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Abstract. Cloud digital video recorder (cDVR) is a new service that
Comcast provides to its subscribers. The primary current legal interpre-
tation approving cloud DVR relies on a single copy in the Cablevision
decision. This makes the cDVR data center running cost very high. An
asynchronous service system with categorizing users by cDVR usage is
employed to reduce the energy consumption. In this system, cDVRs with
similar usage schedule are constructed in one cluster. The cloud record-
ing service on this cluster goes to sleep if there has been a period with
no cDVR requests. When there are one or more cDVR request arrivals,
those requests are buffered in queues while the cDVR service wakes up.
In this paper, a 2-class Markov Geo/G/1/K vacation model is presented
to analyze the performance of this system. Different scheduling policies
are compared in the simulations and experiments.
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1 Introduction

Nowadays, cloud computing is becoming popular. Comcast is providing cloud
TV service to its subscribers, which gives the customers two major flexibilities:
(1) watching TV on any device anytime anywhere; (2) recording the TV/Movie
programs in cloud digital video record (cDVR) so they could access to cDVR to
play the videos from any device later. It is straightforward to store the videos in
content delivery network, hence the cDVR only need store the urls of recorded
videos. However, due to the requirement of US laws, each cDVR has to pro-
vide a physical copy for any program that users record. This makes the cDVR
service have much heavier load. Besides the cost of hardware, the daily energy
consumption also increases a lot. To reduce the energy consumption, we deploy
an asynchronous system of cDVR recording service. Clustered by the usage his-
togram. In this system, users with similar cDVR usage habits are categorized
within one group. CDVRs of this group are put in one server cluster. If there
have been a while without any requests, the cDVR recording service of the clus-
ter goes to sleep. If some new requests arrive, the cDVR recording service is
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waked up. During the wake-up period, the recording requests are buffered in the
two queues. Those of recording QAM videos are put into the QAM queue and
those of recording IP Streams are put into IP queue.

Our investigation employs vacation modeling results from queueing theory, to
obtain blocking probabilities, and queue lengths incurred by sleeping policies for
the cDVR recording service responding to the QAM and IP streaming recording
requests with a finite buffer. To the best of my knowledge, this is the first work
on a 2-class M/G/1/K vacation model, where two classes of requests, each with
its own buffer, are processed by a server following a sleeping policy. The sleeping
policy is usually characterized by three aspects: (i) How does the sleeping process
start? The exhaustive policy is widely used, in which the cDVR service won’t
go to sleep until the buffer is empty. (ii) How does the sleeping process end?
Two approaches are the most popular: termination policy and threshold policy.
In the former policy, the server checks its buffer occupancy only at the time
instant of sleep termination. If the buffer is empty, it goes back to sleep again.
Otherwise, it starts processing requests. The latter policy requires the server to
check its buffer state whenever the buffer occupancy changes. If the occupancy
exceeds the threshold, the server starts processing requests. (iii) What is the
distribution of the sleeping process? Usually, the sleeping process is assumed as
a general distribution with an independent and identically distributed (i.i.d.)
random variable (r.v.). Our work focuses on the exhaustive, termination policy,
and a process with i.i.d. r.v.

The paper is organized as follows. In Sect. 2, a 2-class vacation model is
described. In Sect. 3 the marginal occupancy distributions at an arbitrary time
instant are derived. Section 4 presents numerical, simulation and experimental
results. Conclusions are discussed in Sect. 5.

2 2-Class Vacation Model

In this section, we present a model of a server receiving and processing 2-
class heterogeneous requests (see Fig. 1). Our analytical approach is to embed
a Markov chain at the time slot immediately after processing completion slots.
Next, we build equilibrium equations for the embedded Markov chain to obtain
the marginal occupancy distributions at processing completion slots.

