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Abstract  This chapter introduces the basic concepts of fundamental methods for 
genotype-phenotype association studies and relevant issues in interpretation of genetic 
epidemiology studies to clinicians. An overview of genetic association studies is 
provided, which is the current state-of-the-art for clinical and translational genetics. 
Discussion of future directions in this field is also included.

Keywords  Genetic research • Genomics • Hardy Weinberg disequilibrium • 
Familial aggregation • Linkage disequilibrium • Genome-wide association

This chapter introduces the basic concepts of genes and genetic studies to clinicians. 
Some of the relevant methods and issues in genetic epidemiology studies are briefly 
discussed with an emphasis on association studies which are currently the main 
focus of clinical and translational genetics.

Genetics is the fundamental basis of any organism so understanding of genetics 
will provide a powerful means to discover hereditary elements in disease etiology. 
In recent years, genetic studies have shifted from disorders caused by a single gene 
(e.g. Huntington’s disease) to common multi-factorial disorders (e.g. hypertension) 
that result from the interactions between inherited gene variants and environmental 
factors, including chemical, physical, biological, social, infectious, behavioral or 
nutritional factors.

A new field of science, Genetic Epidemiology emerged in the 1960s as a hybrid 
of genetics, biostatistics, epidemiology and molecular biology, which has been the 
major tool in establishing whether a phenotype (any morphologic, biochemical, 
physiologic or behavioral characteristic or trait of an organism) has a genetic com-
ponent. A second goal of genetic epidemiology is to measure the relative size of that 
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genetic effect in relation to environmental effects. Morton and Chung defined 
genetic epidemiology as

a science that deals with the etiology, distribution, and control of disease in groups of rela-
tives, and with inherited causes of disease in populations [1].

In the era of known human genome sequences from multiple individuals, genetic 
epidemiology methods have been instrumental in identifying the contribution of 
genes, the environment, and their interactions to better understand disease processes 
and biological mechanisms.

Genomic scientists have predicted that comprehensive, genomic-based care will 
become the norm, with individualized preventive medicine, early detection of ill-
nesses and tailoring of specific treatments to an individual’s genetic profile. 
Practicing physicians and health professionals must be knowledgeable in the prin-
ciples, applications, and limitations of genetics to understand, prevent, and treat any 
biological disorders in their everyday practice. The primary objective of any genetic 
research is to translate information from individual laboratory tests to infer the rele-
vance of segments of the human genome in relation to disease risk. This chapter will 
focus on the fundamental concepts and principles of genetic epidemiology that are 
important to help clinicians understand genetic studies.

�Important Principles of Genetics

In the nineteenth century, long before DNA was known, an Augustinian clergyman, 
Gregory Mendel, described genes as the fundamental unit that transmits traits from 
parents to offspring [2]. Based on the observations from his cross-breeding experi-
ments in his garden, Mendel developed some basic concepts on genetic information 
which still provides the framework upon which all subsequent work in human genet-
ics has been based. Mendel’s first law, referred to as the “The principle of segrega-
tion”, basically states that alleles (alternate forms of the gene or sequence at a particular 
location of the chromosome) at one of the parent’s genes segregate independently of 
the alleles from another parent. Mendel’s law, therefore, states that alleles transmitted 
to an offspring are random (i.e., a matter of chance). It is now known that segregation 
of alleles occurs during the process of sex cell formation, known as meiosis. His sec-
ond law is referred to as “The principle of independent assortment” which states that 
two genetic factors are transmitted independently of one another in the formation of 
gametes. As a result, new combinations of genes can be present in the offspring that 
are otherwise not possible in either of the parents. These two principles of inheritance 
and the concepts of dominance and recessive alleles established the foundation of our 
modern science of genetics. However, Mendel’s law is not always true and there are 
exceptions to these rules, e.g. loci in the same chromosomes tend to transmit together, 
a key concept in modern genetic epidemiology.

All human cells except the red blood cells (RBC) have a nucleus that carries the 
individual’s genetic information organized in chromosomes. Chromosomes are 
composed of molecules called deoxyribonucleic acid (DNA) which contain the 
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basic instructions needed to construct proteins and other cellular molecules. Given 
the diploid nature, each human inherits one copy of the chromosome from the father 
and the other from the mother. Humans have 22 pairs of autosomal chromosomes 
and 2 sex-specific chromosomes (X and Y), where males have XY and females have 
XX chromosomes.

At the molecular level, DNA is a linear strand of alternating sugars (deoxyribose) 
and phosphate residues with one of four types of bases attached to the sugar. All 
information necessary to maintain and propagate life is contained within these four 
simple bases: adenine (A), guanine (G), thymine (T), and cytosine (C). In addition 
to this structure of a single strand, the two strands of the DNA molecule are connected 
by a hydrogen bond between two opposing bases of the two strands (T always bonds 
with A and C always bonds with G) forming a slightly twisted ladder, also referred 
as double helix. It was not until 1953 that James Watson and Francis Creek described 
this structure of DNA which became the foundation for our contemporary under-
standing of genes and disease.

The basic length unit of the DNA is one nucleotide, or one base pair (bp) which 
refers to the two bases that connect the two strands. In total, the human DNA con-
tains approximately 3.3 billion base pairs and any two DNA fragments differ only 
with respect to the order of their bases. Three base units, together with the sugar and 
phosphate component (referred to as codons) translate into amino acids. According 
to the central dogma of molecular biology, DNA is copied into single stranded ribo-
nucleic acid (RNA) in a process called transcription, which is subsequently trans-
lated into proteins. With the knowledge of underlying molecular biology, “gene” is 
defined as the part of the DNA segment that encodes a protein which forms the 
functional unit of the “hereditary” factor. It is now estimated that there are approxi-
mately 27,000 genes. The encoded proteins make intermediate phenotypes which 
regulate the biology of all diseases, so any difference in the DNA sequence could 
change the disease phenotype. In many species, only a small fraction of the total 
sequence of the genome encodes protein, and the function and relevance of the 
remaining noncoding sequences are still unknown. For example, over 98 % of the 
human genome is noncoding. However, the Encyclopedia of DNA Elements 
(ENCODE) project recently reported that over 80 % of DNA in the human genome 
has some biochemical function, most of which is still unknown. We are still in the 
infant stage of understanding the significance of the rest of these non-coding DNA 
sequence; however, the sequence could have structural purposes, or be involved in 
regulating the use of functional genetic information.

