar spatial truss.

Tables 4.18 and 4.19 are provided for comparison the results of MCSS and

IMCSS algorithms with the results of the previous studies for both cases. The

Convergence history for both algorithms is shown in Fig. 4.15.

In Case 1, the best weight of the IMCSS and DHPSACO algorithm are 385.54 lb

(174.88 kg), while it is 389.49 lb, 388.94 lb, 387.94 lb, 400.66 lb for the MCSS,

HPSO, HS, and GA, respectively. For the PSO and PSOPC algorithms, these

algorithms do not get optimal results when the maximum number of iterations is

reached. The IMCSS algorithm gets the best solution after 145 iterations (3,625

analyses) while it takes for MCSS and DHPSACO 216 iterations (5,400 analyses)

and 213 iterations (5,330 analyses), respectively.

Table 4.15 Optimal design comparison for the 10-bar planner truss (Case 2)

Element

group

Lee and

Geem [27] Li et al. [28]

Kaveh and

Talatahari [29] Present work [2]

HS PSO PSOPC HPSO HPSACO MCSS IMCSS

1 A1 23.25 22.935 23.473 23.353 23.194 22.863 23.299

2 A2 0.102 0.113 0.101 0.1 0.1 0.120 0.1

3 A3 25.73 25.355 25.287 25.502 24.585 25.719 25.682

4 A4 14.51 14.373 14.413 14.25 14.221 15.312 14.510

5 A5 0.1 0.1 0.1 0.1 0.1 0.101 0.1

6 A6 1.977 1.99 1.969 1.972 1.969 1.968 1.969

7 A7 12.21 12.346 12.362 12.363 12.489 12.310 12.149

8 A8 12.61 12.923 12.694 12.894 12.925 12.934 12.360

9 A9 20.36 20.678 20.323 20.356 20.952 19.906 20.869

10 A10 0.1 0.1 0.103 0.101 0.101 0.100 0.1

Weight(lb) 4,668.81 4,679.47 4,677.7 4,677.29 4,675.78 4,686.47 4,679.15

Displacement

constraint

– – – 0 7.92E-04 0 0

Stress

constraint

– – – 2.49E-

05

7.97E-05 0 0

No. of

analyses

N/A 150,000 150,000 N/A 9,625 7,350 6,625
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In Case 2, the best obtained weight from IMCSS is 389.60 lb, but it is 393.13 lb,

389.87 lb, 392.84 lb, 393.06 lb and 393.38 lb for MCSS, CS, ICA, CSS and

HPSACO algorithms, respectively. IMCSS algorithm finds the best solutions after

173 iterations (4,325 analyses), while MCSS, CS, ICA, CSS and HPSACO algo-

rithms, need 4,775, 4,840, 4,500, 7,000 and 5,330 analyses to find the best solutions.

Fig. 4.12 Schematic of a

52-bar planar truss
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Example 4 A 120-bar dome shaped truss

The 120-bar dome truss was first analyzed by Soh and Yang [34] to obtain the

optimal sizing and configuration variables, but for this study only sizing variables

are considered to minimize the structural weight in this example, similar to Lee and

Geem [27] and Keleşoğlu and Ülker [35].

The geometry of this structure is shown in Fig. 4.16. The modulus of elasticity is

30,450 ksi (210,000 MPa) and the material density is 0.288 lb/in3 (7,971.810 kg/

m3). The yield stress of steel is taken as 58.0 ksi (400 MPa).

