
Chapter 11

Imperialist Competitive Algorithm

11.1 Introduction

In this chapter an optimization method is presented based on a socio-politically

motivated strategy, called Imperialist Competitive Algorithm (ICA). ICA is a

multi-agent algorithm with each agent being a country, which is either a colony

or an imperialist. These countries form some empires in the search space. Move-

ment of the colonies toward their related imperialist, and imperialistic competition

among the empires, form the basis of the ICA. During these movements, the

powerful Imperialists are reinforced and the weak ones are weakened and gradually

collapsed, directing the algorithm towards optimum points. Here, ICA is utilized to

optimize the skeletal structures which is based on [1, 2].

This algorithm is proposed by Atashpaz et al. [3, 4] and is a socio-politically

motivated optimization algorithm which similar to many other evolutionary algo-

rithms starts with a random initial population. Each individual agent of an empire is

called a country, and the countries are categorized into colony and imperialist states
that collectively form empires. Imperialistic competitions among these empires

form the basis of the ICA. During this competition, weak empires collapse and

powerful ones take possession of their colonies. Imperialistic competitions direct

the search process toward the powerful imperialist or the optimum points.

On the other hand, finding the optimum design of the skeletal structures is known

as benchmark examples in the field of difficult optimization problems due to the

presence of many design variables, large size of the search space, and many

constraints. Thus, this chapter presents an ICA-based algorithm to solve optimiza-

tion skeletal structures problems which can be considered as a suitable field to

investigate the efficiency of the new algorithm. The chapter covers both the discrete

and continuous structural design problems. Comparison of the results of the ICA

with some well-known metaheuristics demonstrates the efficiency of the present

algorithm.
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11.2 Optimum Design of Skeletal Structures

The aim of optimizing a structure is to find a set of design variables that has the

minimum weight satisfying certain constraints. This can be expressed as

Find xf g ¼ �x1, x2, . . . , xng�,
xi ∈Di

to minimize W
�
xf g� ¼Xnm

i¼1

ρi � xi � Li
subject to : gj

�
xf g� � 0 j ¼ 1, 2, ::::, n

ð11:1Þ

where {x} is the set of design variables; ng is the number of member groups in

structure (number of design variables); Di is the allowable set of values for the

design variable xi; W({x}) presents weight of the structure; nm is the number of

members of the structure; ρi denotes the material density of member i; Li and xi are
the length and the cross-sectional of member i, respectively; gj({x}) denotes design
constraints; and n is the number of the constraints.

Di can be considered either as a continuous set or as a discrete one [5]. In the

continuous problems, the design variables can vary continuously in the optimiza-

tion process

Di ¼ xi
��xi ∈ xi,min; xi,max½ �� � ð11:2Þ

where xi,min and xi,max are minimum and maximum allowable values for the design

variable i, respectively. If the design variables represent a selection from a set of

parts as

Di ¼ di, 1; di, 2; . . . ; di, r ið Þ
� � ð11:3Þ

Then the problem is considered as a discrete one, where r(i) is the number of

available discrete values for the ith design variable.

In order to handle the constraints, a penalty approach is utilized. In this method,

the aim of the optimization is redefined by introducing the cost function as

f cost xf gð Þ ¼ 1þ ε1 � υð Þε2 �W xf gð Þ, υ ¼
Xn
i¼1

max 0; υi½ � ð11:4Þ

where n represents the number of evaluated constraints for each individual design.

The constant ε1 and ε2 are selected considering the exploration and the exploitation
rate of the search space. Here, ε1 is set to unity, ε2 is selected in a way that it

decreases the penalties and reduces the cross-sectional areas. Thus, in the first steps

of the search process, ε2 is set to 1.5 and ultimately increased to 3.
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This chapter investigates two types of skeletal structures consisting of trusses

and frames. The constraint conditions for these structures are briefly explained in

the following sections.

