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    Abstract     To answer many of their clinical questions, health care practitioners need 
access to reports of original research. This requires the reader to critically appraise 
the design, conduct, and analysis of each study and subsequently interpret the 
results. This fi rst chapter reviews some of the key historical developments that 
have led to the current paradigms used in clinical research, such as the concept of 
randomization, blinding (masking) and, placebo-controls.  

  Keywords     Clinical research defi nition   •   Clinical research history  

        Introduction 

 As a former director of a National Institutes of Health (NIH)-funded K30 program 
it was my responsibility to provide a foundation for young researchers to become 
independent principal investigators. A part of our curriculum was a Course entitled 

    Chapter 1   
 The Beginning – Historical Aspects 
of Clinical Research, Clinical Research: 
Defi nitions, “Anatomy and Physiology,” 
and the Quest for “Universal Truth” 

             Stephen     P.     Glasser     

 Hulley    S, Cummings S, Browner WS. Designing clinical research. 2nd ed. Philadelphia: Lippincott 
Williams & Wilkins; 2000. 

        S.  P.   Glasser ,  M.D.      (*) 
  Division of Preventive Medicine ,  University of Alabama at Birmingham , 
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  Scientifi c inquiry is seeing what everyone else is seeing, 
but thinking of what no one else has thought  

  A. Szentgyorgyi. 1873 (he won the Nobel Prize for isolating 
Vitamin C)  [ 1 ]. 
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‘The Fundamentals of Clinical Research.’ This course, in addition to guiding students, 
towards becoming research investigators, was also designed to aid ‘students’ who 
wanted to read the medical literature more critically. The importance of this latter 
point is exemplifi ed by the study of Windish et al., who note “ physicians must keep 
current with the clinical information to practice evidence-based medicine…. to 
answer many of their clinical questions, physicians need access to reports of original 
research. This requires the reader to critically appraise the design, conduct, and 
analysis of each study and subsequently interpret the results ” [ 2 ]. Although aimed 
at physicians, this observation can and should be applied to all health scientists who 
must read the literature in order to place the results in context. The Windish study 
surveyed 277 completed questionnaires that assessed knowledge about biostatistics, 
and study design. The overall mean percent correct on statistical knowledge and 
interpretation of results was 41.4 %. 

 It is my belief that the textbooks currently available are epidemiologically 
“slanted”. There is nothing inherently wrong with that slant, but I have written this 
book to be more specifi cally geared to the clinical researcher interested in conducting 
Patient Oriented Research (POR). In this fi rst chapter I will provide a brief overview 
of the history of clinical research. The chapter will also address the question of why 
we do clinical research; defi ne ‘clinical research’; discuss our quest for ‘universal 
truth’ as the reason for doing clinical research; outline the approach taken to answer 
clinical questions; and describe (as Hulley and colleagues so aptly put it) ‘the anatomy 
and physiology of clinical research’ [ 3 ]. 

 Future chapters will examine such issues as causality (i.e., causal inference or 
cause and effect relationships); the strengths and weaknesses of the most popular 
clinical research designs; regression to the mean; clinical decision making; meta- 
analysis; and the role of the Food and Drug Administration (FDA) in the clinical 
trial process. We will also focus on issues related to randomized clinical trials, such 
as the intention-to-treat analysis, the use and ethics of placebo-controlled trials, and 
surrogate and composite endpoints.  

    Defi nition of Clinical Research 

 The defi nition of clinical research might appear to be self-evident; however, some 
researchers have narrowly defi ned clinical research to refer to clinical trials 
(i.e., intervention studies in human patients), while others have broadly defi ned it as 
any research design that studies humans (patients or subjects) or any materials taken 
from humans. This latter defi nition may even include animal studies, the results of 
which more or less directly apply to humans. For example, in 1991, Ahrens included 
the following in the defi nition of clinical research: studies on the mechanisms of 
human disease; studies on the management of disease; in vitro studies on materials 
of human origin; animal models of human health and disease; the development 
of new technologies; the assessment of health care delivery; and fi eld surveys [ 4 ]. 
In an attempt to simplify the defi nition, some wits have opined that clinical research 
occurs when the individual performing the research is required to have malpractice 
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insurance, or when the investigator and the human subject are, at some point in the 
study, in the same room, and both are alive and warm. So, there is a wide range of 
defi nitions of clinical research, some valid, some not. I have chosen to adopt a ‘middle 
of the road’ defi nition that encompasses the term ‘patient-oriented-research,’ which 
is defi ned as research conducted with human subjects (or on material of human 
origin) for which the investigator directly interacts with the human subjects at some 
point during the study. It is worth noting that this defi nition excludes in vitro studies 
that use human tissue that may or may not be linked to a living individual unless the 
investigator during the conduct of the trial has signifi cant interaction with a living 
breathing human.  

    History of Clinical Research 

 Perhaps the fi rst clinical trial results were those of Galen (circa 250 BC) who concluded 
that ‘some patients that have taken this herbivore have recovered, while some have 
died; thus, it is obvious that this herbivore fails only in incurable diseases.’ Galen’s 
observations underline the fact that even if we have carefully and appropriately 
gathered data, there are still subjective components to its interpretation, indicating 
our quest for ‘universal truth’ may be bedeviled more by the interpretation of data 
than by its accumulation (more about this in Chap.   3    ). 

 James Lind is generally given credit for performing and reporting the fi rst 
‘placebo- controlled’ interventional trial in the treatment and prevention of scurvy. 
In the 1700s, scurvy was a particularly vexing problem on the long voyages across 
the Atlantic Ocean. The research question that presented itself to Lind was how to 
prevent the condition. To arrive at an answer, Lind did what every good researcher 
should do as the fi rst step in converting a research question into a testable hypothesis—
he reviewed the existent literature of the time. In so doing, he found a report from 
1600 that stated ‘ 1 of 4 ships that sailed on February 13th, 1600, was fortuitously 
supplied with lemon juice, and almost all of the sailors aboard the one ship were 
free of scurvy, while most of the sailors of the other ships developed the disease .’ 
This was not a planned experiment, however. The fi rst planned experiment was 
perhaps one that involved smallpox, performed in 1721, in which six inmates of 
Newgate Prison were offered to have their sentence commuted if they volunteered 
for inoculation. All remained free of smallpox. However, in this experiment there 
was no concurrent control group. Returning to Lind’s review of the literature, on 
the one hand, Lind’s job was easy; there was not a great deal of prior published 
works. On the other hand, Lind did not have computerized searches via Med Line, 
Pub Med etc available. 

 As a result of the above, in 1747, Lind set up the following trial. He took 12 
patients ‘in the scurvy’ on board the HMS  Salisbury . ‘ These cases were as similar 
as I could have them…. They lay together in one place…and had one diet common 
to all. The consequence was that the most sudden and visible good effects were per-
ceived from the use of oranges and lemons .’ Indeed, Lind evaluated six treatment groups: 

1 The Beginning – Historical Aspects of Clinical Research, Clinical Research…
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‘ one group of two was given oranges and lemons. One of the two recovered quickly 
and was fi t for duty after 6 days, while the second was the best recovered and was 
assigned the role of nurse for the remaining patients .’ The other groups were each 
treated differently and served as controls. If we examine Lind’s ‘study’ we fi nd a 
number of insights important to the conduct of clinical trials as follows. For exam-
ple, he noted that  ‘on the 20th May, 1747, I took twelve patients in the scurvy on 
board the Salisbury at sea… Their cases were as similar as I could have them. They 
all in general had putrid gums, the spots and lassitude, with weakness of their 
knees…’ Here Lind was describing eligibility criteria for his study. He continues, 
‘…They lay together in one place, being a proper apartment for the sick in the fore-
hold; and had one diet in common to all…’ ‘… Two of these were ordered each a 
quart of cyder a day. Two others took twenty fi ve gutts of elixir vitriol three times a 
day upon an empty stomach, 

    … Two others took two spoonfuls of vinegar three times a day   
   … Two … were put under a course of sea water.   
   … Two others had each two oranges and one lemon given them every day.   
   … The two remaining patients took the bigness of a nutmeg three times a day.’    

By this description, Lind described the interventions and controls. To continue, ‘ …
The consequence was that the most sudden and visible good effects were perceived 
from the use of the oranges and lemons; one of those who had taken them being at 
the end of six days fi t four duty. The spots were not indeed at that time quite off his 
body, nor his gums sound; but without any other medicine than a gargarism or elixir 
of vitriol he became quite healthy before we came into Plymouth, which was on 
the 16th June .’ This latter description represents the outcome parameters and 
interpretation of his study. In summary, Lind addressed the issues of parallel-group 
design and the use of control groups, and he attempted to assure similarity between 
the groups except for the intervention (Table  1.1 ).

   Clearly, sample size considerations and randomization were not used in Lind’s 
trial nor were ethics and informed consent mentioned, but this small study was 
amazingly insightful for its time. Other selected  milestones in the history of clinical 
research include:

•    Fisher’s introduction of the concept of randomization in 1926; [ 5 ]  
•   The announcement in 1931 by the Medical Research Council that they had 

appointed ‘ a therapeutics trials committee…to advise and assist them in arranging 

   Table 1.1    Lind’s 1747 “clinical trial”   

 Lind’s description  Modern day RCT correlate 

 “These cases were as similar as I could fi nd them”  Inclusion/exclusion criteria 
 “They lay together in one place and had one diet 

common to all” 
 Common treatment save for the intervention 

of interest 
 “Six treatment groups were evaluated”  Parallel group design 
 “The rest served as controls”  Active control groups 
 “Two…were put under a course of sea water”  Placebo group? 
 “The   … the most sudden and visible good effects 

were perceived from oranges and lemons” 
 Interpretation 
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for properly controlled clinical tests of new products that seem likely on experimental 
grounds to have value in the treatment of disease ’ [ 6 ];  

•   Amberson and colleagues’ introduction of the concept of ‘blindness’ in clinical trials 
[ 6 ], and their study of tuberculosis patients where the process of randomization 
was applied [ 7 ]. They noted that after careful matching of 24 patients with 
pulmonary tuberculosis, the fl ip of a coin determined which group received the 
study drug [ 7 ].    

 Further analysis of the tuberculosis streptomycin study of 1948 is regarded by 
many, as the beginning of the beginning of the modern era of clinical research and 
is instructive in this regard. In the 1940s tuberculosis was a major public health 
concern, and randomization was being recognized as a pivotal component to reduce 
bias in clinical trials [ 8 ]. As a result the Medical Research Council launched a clinical 
trial in which 55 patients were randomized to treatment with bed rest (the standard 
of care treatment at that time) and 52 were treated with bed rest alone [ 9 ]. 

 Other signifi cant developments include reference to the use of saline solution 
in control subjects as a placebo, and the requirement in 1933 that animal toxicity 
studies be performed before human use [ 8 ]. In the 1940s, the Nuremberg Code, the 
Declaration of Helsinki, the Belmont Report, and the doctrine of Good Clinical 
Practice (GCP) were developed, which will be discussed in more detail later. As 
mentioned above, In1948, the Medical Research Council undertook a streptomycin 
study [ 9 ] which was perhaps the fi rst large-scale clinical trial using a properly 
designed randomized schema. This was followed by an antihistamine trial that used 
a placebo arm and double-blind (masked) design [ 10 ]. 

 In 1954, there were large-scale polio studies—fi eld trials of 1.8 million 
school- age children. A controversy regarding the best design resulted in two tri-
als, one design in which some school districts’ second graders received the dead 
virus vaccine while fi rst and third graders acted as the controls (i.e. a group 
clinical trial); and another design in which second graders randomly received 
either the vaccine or a saline injection. Both studies showed a favorable out-
come for the vaccine (Fig.  1.1 ).

   In 1962, the thalidomide tragedy became widely known and resulted in the 
tightening of government regulations as they applied to drug development and 
approval (also see Chap.   6    ). The story behind this tragedy is instructive. By 1960, 
thalidomide worldwide was being sold, but not in the United States. At the time, the 
prevailing US law was the 1938 Federal Food, Drug, and Cosmetic Act, which 
required proof of safety be sent to the FDA before a medication could be approved 
for sale in the United States. The law did not require demonstration of effi cacy for 
approval. It also allowed “investigational” or “experimental” use of a drug while 
approval for its sale was being sought, allowing a medication to be widely distrib-
uted prior to approval. The application for use of thalidomide in the USA was given 
to Frances Kelsey who noted a lack of teratogenicity data, and she also had other 
worries about thalidomide. As a result, Kelsey rejected the application and requested 
additional data from the company, who complained to her superiors that she was 
nit-picking and unreasonable. Kelsey continued to refuse to allow thalidomide 
for sale in the United States, and in total, the company resubmitted its application to 

1 The Beginning – Historical Aspects of Clinical Research, Clinical Research…
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the FDA six times, but with no new evidence in those applications, Kelsey refused 
approval. Subsequently, reports regarding a number of birth defects were reported 
and the drug was subsequently removed worldwide [ 11 ]. 

 As prior mentioned, at the time of the thalidomide disaster, trials of new drugs 
were required to prove safety but not effi cacy as described under the FDA’s 1938 
Act. As a result of the disaster, tightening of the regulations was instituted and trials 
were to have an “ adequate and well-controlled design ” before approval of any new 
drug. This was followed by the Drug Effi cacy Study Implementation (DESI) review and 
the FDA’s development of the four stages of clinical trials necessary for new drug 
approval, which set the stage for today’s drug approval process (see Chap.   6    ). 

 In the 1970s and 1980s, clinical research was prospering, but by the 1990s there 
began a decline in the number of new clinical investigators. This trend caught the eye 
of a number of academicians and the NIH, which then commissioned the Institute 
of Medicine (IOM) to address ways to stimulate individuals to pursue careers in 
clinical investigation, to defi ne appropriate curricula for training, and to ensure 
adequate support mechanisms for retaining clinical researchers. 

 The NIH also developed granting mechanisms for supporting individual clinical 
investigators at various levels of their careers (e.g. K23 and K24 grants) and for 
programmatic support of institutions that developed clinical research training 
programs (K30 grants), and most recently its establishment of Centers for Clinical and 
Translational Science (CCTS). The IOM report documented the decline in clinical 
investigators (particularly MD investigators), and noted that the time commitment 
necessary to do clinical research was underappreciated [ 12 ]. 

 DeMets and Califf more recently noted, ‘ we are entering an era in which the 
imperative to understand the rational basis for diagnostic and therapeutic options 
has become a major force in medical care .’ Medical products (drugs, devices, and 
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biologics) are proliferating simultaneously with substantial restructuring of the 
delivery of health care, with a focus on evidence to support medical intervention [ 13 ]. 

 Today, we are left with the ‘good, the bad, and the ugly’ regarding clinical research. 
The ‘good’ is that many experts think that sound comprehension of the scientifi c 
method and exposure to biomedical research comprise the essential core of medical 
education, and that the very essence of the American academic model is a balance 
between education, patient care, and research. The ‘bad’ is the increasing number of 
voices questioning the relevancy of research in academic health centers, as well as 
those concerned about the commitment to other components of training and the cost of 
research in a setting where the ‘triple threat’ (i.e., excelling in teaching, patient care, 
and research) may no longer be tenable given the increasing complexity of each area. 
The ‘ugly’ is that in 2003 only about 3 cents of every health care dollar was spent on 
medical research (more recently this has dropped to 2 cents); and, it was estimated that 
only 5 % of Congress could be counted on to take the initiative and be leaders in the 
support of clinical research; and few potential investigators were being supported to 
pursue careers or were given enough time to conduct research. By and large, these 
same issues persist today. In addition, today’s challenges add even greater burdens to 
clinical research. It is generally believed that today’s studies cost too    much, fail to 
recruit adequate numbers of subjects/patients into trials, fail to start in a timely fashion, 
may not even be asking the correct questions or studying the correct endpoints, and 
study results are often not published (publication bias, is an issue here). In fact, Pfi zer 
has reported that recently, 60 % of the total drug development costs go to conducting 
clinical trials, compared to 30 % in the 1980s. These increased costs (which are 1.5–3x 
higher than many other countries) are making the US less competitive worldwide.  

