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    Abstract     Much of clinical research is aimed at assessing causality. However, clinical 
research can also address the value of new medical tests, which will ultimately be 
used for screening for risk factors, to diagnose a disease, or to assess prognosis. In 
order to be able to construct research questions and designs involving these con-
cepts, one must have a working knowledge of this fi eld. In other words, although 
traditional clinical research designs can be used to assess some of these questions, 
most of the studies assessing the value of diagnostic testing are more akin to 
descriptive observational designs, but with the twist that these designs are not 
aimed to assess causality, but are rather aimed at determining whether a diagnostic 
test will be useful in clinical practice. This chapter will introduce the various ways 
of assessing the accuracy of diagnostic tests, which will include discussions of 
sensitivity, specifi city, predictive value, likelihood ratio, and receiver operator 
characteristic curves.  
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       Introduction 

 Up to this point in the book, we have been discussing clinical research predomin-
antly from the standpoint of causality. Clinical research can also address the value 
of new medical tests, which will ultimately be used for screening for risk factors, to 
diagnose a disease, or to assess prognosis. The types of research questions one 
might formulate for this type of research include: “How does one know how good a 
test is in giving you the answers that you seek?” or “What are the rules of evidence 
against which new tests should be judged?” In order to be able to construct research 
questions and designs involving these concepts, one must have a working know-
ledge of this fi eld. Although traditional clinical research designs can be used to 
assess some of these questions, most of the studies assessing the value of diagnostic 
testing are more akin to descriptive observational designs, but with the twist that 
these designs are not aimed to assess causality, but are rather aimed at determining 
whether a diagnostic test will be useful in clinical practice.  

    Bayes Theorem 

 Thomas Bayes was an English theologian and mathematician who lived from 
1702 to 1761. In an essay published posthumously in 1863 (by Richard Price), 
Bayes’ offers a solution to the problem “…to fi nd the chance of probability of its 
happening (a disease in the current context) should be somewhere between any 
two named degrees of probability” [ 1 ]. Bayes’ Theorem provides a way to apply 
quantitative reasoning to the scientifi c method. That is, if a hypothesis predicts 
that something should occur and it does, it strengthens our belief in that hypoth-
esis; and, conversely if it does not occur, it weakens our belief. Since most predic-
tions involve probabilities i.e. a hypothesis predicts that an outcome has a certain 
% chance of occurring, this approach has also been referred to as probabilistic 
reasoning. Bayes’ Theorem is a way of calculating the degree of belief one has 
about a hypothesis. Said in another way, the degree of belief in an uncertain event 
is conditional on a body of knowledge (this is in contrast to the traditional statisti-
cal model called the frequentist approach which does not incorporate prior knowl-
edge in its statistical calculations). Suppose we’re screening people for a disease 
(D) with a test that gives either a positive or a negative result (A and B, or T+ and 
T− respectively). Suppose further that the test is quite accurate, in the sense that, 
for example, it will give a positive result 95 % of the time when the disease is 
present (D+), i.e. P(T+∣D+) = 0.95 (this formula asks what is the probability of the 
disease being present GIVEN a positive test?), or said another way, what is the 
probability that a person who tests positive has disease? The naive answer is 95 %; 
but this is wrong. What we really want to know clinically is P(D+∣T+), that is, 
what is the probability of testing positive if one has the disease; and, Bayes’ theo-
rem (or predictive value) tells us that. 
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 In modern medicine the fi rst useful application of Bayes’ theorem was reported 
in 1959 [ 2 ]. Ledley and Lusted demonstrated a method to determine the likelihood 
that a patient had a given disease when various combinations of symptoms known 
to be associated with that disease were present [ 2 ]. Redwood et al. utilized 
Bayesian logic to reconcile seemingly discordant results of treadmill exercise 
testing and coronary angiography [ 3 ]. In 1977, Rifkin and Hood pioneered the 
routine application of Bayesian probability in the non-invasive detection of coro-
nary artery disease (CAD) [ 4 ]. This was followed by other investigative uses of 
Bayesian analysis, an approach which has now become one of the common ways 
of evaluating all diagnostic testing. 