�Units of Genetic Measure

Different genetic markers, which are a segment of DNA with a known physical 
location on a chromosome with identifiable inheritance, can be used as measures 
for genetic studies. A marker can be a gene, structural polymorphisms (e.g. inser-
tion/deletion) or it can be some section of DNA such as short tandem repeat (STR) 
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and single nucleotide polymorphism (SNP). Recent advancements in molecular 
technology have resulted in the discovery of numerous DNA markers and the data-
base of each marker is increasing daily. Polymorphism (poly = many and mor-
phism = form) is a DNA sequence variation at any locus (any segment or region in 
the genome) in the population that has existed for some time and observed in at 
least 1 % of the population, whereas a mutation is often recent and the frequency 
in populations is less than 1 %. The terms mutation and polymorphism are often 
used interchangeably but mostly defined in the context of frequency. Variants 
within coding regions may change the protein function (missense) or predict pre-
mature protein truncation (non-sense) and as a result can have effects ranging from 
beneficial to mutual to deleterious. Likewise, although introns (intragenic regions 
between coding sequences) do not encode for proteins, polymorphisms can affect 
intron splicing or regulation of gene expression. To understand the role of genetic 
factors with any phenotype, it is important to understand these sequence variations 
among those with and without the phenotype within (population) and between 
(family) generations. We briefly describe the commonly used markers for genetic 
testing (Table 11.1).

�Short Tandem Repeats (STRs)

STRs are tandemly repeated simple DNA sequence motifs of 2–7 bases in length 
that are arranged head-to-tail and are well distributed throughout the human 
genome, primarily in the intragenic regions. They are abundant in essentially all 
ethnically and geographically defined populations and are characterized by sim-
ple Mendelian inheritance. STR polymorphisms originate due to mutations caused 
by slipped-strand mispairing during DNA replication that results from either the 
gain or loss of repeat units. Mutation rates typically range from 10−3 to 10−5 events 
per gamete per generation, compared to single nucleotide rates of mutation of 10−7 
to 10−9. In humans, STR markers are routinely used in gene mapping, paternity 
testing and forensic analysis, linkage and association studies, along with evolu-
tionary and other family studies. STRs have served as valuable tool for linkage 
studies of monogenic diseases in pedigrees, but have limited utility for candidate 
gene association studies.

Table 11.1  Some significant DNA sequence variants

Sequence variations Description

Short Tandem Repeats (STR) Tandemly repeated simple sequence motifs of 2–7 base lengths
Single Nucleotide  

Polymorphism (SNP)
Variations in a single nucleotide occurring in >1 % of the 

population
Structural variants Variation in the structure of the chromosome, that includes 

deletions, inversions, rearrangements, copy number 
variations
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�Single Nucleotide Polymorphisms (SNPs)

SNPs are the variations that occur at a single nucleotide of the sequence. Ninety 
percent of the polymorphisms in the genome are single nucleotide polymor-
phisms (SNPs). It has been estimated that there are over 17 million SNPs (1 in 
every 180 base pairs on average). Most of these variants have been identified 
through massive efforts of the International HapMap Project (2003) and the 1000 
Genomes Project (2008). SNPs are the markers of choice for association studies 
because of their high frequency, low mutation rates and the availability of high-
throughput detection methods. Most SNPs are found in the non-coding region 
and often have no known biological function, but may be surrogate markers or be 
involved in regulation of gene (e.g. expression and splicing). With few excep-
tions, the majority of the SNPs are bi-allelic and the genotypes (genetic makeup 
at both chromosomes) can be heterozygote (different allele in each chromosome) 
or homozygote (same allele in both chromosomes) for either allele (Fig. 11.1). 
All SNPs are catalogued centrally in major databases such as the dbSNP at the 
National Center for Biotechnology Information (NCBI) and given unique identi-
fiers (rs#) for standard reference.

Haplotypes
Alleles

Locus 1 2 3 4

Individual 1

Individual 2

Individual 3

Individual 4

Chromosome

Haplotypes
Alleles

Locus 1 2 3 4

Individual 1

Individual 2

Individual 3

Individual 4

Fig. 11.1  Alleles and genotypes determined for bi-allelic Single Nucleotide Polymorphisms 
at four different loci and the corresponding haplotypes. At locus 1, G and A are the alleles; 
Individuals 1 and 2 have AG heterozygote genotype and Individuals 3 and 4 have AA homo-
zygote genotype. If the phase is known as shown above, the haplotypes for individual 1 would 
be ACTA and GGTA. However, in most cases, the variant loci are not physically close and the 
assays may not be able to partition the phase, thus haplotypes are usually estimated with vari-
ous methods
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�Structural Variants

The human genome consists of a myriad of structural variants that include dele-
tions, duplications, inversions, translocations and copy number variations (CNVs) 
that can influence the functions of the encoded proteins. CNVs are the most com-
mon structural variants and have been associated several phenotypes and diseases.

It was generally thought that genes occurred in two copies in the genome. Recent 
studies have suggested that large segments of DNA, ranging from 1 kb to several 
million bp can vary in copy number, some of which contain several genes. Such 
CNVs are more common in the human genome than originally thought and can have 
dramatic phenotypic consequences as a result of altering gene dosage, disrupting 
coding sequences, or perturbing long-range gene regulation [3]. These regions are 
estimated to cover 5–20 % of the whole genome.

Although there are different genetic markers (as described above), SNPs are the 
most frequent variant in the genome and are widely used in genetic studies, so we 
will refer to SNP polymorphisms to explain the basic concepts in genetic epidemi-
ology, especially in the context of association studies.

�Terms and Basic Concepts in Genetic Epidemiology 
(Table 11.2)

�Hardy-Weinberg Equilibrium (HWE)

HWE is one of the key concepts of population genetics that can be used to deter-
mine whether a genetic variant could be a valid marker in genetic epidemiology 
studies. In HWE, allele and genotype frequencies are related through the Hardy-
Weinberg law which states that if two alleles, “A” and “a”, at any locus with 
frequencies “p” and “q”, respectively, are in equilibrium in a population, the 
proportions of the genotypes, “AA” homozygotes, “Aa” heterozygotes and “aa” 
homozygotes will be p2, 2pq, and q2, respectively. This law holds as a conse-
quence of random mating in the absence of mutation, migration, natural selec-
tion, or random drift. One of the implications of HWE is that the allele 
frequencies and the genotype frequencies remain constant from generation to 
generation maintaining equilibrium in overall genetic variations. Extensions of 
this approach can also be used with multi-allelic and X-linked loci. Deviation 
from these proportions could indicate (a) genotyping error (b) presence of non-
random mating, thus bias in the control selection (c) existence of population 
stratification (as described later) or (d) recent mutation, migration or genetic 
drift that has not reached equilibrium. Cases are more likely to represent the tail 
of a distribution of disease, and any putative genetic variant for that disease may 
not be in HWE; therefore, it is generally recommended to assess HWE in non-
diseased (control) groups.
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�Linkage and Linkage Disequilibrium (LD)

Linkage and LD are the sine qua non of genetic epidemiology. While genes in differ-
ent chromosomes segregate, Thomas Hunt Morgan and his co-workers observed that 
genes physically linked to one another on chromosomes of drosophila tended to be 
transmitted together. This phenomenon, where two genetic loci are transmitted 
together from parent to offspring more often than expected under independent inheri-
tance, is termed linkage. Linkage was first demonstrated in humans by Julia Bell and 
J.B.S Haldane who showed that hemophilia and color blindness tended to be inherited 
together in some families [4]. Two loci are linked if recombination (exchange of 
genetic information between two homologous chromosomes during meiosis) occurs 
between them with a probability of less than 50 %. Recombination is inversely related 
to the physical distance between the two loci. However, after several generations, suc-
cessive recombinations (especially in regions of recombination hotspots) may lead to 
complete independence even between loci that may be physically close together.