    Our Quest for Knowledge 

 With the above background, how do we begin our quest for knowledge? In general, 
research questions are generated in a variety of settings (e.g., during journal reading, 
hospital rounds, discussions with colleagues, seminars, and lectures). The resultant 
questions can then be refi ned into a research idea and, after further review of the 
literature, ultimately developed into a hypothesis. Based on a number of factors 
(to be discussed in subsequent chapters), a study design is chosen, and the study is 
then preformed and analyzed, the results of which are then interpreted and synthe-
sized. These results add to the body of knowledge, and this may raise additional 
questions that will invariably generate further research (Fig.  1.2 ).

   Of course, the primary goal of clinical research is to minimize presumption and 
to seek universal truth. In fact, in science, little if anything is obvious, and the inter-
pretation of results does not mean truth, but is really an opinion about what the 
results mean. Nonetheless, in our quest for universal truth, Hully and colleagues 
have diagrammed the steps that are generally taken to seek this ‘truth’ (Fig.  1.3  )  [ 3 ].

   Much of research is to explore this concept of opening ones mind. That is,  “to know 
that we know what we know, and that we do not know what we do not know, that is 
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true knowledge   (Henry David Thoreau (1817–1862))”, or “scientifi c inquiry is see-
ing what everyone else is seeing, but thinking of what no one else has thought”  
 (A. Szentgyorgyi. 1873 won the Nobel Prize for isolating Vitamin C).  Most (perhaps all) 
people generally know what they know and know what they do not know. What 
get’s most of us in trouble is that we do not know what we do not know (Fig.  1.4 ), 
and the largest “piece of the pie” falls in the last category.

Question

Design

Conduct

Analysis

Result

Interpretation

Synthesis

Significance

Belief

Action

  Fig. 1.2    Scientifi c method 
paradigm       

Designing and Implementing a Project
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Truth in
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Truth
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Study
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Design Implement
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Drawing 
Conclusions

Designing & 
Implementing

Infer Infer

Anatomy

Sampling,
Inclusions,
Exclusions

Chance, Bias,
Confounding

MeasurementPower 
Sample Size

Causality

  Fig. 1.3    A schematic of the design and implementation of a study       
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   This is exemplifi ed, by considering the question of what the “experts” in the past 
really knew. Consider the following quotes:

   “A journey such as that envisioned by Columbus is impossible. Among the many reasons 
that can be cited as to the folly of this enterprise is the well known fact that the Atlantic 
Ocean is infi nite and therefore impossible to traverse”  
  (From a committee report to King Ferdinand and Queen Isabella, 1486)  
  “Who the hell wants to hear actors talk?”  
  From Jack Warner, Warner Bros. Pictures, 1927  
  “I think there is a world market for about 5 computers”  
  From: TJ Watson, CEO of IBM, 1943  

Know what you know

Know what you
don’t know

Don’ t know what you don’ t
know

  Fig. 1.4    One’s universe 
of knowledge       

The Clinical Research Bridge
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Community intervention
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Biology Prevention
Health promotion

  Fig. 1.5    Portrays the broad range that encompasses the term “clinical research”       
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  “There is no reason for any individual to have a computer in their home.”  
  From: Ken Olsen, President of Digital Corporation, 1977  

 Finally, it should be realized that clinical research can encompass a broad range of 
investigation as portrayed in Fig.  1.5 .
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Abstract This chapter addresses some of the central concepts related to clinical 
research such as sampling, hypothesis generation, and what is meant by the strength 
of scientific evidence. We also begin to discuss the different clinical research designs 
along with their respective strengths and weaknesses.

Keywords Sampling • Hypothesis • Prospective and retrospective cohort design • 
Case-control design • Case cohort design • Cross-sectional design • Type I and type 
II error

Principles for the conduct of research are set forth in internationally recognized 
 documents such as the Declaration of Helsinki and the Guideline for Good Clinical 
Practice (GCP) of the International Conference on Harmonization (ICH-see Chap. 6).  
The principles of these and other standards are translated into legal requirements 
through laws and regulations that are enforced by national authorities such as the US 
FDA (see Chap. 6). The issues addressed by GCP include such things as protecting 
research subjects, ensuring objectivity in research, communication information about 
clinical trials, informed consent, and the very conduct of clinical trials including inde-
pendent review and safety monitoring. In recent years clinical research has been dis-
cussed in the lay media, and this has (mostly) negatively impacted recruitment (also 
see Chap. 8).
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 Sampling

An essential characteristic and the goal of any clinical research is to make inferences 
from the population under study (the sample or study population) and apply those 
inferences to a broader population (the target population i.e. the population about 
which we want to draw conclusions). Imagine if the investigator could only learn about 
and apply the results in the sample population? Rather we must be able to extrapolate 
the results of the findings in the sample population to a broader group of patients- 
otherwise the results would have little utility (Fig. 2.1). Thus, one of the most important 
weaknesses of any study is that inferences drawn from a study are based on a limited 
sample (again, a sample is a select subset of a population that the investigator hopes 
represents the general population perfectly, but which is unlikely to do so). This afore-
mentioned limitation is further compounded by the fact that disease is not distributed 
randomly, whereas samples tend to be, and that the causes of disease are multifactorial. 
Thus,  ideally, when performing clinical research, we would like to include everyone in 
our study who has the disease of interest. Because this is impossible we settle for a 
sample of the diseased population, however, the researcher now has to deal with a 
degree of uncertainty (see Chap. 18). Because different samples contain different 

Fig. 2.1 The sample and how it relates to the universe
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Table 2.1 Potential sampling 
errors

Selecting study participants

Selection bias
Non-respondent bias:
Volunteer or referral bias
External validity
Sampling bias
Ascertainment bias
Prevalence-incidence bias
Berkson bias
Healthy worker effect
Detection bias: the risk

factor investigated itself may
lead to increased

Diagnostic
Overmatching bias

people with different co-morbidities, and differing experiences, we end up with 
different data. The question now facing the researcher is which data from which 
sample is most representative of the entire population? Sampling errors commonly 
result in type I and type II errors. For example, if the researcher finds a certain effect 
of an interventional therapy, the question to be asked is ‘how likely is it that this 
therapy observation that was made from this sample is falsely representing the total 
population (that is the intervention in the sample population shows no effect, but if 
the total population had been exposed to the intervention there would have been an 
effect)? This potential false result is a type II error. The reverse situation is a total 
population would in fact have a therapy effect, but the sample studied shows no such 
effect. This is a type I error and is reflected by the p value.

Sampling bias is also a major problem (Table 2.1). For example, considering 
who responds to certain types of advertisement to recruit subjects can bias the sam-
ple. If random digit telephone dialing is used, subjects who do not have a phone 
cannot be recruited, if newspaper advertisement is utilized people who do not read 
newspapers cannot respond, etc.

A suggested solution to the sampling issue is to use random sampling; but, ran-
dom sampling does not guarantee ‘good’ sampling. As an example, consider If you 
draw repeated random samples of size 100 and 1,000 from a population with 50 % 
women the largest and smallest number of women in a sample of 100 can range 
from 33 to 68 and in a sample of 1,000 from 450–550.

 The Linear-Semilinear Relationship of Biological Variables

Another important concept of clinical research is the fact that most, if not all bio-
logical variables have a linear–semilinear relationship in terms of exposure and out-
comes, whereas clinical medicine is replete with the use of ‘cut-points’ to separate 
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normal and abnormal or effect and no effect (Fig. 2.2a, b). A cut-point presumes that 
there is some value or range of values that separates normal form abnormal rather 
than considering that the relationships tend to be linear.

 Strength of Relationships

Additionally, clinical research relates to what we mean when we talk about ‘the 
strength of evidence.’ The greatest strength of evidence is often attributed to the 
randomized clinical trial (RCT). In fact, in response to the question of what is 
the best clinical research design, the answer generally given is ‘the RCT,’ when 
in fact the correct answer should be ‘it depends,’ an answer which will be further 
discussed later in this book. What is actually meant by ‘the highest level of 
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evidence’ is how certain we are that an exposure and outcome are causally 
related, that is, how certain we are that an effect is the result of a given cause, 
and that the observations do not just reflect that an association exists; but, that 
they are not causally related.

 The Hypothesis

Let’s return to the question: ‘What is the best study design?’ This is a different 
question from ‘What is the best study design for a given question, and given the 
specific question, which study design leads to the highest level of evidence?’; 
which may finally be different from asking ‘What is the study design for a given 
question that will result in the greatest certainty that the results reflect cause and 
effect?’ This latter question is really the one that is most often sought, and is the 
most difficult to come by (see Chap. 16). Other important factors in considering 
the most appropriate study design, besides the most important factor—ethics—
include the natural history of the disease being studied, the prevalence of the 
exposure, disease frequency, the characteristics and availability of the study popu-
lation, measurement issues, and cost.

Let us now return to our quest for ‘universal truth.’ What are the steps we need to 
take in order to achieve ‘truth’? The fact is that truth is at best elusive and is not 
actually achievable since truth is more a function of our interpretation of data, which 
is in part dictated by our past experiences, than any finite observation that is 
absolute. The steps needed to achieve this uncertain quest for truth begins with a 
research question, perhaps the result of a question asked during teaching rounds, or 
stimulated by contact with a patient, or provoked during the reading of a book or 
journal, and so on. The research question is usually some general statement such as 
‘Is there an association between coffee drinking and myocardial infarction (MI)?’ or 
‘Is passive smoke harmful to a fetus?’ Let us examine this last research question and 
consider its limitations in terms of a testable hypothesis. In addressing a question 
such as ‘Is passive smoke harmful to a fetus?’ one needs first to ask a few questions 
such as: ‘what is the definition of ‘harmful’; how will passive smoke be measured 
and what do we mean by the term i.e. how is it to be defined in the study to be 
proposed?’ Answering these questions comes nearer to something that is testable 
and begins to define the clinical research design that would have the greatest level 
of evidence with that specific question in mind. For the question proposed above, 
for example, it would be best, from a research design perspective, to randomize 
exposure of pregnant women to both passive smoke and ‘placebo passive smoke.’ 
But considering the ethics issue alone, this would not be acceptable; thus, an RCT 
would not be the ‘best study design’ for this research question, even if it would lead 
to the ‘highest level of evidence’.

The hypothesis is generally (for the traditional approach of superiority testing) 
stated in the null (Ho). The alternative hypothesis (HA) i.e. the one you are really 
interested in is, for example, that a new drug is better than placebo. That is, if one 
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wants to compare a new investigational drug to placebo, the hypothesis would be 
constructed in the null, i.e. that there is no difference between the two interventions. 
If one rejects the null, one can then say that the new drug is either better (or worse- 
depending on the results of the study) than placebo. By the way, if the null is not 
rejected one cannot say that the new drug is the same as placebo, one can only claim 
that no difference between the two is evident from these data (this is more than a 
nuance as will be discussed later).

In order to understand why the hypothesis is stated in the null and why one 
cannot accept the null but only reject it, consider the following three examples 
(taking a trip with your family, shooting baskets with Michael Jordon, and contem-
plating the US legal system). Consider the scenario outlined by Vickers [2] where 
you have just finished packing up your SUV (a hybrid SUV no doubt) with all of 
your luggage, the two kids, and your dog, and just as you are ready to depart; your 
wife says ‘honey, did you pack the camera?’ At least two answers present them-
selves; one that the camera is in the automobile, or two that the camera is in the 
house. Given the prospect of unpacking the entire SUV, you decide to approach the 
question with, ‘the camera is not in the house (Ho) i.e. it is in the car’. If you in fact 
do not find the camera in the house you have rejected your null and your assumption 
is that it is in the car. Of course, one can easily see that the camera could be in the 
house (you just did not find it), and even if you did such a thorough job of searching 
the house that you can be almost certain that it is not there, it still may not be in the 
car (you might have left it elsewhere (the office, a prior vacation, etc.)) Another way 
to look at this issue is to envision that you are out on the basketball court when 
Michael Jordon comes in. You challenge him to a free throw shooting contest and he 
makes 7 of 7 while you make 3 of 7. It turns out the p value for this difference is 0.07 
i.e. there is no “statistically significant difference between the shooting skills of MJ 
and your shooting skills” you can draw your own conclusions about this likelihood 
[2]. In the Woman’s Health Initiative (WHI), women eating a low fat diet had a 
10 % reduction in breast cancer compared to controls P = .07. This was widely 
interpreted, as low fat diets don’t work. In fact, the NY Times trumpeted that ‘low 
fat diets flub a test’ and that the study provided ‘strong evidence that the war against 
all fats was mostly in vain’. This is what we call accepting the null hypothesis 
(i.e. it was not rejected so it was accepted) and is to be avoided i.e. failure to reject 
it does not mean you accept it, rather it means that these data do not provide enough 
evidence to reject it. By the way, guess what happens when the next study does 
reject the null-‘but they said it did not work!’.

Finally, consider our Anglo-American legal system. It is no mere coincidence 
that the logic of hypotheses testing in scientific inquiry is identical to that which 
evolved in the Anglo-American legal system and most of the following descriptions 
are taken from The Null Logic of Hypothesis Testing found on the World Wide Web [3]. 
Much of the pioneering work in the logic of hypothesis testing and inferential 
statistics was done by English mathematicians and refined by their American 
counterparts. For instance consider the contributions made by W.S. Gossett, R.A. 
Fisher, and Karl Pearson to the logic of hypothesis testing and statistical inference. 
The concept of the null hypothesis can be compared to the legal concept of guilty 
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vs. non guilty, the latter of which does not mean innocence. What is interesting is 
that the guilt vs. innocent scenario involves two diametrically opposed logics, one 
affirmative and the other null. From the time a crime is reported to the police an 
affirmative, accusatory, and inductive logic is followed. Detective X gathers the 
evidence, follows the evidentiary trail, and based upon the standard of probable 
cause, hypothesizes that the accused is guilty and charges him accordingly. The 
District Attorney reviews the case for probable cause and quality of evidence and 
affirms the accusation. The case is argued affirmatively before the grand jury, and 
they concur. But relative to the jury, at the point the trial begins, the logic is 
reversed, it is no longer affirmative, it becomes null. The jury, the trier of the facts, 
is required to assume that the defendant is not guilty unless the facts established 
otherwise. Let’s abstract this two part logical process and represent it symboli-
cally. The police, the prosecutor, and the grand jury hypothesized (HA) that the 
accused (X) committed the crime (Y).

 
H X YA : →( )  

The jury on the other hand hypothesizes (H0) that the accused (X) was not 
guilty of the crime (Y) unless the evidence reached the standard of “beyond a 
reasonable doubt”.

H0:  (X               Y)

 

Formulating the logic in this manner, one can be certain of three things. Either:

H0 is true, the accused is not guilty, or
HA is true, accused is guilty,
and
H0 and HA cannot both be true.

The logic of establishing someone’s guilt is not the simple converse of the logic of 
establishing his/her innocence. For instance, accusing someone of a crime and 
requiring them to prove their innocence requires proving a negative, something that 
is not logically tenable. However, assuming that someone is not guilty and then 
assessing the evidence to the contrary is logically tenable (Fig. 2.3).