 As noted above, diagnostic data can be sought for a number of reasons beside 
just the presence or absence of disease. For example, the interest may be the severity 
of the disease, the ability to predict the clinical course of a disease, or to predict a 
therapy response. For a test to be clinically meaningful one has to determine how 
the test results will affect clinical decisions, what are its cost, risks, and what is the 
acceptability of the test; in other words, how much more likely will one be about 
this patients problem after a test has been performed than one was before the test; 
and, is it worth the risk and the cost? Recall, that the goal of studies of diagnostic 
testing seeks to determine whether a test is useful in clinical practice. To derive the 
latter we need to determine whether the test is reproducible, how accurate it is, 
whether the test affects clinical decisions, etc. One way to statistically assess test 
reproducibility (i.e. inter and intra-variability of test interpretation), is with a kappa 
statistic [ 5 ]. Note that reproducibility does not require a gold standard, while accur-
acy does. In order to talk intelligently about diagnostic testing, some basic defi n-
itions and understanding of some concepts is necessary.  

    Kappa Statistic (k) 

 The kappa coeffi cient is a statistical measure of inter-rater reliability. It is generally 
thought to be a more robust measure than simple percent agreement calculation 
since κ takes into account the agreement occurring by chance. Cohen’s kappa mea-
sures the agreement between two raters [ 5 ]. 

 The equation for κ is:

  
Pr Pr / Pra e e( ) − ( ) − ( )1

   

where Pr(a) is the relative observed agreement among raters, and Pr(e) is the prob-
ability that agreement is due to chance. 

 If the raters are in complete agreement then κ = 1. If there is no agreement among 
the raters (other than what would be expected by chance) then κ ≤ 0 (See Table  14.1 ). 
Note that Cohen’s kappa measures agreement between two raters only. For a similar 
measure of agreement when there are more than two raters Fleiss’ kappa is used [ 5 ]. 
An example of the use of the kappa statistic is shown in Table  14.2 .
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        Defi nitions 

    Pre-test Probability 

 The pre-test probability (likelihood) that a disease of interest is present or not, is the 
index of suspicion for a diagnosis,  before  the test of interest is performed. This 
index of suspicion is infl uenced by the prevalence of the disease in the population 
of patients you are evaluating. Intuitively, one can reason that with a rare disease 
(low prevalence) that even with a high index of suspicion, you are more apt to be 
incorrect regarding the disease’s presence, than if you had the same index of suspi-
cion in a population with high disease prevalence.  

    Post-test Probability and Test Ascertainment 

 The post-test probability is one’s index of suspicion  after  the test of interest has 
been performed. Let’s further explore this issue as follows. If we construct a 2 × 2 
table (Table  14.3 ) we can defi ne the following variables: If disease is present and the 
test is positive, that test is called a true positive (TP) test (this forms the defi nition 
of test sensitivity – that is the % of TP tests in patients with the index disease). If the 
index disease is present and the test is negative, that is called a false negative (FN) 
test. Thus, patients with the index disease can have a TP or FN result (but by 
 defi nition cannot have a false positive – FP, or a true negative -TN result).

    Table 14.2    An example of the use of the kappa statistic   

 Doctor A 

 Total  No  Yes 

 Doctor B  No  10(34.5 %)  7(24.1 %)  17(58.6 %) 
 Yes  0(0.0 %)  12(41.4 %)  12(41.4 %) 

 Total  10(34.5 %)  19(65.5 %)  29 

  Kappa = (Observed agreement – Chance agreement)/(1 – Chance agreement) 
 Observed agreement = (10 + 12)/29 = 0.76 
 Chance agreement = 0.586 * 0.345 + 0.655 * 0.414 = 0.474 
 Kappa = (0.76 − 0.474)/(1 − 0.474) = 0.54  

  Table 14.1    Strength 
of agreement using the kappa 
statistic  

 Kappa  Strength of agreement 

 0.00  Poor 
 0.01–0.20  Slight 
 0.21–0.40  Fair 
 0.41–0.60  Moderate 
 0.61–0.80  Substantial 
 0.81–1.00  Almost perfect 
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       Sensitivity and Specifi city 

 The sensitivity of a test then can be written as TP/TP+FN. If the index disease is not 
present (i.e. it is absent) and the test is negative, this is called a true negative (TN) test 
(this forming the defi nition of specifi city-that is the % of TN’s in the absence of disease). 
The specifi city of a test can then be written as TN/TN+FP. Finally, if disease is absent 
and the test is positive one has a false positive (FP) test. Note that the FP % is 1-specifi c-
ity (that is, if the specifi city is 90 % – in 100 patients without the index disease, 90 will 
have a negative test, which means 10 will have a positive test – i.e. FP is 10 %).  

