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    Abstract     The spectrum of evidence imparted by the different clinical research 
designs ranges from ecological studies through observational epidemiological stud-
ies to randomized control trials (RCTs). This chapter addresses the defi nition of 
clinical research, the major aspects of clinical trials e.g. ethics, randomization, 
masking, recruitment and retention of subjects enrolled in a clinical trial, patients/
subjects lost to follow-up during the trial etc. Although this chapter focuses on the 
weaknesses of clinical trials, it is emphasized that the randomized, placebo- 
controlled, double blind clinical trial is the design that yields the greatest level of 
scientifi c evidence.  
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  A researcher is in a gondola of a balloon that loses lift and 
lands in the middle of a fi eld near a road. Of course, it looks 
like the balloon landed in the middle of nowhere. As the 
researcher ponders appropriate courses of action, another 
person wanders by. The researcher asks, ‘Where am I?’ The 
other person responds, ‘You are in the gondola of a balloon in 
the middle of a fi eld.’ The researcher comments, ‘You must 
design clinical trials.’ ‘Well, that’s amazing, how did you 
know?’ ‘Your answer was correct and precise and totally 
useless.’ (ANON)  
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data   •   Eligibility   •   Effi cacy/effectiveness   •   Blinding/masking   •   Subgroup analysis   • 
  Surrogate endpoints   •   Composite endpoints   •   Primary and secondary endpoints  

     The differences    in clinical research designs and the different weights of evidence 
imparted by different clinical research designs, are exemplifi ed by the post- 
menopausal hormone replacement therapy (HRT) controversy. Multiple observa-
tional epidemiological studies had shown that HRT was strongly associated with the 
reduction of atherosclerosis, myocardial infarction risk, and stroke risk [ 2 – 4 ]. 
Subsequently, 3 RCTs suggested that HRT was not benefi cial, and might even be 
harmful [ 5 – 7 ]. This latter observation raises a number of questions, including: why 
can this paradox occur? What can contribute to this disagreement?; and, why do 
we believe these 3 RCT’s more than so many well-done observational trials? The 
reasons for this are many (also see Chap.   2    ), but include: concerns about the gener-
alizability of clinical trial results to the general population, and the reproducibility 
of the results; and, RCTs are increasingly involving thousands of patients form 
many sites, and from multiple countries making them challenging to design and 
diffi cult to execute and monitor [ 8 ]. Also, some clinical trials have been criticized 
by regulatory agencies due to apparent high dropout rates and patients lost to follow 
up, which has led to new FDA guidelines emphasizing the importance of patient 
retention and innovative site monitoring [ 9 ]. In support of this latter issue, is a post 
hoc analysis of the Effi cacy of Vasopressin Antagonism in Heart Failure: Outcome 
Study with Tolvaptin (EVEREST) in which the authors evaluated the relationship 
between the number of patients enrolled in each site with trial outcomes. They 
found that the high enrolling sites had better clinical outcomes and more protocol 
completion rates compared to the lower enrolling sites [ 10 ]. Of course, there are a 
number of explanations for this observation from EVEREST, and as was pointed 
out in the discussion of this trial, the use of block randomization (see below) within 
each center should have equally distributed patients between the sites of potentially 
differing quality who were on or off study drug; none-the-less, the point is one worthy 
of further research [ 10 ]. Participant differences based on geographic disparities 
have been well described, but differences related to participant volume have not. 

 Frequently, there is confusion about the difference between clinical research and 
clinical trials. In general usage experimental design is the design of any information- 
gathering exercises where variation is present, whether under the full control of the 
experimenter or not. Other types of study are opinion polls and statistical surveys 
(which are types of observational study), natural experiments and quasi- experiments. 
In the design of experiments, the experimenter is often interested in the effect 
of some process or intervention (the “treatment”) on some objects (the “experimen-
tal units”), which may be people, parts of people, groups of people, plants, animals, 
materials, etc. 

 A clinical trial is a type of experimental study undertaken to assess the response 
of an individual (or in the case of group clinical trials-a population) to interventions 
introduced by an investigator. Clinical trials can be randomized or non-randomized, 
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un-blinded, single-blinded, or double-blinded; comparator groups can be placebo, 
active controls, or no treatment controls, and RCTs can have a variety of designs 
(e.g. parallel group, crossover, etc.). That being said, the RCT remains the 
‘gold- standard’ study design and its results are appropriately credited as yielding 
the highest level of scientifi c evidence (greatest likelihood of causation). However, 
recognition of the limitations of the RCT is also important so that results from RCTs 
are not blindly accepted. As Grimes and Schultz point out, in this era of increasing 
demands on a clinician’s time it is ‘diffi cult to stay abreast of the literature, much 
less read it critically. In our view, this has led to the somewhat uncritical acceptance 
of the results of a randomized clinical trial’ [ 11 ]. Also, Loscalzo, has pointed out 
that ‘errors in clinical trial design and statistical assessment are, unfortunately, more 
common that a careful student of the art should accept’ [ 12 ]. 

 What leads the RCT to the highest level of evidence and what are the features of 
the RCT that renders it so useful? Arguably, one of the most important issues in 
clinical trials is having matched groups in the interventional and control arms; and, 
this is best accomplished by randomization. That is, to the degree that the two 
groups under study are different, results can be confounded by any difference, while 
when the two groups are similar, confounding is reduced (see Chap.   17     for a discus-
sion of confounding). It is true that when potential confounding variables are known, 
one can relatively easily adjust for them in the design or analysis phase of the study. 
For example, if one believes that smoking might confound the results of the success 
of treatment for hypertension, one can build into the design a stratifi cation scheme 
that separates smokers form non-smokers, before the intervention is administered 
and in that way determine if there are differential effects in the success of treatment 
(e.g. smokers and non-smokers are randomized equally to the intervention and 
control). Conversely, one can adjust after data collection in the analysis phase by 
separating the smokers from the non-smokers and again analyze them separately 
in terms of the success of the intervention compared to the control. The real 
challenge of clinical research, is not how to adjust for  known  confounders, but how 
to have matched variables in the intervention and control arms, when potential 
confounders are  not  known. Optimal matching is accomplished with randomiza-
tion, and this is why randomization is so important. More about randomization 
later, but in the meanwhile one can begin to ponder how un-matching might 
occur even in a RCT. In addition to randomization, there are a number of important 
considerations that exist regarding the conduct of a clinical trial, such as: is it 
ethical? What type of comparator group should be used? What type of design and 
analysis technique will be utilized? How many subjects are needed and how will 
they be recruited and retained? 

 Finally, there are issues unique to RCTs (e.g. intention-to-treat analysis, placebo 
control groups, randomization, equivalence testing) and issues common to all clinical 
research (e.g. ethical issues, blinding, selection of the control group, choice of 
the outcome/endpoint, trial duration, etc.) that must be considered (Table  3.1 ). Each 
of these issues will be reviewed in this chapter. To this end, both the positive and 
problematic areas of RCTs will be highlighted.
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      Ethical Issues 

 Consideration of ethical issues is key to the selection of the study design chosen 
for a given research question/hypothesis. For RCTs ethical considerations can be 
particularly problematic, mostly (but by no means solely) as it relates to using a 
placebo control. A full discussion of the ethics of clinical research is beyond the 
scope of this book, and for further discussion one should review the references 
noted here [ 13 – 15 ]. (There is also further discussion of this issue under the section 
entitled “ Traditional vs. Equivalence Testing ” and Chaps.   4     and   7    ). The opinions 
about when it is ethical to use placebo controls are quite broad. For example, 
Rothman and Michaels are of the opinion that the use of placebo is in direct violation 
of the Nuremberg Code and the Declaration of Helsinki [ 15 ], while others would 
argue that placebo controls are ethical as long as withholding effective treatment 
leads to no serious harm and if patients are fully informed. Most would agree that 
placebo is unethical if effective life-saving or life-prolonging therapy is available or 
if it is likely that the placebo group could suffer serious harm. For ailments that are 
not likely to be of harm or cause severe discomfort, some would argue that placebo 
is justifi able [ 14 ]. However, in the majority of scenarios, the use of a placebo control 
is not a clear-cut issue, and decisions need to be made on a case-by-case basis. One 
prevailing standard that provides a guideline for when to study an intervention 
against placebo is when one has enough confi dence in the intervention that one is 

  Table 3.1    Issues of 
importance for RCTs  

 Ethical considerations 
 Randomization 
 Eligibility criteria 
 Effi cacy vs. effectiveness 
 Compliance 
  Run-in periods 
  Recruitment and retention 
 Masking 
 Comparison groups 
  Placebo 
  ‘Normals’ 
 Analytical issues 
  ITT 
  Subgroup analysis 
  Losses to follow-up 
  Equivalence vs. traditional testing 
 Outcome selection 
  Surrogate endpoints 
  Composite endpoints 
  Trial duration 
 Interpretation of results 
 Causal inference 
 The media role in reporting RCT results 
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comfortable that the additional risk of exposing a subject to the intervention is low 
relative to no therapy or the ‘standard’ treatment; but, that there is suffi cient doubt 
about the intervention that use of a placebo or active control (‘standard treatment’) 
is justifi ed. This balance, commonly referred to as  equipoise , can be diffi cult to 
come by and is likewise almost always controversial. Importantly, equipoise needs 
to be present not only for the fi eld of study (i.e. there is agreement that there is not 
suffi cient evidence of the superiority of an alternative treatments), but equipoise 
also has to be present for individual investigators (permitting individual investigators 
to ethically assign their patients to treatment at random). 

 Another development in the continued efforts to protect patient safety is the Data 
Safety and Monitoring Board (DSMB-see Chap.   9    ). The DSMB is now almost 
universally used in any long-term intervention trial. First a data and safety monitor-
ing plan (DSMP) becomes part of the protocol, and then the DSMB meets at regular 
and at ‘as needed’ intervals during the study in order to address whether the study 
requires early discontinuation. As part of the DSMP, stopping rules for the RCT will 
have been delineated. Thus, if during the study, either the intervention or control 
group demonstrates a worsening outcome, or the intervention group is showing a 
clear benefi t, or adverse events are greater in one group vs. the other (as defi ned 
within the DSMP) the DSMB can recommend that the study be stopped. But, the 
early stopping of studies can also be a problem. For example, in a recent systematic 
review by Montori et al., the question was posed about what was known regarding 
the epidemiology and reporting quality of RCTs involving interventions stopped for 
early benefi t [ 16 ]. Their conclusions were that prematurely stopped RCTs often fail 
to adequately report relevant information about the decision to stop early, and that 
one should view the results of trials that are stopped early with skepticism [ 16 ].  

    Randomization 

 Arguably, it is randomization that results in the RCT yielding the highest level of 
scientifi c evidence (i.e. resulting in the greatest likelihood that the intervention is 
causally related to the outcome). Randomization is a method of treatment allocation 
that is a distribution of study subjects at random (i.e. by chance). As a result, 
randomization results in all randomized units (e.g. subjects) having the same and 
independent chance of being allocated to any of the treatment groups, and it is 
impossible to know in advance to which group a subject will be assigned. The intro-
duction of randomization to clinical trials in the modern era can probably be 
credited to the 1948 trial of streptomycin for the treatment of tuberculosis [ 17 ]. In 
this trial, 55 patients were randomized to either streptomycin with bed rest, and 
were compared to treatment with bed rest alone (the standard treatment at that time). 
To quote from that paper, ‘determination  of whether a patient would be treated 
by streptomycin and bed rest (S case) or bed rest alone (C case), was made by refer-
ence to a statistical series based on random sampling numbers drawn up for each 
sex at each center by Professor Bradford Hill; the details of the series were unknown 
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to any of the investigators or to the co-coordinator and were contained in a set of 
sealed envelopes each bearing on the outside only the name of the hospital and a 
number. After acceptance of a patient by the panel and before admission to the 
streptomycin centre, the appropriate numbered envelope was opened at the central 
offi ce; the card inside told if the patient was to be an S or C cases, and this information 
was then given to the medical offi cer at the centre ’. Bradford Hill was later knighted 
for his contributions to science including the contribution of randomization. 