11.2.1 Constraint Conditions for Truss Structures

For truss structures, the stress limitations of the members are imposed according to

the provisions of ASD-AISC [6] as follows:

σþi ¼ 0:6Fy for σi � 0

σ�i for σi < 0

	
ð11:5Þ

where σ�i is calculated according to the slenderness ratio:

σ�i ¼
1� λ2i

2C2
C

0
@

1
AFy

2
4

3
5, 5

3
þ 3λi
8CC

� λ3i
8C3

C

0
@

1
A for λi < CC

12π2E

23λ2i
for λi � CC

8>>>>>><
>>>>>>:

ð11:6Þ

where E is the modulus of elasticity; Fy is the yield stress of steel; Cc denotes the

slenderness ratio (λi) dividing the elastic and inelastic buckling regions; λi presents
the slenderness ratio.

The other constraint is the limitation of the nodal displacements:

δi � δui i ¼ 1, 2, ::::, nn ð11:7Þ

where δi is the nodal deflection; δui is the allowable deflection of node i; and nn is the
number of nodes.

11.2.2 Constraint Conditions for Steel Frames

Optimal design of frame structures is subjected to the following constrains

according to LRFD-AISC provisions [7]:

Maximum lateral displacement

ΔT

H
� R ð11:8Þ

Inter-story displacements constraints
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di
hi

� RI, i ¼ 1, 2, . . . , ns ð11:9Þ

The strength constraints

Pu

2ϕcPn
þ Mux

ϕbMnx
þ Muy

ϕbMny

0
@

1
A � 1, For

Pu

ϕcPn
< 0:2

Pu

ϕcPn
þ 8

9

Mux

ϕbMnx
þ Muy

ϕbMny

0
@

1
A � 1, For

Pu

ϕcPn
� 0:2

ð11:10Þ

where ΔT is the maximum lateral displacement; H is the height of the frame

structure; R is the maximum drift index (1/300); di is the inter-story drift; hi is the
story height of the ith floor, ns is the total number of stories; RI presents the inter-

story drift index permitted by the code of the practice (1/300); Pu is the required

strength (tension or compression); Pn is the nominal axial strength (tension or

compression); ϕc is the resistance factor (ϕc ¼ 0.9 for tension, ϕc ¼ 0.85 for

compression); Mux and Muy are the required flexural strengths in the x and

y directions, respectively; Mnx and Mny are the nominal flexural strengths in the

x and y directions (for two-dimensional structures, Mny ¼ 0); and ϕb denotes the

flexural resistance reduction factor (ϕb ¼ 0.90). The nominal tensile strength for

yielding in the gross section is computed as

Pn ¼ Ag � Fy ð11:11Þ

and the nominal compressive strength of a member is computed as

Pn ¼ Ag � Fcr ð11:12Þ
Fcr ¼ 0:658λ

2
c


 �
Fy, For λc � 1:5 ð11:13Þ

Fcr ¼ 0:877

λ2c

 !
Fy, For λc > 1:5

λc ¼ kl

rπ

ffiffiffiffiffi
Fy

E

r
ð11:14Þ

where Ag is the cross-sectional area of a member.
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11.3 Imperialist Competitive Algorithm

ICA simulates the social-political process of imperialism and imperialistic compe-

tition. This algorithm contains a population of agents or countries. The pseudo-code

of the algorithm is as follows:

Step 1: Initialization The primary locations of the agents or countries are deter-

mined by the set of values assigned to each decision variable randomly as

x
oð Þ
i, j ¼ xi,min þ rand � xi,max � xi,minð Þ ð11:15Þ

where x
ðoÞ
i;j determines the initial value of the ith variable for the jth country; xi,min

and xi,max are the minimum and the maximum allowable values for the ith variable;
rand is a random number in the interval [0,1]. If the allowable search space is a

discrete one, using a rounding function will also be necessary.

For each country, the cost identifies its usefulness. In the optimization process,

the cost is proportional to the penalty function. When the values of cost for initial

countries are calculated [as defined by (11.4)], some of the best countries

(in optimization terminology, countries with the least costs) will be selected to be

the imperialist states and the remaining countries will form the colonies of these

imperialists. The total number of initial countries is set to Ncountry and the number of

the most powerful countries to form the empires is equal to Nimp. The remaining

Ncol of the initial countries will be the colonies each of which belongs to an empire.