Table 11.2  Some commonly used genetic terms

Term Brief description

Hardy-Weinberg Equilibrium 
(HWE)

Used to determine whether a genetic variant could be a valid 
marker

Linkage When two genetic loci are transmitted together from parent to 
offspring more often than expected

Linkage Disequilibrium (LD) The extent of non-random association between two genetic loci
Haplotype (Fig. 11.1) A specific combination of alleles along a chromosome, one 

from the father and one from the mother
Epigenetic changes Biochemical alterations in DNA that affect gene expression 

and function without altering DNA sequence
Transmission Disequilibrium  

Test (TDT)
Alleles of parents are used as “virtual control” genotypes

LOD score Logarithm10 of odds-the likelihood of observing a segregation 
pattern of recombination frequency compared to chance

Hardy-Weinberg equilibrium: The stable frequency distribution of genotypes, AA, Aa, and aa, in 
the proportions p2, 2pq, and q2 respectively (where p and q are the frequencies of the alleles, A and 
a, respectively) that results from random mating in a population in the absence of mutation, migra-
tion, natural selection, or random drift
Linkage: co-segregation of alleles at two or more loci (family-based)
Linkage disequilibrium: the extent and associations of non-randomness of alleles at two/more 
loci in a population
Haplotype: A set of closely linked genetic markers present on one chromosome which tend to be 
inherited together (e.g. Fig. 11.1 – ACTA and GGTA for individual 1)
Epigenetic Changes: genetic control of the expression and activation of genes that involves fac-
tors other than changes in DNA sequence
Transmission Disequilibrium Test (TDT): a test that measures overtransmission of alleles from 
parents to offspring with the disease/trait (more frequently than expected by chance)
LOD Score: Logarithm10 odds of likelihood of observing the segregation pattern of the marker 
alleles at a given recombination frequency (linked) to the likelihood of the same segregation 
pattern in the absence of linkage (by chance)
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In population genetics, LD is defined as the extent of non-random association 
between two genetic loci such that the presence of one allele at a locus provides 
information about the allele of the other loci [5]. The level of LD in a population is 
influenced by several factors including genetic linkage, the rate of recombination, 
mutation, random genetic drift, selection, non-random mating and population 
admixture. Many different measures of LD have been proposed in the literature, 
most of which capture the strength of association between pairs of SNPs. Although 
concepts of LD date to early 1900s, the first commonly used LD measure, D’ was 
developed by Richard Lewontin in 1964. D’ measures the departure from allelic 
equilibrium between separate loci on the same chromosome that is due to the gen-
etic linkage between them. The other pairwise measure of LD used in association 
studies is r2 also denoted as ∆2.

For two loci with alleles A/a at the first locus and B/b at the second allele, D is 
estimated as follows:

	 D p p pAB A B= − 	 (1)

The disadvantage of D is that the range of possible value depends greatly on the 
marginal allele frequency. D΄ is a standardized D coefficient and is estimated as 
follows:
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Both D΄ and r2 range from 0 (no disequilibrium) to 1 (complete disequilibrium), but 
their interpretation is slightly different. In the case of true SNPs, D΄ equals 1 if just two 
or three of the possible haplotypes are present and is <1 if all four possible haplotypes 
are present. On the other hand, r2 is equal to 1 if only two haplotypes are present. 
Association is best estimated using the r2 because it acts as a direct correlation to the 
allele at the other SNP. Additionally, there is a simple inverse relationship between r2 
and the sample size to detect association between susceptibility loci and SNPs.

�Haplotype

Haplotype is a specific combination of alleles along a chromosome, one inherited 
from the mother and the other from the father (Fig. 11.1). Recent studies have shown 
that the human genome can be parsed into discrete blocks of high LD interspersed 

S. Shrestha and D.K. Arnett



241

by shorter regions of low or no LD. Only a small number of characteristic (“tag”) 
SNPs are sufficient to capture most of the haplotype structure of the human genome 
in each block. Tag SNPs are loci that can serve as proxies for many other SNPs such 
that only a subset of loci needs to be genotyped to obtain the same information and 
power obtained from genotyping a larger number of SNPs. The SNPs within the 
same block show a strong LD pattern while those in different blocks generally show 
a weak LD pattern. This advantage, along with the relatively smaller number of 
haplotypes defined by tag SNPs in each block provides another way to resolve the 
complexity of haplotypes.

High LD between adjacent SNPs, also result in a much smaller number of haplo-
types observed than the theoretical number of all possible haplotypes (2n haplotypes 
for n SNPs). There is also biological evidence that several linked variations in a 
single gene can cause several changes in the final protein product and the joint effect 
can have an influence on the function, expression and quantity of protein resulting 
in the phenotype variation. The most robust method to determine haplotypes is 
either pedigree analysis or DNA sequencing of cloned DNA. Both of these methods 
are limited by data collection of families or intensive laboratory procedures, but the 
phase (knowledge of the orientation of alleles on a particular transmitted chromo-
some) of the SNPs in each haplotype can be directly determined. Haplotypes can 
also be constructed statistically, although constructing haplotypes from unrelated 
individuals is challenging because the phase is inferred rather than directly meas-
ured. Unless all SNPs are homozygous or at most only one heterozygous SNP is 
observed per individual, haplotypes cannot be discerned. To account for ambiguous 
haplotypes, several statistical algorithms have been developed [6]. Three common 
algorithmic approaches used in reconstructing population-based haplotypes are (i) 
a parsimony algorithm, (ii) a Bayesian population genetic model that uses coales-
cent theory, and (iii) a maximum likelihood approach that is based on expectation-
maximization (EM) algorithm. The details of these methods are beyond the scope 
of this book, but readers are referred to the book “Computational Methods for SNPs 
and Haplotype Inference” [6] for further discussion. Recent haplotype estimation 
methods often use a hybrid approach of EM and Bayesian models.

