
A Capability-Based Matchmaking Mechanism
Supporting Resource Aggregation within

Large-Scale Distributed Computing
Infrastructures

Feng Liang1(B), Hai Liu1, Yunzhen Liu1, Shilong Ma1,
Siyao Zheng2, and Pan Deng3

1 State Key Lab of Software Development Environment,
Beihang University, Beijing 100191, China

{liangfeng,liuhai,liuyunzhen,slma}@nlsde.buaa.edu.cn
2 The Laboratory of Embedded Systems, Beihang University, Beijing 100191, China

zhengsiyao@les.buaa.edu.cn
3 Lab of Parallel Software and Computational Science, Institute of Software,

Chinese Academy of Sciences, Beijing 100190, China
dengpan@iscas.ac.cn

Abstract. Facing the large-scale, heterogeneous dynamic resource and
the complex constraints of computation-intensive parallel scientific appli-
cations, collaborating large-scale computation resource for these appli-
cations within Large-Scale Distributed Computing Infrastructures like
grids and clouds are challenging. This paper addresses this issue by
proposing a Resource Capability Model and implementing a correspond-
ing language GSO and an information service Application Information
Service to ensure not only the resource description, aggregation, match-
making but also life cycle management of the reservations and tasks.
Experiment result shows that our mechanism is scalable in both Grid
and Cloud environment.

Keywords: Grid Service Object · Large-scale Distributed Computing
Infrastructures · Resource Capability model · Application Information
Service

1 Introduction

As Lage-scale Distributed Computing Infrastructures (LDCI) like grids and
clouds become robust, more and more computation-intensive parallel scientific
applications want to utilize them. But because of the following reasons, it is
not easy to matchmake the suitable resource for these applications. (1) The
large-scale clusters increases the time to search for the suitable resource. (2)
The diverse heterogeneity of the nodes makes it hard to compare the resource
capability. (3) The dynamic feature of the nodes requires more concern on the
availability of the nodes. (4) The computation-intensive scientific applications
V.C.M. Leung and M. Chen (Eds.): CloudComp 2013, LNICST 133, pp. 145–154, 2014.
DOI: 10.1007/978-3-319-05506-0 14, c© Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering 2014

146 F. Liang et al.

demands large-scale computation resource. (5) The resource collaboration con-
straints lead to the life cycle management of the reservations and tasks.

With large-scale, diverse heterogeneity and dynamic resource and complex
resource requirement of the applications, it is required to establish a resource
matchmaking mechanism for fine-grained resource description, proper resource
aggregation, and optimized resource matchmaking. To address these issues, this
paper proposes a Resource Capability Model and its XML implementation Grid
Service Object language to support the resource description, aggregation and
matchmaking and life cycle management.

The contributions of this paper include two aspects: firstly, we propose the
Resource Capability model to measure the capability of a single resource and
aggregated resources. Secondly, we propose a Grid Service Object language based
on the Resource Capability model and implement it in an Application Infor-
mation Service, so as to support the matchmaking for aggregated resources.
Experiments show that our methods are acceptable for production-level LDCI.

This paper is structured as follows: we begin with a discussion of related
work in Sect. 2. The Resource Capability Model is given in Sect. 3. Section 4
presents the GSO and AIS in details. Section 6 presents experimental results that
evaluate the scaling and effectiveness of our mechanism. In Sect. 7 we summarize
the contributions of this paper and present some areas of future work.

2 Related Work

To proper describe the resource and the request, a proper and complete resource
and request description model is required for resource discovery and matchmak-
ing. Up to now the existing models can be categorized into three classes: the
request description models, the resource description models and the symmetri-
cal models.