    Predictive Value 

 Another concept is that of the predictive value (PV+ and PV−) of a test. This is ask-
ing the question differently than what sensitivity and specifi city address – that is 
rather than asking what the TP and TN rate of a test is, the PV+ of a test result is 
asking how likely is it that a positive test is a true positive (TP)? i.e. TP/TP+FP (for 
PV− it is TN/TN+FN). See the example of the calculation of PV in Table  14.4 .

        Ways of Determining Test Accuracy and/or Clinical Usefulness 

 There are at least six ways of determining test accuracy and they are all interrelated 
so the determination of which to use is based on the question being asked, and one’s 
personal preference. They are:

   Sensitivity and Specifi city  
  2 × 2 Tables  

  Table 14.3    The relationship 
between disease and test 
result  

 Abnormal test  Normal test 

 Disease present  True positive (TP)  False negative (FN) 
 Disease absent  False positive (FP)  True negative (TN) 

   Table 14.4    An example of the pre and post-test probability given disease prevalence and the 
sensitivity and specifi city of a test   

  Pre vs post-test probability  

 Prev = 10 % of 100 patients, Se = 70 %, Sp = 90 % 

  T+    T−  
  D+   7/10 (TP)  3/10 (FN) 
  D−   9/90 (FP)  81/90(TN) 

   PV+ 7/16 = 44 % (10 % → 44 %) 
   PV− 81/84 = 97 % (90 % → 96 %) 
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  Predictive Value  
  Bayes Formula of Conditional Probability  
  Likelihood Ratio  
  Receiver Operator Characteristic Curve (ROC)    

    Bayes Theorem 

 We have already discussed sensitivity and specifi city as well as the tests predictive 
value, and the use of 2 × 2 tables; and, examples will be provided at the end of this 
chapter. But, understanding Bayes Theorem of conditional probabilities will help 
provide the student interested in this area with greater understanding of the concepts 
involved. First let’s discuss some defi nitions and probabilistic lingo along with 
some shorthand. The conditional probability that event A occurs given population B 
is written as P(A∣B). If we continue this shorthand, sensitivity can be written as 
P(T+∣D+) and PV+ as P(D+∣T+). Bayes’ Formula can be written then as follows: 
The post test probability of disease =

  

Sensitivity disease prevalence

Sensitivity disease preval

( )( )
( ) eence specificity diseaseabsence( ) + ( )( )1−    

or

  

P D T P T D prevalence D

P T D prevalence D P T D

+ +( ) = + +( ) +( )
+ +( ) +( ) +

| |
| | −−( ) −( )P D

   

where P(D+∣T+) is the probability of disease given a T+ (otherwise known as PV+), 
P(T+∣D+) is the shorthand for sensitivity, P(T+∣D−) is the FP rate or 1-specifi city. 
Some axioms apply. For example, one can arbitrarily adjust the “cut-point” separat-
ing a positive from a negative test and thereby change the sensitivity and specifi city. 
However, any adjustment that increases sensitivity (this then increases ones comfort 
that they will not “miss” any one with disease as the false negative rate necessarily 
falls) will decrease specifi city (that is the FP rate will increase – recall 1-specifi city 
is the FP rate). An example of this is using the degree of ST segment depression 
during an electrocardiographic exercise test that one has determined will identify 
whether the test will be called “positive” or “negative”. The standard for calling the 
ST segment response as positive is 1 mm of ST segment depression from baseline, 
and in the example in Table  14.2  this yields a sensitivity of 62 % and specifi city of 
89 %. Note what happens when one changes the defi nition of what a positive test is, 
by using 0.5 mm ST depression as the cut-point for calling test positive or negative. 
Another important axiom is that the prevalence of disease in the population you are 
studying does not signifi cantly infl uence the sensitivity or specifi city of a test (to 
derive those variables the denominators are defi ned as subjects with or without the 
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disease i.e. if you are studying a population with a 10 % disease prevalence one is 
determining the sensitivity of a test – against a gold standard- only in those 10 %). 
In contrast, PV is very dependent on disease prevalence because more individuals 
will have a FP test in populations with a disease prevalence of 10 % than they would 
if the disease prevalence was 90 %. Consider the example in Tables  14.5  and  14.6 .