 With randomization the allocation ratio (number of units-subjects- randomized 
to the investigational arm versus the number randomized to the control arm) is usu-
ally 1:1. But a 1:1 ratio is not required, and there may be advantages to unequal 
allocation (e.g. 2:1 or even 3:1). The advantages of unequal allocation are: one 
exposes fewer patients to placebo, and one gains more information regarding the 
safety of the intervention. The main disadvantage of higher allocation ratios is the 
loss of power. 

 There are three general types of randomization: simple, blocked, and stratifi ed. 
Simple randomization can be likened to the toss of an unbiased coin (i.e. heads 
group A, tails group B). This is easy to implement, but particularly with small 
sample sizes, could result in substantial imbalance (for example if one tosses a coin 
10 times, it is not improbable that one could get 8 heads and 2 tails. If one tosses the 
coin 1,000 times it is likely that the distribution of heads to tails would be close to 
500 heads and 500 tails). Blocked randomization (sometimes called permuted block 
randomization) is a technique common to multi-center studies. Whereas the entire 
trial might intend to enroll 1,000 patients, each center might only contribute 10 
patients to the total. To prevent between center bias (recall each sample population 
has differences even if there is matching to known confounders) blocked random-
ization can be utilized. Blocked randomization means that randomization occurs 
within each center ensuring that about 5 patients in each center will be randomized 
to the intervention and 5 to the control. If this approach was not used, one center 
might enroll 10 patients to the intervention and another center, 10 patients to the 
control group. Recall that the main objective of randomization is to produce 
between-group comparability. If one knows prior to the study implementation that 
there might be differences that are not equally distributed between groups (again 
particularly more likely with small sample sizes) stratifi ed randomization can be 
used. For example, if age might be an important indicator of drug effi cacy, one can 
randomize within strata of age groups (e.g. 50–59, 60–69 etc.). Within each stratum, 
randomization can be simple or blocked. 

 In review, simple randomization is the individual allocation of subjects into the 
intervention and control groups, block randomization creates small groups (blocks) 
in which there are equal numbers in each treatment arm so that there are balanced 
numbers throughout a multi-center trial, and stratifi ed randomization addresses 
the ability to separate known confounders into strata so that they can no longer 
confound the study results. Again, randomization is likely the most important 
key to valid study results because (if the sample size is large enough), it distributes 
known, and  more importantly unknown,  confounders equally to the intervention 
and  control groups. 
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 Now, as to the problems associated with randomization. As prior discussed, the 
issue of confounders of relationships is inherent in all clinical research. A con-
founder is a factor that is associated with both the risk factor and the outcome, 
and leads to a false apparent association between the risk factor and outcome 
(see Fig.  3.1 ). In observational studies, there are several approaches to remove the 
effect of confounders:

•     Most commonly used in case/control studies, one can match the case and control 
populations on the levels of potential confounders. Through this matching the 
investigator is assured that both those with a positive outcome (cases) and a 
negative outcome (controls) have similar levels of the confounder. Since, by 
defi nition, a confounder has to be associated with both the risk factor and the 
outcome; and, since through matching the suspected confounder is not associ-
ated with the outcome – then the factor cannot affect the observed differences in 
the outcome. For example, in a study of stroke, one may match age and race for 
stroke cases and community controls, with the result that both those with and 
without strokes will have similar distributions for these variables, and differences 
in associations with other potential predictors are not likely to be confounded, 
for example, by higher rates in older or African American populations.  

•   In all types of observational epidemiological studies, one can statistically/
mathematically ‘adjust’ for the confounders. Such an adjustment allows for the 
comparison between those with and without the risk factor at a ‘fi xed level’ of 
the confounding factor. That is, the association between the exposure and the 
potential confounding factor is removed (those with and without the exposure 
are assessed at a common level of the confounder), and as such the potential 
confounder cannot bias the association between the exposure and the outcome. 
For example, in a longitudinal study assessing the potential impact of hyperten-
sion on stroke risk, the analysis can ‘adjust’ for race and other factors. This 
adjustment implies that those with and without the exposure (hypertension) are 
assessed as if race were not associated with both the exposure and outcome.    

Confounder (SES)

CHD (CHD risk)Risk Factor (Estrogen)

Confounders of relationships in
Randomized Clinical Trials

In a RCT, 
those with and 
without the 
confounder as 
assigned to the 
risk factor at 
random 

It now doesn’t matter if the confounder (SES) is related to
CHD risk, because it is not related to the risk factor
(estrogen) Æ it cannot be a confounder

  Fig. 3.1    The relationship 
of confounders to outcome 
and how they are eliminated 
in a RCT       
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 The Propensity Score has received increased interest. The propensity score was 
introduced by Rosenbaum and Rubin [ 18 ] to provide an alternative method for 
estimating treatment effects when treatment assignment can be assumed to be 
unconfounded but is not random. A propensity score is the probability of a unit 
(e.g., person, classroom, school) being assigned to a particular condition in a 
study given a set of known covariates (a variable that is possibly predictive of the 
outcome under study). In an attempt to simulate randomization, propensity scores 
are used to reduce selection bias by equating groups based upon covariates (this, 
balances known confounders, but obviously not the unknown confounders). In the 
analysis of treatment effects, suppose that we have a binary treatment T, an outcome 
Y, and background variables X. The propensity score is defi ned as the conditional 
probability of treatment given background variables. This is operationalized by 
gathering all the background information that we have on subjects before exposure 
is known and building a model to predict the probability that they will be in the 
exposed vs. unexposed group. Groups of subjects with similar propensity scores 
can then be expected in the aggregate to have similar values of all the background 
information. Thus, propensity scores can be used in cohort trials, clinical trials 
without randomization, administrative data base studies, detecting safety signals, 
secondary questions within RCTs; and, propensity score analyses may be used in 
either the design or analysis phase. One example of the use of the propensity 
score is the aspirin and mortality study reported by Gum et al. [ 19 ]. In that study, 
6,174 subjects underwent stress echocardiography for the evaluation of known or 
suspected coronary artery disease. Aspirin was being taken by 37 % of the subjects. 
The main outcome was all cause mortality and the mean follow-up was 3.1 years. 
In univariate analysis 4.5 % of the subjects receiving aspirin and 4.5 % of those not 
receiving aspirin died (HR 1.08, 0.85–1.39). Baseline characteristics were dissimilar 
in 25 of 31 of the covariates. In further analysis using matching by propensity score, 
1,351 patients who were taking aspirin were at lower risk for death than 1,351 
patients not using aspirin (4 % vs. 8 %, respectively; HR, 0.53; 95 % CI, 0.38–0.74; 
P = .002). After adjusting for the propensity for using aspirin, as well as other possible 
confounders and interactions, aspirin use remained associated with a lower risk for 
death (adjusted HR, 0.56; 95 % CI, 0.40–0.78; P < .001-Table  3.2 ). The patient 
characteristics associated with the most aspirin-related reductions in mortality were 
older age, known coronary artery disease, and impaired exercise capacity.

   Table 3.2    Example of the use of propensity scoring   

 Before matching  After matching 

 Variable (%)  Aspirin  No aspirin  P value  Aspirin  No aspirin  P value 

 Men  77  56  <.001  70.4  72.1  .33 
 Diabetes  16.8  11.2  <.001  15  15.3  .83 
 HTN  53  40.6  <.001  50.3  51.7  .46 
 CAD Hx  69.7  20.1  <.001  48.3  48.8  .79 
 CHF  5.5  4.6  .12  5.8  6.6  .43 
 B-Blocker  35.1  14.2  <.001  26.1  26.5  .79 
 ACE I  13  11.4  <.001  15.5  15.8  .79 

  Adapted from: Gum et al. [ 19 ]  
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   The major shortcoming with these aforementioned approaches is that one must 
know what the potential confounders are in order to match or adjust for them; and, 
it is the  unknown confounders  that represent a bigger problem. Another issue is 
that even if one suspects a confounder, one must be able to appropriately measure it. 
For example, socio-economic status (usually a combination of education and 
income) is a commonly addressed confounder; but, the defi nition of socio-economic 
status is an issue in which there is disagreement; and, which measures or cut-points 
to use is/are appropriate is frequently argued. The bottom line is that one can never 
perfectly measure all known confounders and certainly one cannot measure or 
perfectly match for unknown confounders. As mentioned, the strength of the RCT 
is that randomization (performed properly and with a large enough sample size) 
optimally balances both the known and unknown confounders between the 
interventional and control groups. But even with an RCT, randomization can be 
further compromised as will be discussed in some of the following chapters, and by 
the following example from “Student’s” Collected Papers regarding the Lanarkshire 
Milk Experiment [ 20 ].

   “Student” (i.e., the great William Sealy Gosset) criticized the experiment for it’s loss of 
control over treatment assignment. As quoted: … Student’s “contributions to statistics, in 
spite of a unity of purpose, ranged over a wide fi eld from spurious correlation to Spearman’s 
correlation coeffi cient. Always kindly and unassuming, he was capable of a generous rage, 
an instance of which is shown in his criticism of the  Lanarkshire  Milk Experiment. This was 
a nutritional experiment on a very large scale. For four months 5,000 school children 
received three-quarters of a pint of raw milk a day, 5,000 children the same quantity of 
pasteurized milk and 10,000 other children were selected as controls. The experiment, in 
Gosset’s view, was inconclusive in determining whether pasteurized milk was superior in 
nutritional value to raw milk.  

  This was due to failure to preserve the random selection of controls as originally 
planned. “In any particular school where there was any group to which these methods (i.e., 
of random selection) had given an undue proportion of well-fed or ill-nourished children, 
others were substituted to obtain a more level selection.” The teachers were kind-hearted 
and tended to select ill-nourished as feeders and well-nourished as controls. Student 
thought that among 20,000 children some 200–300 pairs of twins would be available 
of which some 50 pairs would be identical-of the same sex and half the remainder 
nonidentical of the same sex. The 50 pairs of identicals would give more reliable results 
than the 20,000 dealt with in the experiment, and great expense would be saved. It may be 
wondered, however, whether Student's suggestion would have proved free from snags. 
Mothers can be as kind-hearted as teachers, and if one of a pair of identical twins seemed 
to his mother to be putting on weight…  

        Missing Data 

 In 2008 the FDA requested that the National Research Council (NRC) convene 
an expert panel and to prepare a report that would be useful. The FDA that would 
address appropriate methods for analysis of missing data. Recall that the key feature 
of a RCT is the randomization process; and, this key feature is jeopardized when 
some of the outcome measures are missing. Missing data can seriously compromise 
the interpretations of clinical trials. A major source of missing data is the result of 
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patients dropping out (discontinuing treatment) for any of a variety of reasons 
(adverse events, lost to follow up, lack of effi cacy or tolerability etc). To the degree 
possible, these dropouts should be avoided, since there is no foolproof way to 
analyze data when there is signifi cant (greater than 10 %?) missing data. Continuing to 
follow the patient after treatment discontinuation is one important step to reduce the 
degree of lost information. Little et al. summarized eight design ideas and eight ideas 
for the conduct of clinical trials for limiting missing data (Tables  3.3a  and  3.3b  [ 9 ]).

    Since there is no universal method for handling missing data the best strategy is to 
avoid it. Statistical approaches to missing data will always involve unprovable assump-
tions, because there is always some uncertainty about the reasons that data is missing. 
The frequency of missing data is a result of patient dropouts the common reasons for 
which are: intolerability to the intervention, lack of intervention effi cacy, or failure to 
attend designated appointments. Fleming has pointed out that there are only two 
reasons a patient can be off study; withdrawal of consent AND refusal to be followed 
or contacted, or the patient has achieved the required effi cacy and safety end points 
[ 21 ]. He suggested six strategies to prevent missing data: fi rst to distinguish nonadher-
ence from nonretention; second to attempt to continue contact with the patient even if 
they have withdrawn from the study; third, adequately educate the patient during the 
informed consent process of the scientifi c relevance of the data they are providing; 
fourth, protocols should not give a false sense of being able to correct for missing data 

   Table 3.3a    Eight ideas for limiting missing data in the design of clinical trials   

 Target a population that is not adequately served by current treatments and hence has an incentive 
to remain in the study 

 Include a run-in period (See discussion above regarding run-in periods) 
 Allow for a fl exible treatment regimen 
 Shorten the follow up time so that participants are less likely to withdraw 
 Allow the use of rescue medications 
 For long term effi cacy trials consider a withdrawal design 
 Consider an outcome that is not likely to lead to missing data 
 Consider add-on designs i.e. where a study treatment is added to existing therapies the patient may 

be receiving 

  Table 3.3b    Eight ideas for 
limiting missing data in the 
conduct of clinical trials  

 Select investigators with good track records 
 Set acceptable rates for missing data and monitor 

during the course of the trial 
 Provide incentives to investigators and 

participants to continue the trial 
 Limit participant burden of data collection 
 Provide continued access to the trial medication 

after trial completion 
 Train investigators and study staff on the 

importance of trial continuation 
 Keep up to date contact information on trial 

participants 
 Assess the likelihood of participant 

continuation before enrollment 
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with statistical approaches; fi fth, protocols should specify targeted levels of data 
capture; and, sixth, forms and procedures for data collection should be formulated 
to reduce the likelihood of missing data. The use of run-in periods is an additional 
strategy, along with the use of fl exible doses may be helpful as well. 