The decision matrix in Table 2.1 shows the possible outcomes and consequences 
of this legal logic as applied to the case of the accused, our hypothetical defendant. 
Assume H0: the accused is not guilty unless the evidence is convincing beyond a 
reasonable doubt. Notice that in terms of verdicts and outcomes, there are two kinds 
of errors the jury might have made, identified as (I) and (II).

Type I Error The jury finds the accused guilty when in fact he is not guilty.
Type II Error The jury finds the accused not guilty when in fact he is guilty.

Compare this with the Table 18.2
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In the Anglo-American legal tradition, the consequences of these two possible 
errors are not considered equivalent. On the contrary, considerable safeguards have 
been incorporated into the criminal law to minimize the probability (α) of making a 
Type I error (convicting an innocent person), even at the risk of increasing the prob-
ability (β) of making a Type II error (releasing a guilty person). Indeed, this is where 
the concept of innocent until proven guilty comes from, and the quote: Finally, this 
logic also assumes that justice is better served if, as the noted 18th Century English 
jurist Sir William Blackstone stated, “…ten guilty persons escape than that one 
innocent suffer” [4, p. 358] (Fig. 2.4).

It is logical and critical to distinguish between the concepts of not guilty and 
innocent in the decision paradigm used in criminal law, i.e.:

If HA = guilty, then does …
H0 = not guilty, or does …
H0 = innocent?

Here, “not guilty” does not mean the same thing as innocent. A not guilty verdict 
means that the evidence failed to convince the jury of the defendant’s guilt beyond 
a reasonable doubt (i.e. “The scientific corollary is that data in this study was 

Research hypothesis is
deducted from a theory

Statistical hypothesis is
formulated

Null & alternative hypotheses
are formulated

A representative sample is
drawn from the population

A statistical test is conducted to
the probability that 
the null hypothesis is true

H1 is generalized to determine
the population by
inductive logic

The null hypothesis is
accepted or rejected

If the H0 is
rejected

Fig. 2.3 Deductive and inductive logic of hypothesis testing
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insufficient to determine if a difference exists, rather than there is no difference”). 
By this logic it is quite conceivable that a defendant can be found legally not guilty 
and yet not be innocent of having committed the crime in question.

The evaluation of a hypothesis involves both deductive and inductive logic. The 
process both begins and ends with the research hypothesis.

Step 1  Beginning with a theory about the phenomenon of interest, a research hypothesis 
is deduced.

This hypothesis is then refined into a statistical hypothesis about the param-
eters in the population.

The statistical hypothesis may concern population means, variances, medi-
ans, correlations, proportions, or other statistical measures.

The statistical hypothesis is then reduced to two mutually exclusive and col-
lectively exhaustive hypotheses that are called the null (H0) and alternative 
hypothesis (HA).

Step 2  If the population is too large to study in its entirety (the usual case), a 
representative sample is drawn from the population with the expectation 
that the sample statistics will be representative of the population param-
eters of interest.

Step 3  The data gathered on the sample are subjected to an appropriate statistical 
test to determine if the sample with its statistical characteristics could have 
come from the associated population if the null hypothesis is true.

Fig. 2.4 Sir William Blackstone quote regarding guilt and innocence
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Step 4  Assuming that the null hypothesis (H0) is true in the population, and that the 
probability that the sample came from such a population is very small 
(p ≤ 0.05), the null hypothesis is rejected.

Step 5  Having rejected the null hypothesis, the alternative hypothesis (HA) is 
accepted, and, by inductive inference is generalized to the population from 
whence the sample came.

These five steps are illustrated in Fig. 2.3, that is, the conduct of research involves a 
progressive generation of four kinds of hypotheses: Research hypothesis, Statistical 
hypothesis, Null hypothesis; and, Alternative hypothesis.

A research hypothesis is an affirmative statement about the relationship between 
two variables. For instance, consider the following example of a research hypoth-
esis: “there is a positive correlation between the level of educational achievement of 
citizens and their support of rehabilitation programs for criminal offenders”. From 
the research hypotheses three other kinds of hypotheses can be formulated:

A statistical hypothesis
A null hypothesis
An alternative hypothesis

Again, a statistical hypothesis is a statement about the parameters of a population. 
The null hypothesis, which is symbolized H0, is the negative statement of the statis-
tical hypothesis; and, the alternative hypothesis, usually symbolized HA, is the 
obverse of the null hypothesis and by custom, is stated to correspond to the research 
hypothesis being tested. Statements that are mutually exclusive are such that one or 
the other statement must be true. They cannot both be true at the same time. For 
instance:

Something is either “A” or “not A”. It cannot be both “A” and “not A” at the same time.
Or, the object on the kitchen table is either an apple or a non-apple.
Saying the object on the kitchen table is either an “apple” or a “non-apple” covers 

every possible thing that the object could be.

It is critical to understand that it is the null hypothesis (H0) that is actually 
tested when the data are statistically analyzed, not the alternative hypothesis 
(HA). Since H0 and HA are mutually exclusive, if the analysis of the data leads to 
the rejection of the null hypothesis (H0), the only tenable alternative is to accept 
the alternative hypothesis (HA). But, this does not mean that the alternative 
hypothesis is true, it may or may not be true. When we reject the null hypothesis 
it is because there is only a remote possibility that the sample could have come 
from a population in which the null hypothesis is true. Could we be wrong? Yes, 
and that probability is called alpha (α), and the error associated with alpha is 
called a Type I error (Table 2.2).

What about the converse situation, accepting the null hypothesis? If the null 
hypothesis is accepted, the alternative hypothesis may or may not be false. For example, 
the null hypothesis may be accepted because the sample size was too small to achieve 
the required degrees of freedom for statistical significance; or, an uncontrolled 
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extraneous variable or spurious variable has masked the true relationship between the 
variables; or, that the measures of the variables involved are grossly unreliable, etc. 
The issue is the same as a “not guilty” verdict in a criminal trial. That is, a verdict of 
not guilty does not necessarily mean that the defendant is innocent, it only means that 
the evidence was not sufficient enough to establish guilt beyond a reasonable doubt. 
There is a further discussion about the null hypothesis in Chap. 18.

 An Overview of the Common Clinical Research  
Designs (Tables 2.3 and 2.4)

The common clinical research designs are listed in Tables 2.3 and 2.4 and summarizes 
some of their characteristics. There are many ways to classify study designs but two 
general ways are to separate them into descriptive and analytic studies and observa-
tional and experimental studies. These designations are fairly straightforward. In 
descriptive studies one characterizes (describes) a group of subjects; for example 
‘we describe the characteristics of 100 subjects taking prophylactic aspirin in the 
stroke belt.’ In contrast, with analytic studies where there is a comparator group, for 
example, ‘we compared the characteristics of 100 subjects in the stroke belt taking 
aspirin to 100 subjects not taking aspirin’. In experimental studies the investigator 
is “controlling” the intervention in contrast to observational studies where the expo-
sure (intervention) of interest is occurring in nature and as the investigator you are 
observing the subjects with and without the exposure. Basically, experimental trials 
are clinical trials, and if subjects are randomized into the intervention and control 
(comparator) group it is a RCT.

 Ecologic Studies

An ecological study is an epidemiological study in which the unit of analysis is a 
population rather than an individual. Ecologic studies are usually regarded as inferior 
to non-ecological designs such as cohort and case-control studies because of ecologi-
cal fallacy (ecological fallacy refers to when inferences about the nature of individu-
als are deduced from inference for the population to which those individuals belong). 

Table 2.2 Compares the US legal system determination of guilt and innocence, to the Ho and Ha

The verdict The verdict

The truth Accused in not guilty Accused is guilty
Accused is not guilty  

(Ho true)
Justice is served Innocent person is convicted 

probability = α
Accused is guilty  

(Ho false)
Guilty person is set free 

probability = β
Justice is served
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Ecological studies can be easily confused with cohort studies, especially if different 
cohorts are located in different places. The difference is that in the case of ecological 
studies there is no information available about the individual members of the popula-
tions compared; whereas in a cohort study the data pair exposure/health is known for 
each individual. Ecologic studies use available population data to determine associa-
tions. For example, to determine an association between coronary heart disease 
(CHD) and the intake of saturated fat, one could access public records of beef sales 
in different states (or counties or regions of the country) and determine if an associa-
tion existed between sales and the prevalence of CHD. Another example is that one 
might look for geographical correlations between disease incidence or mortality and 
the prevalence of risk factors. For example, mortality from coronary heart disease in 
local authority areas of England and Wales has been correlated with neonatal mortal-
ity in the same places 70 and more years earlier. This observation generated the 
hypothesis that coronary heart disease may result from the impaired development of 
blood vessels and other tissues in fetal life and infancy.

 Case Reports and Case Series

Case reports and case series are potential ways to suggest an association, but, 
although limited in this regard, should not be deemed unimportant. For example, the 
recognition of the association of the diet drug combination of Fen-phen was the 

Table 2.4 Types and descriptions of observational trials

Descriptive Definition Best used Limitations

Case-series Describes clinical course  
of one or more patients

Identify pathological,  
disease or treatment  
patterns

No comparison group

Ecologic Associations of exposures  
and outcomes over time  
extracted from large 
databases

Trends over time Impossible to adjust 
for confounding; 
Ecologic fallacy

Cross- sectional Associations in a population  
at a single point in time

Generate data for  
further study

No temporality

Table 2.3 General overview 
of study types

Observational
Ecologic studies
Case reports
Case series
Cross-sectional
Case-control
Cohort
Experimental
Clinical trials
Group clinical trials
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result of a case series [5]. These are, for the most part, descriptive observations 
about a single patient or a group of patients relative to some outcome of interest. It 
can be retrospective or prospective and usually involves a smaller number of patients 
than more powerful case-control studies or randomized controlled trials. Case series 
may be consecutive or non-consecutive, depending on whether all cases presenting 
to the reporting authors over a period were included, or only a selection. Case series 
may be confounded by selection bias, which limits statements on the causality of 
correlations observed; for example, physicians who look at patients with a certain 
illness and a suspected linked exposure will have a selection bias in that they have 
drawn their patients from a narrow selection (namely their hospital or clinic).

 Cross-Sectional Studies

In cross-sectional studies, one measures and/or describes disease status (or out-
come), exposure(s), and other characteristics at a point in time (point in time is the 
operative phrase), in order to evaluate associations between them. Cross-sectional 
studies are different from cohort studies in that cohort studies observe the associa-
tion between a naturally occurring exposure and outcome (e.g., between health and 
a disease or between disease and an event) over a period of time rather than at a 
point in time. With cross-sectional studies, the exposure and outcome are evaluated 
at a point in time-i.e. there is no follow-up period where a subsequent evaluation of 
exposure/outcome is observed. Indeed, this measure “at a point in time” is both the 
strength and weakness of the cross-sectional (X-sectional) study design. Lack of a 
follow-up period means the study can be performed more rapidly and less expen-
sively than a cohort study, but one sacrifices temporality (an important component 
for determining causality). In addition, because cross-sectional studies are evaluat-
ing cases (disease, outcomes) at a point in time, one is dealing with prevalent cases 
(not incident cases as is true of a cohort study). Confusing to some is that a 
X-Sectional study may take years to complete, so it is not the duration of the study 
that determines whether it is a x-sectional or a cohort design, it is the time between 
the exposure and outcome that makes that determination. In other words, if the 
exposure and outcome are measured at a single point in time, it is x-sectional. If the 
outcome is ascertained at some time point distant from the exposure it is a cohort 
study. There are a number of factors that must be considered when using prevalence 
(rather than incidence) and these are summarized in Fig. 2.5.

An example of a cross sectional study might be the assessment of arterial stiff-
ness and hormone replacement therapy (HRT). Let’s say a study is designed where 
age matched women receiving HRT are compared to women not taking HRT, and 
arterial stiffness is measured in each to determine if differences in arterial stiffness 
differ between the two groups. Some have likened this to taking a snapshot of the 
association at that point in time.
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 Case-Control Study

In a case-control study (CCS), the investigator identifies a certain outcome in the 
population, then matches the ‘diseased group’ to a ‘healthy group,’ and finally iden-
tifies differences in exposures between the two groups.

With a CCS one approaches the study design the opposite of a cohort design (in 
fact some have suggested the use of the term ‘trohoc design’ – cohort spelled back-
wards). The term case-control study was coined by Sartwell to overcome the impli-
cation that the retrospective nature of the design was an essential feature [6]. That 
is, patients with the outcome of interest are identified, a control group is selected, 
and one then looks back for exposures that differ between the two. Two major biases 
exist with the CCS; first the selection of the control group is problematic, and sec-
ond, one is usually looking back in time (i.e. it is a retrospective study in that sense). 
Selecting the control group for a CCS is problematic because if one selects too 
many matching criteria it becomes difficult to find an adequate control group, while 
if one has too few matching criteria, the two groups can differ in important vari-
ables. For CCS designs, recall bias is also an issue (this is even a greater issue if 
death is an outcome, in which case one not only has to deal with recall bias, but the 
recall is obtained from family members, caregivers, etc. rather than the subject).

One of the strengths of the CCS design is that if one is interested in a rare dis-
ease, one can search the area for those cases, in contrast to randomly selecting a 
cohort population that will develop this rare disease infrequently, even over a long 
follow-up time period. Also, in contrast to a cohort study in which the sample 

Increased by:
Longer disease duration

Improved survivorship
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Out-migration of healthy
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Improved diagnostic
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Shorter  disease
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rate 
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Fig. 2.5 The balance of factors that affect prevalence
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population is followed for a time period, a CCS obviates this need so one can 
complete the study much more rapidly (and therefore less expensively).

There are several variations of the case-control design that overcome some of the 
shortcomings of a typical CCS (although they have their own limitations): a pro-
spective CCS and a nested CCS. In the prospective CCS, one accrues the cases over 
time (i.e. in a prospective fashion) so that recall bias is less of an issue. However, 
one then has to wait until enough cases are accrued (problematic again for rare 
diseases); and, the selection of an appropriate control group still exists. A nested 
case- control study is a type of study design where outcomes that occurred during 
the course of a cohort study or RCT are compared to controls selected from the 
same cohort or clinical trial population who did not have the outcome. Compared 
with the typical case-control study, a nested case-control study can reduce ‘recall 
bias’ and temporal ambiguity, and compared with a cohort study, it can reduce cost 
and save time. One additional drawback of a nested case-control study is that the 
non- diseased persons from whom the controls are selected may not be fully repre-
sentative of the original cohort as a result of death or failure to follow-up cases. As 
mentioned, the nested CCS design can be placed within a cohort study or RCT. An 
example is taken from the Cholesterol and Recurrent Events (CARE) Study [7]. The 
primary study was aimed at the prevention of recurrent MI when patients with a 
prior MI and ‘normal’ cholesterol levels were further treated with pravastatin. As 
part of the original study plasma was stored and after the report of the primary study 
was published the following study was designed: “we conducted a prospective, 
nested case-control study in the Cholesterol and Recurrent Events (CARE) trial. 
Baseline concentrations of VLDL-apolipoprotein (apo) B (the VLDL particle con-
centration), VLDL lipids, and apoCIII and apoE in VLDL + LDL and in HDL were 
compared in patients who had either a myocardial infarction or coronary death 
(cases, n = 418) with those in patients who did not have a cardiovascular event 
(control subjects, n = 370) in 5 years of follow-up. VLDL-cholesterol, VLDL-
triglyceride, VLDL-apoB, apoCIII and apoE in VLDL + LDL and apoE in HDL 
were all interrelated, and each was a univariate predictor of subsequent coronary 
events. Adjustment for LDL- and HDL-cholesterol did not affect these results” [7].