2.1 Job Description Models

The request description models are used mainly for task requirement descrip-
tion. The typical models are RSL (Resource Specification Language) [4] and
JSDL (Job Submssion Description Language) [2]. RSL is used mainly in Globus
Toolkit, it uses the {attribute, value} key-value pair for requirement description
and utilizes operations &, | and + for single task description, the logical rela-
tionships between tasks and the resource set respectively, but its format is not
friendly for collaborate with other LDCI. Proposed by the Open Grid Forum and
implemented in XML format, JSDL is used widely in Grid, but it can support
only task descriptions. JSDL can be considered as an extended RSL, as it allows
the user and the grid machines to add new keys for extra attributes.

2.2 Requirement Description Models

The resource description models are for the resource description. The most widely
accepted models are GLUE (Grid Laboratory for a Uniform Environment) [1]

A Capability-Based Matchmaking Mechanism Supporting 147

and DRMAA (Distributed Resource Management Application API) [10]. GLUE
is the proposed by the Open Grid Forum using the accumulated experience from
piratical Grid Projects. It encapsulate the computation resource into a Comput-
ing Element and uses the {attribute, value} for description. The Monitoring and
Discovery Service from Globus Toolkit implements GLUE in XML and man-
ages the Computing Elements in hierarchy. But this model does not support the
resource aggregation. DRMAA is a Open Grid Forum proposed generalized API
for distributed resource management systems in order to facilitate the develop-
ment of portable application programs and high-level libraries. DRMAA includes
detailed definitions about resource descriptions in aspects such as os version, cpu
architecture, etc.

2.3 Symmetrical Models

The symmetrical models include ClassAds (Condor classified Advertisement) [9]
and GODsL (Grid Object Description Language) [6]. ClassAds is used in Con-
dor, every ClassAds is an entity to describe both the resource attributes, the job
attributes and the preference attributes. ClassAds uses the {attribute, value}
for description and allow the users to define constraints in job type, access
control, time, resource requirement. But it does not support resource aggrega-
tion. GODsL is an object-oriented extensible description model, it defines Grid
Object (GO) to define the job and its resources. Each GO includes 5 containers,
namely the Resource Container, the Server Container, the Machine Container
and the Backup Container, each container can contain one or more profiles about
resource, used machine, file path, backup location. GODsL is mainly used for job
migration and recovery and is written in C, which is not proper for collaboration.

From all the listed resource and request description models, we can see
although the current existing models do support detailed description of sin-
gle resource and request, but there is no model supporting resource aggrega-
tion and collaboration, which is essential for accurate matchmaking for those
computation-intensive scientific parallel computing applications.

3 Resource Capability Model

As the crucial factor of LDCI systems, the computation node evaluates its capa-
bility in different metric such as task execution time, success rate and its avail-
ability, etc. These metric can be measured using the attributes of nodes such
as the CPU speed, memory volume, network bandwidth, etc. According to the
effects of the nodes in different aspects, the node capability can be split into 5
aspects: Computation Capability, Communication Capability, Memory Capabil-
ity, Availability Capability and the Software Support Capability.

3.1 Capability-Based Matchmaking for a Single Node

The capability of a single resource nodei is described as in Ci = {Ssupi, Compi,
Commi,Memoi, Avaii}. The 5 aspects and its meanings are as follow. Ssupi, the

148 F. Liang et al.

Software Support Capability of nodei, means the Software Environment of the
node for computation, including the Operating System, the runtime software, the
third party library, etc. Compi, the Computation Capability of nodei, measures
the processing ability of the processor by the CPU speed. A multi-core proces-
sor is considered as several equal CPU processors. Commi, the Communication
Capability of nodei, measures the data transfer of the the node’s network by
both the latency and the bandwidth. Memoi, the Memory Capability of nodei,
measures the memory of the nodes by the memory volume. Avaii, the Availabil-
ity Capability of nodei measure the availability of the node by the online time
percentage of the node.

During the matchmaking process for a single computation node, the capabil-
ity requirement should be satisfied by the node candidate. Assuming the capa-
bility of the request and the node are described as Cr = {Ssupr, Compr, Commr,
Memor, Avair} and Ca={Ssupa, Compa, Comma,Memoa, Avaia} respectively,
then its matchmaking for 5 aspects are defined below.