In this chapter, a population of 30 countries consisting of 3 empires and 27 colonies

are used. All the colonies of initial countries are divided among the imperialists

based on their power. The power of each country, the counterpart of fitness value, is

inversely proportional to its cost value. That is, the number of colonies of an empire

should be directly proportionate to its power. In order to proportionally divide the

colonies among the imperialists, a normalized cost for an imperialist is defined as

Cj ¼ f
imp;jð Þ
cost �max

i
f
imp;ið Þ
cost


 �
ð11:16Þ

where f
ðimp;jÞ
cost is the cost of the jth imperialist and Cj is its normalized cost. The

colonies are divided among empires based on their power or normalized cost and

for the jth empire it will be as follows:

NCj ¼ Round
CjXNimp

i¼1

Ci

����������

����������
� Ncol

0
BBBB@

1
CCCCA ð11:17Þ

where NCj is the initial number of colonies associated to the jth empire which are
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selected randomly among the colonies. These colonies together with the jth impe-

rialist, form the empire number j.

Step 2: Colonies Movement In the ICA, the assimilation policy pursued by some

of former imperialist states, is modeled by moving all the colonies toward the

imperialist. This movement is shown in Fig. 11.1a in which a colony moves toward

the imperialist by a random value that is uniformly distributed between 0 and β � d
[3]:

xf gnew ¼ xf gold þ U 0, β � dð Þ � V1f g ð11:18Þ

where β is a parameter with a value greater than one, and d is the distance between

colony and imperialist. β > 1 peruseds the colonies to get closer to the imperialist

state from both sides. β � 1 gradually results in a divergence of colonies from the

imperialist state, while a very close value to 1 for β reduces the search ability of the

algorithm. {V1} is a vector which its start point is the previous location of the

Fig. 11.1 Movement of

colonies to its new location

in the ICA [2] (a) toward

their relevant imperialist,

(b) in a deviated direction

(c) using various random

values
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colony and its direction is toward the imperialist locations. The length of this vector

is set to unity.

In order to increase the searching around the imperialist, a random amount of

deviation is added to the direction of movement. Figure 11.1b shows the new

direction which is obtained by deviating the previous location of the country as

big as θ. In this figure θ is a random number with uniform distribution as

θ ¼ U �γ, þ γð Þ ð11:19Þ

where γ is a parameter that adjusts the deviation from the original direction. In most

of the implementations, a value of about 2 for β [3] and about 0.1 (Rad) for γ, result
in a good convergence of the countries to the global minimum.

In order to improve the performance of the ICA, we change the movement step

as follow:

First: different random values are utilized for different components of the

solution vector inplace of only one value (11.18) as

xf gnew ¼ xf gold þ β � d � randf g 	 V1f g ð11:20Þ

where {V1} is the base vector starting the previous location of colony and directing

to the imperialistic; {rand} is a random vector and the sign “
N

” denotes an

element-by-element multiplication. Since these random values are not necessarily

the same, the colony is deviated automatically without using the definition of θ.
However, for having a suitable exploration ability, the utilization of θ is modified

by defining a new vector.

Second: From the above equation, it is possible to obtain the orthogonal colony-

imperialistic contacting line (denoted by {V2}). Then, deviation process is

performed by using this vector in place of using θ as

xf gnew ¼ xf gold þ β � d � randf g 	 V1f g þ U �1, þ 1ð Þ � tan θð Þ � d

� V2f g, V1f g � V2f g ¼ 0,
���� V2f g���� ¼ 1

ð11:21Þ

Figure 11.1c describes the performance of this movement. In order to access the

discrete results after performing the movement process, a rounding function is

utilized which changes the magnitude of the results by the value of the nearest

discrete value. Although this may reduce the exploration of the algorithm [8], as

explained in the above, however we increase this ability by considering different

random values and by defining a new deviation step.