We consider a server with two classes of requests (class 1, 2, e.g., QAM and
IP streaming), each with its own finite buffer. The request arrival of each class
is a i.i.d. geometric process. The requests of a certain class are queued into the
corresponding buffer if the buffer is not full and blocked otherwise. With a general
scheduling function, requests from the two buffers are selected to be processed.
The service order for requests of each class is scheduled by the selection function
α(i, j), the probability that a class 1 request is chosen to be processed, while i and
j requests are in class 1 and 2’s buffer/queue, respectively. The processing process
has a general distribution. The recording service keeps processing requests until
both buffers are empty at a process completion time instant, in which case
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Table 1. 2-class model notations

pm the probability of a request arrives in a
slot of class m, where m = 1, 2.

μ requests processing rate; 1/μ is the mean of the
general processing time distribution.

θ service wakeup rate; 1/θ is the mean of the
general sleeping time distribution.

Km buffer size of class m, where m = 1, 2.
α(i, j) probability that a class 1 request is selected to

be processed while i and j requests are in class 1
and 2 queues, respectively.

πi,j probability that i class 1 and j class 2 requests
are in buffers just after processing completion slots.

�i,j probability that i class 1 and j class 2 requests
are in buffers just after sleeping termination slots.

π�
i,j probability that i class 1 and j class 2 requests

are in buffers at an arbitrary time slot.
X the processing time random variable measured in slots.
a(k) the probability distribution of X, a(k) = P(X = k).
Y the sleeping time random variable measured in slots.
v(k) the probability distribution of Y , v(k) = P(Y = k).

B̂ remaining processing time slots for the request in service.

B̃ elapsed processing time slots for the request in service.

V̂ remaining sleeping time for the node in sleep.

Ṽ elapsed sleeping time for the node in sleep.
G(z) probability generating function (PGF) of G(k);

G(z) �
∑∞

k=0 G(k)zk, where 0 < z ≤ 1
E(G) expectation of G.

μ

j

α(i,j )

1 − α(i,j )

i

K1

K2

p1

p2

Fig. 1. Queueing model of a recording service processing 2-class requests

the recording service goes to sleep and will continue to sleep if at the sleeping
termination time instant there are no requests buffered waiting for processing
(Table 1).

As mentioned before, our analytical approach is to embed a Markov chain
at the time instant just after processing completion slots, as is typically done
for the ordinary Geo/G/1/K system. We define a couple of random variables
(N1(k+), N2(k+)) to be the number of requests of each class in their respective
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buffers immediately following processing completions. Since the arrival process
is Markovian, it is evident that the random process {N1(k+), N2(k+), k+ =
0+, 1+, . . .} is a discrete Markov renewal process [18]. The vector of stationary
probability masses for the embedded Markov chain is denoted by πi,j , and its
(i, j)th element is given by

πi,j = lim
k→∞

P{N1(k+) = i,N2(k+) = j}.

We denote the probability that i requests of class m (m = 1, 2) arrive during
a processing time X = k and during a sleeping time Y = k by am(i) and vm(i),
respectively,

am(i) =
∞∑

k=i

(
k

i

)
pk

m(1 − pm)k−ib(k),

vm(i) =
∞∑

k=i

(
k

i

)
pk

m(1 − pm)k−iv(k).

and the probabilities that no less than i requests of class m (m = 1, 2) arrive
during a processing time X and during a sleeping time Y by am(i) and vm(i),

am(i) =
∞∑

j=i

am(j), vm(i) =
∞∑

j=i

vm(j).

a sleep period

a sleep cycle

Sleeping start Sleep terminationSleep Renewal

Transfer completion
k k + 1· · · k + i k + j· · ·

Fig. 2. Sleep cycle starting at processing completion time slots

When a sleep period completes, the server checks the buffer occupancies of
the two classes. If they are empty, another sleep period with independent Y will
be started. This process repeats unless there are requests waiting in at least one
of the two buffers at a sleep completion time instant. We define a sleep cycle as
the time interval from the time instant the server or cluster goes to sleep to the
time instant it starts to processing requests. Thus, a sleep cycle is composed of
one or more sleep periods (see Fig. 2). We denote the probability that i (i < Km)
and Km requests of class m arrive during a sleep cycle by ϕm(i) and ϕm(Km).
It is easy to see that they are geometric distributions.
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ϕm(i) =
∞∑

j=0

vm(0)jvm(i) =
vm(i)