 Losses to follow-up (see below) using the last observation carried forward or 
baseline observation carried forward analysis is likely to overestimate and/or bias 
the outcome (since patients lost to follow-up more frequently are not benefi tting 
from the intervention). Imputing the worst possible outcome might underestimate 
the benefi t of the intervention. Missing data can be viewed in several ways. The 
ideal is if the missing data is “missing completely at random” (MCAR). This is an 
assumption that is unlikely to hold in most clinical trials because it presumes that 
the missing data are unrelated to the study variables (an unlikely scenario). A more 
realistic condition is missing at random (MAR, this might be better stated as missing 
“mostly” at random), or missing not at random (MNAR). 

 Because some missing data that does occur in almost every study, and each clinical 
trial has its own set of challenges, the NRC panel did list four general approaches: 
complete-case analysis, single imputation methods, estimating-equation methods and 
methods based on a statistical model. There is no single correct method for handling 
missing data, as all methods require that untestable assumptions be made. Discussion 
of these are beyond the scope of this book, but briefl y, complete-case analysis simply 
excludes participants with missing data while with imputation, a single value is fi lled 
in for each missing value by using such methods as last observation carried forward 
or the baseline value carried forward. With estimating- equation methods, cases are 
weighted based upon the estimate of probability of an outcome being observed. As to 
the statistical modeling, approaches such as prior probabilities (Bayesian Methods) 
and multiple imputation where multiple sets of plausible values for missing data are 
used. Missing data can occur, of course, at random, or there can be differential loss of 
data, a more important consideration when missing data is assessed. Little et al. 
outlined six principles for drawing inferences from incomplete data [ 9 ].

    1.    Consider if the missing values are meaningful for analysis   
   2.    Consider a possible causal pathway and how missing data might infl uence it   
   3.    Consider why data are missing   
   4.    Decide on a set of assumptions about the mechanism for missing data   
   5.    Conduct a statistically valid analysis based on the above   
   6.    Conduct a sensitivity analysis, a statistical technique that attempts to determine 

how changes in one variable will impact the target variable [ 7 ].    

      Complications of Eligibility Criteria 

    All generalizations are false, including this one (Mark Twain)  

   In every study there are substantial gains in statistical power by focusing the inter-
vention in a homogenous patient population likely to respond to treatment, and to exclude 
patients that could introduce ‘noise’ by their inconsistent responses to treatment. 
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Conversely, at the end of a trial there is a need to generalize the fi ndings to a broad 
spectrum of patients who could potentially benefi t from a superior treatment. 
These confl icting demands introduce the issue of balancing the inclusion/exclusion 
(eligibility criteria) such that the enrolled patients are as much alike as possible; but, 
on the other hand to be as diverse as possible in order to be able to apply the results 
to the more general population (i.e. generalizability). Figure  3.2  outlines this 
balance. What is the correct way of achieving this balance? There really is no correct 
answer, there is always a tradeoff between homogeneity and generalizability; and 
each study has to address this, given the availability of subjects, along with other 
considerations. This process of sampling represents one of the reasons that scien-
tifi c inquiry requires reproducibility of results, that is, one study generally cannot be 
relied upon to portray ‘truth’ even if it is a RCT. The process of sampling embraces 
the concept of generalizability. The issue of generalizability is nicely portrayed in a 
video entitled ‘A Village of 100’ [ 22 ]. If one wanted to have a representative sample 
of the world for a study, this video (although predominately focused upon tolerance 
and understanding), is an excellent way of understanding the issue of generaliz-
ability. The central theme of the video asks the question ‘if we shrunk the earth’s 
population to a village of precisely 100 people, with all existing ratios remaining the 
same, what would it look like?’ To paraphrase, if we maintained the existing ratios 
of the earth’s population in a study of 100 people, what would our sample look 
like? The answer – there would be 57 Asians, 21 Europeans, 14 from the Western 
Hemisphere, 51 females and 49 males, 70 non- white and 30 white, 70 non-Christians 
and 30 Christians, 89 heterosexuals, 50 % of the worlds wealth would belong to 
6 citizens of the USA, 80 would live in sub- standard housing, 70 would be unable 
to read (a potential problem with IRB approval), 50 would be malnourished, 
one would have a college education, and 4 would own a computer. When is the last 
time a study had a population representative of the Village of 100?

Implications of Eligibility Criteria

Homogeneity
• Divergent subgroup of

patients (i.e., “weird”
patients) can distort
findings for the majority

• Restriction of
population reduces
“noise” and allows study
to be done in a smaller
sample size
Restrict population to
homogenous group

Generalizability
• At the end of the study,

it will be important to
apply findings to the
broad population of
patients with the disease

• It is questionable to 
generalize the findings
to those excluded from
the study
Have broad inclusion
criteria “welcoming” all

What is the correct answer?
There is no correct answer!

  Fig. 3.2    The balance of confl icting issues involved with patient selection       
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   For an example of sampling issues, most of the major studies assessing the 
effi cacy of the treatment of extracranial atherosclerosis with endarterectomy had 
excluded octogenarians on the basis that this patient population may have a response 
to the challenges of surgery that is different than their younger counterparts [ 23 ,  24 ]. 
Exclusion of these patients may have contributed to the successful completion of 
‘positive’ trials (fi nding a benefi t for the then new treatment – endarterectomy). 
However, now that the trials are complete, there is not ‘level 5’ evidence (data that 
is a result from RCTs) to guide the management of octogenarians with extracranial 
atherosclerosis, one of the subpopulations where the need for this information is 
important. In the absence of this information, thousands of endarterectomies are 
performed in this older patient population each year under the assumption that the 
fi ndings from a younger cohort are generalizable to those at older ages. For another 
example, let’s presume that in a multicenter trial that included Framingham 
Massachusetts, and Birmingham, Alabama, that a representative sample of each was 
recruited into a study. The makeup of the sample from each is illustrated in Table  3.4 . 
As one can see, there are signifi cant differences in the representative sample 
populations, and these differences could affect not only the success of the inter-
vention but could also confound its relationship.

       Effi cacy vs. Effectiveness 

 Another limitation of RCTs is that they are designed to test safety and effi cacy 
(i.e. does the drug work under optimal circumstances?) and not to answer questions 
about the effectiveness of a drug, the more relevant question for clinicians and 
economic analysts (i.e. does the drug work under ordinary circumstances of use?). 
Thus, the increased use of effectiveness trials has been suggested, to more closely 
refl ect routine clinical practice. Effectiveness trials use a more fl exible dosage 
regimen, and generally a ‘usual care’ comparator instead of a placebo comparator. 
Two approaches to this more ‘real world trial’ is the phase 4 trial (see Chap.   5    ) or 

  Table 3.4    Birmingham v 
Framingham: comparison of 
key variables  

 Birmingham  Framingham 

 Population  242,800  62,910 
 % African American  73.5  5.1 
 Age 
  25–44  30  35 
  45–64  20  33 
  65–>  14  13 
 Median income $  26,700  55,300 
 Education % 
  <High school  25  13 
  High school  28  23 
  >High school  48  64 
 CVD rate  528–582  336–451 
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the prospective, randomized, open-label, blinded end-point – PROBE-Trial. The 
PROBE Trial is further discussed in the next section entitled “ Degree of Masking ”). 
As to phase 4 trials, they are surrounded by some controversy as well. Figure  3.3  
compares effi cacy and effectiveness trials in terms of some of their more important 
variables.

       Patient Compliance 

    Run-in Periods 

 Another issue surrounding RCTs, and one that is almost unique to clinical trials, is 
the use of run-in periods and their impact on who is eligible to be randomized. Pre- 
randomization run-in periods are frequently used to select or exclude patients in 
clinical trials, but the impact of run-in periods on clinical trial interpretation and 
generalization has not been systematically studied. The controversy regarding run-
 in periods also addresses the issue of effi cacy vs. effectiveness, as the run-in period 
allows one to exclude patients that are potentially less compliant, or do not tolerate 
placebo (or whatever other intervention is used in an active comparison group). 
Although this issue has not been systematically studied, intuitively one can see that 
the potential for over-estimating the impact of an investigational drug is present 
when run-in periods are utilized, as the run-in period will likely exclude patients 
from the study who would not have ideally responded. 

 A study can achieve high compliance in at least three general ways: designing a 
simple protocol (complexity makes compliance more diffi cult); the use of compliance 
aids such as automatic reminders, telephone calls, calendars, etc; or by selecting 
subjects based upon pre-study or pre-randomization compliance. Of course, high 
compliance is a desirable characteristic of any research. High compliance attenuates 
the argument of whether to use intention to treat vs. compliance only as the primary 

Efficacy and Effectiveness

Fletcher, Fletcher, Wagner, 1988

–

Generalizability

+

+

Internal
Validity

–

Efficacy
Trial

Effectiveness
Trial

+

  Fig. 3.3    The “Trade-off” 
between effi cacy vs. 
effectiveness       
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analysis. Also, high compliance will optimize the studies power as the “diluting” 
effect of non-compliers will not be manifest (all other things being equal). While the 
run-in period increases the proportion of compliers in the trial, it may introduce 
important differences in the outcomes, particularly if compliers and non- compliers 
are inherently different in the way they would respond to the intervention of interest. 
Thus, the effect of run-in periods on generalizability should be considered carefully 
before implementation. Lang [ 25 ] has listed some recommendations for helping to 
decide whether to use a run-in as part of a clinical trial, including:

    1.    consider a run-in whenever the contact between study staff and participants is low   
   2.    consider a run-in period for a primary prevention trial because compliance is 

likely to be more diffi cult compared to therapeutic trials   
   3.    For any trial, list the key features of the study protocol and see which features 

compliance could be directly tested prior to randomization   
   4.    before using active agents during a run-in, consider both the expected frequency 

of occurrence of side effects and the postulated effect of the agent on the out-
come of interest   

   5.    all trials can use any available    pre-randomization period for the simultaneous 
purpose of characterizing patients and evaluating compliance, whether of not the 
compliance information will be used for exclusions    

In fairness, as Franciosa points out, clinicians use variants of run-in periods to treat 
their patients, such as dose titration, or challenge dosing (e.g. using small doses of 
ACE Inhibitors to rule out excessive responders) [ 26 ]. Pablos-Mendez et al. analyzed 
illustrative examples of reports of clinical trials in which run-in periods were used 
to exclude non-compliant patients, placebo responders, or patients that could not 
tolerate or did not respond to active drug [ 27 ]. 

 Thus, the use of run-in periods is another reason that the results of RCTs may not 
accurately portray what the drugs overall effectiveness will be. What can be said is 
that there does need to be more focus on the details of run-in periods, and as is true 
of most things the researcher does in designing and implementing a clinical trial, 
judgments have to be made regarding the best approach to use regarding inclusions 
and exclusions, as well as judging what the impact of the run-in period is on the 
ultimate interpretation of a clinical trial. Ultimately, from the perspective of internal 
validity, it is better to exclude participants before randomization than have participants 
lost to follow up, cross between study groups, or become non-adherent to interven-
tion protocols after randomization.   