Step 3: Imperialist Updating If the new position of the colony is better than that

of its relevant imperialist (considering the cost function), the imperialist and the

colony change their positions and the new location with a lower cost becomes the

imperialist. Then the other colonies move toward this new position.
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Step 4: Imperialistic Competition Imperialistic competition is another strategy

utilized in the ICA methodology. All empires try to take the possession of colonies

of other empires and control them. The imperialistic competition gradually reduces

the power of weaker empires and increases the power of more powerful ones. The

imperialistic competition is modeled by just picking some (usually one) of the

weakest colonies of the weakest empires and making a competition among all

empires to possess these (this) colonies. In this competition based on their total

power, each of empires will have a likelihood of taking possession of the mentioned

colonies.

Total power of an empire is mainly affected by the power of imperialist country.

But the power of the colonies of an empire has an effect, though negligible, on the

total power of that empire. This fact is modeled by defining the total cost as

TCj ¼ f
imp;jð Þ
cos t þ ξ �

XNCj

i¼1

f
col;ið Þ
cos t

NCj
ð11:22Þ

where TCn is the total cost of the jth empire and ξ is a positive number which is

considered to be less than 1. A small value for ξ causes the total power of the empire

to be determined by just the imperialist and increasing it will add to the role of the

colonies in determining the total power of the corresponding empire. The value of

0.1 for ξ is found to be a suitable value in most of the implementations [3]. Similar

to (11.16), the normalized total cost is defined as

NTCj ¼ TCj �max
i

TCið Þ ð11:23Þ

where NTCj is the normalized total cost of the jth empire. Having the normalized

total cost, the possession probability of each empire is evaluated by:

Pj ¼ NTCjXNimp

i¼1

NTCi

����������

����������
ð11:24Þ

Step 5: Implementation When an empire loses all of its colonies, it is assumed to

be collapsed. In this model implementation, where the powerless empires collapse

in the imperialistic competition, the corresponding colonies will be divided among

the other empires.

Step 6: Terminating Criterion Control Moving colonies toward imperialists are

continued and imperialistic competition and implementations are performed during

the search process. When the number of iterations reaches to a pre-defined value or
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the amount of improvement in the best result reduces to a pre-defined value, the

searching process is stopped.

The movement of colonies towards their relevant imperialist states along with

competition among empires and also the collapse mechanism will hopefully cause

all the countries to converge to a state in which there exist just one empire in the

world and all the other countries are colonies of that empire. In this ideal new world,

colonies will have the same position and power as the imperialist.

11.4 Design Examples

In this section, the optimal design of four steel structures is performed by the

present algorithm. The final results are compared to the solutions of other methods

to demonstrate the efficiency of the present approach. The examples contain a dome

shaped truss example with continuous search space and a 72-bar spatial truss with

the discrete variables. In addition, two benchmark frames are optimized by the ICA

to find the optimum designs.

11.4.1 Design of a 120-Bar Dome Shaped Truss

The topology and elements group numbers of 120-bar dome truss are shown in

Fig. 11.2. The modulus of elasticity is 30,450 ksi (210,000 MPa), and the material

density is 0.288 lb/in3 (7,971.810 kg/m3). The yield stress of steel is taken as 58.0

ksi (400 MPa). The dome is considered to be subjected to vertical loading at all the

unsupported joints. These loads are taken as �13.49 kips (�60 kN) at node

1, �6.744 kips (�30 kN) at nodes 2 through 14, and �2.248 kips (�10 kN) at

the rest of the nodes. The minimum cross-sectional area of all members is 0.775 in2

(2 cm2) and the maximum cross-sectional area is taken as 20.0 in2 (129.03 cm2).

The constraints are stress constraints [as defined by (11.5) and (11.6)] and displace-

ment limitations of 
0.1969 in (
5 mm) imposed on all nodes in x, y and

z directions.
Table 11.1 shows the best solution vectors, the corresponding weights and the

required number of analyses for convergence of the present algorithm and some

other metaheuristic algorithms. ICA-based algorithm needs 6,000 analyses to find

the best solution while this number is equal to 150,000, 32,600, 10,000, 10,000 and

7,000 analyses for a PSO-based algorithm [11], a PSO and ACO hybrid algorithm

[11], a combination algorithm based on PSO, ACO and HS [11], an improved BB–

BC method using PSO properties [12] and the CSS algorithm [13], respectively. As

a result, the ICA optimization algorithm has best convergence rates among the

considered metaheuristics. Figure 11.3 shows the convergence history for the best

results of the ICA. Comparing the final results of the ICA and those of the other

metaheuristics, ICA finds the third best result while the difference between the
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result of the ICA and those obtained by the HPSACO and the CSS methods, as the

first and second best results, are very small. The maximum value for displacement

is equal to 0.1969 in (5 mm) and the maximum stress ratio is equal to 99.999 %.