�Biological Specimens

Although the focus of this chapter is not on the laboratory methods of specimen 
collection, we briefly describe the samples used in clinical studies and their 
importance. Clinicians deal with different biological organs and tissues in their 
everyday practice. Most of these however may not be an efficient or convenient 
source for DNA, the most commonly used resource for genetic studies. Based on 
factors including cost, convenience for collection and storage, quantity and qual-
ity of the source, DNA is commonly extracted from four types of biological speci-
mens: (1) dried blood spots collected in special filter paper (2) whole blood 
collected in ethylenediaminetetraacetic acid (EDTA) or other anticoagulants such 
as heparin and acid citrate dextrose (ACD) (3) lymphocytes isolated from whole 

11  Research Methods for Genetic Studies



242

blood and EBV-transformed for unlimited source of DNA and (4) buccal epithelial 
cells collected from swabs or mouth-washes (non-invasive and child-friendly). In 
certain circumstances, samples derived from surgery or other treatment or therapy 
procedures can also be used for extracting DNA. For instance, formalin-embedded 
samples of biopsies can be used; however, special laboratory protocols or reagents 
may be needed (for instance to process the DNA crosslinking).

�Ethical, Legal and Social Implications (ELSI)

Even for well-intentioned research, one can raise legitimate concerns about the 
potential misuse of genetic data in regard to social status, employment, economic 
harm and other factors. A significant amount of work has been done on ethical, legal 
and social implications (ELSI) research of genetics and policies, but ethics remains 
an area of major concern. All research protocols can only be conducted upon 
approval from an institutional review board (IRB) with an appropriate informed 
consent from the participants. Pediatric genetic research often can be cumbersome 
as it may require approval from both parents or the legal guardians. It is a routine 
practice to label the samples with unlinked coded identifiers rather than personal 
identifiers, so that the individual’s identity is masked when linking to phenotypic, 
demographic, or other personal information. The confidentiality of the DNA results 
needs to be maximized to protect individual privacy. All reports of genetic studies 
including manuscripts and grants often require detailed description of ethical con-
cerns and data protection.

�Measurable Outcome and Phenotype

Phenotype is an observable and measurable trait which can be defined qualita-
tively or quantitatively and does not necessarily have to be related to a disease. 
Some traits or diseases, like the simple Mendelian traits, have a distinctly measur-
able phenotype definition. However, other illnesses (e.g. psychiatric disorders) are 
complex to define and require various symptoms and clinical criteria that may 
have different biological system and pathways combined. The misclassification of 
cases and controls can be a major problem in any study that can easily introduce 
biases and inconsistencies between studies. Phenotypes can be defined qualita-
tively (absent or present) or measured quantitatively. A qualitative trait can be 
categorized into two or more groups. For example, qualitative traits can be dichot-
omous (e.g. HIV+ vs. HIV−), ordinal (low, average and high blood pressure group) 
or nominal (green, black, blue eyes) based on certain distinct criteria. On the other 
hand, measurable physiological quantities such as height, blood pressure, serum 
cholesterol levels, and body mass index (BMI) can vary among different indi-
viduals. Often it may be difficult to examine the genetic effect of quantitative 
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measures; however, they can be transformed into meaningful qualitative values 
where the genetic effect can be more distinct. To make the quantitative traits more 
interpretable through statistical analyses, the overall distribution in a given popu-
lation is viewed graphically. Often these distributions produce a familiar bell-
shaped curve (normal distribution), where several statistical methods can be used 
to assess the effect of genotypes. For example, the individuals at the extreme tails 
of the curves can have different genetic distributions. Some diseases may also 
have intermediate phenotypes that can be measured with molecular markers, 
while others are strictly based on clinical diagnoses. For example, blood choles-
terol levels which can be precisely measured may be a better intermediate out-
come of cardiovascular disease than a self reported “headache” where the 
symptoms may be heterogeneous in the population and the measurement is sub-
jective. Other measures, including exposures (e.g. HIV viral load) can define a 
phenotype better than the clinical symptoms since virally infected individuals can 
be asymptomatic for undefined period of time. In that specific example, everyone 
positive for HIV virus test could be defined as the outcome of interest (cases) 
while in another scenario specific clinical symptoms of HIV infection (e.g. 
immune cell counts or viral load) could define case status. Even among pheno-
types with clinical diagnoses, some have distinct symptoms or signs, with high 
sensitivity tests, whereas others do not. Some diseases, like Alzheimer’s, can have 
phenotypic heterogeneity, where the same disease shows different features in 
different families or subgroups of patients. Like in any other clinical study, the 
key to a genetic study is a clear and consistent definition of the phenotype with 
underlying biology. Since the main interest in conducting genetic study is to see 
how variants that change the expression and encoding of protein is related to the 
biology of the disease, the phenotype has to be clearly defined.

�General Methods in Clinical Genetic and Genetic 
Epidemiology Studies

In the past 20–30 years, epidemiologic methods and approaches have been inte-
grated with those of basic genetics to identify the role of genetic factors in disease 
occurrence in families and populations [7]. Family studies examine the rates of dis-
eases in the relatives of proband cases versus the relatives of internally matched 
controls. For a quantitative trait, such as blood pressure, we can measure correlation 
of trait values among family members to derive estimates of heritability. Mendelian 
diseases are transmitted in families and recur in the relatives of affected individuals 
more frequently (103–106 fold) compared to the general population. In contrast, 
diseases such as cancer, Alzheimer’s Disease, and myocardial infarction are quite 
common among older adults; however, their occurrence does not follow Mendelian 
inheritance patterns, but rather are multifactorial with several interactions between 
environment and genetic factors.
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The first step in clinical or epidemiologic genetic studies is to determine 
whether a phenotype of interest is controlled by a genetic component. There are 
five key scientific questions that are addressed in sequence in genetic epidemio-
logic studies (Fig. 11.2): (1) Is there familial clustering? (2) Is there evidence of 
genetic effect? (3) Is there evidence for a particular genetic model? (4) Where is 
the disease gene? (5) How does this gene contribute to disease in the general 
population? The first three questions do not require DNA data and are referred 
as phenometric studies, but the latter two depend on DNA and referred as geno-
metric studies.