1 − vm(0)
, (1)

ϕm(i = K1) =
∞∑

j=0

vm(0)jvm(Km) =
vm(Km)
1 − vm(0)

. (2)

A generic term to denote the probability transition from (i, j) to (k, l) is
P(i,j)(k,l). To find P(i,j)(k,l), we consider four cases: (i) 0 < k < K1, 0 < l < K2;
(ii) 0 < k < K1, l = K2; (iii) k = K1, 0 < l < K2; and (iv) k = K1, l = K2.

Case (i) 0 < k < K 1,0 < l < K 2. All requests are queued in their respective
buffers, excluding the processed request. The exact number of class 1 and 2
requests is k − i and l − j, respectively.

If i > 0, j = 0, there is no sleep period. Only the head of line request of class
1 is processed. The case i = 0, j > 0 is similar. Hence, we obtain

P(i,0)(k,l) = a1(k − i + 1)a2(l),
P(0,j)(k,l) = a1(k)a2(l − j + 1).

If i > 0, j > 0, the request being proccessed is selected from class 1 with
probability α(i, j) and from class 2 with probability 1−α(i, j). Thus, we have the
transition probabilities α(i, j)a1(k− i+1)a2(l) and [1−α(i, j)]a1(k)a2(l−j +1).

If i = 0, j = 0, there is a sleep cycle between the successive processing
completions. When only a single class of requests is arrive during the sleep cycle,
the transition probability P(0,0)(k,l){Single} is given as

P(0,0)(k,l){Single} = ϕ1(0)a1(k)
( l+1∑

j=1

ϕ2(j)a2(l − j + 1)
)

+ ϕ2(0)a2(l)
(k+1∑

i=1

ϕ1(i)a1(k − i + 1)
)
.

When both classes of requests arrive during the sleep cycle, the selection
function chooses a request randomly (following the general distribution α(i, j))
from the two buffers. So the transition probability P(0,0)(k,l){Two} is expressed as

P(0,0)(k,l){Two}

=
k+1∑

i=1

l∑

j=1

α(i, j)ϕ1(i)a1(k − i + 1)ϕ2(j)a2(l − j)

+
k∑

i=1

l+1∑

j=1

(1 − α(i, j))ϕ1(i)a1(k − i)ϕ2(j)a2(l − j + 1).

Thus, the transition probability is

P(0,0)(k,l) = P(0,0)(k,l){Single} + P(0,0)(k,l){Two}.
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Hence, we have the equilibrium equation for Case i as

πk,l = π0,0P(0,0)(k,l) +
k+1∑

i=1

πi,0P(i,0)(k,l) +
l+1∑

j=1

π0,jP(0,j)(k,l)

+
k+1∑

i=1

l∑

j=1

α(i, j)πi,ja1(k − i + 1)a2(l − j)

+
k∑

i=1

l+1∑

j=1

(1 − α(i, j))πi,ja1(k − i)a2(l − j + 1). (3)

Case (ii) 0 < k < K 1, l = K 2. The analysis is the same as Case (i) for
class 1. However, it is different for class 2 when l = K2. It is possible that more
than l requests arrive but are blocked due to the finite buffer size K2. Thus,
the probability of K2 − j or more requests of class 2 arrive is a2(K2 − j + 1) or
a2(K2 − j). So the transition probability from (0, 0) to (k,K2) is

P(0,0)(k,K2) = ϕ1(0)a1(k)
( K2∑

j=1

ϕ2(j)a2(K2 − j + 1)
)

+ϕ2(0)a2(K2)
(k+1∑

i=1

ϕ1(i)a1(k − i + 1)
)

+
k+1∑

i=1

K2∑

j=1

α(i, j)ϕ1(i)a1(k − i + 1)ϕ2(j)a2(K2 − j)

+
k∑

i=1

K2∑

j=1

(1 − α(i, j))ϕ1
i a1(k − i)ϕ2(j)a2(K2 − j + 1).