 Cohort Study

A cohort study is much like a RCT except that the intervention in an RCT is “inves-
tigator controlled”, while in a cohort study the intervention (exposure) is a naturally 
occurring phenomenon. A cohort design is a study in which two or more groups of 
people that are “free of disease” at study onset and that differ according to the extent 
of exposure (e.g. exposed and unexposed) are compared with respect to disease 
incidence. A cohort study assembles a group of subjects and follows them over 
time. One follows these subjects to the development of an outcome of interest and 
then compares the characteristics of the subjects with and without the outcome in 
order to identify risk factors (exposures) for that outcome. A major assumption 
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made in cohort studies is that the subject is disease free at the beginning of the study 
(disease free means for the outcome- disease- of interest). For example, if the 
outcome of interest is a recurrent myocardial infarction, the subject would have had 
the first infarction (so in that sense he is not disease free) but in terms of the outcome 
of interest (a second infarction) we assume that at study onset, he is not having a 
second infarction. This example may seem obvious, but let us use colon cancer as 
another example. At study onset, one assumes that the subject is disease free 
(cancer- free or ‘normal’) at the time of enrollment, while in fact he or she may 
already have colon cancer that is as yet undiagnosed. This could bias the results of 
the study since the exposure of interest may have nothing to do with the outcome of 
interest (colon cancer) since the subject already has the outcome irrespective of the 
exposure (say a high fat diet). This also raises the issue as to what is ‘normal’. One 
whit suggested that a normal subject is one that has been insufficiently tested! The 
cohort assumption mentioned above is diagrammed in Fig. 2.6. Of course, one also 
assumes that the incorrect assumption of no disease at onset is equally balanced in 
the two groups under study, and that is indeed the hope, but not always the realiza-
tion. Cohort studies are considered the best way to study prognosis, but one can also 
do this by using a case-control design.

As an example, recall the cross-sectional study described above (the example of 
a cross sectional study that assessed the association of arterial stiffness and hormone 
replacement therapy). Let’s say a study is designed where age matched women 
receiving HRT are compared to women not taking HRT, and arterial stiffness is 
measured in each to determine if differences in arterial stiffness differ between the 
two groups. Suppose now we follow subjects for 5 years, measure their arterial 
stiffness, and determine if there is a difference in that measure in women receiving 
HRT compared to those who are not. This would be a cohort design.

 Retrospective Cohort Design

Cohort studies are generally prospective; however, retrospective cohort studies do 
exist. The key to the study design is identifying the exposure of interest in ‘normal’ 
subjects without disease (i.e. the outcome of interest), evaluate for that outcome 

Fig. 2.6 The cohort 
limitation
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after a period of time has elapsed, and determining the exposure as different or not 
in those with and without the outcome. Retrospective cohort studies are particularly 
well suited to the study of long-term occupational hazards. An example of a retro-
spective cohort study is the study of nickel refinery workers where about 1,000 
nickel refinery workers were identified from company records and their outcomes 
identified over a prior 10 year period. Sixteen were found to have died from lung 
cancer (expected rate was 1 from National data), 11 died from nasal cancer (1 expected) 
and 67 from other causes (72 expected) [8].

Or, to continue with our HRT example from above, suppose we now identify a 
group of women who have and have not been taking HRT and we now measure their 
arterial stiffness and make comparisons of association to HRT (Fig. 2.7). It is 
common that this design is confused with case control studies. The differentiating 
factor is whether one designs the study to evaluate whether the exposure (e.g. HRT 
in this example) is associated with the outcome (arterial stiffness), this would be a 
cohort design; or, if subjects are identified by their outcome (say normal vs. abnormal 
arterial stiffness) and then exposure status is determined (they did or did not take 
HRT), this would be a case control design.

 Case Cohort Design

Another modification of cohort studies is the case-cohort design. With the case- 
cohort design, a ‘subcohort’ is randomly selected from the cohort sample, a sepa-
rate exposure of interest from the total cohort is identified, and cases (outcomes) 

Fig. 2.7 A comparison of prospective and retrospective cohort study designs
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are then determined in the same manner as the primary design. An example might 
be a cohort study of 10,000 subjects that is assessing some outcome-let’s say a 
CVD outcome- in relation to dietary fat. The investigator decides that she would 
also like to know the association of CVD with a measure of coronary artery cal-
cium, so electron beam computed tomography (EBCT-a relatively expensive pro-
cedure to perform on the all of the original cohort) is measured in a random sample 
of 100 of the cohort subjects (the ‘subcohort’). The association of EBCT to CVD 
outcome is then ultimately determined. A key feature of this design is that the cases 
are selected from among those with disease, while the controls are selected at the 
beginning of the study period, irrespective of disease status (that is some control 
cases may later become a case).

 Randomized Control Trial (RCT)

In the randomized-controlled trial (RCT), the exposure is “controlled” by the inves-
tigator, which contrasts it to all the other study designs. A detailed discussion of the 
RCT will be presented in Chap. 3. However, it should be noted that RCTs cannot be 
used to address all important questions. For example, observational studies are more 
appropriate when studies are used to detect rare or late consequences of interven-
tions, situations not best suited to the RCT.

The above discussion of study designs is not meant to be all-inclusive. For exam-
ple there is a design called the “case-only design” that is somewhat unique to genetic 
studies. The case-only design is an efficient and valid approach to screening for 
gene-environment interaction under the assumption of the independence between 
exposure and genotype in the population. That is, if the primary purpose of the 
study is to estimate the effect of gene-environment interaction in disease etiology, 
one can do so without employing controls, thus, the case-only design requires fewer 
cases than the case-control design to measure gene-environment interaction, and it 
also requires fewer cases to measure gene-gene interactions.

One should now be able to begin to understand the key differences, and there-
fore limitations, of each study design; and, circumstances where one design might 
be preferable to another. Let’s, for example, use the exposure of electromagnetic 
energy (EME) and cancer outcome (e.g. leukemia). With a cross-sectional study, 
a population is identified (target population), cancer rates determined, and expo-
sure and lack of exposure to EME is ascertained from a sample population. One 
then analyzes the exposure rates in subjects with cancer and those that are cancer 
free. If the cancer rate is higher in those who were exposed, an association is 
implied. This would be a relatively inexpensive way to begin to look at the pos-
sible association of these variables, but limitations should be obvious. For exam-
ple, since there is no temporality in this type of design, and since biologically, 
exposure to EME if it did cause cancer would likely have to occur over a long 
period of time, one could easily miss an association. Also reverse causation can-
not be ruled out. Also remember, that even though the RCT is generally the “best” 
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study design, one could easily see why it would not be appropriate for this research 
question. Table 2.5 summarizes a few of the study designs in relation to the 
frequency of the exposure and outcome.

In summary, it should be evident that observational studies (e.g. cross-
sectional, case-control, and cohort studies) have a major role in research. However, 
despite their important role, von Elm et al. discussed the lack of important 
information that was either missing or unclear in prior published observational 
studies; and why this lack of information led to a guideline document for 
reporting observational studies (the STROBE statement-the Strengthening and 
Reporting of Observational Studies in Epidemiology). The STROBE statement 
was designed after the CONSORT- the Consolidated Standards of Reporting 
Trials-; this statement outlines the guidelines for reporting RCTs. The STROBE 
statement is a checklist of 22 items that are to be considered essential for good 
reporting of observational studies (also see Chap. 19) [9].

Formulating relevant and precise questions that can be answered can be complex 
and time consuming. A structured approach for framing questions that uses five 
components may help facilitate the process. This approach is commonly known by 
the acronym “PICOS” or “PECOS”, where each letter refers to a component as 
follows:

 – P refers to the patient population or the disease being addressed,
 – I (or E) refers to the intervention or exposure
 – C refers to the comparator group
 – O to the outcome or endpoint
 – S refers to the study design chosen

Table 2.5 Common study designs, uses and limitations

Descriptive Definition Best used Limitations

Cohort Comparison of outcome  
of those with and  
without exposure

Rare exposure,  
common outcomes

Lack of randomization, 
bias from dropouts

Case-cohort Exposure between cases  
and random sample  
of the original cohort

Rare exposure and  
outcome, long  
latency period

Recall bias; not suitable 
for chronic 
conditions

Case- crossover Each case contributes one  
case window of time  
and one or more control  
windows

Outcome does not  
vary over time;  
exposures are brief

Recall bias; not suitable 
for chronic 
conditions

Cross-sectional Description of associations  
at a single point in time

Outcome associations  
to generate further  
study

No temporality

Case-control Odds of exposure among  
cases c/w non-cases

Common exposure  
rare outcome

Selection and recall 
bias; confounding

Nested 
case- control

Case-control nested within  
cohort (or clinical trial)

Rare outcome and/or  
long latency period

Decreases biases  
of case-control 
Design
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Finally, the spectrum of evidence imparted by the different clinical research 
designs ranges from ecological studies through observational epidemiological 
studies to randomized control trials (RCTs). And, many people are becoming 
increasingly skeptical of RCTs. In fact, one researcher has claimed that 90 % of 
medical research is wrong [10]. Examples include: Two 1993 studies concluded 
that vitamin E prevents cardiovascular disease. That claim was overturned in 
1996 and 2000; a 1996 study concluding that estrogen therapy reduces older 
women’s risk of Alzheimer’s was overturned in 2004; and, a major study 
concluded there’s no evidence that statins help people with no history of heart 
disease –the cost of statins is more than $20 billion per year, of which half may 
be unnecessary. Jeffry Hyman has reviewed this subject and has published an 
On-Line tutorial that addresses this question [11]. Hyman points out the follow-
ing in his presentation entitled “Is Most Medical Research Wrong? The Role Of 
Incentives And Statistical Significance: a myriad of biases are present in any 
type of research that includes selection bias, information bias (see Chap. 17) 
and a number of analytical issues (see Chap. 3). In addition, Hyman points out 
the power of incentives by raising the questions of whether we are looking for 
the truth when we do research… or are we? and is the search for truth our only 
reason for doing research? could we have any other incentives? In answer to this 
latter question he raises the financial and egocentric motivations for doing 
research beyond seeking the truth, such as:

 – We want to get grants
 – We have a financial interest in the study
 – We might want to support funding for a program
 – We might want to continue funding for a program
 – We want tenure
 – We want a promotion
 – We think there is an association and we want to show it
 – We want our studies to be published
 – We want publicity
 – We might have done work in this area before and we want to replicate it
 – We have made an Investment of time and money in doing the study
 – we want to show results
 – We want people to think we are a good researcher
 – We know about publication bias towards negative results

He asks an additional question: how does our strong desire for a P < 0.05 affect our 
results? and points to the following “follies”: We do extensive modeling with a range 
of variables. Then we only report the model with the most significant results (selec-
tive reporting) (multiple comparisons), we do extensive subgroup analyses (multiple 
comparisons), we compare extreme groups, such as the 1st and 5th quintiles, we use 
too large of a sample size for the effect we want to measure (such as national surveys), 
we use a 1 sided P value, we don’t try to publish papers with negative results, we 
quickly do studies in hot fields, we change study endpoints after looking at the data, 
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we investigate multiple associations between exposure and outcome, and, we 
selectively site the literature. A hypothetical (extreme) example of these latter con-
cepts is presented in Hymans presentation (in whom he cites www.johndcook.com) 
follows: Researchers test 200 completely ineffective new drugs;

• About 10 trials out of the 200 will have a “significant” result due to chance.
• Only the 10 studies with significant results will be submitted for publication.
• Five of these studies are published in major journals
• Result: The type 1 error rate of each study was 5 %, but the error rate in the 

literature is 100 %

Hyman concludes with the question “Can we predict which studies are more likely 
to be wrong?”. Here is a list of his answers: small studies with significant results; 
studies with more flexible designs, outcome measures, and models; studies with 
significant results and a small effect measure (like odds = 1.1); The hotter the field 
and the more people doing research in it; studies where there are strong financial 
interests; studies with strong pre-existing beliefs by researchers. In summary: be 
aware of how we overstate our results in an effort to get statistically significant 
results; be aware of the limitations of P values and statistical significance; don’t over 
interpret significant results, being significant does not make a results true or import-
ant; on the other hand, not being significant does not make a result false; do power 
calculations for each study and don’t make your study too big or too small, make it 
just right; watch for problems like multiple comparisons, subgroup analysis, and 
selective reporting; be aware of the situations where study results are more likely to 
be wrong; remember the effects of publication bias; and, in observational studies 
speak about associations, not causality (Table 2.6).

Finally, it has been pointed out by some, that clinical trials are too expensive, 
recruit too few patients, and results in to many investigators to just give up because 
of the cost and complexity of clinical trials (in fact it was noted that 38 % of PIs who 
participated in clinical trials between 2000 and 2005, did not return to conduct 
another clinical trial [12]). It has also been suggested that half of RCTs never finish 
due to recruitment problems, and many that do finish are underpowered to answer 
the original research question, even as costs soar. As a solution, it has been sug-
gested that since observational trials give results similar to RCTs, and at less 
expense, they can be used as a substitute [13]. While Pocock and Elbourne warn that 
the one critical deficiency of observational designs is the absence of the randomi-
zation that occurs with RCTs rather than each patients treatment being deliberately 
chosen in observational trials [14].

Table 2.6 Study designs by frequency of exposure and outcomes

Prevalence or incidence of outcome

Drug exposure Not rare Rare

Not rare Cohort or clinical trial Case-control
Rare Cohort Case-control
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    Abstract     The spectrum of evidence imparted by the different clinical research 
designs ranges from ecological studies through observational epidemiological stud-
ies to randomized control trials (RCTs). This chapter addresses the defi nition of 
clinical research, the major aspects of clinical trials e.g. ethics, randomization, 
masking, recruitment and retention of subjects enrolled in a clinical trial, patients/
subjects lost to follow-up during the trial etc. Although this chapter focuses on the 
weaknesses of clinical trials, it is emphasized that the randomized, placebo- 
controlled, double blind clinical trial is the design that yields the greatest level of 
scientifi c evidence.  

  Keywords     Generalizability/external validity. Internal validity   •   Superiority testing   
•   Equivalence/noninferiority testing   •   Randomization   •   Intention to treat   •   Missing 

    Chapter 3   
 A Focus on Clinical Trials 
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  Less   than 50 % of this chapter is taken from “Clinical trial design issues: at least 10 things 
you should look for in clinical trials”  [ 1 ]  with permission of the publisher.  
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  A researcher is in a gondola of a balloon that loses lift and 
lands in the middle of a fi eld near a road. Of course, it looks 
like the balloon landed in the middle of nowhere. As the 
researcher ponders appropriate courses of action, another 
person wanders by. The researcher asks, ‘Where am I?’ The 
other person responds, ‘You are in the gondola of a balloon in 
the middle of a fi eld.’ The researcher comments, ‘You must 
design clinical trials.’ ‘Well, that’s amazing, how did you 
know?’ ‘Your answer was correct and precise and totally 
useless.’ (ANON)  
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data   •   Eligibility   •   Effi cacy/effectiveness   •   Blinding/masking   •   Subgroup analysis   • 
  Surrogate endpoints   •   Composite endpoints   •   Primary and secondary endpoints  

     The differences    in clinical research designs and the different weights of evidence 
imparted by different clinical research designs, are exemplifi ed by the post- 
menopausal hormone replacement therapy (HRT) controversy. Multiple observa-
tional epidemiological studies had shown that HRT was strongly associated with the 
reduction of atherosclerosis, myocardial infarction risk, and stroke risk [ 2 – 4 ]. 
Subsequently, 3 RCTs suggested that HRT was not benefi cial, and might even be 
harmful [ 5 – 7 ]. This latter observation raises a number of questions, including: why 
can this paradox occur? What can contribute to this disagreement?; and, why do 
we believe these 3 RCT’s more than so many well-done observational trials? The 
reasons for this are many (also see Chap.   2    ), but include: concerns about the gener-
alizability of clinical trial results to the general population, and the reproducibility 
of the results; and, RCTs are increasingly involving thousands of patients form 
many sites, and from multiple countries making them challenging to design and 
diffi cult to execute and monitor [ 8 ]. Also, some clinical trials have been criticized 
by regulatory agencies due to apparent high dropout rates and patients lost to follow 
up, which has led to new FDA guidelines emphasizing the importance of patient 
retention and innovative site monitoring [ 9 ]. In support of this latter issue, is a post 
hoc analysis of the Effi cacy of Vasopressin Antagonism in Heart Failure: Outcome 
Study with Tolvaptin (EVEREST) in which the authors evaluated the relationship 
between the number of patients enrolled in each site with trial outcomes. They 
found that the high enrolling sites had better clinical outcomes and more protocol 
completion rates compared to the lower enrolling sites [ 10 ]. Of course, there are a 
number of explanations for this observation from EVEREST, and as was pointed 
out in the discussion of this trial, the use of block randomization (see below) within 
each center should have equally distributed patients between the sites of potentially 
differing quality who were on or off study drug; none-the-less, the point is one worthy 
of further research [ 10 ]. Participant differences based on geographic disparities 
have been well described, but differences related to participant volume have not. 