�Familial Aggregation

The first step to determine whether a phenotype has a genetic component is to 
examine the clustering within families. Familial aggregation estimates the likeli-
hood of a phenotype in close relatives of cases compared to the non-cases. If the 
phenotype is a binary trait, familial aggregation is often measured by the relative 
recurrence risk. The recurrence risk ratio is the ratio of prevalence of the phenotype 
in relatives of affected cases to the general population. Greater risk associated with 
closer degrees of relatedness could also indicate the genetic component. If the 
prevalence of the phenotype is higher in 1st degree relatives (father, mother, sib-
lings) versus 2nd degree relatives (uncle aunt, cousins) it would suggest a genetic 
component since the 1st degree relatives share more genetic information than the 
2nd degree relatives. For example, cancer and heart disease tend to run in families, 
as measured by measurements such as relative risk. On the other hand, assessment 
of familial aggregation of a continuous trait, such as height, can be estimated with 
a correlation or covariance-based measure such as intrafamily correlation coeffi-
cient (ICC). The ICC indicates the proportion of the total variability in a phenotype 

Variant

Gene Location

Genetic Model

Genetic Effect (Heritability)

Familial Aggregation

Study Design Approach

Association studies Population based Case control
Family-based TDT

Linkage studies Parametric
Non-parametric

Mode of Inheritance Segregation Analysis

Heritability & Twins 
Variance Component Adoption

Migration

Recurrence risk ratio Incidence in relative vs. population
correlations

P
h

en
o

m
et

ri
c

G
en

o
m

et
ri

c

Fig. 11.2  Systematic designs and approaches in genetic epidemiology studies to identify the genetic 
and non-genetic causes of disease
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that can reasonably be attributed to real variability between families. Disease or 
traits may cluster in families; however, this does not necessarily mean that they 
share the common genetic factors. Since families often share the same household 
or geographic region they share common cultural attitudes, socioeconomic status, 
diet and environmental exposures – all of which can be known or unknown and 
may not be easily measured. It is difficult to disentangle the genetic effect from the 
environmental effect due to this shared physical environment. For example, obesity 
could be due to shared genes within the family or the eating or physical activity 
habits in the family.

�Genetic Effect

Once the familial aggregation is established, the next step is to distinguish 
between genetic and non-genetic factors and estimate the extent of genetic effect. 
Different variance component models estimate heritability, which is defined as 
the proportion of variation directly attributable to genetic differences among 
relatives to the total variation in the population (both genetic and environmental). 
Although traditionally used to estimate the genetic effect in familial aggregation, 
it is a theoretical concept. Heritability is population-specific and must be used 
with caution when comparing different populations. Other classical designs for 
distinguishing non-genetic family effects from genetic effects have been studies 
of twins, adoptees and migrants.

�Twin studies

Studies of twins are useful in estimating the contribution to a phenotype through the 
comparison of monozygotic (MZ) pairs (who share all genes) with dizygotic (DZ) 
pairs (who share on average half of their genes). If family upbringing acts equally 
on monozygotic twins as it does on dizygotic twins, then the greater similarity of 
phenotypes in MZ than DZ twins is attributed to genetic factors. While MZ twins 
reared together have the same genetic and environment exposures, MZ twins separ-
ated at birth and raised apart will have different environment exposures but same 
genetics. Thus, such studies will provide insights into the contribution of strong 
environment factors in common diseases such as substance abuse and eating disorders. 
In contrast, DZ twins may have a similar genetic makeup as other siblings, but they 
share the same womb, so early environmental exposure related studies can be con-
ducted with these pairs. Concordance rates are used in twin studies which measures 
and compares the frequency of disease occurrence between MZ and DZ twins. For 
example, the concordance rate of sickle cell disease among MZ is 100 %, indicating 
pure genetic effect; whereas Type I Diabetes is 25–35 % among MZ, 5–6 % among 
DZ twins or siblings and 0.4  % among the general population, suggesting both 
genetic and environment effects.
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�Adoption Studies

This study design examines the similarity and differences in the phenotype in the 
biological parents and foster parents of adoptees, and in their biological and adopted 
siblings, respectively. The assumptions are that the similarity between an adopted 
child and biological parent is primarily due to genetic effects, while the similarity 
between the adopted child and the adoptive parent or adoptive siblings is mainly due 
to the shared environment since they do not share genetic background as they are 
not biologically related.

�Migration Studies

While with modern globalization, humans are constantly travelling, we are also mov-
ing to new areas in search of better opportunities. Patterns in environmental expo-
sures in different areas among different ethnic groups or related family members can 
be assessed to make some inferences about genetic and environmental influence in 
phenotypes or diseases. A similar incidence of phenotype or disease in migrants 
compared to the aboriginal population’s incidence suggests a strong environmental 
factor, whereas similar incidence to the original ethnic group or relatives in the origi-
nal residence could suggest a genetic effect. Genes do not change as easily as envi-
ronmental exposures, so the variation in the phenotype after taking into account all 
the common and new environmental factors could point to a genetic effect.

�Genetic Model

After the genetic basis is established, the next step is to find the mode of inheritance 
which historically was done using segregation analyses, although these methods 
are not as common in the era of SNP association studies. Segregation analyses does 
not use DNA-based genetic data, but rather, the methods test whether or not the 
observed phenotype follows a Mendelian inheritance in the offspring in the pedi-
gree. Mendelian diseases can be autosomal dominant, autosomal recessive, X-linked 
dominant, or X-linked recessive (usually with high penetrance and low frequency of 
risk alleles). Traditional segregation analysis primarily studied simple Mendelian 
disorders where a single gene mutation is sufficient and necessary to cause a disorder. 
However, most common chronic diseases are regarded as complex where a large 
number of genetic variants along with environmental factors interact with each 
other (necessary or un-necessary but not sufficient) to affect the disease outcomes. 
These diseases usually cluster in families, but do not follow a traditional Mendelian 
inheritance pattern. While segregation analyses are powerful to test different modes 
of Mendelian inheritance in the family, it is not useful for complex traits. Linkage 
and association analysis, both of which utilize DNA, are more powerful to study 
genetic effects of complex diseases.
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�Disease Gene Location

�Linkage Studies

Linkage studies are performed based on the principle that alleles at two nearby loci 
on the genome tend to be transmitted together from parent to offspring. Linkage 
analysis are often the first stage in genetic epidemiology studies to identify broad 
genomic regions that contain gene or genes that predispose to the phenotype, in the 
absence of previous biologically driven hypotheses. Genetic linkage analysis tests 
whether the marker segregates with the disease in pedigrees with multiple affected 
individuals, according to a Mendelian mode of inheritance. The approach relies 
entirely on the tendency for genomic regions that affect the phenotype to be passed 
on to the next generation intact, without recombination events at meiosis. If a 
marker is passed down through family generation and occurs more commonly 
among those with the phenotype, then the marker can be used as a surrogate for the 
location of the gene.