    Recruitment and Retention 

 Nothing is more critical to the success of a clinical trial than the recruitment and 
retention of subjects. As will be discussed in more detail in Chap.   8    , there are a 
number of reasons for failure of the recruitment process including: delayed start-up, 
and inadequate planning, In terms of patient/subject retention, there are arguably 
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differences in the handling of clinical patients in contrast to research subjects 
(although this could and perhaps should be challenged). Losses-to-follow-up need 
to be kept to a minimum and is discussed later in this chapter.  

     Degree of Masking (Blinding) 

 Although the basic concept of clinical trials is to be at equipoise, this does not 
change the often pre-conceived ‘suspicion’ that there is a differential benefi t of the 
investigational therapy (e.g. the investigational drug is better than placebo). Thus, if 
study personnel know the treatment assignment, there may be differential vigilance 
where the supposed ‘inferior group’ is more intensively monitored (e.g. ‘are you 
certain you have not had a problem?’ they might ask). In this case, unequal evaluations 
can provide unequal opportunities to differentially ‘discover’ events. This is why the 
concept of double-blinding (masking) is an important component of RCTs. There is 
an argument about which term-blinding or masking-is most appropriate [ 28 ], and 
Fig.  3.4  portray’s a humorous example of this argument. But, one cannot always 
have a double-blind trial, and some would argue that double-blinding distances 
the trial from a ‘real-world’ approach. An example where blinding is difficult 
to achieve might be a surgical vs. medical intervention study where post oper-
ative patients may require additional follow-up visits, and each visit imparts an 
additional opportunity to elicit events. That is, it has been said that ‘the patient 

  Fig. 3.4    A humorous example of blinding (masking) (With permission from Schulz and Grimes [ 28 ])       
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cannot have a fever if the temperature is not taken,’ [ 29 ] and for RCTs, events 
cannot be detected without patient contact to assess outcomes.

   Of course, masking is not always possible and examples include studies that: 
might evaluate residual surgical wounds, studies involved with cycling hormone 
replacement, studies requiring serum (or other) assay or physical measurement, 
studies that involve participant participation in the treatment (i.e., low fat diet, 
exercise, etc). Common approaches to these examples are to at least mask the 
rater (adjudicator), or to move toward a totally objective outcome (e.g. death), 
or to use an independent observer who does not know treatment to assess outcome. 
In an effort to study the impact of adjudicator blinding on outcomes, Parmar et al. 
assessed the effect of blinding race and geography on outcomes ascertainment in an 
observational study [ 28 ]. The primary characteristics of interest were race and 
geography, and the prespecifi ed acceptable agreement rate between adjudicators 
was set at >80 %. They selected 116 suspected cardiovascular events that underwent 
adjudication with usual blinding. At least 3 months later, cases were readjudicated 
without blinding race and geographic location of the patient, and differences in 
outcomes ascertainment was assessed using Cohen’s κ statistic and agreement rates. 
Agreement between the blinded and unblinded reviews was good to excellent for 
all four outcomes. κ statistics were 0.80 (chest pain), 0.85 (heart failure), 0.86 
(revascularization) and 0.74 (MI) (p < 0.0001 for all). Within each outcome, agree-
ment rates were similar for race and geographic groups (agreement 83–100 %). The 
authors concluded that in observational studies, blinding medical record 
review for outcomes ascertainment for some types of patient characteristics may be 
an unwarranted expense. 

 In order to realize a more ‘real-world’ approach to clinical trials, the prospective 
randomized open-label blinded endpoint design (PROBE design) was developed. 
Randomization is used so that this important component of study design is retained. 
By using open-label therapy, the drug intervention and its comparator can be 
clinically titrated as would occur in a doctor’s offi ce. Of course, blinding is lost 
here, but only as to the therapy. In a PROBE design, blinding is maintained as to the 
ascertainment of the outcome. To test whether the use of open-label vs. double-
blind therapy affected outcomes differentially, a meta analysis of PROBE trials and 
double- blind trials in hypertension was reported by Smith et al. [ 30 ]. They found 
that changes in mean ambulatory blood pressure from double-blind controlled studies 
and PROBE trials were statistically equivalent.  

    Selection of Comparison Groups 

 As the story goes a clinical researcher meets someone on the street who asks “how 
do you do?” The researcher answers “compared to whom?” When addressing the 
validity of an outcome difference compared to some control group, it is crucial that 
the control group be clearly defi ned. Sometimes studies assess a new (investigational) 
treatment versus an approved (standard) active treatment (i.e. to assess if the old 
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‘standard’ treatment should be replaced with the new treatment), in other cases, 
studies are assessing if a new treatment should be added (not replacing, but rather 
supplementing), current treatment. In this latter case, the comparison of interest is 
the outcome of patients with and without the new treatment. In this instance, masking 
can only be accomplished by the use of a double-blind technique. Traditionally, 
placebo treatment has been used as the comparator to investigational treatments, 
and has been one of the standards of clinical trials. 

 The use of the placebo comparator has more and more been the subject of ethical 
concerns. In addition to ethical issues involved with the use of placebos, there are 
other considerations raised by the use of placebo-controls. For example, an important 
lesson was learned from the Multiple Risk Factor Intervention Trial (MRFIT) 
regarding the use and analysis of the placebo control group, which might best be 
summed up with the question ‘why it is important to watch the placebo group?’ 
[ 31 ]. MRFIT screened 361,662 patients to randomize high-risk participants (using 
the Framingham criteria existent at that time) to special intervention (n = 6428) and 
usual care (n = 6438) with coronary heart disease mortality as the endpoint. The 
design of this well-conducted study assumed that the risk factor profi le of those 
receiving ‘special treatment interventions’ would improve, while those patients in 
the ‘usual care’ group would continue their current treatments and remain largely 
unaffected. The special intervention approaches in MRFIT were quite successful, 
and all risk factor levels were reduced. However, there were also substantial and 
signifi cant reductions observed in the control group. That both treatment and control 
groups experienced substantial improvements in their risk factor profi le translated 
to almost identical CHD deaths during the course of the study. Why did the control 
group fare so well? Several phenomena may have contributed to the improvement 
in the placebo-control group. First, is the Hawthorne effect, which suggests that just 
participating in a study is associated with increased health awareness and changes 
in risk factor profi le, irrespective of any intervention [ 32 ]. In addition, for the longer- 
term trials, there are changes in the general population that might alter events. For 
example, randomization in MRFIT was conducted during the 1980s, a period when 
health awareness was becoming more widely accepted in the USA, and likely 
benefi cially affected the control group. 

 Although the ethics of placebo controls is under scrutiny, another principal 
regarding the placebo-control group is that sometimes being in the placebo group 
isn’t all that bad. The Alpha-Tocopherol, Beta Carotene Cancer Prevention Study 
was launched in 1994 [ 33 ]. By the early 1990s there was mounting clinical 
epidemiologic evidence of reduced cancer risk associated with a higher intake of 
antioxidants. Treatment with vitamin E and beta carotene were considered unlikely 
to be harmful, and likely to be helpful; and, the question was asked whether antioxi-
dants could reduce lung cancer-even in smokers. A double-blind, placebo-controlled 
RCT was launched with a 2 x 2 factorial design (see Chap.   4    ), and over 7,000 
patients in each cell. No benefi t was seen with either therapy, but compared to 
placebo; a disturbing worsening trend was observed in the beta-carotene treated 
compared with the placebo group. 
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 Frequently, the comparison group or control group is a so called ‘normal’ 
population. Inherent to this concept is ‘what is normal?’. A wit once opined that ‘a 
normal person is one who is insuffi ciently tested’. Interestingly, there are a number 
of scientifi c defi nitions of normal (see Table  3.5 ). One defi nition of normal might be 
someone who fi ts into 97 % of a Gaussian Distribution, another that normal lies 
within a preset percentile of a laboratory value or values. Other defi nitions exist, 
suffi ce it to say, whatever defi nition is used it needs to be clearly identifi ed.

       Analytic Approach 

    Intention to Treat and Per-Protocol Analysis 

 There are three general analytic approaches to clinical trials; intention-to-treat (ITT) 
analysis (or analysis as randomized), compliers only (or per-protocol) analysis, and 
analysis by treatment received. Probably the least intuitive and the one that causes 
most students a problem is ITT. ITT was derived from a principle called the 
pragmatic attitude [ 34 ]. The concept was that one was to compare the effectiveness 
of the  intention  to administer treatment A vs. the  intention  to administer treatment 
B, i.e. the comparison of two treatment policies rather than a comparison of two 
specifi c treatments. With ITT, everyone assigned to an intervention or control arm 
is counted in their respective assigned group, whether they ultimately receive none 
of the treatment, or somewhat less than the trial directed. For example, if in a 1-year 
trial, a patient is randomized to receive an intervention, but before the intervention 
is administered, they drop out (for whatever    reason) they are analyzed as if they 
received the treatment for the entire year. The same applies if the patient drops out 
at any time during the course of the study. Likewise, if it is determined that the 
patient is not fully compliant with treatment, they are still counted as if they were. 
In fact, whether there is compliance, administrative, or protocol deviation, patients 
once randomized are counted as if they completed the trial. Most students initially 
feel that this is counter-intuitive. Rather the argument would be that one is really 
interested in what would happen if a patient is randomized to a treatment arm and 
they take that treatment for the full trial duration and are fully compliant – this, one 

   Table 3.5    Different defi nitions of “normal”   

 Property  Term  Consequence of application 

 Distribution shape  Gaussian  Minus values 
 Lie within preset %  Percentile  Normal until workup 
 No additional risk  Risk factor  Assumes altering risk factor improves risk 
 Societal or political  Culturally desirable  Raises the role of society in medicine 
 A range before test suggests 

no disease 
 Diagnostic  Need to know the predictive value in ones 

own practice 
 Therapy benefi cial  Therapeutic  New therapies alter this 
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would argue, gives one the real information needed about the optimal effect of 
an intervention (this, by the way, is a description of the compliers only analysis). 
So why is ITT the scientifi cally accepted primary analysis for most clinical trials? 
As mentioned before, randomization is arguably one of the most important aspects 
of clinical trial design. If patients once randomized to a treatment are not included 
in the analysis, the process of randomization is compromised. It is not a leap of faith 
to wonder if patients dropping out of the intervention arm might be different than 
the patients dropping out of a control arm. Thus, if ITT is not used, one loses the 
assurance of equal distribution of unknown confounders between the treatment 
groups, and this thereby tarnishes the basis of randomization. One example of the 
loss of randomization if ITT is not used might be differential dropouts between the 
intervention and control arm for adverse events. Also, if patients with more severe 
disease are more likely to dropout from the placebo arm; or conversely patients who 
are older, dropout more frequently from the placebo arm thereby removing them 
from the analysis, this could result in an imbalance between the two comparison 
groups. Another argument for ITT is that it provides for the most conservative 
estimate of the intervention effect (if the analysis includes patients that did not get 
the entire treatment regimen and the regimen is benefi cial, clearly the treatment 
effect will be diluted). Thus, if using ITT analysis reveals a benefi t, it adds to the 
credibility of the effect measure. Of course, one could argue that one could miss a 
potentially benefi cial effect if the intervention effect is diluted. In summary, ITT 
protects against bias, protects the statistical integrity of the trial, and protects the 
randomization process. 