Fig. 11.2 Schematic of a 120-bar dome shaped truss
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11.4.2 Design of a 72-Bar Spatial Truss

For the 72-bar spatial truss structure shown in Fig. 11.4, the material density is

0.1 lb/in3 (2,767.990 kg/m3) and the modulus of elasticity is 10,000 ksi

(68,950 MPa). The members are subjected to the stress limits of 
25 ksi

(
172.375 MPa). The nodes are subjected to the displacement limits of 
0.25 in

(
0.635 cm). The 72 structural members of this spatial truss are categorized as

16 groups using symmetry: (1) A1–A4, (2) A5–A12, (3) A13–A16, (4) A17–A18,

Table 11.1 Performance comparison for the 120-bar dome truss

Optimal cross-sectional areas (in2)

Element

group

PSOPC

[10]

PSACO

[10]

HPSACO

[10]

HBB–BC

[9] CSS [6]

Present work [2]

in2 cm2

1 A1 3.040 3.026 3.095 3.037 3.027 3.0275 19.532

2 A2 13.149 15.222 14.405 14.431 14.606 14.4596 93.288

3 A3 5.646 4.904 5.020 5.130 5.044 5.2446 33.836

4 A4 3.143 3.123 3.352 3.134 3.139 3.1413 20.266

5 A5 8.759 8.341 8.631 8.591 8.543 8.4541 54.543

6 A6 3.758 3.418 3.432 3.377 3.367 3.3567 21.656

7 A7 2.502 2.498 2.499 2.500 2.497 2.4947 16.095

Best

weight

(lb)

33,481.2 33,263.9 33,248.9 33,287.9 33,251.9 33,256.2 147,931

N

No. of

required

analyses

150,000 32,600 10,000 10,000 7,000 6,000

0 50 100 150 200
3

4

5

6

7

8

9

10
x 104

Iteration

W
ei

gh
ts

 (l
b)

The best weights
The mean weights

Fig. 11.3 The convergence

for the dome shaped truss

obtained by the ICA [2]
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(5) A19–A22, (6) A23–A30, (7) A31–A34, (8) A35–A36, (9) A37–A40, (10) A41–A48,

(11) A49–A52, (12) A53–A54, (13) A55–A58, (14) A59–A66 (15), A67–A70, and

(16) A71–A72. The discrete variables are selected from Table 11.2. The values and

directions of the two load cases applied to the 72-bar spatial truss are listed in

Table 11.3.

The ICA algorithm can find the best design among the other existing studies. The

best weight of the ICA algorithm is 392.84 lb (178.19 kg), while it is 393.38 lb

(178.43 kg), for the HPSACO [8]. The weight of the GA-based algorithm is equal to

427.203 lb (193.77 kg) [14]. The PSOPC and the standard PSO algorithms do not

find optimal results when the maximum number of iterations is reached [10]. The

HPSO and HPSACO algorithms get the optimal solution after 50,000 [10] and

5,330 [11] analyses while it takes only 4,500 analyses for the ICA. Table 11.4

compares the results of the CSS algorithm to those of the previously reported

methods in the literature. In this example, stress constraints are not dominant

while the maximum nodal displacement (0.2499 in or 0.635 cm) is close to its

allowable value.