        Receiver Operator Characteristic Curves (ROC) 

 The ROC is another way of expressing the relationship between sensitivity and spe-
cifi city (actually 1-specifi city). It plots the TP rate (sensitivity) against the FP rate 
over a range of “cut-point” values (actually the ROC curve is a plot of likelihood 
ratios – see below). It thus provides visual information on the “trade off” between 
sensitivity and specifi city, and the area under the curve (AUC) of a ROC curve is a 
measure of overall test accuracy (Fig.  14.1 ). ROC analysis was born during WW II 
as a way of analyzing the accuracy of sonar detection of submarines and differenti-
ating signals from noise [ 6 ]. In Fig.  14.2 , a theoretic “hit” means a submarine was 
correctly identifi ed, and a false alarm means that a noise was incorrectly identifi ed 
as a submarine and so on. You should recognize this fi gure as the equivalent of the 
table above discussing false and true positives.

    Another way to visualize the tradeoff of sensitivity and specifi city and how ROC 
curves are constructed is to consider the distribution of test results in a population. 
In Fig.  14.3 , the vertical line describes the threshold chosen for a test to be called 
positive or negative (in this example the right hand curve is the distribution of 

   Table 14.5    An example of calculating post test probability of disease using Bayes formula   

  Pre vs post-test probability  

 Prev = 50 % in 100 patients, Se = 70 %, Sp = 90 % 

  T+    T−  
  D+   .7 × 50 = 35 (TP)  .3 × 50 = 15 (FN) 
  D−   .1 × 50 = 5 (FP)  .9 × 50 = 45 (TN) 

    PV+ 35/40 = 87 % 
    PV− 45/60 = 75 % 

  P D T+ +( ) =
( )

( ) + − ( ) =
+

=
. .
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   Table 14.6    Estimations of pre and post test probabilities of disease given the clinical presentation   

 Pre vs post-test probabilities 

 Clinical presentation  Pre test P (%)  Post test P T+ (%)  Post test P T− (%) 

 Typical angina  90  98  75 
 Atypical angina  50  88  25 
 No symptoms  10  44  4 
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subjects within the population that have the disease, the left hand curve those who 
do not have the disease). The uppermost fi gure is an example of choosing a very low 
threshold value for separating positive from negative. By so doing, very few of the 
subjects with disease (recall the right hand curve) will be missed by this test (i.e. the 
sensitivity is high-97.5 %), but notice that 84 % of the subjects without disease will 
also be classifi ed as having a positive test (false alarm or false + rate is 84 % and the 
specifi city of the test for this threshold value is 16 %). By moving the vertical line 
(threshold value) we can construct different sensitivity to false + rates and construct 
a ROC curve as demonstrated in Fig.  14.4 .

    As mentioned before, ROC curves also allow for an analysis of test accuracy (a 
combination of TP and TN), by calculating the area under the curve as shown in the 
fi gure above. Test accuracy can also be calculated by dividing the TP and TN by all 

1-Specificity

Sensitivity
No information (50-50)

AUC can be calculated, the closer to 1 the better the test. Most good tests run .7-.8 AUC

Tests that discriminate well, crowd toward the upper left corner of the graph.