Table 4.16 Optimal design comparison for the 52-bar planar truss

Element

group

Lee and

Geem

[27] Li et al. [28]

Kaveh and

Talatahari

[31] Present work [2]

HS PSO PSOPC HPSO DHPSACO MCSS IMCSS

1 4,658.055 4,658.055 5,999.988 4,658.055 4,658.055 4,658.055 4,658.055

2 1,161.288 1,374.19 1,008.38 1,161.288 1,161.288 1,161.288 1,161.288

3 506.451 1,858.06 2,696.38 363.225 494.193 363.225 494.193

4 3,303.219 3,206.44 3,206.44 3,303.219 3,303.219 3,303.219 3,303.219

5 940 1,283.87 1,161.29 940 1,008.385 939.998 939.998

6 494.193 252.26 729.03 494.193 285.161 506.451 494.193

7 2,290.318 3,303.22 2,238.71 2,238.705 2,290.318 2,238.705 2,238.705

8 1,008.385 1,045.16 1,008.38 1,008.385 1,008.385 1,008.385 1,008.385

9 2,290.318 126.45 494.19 388.386 388.386 388.386 494.193

10 1,535.481 2,341.93 1,283.87 1,283.868 1,283.868 1,283.868 1,283.868

11 1,045.159 1,008.38 1,161.29 1,161.288 1,161.288 1,161.288 1,161.288

12 506.451 1,045.16 494.19 792.256 506.451 729.031 494.193

Weight (kg) 1,906.76 2,230.16 2,146.63 1,905.49 1,904.83 1,904.05 1,902.61

No. of

analyses

N/A N/A N/A 50,000 5,300 4,225 4,075

20 40 60 80 100 120 140 160 180 200
1000

2000

3000

4000

5000

6000

7000

8000

Iteration

W
ei

gh
t(l

b)

MCSS
IMCSS

Fig. 4.13 Convergence

history for the 52-bar planar

truss structure using MCSS,

IMCSS [2]
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The allowable tensile and compressive stresses are used according to the AISC-

ASD code [25], as follows:

σþi ¼ 0:6Fy for σi � 0

σ�i for σi < 0

�
ð4:47Þ

where σ�i is calculated according to the slenderness ratio

Fig. 4.14 Schematic of a 72-bar spatial truss

Table 4.17 Loading conditions for the 72-bar spatial truss

Node

Case 1 Case 2

PX kips (kN) Py kips (kN) Pz kips (kN) PX kips (kN) Py kips (kN) Pz kips (kN)

17 5.0 (22.25) 5.0 (22.25) �5.0 (�22.25) 0.0 0.0 �5.0 (�22.25)

18 0.0 0.0 0.0 0.0 0.0 �5.0 (�22.25)

19 0.0 0.0 0.0 0.0 0.0 �5.0 (�22.25)

20 0.0 0.0 0.0 0.0 0.0 �5.0 (�22.25)
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σ�i ¼
1� λ2i

2C2
c

0
@

1
AFy

2
4

3
5, 5

3
þ 3λi
8Cc

� λ3i
8C3

c

0
@

1
A for λi < Cc

12π2E

23λ2i
for λi � Cc

8>>>>><
>>>>>:

ð4:48Þ

where E is the modulus of elasticity, Fy is the yield stress of steel, Cc is the

slenderness ratio (λi) dividing the elastic and inelastic buckling regions

(Cc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π2E=Fy

p
), λi is the slenderness ratio (λi ¼ kLi/ri), k is the effective length

factor, Li is the member length and ri is the radius of gyration. The radius of

gyration (ri) can be expressed in terms of cross-sectional areas, i.e., ri ¼ aAb
i .

Here, a and b are the constants depending on the types of sections adopted for the

members such as pipes, angles, and tees. In this paper, pipe sections (a ¼ 0.4993

and b ¼ 0.6777) were adopted for bars [36].

All members of the dome are categorized into seven groups, as shown in

Fig. 4.16. The dome is considered to be subjected to vertical loading at all the

unsupported joints. These were taken as �13.49 kips (60 kN) at node 1, �6.744

Table 4.18 Optimal design comparison for the 72-bar truss (Case 1)

Element group

Wu and

Chow

[30]

Lee and

Geem

[27] Li et al. [28]

Kaveh and

Talatahari

[31]

Present work

[2]