Ssup is a qualitative attribute, usually the requirement and the node should
be equal in this attribute to ensure an execution. Compa, Comma,Memoa, Avaia
are quantitative attributes. As this paper aims mainly for the execution of
computation-intensive parallel applications, so the node should has bigger capa-
bility than the requirement for Compa, Comma,Memoa, Avaia respectively.

3.2 Matchmaking for Aggregated Resource

As the parallel computation program normally need multiple nodes, so it is
essential to aggregate their capability and match with the requirement. Assume
the capability requirement of a parallel application is defined in CReq = {CR, N}
and CR = {SsupR, CompR, CommR,MemoR, AvaiR}. Within it, CR means the
requirement of each node, N means the required node number. Assuming there
exists N nodes {Ci|1 ≤ i ≤ N}, These nodes need to be aggregated first to match
with the requirement. Assume the aggregated capability of these nodes is CAgg,
as shown in CAgg = {CA, N} and CA = {SsupA, CompA, CommA,MemoA,
AvaiA}. When CAgg satisfies CReq, there should be SsupA = SsupR, CompA ≥
CompR, CommA ≥ CommR, AvaiA ≥ AvaiR,MemoA ≥ AvaiR. As the N
nodes might be heterogeneous, so the aggregation process for the Ssup and
comp capabilities are listed as SsupA = Ssupi, 1 ≤ i ≤ N and CompA =
mini=1···N (Compi). The others are similar.

As a qualitative attribute, the required capability of SsupA should be equal
to each of the N nodes. As a quantitative attribute, the required capabilities
CompA, CommA,MemoA, AvaiA should be equal to the lowest value among
the nodes as the execution time of a parallel application mostly depends on the
lowest node.

3.3 Matchmaking for Co-reservation

For a single reservation, it can be described as q, and then the request for co-
reservation is Q = {q1, q2, · · · , ql} (l ∈ N), i.e. each co-reservation request Q has

A Capability-Based Matchmaking Mechanism Supporting 149

multiple sub-request q. The resource set is R = {r1, r2 · · · , rk} (k ∈ N), a R
includes multiple r. R(q) means all the r that satisfies q. t means the start time,
d means the duration, then the quadruple A = 〈q, r, t, d〉 means to allocate a
resource r from time t with the duration of d to satisfy the requirement q. Then
the total allocation result would be in TA(Q,R) = {〈q, r, t, d〉} = {A |⋃ qA =
Q,∀A �= B, rA �= rB}, it means an executable solution for resource allocation.

For a TA(Q,R), it has to satisfy the temporal and spatial constraints. Sup-
pose a single constraints is sc(A). Then the TA(Q,R) has to satisfy all single con-
straints, as is shown in SC =

⋃
ql∈Q,rk∈R(ql)

sc(ql, rk, t, d) =
⋃

A∈TA(Q,R) sc(A).
Assume two arbitrary node allocations A, B and their network allocation C,
then the temporal constraint among these three is tc(A,B,C), and the spa-
tial constraint is shown in pc(A,B,C) = pcnet(A,B,C) ∪ pcnnt(A,B) including
both the network constraint and the non-network constraint. If the constraints
among multiple sub tasks is mc(ASet) and ASet is shown in mc(ASet), ASet =
{A1, A2, · · · , Al}.

So thefinal constraints forTR(Q,R) canbedescribedas in (
⋃

A∈TA(Q,R) sc(A))
⋃

(
⋃

A,B,C∈TA(Q,R) pc(A,B,C)
⋃

tc(A,B,C))
⋃

(
⋃

ASet⊆TA(Q,R) mc(ASet)).

