
Towards a Trusted Launch Mechanism
for Virtual Machines in Cloud Computing

Juan Wang1,2(B), Xuhui Xie1, Qingfei Wang1, Fei Yan1,2, Hongxin Hu3,
Sijun Zhou1, and Tao Wang1

1 School of Computer, Wuhan University, Wuhan 430072, Hubei, China
2 Key Laboratory of Aerospace Information Security and Trust Computing,

Ministry of Education, Wuhan 430072, Hubei, China
jwang@whu.edu.cn

3 Delaware State University, Dover, DE 19901, USA
hhu@desu.edu

Abstract. Although cloud computing enables us to dynamically pro-
vide servers with the ability to address a wide range of needs, this par-
adigm also brings forth many new security challenges. The security of
virtual machines (VM) is one of such critical challenges for cloud comput-
ing. However, existing techniques for VM security, such as Terra, tboot
and TXT, mainly focus on the security of VM running environment.
There is a lack of protection mechanism for VMs themselves in clouds.
In this paper, we propose a trusted launch solution for virtual machines
(TLVM), including four systematic mechanisms, image encryption, mea-
surement, attestation and security-enhanced authentication, for protect-
ing VMs in clouds. We also discuss a proof-of-concept implementation
of our approach. Our experimental results demonstrate the feasibility of
our solution to protect the whole launch process of a VM.

Keywords: Cloud security · VM · Measurement · Attestation

1 Introduction

The emerging cloud-computing paradigm is rapidly gaining momentum as an
alternative to traditional information technology due to the reason that it pro-
vides an extensible and powerful environment for growing amounts of services
and data. However, the security of current cloud infrastructures is a key chal-
lenge, probably hindering the development of cloud computing.

For infrastructure as a service (IaaS) in cloud computing, virtual machines are
leased to users. Some sensitive user data is stored in the virtual machines. Once
the data is leaked outside of the virtual machines, it will damage the interests
of users. Thus, how to protect the security of virtual machines is crucial in IaaS.
However, the existing techniques for VM security like Terra [1], TXT [2] and
tboot [3] mainly focus on the security of VM running environment, such as the

V.C.M. Leung and M. Chen (Eds.): CloudComp 2013, LNICST 133, pp. 90–101, 2014.
DOI: 10.1007/978-3-319-05506-0 9, c© Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering 2014



Towards a Trusted Launch Mechanism for Virtual Machines 91

security of host and virtual machine monitor (VMM) [4,5]. There is a lack of
protection mechanism for VMs themselves in clouds.

To address such a critical problem, we propose a trusted launch solution
for virtual machines (TLVM). In TLVM, four systematic mechanisms including
image encryption, measurement, attestation and trusted-enhanced authentica-
tion are used to protect virtual machines. The image encryption mechanism can
prevent illegal users to start a VM. The measurement and attestation mecha-
nisms can protect the integrity of a VM. The trusted-enhanced authentication
mechanism can achieve two-way authentication between a user and a VM. Con-
sequently, the overall solution can protect the whole launch process of a VM in
cloud computing.

The remainder of this paper is organized as follows. In Sect. 2, we describe
our goals and the framework of TLVM. In Sect. 3, we present the detailed design
of our systematic mechanism for protecting VM security. Section 4 presents the
implementation of TLVM. Section 5 discusses the experimental evaluation of our
solution. Finally, Sect. 6 concludes this paper.

2 Trusted Launch of Virtual Machines

2.1 Trust and Attack Model

In our trust and attack model, an administrator is able to copy VM images to
outsides of a trusted domain. The trusted domain comprises trusted nodes. The
trusted nodes including hosts and VMM can be achieved by tboot, TXT and
dynamic measurement technology, such as SICE [8] and TEE [5]. Furthermore,
the attackers including the administrators of IaaS can tamper with VM images.
In addition, since a user can not trust the identity of the VM, the user suffers
from the VM phishing attack.

A VM instance is considered trusted in the current attack model if and only
if it fulfills the following criteria:

(1) The VM image used for the instance is not tampered with.
(2) The VM instance is launched on a trusted domain.
(3) The identity of the VM is trusted.

In above criteria, the second one can be insured by tboot, TXT and dynamic
measurement [9,10] technology, such as SICE and TEE. These methods are not
our major focus in the paper. Instead, we investigate the trust issue for VM
launch.