And the equilibrium equation is given by

πk,K2 = π0,0P(0,0)(k,K2) +
k+1∑

i=1

πi,0a1(k − i + 1)a2(K2)

+
K2∑

j=1

π0,ja1(k)a2(K2 − j + 1)

+
k+1∑

i=1

K2∑

j=1

α(i, j)πi,ja1(k − i + 1)a2(K2 − j)

+
k∑

i=1

K2∑

j=1

(1 − α(i, j))πi,ja1(k − i)a2(K2 − j + 1). (4)
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Case (iii) k = K 1,0 < l < K 2. It is readily seen that this scenario is almost
the same as Case i. The equilibrium equations are obtained by exchanging a1(·)
and a2(·) in (3), where · is a wild card. For brevity, we do not repeat it here.

Case (iv) k = K 1, l = K 2. Again, if we replace am(·) with am(·) (m = 1, 2) in
(3), we get the equilibrium for πK1,K2 .

With all the above equilibrium equations and the bound condition∑K1
i=0

∑K2
j=0 πi,j = 1, all the stationary probabilities can now be numerically

computed.

3 Marginal Occupancy Distributions

So far, we have derived a computational procedure for obtaining the equilibrium
probabilities for a Markov process embedded at the time slots of processing
completion. Similarly to the analysis of a single class Geo/G/1/K, we now turn
to the marginal occupancy distributions π�

i,∗, π
�
∗,j as seen at an arbitrary time

slot. To focus on the quantity of interest: buffer occupancies L1, L2 of both
classes, we present the results directly.

The occupancies of classes 1 and 2 are given by:

L1 =
K1∑

i=0

iπ�
i,∗ =

K1∑

i=0

i(η�
i (1) + ω�

i (1)), (5)

L2 =
K2∑

i=0

jπ�
∗,j =

K2∑

j=0

j(χ�
j (1) + ω�

j (1)). (6)

In (5) and (6), η�
n(Z), χ�

n(Z), ω�
n(Z) are the PGF functions. In the interest of

space, we only show parts of class 1’s results here. Class 2 is similar. Derivation
details are skipped here due to the space limitation.

When 0 ≤ n < K1, η�
n(Z), ω�

n(Z) satisfy:

η�
n(Z) = ρ′ ·

[ K2∑

j=0

n+1∑

i=1

α(i, j)(πi,j + 	i,j)A�
n−i+1(Z)

+
K2∑

j=1

n∑

i=0

(1 − α(i, j))(πi,j + 	i,j)A�
n−i(Z)

]
,

ω�
n(Z) = (1 − ρ′)I�

n(Z),

where A�
n(Z), I�

n(Z) are obtained by

A�
n(Z) =

1
μ

λn
1

(λ1 + lnZ)n+1

[
B�(Z) −

n∑

i=0

a1(i)
(λ1 + lnZ

λ1

)i]
,

I�
n(Z) =

1
μ

λn
1

(λ1 + lnZ)n+1

[
V �(Z) −

n∑

i=0

v1(i)
(λ1 + lnZ

λ1

)i]
.
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The above expressions allow us to compute the buffer occupancy for each
of the two classes of requests arrive at the server under a sleeping policy. Next,
we present numerical, simulation and experimental results for this metric under
three situations: (i) different wakeup rates; (ii) different buffer sizes; (iii) differ-
ent sharing percentage of a common buffer with fixed size.