 Frequently, there is confusion about the difference between clinical research and 
clinical trials. In general usage experimental design is the design of any information- 
gathering exercises where variation is present, whether under the full control of the 
experimenter or not. Other types of study are opinion polls and statistical surveys 
(which are types of observational study), natural experiments and quasi- experiments. 
In the design of experiments, the experimenter is often interested in the effect 
of some process or intervention (the “treatment”) on some objects (the “experimen-
tal units”), which may be people, parts of people, groups of people, plants, animals, 
materials, etc. 

 A clinical trial is a type of experimental study undertaken to assess the response 
of an individual (or in the case of group clinical trials-a population) to interventions 
introduced by an investigator. Clinical trials can be randomized or non-randomized, 
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un-blinded, single-blinded, or double-blinded; comparator groups can be placebo, 
active controls, or no treatment controls, and RCTs can have a variety of designs 
(e.g. parallel group, crossover, etc.). That being said, the RCT remains the 
‘gold- standard’ study design and its results are appropriately credited as yielding 
the highest level of scientifi c evidence (greatest likelihood of causation). However, 
recognition of the limitations of the RCT is also important so that results from RCTs 
are not blindly accepted. As Grimes and Schultz point out, in this era of increasing 
demands on a clinician’s time it is ‘diffi cult to stay abreast of the literature, much 
less read it critically. In our view, this has led to the somewhat uncritical acceptance 
of the results of a randomized clinical trial’ [ 11 ]. Also, Loscalzo, has pointed out 
that ‘errors in clinical trial design and statistical assessment are, unfortunately, more 
common that a careful student of the art should accept’ [ 12 ]. 

 What leads the RCT to the highest level of evidence and what are the features of 
the RCT that renders it so useful? Arguably, one of the most important issues in 
clinical trials is having matched groups in the interventional and control arms; and, 
this is best accomplished by randomization. That is, to the degree that the two 
groups under study are different, results can be confounded by any difference, while 
when the two groups are similar, confounding is reduced (see Chap.   17     for a discus-
sion of confounding). It is true that when potential confounding variables are known, 
one can relatively easily adjust for them in the design or analysis phase of the study. 
For example, if one believes that smoking might confound the results of the success 
of treatment for hypertension, one can build into the design a stratifi cation scheme 
that separates smokers form non-smokers, before the intervention is administered 
and in that way determine if there are differential effects in the success of treatment 
(e.g. smokers and non-smokers are randomized equally to the intervention and 
control). Conversely, one can adjust after data collection in the analysis phase by 
separating the smokers from the non-smokers and again analyze them separately 
in terms of the success of the intervention compared to the control. The real 
challenge of clinical research, is not how to adjust for  known  confounders, but how 
to have matched variables in the intervention and control arms, when potential 
confounders are  not  known. Optimal matching is accomplished with randomiza-
tion, and this is why randomization is so important. More about randomization 
later, but in the meanwhile one can begin to ponder how un-matching might 
occur even in a RCT. In addition to randomization, there are a number of important 
considerations that exist regarding the conduct of a clinical trial, such as: is it 
ethical? What type of comparator group should be used? What type of design and 
analysis technique will be utilized? How many subjects are needed and how will 
they be recruited and retained? 

 Finally, there are issues unique to RCTs (e.g. intention-to-treat analysis, placebo 
control groups, randomization, equivalence testing) and issues common to all clinical 
research (e.g. ethical issues, blinding, selection of the control group, choice of 
the outcome/endpoint, trial duration, etc.) that must be considered (Table  3.1 ). Each 
of these issues will be reviewed in this chapter. To this end, both the positive and 
problematic areas of RCTs will be highlighted.
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      Ethical Issues 

 Consideration of ethical issues is key to the selection of the study design chosen 
for a given research question/hypothesis. For RCTs ethical considerations can be 
particularly problematic, mostly (but by no means solely) as it relates to using a 
placebo control. A full discussion of the ethics of clinical research is beyond the 
scope of this book, and for further discussion one should review the references 
noted here [ 13 – 15 ]. (There is also further discussion of this issue under the section 
entitled “ Traditional vs. Equivalence Testing ” and Chaps.   4     and   7    ). The opinions 
about when it is ethical to use placebo controls are quite broad. For example, 
Rothman and Michaels are of the opinion that the use of placebo is in direct violation 
of the Nuremberg Code and the Declaration of Helsinki [ 15 ], while others would 
argue that placebo controls are ethical as long as withholding effective treatment 
leads to no serious harm and if patients are fully informed. Most would agree that 
placebo is unethical if effective life-saving or life-prolonging therapy is available or 
if it is likely that the placebo group could suffer serious harm. For ailments that are 
not likely to be of harm or cause severe discomfort, some would argue that placebo 
is justifi able [ 14 ]. However, in the majority of scenarios, the use of a placebo control 
is not a clear-cut issue, and decisions need to be made on a case-by-case basis. One 
prevailing standard that provides a guideline for when to study an intervention 
against placebo is when one has enough confi dence in the intervention that one is 

  Table 3.1    Issues of 
importance for RCTs  

 Ethical considerations 
 Randomization 
 Eligibility criteria 
 Effi cacy vs. effectiveness 
 Compliance 
  Run-in periods 
  Recruitment and retention 
 Masking 
 Comparison groups 
  Placebo 
  ‘Normals’ 
 Analytical issues 
  ITT 
  Subgroup analysis 
  Losses to follow-up 
  Equivalence vs. traditional testing 
 Outcome selection 
  Surrogate endpoints 
  Composite endpoints 
  Trial duration 
 Interpretation of results 
 Causal inference 
 The media role in reporting RCT results 
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comfortable that the additional risk of exposing a subject to the intervention is low 
relative to no therapy or the ‘standard’ treatment; but, that there is suffi cient doubt 
about the intervention that use of a placebo or active control (‘standard treatment’) 
is justifi ed. This balance, commonly referred to as  equipoise , can be diffi cult to 
come by and is likewise almost always controversial. Importantly, equipoise needs 
to be present not only for the fi eld of study (i.e. there is agreement that there is not 
suffi cient evidence of the superiority of an alternative treatments), but equipoise 
also has to be present for individual investigators (permitting individual investigators 
to ethically assign their patients to treatment at random). 

 Another development in the continued efforts to protect patient safety is the Data 
Safety and Monitoring Board (DSMB-see Chap.   9    ). The DSMB is now almost 
universally used in any long-term intervention trial. First a data and safety monitor-
ing plan (DSMP) becomes part of the protocol, and then the DSMB meets at regular 
and at ‘as needed’ intervals during the study in order to address whether the study 
requires early discontinuation. As part of the DSMP, stopping rules for the RCT will 
have been delineated. Thus, if during the study, either the intervention or control 
group demonstrates a worsening outcome, or the intervention group is showing a 
clear benefi t, or adverse events are greater in one group vs. the other (as defi ned 
within the DSMP) the DSMB can recommend that the study be stopped. But, the 
early stopping of studies can also be a problem. For example, in a recent systematic 
review by Montori et al., the question was posed about what was known regarding 
the epidemiology and reporting quality of RCTs involving interventions stopped for 
early benefi t [ 16 ]. Their conclusions were that prematurely stopped RCTs often fail 
to adequately report relevant information about the decision to stop early, and that 
one should view the results of trials that are stopped early with skepticism [ 16 ].  

    Randomization 

 Arguably, it is randomization that results in the RCT yielding the highest level of 
scientifi c evidence (i.e. resulting in the greatest likelihood that the intervention is 
causally related to the outcome). Randomization is a method of treatment allocation 
that is a distribution of study subjects at random (i.e. by chance). As a result, 
randomization results in all randomized units (e.g. subjects) having the same and 
independent chance of being allocated to any of the treatment groups, and it is 
impossible to know in advance to which group a subject will be assigned. The intro-
duction of randomization to clinical trials in the modern era can probably be 
credited to the 1948 trial of streptomycin for the treatment of tuberculosis [ 17 ]. In 
this trial, 55 patients were randomized to either streptomycin with bed rest, and 
were compared to treatment with bed rest alone (the standard treatment at that time). 
To quote from that paper, ‘determination  of whether a patient would be treated 
by streptomycin and bed rest (S case) or bed rest alone (C case), was made by refer-
ence to a statistical series based on random sampling numbers drawn up for each 
sex at each center by Professor Bradford Hill; the details of the series were unknown 
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to any of the investigators or to the co-coordinator and were contained in a set of 
sealed envelopes each bearing on the outside only the name of the hospital and a 
number. After acceptance of a patient by the panel and before admission to the 
streptomycin centre, the appropriate numbered envelope was opened at the central 
offi ce; the card inside told if the patient was to be an S or C cases, and this information 
was then given to the medical offi cer at the centre ’. Bradford Hill was later knighted 
for his contributions to science including the contribution of randomization. 

 With randomization the allocation ratio (number of units-subjects- randomized 
to the investigational arm versus the number randomized to the control arm) is usu-
ally 1:1. But a 1:1 ratio is not required, and there may be advantages to unequal 
allocation (e.g. 2:1 or even 3:1). The advantages of unequal allocation are: one 
exposes fewer patients to placebo, and one gains more information regarding the 
safety of the intervention. The main disadvantage of higher allocation ratios is the 
loss of power. 

 There are three general types of randomization: simple, blocked, and stratifi ed. 
Simple randomization can be likened to the toss of an unbiased coin (i.e. heads 
group A, tails group B). This is easy to implement, but particularly with small 
sample sizes, could result in substantial imbalance (for example if one tosses a coin 
10 times, it is not improbable that one could get 8 heads and 2 tails. If one tosses the 
coin 1,000 times it is likely that the distribution of heads to tails would be close to 
500 heads and 500 tails). Blocked randomization (sometimes called permuted block 
randomization) is a technique common to multi-center studies. Whereas the entire 
trial might intend to enroll 1,000 patients, each center might only contribute 10 
patients to the total. To prevent between center bias (recall each sample population 
has differences even if there is matching to known confounders) blocked random-
ization can be utilized. Blocked randomization means that randomization occurs 
within each center ensuring that about 5 patients in each center will be randomized 
to the intervention and 5 to the control. If this approach was not used, one center 
might enroll 10 patients to the intervention and another center, 10 patients to the 
control group. Recall that the main objective of randomization is to produce 
between-group comparability. If one knows prior to the study implementation that 
there might be differences that are not equally distributed between groups (again 
particularly more likely with small sample sizes) stratifi ed randomization can be 
used. For example, if age might be an important indicator of drug effi cacy, one can 
randomize within strata of age groups (e.g. 50–59, 60–69 etc.). Within each stratum, 
randomization can be simple or blocked. 

 In review, simple randomization is the individual allocation of subjects into the 
intervention and control groups, block randomization creates small groups (blocks) 
in which there are equal numbers in each treatment arm so that there are balanced 
numbers throughout a multi-center trial, and stratifi ed randomization addresses 
the ability to separate known confounders into strata so that they can no longer 
confound the study results. Again, randomization is likely the most important 
key to valid study results because (if the sample size is large enough), it distributes 
known, and  more importantly unknown,  confounders equally to the intervention 
and  control groups. 
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 Now, as to the problems associated with randomization. As prior discussed, the 
issue of confounders of relationships is inherent in all clinical research. A con-
founder is a factor that is associated with both the risk factor and the outcome, 
and leads to a false apparent association between the risk factor and outcome 
(see Fig.  3.1 ). In observational studies, there are several approaches to remove the 
effect of confounders:

•     Most commonly used in case/control studies, one can match the case and control 
populations on the levels of potential confounders. Through this matching the 
investigator is assured that both those with a positive outcome (cases) and a 
negative outcome (controls) have similar levels of the confounder. Since, by 
defi nition, a confounder has to be associated with both the risk factor and the 
outcome; and, since through matching the suspected confounder is not associ-
ated with the outcome – then the factor cannot affect the observed differences in 
the outcome. For example, in a study of stroke, one may match age and race for 
stroke cases and community controls, with the result that both those with and 
without strokes will have similar distributions for these variables, and differences 
in associations with other potential predictors are not likely to be confounded, 
for example, by higher rates in older or African American populations.  

•   In all types of observational epidemiological studies, one can statistically/
mathematically ‘adjust’ for the confounders. Such an adjustment allows for the 
comparison between those with and without the risk factor at a ‘fi xed level’ of 
the confounding factor. That is, the association between the exposure and the 
potential confounding factor is removed (those with and without the exposure 
are assessed at a common level of the confounder), and as such the potential 
confounder cannot bias the association between the exposure and the outcome. 
For example, in a longitudinal study assessing the potential impact of hyperten-
sion on stroke risk, the analysis can ‘adjust’ for race and other factors. This 
adjustment implies that those with and without the exposure (hypertension) are 
assessed as if race were not associated with both the exposure and outcome.    