2.2 Overview

Trusted Computing [6] is a technology developed and promoted by the Trusted
Computing Group. With Trusted Computing, a computer will consistently
behave in expected ways, and those behaviors will be enforced by computer
hardware and software. Enforcing those behaviors is achieved by building a



92 J. Wang et al.

trusted chain based on trusted base. Five main key technologies: endorsement
key, secure input and output, memory protected execution, sealed storage, and
remote attestation, can be used to ensure the trust of a protected platform.

Based on the trusted computing technology, TLVM provides a security pro-
tection mechanism for virtual machines in a cloud computing platform which
can guarantee the confidentiality, integrity and authentication of a user’s VM.
In TLVM, we add the modules of image encryption, measurement and attes-
tation in VMM. Furthermore, the authentication module based on Usbkey and
trusted platform module (TPM) is added in VMs. These mechanisms provide a
systematic solution of secure launching a VM.

2.3 Trusted Launch Process of a VM

The framework of TLVM and secure launch process of a VM are depicted as
Fig. 1. The system is composed of a cloud management center including a user
management module, a VM management module, a key management and attes-
tation server, a host where virtual machines are running, an Usbkey administra-
tor and users. The launch process of a VM is shown as following.

(1) A user requests to register in the cloud management center.

Fig. 1. Trusted launch process of a VM

(2) An Usbkey administrator requests a certificate, a private key and a sym-
metric key to the cloud management center server. The cloud management center
generates a certificate, a private key and a symmetric key and then writes them
to an Usbkey. Meanwhile, the symmetric key which is encrypted with the storage



Towards a Trusted Launch Mechanism for Virtual Machines 93

root key (SRK) of the TPM on the cloud management server will be saved to
the cloud key management center.

(3) The Usbkey administrator issues the Usbkey to the user.
(4) The user logins to the cloud management center and applies for a virtual

machine. The cloud manager center creates a virtual machine for the user.
(5) The encrypted virtual machine image is launched on a host to run. Mean-

while, the symmetric key will be migrated to the host by TPM key migration
command and then be protected by the local TPM.The VMM image encryption
and decryption module will decrypt the image with the migrated symmetric key.
Then the virtual machine image will be measured by measurement module.

(6) The measurement result including measurement value and report signed
by TPM in the host will be sent to remote attestation server to verify the
integrity of the image.

(7) The user will login to the VM using the Usbkey. The VM will communi-
cate to the host and get the migrated key. The VM and the user will mutually
authenticate by the symmetric key in the Usbkey and the migrated key.

(8) When the user logins the VM. The trust query module in VM will com-
municate with the attestation server and get the VM’s measured result. Then
the trusted status will be shown on the VM’s desktop.

2.4 Detailed Design

In TLVM, the encryption/decryption mechanism of image, measurement, attes-
tation and security-enhanced mechanism based on TPM are added. The detailed
design of them is described as following.

2.4.1 Encryption Mechanism of VM Image
In clouds, a virtual machine’s images are possible to be started by unauthorized
users. For example, administrators possibly copy a virtual machine image to
outside of trusted domains and then start the virtual machine. In order to protect
the user’s VM from unauthorized starting, the strongest method is full virtual
machine disk image encryption [11], which makes it difficult to recover the image
for unauthorized users. However, it is obviously a time-consuming process. To
achieve a tradeoff between security and performance, we only encrypt the main
disk information of a virtual machine image. For a common disk file, we could
encrypt the master boot record (MBR), Boot, and some logic partitions. But in
a cloud environment, some virtual machines may have the same MBR or boot. It
is easy to copy a VM to attack other VMs. Thus, we have designed an image file
encryption which is based on the file system and user’s configuration. We first
get the user’s symmetric key which is protected by TPM, and get the partition
and file system type information from the MBR, then read the user’s encryption
configuration. Finally, we encrypt the file contained in the configuration, and
then encrypt key information of a file system, such as index structure.



94 J. Wang et al.

The encryption process of a VM image is summarized as follows:

(1) Decrypt the symmetric key which is migrated to the host where VM is
running when the VM launches and is protested by the TPM’s SRK in the host.

(2) Get the partition and operating system’s file system. For every image,
partition table is in the end of MBR. We can get the partition information such
as initial location, size, file system etc.

(3) Load the user’s crypto configuration. Every VM has a crypto configu-
ration which has been protected by the VM’s symmetric key. Every operating
system has a default configuration.

(4) Check whether the image file has been encrypted. In order to avoid repeat-
ing encryption, we have set a flag to identify the image file’s crypto status. If
the status shows that the image file has been encrypted, the crypto process will
be broken.