GA HS PSO PSOPC HPSO DHPSACO MCSS IMCSS

A1 A1–A4 1.5 1.9 2.6 3 2.1 1.9 1.8 2

A2 A5–A12 0.7 0.5 1.5 1.4 0.6 0.5 0.5 0.5

A3 A13–A16 0.1 0.1 0.3 0.2 0.1 0.1 0.1 0.1

A4 A17–A18 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

A5 A19–A22 1.3 1.4 2.1 2.7 1.4 1.3 1.3 1.3

A6 A23–A30 0.5 0.6 1.5 1.9 0.5 0.5 0.5 0.5

A7 A31–A34 0.2 0.1 0.6 0.7 0.1 0.1 0.1 0.1

A8 A35–A36 0.1 0.1 0.3 0.8 0.1 0.1 0.1 0.1

A9 A37–A40 0.5 0.6 2.2 1.4 0.5 0.6 0.7 0.5

A10 A41–A48 0.5 0.5 1.9 1.2 0.5 0.5 0.6 0.5

A11 A49–A52 0.1 0.1 0.2 0.8 0.1 0.1 0.1 0.1

A12 A53–A54 0.2 0.1 0.9 0.1 0.1 0.1 0.1 0.1

A13 A55–A58 0.2 0.2 0.4 0.4 0.2 0.2 0.2 0.2

A14 A59–A66 0.5 0.5 1.9 1.9 0.5 0.6 0.6 0.6

A15 A67–A70 0.5 0.4 0.7 0.9 0.3 0.4 0.4 0.4

A16 A71–A72 0.7 0.6 1.6 1.3 0.7 0.6 0.4 0.6

Weight (kg) 400.6 387.94 1,089.88 1,069.79 388.94 385.54 389.49 385.54

No. of analyses N/A N/A N/A 150,000 50,000 5,330 5,400 3,625
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kips (30 kN) at nodes 2–14, and �2.248 kips (10 kN) at the rest of the nodes. The

minimum cross-sectional area of all members is 0.775 in2 (2 cm2).

In this example, two cases of constraints are considered:

Case 1, with stress constraints and no displacement constraints, and Case 2, with

stress constraints and displacement limitations of �0.1969 in (5 mm) imposed on

all nodes in x- and y-directions. For two cases, the maximum cross-sectional area is

5.0 in2 (32.26 cm2).

Figure 4.17 shows the convergence history for all cases and Table 4.20 gives the

best solution vectors and weights for both cases.

In Case 1, the best weights of MCSS and IMCSS are 19,607.39 lb and

19,476.92 lb, respectively, while for the Ray, HPSACO and PSOPC are

19,476.19 lb, 19,491.30 lb and 19,618.7 lb. The MCSS and IMCSS find the best
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Fig. 4.15 Convergence

history for the 72-bar truss

structure using MCSS,

IMCSS [2]. (a) Case 1 and

(b) Case 2
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solutions in 314 iterations (7,850 analyses) and 299 iterations (7,475 analyses),

respectively, but for Ray and HPSACO algorithms, it takes 19,950 and 10,025

analyses to reach the best solutions, respectively.

In Case 2, the MCSS and IMCSS algorithms need 386 iterations (9,650 analyses)

and 324 iterations (8,100 analyses) to find the best solutions, respectively, while for

Ray and HPSACO algorithms 19,950 and 10,075 analyses is required. The best

weights obtained from MCSS and IMCSS algorithms are 19,928 lb and

Fig. 4.16 Schematic of a 120-bar dome shaped truss
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19,796.71 lb, respectively, but from the Ray, HPSACO and PSOPC are 20,071.9 lb,

20,078 and 20,681.7 lb, respectively.

Some design examples as benchmark problems are optimized using the IMCSS

algorithm for both continuous and discrete design variables. The aim of this study is

to find the best merit function, i.e. considering both penalty and cost functions. In

comparison the results with those of the previous studies for all examples, the

IMCSS has the better merit function than all of previous algorithms, however for

few examples the best weight obtained from IMCSS algorithm is not the best in the

results. Also, the results demonstrate the effectiveness of improvement process for

MCSS algorithm to achieve a better convergence and find better solutions espe-

cially in final iterations of the improved algorithm.
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