11.4.3 Design of a 3-Bay, 15-Story Frame

The configuration and applied loads of a three-bay fifty-story frame structure [5] is

shown in Fig. 11.5. The displacement and AISC combined strength constraints are

the performance constraint of this frame. The sway of the top story is limited to

Fig. 11.4 Schematic of a 72-bar spatial truss
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23.5 cm (9.25 in.). The material has a modulus of elasticity equal to E ¼ 200 GPa

(29,000 ksi) and a yield stress of Fy ¼ 248.2 MPa (36 ksi). The effective length

factors of the members are calculated as Kx � 0 for a sway-permitted frame and the

out-of-plane effective length factor is specified as Ky ¼ 1.0. Each column is

Table 11.2 The available

cross-section areas of the

AISC code

No. in.2 mm2 No. in.2 mm2

1 0.111 (71.613) 33 3.840 (2,477.414)

2 0.141 (90.968) 34 3.870 (2,496.769)

3 0.196 (126.451) 35 3.880 (2,503.221)

4 0.250 (161.290) 36 4.180 (2,696.769)

5 0.307 (198.064) 37 4.220 (2,722.575)

6 0.391 (252.258) 38 4.490 (2,896.768)

7 0.442 (285.161) 39 4.590 (2,961.284)

8 0.563 (363.225) 40 4.800 (3,096.768)

9 0.602 (388.386) 41 4.970 (3,206.445)

10 0.766 (494.193) 42 5.120 (3,303.219)

11 0.785 (506.451) 43 5.740 (3,703.218)

12 0.994 (641.289) 44 7.220 (4,658.055)

13 1.000 (645.160) 45 7.970 (5,141.925)

14 1.228 (792.256) 46 8.530 (5,503.215)

15 1.266 (816.773) 47 9.300 (5,999.988)

16 1.457 (939.998) 48 10.850 (6,999.986)

17 1.563 (1,008.385) 49 11.500 (7,419.430)

18 1.620 (1,045.159) 50 13.500 (8,709.660)

19 1.800 (1,161.288) 51 13.900 (8,967.724)

20 1.990 (1,283.868) 52 14.200 (9,161.272)

21 2.130 (1,374.191) 53 15.500 (9,999.980)

22 2.380 (1,535.481) 54 16.000 (10,322.560)

23 2.620 (1,690.319) 55 16.900 (10,903.204)

24 2.630 (1,696.771) 56 18.800 (12,129.008)

25 2.880 (1,858.061) 57 19.900 (12,838.684)

26 2.930 (1,890.319) 58 22.000 (14,193.520)

27 3.090 (1,993.544) 59 22.900 (14,774.164)

28 1.130 (729.031) 60 24.500 (15,806.420)

29 3.380 (2,180.641) 61 26.500 (17,096.740)

30 3.470 (2,238.705) 62 28.000 (18,064.480)

31 3.550 (2,290.318) 63 30.000 (19,354.800)

32 3.630 (2,341.931) 64 33.500 (21,612.860)

Table 11.3 Loading conditions for the 72-bar spatial truss

Node

Case 1 Case 2

PX kips (kN) PY kips (kN) PZ kips (kN) PX PY PZ kips (kN)

17 5.0 (22.25) 5.0 (22.25) �5.0 (22.25) 0.0 0.0 �5.0 (22.25)

18 0.0 0.0 0.0 0.0 0.0 �5.0 (22.25)

19 0.0 0.0 0.0 0.0 0.0 �5.0 (22.25)

20 0.0 0.0 0.0 0.0 0.0 �5.0 (22.25)
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considered as non-braced along its length, and the non-braced length for each beam

member is specified as one-fifth of the span length.

The optimum design of the frame is obtained after 6,000 analyses by using the

ICA, having the minimum weight of 417.46 kN (93.85 kips). The optimum designs

for HBB–BC [9], HPSACO, PSOPC and PSO [5] has the weights of 434.54

(97.65kN), 426.36 (95.85), 452.34 kN (101.69 kips) and 496.68 kN (111.66 kips),

respectively. Table 11.5 summarizes the optimal designs for these algorithms. The

HBB–BC approach could find the result after 9,900 analyses [9] and the HSPACO

needs 6,800 analyses to reach a solution [5].

Figure 11.6 shows the convergence history for the result of the ICA method. The

global sway at the top story is 11.52 cm, which is less than the maximum sway. The

maximum value for the stress ratio is equal to 98.45 %. Also, the maximum drift

story is equal to 1.04 cm.