(5) Encrypt the file included in a configure file. In order to balance the
encryption performance and security, we have provided elastic encryption. The
configuration includes some kernel file which may be common for the same oper-
ating system. For windows 7, it must include the boot, registry, bootmbr, ntldr,
boot.ini, winlog.exe and some important files. These files are invisible for users,
and users can also add other important files to encrypt.

(6) Encrypt import partition for certain file systems. Different file systems
have different organizations of the files. For a Linux system, we search every
partition, and get the basic information about the partition from super block
and traverse all block groups. Then, we encrypt group descriptors table,block
bitmap, inode bitmap, inode table of every block group. Because the image files
are in general large, we only rewrite the encrypt section to the image file.

2.4.2 Measurement Mechanism of VM
The measurement mechanism of VM provides integrity measurement of a VM
before it starts. The integrity of a system is a semantic concept that indicates
whether the system has been modified in an unauthorized manner. To measure
an entire system is very expensive in practice. One efficient way is to associate
the integrity semantics with some important files. In our mechanism, we measure
the most important files of different systems and some files defined by users. For
Linux systems, we have measured the boot, grub, kernel, kernel modules, binaries
shared libraries and dynamic libraries. For Linux users, we should measure the
data and applications. If the VM is a web server, we should measure httpd,
mod access.so, and libjvm.so.

The measurement process of a VM image is described as follows:

(1) Get the configuration file of measurement by VM’s UUID. If the config-
uration file does not exist, a default one will be used.

(2) Get the partition and operating system’s information.
(3) Mount every partition and measure the files defined in the configuration

file. Use sha1 algorithm to compute the hash value of each file. All hash values
will be saved in a measurement log file.



Towards a Trusted Launch Mechanism for Virtual Machines 95

(4) Iterate the hash values in the measurement log as the final measurement
values.

(5) Call the attestation client module to send and verify the measurement
values.

2.4.3 Attestation Mechanism
Remote attestation [7] does the integrity verification of a system. It can prove
whether system data is tampered with. It also provides a credible platform status
report to a verifier. For remote attestation, TPM is the trusted root of the report.
It helps ensure the report deriving from the current integrity measure values.

There are some differences between the remote attestation of VM and the
general remote attestation protocol. The general process of remote attestation
is shown in Fig. 2.

Fig. 2. Remote attestation protocol

A platform (Challenger) sends a challenging message and a nonce to another
platform (Certifier), asking for one or more PCR values in order to verify the
status of the platform. Certifier uses attestation identity key (AIK) to sign PCR
values specified by the challenger, attached to the corresponding measure log
entries and AIK certificate, sending to the challenger. Then challenger verifies
the value. The validation process includes three steps, (1) re-compute the hash
value according to the measure log; (2) verify the AIK certificate; and (3) match
the signature value with the expected value.

For VM attestation, the measurement values cannot store in TPM’s PCR,
because the number of current TPM PCR is only 24, but there are a lot of VMs
on a host and the number of VMs is not fixed. Moreover, the measurement values
need to be sent to attestation server when a VM starts. The process of remote
attestation in our mechanism is shown in Fig. 3. After measuring of VM, the
measurement module invokes the attestation client, transfer the measurement
value and log to the attestation client. Attestation client receives them, and then
triggers the attestation server to send a nonce to the attestation client. After the
attestation client gets the nonce, it uses SHA1 algorithm to calculate a hash value
of the measurement value, then loads a private signing key from TPM to sign the
hash value, forming an integrity report. The report includes nonce, measurement
value, hash value, signature value and some other information about the VM.
Finally, the attestation client sends the integrity report and measurement log
to the attestation server. The attestation server checks nonce, verifies hash and
signature, and then judges the platform’s credibility by comparing the signature
and the expected value.



96 J. Wang et al.

Fig. 3. Process of remote attestation

2.4.4 Trusted Authentication Mechanism of VMs
When the integrity of a VM is achieved by measurement and remote attesta-
tion, the VM will be started. However, currently VMs can authenticate users in
clouds, but users can not authenticate VMs. Hence, a user easily suffers from a
VM phishing attack. To address the issue, we propose a mutual authentication
mechanism between VMs and a user based on migrated symmetric key from the
TPM of cloud management center and Usbkey. When a user sends request to
a VM to login, a VM agent will generate a random N1 and encrypt with the
symmetric key K2 migrated from the TPM of cloud management center. The
VM agent sends the encrypted N1 to the user. The user decrypts the N1 with
the symmetric key K1 issued by the cloud administer. The Usbkey of user side
also generates a random N2 and encrypts the sequence (N1, N2) with K1 sent to
the VM agent. The VM agent receives the sequence and gets the random N1. If
the random N1 is same with the original random N1, the VM can ensure the user
is legal. Furthermore, the VM agent uses K2 to encrypt random N2 and sends
this random to the user. The user compares the N2 with the initial random N2.
If they are same, the user can believe that the VM is legal. If one of them fails,
the manual authentication will terminate.