Confounder (SES)

CHD (CHD risk)Risk Factor (Estrogen)

Confounders of relationships in
Randomized Clinical Trials

In a RCT, 
those with and 
without the 
confounder as 
assigned to the 
risk factor at 
random 

It now doesn’t matter if the confounder (SES) is related to
CHD risk, because it is not related to the risk factor
(estrogen) Æ it cannot be a confounder

  Fig. 3.1    The relationship 
of confounders to outcome 
and how they are eliminated 
in a RCT       
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 The Propensity Score has received increased interest. The propensity score was 
introduced by Rosenbaum and Rubin [ 18 ] to provide an alternative method for 
estimating treatment effects when treatment assignment can be assumed to be 
unconfounded but is not random. A propensity score is the probability of a unit 
(e.g., person, classroom, school) being assigned to a particular condition in a 
study given a set of known covariates (a variable that is possibly predictive of the 
outcome under study). In an attempt to simulate randomization, propensity scores 
are used to reduce selection bias by equating groups based upon covariates (this, 
balances known confounders, but obviously not the unknown confounders). In the 
analysis of treatment effects, suppose that we have a binary treatment T, an outcome 
Y, and background variables X. The propensity score is defi ned as the conditional 
probability of treatment given background variables. This is operationalized by 
gathering all the background information that we have on subjects before exposure 
is known and building a model to predict the probability that they will be in the 
exposed vs. unexposed group. Groups of subjects with similar propensity scores 
can then be expected in the aggregate to have similar values of all the background 
information. Thus, propensity scores can be used in cohort trials, clinical trials 
without randomization, administrative data base studies, detecting safety signals, 
secondary questions within RCTs; and, propensity score analyses may be used in 
either the design or analysis phase. One example of the use of the propensity 
score is the aspirin and mortality study reported by Gum et al. [ 19 ]. In that study, 
6,174 subjects underwent stress echocardiography for the evaluation of known or 
suspected coronary artery disease. Aspirin was being taken by 37 % of the subjects. 
The main outcome was all cause mortality and the mean follow-up was 3.1 years. 
In univariate analysis 4.5 % of the subjects receiving aspirin and 4.5 % of those not 
receiving aspirin died (HR 1.08, 0.85–1.39). Baseline characteristics were dissimilar 
in 25 of 31 of the covariates. In further analysis using matching by propensity score, 
1,351 patients who were taking aspirin were at lower risk for death than 1,351 
patients not using aspirin (4 % vs. 8 %, respectively; HR, 0.53; 95 % CI, 0.38–0.74; 
P = .002). After adjusting for the propensity for using aspirin, as well as other possible 
confounders and interactions, aspirin use remained associated with a lower risk for 
death (adjusted HR, 0.56; 95 % CI, 0.40–0.78; P < .001-Table  3.2 ). The patient 
characteristics associated with the most aspirin-related reductions in mortality were 
older age, known coronary artery disease, and impaired exercise capacity.

   Table 3.2    Example of the use of propensity scoring   

 Before matching  After matching 

 Variable (%)  Aspirin  No aspirin  P value  Aspirin  No aspirin  P value 

 Men  77  56  <.001  70.4  72.1  .33 
 Diabetes  16.8  11.2  <.001  15  15.3  .83 
 HTN  53  40.6  <.001  50.3  51.7  .46 
 CAD Hx  69.7  20.1  <.001  48.3  48.8  .79 
 CHF  5.5  4.6  .12  5.8  6.6  .43 
 B-Blocker  35.1  14.2  <.001  26.1  26.5  .79 
 ACE I  13  11.4  <.001  15.5  15.8  .79 

  Adapted from: Gum et al. [ 19 ]  
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   The major shortcoming with these aforementioned approaches is that one must 
know what the potential confounders are in order to match or adjust for them; and, 
it is the  unknown confounders  that represent a bigger problem. Another issue is 
that even if one suspects a confounder, one must be able to appropriately measure it. 
For example, socio-economic status (usually a combination of education and 
income) is a commonly addressed confounder; but, the defi nition of socio-economic 
status is an issue in which there is disagreement; and, which measures or cut-points 
to use is/are appropriate is frequently argued. The bottom line is that one can never 
perfectly measure all known confounders and certainly one cannot measure or 
perfectly match for unknown confounders. As mentioned, the strength of the RCT 
is that randomization (performed properly and with a large enough sample size) 
optimally balances both the known and unknown confounders between the 
interventional and control groups. But even with an RCT, randomization can be 
further compromised as will be discussed in some of the following chapters, and by 
the following example from “Student’s” Collected Papers regarding the Lanarkshire 
Milk Experiment [ 20 ].

   “Student” (i.e., the great William Sealy Gosset) criticized the experiment for it’s loss of 
control over treatment assignment. As quoted: … Student’s “contributions to statistics, in 
spite of a unity of purpose, ranged over a wide fi eld from spurious correlation to Spearman’s 
correlation coeffi cient. Always kindly and unassuming, he was capable of a generous rage, 
an instance of which is shown in his criticism of the  Lanarkshire  Milk Experiment. This was 
a nutritional experiment on a very large scale. For four months 5,000 school children 
received three-quarters of a pint of raw milk a day, 5,000 children the same quantity of 
pasteurized milk and 10,000 other children were selected as controls. The experiment, in 
Gosset’s view, was inconclusive in determining whether pasteurized milk was superior in 
nutritional value to raw milk.  

  This was due to failure to preserve the random selection of controls as originally 
planned. “In any particular school where there was any group to which these methods (i.e., 
of random selection) had given an undue proportion of well-fed or ill-nourished children, 
others were substituted to obtain a more level selection.” The teachers were kind-hearted 
and tended to select ill-nourished as feeders and well-nourished as controls. Student 
thought that among 20,000 children some 200–300 pairs of twins would be available 
of which some 50 pairs would be identical-of the same sex and half the remainder 
nonidentical of the same sex. The 50 pairs of identicals would give more reliable results 
than the 20,000 dealt with in the experiment, and great expense would be saved. It may be 
wondered, however, whether Student's suggestion would have proved free from snags. 
Mothers can be as kind-hearted as teachers, and if one of a pair of identical twins seemed 
to his mother to be putting on weight…  

        Missing Data 

 In 2008 the FDA requested that the National Research Council (NRC) convene 
an expert panel and to prepare a report that would be useful. The FDA that would 
address appropriate methods for analysis of missing data. Recall that the key feature 
of a RCT is the randomization process; and, this key feature is jeopardized when 
some of the outcome measures are missing. Missing data can seriously compromise 
the interpretations of clinical trials. A major source of missing data is the result of 
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patients dropping out (discontinuing treatment) for any of a variety of reasons 
(adverse events, lost to follow up, lack of effi cacy or tolerability etc). To the degree 
possible, these dropouts should be avoided, since there is no foolproof way to 
analyze data when there is signifi cant (greater than 10 %?) missing data. Continuing to 
follow the patient after treatment discontinuation is one important step to reduce the 
degree of lost information. Little et al. summarized eight design ideas and eight ideas 
for the conduct of clinical trials for limiting missing data (Tables  3.3a  and  3.3b  [ 9 ]).

    Since there is no universal method for handling missing data the best strategy is to 
avoid it. Statistical approaches to missing data will always involve unprovable assump-
tions, because there is always some uncertainty about the reasons that data is missing. 
The frequency of missing data is a result of patient dropouts the common reasons for 
which are: intolerability to the intervention, lack of intervention effi cacy, or failure to 
attend designated appointments. Fleming has pointed out that there are only two 
reasons a patient can be off study; withdrawal of consent AND refusal to be followed 
or contacted, or the patient has achieved the required effi cacy and safety end points 
[ 21 ]. He suggested six strategies to prevent missing data: fi rst to distinguish nonadher-
ence from nonretention; second to attempt to continue contact with the patient even if 
they have withdrawn from the study; third, adequately educate the patient during the 
informed consent process of the scientifi c relevance of the data they are providing; 
fourth, protocols should not give a false sense of being able to correct for missing data 

   Table 3.3a    Eight ideas for limiting missing data in the design of clinical trials   

 Target a population that is not adequately served by current treatments and hence has an incentive 
to remain in the study 

 Include a run-in period (See discussion above regarding run-in periods) 
 Allow for a fl exible treatment regimen 
 Shorten the follow up time so that participants are less likely to withdraw 
 Allow the use of rescue medications 
 For long term effi cacy trials consider a withdrawal design 
 Consider an outcome that is not likely to lead to missing data 
 Consider add-on designs i.e. where a study treatment is added to existing therapies the patient may 

be receiving 

  Table 3.3b    Eight ideas for 
limiting missing data in the 
conduct of clinical trials  

 Select investigators with good track records 
 Set acceptable rates for missing data and monitor 

during the course of the trial 
 Provide incentives to investigators and 

participants to continue the trial 
 Limit participant burden of data collection 
 Provide continued access to the trial medication 

after trial completion 
 Train investigators and study staff on the 

importance of trial continuation 
 Keep up to date contact information on trial 

participants 
 Assess the likelihood of participant 

continuation before enrollment 
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with statistical approaches; fi fth, protocols should specify targeted levels of data 
capture; and, sixth, forms and procedures for data collection should be formulated 
to reduce the likelihood of missing data. The use of run-in periods is an additional 
strategy, along with the use of fl exible doses may be helpful as well. 

 Losses to follow-up (see below) using the last observation carried forward or 
baseline observation carried forward analysis is likely to overestimate and/or bias 
the outcome (since patients lost to follow-up more frequently are not benefi tting 
from the intervention). Imputing the worst possible outcome might underestimate 
the benefi t of the intervention. Missing data can be viewed in several ways. The 
ideal is if the missing data is “missing completely at random” (MCAR). This is an 
assumption that is unlikely to hold in most clinical trials because it presumes that 
the missing data are unrelated to the study variables (an unlikely scenario). A more 
realistic condition is missing at random (MAR, this might be better stated as missing 
“mostly” at random), or missing not at random (MNAR). 

 Because some missing data that does occur in almost every study, and each clinical 
trial has its own set of challenges, the NRC panel did list four general approaches: 
complete-case analysis, single imputation methods, estimating-equation methods and 
methods based on a statistical model. There is no single correct method for handling 
missing data, as all methods require that untestable assumptions be made. Discussion 
of these are beyond the scope of this book, but briefl y, complete-case analysis simply 
excludes participants with missing data while with imputation, a single value is fi lled 
in for each missing value by using such methods as last observation carried forward 
or the baseline value carried forward. With estimating- equation methods, cases are 
weighted based upon the estimate of probability of an outcome being observed. As to 
the statistical modeling, approaches such as prior probabilities (Bayesian Methods) 
and multiple imputation where multiple sets of plausible values for missing data are 
used. Missing data can occur, of course, at random, or there can be differential loss of 
data, a more important consideration when missing data is assessed. Little et al. 
outlined six principles for drawing inferences from incomplete data [ 9 ].

    1.    Consider if the missing values are meaningful for analysis   
   2.    Consider a possible causal pathway and how missing data might infl uence it   
   3.    Consider why data are missing   
   4.    Decide on a set of assumptions about the mechanism for missing data   
   5.    Conduct a statistically valid analysis based on the above   
   6.    Conduct a sensitivity analysis, a statistical technique that attempts to determine 

how changes in one variable will impact the target variable [ 7 ].    

      Complications of Eligibility Criteria 

    All generalizations are false, including this one (Mark Twain)  

   In every study there are substantial gains in statistical power by focusing the inter-
vention in a homogenous patient population likely to respond to treatment, and to exclude 
patients that could introduce ‘noise’ by their inconsistent responses to treatment. 
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Conversely, at the end of a trial there is a need to generalize the fi ndings to a broad 
spectrum of patients who could potentially benefi t from a superior treatment. 
These confl icting demands introduce the issue of balancing the inclusion/exclusion 
(eligibility criteria) such that the enrolled patients are as much alike as possible; but, 
on the other hand to be as diverse as possible in order to be able to apply the results 
to the more general population (i.e. generalizability). Figure  3.2  outlines this 
balance. What is the correct way of achieving this balance? There really is no correct 
answer, there is always a tradeoff between homogeneity and generalizability; and 
each study has to address this, given the availability of subjects, along with other 
considerations. This process of sampling represents one of the reasons that scien-
tifi c inquiry requires reproducibility of results, that is, one study generally cannot be 
relied upon to portray ‘truth’ even if it is a RCT. The process of sampling embraces 
the concept of generalizability. The issue of generalizability is nicely portrayed in a 
video entitled ‘A Village of 100’ [ 22 ]. If one wanted to have a representative sample 
of the world for a study, this video (although predominately focused upon tolerance 
and understanding), is an excellent way of understanding the issue of generaliz-
ability. The central theme of the video asks the question ‘if we shrunk the earth’s 
population to a village of precisely 100 people, with all existing ratios remaining the 
same, what would it look like?’ To paraphrase, if we maintained the existing ratios 
of the earth’s population in a study of 100 people, what would our sample look 
like? The answer – there would be 57 Asians, 21 Europeans, 14 from the Western 
Hemisphere, 51 females and 49 males, 70 non- white and 30 white, 70 non-Christians 
and 30 Christians, 89 heterosexuals, 50 % of the worlds wealth would belong to 
6 citizens of the USA, 80 would live in sub- standard housing, 70 would be unable 
to read (a potential problem with IRB approval), 50 would be malnourished, 
one would have a college education, and 4 would own a computer. When is the last 
time a study had a population representative of the Village of 100?

Implications of Eligibility Criteria

Homogeneity
• Divergent subgroup of

patients (i.e., “weird”
patients) can distort
findings for the majority

• Restriction of
population reduces
“noise” and allows study
to be done in a smaller
sample size
Restrict population to
homogenous group

Generalizability
• At the end of the study,

it will be important to
apply findings to the
broad population of
patients with the disease

• It is questionable to 
generalize the findings
to those excluded from
the study
Have broad inclusion
criteria “welcoming” all

What is the correct answer?
There is no correct answer!

  Fig. 3.2    The balance of confl icting issues involved with patient selection       
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   For an example of sampling issues, most of the major studies assessing the 
effi cacy of the treatment of extracranial atherosclerosis with endarterectomy had 
excluded octogenarians on the basis that this patient population may have a response 
to the challenges of surgery that is different than their younger counterparts [ 23 ,  24 ]. 
Exclusion of these patients may have contributed to the successful completion of 
‘positive’ trials (fi nding a benefi t for the then new treatment – endarterectomy). 
However, now that the trials are complete, there is not ‘level 5’ evidence (data that 
is a result from RCTs) to guide the management of octogenarians with extracranial 
atherosclerosis, one of the subpopulations where the need for this information is 
important. In the absence of this information, thousands of endarterectomies are 
performed in this older patient population each year under the assumption that the 
fi ndings from a younger cohort are generalizable to those at older ages. For another 
example, let’s presume that in a multicenter trial that included Framingham 
Massachusetts, and Birmingham, Alabama, that a representative sample of each was 
recruited into a study. The makeup of the sample from each is illustrated in Table  3.4 . 
As one can see, there are signifi cant differences in the representative sample 
populations, and these differences could affect not only the success of the inter-
vention but could also confound its relationship.

       Effi cacy vs. Effectiveness 

 Another limitation of RCTs is that they are designed to test safety and effi cacy 
(i.e. does the drug work under optimal circumstances?) and not to answer questions 
about the effectiveness of a drug, the more relevant question for clinicians and 
economic analysts (i.e. does the drug work under ordinary circumstances of use?). 
Thus, the increased use of effectiveness trials has been suggested, to more closely 
refl ect routine clinical practice. Effectiveness trials use a more fl exible dosage 
regimen, and generally a ‘usual care’ comparator instead of a placebo comparator. 
Two approaches to this more ‘real world trial’ is the phase 4 trial (see Chap.   5    ) or 

  Table 3.4    Birmingham v 
Framingham: comparison of 
key variables  

 Birmingham  Framingham 

 Population  242,800  62,910 
 % African American  73.5  5.1 
 Age 
  25–44  30  35 
  45–64  20  33 
  65–>  14  13 
 Median income $  26,700  55,300 
 Education % 
  <High school  25  13 
  High school  28  23 
  >High school  48  64 
 CVD rate  528–582  336–451 
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the prospective, randomized, open-label, blinded end-point – PROBE-Trial. The 
PROBE Trial is further discussed in the next section entitled “ Degree of Masking ”). 
As to phase 4 trials, they are surrounded by some controversy as well. Figure  3.3  
compares effi cacy and effectiveness trials in terms of some of their more important 
variables.

       Patient Compliance 

    Run-in Periods 

 Another issue surrounding RCTs, and one that is almost unique to clinical trials, is 
the use of run-in periods and their impact on who is eligible to be randomized. Pre- 
randomization run-in periods are frequently used to select or exclude patients in 
clinical trials, but the impact of run-in periods on clinical trial interpretation and 
generalization has not been systematically studied. The controversy regarding run-
 in periods also addresses the issue of effi cacy vs. effectiveness, as the run-in period 
allows one to exclude patients that are potentially less compliant, or do not tolerate 
placebo (or whatever other intervention is used in an active comparison group). 
Although this issue has not been systematically studied, intuitively one can see that 
the potential for over-estimating the impact of an investigational drug is present 
when run-in periods are utilized, as the run-in period will likely exclude patients 
from the study who would not have ideally responded. 