11.4.4 Design of a 3-Bay 24-Story Frame

Figure 11.7 shows the topology and the service loading conditions of a three-bay

twenty four-story frame consisting of 168 members originally designed by Davison

and Adams [15]. Camp et al. utilized ant colony optimization [16], Degertekin

developed least-weight frame designs for this structure using a harmony search [17]

Table 11.4 Optimal design comparison for the 72-bar spatial truss

Element group

Optimal cross-sectional areas (in2)

GA [14] PSOPC [10] HPSO [10] HPSACO [11] Present work [2]

1 A1 ~ A4 0.196 4.490 4.970 1.800 1.99

2 A5 ~ A12 0.602 1.457 1.228 0.442 0.442

3 A13 ~ A16 0.307 0.111 0.111 0.141 0.111

4 A17 ~ A18 0.766 0.111 0.111 0.111 0.141

5 A19 ~ A22 0.391 2.620 2.880 1.228 1.228

6 A23 ~ A30 0.391 1.130 1.457 0.563 0.602

7 A31 ~ A34 0.141 0.196 0.141 0.111 0.111

8 A35 ~ A36 0.111 0.111 0.111 0.111 0.141

9 A37 ~ A40 1.800 1.266 1.563 0.563 0.563

10 A41 ~ A48 0.602 1.457 1.228 0.563 0.563

11 A49 ~ A52 0.141 0.111 0.111 0.111 0.111

12 A53 ~ A54 0.307 0.111 0.196 0.250 0.111

13 A55 ~ A58 1.563 0.442 0.391 0.196 0.196

14 A59 ~ A66 0.766 1.457 1.457 0.563 0.563

15 A67 ~ A70 0.141 1.228 0.766 0.442 0.307

16 A71 ~ A72 0.111 1.457 1.563 0.563 0.602

Weight (lb) 427.203 941.82 933.09 393.380 392.84

No. of required analyses – 150,000 50,000 5,330 4,500
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Fig. 11.5 Schematic of a

three-bay fifteen-story

frame
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and the authors utilized a hybrid PSO and BB–BC algorithm to solve this

example [9].

The frame is designed following the LRFD specification and uses an inter-story

drift displacement constraint. The material properties are: the modulus of elasticity

E ¼ 205 GPa (29,732 ksi) and a yield stress of Fy ¼ 230.3 MPa (33.4 ksi). The

detailed information is available in [9].

Table 11.6 lists the designs developed by: the ICA, the HBB–BC algorithm [9],

the ant colony algorithm [16] and harmony search [17]. The ICA algorithm required

7,500 frame analyses to converge to a solution, while the 10,500 analyses were

required by HBB–BC [9], 15,500 analyses by ACO [16] and 13,924 analyses by HS

[17]. In this example, ICA can find the best results with 946.25 kN which is 3.67 %,

1.01 % and 1.60 % lighter than the results of the ACO [16], HS [17], and HBB–BC

Table 11.5 Optimal design comparison for the 3-bay 15-story frame

Element group

Optimal W-shaped sections

PSO [5] PSOPC [5] HPSACO [5] HBB–BC [9] Present work [2]

1 W33X118 W26X129 W21X111 W24X117 W24X117

2 W33X263 W24X131 W18X158 W21X132 W21X147

3 W24X76 W24X103 W10X88 W12X95 W27X84

4 W36X256 W33X141 W30X116 W18X119 W27X114

5 W21X73 W24X104 W21X83 W21X93 W14X74

6 W18X86 W10X88 W24X103 W18X97 W18X86

7 W18X65 W14X74 W21X55 W18X76 W12X96

8 W21X68 W26X94 W26X114 W18X65 W24X68

9 W18X60 W21X57 W10X33 W18X60 W10X39

10 W18X65 W18X71 W18X46 W10X39 W12X40

11 W21X44 W21X44 W21X44 W21X48 W21X44

Weight (kN) 496.68 452.34 426.36 434.54 417.466

No. of required analyses 50,000 50,000 6,800 9,900 6,000
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Fig. 11.7 Schematic of a

three-bay twenty four-story

frame

11.4 Design Examples 365



[9], respectively. The global sway at the top story is 25.52 cm (10.05 in.) which is

less than the maximum sway. The maximum value for the stress ratio is 99.37 %

and the maximum inter-story drift is equal to 1.215 cm (0.4784 in.). Figure 11.8

shows the values of the stress ratios for all elements of the optimum design obtained

by the ICA algorithm.