Towards a Trusted Launch Mechanism for Virtual Machines 97

When the mutual authentication succeeds, the user logins to the VM. The
VM pops up a web page which accesses the attestation server and gets the
integrity verification result of VM image, displaying the trusted status of the
VM. According to this measurement verification result, a user can judge that if
the VM has been tampered with.

3 Implementation

We have implemented our proposed mechanisms based on Xen and Eucalyptus.
The detailed implementation environment of our system is shown in Table 1.

Table 1. Implementation environment of the system

Name Configuration

Cloud platform Eucalyptus 3.1
VMM XEN 4.1.2
Host HUAWEI RH2288
Domain0 OS SUSE Linux Enterprise 11SP2
Virtual-Machine OS Windows 7, ubuntu 10.10
TPM STM 1.2.7.0
TSS Trousers 0.3.10
Database PostgreSQL9.0

For implementing the crypto of a virtual machineimage file, the VM’s image
should be decrypted before the VM starts and encrypted when the VM shuts
down. We also consider some exceptional situation, for example the host where
the VM is running suddenly powers off when a VM image is being encrypted.
In that situation, we should be able to recover the VM image file when the host
powers on. We have modified the source code of Xen to support our approach.
The number of modified code is about 1000 lines. We adopted 256-bits Advanced
Encryption Standard (AES) as our crypto algorithm.

The principle of encrypting a VM image file system is as following. For Linux
system, the file system is ext2, ext3 or ext4 and the basic storage cell of ext is
block. One partition has a server block group. Every group block has a number of
blocks. The group descriptors table, block bitmap, Inode bitmap and Inode table
are stored in front of each block group’s description information. The block group
0 has a super block. The super block includes a number of information about
this partition such as block size, block number, block group number, and file
system flag, node number. The super block has several backups in some block
groups. We encrypted the above image file descriptor. For Windows systems,
the file system is NTFS. In NTFS, the most important structure is Master File
Table (MFT). It includes some system files and file area. Every file has a record
in MFT. For every partition it has a backup for MFT. We can encrypt the files
to prevent an attacker from opening the VM image file.



98 J. Wang et al.

For measuring the VM image, such as Linux and Windows 7 virtual machine
images, we modified the source code of Xen mainly in XendXm and Python.
The amount of modification is about 2000 lines of code. Xen supports two types
of virtualization technologies: full-virtualization and para-virtualization. Differ-
ent types have different implementation mechanisms and image files. We measure
the VM image based on the full-virtualization. We should first obtain the OS
type, and load the measurement nodes based on the OS type. All measurement
nodes are stored serially in a XML configuration file. The XML file can be modi-
fied by the manager, if the manager wants to measure more files. Then, we should
read the partition information from MBR and measurement each partition. In
addition, we firstly mount the boot files and measure them. Furthermore, other
partitions are mounted and measured. We store all measurement log and hash
values in a XML file. The hash value is iterated as the final hash value.Finally,
the measurement module will call attestation module to sign and send the final
value and measurement the log file to attest the measurement values.

The attestation module will additionally send the measurement values to the
attestation server to verify its integrity. The remote attestation implementation
includes two main modules: client signature module and server verification mod-
ule. First, the client computes hash of the measurement value outside of TPM.
Then, the client invokes an interface to implement the signature in TPM. We
sign the hash value by using “Tspi Hash Sign”. The sign key is loaded by the
VM UUID. Then, the signature value is returned to form an integrity report.

The attestation server receives the integrity report “report.xml” from the
attestation client through the web service. Then the attestation server dester-
ilizes report.xml into a java content tree. We use JAXB provided by java to
implement unmarshalling process. Marshaller class marshals the given object to
a given javax.xml.transform.result. Result is a tagging interface that basically
represents an XML output abstraction. The Unmarshaller class reads from the
given javax.xml.transform.source, and returns the object read. As with Result,
source is a tagging interface that has three concrete implementations. After pars-
ing the report, the server checks the nonce, verifies the hash, uses public signing
key to verify the signature. The public signing key is stored in cloud manage-
ment center. When the server wants to verify the signature, it will ask the cloud
management center for the public signing key. The attestation module contains
about 4700 lines of code.