Two types of linkage analysis can be performed: parametric and nonparametric 
analysis. Parametric linkage analysis involves testing whether the inheritance 
patterns fits a specific model and is traditionally measured with a statistical test, 
LOD score (logarithm (base 10) of odds) – L(θ)/L(θ = 0.5) i.e., the likelihood of 
observing the segregation pattern of the marker alleles at a given recombination 
frequency θ (linked) compared with the likelihood of the same segregation pattern 
in the absence of linkage (by chance). While the approach is very powerful, the 
study design can be challenging logistically since as it requires recruitment of 
families (with history of the phenotype) to estimate a number of recombination 
occurrences in order to calculate the LOD score. STRs with multiple alleles are 
more powerful for linkage studies than SNPs, which are mostly biallelic. The objec-
tive of parametric linkage analysis is to estimate the recombination frequency (θ) 
and to test whether θ is less than 0.5, which is the case when two loci are genetically 
linked. The nonparametric approach evaluates the statistical significance of excess 
allele sharing for specific markers among affected sibs and does not require infor-
mation about the mode of disease inheritance. With this approach, often the inheri-
tance pattern is measured in terms of identical by descent (IBD), where the same 
allele is inherited from a common ancestor, and identical by state (IBS), where the 
allele is the same but not necessarily inherited from the same ancestor. Thus, these 
methods are based the fact that affected relatives have a higher probability of sharing 
genes IBD at or near a locus of susceptibility allele/gene to a disease than sharing 
an unlinked locus. The genes contributing to the phenotypic variation have been 
successfully localized by linkage analysis for Mendelian diseases that have a strong 
genetic effect and are relatively rare (e.g. cystic fibrosis, Huntington disease). 
However, for more complex and common diseases (e.g. cancer, cardiovascular 
diseases), linkage analysis has had less success. The method of choice for complex 
genetic diseases has evolved to association studies which are followed by fine-
mapping studies to narrow down the putative disease locus.
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�Association Studies

Genetic association studies aim to correlate differences in allelic frequencies at 
any locus with differences in disease frequencies or quantitative traits [8]. Genetic 
association occurs if the specific genetic variant is more frequent in the affected 
group than the non-affected group. Most association studies represent classical 
case–control approaches where the risk factor under investigation is the allele at 
the genetic marker (mostly with SNPs). SNP-based association studies can be 
performed in two ways: (i) direct testing of an exposure SNP with a known vary-
ing function such as altered protein level or structures and (ii) indirect testing of a 
SNP which is a surrogate marker for locating adjacent functional variant that 
contributes to the phenotype or disease state (Fig. 11.3a). The first method requires 
the identification of all “functional” variants in coding and regulatory regions of 
genes. The latter method avoids the need for cataloguing potential susceptibility 
variants by relying instead on association between disease and neutral polymor-
phisms tagging a SNP near a risk-conferring variant. It exploits the phenomenon 
of linkage disequilibrium (LD) between alleles of closely linked loci within the 
genomic regions.

Given the diallelic nature of majority of the SNPs, a disease locus may be dif-
ficult to identify unless the surrogate marker is closely linked to the disease 
locus. Apart from a single SNP association strategy, a dense panel of SNPs from 
the coding and non-coding regions of the gene that form haplotypes can also be 
tested. Some studies have also demonstrated that the analysis of haplotypes 
rather than individual SNPs can detect association with complex diseases. It has 
been suggested that single SNP-based candidate gene studies may be statistically 
weak as true associations may be missed because of the incomplete information 
from individual SNPs. For example, haplotypes contain more heterozygosity 
than any of the individual markers that comprise them and also mark more of the 
variation in the gene than single SNPs. Several haplotype association studies 
have shown the power of haplotypes over individual SNPs as it can either com-
bine multiple causal variants or tag a less common causal variant than a more 
frequent single SNP.

Phenotype status Genetic marker
LD

True association
and LDTrue risk

Population 
Stratification

LD

True association
and LDTrue risk

Causal variant

Phenotype status Genetic marker
LD

EthnicityCausal variant

Phenotype status Genetic marker
LD

a b

Fig. 11.3  True association, LD and the effect of population stratification. (a) Genetic marker that 
is in LD with causal variant serves as a surrogate of the true association with the phenotype. (b) 
Population stratification is a confounder that leads to spurious association
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�Candidate Gene vs. Genome Wide Association  
Studies (GWAS)

Candidate gene approaches examine polymorphisms in genes with potential 
biological mechanisms or pathways related to the phenotype of interest. Some of the 
candidate genes are also based on physical location or sequence homology to a gene 
encoding protein that is in the etiologic pathway. As attractive as this hypothesis-
driven candidate gene approach is, it focuses exclusively on the relatively few known 
genes, ignoring many that have not yet been characterized to play a role, suffering 
from potential publication bias in the process of selection of the genes. One major 
drawback of candidate gene approach is that a priori knowledge of the pathogenesis 
of the disease is required – when the molecular mechanism is poorly understood or 
complex, it could lead to selection of the wrong genes. Even with the right genes 
within the pathway, the challenge is to find variants that influence the regulation of 
gene function. Candidate gene studies have proven to be more successful when used 
as a follow-up of linkage studies. For example, APOE4, the most common genetic 
factor associated with Alzheimer’s disease, was primarily discovered by candidate 
gene approach following the linkage study which mapped to chromosome 19.

Alternatively, with assurance of adequate power, hypothesis-generating genome 
wide association studies (GWASs) have been widely used. While the study design 
and methodological approaches are the same as for the candidate gene approach [8], 
GWAS studies rely on the microarray chips that consists of thousands to millions of 
genomic variants that has resulted from large projects such as the HapMap, 1000 
Genome Project, and continuing sequencing efforts by various groups and investiga-
tors. Technological advances have dramatically resulted in cost-effective high-
throughput genotyping arrays making GWAS more promising and attractive. GWAS 
has the advantage in the sense that no a priori knowledge of the structure or function 
of the genes involved is required. Additionally, with complex statistical models, 
untyped SNPs can also be imputed using GWAS data, which has been proven to be 
very reliable for common variants. Hence, this approach provides the possibility of 
identifying variants and genes that influence the phenotype or the disease that had 
previously not been biologically suspected. A two step design has often been used by 
researchers where common variation is first screened for association signals using 
cost-effective typing of tagging SNPs with GWAS followed by denser sets of SNPs 
in regions of potentially positive signals. If the sample size is large enough, a third 
stage of validation of association can also be conducted with proper power calcula-
tions. Although promising results have been found for different phenotypes with 
GWAS, analytical considerations are still underway to develop a robust strategy to 
interpret the findings especially for complex diseases with multiple gene-gene and 
gene-environmental interactions. Such large datasets still require new methods and 
approaches to understand the true biology of the phenotype. A lot of emphasis has 
been made towards using stringent statistical criteria for handling false positive 
issues; however, new biologically-driven methods are required to dissect such large 
datasets to understand and identify the complex nature of common diseases.
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�Risk Quantification

�Gene-Gene and Gene-Environment Interaction

A central theme of genetic epidemiology is that human disease is caused by inter-
actions within and between genetic and non-genetic environmental factors. Thus, in 
the design and analysis of epidemiologic studies, such interaction needs to be expli-
citly considered. A simple approach would be to create a classic 2 × 2 table with 
genotypes at the two loci classified as present or absent and compute odds ratios for 
all groups with one reference group. The extent of the joint effect of two loci can be 
compared with the effects for each locus independently. The same approach can be 
considered for gene-environmental interaction for qualitative measurements. 
However, as more genes are involved and the environmental exposure is quantita-
tively measured, the analysis and interpretation of the interaction can be compli-
cated, but various methods are being continuously developed. Large sample sizes 
are needed to observe true interactions, especially if they are small effects.