 In the compliers only analysis, the patients that complete the trial and comply 
fully with that treatment are analyzed. The problem is that if a benefi cial effect is 
seen, one can wonder what the loss of randomization (and thereby equality of 
confounders between groups) means to that outcome, particularly if an ITT analysis 
does not demonstrate a difference. The loss of randomization and the loss of 
balanced confounders between the treatment and control groups is exemplifi ed by 
an analysis of the Coronary Drug Project, where it was determined that poor com-
pliers to placebo had a worse outcome than good compliers to placebo [ 35 ]. This 
would suggest that there are inherent differences in patients who comply vs. those 
who do not, and this could differentially be the cause of dropout. The Coronary 
Drug Project was a trial aimed at comparing clofi brate with placebo in patients with 
previous myocardial infarction with the outcome of interest being mortality. Initially 
reported as a favorable intervention (there was a 15 % 5 year mortality in the clofi -
brate compliers only analysis group, compared to a 19.4 % mortality in the placebo 
group- p < .01); while with ITT analysis there was essentially no difference in 
outcome (18.2 vs. 19. 4 %−p < .25). Given the differences in outcome between 
placebo compliers and placebo non-compliers, one can only assume the same for 
the investigational drug group. Likewise, the Anturane Reinfarction Trial was 
designed to compare anturane with placebo in patients with a prior MI and in whom 
mortality was the outcome of interest [ 36 ]. One thousand six hundred and twenty 
nine patients were randomized 817 to placebo and 812 to anturane (71 patients were 
later excluded because it was determined that they did not meet eligibility criteria). 
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The study initially reported anturane as a favorable intervention (although the 
p < .07), but when the 71 ineligible randomized patients were included in the 
analysis the p = 0.20. Again further analysis demonstrated that in the anturane ineli-
gible patients, overall mortality was 26 % compared to the mortality in the anturane 
eligible patients that was 9 %. 

 If one considers the common reasons for subjects not being included in a study, 
ineligibility is certainly one. In addition, subjects may be dropped from a trial for 
poor compliance, and/or adverse drug events; and, patients may be excluded from 
analysis due to protocol deviations or being lost to follow up. Some of the reasons 
for ineligibility are protocol misinterpretations, clerical error, or wrong diagnosis at 
the time of randomization. Sometimes the determination of ineligibility is above 
question (e.g. the patient fell outside of the studies predetermined age limit) but 
frequently ineligibility requires judgment. The Multicenter Investigation of the 
Limitation of infarct Size (MILIS) study is an example of this latter concept. MILIS 
compared propranolol, hyaluronidase, and placebo in patients with early acute MI, 
in order to observe effects on mortality. Subsequently, some patients were deemed 
ineligible because the early diagnosis of MI was not substantiated. But, what if the 
active therapy actually had an effect on preventing or ameliorating the MI? The 
problem with not including patients in this instance is that more patients could 
have been withdrawn from the placebo group compared to the active therapy group, 
and as a result, interpretation of the data would be altered. 

 Of course, as is true of most things in clinical research there is not just one 
answer, indeed, one has to carefully assess the trial specifi cs. For example, Sackett 
and Gent cite a study comparing heparin to streptokinase in the treatment of acute 
myocardial infarction [ 37 ]. The ITT analysis showed that streptokinase reduced the 
risk of in-hospital death by 31 % (p = 0.01). However, eight patients randomized to 
the heparin group died after randomization, but before they received the heparin. 
Analysis restricted to only those who received study drug decreased the benefi t of 
streptokinase (and increased the p value). 

 In summary, ITT is the most accepted (e.g. by most scientists and the FDA) 
as the analysis of choice for clinical trials. This is because ITT assures statistical 
balance (as long as randomization was properly performed), it ‘forces’ disclosure of 
all patients randomized in a trial, and most of the arguments against ITT can be 
rationally addressed. 

 Analysis-As-Treated is another analytic approach that addresses not the group to 
which the patient was randomized and not compliers only, but what the patient 
actually received. This analytic approach is utilized most often when patients cross 
over from one treatment arm to the other; and, this occurs most often in surgical vs. 
medical treatment comparisons. For example, patient’s randomized to medical 
treatment (vs. coronary artery bypass surgery) might, at some time during the study, 
be deemed to need the surgery, and are thus crossed over to the surgical arm and are 
then assessed as to the treatment they received (i.e. surgery). Like compliers only 
analysis, this might be an interesting secondary analytic technique, but shares many 
of the same criticisms discussed earlier for compliers-only analysis. In addition, 
because such trials cannot easily be double-blinded, even greater criticism can be 
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leveled against this analytic approach compared to compliers-only analysis. In 
addition, statistical testing with this analysis by treatment received, is more compli-
cated, not only by the crossovers, but by the inherent nature of the comparison 
groups. In comparison trials of 1 drug vs. placebo, for example, it is reasonable to 
assume that if the drug is superior to placebo (or an active control) patients in 
the drug group will average fewer events in the follow-up period. When this is 
displayed as survival curves, the survival curves will increasingly separate. In trials 
comparing surgical to medical therapy, the aforementioned approach may not be 
reasonable. For example, if patients randomized to surgery have a high early risk 
(compared to the non- surgical group) and a lower risk later, these risks may cancel 
and be similar to the number of events under the null hypothesis of no difference 
between groups. The issue of comparing surgical and non-surgical therapies in clinical 
trials has been nicely summarized by Howard et al. [ 38 ].  

    Subgroup Analysis 

 As pointed out by Assmann et al., most clinical trials collect substantial baseline 
information on each patient in the study [ 39 ]. The collection of baseline data has at 
least four main purposes: (1) to characterize the patients included in the trial, i.e. to 
determine how successful randomization was (2) to allow assessment of how well 
the different treatment groups are balanced, (3) to allow for analysis per treatment, 
(4) to allow for subgroup analysis in order to assess whether treatment differences 
depend on certain patient characteristics. It is this 4th purpose that is perhaps the 
most controversial because it can lead to ‘data dredging’ or has some wits have 
opined, ‘if you interrogate the data enough, you can get it to admit to anything’. For 
example, Sleight and colleagues, in order to demonstrate the limitations of subgroup 
analysis, performed subgroup analysis in the ISIS-2 trial by analyzing treatment 
responses according to the astrological birth sign of the subject [ 40 ]. This analysis 
suggested that the treatment was quite effective and statistically signifi cant for all 
patients except those born under the sign of Gemini or Libra. The validity of any 
subgroup observation tends to be inversely proportional to the number of subgroups 
analyzed. For example, for testing at the 5 % signifi cance level (p ≤ .05) an erroneous 
statistically signifi cant difference will be reported (on average) 5 % of the time 
(i.e. false + rate of 5 %). But, if 20 subgroups are analyzed, the false positive rate 
would approach 64 % (Table  3.6 ).

   It is true, that meaningful information from subgroup analysis is restricted by 
multiplicity of testing and low statistical power and that surveys on the adequacy of 
the reporting of clinical trials consistently fi nd the reporting of subgroup analyses to 
be wanting. Most studies enroll just enough participants to ensure that the primary 
effi cacy hypothesis can be adequately tested, and this limits the statistical abil-
ity to fi nd a difference in subgroup analyses; and, the numbers of subjects available 
for subgroup analysis is further compounded by loss of compliance, the need for 
adjustments for multiple testing, etc. Some have taken this to mean that subgroup 
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analyses are useless. When results from a subgroups analysis are at variance from 
the overall group outcome, the results are still likely to be true if the subgroup is 
large, they are pre-specifi ed rather than  post hoc  (i.e. ‘after the fact’) and they are of 
limited number (not all post hoc analyses are subgroup analyses, but arguably most 
are). At the least, whether pre-specifi ed or  post hoc,  subgroup analyses serve to 
generate questions for subsequent trials, and should not be interpreted as “truth”. An 
exception to this latter principal, is when it comes to safety, here subgroup analyses 
might “carry more weight”. An example of a post-hoc analysis that was “accepted” 
is the Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) 
study where LIPITOR 80 mg vs. placebo was administered in 4,731 subjects with-
out CHD who had a stroke or TIA within the preceding 6 months [ 41 ]. A higher 
incidence of hemorrhagic stroke was seen in subgroup analysis in the LIPITOR 
80 mg group compared to placebo. Subjects with hemorrhagic stroke on study entry 
appeared to be at increased risk for hemorrhagic stroke. As a result, Pfi zer revised 
the US Prescribing Information for atorvastatin to include a precaution for its use of 
80 mg in patients with a prior history of stroke. 

 What can be said is that if subgroup analysis is used and interpreted carefully, it 
can be useful. Even among experts, opinions range from only accepting pre- 
specifi ed subgroup analyses supported by a very strong  a priori  biological rationale, 
to a more liberal view in which subgroup analyses, if properly carried out and 
interpreted, are permitted to play a role in assisting doctors and their patients to 
choose between treatment options. In reviewing a report that includes subgroup 
analyses, Cook et al. suggest addressing the following issues (Table  3.7 ): (1) were 
the subgroups appropriately defi ned, (that is, be careful about subgroups that are 
based upon characteristics measured after randomization e.g. adverse drug events 
may be more common as reasons for withdrawal from the active treatment arm 
whereas lack of effi cacy may be more common in the placebo arm); (2) were the 
subgroup analyses planned before the implementation of the study (in contrast to 
after the study completion or during the conduct of the study); (3) does the study 
report include enough information to assess the validity of the analysis e.g. the 
number of subgroup analyses; (4) do the statistical analyses use multiplicity and 
interaction testing; (5) were the results of subgroup analyses interpreted with 
caution; (6) is there replication of the subgroup analysis in another independent 
study; (7) was a dose-response relationship demonstrated in the subgroup; (8) was 
there reproducibility of the observation within individual sites; and (9) is there a 
biological explanation.

   Table 3.6    Approximate number of False Positives (FP) occurring with multiple subgroup analyses   

 No. of  tests  Probability of 1 FP  Probability of 2 FPs  Probability of 3 FPs 

 1  0.05  0.01  0 
 2  0.10  0.02  0 
 3  0.14  0.025  0 
 5  0.23  0.03  0 
 10  0.40  0.05  0.01 
 20  0.64  0.10  0.10 

3 A Focus on Clinical Trials



56

        Traditional Versus Equivalence Testing (Table  3.8 ) 

    Most clinical trials have been designed to assess if there is a difference in the effi cacy 
to two (or more) alternative treatment approaches (with placebo usually being the 
comparator treatment). There are reasons why placebo-controls are preferable to 
active controls, not the least of which is the ability to distinguish an effective treat-
ment from a less effective treatment. However, if a new treatment is considered to be 
equally effective but perhaps less expensive and/or invasive, or a placebo-control is 
considered unethical, then the new treatment needs to be compared to an established 
therapy and the new treatment would be considered preferable to the established 
therapy, even if it is just as good (not necessarily better) as the old (Table  3.9 ). The 
ethical issues surrounding the use of a placebo-control and the need to show a new 
treatment to only be as ‘good as’ (rather than better) has given rise to the recent inter-
est in equivalence or non-inferiority testing. With traditional (superiority) hypothesis 
testing, the null hypothesis states that ‘there is no difference between treatment 
groups (i.e. New = Old or placebo or standard therapy). Rejecting the null, then 
allows one to defi nitively state if one treatment is better (or worse) than another 
(i.e. New > or < Old). The disadvantage is if at the conclusion of an RCT there is not 
evidence of a difference, one cannot state that the treatments are the same, or as good 
as one to the other, only that the data are insuffi cient to show a difference. That is, 
when the null hypothesis is not accepted, it is simply the case where it cannot be 
rejected. The appropriate statement when the null hypothesis is not rejected (accepted) 
is ‘there is not suffi cient evidence in these data to establish if a difference exists.’

  Table 3.7    Considerations 
regarding subgroup analyses  

 Was there potential for patient misclassifi cation 
 Was the analysis approach Intention-To-Treat 
 Were subgroups planned  a priori  
 Was the subgroup analysis based on trial or 

biological data 
 Was there adequate power for subgroup analysis 
 What are the total number of subgroups analyzed 
 Are there adjustments for multiple testing 
 Are there tests for interaction 
 Are subgroup results emphasized above primary 

analyses 
 Are the subgroup analyses placed in proper 

biological and prior trial data perspective 
 Are  a priori  analyses distinguished from  a 

posteriori  analyses 

  Table 3.8    Goal of RCTs 
and their relation 
to hypothesis testing  

 RCT goal  Superiority  Equivalence 

 Null hypothesis  New = Old  New < Old + δ 
 Alternative hypothesis  New  =\     Old  New = Old + δ 

  δ is the margin in which the point estimate falls  
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   Equivalence testing in essence ‘fl ips’ the traditional null and alternative hypotheses. 
Using this approach, the null hypothesis is that the new treatment is worse than the 
old treatment (i.e. New < Old); that is, rather than assuming that there is no differ-
ence, the null hypothesis is that a difference exists and the new treatment is inferior. 
Just as in traditional testing, the two results available from the statistical test are (1) 
reject the null hypothesis, or (2) failure to reject the null hypothesis. However, with 
equivalence/noninferiority testing rejecting the null hypothesis is making the statement 
that the new treatment is not worse than old treatment, implying the alternative, that 
is ‘that the new treatment is  as good  as the old’ (i.e. New = Old). Hence, this approach 
allows a defi nitive conclusion that the new treatment is as good as the old. 