Finally, the user and the VM will mutually authenticate when the VM is
started. For implementing the mutual authentication based on Usbkey and TPM,
we customized a new Credential Provider (CP) for VM images. In the new CP, we
added functions, like data encryption, data decryption, key transmission, etc. For
the user side, we also added authentication client program to implement data
encryption and decryption. Usbkey provider provides Usbkey functions inter-
faces. In order to ensure the security of the new function, we encapsulated our
program to the system library file. We used Openssl to protect their data trans-
mission to guarantee the security of the communication between VM agents
and users. The total code of mutual authentication based on TPM and Usbkey
including the Usbkey driver and API is about 6400 lines.



Towards a Trusted Launch Mechanism for Virtual Machines 99

4 Evaluation

We have measured the runtime performance of our TLVM solution at the imple-
mentation environment shown in Table 1. We have launched the VM of Windows
7 img with 10 G 100 times. The total average time of TLVM is 20.076 s. The aver-
age time of each stage is show in the Table 2.

Table 2. Performance of TLVM for a VM

Decryption Measurement Attestation Authentication

T(s) 4.714 1.382 6.277 7.663

The total time of decrypting VM img is about 4.717 s, including decrypt-
ing key with TPM SRK taking about 3.852 s, saving temp file taking 0.223 s,
decrypting the img disk file system taking 0.267 s, decrypting file specified in
configuration file taking 0.368 s.

The total time of measurement is 1.382 s, including mounting the image
file taking 0.186 s, measuring the kernel taking 0.241 s, measuring dynamic link
libraries taking about 0.432 s, measuring boot files taking 0.164 s and measuring
drivers taking 0.459 s.

The attestation time is about 6.277 s. Generating measurement report based
measurement files takes 0.569 s. Signing the measurement hash value will cost
3.872 s. Verifying the signature and comparing the value with baseline values
takes 0.684 s. The remaining is the time of communication with the attestation
server.

The authentication time with a Usbkey is about 7.663 s including the gentgen-
eration time of nonces, communication time and encryption/decryption time.

Fig. 4. The performance of multiple VM launched



100 J. Wang et al.

Because the input PIN speed of different people vary greatly, we have ignored
the time of inputing PIN.

In order to show the trusted launch performance impact on the host, we
have launched 22 virtual machines with windows 7 image simultaneously. The
tested host is HUAWEI RH2288 with 24 core CPUs. Generally, a VM runs in
a CPU core. As shown in Fig. 4, normally starting 22 virtual machines takes
63 s, and the CPU usage increase quickly. Trusted launch time is about 120 s.
The CPU usage increases slowly. Taken as a whole, the performance overhead is
acceptable.

5 Related Work

Santos et al. [12] presented the design of a trusted cloud compute platform, which
ensures VMs are running on a trusted cloud node. In the paper, a trusted coor-
dinator and a trusted virtual machine monitor are leveraged to ensure VMs are
running on a trusted cluster. The limitation of such a solution is that a trusted
coordinator (TC) which is inside an external trusted entity beyond the cloud
platform like VeriSign is needed, which makes it hard to be adopted in practice.
In addition, they only gave a framework and protocols, but did not implement
them. Mudassar Aslam et al. [14] proposed a secure VM launch protocol using
Trusted Computing. However, they still focused on the integrity of VM running
environment, not the security of the VMs themselves. The difference between our
approach and their work is that their work mainly focus on building a trusted
execution environment for VMs, such as the trust of host and VMM. But our
approach considers the trust of VMs themselves.

Schiffman et al. [13] proposed a centralized verification service called cloud
verifier (CV). A user can request to CV to verify the trust of a VM and a
host. Nicolae Paladi et al. [15] provided a protocol to ensure the launch of a
VM instance. But their method lacks the measurement and remote attesta-
tion mechanism for VMs. Moreover , they can not provide a proof-of-concept
implementation. In contrast, our TLVM mechanism provides a comprehensive
protection approach for VMs. Furthermore, the implementation and evaluation
of our approach are given.