1

1

.5

.5

  Fig. 14.1    An example of a Receiver Operator Characteristic (ROC) curve       

  Fig. 14.2    A diagram of the 
use of sonar to correctly 
identify submarines (  http://
www-psych.stanford.
edu/~lera/psych115s/notes/
signal/    . Accessed 
11/05/2013)       
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  Fig. 14.3    An example of 
how moving the defi nition of 
positive vs negative tests alter 
the results of correctly 
identifying a target (  http://
www-psych.stanford.
edu/~lera/psych115s/notes/
signal/    . Accessed 
11/05/2013)       

  Fig. 14.4    Examples of ROC curves from three different tests (  http://en.wikipedia.org/wiki/
Receiver_operating_characteristic    . Accessed 11/05/2013)       

possible test responses (i.e. TP, TN, FP, FN). The way ROC curves can be used dur-
ing the research of a new test, is to compare the new test to existent tests as demon-
strated by Maisel et al. [ 7 ].  
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    Likelihood Ratios 

 Positive and Negative Likelihood Ratios (PLR and NLR or LR+ and LR−) are 
another way of analyzing the results of diagnostic tests. Essentially, PLR is the 
odds that a person with a disease would have a particular test result, divided by 
the odds that a person without disease would have that result. In other words, how 
much more likely is a test result to occur in a person with disease than a person 
without disease. If one multiplies the pretest odds of having a disease by the PLR, 
one obtains the posttest odds of having that disease. The PLR for a test is calcu-
lated as the tests sensitivity/1-specifi city (i.e. FP rate). So a test with a sensitivity 
of 70 % and a specifi city of 90 % has a PLR of 7 (70/1 − 90). Unfortunately, it is 
made a bit more complicated by the fact that we generally want to convert odds to 
probabilities. That is, the PLR of 7 is really an odds of 7 to 1 and that is more dif-
fi cult to interpret than a probability (the probability from a 7:1 odds is 87.5 %, see 
below). Recall that odds of an event are calculated as the number of events occur-
ring, divided by the number of an events  not  occurring (i.e. non events, or p/p − 1). 
So if blood type O occurs in 42 % of people, the odds of someone having a blood 
type of O are .42/1 − .42 i.e. the odds of a randomly chosen person having blood 
type O is .72:1. Probability is calculated as the odds/odds + 1, so in the example 
above .72/1.72 = 42 % (or .42 – that is one can say the odds have having blood 
type O is .72 to 1 or the probability is 42 %-the latter is easier to understand for 
most). Recall, that probability is the extent to which something is likely to hap-
pen. To review, take an event that has a 4 in 5 probability of occurring (i.e. 80 % 
or .8). The odds of its occurring is 0.8/1 − 0.8 or 4:1. Odds then, are a ratio of 
probabilities. Note that an odds ratio (often used in the analysis of clinical trials) 
is also a ratio of odds. 

 To review: 
 The likelihood ratio of a positive test (LR+) is usually expressed as

  Sensitivity Specificity/1-    

and the LR− is  usually  expressed as

  1- Sensitivity Specificity/    

If one has estimated a pretest odds of disease, one can multiply that odds by the LR 
to obtain the post test odds, i.e.:

  Post test odds pre test odds LR- -= ×    

  To use an exercise test example consider the sensitivity for the presence of CAD 
(by coronary angiography) based on 1 mm ST segment depression. In this afore-
mentioned example, let’s assume that the sensitivity of a “positive” test is 70 % and 
the specifi city is 90 % (PLR = 7; NLR = .33). Let’s assume that based upon our 
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history and physical exam we feel the chance of a patient having CAD before the 
exercise test is 80 % (0.8). If the exercise test demonstrated 1 mm ST segment 
depression, your post-test odds of CAD would be .8 × 7 or 5.6 (to 1). The probability 
of that patient having CAD is then 5.6/1 + 5.6 = .85 (85 %). Conversely if the exer-
cise test did not demonstrate 1 mm ST segment depression the odds that the patient 
did not have CAD is .33 × 7 = 2.3 (to 1) and the probability of his not having CAD is 
70 %. In other words  before  the exercise test there was an 80 % chance of CAD, 
while  after  a positive test it was 85 %. Likewise before the test, the chance of the 
patient not having CAD was 20 %, and if the test was negative it was 70 %. 