 One caveat is the defi nition of ‘as good as,’ which is defi ned as being in the ‘neigh-
borhood’ or having a difference that is so small that it is to be considered clinically 
unimportant (generally, effects within ±2 % – this is known as the equivalence or 
noninferiority margin usually indicted by the symbol δ). The need for this ‘neighbor-
hood’ that is considered ‘as good as’ exposes the fi rst shortcoming of equivalence 
testing – having to make a statement that ‘I reject the null hypothesis that the new 
treatment is worse than the old, and accept the alternative hypothesis that it is as 
good –  and by that I mean that it is within at least 2 % of the old ’ (the wording in 
italics are rarely included in the conclusions of a manuscript). A second disadvantage 
of equivalence/noninferiority testing is that no defi nitive statement can be made that 
there is evidence that the new treatment is better or worse. Just as in traditional 
testing, one never accepts the null hypothesis – one only fails to reject it. Hence if the 
null is not rejected, all one can really say is that there is  insuffi cient evidence in these 
data  that the new treatment is as good as the old treatment. Another problem with 
equivalence/noninferiority testing is that one has to rely on the effectiveness of 
the active control obtained in previous trials, and on the assumption that the active 
control would be equally effective under the conditions of the present trial. 

 An example of an equivalence trial is the Controlled ONset Verapamil 
INvestigation of Cardiovascular Endpoints study (CONVINCE), a trial that also raised 
some ethical issues that are different from those usually involved in RCT’s [ 42 ]. 
CONVINCE was a large double-blind clinical trial intended to assess the equiva-
lence of verapamil and standard therapy in preventing cardiovascular disease- related 
events in hypertensive patients. The results of the study indicated that the verapamil 

   Table 3.9    Reasons for choosing noninferiority over superiority designs   

 Comparing new treatment with active 
control instead of placebo 

 Unethical to use placebo group in controlled study 
when there’s an established treatment 

 New treatment not better in primary 
end point; better in secondary 
end points 

 Although no difference between primary effi cacy 
outcomes, difference in secondary end points such 
as adverse events, quality of life 

 New treatment not better in primary 
end point; overall effi ciency is better 

 Non-inferiority in effectiveness and safety; clear 
superiority in incurred cost produces and overall 
effi ciency 

 The new treatment can be non- inferior 
and superior 

 Non-inferiority testing can be complemented by 
superiority testing in one study without need for 
adjustments 
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preparation was not equivalent to standard therapy because the upper bound of the 
95 % confi dence limit (1.18) slightly exceeded the pre-specifi ed boundary of 1.16 
for equivalence. However, the study was stopped prematurely for commercial 
reasons. This not only hobbled the fi ndings in terms of inadequate power, it also 
meant that participants who had been in the trial for years were subjected to a 
‘breach in contract’. That is, they had subjected themselves to the risk of an RCT 
with no ultimate benefi t. There was a good deal of criticism borne by the pharmaceuti-
cal company involved in the decision to discontinue the study early. Parenthetically, 
the company involved no longer exists. 

 In the past, some separated equivalence testing and non-inferiority testing. The 
question posed by non-inferiority testing being slightly different in that one is 
asking whether the new intervention is simply not inferior to the comparator (i.e. 
New ≮ Old). One potential advantage of this approach is that statistical signifi cance 
could be only ‘one-tailed’ since there is no implication that the analysis is addressing 
whether the new treatment is better or as good as, only that it is not inferior. There 
is a good deal of disagreement regarding this latter issue, so that most use the two 
(equivalence and noninferiority) approaches interchangeably. Weir et al. utilized the 
non-inferiority approach in evaluating a comparison of valsartin/hydrochlorthiazide 
(VAL/HCTZ) with amlodipine in the reduction of mean 24-h diastolic BP (DBP) 
[ 43 ]. Noninferiority of the VAL/HCTZ combination to amlodipine was demonstrated, 
and fewer adverse events were noted with the combination treatment as well. The 
null hypothesis for this analysis was that the reduction in mean 24-h DBP from 
baseline to the end of the study with VAL/HCTZ was ≥3 mmHg less (the non-
inferiority margin) compared with amlodipine. Again, a caveat has been recently 
raised by LeHenanff et al. and Kaul et al. [ 44 ,  45 ]. LeHananff et al. [ 45 ] reviewed 
studies published between 2003 and 2004 that were listed as equivalence or nonin-
feriority, and noted a number of defi ciencies, key among them being the absence of 
a stated equivalence or non inferiority margin [ 45 ]. 

 Equivalence/non-inferiority trials are further discussed in Chap.   4    .   

    Losses to Follow Up (See also Discussion 
of  Missing Data , Above) 

 Patients who are lost-to-follow-up are critical in clinical trials and are particularly 
problematic in long-term trials. Patients lost to follow-up might be regarded as 
having had poor results (that is assumed that they experienced treatment failure); so 
if there are suffi cient numbers of them, trial results can be skewed to less of an 
effect, even if, in truth, they did not have poor results. If, in the different study arms, 
there are equal numbers lost to follow-up, and they are lost for the same reasons, 
lost to follow up would not be as critical, but this is unlikely to occur. Section 4.3.4 
of the ICH E-6 Good Clinical Practice: Consolidated Guidance reads, “ Although a 
subject is not obliged to give his/her reason(s) for withdrawing prematurely from a 
trial, the investigator should make a reasonable effort to ascertain the reason(s), 
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while fully respecting the subject's rights ” This excerpt expresses the need for 
 physicians associated with clinical research trials to make a fi rst-hand effort to con-
tact patients who are lost-to-follow-up. In doing so pharmaceutical companies not 
only look out for the best interest of the patients who enroll in their clinical research 
trials, but also protect the data outcome of their clinical trials. 

 Of course, in ITT analysis, patient’s lost-to-follow-up is still counted, but the 
argument is how to count them. Some would argue that it is appropriate to count 
them as poor outcomes since this will give the most conservative result, while others 
argue that since their outcome is not known, they should not be counted. In fact, 
there is little data reported on the actual impact on a study result of patients lost to 
follow up. In one study, Joshi et al. did address this issue in a long-term follow-up 
(up to 16 years of follow-up) of patients who had undergone knee arthroplasty. With 
the concerted effort of full-time personnel and a private detective, all 123 patients 
initially lost to follow-up were traced. Patients cited a variety of reasons why they 
did not attend follow-up visits, including: change of residence, inability to travel, 
displeasure with the physician or staff, fi nancial constraints, satisfaction with the 
results so that they did not feel follow-up was necessary and poor results. They also 
found that more women than men were lost to follow-up. A few companies have 
developed methods of locating and contacting patients that are lost-to-follow-up 
and processes of handling patient information. These are options that pharmaceutical 
companies can use to fi nd patients that have become lost-to-follow-up. These lost to 
follow-up patient locate systems use customized programmed software systems, as 
well as highly customized research and communication processes.  

    Surrogate Endpoints 

 The choice of an outcome is seemingly easy and apparent. For example, mortality 
is the dominant concern for many situations, and is seldom a diffi cult outcome to 
ascertain, unless there is a high loss to follow-up, which should not be a problem if 
the study is designed properly. However, if all cause death is the outcome this 
principal holds, if the determination is the specifi c reason for death, it becomes 
decidedly more diffi cult. This diffi culty is because many deaths occur either outside 
the hospital where one has to rely on death certifi cates as the cause of death, or in 
hospital, where many patients have multi-organ disease, and trying to parse the 
specifi c cause is likely to be diffi cult. And yet, ascertaining the cause of death is 
essential for classifying disease-specifi c mortality in clinical research studies. As 
mentioned, death certifi cates often serve as the source of this information with the 
recognition that the cause of death on the death certifi cate is often fraught with mis-
classifi cation (in fact in some states in the US the cause of death is not even entered). 
The potential for bias from this misclassifi cation, and the fact that obtaining death 
certifi cates can often be time consuming and labor intensive is problematic. As a 
result, many studies also use a proxy–reported statement to determine the cause of 
death. Halanych et al. [ 46 ], assessed the validity of proxy-reported causes of death 
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in 336 participants of the REGARDS Study. Trained experts used study data, 
medical records, death certifi cates, and proxy reports to adjudicate deaths. 
Adjudicated cause of death had a higher rate of agreement with proxy reports (73 %; 
Cohens kappa = .69) then with death certifi cates (63 % kappa = .54). Using the 
adjudicator cause of death as the “gold standard”, the sensitivity for proxy reports 
was 50–89 % (depending on the cause) and specifi city; 94–98 %, compared to death 
certifi cates, sensitivity 31–81 %. They concluded: “in many settings, proxy reports 
may represent a better strategy for determining the cause of death than reliance on 
death certifi cates”. 

 For many conditions mortality is not a frequent occurrence and only in the largest 
and longest trials would it be a practical choice. Thus, If the endpoints of interest are 
rare, RCTs have to be large (and expensive), so the question might arise as to how 
one can design a study to garner more endpoints? Several considerations for increasing 
endpoints include: extending the follow-up time, broaden the defi nition of an event, 
and, don’t use the events of interest rather use surrogate endpoints. An example of 
this latter point might be a heart disease study in which coronary heart disease 
events or deaths (direct outcome of interest) and uses the surrogate of incident 
angina and/or revascularization procedures (this adds events) and even measures of 
atherosclerosis (moves to continuous measure). In a cancer study, one might be 
primarily interested in cancer recurrence and/or cancer death (direct), but one can 
move to the surrogate of tumor size that moves the outcome to a continuous measure. 

 In 1863, Farr said ‘death is a fact, the rest is inference’. In choosing outcomes 
of interest, death or a disease event is usually the event of interest. However, as 
previously mentioned, it is frequently necessary to use a surrogate for the endpoint 
of interest, such as when the disease occurrence is rare and/or far in the future. The 
main variable that drives sample size and Study Power is the difference in the 
outcome between the intervention and the control group. Table  3.10  summarizes 
the sample size necessary based upon these aforementioned differences. One can 
see from Table  3.10  that most studies would have to be quite large unless the treat-
ment difference is large, and for most outcomes these days, it is common to have 
treatment differences of no more than 20 %.

   A surrogate endpoint is simply a laboratory value, sign, or symptom that is a 
substitute for the real outcome one is interested in [ 47 ]. The assumption is that 
changes induced in a surrogate endpoint accurately and nearly completely refl ect 
changes in the clinically meaningful endpoint. To realize that assumption, an accurate 
well-documented model of the outcome of interest is a prerequisite, but it should be 
understood that the model is only that, and the model may be far from the truth. As 

      Table 3.10    Approximate sample size given the treatment effect and control group “outcome”   

 Treatment effect 

 Rate in control group (%)  10 %  20 %  30 %  50 % 

 2  100,000  25,000  10,000  3,000 
 10  65,000  15,000  6,000  2,000 
 50  2,100  518  225  80 
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is true of most defi nitions, there is debate about the best defi nition for a surrogate 
endpoint, and it is also important to distinguish surrogate endpoints from intermediate 
endpoints and statistical correlations. Speaking statistically, Prentice [ 48 ] has 
offered the following defi nition: ‘ a response variable for which a test of the null 
hypothesis of no relationship to the treatment groups under comparison is also a 
valid test of the corresponding null hypothesis based on the true endpoint.’  