4 Grid Service Object Language

To ensure the execution of the Grid application with co-reservation, a informa-
tion model is required to support the resource description, resource aggregation
and the life cycle management of the task and reservations. As an earlier Grid
resource information model, GODsL defined an extensible information model
to describe the resource, applications, service and data within Grid. But this
language did not support resource capability description, resource aggregation
or the life cycle management of the task and reservations, besides, it used the C
language syntax, therefore not suitable to exchange information with the modern
Grid systems using XML. So Based on the Grid Object Description Language
(GODsL), the Grid Service Object model (GSO) is proposed to address these
issues. This model refines the GODsL according our Resource Capability Model
and add the support about resource aggregation and the life cycle management
of the tasks and reservations. XML Scheme is used to implement this language
to ensure its compatibility with the other Grid Systems.

GSO model can be seen as in Fig. 1. Every GSO object owns a global unique
id and a version number, to identify it. Besides, it also contains three sub-object,
so called container, namely RequirementContainer, ExecutionContainer and
ResourceContainer. These three containers can include 1 or more sub members.
The contents of each container is listed as below:

RequirementContainer. It is used to describe the requirement of the resource
capability, including the specifications about resource and the reservations. The
RequirementContainer contains one or more ResourceProfile. It describes
the Capability of nodes, shown in Table 1. In order be compatible with more dis-
tributed resource systems, the RequirementContainer adapt the DRMAA API
standards for resource requirement description. Besides these ResourceProfile,

150 F. Liang et al.

computation
softwareSupport
storage
communication
availability

aggregatedResource

guid, version
GridServiceObject

label
ResourceContainer

label
RequirementContainer

label
ExecutionContainer

np, perf
ram
latency, widbandth
os, env
availability

singleResource

est, let dur
singleConstraint

multiConstraint

nspeed
uspeed

singleConstraint

computation
softwareSupport
storage
communication
availability

aggregatedResource

computation
softwareSupport
storage
communication
availability

singleResource
jobid
argsno
args
userid
epr
state

singleJob

multiJob
state
handle

coReservation
state
handle

resvid
st
np
et
userid
epr
state

singleReservation

1 1 1

1 1 1 1

Fig. 1. GSO model

Table 1. The ResourceProfile within the RequirementContainer and the Resource-
Container

Capability Name Meaning Format

Computation np number of processors positive integer
perf processor performance positive integer (GHz)

Memory ram memory positive integer (GB)
Communication band width the bandwidth positive number

(MB/s)
latency positive number (ms)
os OS name and version String version number

SoftwareSupport env runtime name and version multiple String version,
split using “;”

Availability online ratio the online time length
within the last 100 days

percentage (%)

the RequirementContainer also contains zero or more ConstraintProfile (to
describe the constraints), which include SCProfile (for spatial constraints) and
TCProfile (for temporal constraints).

A Capability-Based Matchmaking Mechanism Supporting 151

ExecutionContainer. It is used to describe to related attributes and status of
the tasks and reservations during the execution process, so mainly the life cycle
management the tasks and the reservations.

ResourceContainer. It is used to describe the resource capability and status,
including the computation capability, the storage capability, the communication
capability, the software support capability and the availability. It is mainly for the
resource management. The contents are the same as the RequirementContainer.
Besides, it also includes the unique url of the resource.

5 Application Information Service in Migol

Migol [5,7,8] is a grid middleware, it aims at providing fault tolerance func-
tionality to ensure the robust execution of the computation-intensive parallel
applications. Composed of a set of loosely-coupled service, Migol follows the
Open Grid Service Architecture (OGSA) [3]. Migol makes use of some basic
components form Globus Toolkit, such as GRAM and MDS. This modularized
service-oriented design allows Migol to collaborate with other Grid Middleware
or to utilize the Cloud resource. As shown in Fig. 2, Migol uses GSO as the basic
metadata model to store all the related information of the applications to ensure
their execution.