�Gene Contribution

Once the association of the genetic allele is discovered, it is important to assess the 
contribution of this variant to the phenotype. The public health relevance of a given 
polymorphism is addressed by estimating the proportion of diseased individuals in 
the population that could be prevented if the high-risk alleles were absent (known as 
attributable fraction, etiologic fraction, or population attributable risk percent). 
Accurate estimation of the population frequency of the high-risk variant (allele and/
or genotype) is important because the attributable fraction is a function of the 
frequency of the high-risk variant in the population and the penetrance (i.e., the 
likelihood that the trait will be expressed if the patient carries the high-risk variant). 
Attributable fractions can also be used to estimate the proportion of disease that is a 
result of the interaction of a genetic variant and an environmental exposure. Genetic 
variants are not usually modifiable within the longevity of an individual (although 
very possible evolutionarily over time in populations); therefore the prevention of 
disease will depend on interventions that target environmental factors that interact 
with genetic susceptibility to influence the risk of disease.

�Additional Applications of Genetic Studies

Most of the genetic studies (candidate or genome-wide) are focused on case–control 
designs with the underlying goal of understanding the biological cause of the dis-
ease. Other time dependent studies can be performed to understand the genetic 
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effect in the natural history or progression of the disease. The outcomes of these 
studies are helpful for providing counseling to individuals about their offspring 
(genetic screening) or the interaction between environmental factors. However, 
there are a growing number of genetic studies examining the differential response to 
drugs or vaccines, with potential application of translational science. For instance, 
“pharmacogenetic” studies focus on genetic determinants of individual variation 
in response to drugs, including variation in the primary domain of drug action and 
variation in risk for rare or unexpected side effects of drugs. Likewise, “vaccinoge-
netic” studies examine the genetic determinants of differential vaccine response 
(e.g. antibody titer) and side effects between individuals.

�Beyond Association Studies

While other factors such as epigenetic and regulatory factors are beyond the scope 
of this chapter, it is important to understand that association studies itself may not 
fully delineate the genetic effect on a disease. Epigenetic changes are biochemical 
alterations in DNA that affect gene expression and function without altering the 
underlying DNA sequence. DNA methylation is one epigenetic process implicated 
in human disease that involves methylation of cytosine, usually at CpG dinucleo-
tides. Micro-array methods are available to capture the methylation patterns across 
genes that could help in addition to the variant findings. Recent insights of the 
ENCODE project has helped shift focus to complex molecular mechanisms by 
which genetic factors such as microRNAs (miRNAs) may regulate genes. MiRNAs 
are evolutionarily conserved small non-coding RNAs (~22 bp) that inhibit transla-
tion of proteins by binding to the target transcript in the 3′ untranslated region. It has 
been estimated that miRNAs contribute to expression of over 60 % of protein cod-
ing genes in humans. In this regard, as the testing costs are being lowered, it may be 
beneficial to perform whole genome sequencing (versus GWAS or even exome-
sequencing that targets variants in the exons of all known genes) that will provide 
information on all the known and the unknown variants of the human genome. 
Although new approaches and analytical methods are warranted to fully understand 
the genome, sequencing data will provide both rare and common variants in both 
genic and non-genic regions which can have regulatory or unknown functions, as 
suggested by ENCODE.

�Major Issues and Limitations in Genetic Studies

In most cases with complex diseases, the effect of any genetic variant is small and 
can only be observed in studies with a large sample size or the frequency of the 
allele is rare and has a large relative risk. There are very few common variants 
(>10 % allele frequency) with a relative risk exceeding 2 (e.g. APOE and Alzheimer’s 
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disease). A major concern with respect to genetic association studies has been lack 
of replication, especially contradictory findings across studies. Replication of find-
ings is very important before any causal inference can be drawn. For example, since 
2005, over 1,600 publications have identified more than 2,000 genetic associations 
with approximately 300 common diseases and traits, but many of these studies need 
to be replicated. Several study design and statistical issues need to be seriously con-
sidered when conducting genetic studies which are briefly described below:

�Genetic Heterogeneity

There are several cases where multiple alleles at a locus are associated with the 
same disease. This phenomenon is known as allelic heterogeneity and can be 
observed with a multi-allelic locus. This may explain why in some studies one allele 
is associated with the disease and in other studies it is another allele. Likewise, locus 
heterogeneity may also exist where multiple genes influence the disease independ-
ently and thus a gene found to be associated in one study may not be replicated in 
the other but rather another gene may be associated.

�Confounding

One crucial consideration in genetic studies is the choice of an appropriate com-
parison group. In general, as in any well-designed epidemiological case–control 
study, controls need to be sampled from the same source population as the cases. 
The use of convenient comparison groups without proper ascertainment criteria 
may lead to spurious findings as a result of confounding caused by unmeasured 
genetic and environmental factors. Population stratification can occur if cases and 
controls are not matched by ethnicity or if individuals have differential admixture 
(the proportions of the genome that have ancestry from each subpopulation). 
Stratification can results when phenotypes of interest differ between ethnic groups 
(Fig. 11.3b). Although most genetic variation is inter-individual, there is also sig-
nificant inter-ethnic variation irrespective of disease status. One classic example is 
reported by Knowler et al. [9] who showed spurious inverse association between 
variants in the immunoglobulin haplotype Gm3;5,13,14 and non-insulin dependent 
diabetes mellitus among the Pima-Papago Indians [9]. Individuals with the haplo-
type Gm3;5,13,14 had a higher prevalence of diabetes than those without it (29 % 
vs.8  %). This haplotype, however, measured the subjects’ degree of Caucasian 
genetic heritage and when the analysis was stratified by degree of admixture, the 
association did not exist.