 Examples of surrogate endpoints include blood pressure reduction in lieu of 
stroke (this has been termed a ‘strong surrogate’ by Anand et al.); [ 49 ] fasting blood 
sugar (or hemoglobin HbA1c) in lieu of diabetic complications; and bone mineral 
density in lieu of fractures. Surrogates are also commonly used early in drug 
development such as dose ranging or preliminary proof of effi cacy (‘developmental 
surrogates’). ‘Supportive surrogates’ are those outcomes that support and strengthen 
clinical trial data. The reasons for choosing a surrogate endpoint predominantly 
revolve around the fact that it might be easier to measure than the clinical endpoint 
of interest, or that it occurs early in the natural history of the disease of interest (and 
thus long-term trials are avoided). But as is true of almost any decision one makes 
in conducting a clinical trial, there are assumptions and compromises one has to 
make when choosing a surrogate endpoint. For example, many surrogates have been 
inadequately validated, and many if not most surrogates have several effect path-
ways (see Fig.  3.5 ). Other considerations for using a surrogate endpoint are that it 
should be easier to assess than the corresponding clinical endpoint, and in general, 
be more frequent; and, that an estimate of the expected clinical benefi t should be 
derivable from the interventions effect upon the surrogate. An example of the 
controversy regarding surrogate endpoints is highlighted by the discussion of 
Kelsen [ 50 ] regarding the use of tumor regression as an adequate surrogate for new 
drugs to treat colorectal cancer. On the basis of a meta-analysis, Buyse et al. [ 51 ] 
proposed that surrogate endpoints of effi cacy, without direct demonstration of an 
improvement in survival, could be used to identify effective new agents. The FDA, 
however, requires that there be a survival advantage before it approves such 
a drug. That is, a response rate higher than standard therapy (defi ned as tumor 
regression >50 %) is by itself an inadequate benefi t for drug approval. As stated in 
the commentary by Kelsen ‘ the critical question in the debate over the adequacy of 
response rate as a surrogate endpoint for survival is whether an objective response 
to treatment is merely associated with a better survival, or whether the tumor regres-
sion itself lengthens survival.’ 

   There are differences in an intermediate endpoint, correlate, and a surrogate 
endpoint, although an intermediate endpoint may serve as a surrogate. Examples of 
intermediate endpoints include such things as angina pectoris, or hyperglycemic 
symptoms i.e. these are not the ultimate outcome of interest (MI, or death etc) but 
are of value to the patient should they be benefi ted by an intervention. Another 
example is from the earlier CHF literature where exercise-walking time was used as 
an intermediate endpoint as well as a surrogate marker for survival. A number of 
drugs improved exercise-walking time in the CHF patient; but long-term studies 
proved that the same agents that improved walking time actually resulted in earlier 
death. A hypothetical example of a surrogate ‘misadventure’ is exemplifi ed by a 
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scenario where a new drug is used in pneumonia, and it is found to lower the patients 
white blood count (this used as a surrogate marker for improvement in the patients 
pneumonia). Subsequently, this hypothetical ‘new drug’ is found to be cytotoxic to 
white blood cells but obviously had little effect on the pneumonia. But, perhaps 
the most glaring example of a surrogate ‘misadventure’ is represented by a real 
trial – the Cardiac Arrhythmia Suppression Trial (CAST) [ 52 ]. At the time of CAST, 
premature ventricular contractions (PVC’s) were thought to be a good surrogate for 
ventricular tachycardia or ventricular fi brillation, and thereby for sudden cardiac 
death (SCD). It was determined that many anti-arrhythmic agents available at the 
time or being developed reduced PVC’s, and it was assumed would benefi t the 
real outcome of interest, SCD. CAST was proposed to test the hypothesis that these 
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anti- arrhythmic agents did actually reduce SCD (in a post MI population) and this 
study was surrounded with some furor about the studies ethics, since a placebo 
control was part of the study design (it was felt strongly by many that the study was 
unethical since it was so likely that reduction in PVCs led to a reduction in SCD and 
how could one therefore justify a placebo arm). In fact, it turned out that the anti- 
arrhythmic therapy not only failed to reduce SCD, but in some cases it increased its 
frequency. A fi nal example of surrogate misadventure occurred in 2007, when the 
Chairman of the FDA Advisory panel that reviewed the safety of rosiglitazone 
stated that the time has come to abandon surrogate endpoints for the approval of 
type 2 diabetes drugs. This resulted from the use of glycated hemoglobin as a 
surrogate for diabetes morbidity and mortality as exemplified in the ADOPT 
(A Diabetes Outcome Prevention Trial) study where patients taking rosiglitazone 
had a greater decrease in glycosylated hemoglobin than in patients taking compara-
tor drugs, yet the risks of CHF and cardiovascular ischemia were higher with rosi-
glitazone [ 53 ]. 

 Correlates may or may not be good surrogates. Recall, ‘that a surrogate endpoint 
requires that the effect of the intervention on the surrogate end-point predicts the 
effect on the clinical outcome-a much stronger condition than correlation.’ [ 47 ] 
Another major point of confusion is that between statistical correlation and proof of 
causality as demonstrated in Fig.  3.6  as discussed by Boissel et al. [ 54 ].

   In summary, it should be understood that most (many) potential surrogates 
markers used in clinical research have been inadequately validated and that the 
surrogate marker must fully (or nearly so) capture the effect of the intervention 
on the clinical outcome of interest. However, many if not most treatments have 
several effect pathways and this may not be realized, particularly early in the 
research of a given intervention. Table  3.11  summarizes some of the issues that 
support using a surrogate. Surrogate endpoints are most useful in phase 1 and 2 
trials where ‘proof of concept’ or dose-response is being evaluated. One very 
important additional down- side to the use of surrogate measures is a result of its 
effect on the safety evaluation of an intervention i.e. the ability to use smaller 
sample sizes and shorter trials imparted by the use of a surrogate endpoint, in order 
to gain insight into the benefi t of an intervention results in the loss of important 
safety information.

Unknown Causal Factor

Surrogate EventClinical Event

Intervention

* Indicates a statistically significant association

*

  Fig. 3.6    Depicts a 
correlation (statistically 
signifi cant) between a causal 
factor and a clinical event. 
While treatment impacted the 
surrogate event, it had no 
effect on the clinical event 
since it does not lie in the 
direct pathway       
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       Selection of Endpoints 

 Table  3.10  makes the point that for most clinical trials, one of the key considerations 
is the difference in events between the investigational therapy and the control. It is 
this difference (along with the frequency of events) that drives the sample size and 
power of the study. From Table  3.10 , one can compare the rate in the control group 
compared to the intervention effect. Thus, if the rate in the control group of the 
event of interest is high (say 20 %) and the treatment effect is 20 % (i.e. an expected 
50 % reduction compared to control), a sample size of 266 patients would be neces-
sary. Compare that to a control rate of 2 % and a treatment effect of 10 % (i.e. a 
reduction compared to control from 2 to 1.8 %), where a sample size of 97959 
would be necessary. Often the question is asked; “What is a meaningful difference 
in endpoints?”

  A difference to be a difference must make a difference  (Gertrude Stein) . 

      Primary and Secondary Endpoints 

 O’Neil [ 55 ] defi nes an endpoint as  “results, condition or events associated with 
individual study patients that are used to assess study treatments ”. The characteristics 
of endpoint measures should include those that are easy to diagnose, easy to identify 
(i.e. no evaluator judgment needed), free of measurement error, reliable with 
repeated measures, have high internal validity and be directly linked to property of 
interest, and have good external validity. 

 Endpoints can be primary, secondary, tertiary, etc. A primary endpoint for a drug in 
development is a “clinical endpoint that provides evidence suffi cient to fully catego-
rize clinically the effect of a treatment that would support a regulatory claim for the 

   Table 3.11    Support for and against the use of surrogate outcomes   

 Support for/against surrogates 

 Factor  Favors surrogate  Does not favor surrogate 

 Biologic 
plausibility 

 Epidemiologic evidence extensive; 
excellent animal models pathogenesis 
and MOA understood; surrogate is 
late in causal pathway 

 Less extensive evidence; no 
animal model; MOA not 
understood, surrogate early in 
causal pathway 

 Success in 
clinical trials 

 Effect on surrogate has predicted 
outcome with other drugs in class 
and in disease 

 Inconsistent results across classes 

 Risk/benefi t  Serious or life-threatening illness and no 
alternative treatment; large safety 
database; short term use; diffi culty 
studying clinical endpoint 

 Less serious disease; little safety 
data; long term use; easy to 
study clinical endpoint 

   MOA  mechanism of action  
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treatment”. A secondary endpoint is when there is “additional clinical characteriza-
tion of a treatment but could not, by itself, be convincing of a clinically signifi cant 
treatment effect”. Tertiary and other endpoints are mostly exploratory. Some ques-
tions about secondary endpoints include:

•    How does one interpret secondary endpoints when the primary endpoint for 
which the clinical trial was initially designed does not meet the proposed effect.  

•   Some argue for caution in making inferences from secondary endpoints, and 
certainly there are limitations and greater concerns for a secondary endpoint 
effect that is derived from only one study. The likelihood of replication of the 
fi nding in another study of identical size and design as a useful concept to guide 
this interpretation.  

•   O’Neill R. (1997) argues that “secondary endpoints  cannot  be validly analyzed 
if the primary endpoint does not demonstrate clear statistical signifi cance” [ 55 ], 
while Davis, C.E. (1997) argues that “secondary endpoints  can  be validly analyzed, 
even if the primary endpoint does not provide clear statistical signifi cance” [ 55 ].   

In practice, it is rare that trials use a single endpoint, and endpoints frequently cover 
clinical events, symptoms, physiologic measures, quality of life etc. One example 
is taken from the “Multiple Sclerosis literature where the result of interest was neu-
rological disability and endpoints included episodes” of focal neurological signs 
and symptoms, disability rating scales, MRI changes, and CSF changes. 

 Ultimately the choice of endpoints is a critical and challenging study design 
decision, based upon considerations such as the phase of development of the clinical 
question, the specifi c disease under study, the characteristics of the measure, and the 
questions the investigator wants answered by the trial. General guidelines in the 
choice of endpoints include the use of “hard endpoints” whenever possible (“hard” 
endpoints are clinical landmarks that are well-defi ned in the study protocol, are 
defi nitive with respect to disease process, and not subjective). It is true that some 
endpoints are useful and reliable even when they require some subjectivity, and 
the key issue is not the classifi cation of an endpoint as “hard” or “soft”, but how prone 
to measurement error the endpoint is. 

 Finally other arguments centered on study endpoints are that many advocate 
having a single primary endpoint, since this is what “drives” sample size calculations; 
and, multiple endpoints introduces the possibility of Type I error.  

    Composite Endpoints 

 It is generally realized that there is an increasing challenge to conduct adequately 
powered clinical trials. Most trials are designed to assess the time to some fi rst event 
between two arms of a study. More and more frequently, different clinical events 
related to the target disease are combined to form a composite endpoint. Composite 
endpoints (rather than a single endpoint) are being increasingly used as effect sizes 
for most new interventions are becoming smaller. Effect sizes are becoming smaller 
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because newer therapies need to be assessed when added to all clinically accepted 
therapies; and, thus the chance for an incremental change is reduced. For example, 
when the fi rst therapies for heart failure were introduced, they were basically added 
to diuretics and digitalis. Now, a new therapy for heart failure would have to show 
benefi t in patients already receiving more powerful diuretics, digitalis, angiotensin 
converting enzyme inhibitors and/or angiotensin receptor blockers, appropriately 
used beta adrenergic blocking agents, statins etc. To increase the ‘yield’ of events, 
composite endpoints are utilized (a group of individual endpoints that together form 
a ‘single’ endpoint for that trial). Thus, the rationale for composite endpoints comes 
from three basic considerations: statistical issues (sample size considerations due to 
the need for high event rates in the trial in order to keep the trial relatively small, of 
shorter duration and with less expense), the pathophysiology of the disease process 
being studied, and the increasing need to evaluate an overall clinical benefi t. There 
are several downsides associated with the use of composite endpoints, one is that 
the benefi ts ascribed to an intervention are assumed to relate to all the components 
of the composite. Consider the example of a composite endpoint that includes death, 
MI, and urgent revascularization. In choosing the components of the composite, one 
should not be driven by the least important variable just because it happens to be 
the most frequent (e.g. death, MI, urgent revascularization, would be a problem if 
revascularization turned out to be the main positive fi nding). Another downside is 
that the fi rst event within a composite endpoint may not refl ect the most clinically 
important endpoint, and if the study is designed for time to fi rst event, subsequent 
events within the composite will be missed. Thus incorporating subsequent events 
is seemingly rational [ 56 ]. Montori et al. provided guidelines for interpreting com-
posite endpoints which included asking whether the individual components of 
composite endpoints were of similar importance, occurred with about the same 
frequency, had similar relative risk reductions, and had similar biologic mechanisms 
[ 57 ]. Armstrong and Westerhaut added to this by recommending that a strategy for 
future trials would be to include not just the initial event, but all events and report 
both per patient and overall rates; and, including a gradation of event severity 
(e.g. a large MI with heart failure has a very different meaning than a small peripro-
cedural MI or a hemorrhagic stroke vs. a transient left arm weakness). 