Grid

User

Job Broker Service

Advance
Reservation Service

WS MDS 4

Application
Information Service

Monitoring Restart
Service

Migol Brokering Architecture

Globus Component

Job Submission

Application Runtime

Monitoring

Migration Service

Checkpoint
Replication Service

Compute Resource
GRAM4/
GSISSH

GridFTP

Application

Migol Library/
SAGA/Migol

Grid
Service
Object

1. Job Submission

2. registerService

3. query

4. reserve/submit

5. reserve/submit 5. updateGSO

6. replicate

7. get/updateGSO

8. query

9. monitor

10. restart

Fig. 2. Migol architecture

152 F. Liang et al.

Application Information Service (AIS) is a registry service for LDCI appli-
cations within Migol. It stores all the GSO. Before the application execution,
the user should registry the application’s GSO to AIS. After the registration,
the GSO contains information such as resource requirement, resource location,
application task states, reservation states, etc. Meanwhile, the updated informa-
tion of the used resource, tasks and reservations are collected from MDS, JBS,
ARS and CRS respectively.

6 Experimental Results

6.1 Testbed Configuration

In order to evaluate the efficiency of the AIS service, an experiment is conducted
to test for its currency. The experiment include 2 server nodes for services such
as JBS and AIS and 3 different LDCI resources, a local cluster, a SeisGrid
resource site and an Amazon EC2 virtual server. The two server nodes each has
1 GB memory, AMD Opteron 2.2 GHz processor with Globus Toolkit 4.0.5 and
JRE 1.5.0 14 installed. The 3 resource are shown in Table 2 and the testbed is
deployed as shown in Fig. 3.

Table 2. Site network configurations

Resource name Roundtrip time Band width

Local cluster 0.1 ms 95.0 Mbit/s
SeisGrid 5.8 ms 68.5 Mbits/s
EC2 server 180 ms 1.98 Mbit/s

6.2 AIS Concurrency Evaluation

As the AIS needs to exchange information with JBS, ARS, MDS and CRS, so it
faces great pressure when multiple users query it concurrently. To evaluate the
robustness of AIS, a pressure test is conducted. Considering the network delay
of resources can have effects to AIS, so three different LDCI resources are used.

During the experiment process, multiple users registers a 3.1 kb GSO file
concurrently using AIS. This file will lead AIS to access each of the three different
resource and execute the matchmaking. The response time of AIS varies with
different resource and different number of concurrent user numbers, as shown
in Fig. 4.

From Fig. 4, it can be seen that the response time of AIS grows when the
number of concurrent users increase for all three resources. But for local cluster
and SeisGrid cluster, the growth increase linearly, while for EC2 virtual server,
it increases faster. This is reasonable as it has bigger delay, so when more users
try to access the resource concurrently, the delay gets bigger easily.

A Capability-Based Matchmaking Mechanism Supporting 153

Server1

Local Cluster

GRAM4/
OpenPBS

GSISSH

Service Layer

Resource Layer

Server2

service registry AISJBS

ARS

SeisGrid Cluster

GRAM4/Torque/Maui

Migol Service

Globus Service

Amazon EC2 Server

GRAM4 GSISSH

MDS

submit
query

Fig. 3. Testbed deployment

 0

 500

 1000

 1500

 2000

 2500

 3000

1 2 4 8 16

R
ep

on
se

 T
im

e
(in

 m
s)

number of concurrent users

Local
SeisGrid

EC2

Fig. 4. The comparison of AIS response time with different resource delays and different
number of concurrent user numbers

7 Conclusions

The middleware for utilizing LDCI should support optimized resource match-
making so as to ensure the automatic resource collaboration. As the resource
in LDCI are large-scale, dynamic, and heterogeneous, and the resource require-
ment of the computation-intensive parallel scientific applications are complex
and include multiple constraints, so a mechanism is required for fine-grained
resource description, proper resource aggregation, optimized resource matchmak-
ing. Different from the current resource description models, this paper proposes a
Resource Capability Model to enable resource description, aggregation and opti-
mized matchmaking. Based on the Resource Capability model, a XML-based
GSO language and the Application Information Service is developed to imple-
ment the matchmaking process. The experiment result shows that our mecha-
nism is scalable in both Grid and Cloud environment.