 A study can achieve high compliance in at least three general ways: designing a 
simple protocol (complexity makes compliance more diffi cult); the use of compliance 
aids such as automatic reminders, telephone calls, calendars, etc; or by selecting 
subjects based upon pre-study or pre-randomization compliance. Of course, high 
compliance is a desirable characteristic of any research. High compliance attenuates 
the argument of whether to use intention to treat vs. compliance only as the primary 

Efficacy and Effectiveness

Fletcher, Fletcher, Wagner, 1988

–

Generalizability

+
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  Fig. 3.3    The “Trade-off” 
between effi cacy vs. 
effectiveness       
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analysis. Also, high compliance will optimize the studies power as the “diluting” 
effect of non-compliers will not be manifest (all other things being equal). While the 
run-in period increases the proportion of compliers in the trial, it may introduce 
important differences in the outcomes, particularly if compliers and non- compliers 
are inherently different in the way they would respond to the intervention of interest. 
Thus, the effect of run-in periods on generalizability should be considered carefully 
before implementation. Lang [ 25 ] has listed some recommendations for helping to 
decide whether to use a run-in as part of a clinical trial, including:

    1.    consider a run-in whenever the contact between study staff and participants is low   
   2.    consider a run-in period for a primary prevention trial because compliance is 

likely to be more diffi cult compared to therapeutic trials   
   3.    For any trial, list the key features of the study protocol and see which features 

compliance could be directly tested prior to randomization   
   4.    before using active agents during a run-in, consider both the expected frequency 

of occurrence of side effects and the postulated effect of the agent on the out-
come of interest   

   5.    all trials can use any available    pre-randomization period for the simultaneous 
purpose of characterizing patients and evaluating compliance, whether of not the 
compliance information will be used for exclusions    

In fairness, as Franciosa points out, clinicians use variants of run-in periods to treat 
their patients, such as dose titration, or challenge dosing (e.g. using small doses of 
ACE Inhibitors to rule out excessive responders) [ 26 ]. Pablos-Mendez et al. analyzed 
illustrative examples of reports of clinical trials in which run-in periods were used 
to exclude non-compliant patients, placebo responders, or patients that could not 
tolerate or did not respond to active drug [ 27 ]. 

 Thus, the use of run-in periods is another reason that the results of RCTs may not 
accurately portray what the drugs overall effectiveness will be. What can be said is 
that there does need to be more focus on the details of run-in periods, and as is true 
of most things the researcher does in designing and implementing a clinical trial, 
judgments have to be made regarding the best approach to use regarding inclusions 
and exclusions, as well as judging what the impact of the run-in period is on the 
ultimate interpretation of a clinical trial. Ultimately, from the perspective of internal 
validity, it is better to exclude participants before randomization than have participants 
lost to follow up, cross between study groups, or become non-adherent to interven-
tion protocols after randomization.   

    Recruitment and Retention 

 Nothing is more critical to the success of a clinical trial than the recruitment and 
retention of subjects. As will be discussed in more detail in Chap.   8    , there are a 
number of reasons for failure of the recruitment process including: delayed start-up, 
and inadequate planning, In terms of patient/subject retention, there are arguably 
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differences in the handling of clinical patients in contrast to research subjects 
(although this could and perhaps should be challenged). Losses-to-follow-up need 
to be kept to a minimum and is discussed later in this chapter.  

     Degree of Masking (Blinding) 

 Although the basic concept of clinical trials is to be at equipoise, this does not 
change the often pre-conceived ‘suspicion’ that there is a differential benefi t of the 
investigational therapy (e.g. the investigational drug is better than placebo). Thus, if 
study personnel know the treatment assignment, there may be differential vigilance 
where the supposed ‘inferior group’ is more intensively monitored (e.g. ‘are you 
certain you have not had a problem?’ they might ask). In this case, unequal evaluations 
can provide unequal opportunities to differentially ‘discover’ events. This is why the 
concept of double-blinding (masking) is an important component of RCTs. There is 
an argument about which term-blinding or masking-is most appropriate [ 28 ], and 
Fig.  3.4  portray’s a humorous example of this argument. But, one cannot always 
have a double-blind trial, and some would argue that double-blinding distances 
the trial from a ‘real-world’ approach. An example where blinding is difficult 
to achieve might be a surgical vs. medical intervention study where post oper-
ative patients may require additional follow-up visits, and each visit imparts an 
additional opportunity to elicit events. That is, it has been said that ‘the patient 

  Fig. 3.4    A humorous example of blinding (masking) (With permission from Schulz and Grimes [ 28 ])       
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cannot have a fever if the temperature is not taken,’ [ 29 ] and for RCTs, events 
cannot be detected without patient contact to assess outcomes.

   Of course, masking is not always possible and examples include studies that: 
might evaluate residual surgical wounds, studies involved with cycling hormone 
replacement, studies requiring serum (or other) assay or physical measurement, 
studies that involve participant participation in the treatment (i.e., low fat diet, 
exercise, etc). Common approaches to these examples are to at least mask the 
rater (adjudicator), or to move toward a totally objective outcome (e.g. death), 
or to use an independent observer who does not know treatment to assess outcome. 
In an effort to study the impact of adjudicator blinding on outcomes, Parmar et al. 
assessed the effect of blinding race and geography on outcomes ascertainment in an 
observational study [ 28 ]. The primary characteristics of interest were race and 
geography, and the prespecifi ed acceptable agreement rate between adjudicators 
was set at >80 %. They selected 116 suspected cardiovascular events that underwent 
adjudication with usual blinding. At least 3 months later, cases were readjudicated 
without blinding race and geographic location of the patient, and differences in 
outcomes ascertainment was assessed using Cohen’s κ statistic and agreement rates. 
Agreement between the blinded and unblinded reviews was good to excellent for 
all four outcomes. κ statistics were 0.80 (chest pain), 0.85 (heart failure), 0.86 
(revascularization) and 0.74 (MI) (p < 0.0001 for all). Within each outcome, agree-
ment rates were similar for race and geographic groups (agreement 83–100 %). The 
authors concluded that in observational studies, blinding medical record 
review for outcomes ascertainment for some types of patient characteristics may be 
an unwarranted expense. 

 In order to realize a more ‘real-world’ approach to clinical trials, the prospective 
randomized open-label blinded endpoint design (PROBE design) was developed. 
Randomization is used so that this important component of study design is retained. 
By using open-label therapy, the drug intervention and its comparator can be 
clinically titrated as would occur in a doctor’s offi ce. Of course, blinding is lost 
here, but only as to the therapy. In a PROBE design, blinding is maintained as to the 
ascertainment of the outcome. To test whether the use of open-label vs. double-
blind therapy affected outcomes differentially, a meta analysis of PROBE trials and 
double- blind trials in hypertension was reported by Smith et al. [ 30 ]. They found 
that changes in mean ambulatory blood pressure from double-blind controlled studies 
and PROBE trials were statistically equivalent.  

    Selection of Comparison Groups 

 As the story goes a clinical researcher meets someone on the street who asks “how 
do you do?” The researcher answers “compared to whom?” When addressing the 
validity of an outcome difference compared to some control group, it is crucial that 
the control group be clearly defi ned. Sometimes studies assess a new (investigational) 
treatment versus an approved (standard) active treatment (i.e. to assess if the old 
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‘standard’ treatment should be replaced with the new treatment), in other cases, 
studies are assessing if a new treatment should be added (not replacing, but rather 
supplementing), current treatment. In this latter case, the comparison of interest is 
the outcome of patients with and without the new treatment. In this instance, masking 
can only be accomplished by the use of a double-blind technique. Traditionally, 
placebo treatment has been used as the comparator to investigational treatments, 
and has been one of the standards of clinical trials. 

 The use of the placebo comparator has more and more been the subject of ethical 
concerns. In addition to ethical issues involved with the use of placebos, there are 
other considerations raised by the use of placebo-controls. For example, an important 
lesson was learned from the Multiple Risk Factor Intervention Trial (MRFIT) 
regarding the use and analysis of the placebo control group, which might best be 
summed up with the question ‘why it is important to watch the placebo group?’ 
[ 31 ]. MRFIT screened 361,662 patients to randomize high-risk participants (using 
the Framingham criteria existent at that time) to special intervention (n = 6428) and 
usual care (n = 6438) with coronary heart disease mortality as the endpoint. The 
design of this well-conducted study assumed that the risk factor profi le of those 
receiving ‘special treatment interventions’ would improve, while those patients in 
the ‘usual care’ group would continue their current treatments and remain largely 
unaffected. The special intervention approaches in MRFIT were quite successful, 
and all risk factor levels were reduced. However, there were also substantial and 
signifi cant reductions observed in the control group. That both treatment and control 
groups experienced substantial improvements in their risk factor profi le translated 
to almost identical CHD deaths during the course of the study. Why did the control 
group fare so well? Several phenomena may have contributed to the improvement 
in the placebo-control group. First, is the Hawthorne effect, which suggests that just 
participating in a study is associated with increased health awareness and changes 
in risk factor profi le, irrespective of any intervention [ 32 ]. In addition, for the longer- 
term trials, there are changes in the general population that might alter events. For 
example, randomization in MRFIT was conducted during the 1980s, a period when 
health awareness was becoming more widely accepted in the USA, and likely 
benefi cially affected the control group. 

 Although the ethics of placebo controls is under scrutiny, another principal 
regarding the placebo-control group is that sometimes being in the placebo group 
isn’t all that bad. The Alpha-Tocopherol, Beta Carotene Cancer Prevention Study 
was launched in 1994 [ 33 ]. By the early 1990s there was mounting clinical 
epidemiologic evidence of reduced cancer risk associated with a higher intake of 
antioxidants. Treatment with vitamin E and beta carotene were considered unlikely 
to be harmful, and likely to be helpful; and, the question was asked whether antioxi-
dants could reduce lung cancer-even in smokers. A double-blind, placebo-controlled 
RCT was launched with a 2 x 2 factorial design (see Chap.   4    ), and over 7,000 
patients in each cell. No benefi t was seen with either therapy, but compared to 
placebo; a disturbing worsening trend was observed in the beta-carotene treated 
compared with the placebo group. 
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 Frequently, the comparison group or control group is a so called ‘normal’ 
population. Inherent to this concept is ‘what is normal?’. A wit once opined that ‘a 
normal person is one who is insuffi ciently tested’. Interestingly, there are a number 
of scientifi c defi nitions of normal (see Table  3.5 ). One defi nition of normal might be 
someone who fi ts into 97 % of a Gaussian Distribution, another that normal lies 
within a preset percentile of a laboratory value or values. Other defi nitions exist, 
suffi ce it to say, whatever defi nition is used it needs to be clearly identifi ed.

       Analytic Approach 

    Intention to Treat and Per-Protocol Analysis 

 There are three general analytic approaches to clinical trials; intention-to-treat (ITT) 
analysis (or analysis as randomized), compliers only (or per-protocol) analysis, and 
analysis by treatment received. Probably the least intuitive and the one that causes 
most students a problem is ITT. ITT was derived from a principle called the 
pragmatic attitude [ 34 ]. The concept was that one was to compare the effectiveness 
of the  intention  to administer treatment A vs. the  intention  to administer treatment 
B, i.e. the comparison of two treatment policies rather than a comparison of two 
specifi c treatments. With ITT, everyone assigned to an intervention or control arm 
is counted in their respective assigned group, whether they ultimately receive none 
of the treatment, or somewhat less than the trial directed. For example, if in a 1-year 
trial, a patient is randomized to receive an intervention, but before the intervention 
is administered, they drop out (for whatever    reason) they are analyzed as if they 
received the treatment for the entire year. The same applies if the patient drops out 
at any time during the course of the study. Likewise, if it is determined that the 
patient is not fully compliant with treatment, they are still counted as if they were. 
In fact, whether there is compliance, administrative, or protocol deviation, patients 
once randomized are counted as if they completed the trial. Most students initially 
feel that this is counter-intuitive. Rather the argument would be that one is really 
interested in what would happen if a patient is randomized to a treatment arm and 
they take that treatment for the full trial duration and are fully compliant – this, one 

   Table 3.5    Different defi nitions of “normal”   

 Property  Term  Consequence of application 

 Distribution shape  Gaussian  Minus values 
 Lie within preset %  Percentile  Normal until workup 
 No additional risk  Risk factor  Assumes altering risk factor improves risk 
 Societal or political  Culturally desirable  Raises the role of society in medicine 
 A range before test suggests 

no disease 
 Diagnostic  Need to know the predictive value in ones 

own practice 
 Therapy benefi cial  Therapeutic  New therapies alter this 
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would argue, gives one the real information needed about the optimal effect of 
an intervention (this, by the way, is a description of the compliers only analysis). 
So why is ITT the scientifi cally accepted primary analysis for most clinical trials? 
As mentioned before, randomization is arguably one of the most important aspects 
of clinical trial design. If patients once randomized to a treatment are not included 
in the analysis, the process of randomization is compromised. It is not a leap of faith 
to wonder if patients dropping out of the intervention arm might be different than 
the patients dropping out of a control arm. Thus, if ITT is not used, one loses the 
assurance of equal distribution of unknown confounders between the treatment 
groups, and this thereby tarnishes the basis of randomization. One example of the 
loss of randomization if ITT is not used might be differential dropouts between the 
intervention and control arm for adverse events. Also, if patients with more severe 
disease are more likely to dropout from the placebo arm; or conversely patients who 
are older, dropout more frequently from the placebo arm thereby removing them 
from the analysis, this could result in an imbalance between the two comparison 
groups. Another argument for ITT is that it provides for the most conservative 
estimate of the intervention effect (if the analysis includes patients that did not get 
the entire treatment regimen and the regimen is benefi cial, clearly the treatment 
effect will be diluted). Thus, if using ITT analysis reveals a benefi t, it adds to the 
credibility of the effect measure. Of course, one could argue that one could miss a 
potentially benefi cial effect if the intervention effect is diluted. In summary, ITT 
protects against bias, protects the statistical integrity of the trial, and protects the 
randomization process. 

 In the compliers only analysis, the patients that complete the trial and comply 
fully with that treatment are analyzed. The problem is that if a benefi cial effect is 
seen, one can wonder what the loss of randomization (and thereby equality of 
confounders between groups) means to that outcome, particularly if an ITT analysis 
does not demonstrate a difference. The loss of randomization and the loss of 
balanced confounders between the treatment and control groups is exemplifi ed by 
an analysis of the Coronary Drug Project, where it was determined that poor com-
pliers to placebo had a worse outcome than good compliers to placebo [ 35 ]. This 
would suggest that there are inherent differences in patients who comply vs. those 
who do not, and this could differentially be the cause of dropout. The Coronary 
Drug Project was a trial aimed at comparing clofi brate with placebo in patients with 
previous myocardial infarction with the outcome of interest being mortality. Initially 
reported as a favorable intervention (there was a 15 % 5 year mortality in the clofi -
brate compliers only analysis group, compared to a 19.4 % mortality in the placebo 
group- p < .01); while with ITT analysis there was essentially no difference in 
outcome (18.2 vs. 19. 4 %−p < .25). Given the differences in outcome between 
placebo compliers and placebo non-compliers, one can only assume the same for 
the investigational drug group. Likewise, the Anturane Reinfarction Trial was 
designed to compare anturane with placebo in patients with a prior MI and in whom 
mortality was the outcome of interest [ 36 ]. One thousand six hundred and twenty 
nine patients were randomized 817 to placebo and 812 to anturane (71 patients were 
later excluded because it was determined that they did not meet eligibility criteria). 