 To add a bit to the confusion about using LRs, there are two lesser-used deriv-
ations of the LR as shown in Table  14.7 . One can usually assume that if not other-
wise designated, the descriptions for PLR and NLR above apply. But, if one wanted 
to express the results of a negative test in terms of the chance that the patient  has  
CAD (despite a negative test) rather than the chance that he  does not  have disease 
given a negative test; or wanted to match the NLR with NPV (i.e. the likelihood that 
the patient does NOT have the disease given a negative test result) an alternative 
defi nition of NLR can be used (of course one could just as easily subtract 70 % form 
100 % to get that answer as well). To make things easier, a nomogram can be used 
instead of having to do the calculations [ 8 ].

   In summary, the usefulness of diagnostic data depends on making an accurate 
diagnosis based upon the use of diagnostic tests, whether the tests are radiologic, 
laboratory based, or physiologic. The questions to be considered by this approach 
include: “How does one know how good a test is in giving you the answers that you 
seek?”, and “What are the rules of evidence against which new tests should be 
judged?” Diagnostic data can be sought for a number of reasons including: diagno-
sis, disease severity, to predict the clinical course of a disease, to predict therapy 
response. That is, what is the probability my patient has disease x, what do my his-
tory, physical exam, and baseline laboratory data tell me, what is my threshold for 
action, and how much will the available tests help me in patient management. An 
example of the use of diagnostic research is provided by Miller and Shaw, which 
demonstrates how the coronary artery calcium (CAC) score can be stratifi ed by age 
and the use of the various defi nitions described above [ 9 ].   

   Table 14.7    Different ways of calculating Likelihood Ration (LR)   

 End point  LR  Ratio  Se:Sp 

  D+ for T+    LR+    %D+ with T+    Se/1−SP  
  %D −  with T+    TP/FP  

 D− for T−  LR−  %D− with T−
%D+ with T− 

 Sp/1−Se 

 TN/FN 
 D− for T+  1/LR+  %D− with T+

%D+ with T+ 
 1−Sp/Se 

 FP/TP 
  D+ for T −   1/LR −   %D+ with T −   1−Se/Sp  

  %D− with T −   FN/TN  
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    Beyond the ROC Curve 

 Over 30 years after the construction of the fi rst multivariable risk prediction 
model predicting the probability of developing cardiovascular disease (CVD) 
new risk factors that can predict CVD and that can be incorporated into risk 
assessment algorithms has progressed. An individual’s age, baseline levels of 
systolic and diastolic blood pressure and serum cholesterol, smoking and diabe-
tes status are all useful predictors of the CVD risk over a reasonable future time 
period, typically 1–10 years. Quantifi cation of vascular risk is accomplished 
through risk equations or risk score sheets that have been developed on the basis 
of observations from large cohort studies. For example, the Framingham risk 
score has been routinely applied, validated and calibrated for use. However, 
CVD risk prediction is an ongoing work in progress and new risk factors or 
markers are being identifi ed and proposed constantly. The critical question arises 
is to how to evaluate the usefulness of a new marker? Four initial decisions that 
guide the process are:

 –    defi ning the population of interest  
 –   defi ning the outcome of interest  
 –   choosing how to incorporate the competing pre-existing set of risk factors  
 –   selecting the appropriate model and tests to evaluate the incremental yield of a 

new biomarker   

Since, none of the numerous new markers proposed comes close in magnitude 
to the necessary levels of association, some have argued that we need to wait for 
new and better markers; others have sought model performance measures 
beyond the AUC calculated from a ROC curve to evaluate the usefulness of 
markers. For example, the Net Reclassifi cation Index (or Improvement-NRI), 
focuses on reclassifi cation tables constructed separately for participants with 
and without events, and quantifi es the correct movement in categories – upwards 
for events and downwards for non-events. In its simplest terms, the NRI is 
defi ned as a measure of the net % of those who do or do not develop an endpoint 
within a given time period that are correctly reclassifi ed to a different category 
when a new risk factor is added to the risk estimation [ 1 ]. Again in its simplest 
terms, one can construct a 2 × 2 table and assess an endpoint, then add a new risk 
factor and reassess. The % improvement in TP and TN is the NRI. One example 
of this is the use of the coronary artery calcium (CAC) score to reclassify the 
patients risk say from that predicted by the FRS. The addition of a CAC score in 
one study, altered conventional risk determination (Framingham Risk Score 
[FRS]) such that the posttest probability could reclassify a patient to a new cat-
egory of risk. 