11.5 Discussions

Many of metaheuristic algorithms are proposed based on the simulation of the

natural processes. The genetic algorithms, particle swarm optimization, ant colony

optimization, harmony search and charged system search are the most well-known

metaheuristic algorithms. As an alternative to these metaheuristic approaches, this

chapter investigates the performance of a new metaheuristic algorithm to optimize

the design of skeletal structures. This method is called ICA which is a socio-

politically motivated optimization algorithm.

Table 11.6 Optimal design comparison for the 3-bay 24-story frame

Element group

Optimal W-shaped sections

Camp et al. [16] Degertekin [17]

ACO HS HBB–BC [9] Present work [2]

1 W30X90 W30X90 W30X90 W30X90

2 W8X18 W10X22 W21X48 W21X50

3 W24X55 W18X40 W18X46 W24X55

4 W8X21 W12X16 W8X21 W8X28

5 W14X145 W14X176 W14X176 W14X109

6 W14X132 W14X176 W14X159 W14X159

7 W14X132 W14X132 W14X109 W14X120

8 W14X132 W14X109 W14X90 W14X90

9 W14X68 W14X82 W14X82 W14X74

10 W14X53 W14X74 W14X74 W14X68

11 W14X43 W14X34 W14X38 W14X30

12 W14X43 W14X22 W14X30 W14X38

13 W14X145 W14X145 W14X159 W14X159

14 W14X145 W14X132 W14X132 W14X132

15 W14X120 W14X109 W14X109 W14X99

16 W14X90 W14X82 W14X82 W14X82

17 W14X90 W14X61 W14X68 W14X68

18 W14X61 W14X48 W14X48 W14X48

19 W14X30 W14X30 W14X34 W14X34

20 W14X26 W14X22 W14X26 W14X22

Weight (kN) 980.63 956.13 960.90 946.25

No. of required analyses 15,500 13,924 10,500 7,500
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In the ICA, an agent or a country can be treated as a colony or imperialist and the

agents collectively form a number of empires. This algorithm starts with some

random initial countries. Some of the best countries are selected to be the imperi-

alist states and all the other countries form the colonies of these imperialists.

Imperialistic competitions among the empires direct the search process towards

the powerful imperialist and thus to the optimum spaces. During the competition,

when weak empires collapse, the powerful ones take possession of their colonies. In

addition, colonies of an empire move toward their related imperialist. In order to

improve the ICA performance, here two movement steps are defined by using:

(1) different random values for the components of the solution vector instead of

only one value; (2) deviation by using orthogonal colony-imperialistic contacting

line instead of using θ.
Four design examples consisting of two trusses and two frames are considered to

illustrate the efficiency of the present algorithm. The comparisons of the numerical

results of these structures utilizing the ICA and those obtained by other advanced

optimization methods are performed to demonstrate the robustness of the present

algorithm in finding good results in a less number of iterations. In order to highlight

the positive characters of the ICA, a comparison of the ICA and the PSO algorithm

is provided in the following:

– In the ICA algorithm, there is no need to save the pervious location of agents

(velocity), while the PSO requires two positions saving memory (the current

position and the pervious position).

– In the ICA algorithm, {V1} determines the movement direction of agents, while

in the PSO, this is performed by the global and local best vectors. The vector

{V1} is the best of the empire, i.e., it is the best agent among a predefined number

of agents, while in the PSO the global best, denoted by {Pg}, is the position of

the best agent of all agents. Therefore, {V1} will change for different agents

during an iteration (depending on the empire which they belong to) and this

helps the algorithm to increase the exploration ability, while {Pg} is constant for

all the agents in an iteration.
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– In the ICA algorithm, saving the local best position of agents is not necessary,

and instead the vector {V2} is utilized.
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