154 F. Liang et al.

Acknowledgement. This research work was supported by the Migol project from the
Potsdam University (http://www.migol.de), the self-conducted exploratory research
program “Green Lighting in Internet of Things” from State Key Laboratory for Soft-
ware Development Environment in China (NO.SKLSDE-2010ZX-06), the Special Pro-
gram for Seism-Scientific Research in Public Interest “Research in Online Processing
Technologies for Seismological Precursory Network Dynamic Monitoring and Prod-
ucts” (NO. 201008002) and the National Natural Science Foundation of China (No.
61100066)

References

1. Andreozzi, S., Ehm, F., Field, L., Kónya, B.: GLUE specification. http://ogf.org/
documents/GFD.147.pdf. March 2009

2. Anjomshoaa, A., Brisard, F., Drescher, M., Fellows, D., Ly, A., McGough, S.,
Pulsipher, D., Savva, A.: Job submission description language (jsdl) specification,
version 1.0. http://www.gridforum.org/documents/GFD.136.pdf. July 2008

3. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The physiology of the grid: an open
grid services architecture for distributed systems integration. http://www-unix.
globus.org/toolkit/3.0/ogsa/docs/physiology.pdf (2002)

4. Foster, I.: Globus toolkit version 4: software for service-oriented systems. In: Jin,
H., Reed, D., Jiang, W. (eds.) NPC 2005. LNCS, vol. 3779, pp. 2–13. Springer,
Heidelberg (2005)

5. Jeske, J., Luckow, A., Schnor, B.: Reservation-based resource-brokering for grid
computing. In: Proceedings of German E-Science Conference 2007, Baden-Baden,
Germany, pp. 1–10 (2007)

6. Lanfermann, G., Schnor, B., Seidel, E.: Grid object description: characterizing
grids. In: Eighth IFIP/IEEE International Symposium on Integrated Network
Management, Colorado Springs, Colorado, USA, March 2003

7. Luckow, A., Schnor, B.: Migol: a fault-tolerant service framework for mpi appli-
cations in the grid. Future Gener. Comput. Syst. - Int. J. Grid Comput. 24(2),
142–152 (2008)

8. Migol Research Group: Migol, Migration in the Grid OGSA Lite. http://migol.
de/. (2010)

9. Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: the
condor experience. Concurrency - Pract. Experience 17(2–4), 323–356 (2005)

10. Troger, P., Brobst, R., Gruber, D., Mamonski, M., Templeton, D.: Distributed
resource management application API version 2 (DRMAA). http://www.ogf.org/
documents/GFD.194.pdf. January 2012

http://www.migol.de
http://ogf.org/documents/GFD.147.pdf
http://ogf.org/documents/GFD.147.pdf
http://www.gridforum.org/documents/GFD.136.pdf
http://www-unix.globus.org/toolkit/3.0/ogsa/docs/physiology.pdf
http://www-unix.globus.org/toolkit/3.0/ogsa/docs/physiology.pdf
http://migol.de/
http://migol.de/
http://www.ogf.org/documents/GFD.194.pdf
http://www.ogf.org/documents/GFD.194.pdf

	A Capability-Based Matchmaking Mechanism Supporting Resource Aggregation within Large-Scale Distributed Computing Infrastructures
	1 Introduction
	2 Related Work
	2.1 Job Description Models
	2.2 Requirement Description Models
	2.3 Symmetrical Models

	3 Resource Capability Model
	3.1 Capability-Based Matchmaking for a Single Node
	3.2 Matchmaking for Aggregated Resource
	3.3 Matchmaking for Co-reservation

	4 Grid Service Object Language
	5 Application Information Service in Migol
	6 Experimental Results
	6.1 Testbed Configuration
	6.2 AIS Concurrency Evaluation

	7 Conclusions
	References