6 Conclusions

In this paper, we proposed a trusted launch solution for virtual machine which
includes four systematic mechanisms, image encryption, measurement, attesta-
tion and security-enhanced authentication, are used to protect a virtual machine
in clouds. Image encryption can prevent unauthorized users to initialize a VM.
Measurement and attestation mechanism can protect the integrity of a VM. The
security-enhanced authentication can achieve two-way authentication between a
user and a VM. The mechanisms provide a systematic solution of secure launch-
ing a VM. We also discuss a proof-of-concept implementation of our approach.
Our experimental results demonstrate the feasibility of our solution to protect
the whole launch process of a VM.



Towards a Trusted Launch Mechanism for Virtual Machines 101

Acknowledgment. This work is sponsored by National Natural Science Foundation
of China (61173138 and 61103628) and the Huawei Technologies Co., Ltd. collaborative
research project.

References

1. Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., Boneh, D.: Terra: a virtual
machine-based platform for trusted computing. ACM SIGOPS Operating Syst.
Rev. 37(5), 193–206 (2003)

2. Intel Corp. Intel Trusted Execution Technology. http://www.intel.com/
technology/security/

3. Intel Corp. Trusted Boot (tboot). http://sourceforge.net/projects/tboot (2007)
4. Azab, A.M., Ning, P., Wang, Z., Jiang, X., Zhang, X., Skalsky, N.C.: HyperSentry:

enabling stealthy in-context measurement of hypervisor integrity. In: Proceedings
of the 17th ACM Conference on Computer and Communications Security, pp. 38–
49. ACM (2010)

5. Dai, W., Jin, H., Zou, D., Xu, S., Zheng, W., Shi, L.: TEE: a virtual DRTM based
execution environment for secure cloud-end computing. In: Proceedings of the 17th
ACM Conference on Computer and Communications Security (CCS 2010), New
York (2010)

6. Challener, D., Yoder, K., Catherman, R.: A Practical Guide to Trusted Computing.
Pearson Education, Indianapolis (2008)

7. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Proceed-
ings of 11th ACM Conference on Computer and Communications Security, ACM
Press (2004)

8. Azab, A.M., Ning, P., Zhang, X.: DSICE: a hardware-level strongly isolated com-
puting environment for x86 multi-core platforms. In: Proceedings of the 18th ACM
Conference on Computer and Communications Security (CCS ’11), pp. 375–388.
ACM, New York (2011)

9. Suh, G.E., Clarke, D., Gassend, B., et al.: Hardware mechanisms for memory
integrity checking[R]. MIT LCS TR-872 (2003)

10. Maheshwari, U., Vingralek, R., Shapiro, W.: How to build a trusted database
system on untrusted storage. In: Proceedings of the 4th USENIX Symposium on
Operating System Design and Implementation (2000)

11. Tomonori, F., Masanori, O.: Protecting the integrity of an entire file system. In:
First IEEE International Workshop on Information Assurance (2003)

12. Santos, N., Gummadi, K.P., Rodrigues, R.: Towards trusted cloud computing. In:
Proceedings of the 2009 Conference on Hot Topics in Cloud Computing, Hot-
Cloud2009. USENIX Association, Berkeley (2009)

13. Schiffman, J., Moyer, T., Vijayakumar, H., Jaeger, T., McDaniel, P.: Seeding clouds
with trust anchors. In: Proceedings of the 2010 ACM Workshop on CloudComput-
ing Security, CCSW 2010, pp. 43–46. ACM, New York (2010)

14. Aslam, M., Gehrmann, C., Rasmusson, L., Bjorkman, M.: Securely launching vir-
tual machines on trustworthy platforms in a public cloud - an enterprise’s perspec-
tive. In: Leymann, F., Ivanov, I., van Sinderen, M., Shan, T. (eds.) CLOSER, pp.
511–521. SciTePress, Copenhagen (2012)

15. Paladi, N., Gehrmann, C., Aslam, M., Morenius, F.: Trusted launch of virtual
machine instances in public iaas environments. In: Kwon, T., Lee, M.-K., Kwon,
D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 309–323. Springer, Heidelberg (2013)

http://www.intel.com/technology/security/
http://www.intel.com/technology/security/
http://sourceforge.net/projects/tboot

	Towards a Trusted Launch Mechanism for Virtual Machines in Cloud Computing
	1 Introduction
	2 Trusted Launch of Virtual Machines
	2.1 Trust and Attack Model
	2.2 Overview
	2.3 Trusted Launch Process of a VM
	2.4 Detailed Design

	3 Implementation
	4 Evaluation
	5 Related Work
	6 Conclusions
	References