4 Numerical, Simulation and Experimental Results

In this section, we verify our modeling analysis comparing numerical with sim-
ulation and experimental results. Moreover, by varying the wakeup rate and
buffer sizes of the two classes, we have an insight on the sleeping costs of servers
processing heterogeneous requests. First, we describe the configurations of our
simulations and experiments. Results and discussions on buffer occupancies are
given later.

In our modeling, the processing process and sleeping process have general
distributions. To show that, we select three distributions for processing and
sleeping process: exponential, uniform, and deterministic. Unless mentioned, the
simulations and experiments have the same setup. For the selection function
α(i, j), we chose four scheduling policies: (i) LJF : longest job first. If j ≥ i, we
select class 2. The job processing length here is related to if there is in-home
check, parental control tv rating check, etc. (ii) SJF : shortest job first. If j ≤ i,
we select class 2. (iii) HOL: class 2 has priority over class 1; i.e., we always
processing class 2’s requests first unless its buffer is empty. (iv) BER: Bernoulli
model. Here, we set the probability to select either class request as 0.5.

Figure 3 shows that the average occupancy of classes 1 and 2 decreases with
the increase of the wakeup rate θ and tends to be constants after θ is greater than
1. For both classes, the occupancy of LJF is greater than the one of SJF . This
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Fig. 3. Average occupancy of classes 1 and 2 varying the wakeup rate θ from 0.1 to 10.
The time interval between successive wakeup time epochs is exponential. Both classes
have the same Poisson arrival rate λ1 = λ2 = 0.5. The processing rate is μ = 1. Each
class has a finite buffer with size of 5. The same four selection policies are considered:
(a) LJF ; (b) SJF ; (c) HOL; and (d) BER with probability 0.5 of selecting class 1.
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Fig. 4. Average occupancy of classes 1 (top) and 2 (bottom) with buffer size as a
parameter varying from 1 to 10. Both classes have the same Poisson arrival rate λ1 =
λ2 = 0.5. The processing distribution mean is μ = 1. The time interval between
successive wakeup time epochs is exponential with mean 1/μ = 1. The same four
selection policies are considered: (a) LJF ; (b) SJF ; (c) HOL; and (d) BER with
probability 0.5 of selecting class 1.
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Fig. 5. Average occupancy of classes 1 (top) and 2 (bottom) with a fixed total buffer
size of 10. The buffer size K1 of class 1 is a parameter varying from 1 to 9, while
K2 = 10 − K1. Both classes have the same Poisson arrival rate λ1 = λ2 = 0.5. The
processing distribution mean is μ = 1. The time interval between successive wakeup
time epochs is exponential with mean 1/μ = 1. The average occupancy of each of the
two classes is shown for the same four selection policies: (a) LJF ; (b) SJF ; (c) HOL;
and (d) BER with probability 0.5 of selecting class 1.

behavior is a result of sacrificing some cost in terms of delaying requests process-
ing. For HOL, since class 2 has priority over class 1, the average occupancy of
class 2 is lower than the one of class 1 due to the increased delay of class 1.

In Fig. 4, it is evident that LJF has greater average occupancy than SJF
for both classes no matter what their buffer sizes are. Similar conclusions can be
drawn for HOL. Again, due to the same selection probability, BER has similar
performance for both classes.

From Fig. 5, we see that while the buffer size K1 of class 1 is less than 5
(i.e., half of the fixed total buffer size), the occupancy of classes 1 and 2 under
LJF increase as class 1’s buffer size increases. After that, the reverse occurs:
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occupancy of classes 1 and 2 decrease with increasing K1. Changing the sharing
percentage of the common buffer only changes the saddle point, but not the
curve tendency.

5 Conclusion

In this paper, we apply the Geo/G/1 and Geo/G/1/K vacation models to the
cDRV server processing QAM and IP stream recording requests to study the
cost of adopting sleeping policies. The performance costs, namely, queue length
and delay were obtained by theoretical derivation and are convergent in most
cases. We found that the processing time distribution does not affect the cost.
We also found cases where the requests arrival process and scheduling function
do affect the costs.
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