One way to overcome such issue of confounding by population stratification is to 
conduct family based designs with special statistical analyses such as transmission-
disequilibrium test (TDT). Basically, in TDT, alleles of parents not transmitted to 
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the patients are used as “virtual control” genotypes so any population-level allele 
frequency differences become irrelevant. Several other family-based and population-
based methods have also been derived from TDT. While these methods are attractive 
because they correct false positives from population stratification, family-based 
samples are difficult to collect and might not be feasible for late-onset diseases 
where the parents might be deceased. Another approach is to use a “homogeneous” 
population. In recent years, there is growing interest to study genetically isolated 
populations such as Finland and Iceland. These populations have been isolated for 
several years and expanded from a small group of individuals called “founder 
population”. Founder population limits the degree of genetic diversity making 
more or less a homogenous population. One major limitation of finding from such 
isolated population is the generalizability to other populations which may have 
different genetic make-ups.

Studies have shown that there is admixture even within such isolated popula-
tions. An alternate method to control for population stratification is to use unrelated 
markers from the non-functional region of the genome as indicators of the amount 
of background diversity in individuals. The first approach, referred as “genomic 
control”, measures the extent of inflation due to population stratification and this 
value can be adjusted in the standard analyses. The second approach would be infer-
ring genetic ancestry, by either the structured-association approach where individuals 
are assigned to subpopulation clusters using model-based clustering program such 
as STRUCTURE; or infer population structure with principal component analysis 
(PCA). Either association analyses are performed by stratifying clusters or covari-
ates derived from ancestry information are adjusted in the analyses.

�Genotype Error and Misclassification

For family-based studies (trio data for TDT), genotyping errors have been shown to 
increase type I and type II errors and for population-based (case–control) studies it 
can increase type II errors and thus decrease the power. Additionally, misclassifica-
tion of genotypes can also bias LD measurements.

In general, genotyping errors could be a result of poor amplification, assay fail-
ure, DNA quality and quantity, genomic duplication or sample contamination. It is 
important that a quality-check be performed for each marker and the low-
performance once be removed from the analysis before the results are interpreted. 
Several laboratory based methods such as (a) genotyping duplicate individuals 
(b) genotyping the same individuals for the same marker using different assay 
platforms or (c) genotyping in family pedigrees to check for Mendelian inconsis-
tency, (i.e. the offspring should share the genetic makeup of the parents and any 
deviation could indicate genotype error) can be used to assure the quality of the 
genotypic data. Testing for HWE is also commonly used, however it is important to 
note that deviation from HWE does not necessarily indicate genotype error and 
could be due to any of the underlying causes as described earlier.
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�Multiple Testing

Regardless of whether each SNP is analyzed one at a time or as part of a haplotype, 
the number of individual tests can become very large and can lead to an inflated 
(false positive) type I error rate both in candidate gene approach and whole genome 
approach. If the selected SNPs are all independent, then adjustments to the conven-
tional p-value of 0.05 with Bonferroni correction could account for the multiple 
testing. However, given the known LD pattern between SNPs, such adjustments 
would overcorrect for the inflated false-positive rate, resulting in a reduction in 
power. An alternate method would be to use the False Discovery Rate (FDR) 
approach which rather than correcting the p-value, corrects for fraction of false-
positives with the significant p-value. When a well defined statistical test is per-
formed (testing a null against an alternative hypothesis) multiple times, the FDR 
estimates the expected proportion of false positives from among the tests declared 
significant. For example, if 100 SNPs are said to be significantly associated with a 
trait at a false discovery rate of 5 %, then on average 5 are expected to be false posi-
tives. However, the gold standard approach that is being appreciated more is the 
permutation testing where the groups status of the individuals are randomly per-
muted and the analysis repeated several times to get a distribution for the test statis-
tics under the null hypothesis but this method can also be computationally intensive 
and time-consuming.

�Concluding Remarks

The completion of the Human Genome Project in 2003 heightened expectations of 
the health benefits from genetic studies [10]. Other projects such as the HapMap 
and 1000 Genome projects have complemented knowledge from the Human 
Genome Project. The markedly low cost to sequence the genome has provided add-
itional information from various projects, which was not possible a few years ago. 
The ENCODE project has furthered our knowledge that previously thought “junk” 
DNA sequences are important as they have regulatory and other unknown functions. 
While the known genetic factors and methods drive our paths ahead, all the unknown 
factors make us all strive to answer the multitude of important translational ques-
tions in the field of clinical research and medicine.

Methods in genetic epidemiology are very powerful in examining and identify-
ing the underlying genetic basis of any phenotype if conducted properly. There are 
several study designs that can be used with a common goal of finding both the indi-
vidual effects and interactions within and between genes and environmental expos-
ures that causes the disease. While the technology has provided us better and 
efficient platforms to conduct the studies, the underlying purpose of genetic epi-
demiology studies have always remained the same – what genetic variants cause the 
phenotype or the disease and how can we complement this deficit or control the 
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overload of the protein encoded by the variant in the gene to stop the disease? 
Regardless of the approach, several design and methodological issues need to be 
considered when conducting studies and interpreting the results (Table  11.3). 
Although these studies may find association of the phenotype with a genetic variant, 
the challenge is to meaningfully translate the findings. In most instances the alleles 
are in the non-coding region and the frequencies are rare but this the stepping stone 
in the process of understanding the complexity of common diseases. Very rarely can 
we find a conclusive evidence of genetic effect from a single study, so replication 
studies with larger samples size should be encouraged to provide insurance against 
the unknown confounders and biases. To understand the biologic significance of the 
variants, animal studies and gene expression studies can be conducted as follow-up 
studies. Of note, most of the loci from the association studies, singly or in aggre-
gate, only explain a small proportion of trait heritability. This “missing heritability” 
is reflected by small odds ratios and often has limited predictive utility. Overall, 
clinicians need to be aware of the potential role of genetics in disease etiology and 
be cautiously familiar with issues and limitations in conducting genetic epidemi-
ology studies before interpreting them for clinical or public health use.

References

	 1.	Morton NE, Chung CS. Genetic epidemiology. New York: Academic; 1978.
	 2.	Mendel G. Versuche über Pflanzen-Hybriden. Verh. Naturforsch. Ver. Brünn 4: 3–47 (in English 

in 1901, J. R. Hortic. Soc. 26: 1–32)1866.

Table 11.3  Possible explanations to consider before interpreting the association study results

Outcomes of association studies Possible explanations to consider

Positive association True causal association
LD with causal variant
confounding by population stratification
Hardy Weinberg disequilibrium
Multiple comparison (false positive)

Negative association No causal association
Small sample size
Phenotype misclassification

Multiple genes associated to the same phenotype Genetic heterogeneity
Interactions within and between genes 

and environmental factor
False positive
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