 Although the data using the NRI are conceptually appealing for patient care, 
there are still many unanswered questions with substantial clinical implications 
that will need to be addressed prior to using this reclassifi cation in clinical 
practice.  
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    Screening Testing 

 Screening tests are ubiquitous in contemporary practice, yet the principles of screen-
ing are widely misunderstood. Screening is the testing of apparently well people to 
fi nd those at increased risk of having a disease or disorder. Those identifi ed are 
sometimes then offered a subsequent diagnostic test or procedure, or, in some 
instances, a treatment or preventive medication. Looking for additional illnesses in 
those with medical problems is termed case fi nding. Although an earlier diagnosis 
generally has intuitive appeal, earlier might not always be better, or worth the cost. 
For tests with continuous variables – e.g., blood glucose – sensitivity and specifi city 
as mentioned prior, are inversely related; where the cutoff for abnormal is placed 
should indicate the clinical effect of wrong results. As also prior mentioned, the 
prevalence of disease in a population affects screening test performance: in low- 
prevalence settings, even very good tests have poor positive predictive values. 
Hence, knowledge of the approximate prevalence of the index disease is a prerequi-
site to interpreting screening test results. 

 Screening differs from the traditional clinical use of tests in several important 
ways. Ordinarily, patients consult with clinicians about complaints or problems; 
and, this prompts testing to confi rm or exclude a diagnosis. Because the patient is in 
pain and requests help, the risk and expense of tests are usually deemed acceptable 
by the patient. By contrast, screening engages apparently healthy individuals who 
are not seeking medical help (and who might prefer to be left alone). Hence, the 
cost, injury, and stigmatization related to screening are especially important (though 
often ignored in our zeal for earlier diagnosis). Furthermore, the medical and ethical 
standards of screening should be, correspondingly, higher than with diagnostic 
tests. Bluntly put: every adverse outcome of screening is iatrogenic and entirely pre-
ventable; thus, screening has a darker side that is often overlooked.  

    Guidelines for Publishing or Assessing Research 
in Diagnostic Tests  

 Finally, just as there are guidelines for publishing and assessing published articles 
addressing clinical and observational trials (see Chaps.   3     and   19    ) there are also 
guidelines for publishing studies of new diagnostic tests. McReid et al. have sug-
gested seven methodological standards for diagnostic tests [ 2 ] as follows.

 –     Spectrum Composition : i.e. if one changes the population under study one can 
change the tests diagnosticity, thus in assessing the results of a new diagnostic test, 
information on age and sex distribution, presenting symptoms and/or disease stage, 
and eligibility criteria for study patients should be included in published works.  

 –    Pertinent Subgroups : Se and Sp represent average values for a population. Unless 
the condition is narrowly defi ned, the indices may vary for different medical sub-
groups, thus these subgroups should be clearly described.  
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 –    Avoidance of Workup Bias : patients with a positive or negative “gold standard” 
diagnostic tests might be preferentially referred to evaluate the diagnosticity of a 
newly reported test. For example, a new DNA test to detect the breast cancer 
gene was administered to biopsy proven breast cancer and cancer-free controls. 
Since the biopsy may be ordered preferentially in women with a family history 
of breast cancer, the cases selected for the new test will be enriched by a clinical 
factor that itself may be associated with the new DNA test.  

 –    Avoidance of Review Bias : The new test needs to be interpreted independently 
of other tests, and the new test and the gold standard test need to be interpreted 
separately by persons unaware of the results of the other (akin blinding in clini-
cal trials).  

 –    Precision of Results for Test Accuracy : Like any other research, point estimates 
should have confi dence limits reported.  

 –    Presentation Of Indeterminate Results : Not all tests come out Yes or No. 
Sometimes they are equivocal or indeterminate. The frequency of these results 
may limit the tests applicability, or make it cost more because additional test are 
then needed. Finally,  

 –    Test Reproducibility : must be reported.        
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