 Freemantle et al. assessed the incidence and quality of reporting of composite 
endpoints in randomized trials and asked whether composite endpoints provide for 
greater precision but at the expense of greater uncertainty [ 58 ]. Their conclusion 
was that the reporting of composite outcomes is generally inadequate and as a result, 
they provided several recommendations regarding the use of composite endpoints 
such as following the CONSORT guidelines, interpreting the composite endpoint 
rather than parsing the individual endpoints, and defi ning the individual components 
of the composite as secondary outcomes. The reasons for their recommendations 
stemmed from their observations that in many reports they felt that there was 
inappropriate attribution of the treatment effects on specifi c endpoints when only 
composite endpoints yielded significant results, the effect of dilution when 
individual endpoints might not all react in the same direction, and the effect of 
excessively infl uential endpoints that are not associated with irreversible harm. 

S.P. Glasser



67

In an accompanying editorial by Lauer and Topel they list a number of key questions 
that should be considered when composite endpoints are reported or when an inves-
tigator is contemplating their use [ 59 ]. First, is whether the end points themselves 
are of clinical interest to patients and physicians, or are they surrogates; second, 
how nonfatal endpoints are measured (e.g. is judgment involved in the end point 
ascertainment, or is it a hard end point); third, how many individual endpoints make 
up the composite and how are they reported (ideally each component of the composite 
should be of equal clinical importance – in fact, this is rarely the case); and fi nally, 
how are non fatal events analyzed – that is are they subject to competing risks. 
As they point out, patients who die cannot later experience a non fatal event so a 
treatment that increases the risk of death may appear to reduce the risk of nonfatal 
events, and vice versa [ 59 ]. 

 Kip et al. [ 60 ] reviewed the problems with the use of composite endpoints in 
cardiovascular studies. The term “major adverse cardiac events:” or MACE is used 
frequently in cardiovascular studies, a term that was born with the percutaneous 
coronary intervention studies in the 1990s. Kip et al. noted that MACE encompassed 
a variety of composite endpoints, the varying defi nitions of which could lead to 
different results and conclusions, leading them to the recommendation that MACE 
as a composite endpoint should be avoided. Table  3.12  from their article demon-
strates this latter point rather well.

   As mentioned above, composite endpoints are commonly used to increase event 
rates in an effort to increase statistical power. However, attention towards whether 
the individual components of the composite are likely to be differentially affected 
by the intervention is important. Bethel et al. performed a meta-analysis to deter-
mine the effect of angiotensin-converting enzyme inhibitors or angiotensin receptor 
blockers on individual cardiovascular outcomes; and then applied these treatment 
effects to two different composite cardiovascular endpoints. They found that 
although composite endpoints did augment event rates, they did not necessarily 
increase statistical power, and in fact, in some cases reduced it [ 61 ]. As they noted, 
 “occurrence of the composite endpoint must be in keeping with the duration and 
intensity of follow-up within a clinical trial and should refl ect prior knowledge of 

   Table 3.12    An example of using MACE as a composite endpoint   

 Acute vs. non acute MI  MACE defi nition 

 1.7 (1.2–2.4)  Death; MI; stent thrombosis 
 1.15 (0.98–1.6)  Death; MI; stent thrombosis; target vessel 

revascularization 
 1.13 (0.95–1.4)  Death; MI; stent thrombosis; repeat revascularization 

  Multi-lesion vs. one lesion attempt  
 1.1 (0.75–1.5)  Death; MI; stent thrombosis 
 1.35 (1.2–1.75)  Death; MI; stent thrombosis; target vessel 

revascularization 
 1.25 (0.01–1.52)  Death; MI; stent thrombosis; repeat revascularization 

  Adapted from: Kip et al. [ 60 ]  
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the magnitude of expected treatment benefi ts. If insuffi cient data exist to estimate the 
treatment effect, pooled data based on plausibly similar mechanisms of action may 
be used instead.”  

 Central to the selection of endpoints is how the endpoints are adjudicated, and 
for most large clinical trials this is generally accomplished with a centralized 
system. This is most important when the primary endpoint is a nonfatal event since 
the defi nition may be somewhat subjective. The main concern relative to adjudica-
tion is to avoid differential misclassifi cation-that is to adjudicate events that are 
biased by applying the outcome defi nition variably or by knowing to which 
treatment assignment the patient was in (as might occur in an open-label study). 
The idea is that with a central adjudication system in which the adjudicators are 
blinded as to the treatment assignment and apply the same defi nitions uniformly, 
will yield the least biased assessment. However, this aforementioned concept has 
not been adequately investigated. Granger et al. reviewed the literature concerning 
the rationale and justifi cation for central adjudication, and came to the conclusion 
that it has not been shown to improve the ability to determine treatment effects, and 
may be overly complex and overused. And yet, the FDA and the scientifi c community 
derive confi dence in the validity of results when central adjudication is performed [ 62 ].   

    Trial Duration 

 A critical decision in performing or reading about a RCT (or any study for that matter) 
is the specifi ed duration of follow-up, and how that might infl uence a meaningful 
outcome. Many examples and potential problems exist in the literature, but basically 
in interpreting the results of any study (positive or negative) the question should be 
asked ‘what would have happened had a longer follow-up period been chosen?’ An 
example is the Canadian Implantable Defi brillator Study (CIDS) [ 63 ]. CIDS was 
a RCT comparing the effects of defibrillator implantation to amiodarone 
in preventing recurrent sudden cardiac death in 659 patients. At the end of study 
(a mean of 5 months) a 20 % relative risk reduction occurred in all-cause mortality, 
and a 33 % reduction occurred in arrhythmic mortality, when ICD therapy was com-
pared with amiodarone (this latter reduction did not reach statistical signifi cance). 
At one center, it was decided to continue the follow-up for an additional mean of 
5.6 years in 120 patients who remained on their originally assigned intervention 
[ 64 ]. All-cause mortality was increased in the amiodarone group. The Myocardial 
Ischemia Reduction with Aggressive Cholesterol Lowering (MIRACL) trial is an 
example of a potential problem in which study duration could have been problematic 
(but probably wasn’t) [ 65 ]. The central hypothesis of MIRACL was that early rapid 
and profound cholesterol lowering therapy with atorvastatin could reduce early 
recurrent ischemic events in patients with unstable angina or acute non-Q wave 
infarction. Often with acute intervention studies, the primary outcome is assessed 
at 30 days after the sentinel event. From Fig.  3.7  one can see that there was no 
difference in the primary outcome at 30 days. Fortunately the study specifi ed a 
16-week follow-up, and a signifi cant difference was seen at that time point. Had the 
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study been stopped at 30 days the ultimate benefi t would not have been realized. 
Finally, an example from the often cited controversial ALLHAT study which 
demonstrated a greater incidence in new diabetes in the diuretic arm as assessed at 
the study end of 5 years [ 66 ]. The investigators pointed out that this increase in 
diabetes did not result in a statistically signifi cant difference in adverse outcomes 
when the diuretic arm was compared to the other treatment arms. Many experts have 
subsequently opined that the trial duration was too short to assess adverse outcomes 
from diabetes, and had the study gone on longer that it is likely that a signifi cant 
difference in adverse complications from diabetes would have occurred.

       The Devil Lies in the Interpretation 

 It is interesting to consider and important to reemphasize, that intelligent people can 
look at the same data and render differing interpretations. MRFIT is exemplary of 
this principal, in that it demonstrates how mis-interpretation can have far-reaching 
effects. One of the conclusions from MRFIT was that reduction in cigarette smoking 
and cholesterol was effective, but ‘ possibly an unfavorable response to antihyper-
tensive drug therapy in certain but not all hypertensive subjects ’ led to mixed benefi ts 
[ 31 ]. This ‘possibly unfavorable response’ (thought to be due to diuretic based 
hypokalemia) has since been at least questioned if not proven to be false. 

 Differences in interpretation was also seen in the alpha-tocopherol, beta carotene 
cancer study [ 33 ]. To explain the lack of benefi t and potential worsening of cancer 
risk in the treated patients, the authors opined that perhaps the wrong dose was 
used, or that the intervention period was to short, since ‘ no known or described 
mechanisms and no evidence of serious toxic effects of this substance  (beta carotene) 
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 in humans ’ had been observed. This points out how ones personal bias can infl uence 
ones ‘shaping’ of the interpretation of a trials results. Finally, there are many examples 
of trials where an interpretation of the results is initially presented only to fi nd that 
after publication differing interpretations are rendered. Just consider the recent 
controversy over the interpretation of the ALLHAT results [ 66 ]. 

  Causal Inference , and the role of  the Media  in reporting clinical research will 
be discussed in chapters 16 and 20.  

    Conclusions 

 While randomized clinical trials are the ‘gold standard’ clinical research design, 
there remains many aspects of trial design that must be considered before accepting 
the studies results, even when the study design is a RCT. Starzi et al. in their article 
entitled ‘Randomized Trialomania? The Multicentre Liver Transplant Trials of 
Tacrolimus’ outline many of the roadblocks and pitfalls that can befall even the most 
conscientious clinical investigator [ 67 ]. Ioannidis presents an even more somber 
view of clinical trials, and has stated ‘there is increasing concern that in modern 
research’, false fi ndings may be the majority or even the vast majority of published 
research claims. He points out that this should not be surprising since it can be 
proven that most (one can argue many if not most) claimed research findings 
are false [ 68 ]. Also, many feel that misleading interpretations result from an over- 
reliance on statistical testing, that is, that the strength of evidence is often judged by 
conventional tests that rely heavily on statistical signifi cance, with less attention 
paid to the clinical signifi cance or practical importance of treatment effects [ 69 ]. 
Kaul and Diamond cite three particular technical limitations to the interpretation of 
the results from a clinical trial: the emphasis of statistical signifi cance over clinical 
importance, the use of composite endpoints, and the use of subgroup analyses (refer 
to sections on composite endpoints and subgroup analysis above). Relative to the 
over-reliance on statistical testing is the controversy that surrounds relying on the 
p value, and as a wit opined  “a p value is no substitute for a brain”  (anonymous 
source cited in Kaul and Diamond). The signifi cance level that is used most com-
monly is the P value ≤0.05 that represents the maximum probability that is tolerated 
for rejecting a hypothesis that is in fact true. But in contrast to the p ≤0.05 standard 
for statistical signifi cance is that there are no guidelines for what difference is 
clinically signifi cant and some then equate the two. Kaul and Diamond conclude 
that “while statistical signifi cance tells us whether a difference is likely to be real, it 
does not place that reality into meaningful clinical context by telling us the differ-
ence is small, large, trivial, or important. A formal evaluation of clinical importance 
(using frequentist confi dence intervals, the number needed to treat and the number 
needed to harm, or Bayesian probabilities), given the overall risk-benefi t-cost profi le 
of each therapeutic intervention, should be included in the analysis, interpretation, 
and presentation of the results of clinical trials.” Table  3.13  provides a list of at least 
12 misconceptions about P values [ 70 ].
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   One fi nal note of caution revolves around the use of reading or reporting only 
abstracts in decision-making. As Toma et al. noted, ‘not all research presented at 
scientifi c meetings is subsequently published, and even when it is, there may be 
inconsistencies between these results and what is ultimately printed’ [ 71 ]. They 
compared RCT abstracts presented at the American College of Cardiology sessions 
between 1999 and 2002, and subsequent full-length publications. Depending 
upon the type of presentation (e.g. late breaking trials vs. other trials) 69–79 % were 
ultimately published; and, discrepancies between meeting abstracts and publication 
results were common even for the late breaking trials (see Chap.   19     for further 
discussion of abstracts) [ 71 ].     
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