S.P. Glasser



53

The study initially reported anturane as a favorable intervention (although the 
p < .07), but when the 71 ineligible randomized patients were included in the 
analysis the p = 0.20. Again further analysis demonstrated that in the anturane ineli-
gible patients, overall mortality was 26 % compared to the mortality in the anturane 
eligible patients that was 9 %. 

 If one considers the common reasons for subjects not being included in a study, 
ineligibility is certainly one. In addition, subjects may be dropped from a trial for 
poor compliance, and/or adverse drug events; and, patients may be excluded from 
analysis due to protocol deviations or being lost to follow up. Some of the reasons 
for ineligibility are protocol misinterpretations, clerical error, or wrong diagnosis at 
the time of randomization. Sometimes the determination of ineligibility is above 
question (e.g. the patient fell outside of the studies predetermined age limit) but 
frequently ineligibility requires judgment. The Multicenter Investigation of the 
Limitation of infarct Size (MILIS) study is an example of this latter concept. MILIS 
compared propranolol, hyaluronidase, and placebo in patients with early acute MI, 
in order to observe effects on mortality. Subsequently, some patients were deemed 
ineligible because the early diagnosis of MI was not substantiated. But, what if the 
active therapy actually had an effect on preventing or ameliorating the MI? The 
problem with not including patients in this instance is that more patients could 
have been withdrawn from the placebo group compared to the active therapy group, 
and as a result, interpretation of the data would be altered. 

 Of course, as is true of most things in clinical research there is not just one 
answer, indeed, one has to carefully assess the trial specifi cs. For example, Sackett 
and Gent cite a study comparing heparin to streptokinase in the treatment of acute 
myocardial infarction [ 37 ]. The ITT analysis showed that streptokinase reduced the 
risk of in-hospital death by 31 % (p = 0.01). However, eight patients randomized to 
the heparin group died after randomization, but before they received the heparin. 
Analysis restricted to only those who received study drug decreased the benefi t of 
streptokinase (and increased the p value). 

 In summary, ITT is the most accepted (e.g. by most scientists and the FDA) 
as the analysis of choice for clinical trials. This is because ITT assures statistical 
balance (as long as randomization was properly performed), it ‘forces’ disclosure of 
all patients randomized in a trial, and most of the arguments against ITT can be 
rationally addressed. 

 Analysis-As-Treated is another analytic approach that addresses not the group to 
which the patient was randomized and not compliers only, but what the patient 
actually received. This analytic approach is utilized most often when patients cross 
over from one treatment arm to the other; and, this occurs most often in surgical vs. 
medical treatment comparisons. For example, patient’s randomized to medical 
treatment (vs. coronary artery bypass surgery) might, at some time during the study, 
be deemed to need the surgery, and are thus crossed over to the surgical arm and are 
then assessed as to the treatment they received (i.e. surgery). Like compliers only 
analysis, this might be an interesting secondary analytic technique, but shares many 
of the same criticisms discussed earlier for compliers-only analysis. In addition, 
because such trials cannot easily be double-blinded, even greater criticism can be 
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leveled against this analytic approach compared to compliers-only analysis. In 
addition, statistical testing with this analysis by treatment received, is more compli-
cated, not only by the crossovers, but by the inherent nature of the comparison 
groups. In comparison trials of 1 drug vs. placebo, for example, it is reasonable to 
assume that if the drug is superior to placebo (or an active control) patients in 
the drug group will average fewer events in the follow-up period. When this is 
displayed as survival curves, the survival curves will increasingly separate. In trials 
comparing surgical to medical therapy, the aforementioned approach may not be 
reasonable. For example, if patients randomized to surgery have a high early risk 
(compared to the non- surgical group) and a lower risk later, these risks may cancel 
and be similar to the number of events under the null hypothesis of no difference 
between groups. The issue of comparing surgical and non-surgical therapies in clinical 
trials has been nicely summarized by Howard et al. [ 38 ].  

    Subgroup Analysis 

 As pointed out by Assmann et al., most clinical trials collect substantial baseline 
information on each patient in the study [ 39 ]. The collection of baseline data has at 
least four main purposes: (1) to characterize the patients included in the trial, i.e. to 
determine how successful randomization was (2) to allow assessment of how well 
the different treatment groups are balanced, (3) to allow for analysis per treatment, 
(4) to allow for subgroup analysis in order to assess whether treatment differences 
depend on certain patient characteristics. It is this 4th purpose that is perhaps the 
most controversial because it can lead to ‘data dredging’ or has some wits have 
opined, ‘if you interrogate the data enough, you can get it to admit to anything’. For 
example, Sleight and colleagues, in order to demonstrate the limitations of subgroup 
analysis, performed subgroup analysis in the ISIS-2 trial by analyzing treatment 
responses according to the astrological birth sign of the subject [ 40 ]. This analysis 
suggested that the treatment was quite effective and statistically signifi cant for all 
patients except those born under the sign of Gemini or Libra. The validity of any 
subgroup observation tends to be inversely proportional to the number of subgroups 
analyzed. For example, for testing at the 5 % signifi cance level (p ≤ .05) an erroneous 
statistically signifi cant difference will be reported (on average) 5 % of the time 
(i.e. false + rate of 5 %). But, if 20 subgroups are analyzed, the false positive rate 
would approach 64 % (Table  3.6 ).

   It is true, that meaningful information from subgroup analysis is restricted by 
multiplicity of testing and low statistical power and that surveys on the adequacy of 
the reporting of clinical trials consistently fi nd the reporting of subgroup analyses to 
be wanting. Most studies enroll just enough participants to ensure that the primary 
effi cacy hypothesis can be adequately tested, and this limits the statistical abil-
ity to fi nd a difference in subgroup analyses; and, the numbers of subjects available 
for subgroup analysis is further compounded by loss of compliance, the need for 
adjustments for multiple testing, etc. Some have taken this to mean that subgroup 
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analyses are useless. When results from a subgroups analysis are at variance from 
the overall group outcome, the results are still likely to be true if the subgroup is 
large, they are pre-specifi ed rather than  post hoc  (i.e. ‘after the fact’) and they are of 
limited number (not all post hoc analyses are subgroup analyses, but arguably most 
are). At the least, whether pre-specifi ed or  post hoc,  subgroup analyses serve to 
generate questions for subsequent trials, and should not be interpreted as “truth”. An 
exception to this latter principal, is when it comes to safety, here subgroup analyses 
might “carry more weight”. An example of a post-hoc analysis that was “accepted” 
is the Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) 
study where LIPITOR 80 mg vs. placebo was administered in 4,731 subjects with-
out CHD who had a stroke or TIA within the preceding 6 months [ 41 ]. A higher 
incidence of hemorrhagic stroke was seen in subgroup analysis in the LIPITOR 
80 mg group compared to placebo. Subjects with hemorrhagic stroke on study entry 
appeared to be at increased risk for hemorrhagic stroke. As a result, Pfi zer revised 
the US Prescribing Information for atorvastatin to include a precaution for its use of 
80 mg in patients with a prior history of stroke. 

 What can be said is that if subgroup analysis is used and interpreted carefully, it 
can be useful. Even among experts, opinions range from only accepting pre- 
specifi ed subgroup analyses supported by a very strong  a priori  biological rationale, 
to a more liberal view in which subgroup analyses, if properly carried out and 
interpreted, are permitted to play a role in assisting doctors and their patients to 
choose between treatment options. In reviewing a report that includes subgroup 
analyses, Cook et al. suggest addressing the following issues (Table  3.7 ): (1) were 
the subgroups appropriately defi ned, (that is, be careful about subgroups that are 
based upon characteristics measured after randomization e.g. adverse drug events 
may be more common as reasons for withdrawal from the active treatment arm 
whereas lack of effi cacy may be more common in the placebo arm); (2) were the 
subgroup analyses planned before the implementation of the study (in contrast to 
after the study completion or during the conduct of the study); (3) does the study 
report include enough information to assess the validity of the analysis e.g. the 
number of subgroup analyses; (4) do the statistical analyses use multiplicity and 
interaction testing; (5) were the results of subgroup analyses interpreted with 
caution; (6) is there replication of the subgroup analysis in another independent 
study; (7) was a dose-response relationship demonstrated in the subgroup; (8) was 
there reproducibility of the observation within individual sites; and (9) is there a 
biological explanation.

   Table 3.6    Approximate number of False Positives (FP) occurring with multiple subgroup analyses   

 No. of  tests  Probability of 1 FP  Probability of 2 FPs  Probability of 3 FPs 

 1  0.05  0.01  0 
 2  0.10  0.02  0 
 3  0.14  0.025  0 
 5  0.23  0.03  0 
 10  0.40  0.05  0.01 
 20  0.64  0.10  0.10 
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        Traditional Versus Equivalence Testing (Table  3.8 ) 

    Most clinical trials have been designed to assess if there is a difference in the effi cacy 
to two (or more) alternative treatment approaches (with placebo usually being the 
comparator treatment). There are reasons why placebo-controls are preferable to 
active controls, not the least of which is the ability to distinguish an effective treat-
ment from a less effective treatment. However, if a new treatment is considered to be 
equally effective but perhaps less expensive and/or invasive, or a placebo-control is 
considered unethical, then the new treatment needs to be compared to an established 
therapy and the new treatment would be considered preferable to the established 
therapy, even if it is just as good (not necessarily better) as the old (Table  3.9 ). The 
ethical issues surrounding the use of a placebo-control and the need to show a new 
treatment to only be as ‘good as’ (rather than better) has given rise to the recent inter-
est in equivalence or non-inferiority testing. With traditional (superiority) hypothesis 
testing, the null hypothesis states that ‘there is no difference between treatment 
groups (i.e. New = Old or placebo or standard therapy). Rejecting the null, then 
allows one to defi nitively state if one treatment is better (or worse) than another 
(i.e. New > or < Old). The disadvantage is if at the conclusion of an RCT there is not 
evidence of a difference, one cannot state that the treatments are the same, or as good 
as one to the other, only that the data are insuffi cient to show a difference. That is, 
when the null hypothesis is not accepted, it is simply the case where it cannot be 
rejected. The appropriate statement when the null hypothesis is not rejected (accepted) 
is ‘there is not suffi cient evidence in these data to establish if a difference exists.’

  Table 3.7    Considerations 
regarding subgroup analyses  

 Was there potential for patient misclassifi cation 
 Was the analysis approach Intention-To-Treat 
 Were subgroups planned  a priori  
 Was the subgroup analysis based on trial or 

biological data 
 Was there adequate power for subgroup analysis 
 What are the total number of subgroups analyzed 
 Are there adjustments for multiple testing 
 Are there tests for interaction 
 Are subgroup results emphasized above primary 

analyses 
 Are the subgroup analyses placed in proper 

biological and prior trial data perspective 
 Are  a priori  analyses distinguished from  a 

posteriori  analyses 

  Table 3.8    Goal of RCTs 
and their relation 
to hypothesis testing  

 RCT goal  Superiority  Equivalence 

 Null hypothesis  New = Old  New < Old + δ 
 Alternative hypothesis  New  =\     Old  New = Old + δ 

  δ is the margin in which the point estimate falls  
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   Equivalence testing in essence ‘fl ips’ the traditional null and alternative hypotheses. 
Using this approach, the null hypothesis is that the new treatment is worse than the 
old treatment (i.e. New < Old); that is, rather than assuming that there is no differ-
ence, the null hypothesis is that a difference exists and the new treatment is inferior. 
Just as in traditional testing, the two results available from the statistical test are (1) 
reject the null hypothesis, or (2) failure to reject the null hypothesis. However, with 
equivalence/noninferiority testing rejecting the null hypothesis is making the statement 
that the new treatment is not worse than old treatment, implying the alternative, that 
is ‘that the new treatment is  as good  as the old’ (i.e. New = Old). Hence, this approach 
allows a defi nitive conclusion that the new treatment is as good as the old. 

 One caveat is the defi nition of ‘as good as,’ which is defi ned as being in the ‘neigh-
borhood’ or having a difference that is so small that it is to be considered clinically 
unimportant (generally, effects within ±2 % – this is known as the equivalence or 
noninferiority margin usually indicted by the symbol δ). The need for this ‘neighbor-
hood’ that is considered ‘as good as’ exposes the fi rst shortcoming of equivalence 
testing – having to make a statement that ‘I reject the null hypothesis that the new 
treatment is worse than the old, and accept the alternative hypothesis that it is as 
good –  and by that I mean that it is within at least 2 % of the old ’ (the wording in 
italics are rarely included in the conclusions of a manuscript). A second disadvantage 
of equivalence/noninferiority testing is that no defi nitive statement can be made that 
there is evidence that the new treatment is better or worse. Just as in traditional 
testing, one never accepts the null hypothesis – one only fails to reject it. Hence if the 
null is not rejected, all one can really say is that there is  insuffi cient evidence in these 
data  that the new treatment is as good as the old treatment. Another problem with 
equivalence/noninferiority testing is that one has to rely on the effectiveness of 
the active control obtained in previous trials, and on the assumption that the active 
control would be equally effective under the conditions of the present trial. 

 An example of an equivalence trial is the Controlled ONset Verapamil 
INvestigation of Cardiovascular Endpoints study (CONVINCE), a trial that also raised 
some ethical issues that are different from those usually involved in RCT’s [ 42 ]. 
CONVINCE was a large double-blind clinical trial intended to assess the equiva-
lence of verapamil and standard therapy in preventing cardiovascular disease- related 
events in hypertensive patients. The results of the study indicated that the verapamil 

   Table 3.9    Reasons for choosing noninferiority over superiority designs   

 Comparing new treatment with active 
control instead of placebo 

 Unethical to use placebo group in controlled study 
when there’s an established treatment 

 New treatment not better in primary 
end point; better in secondary 
end points 

 Although no difference between primary effi cacy 
outcomes, difference in secondary end points such 
as adverse events, quality of life 

 New treatment not better in primary 
end point; overall effi ciency is better 

 Non-inferiority in effectiveness and safety; clear 
superiority in incurred cost produces and overall 
effi ciency 

 The new treatment can be non- inferior 
and superior 

 Non-inferiority testing can be complemented by 
superiority testing in one study without need for 
adjustments 
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preparation was not equivalent to standard therapy because the upper bound of the 
95 % confi dence limit (1.18) slightly exceeded the pre-specifi ed boundary of 1.16 
for equivalence. However, the study was stopped prematurely for commercial 
reasons. This not only hobbled the fi ndings in terms of inadequate power, it also 
meant that participants who had been in the trial for years were subjected to a 
‘breach in contract’. That is, they had subjected themselves to the risk of an RCT 
with no ultimate benefi t. There was a good deal of criticism borne by the pharmaceuti-
cal company involved in the decision to discontinue the study early. Parenthetically, 
the company involved no longer exists. 

 In the past, some separated equivalence testing and non-inferiority testing. The 
question posed by non-inferiority testing being slightly different in that one is 
asking whether the new intervention is simply not inferior to the comparator (i.e. 
New ≮ Old). One potential advantage of this approach is that statistical signifi cance 
could be only ‘one-tailed’ since there is no implication that the analysis is addressing 
whether the new treatment is better or as good as, only that it is not inferior. There 
is a good deal of disagreement regarding this latter issue, so that most use the two 
(equivalence and noninferiority) approaches interchangeably. Weir et al. utilized the 
non-inferiority approach in evaluating a comparison of valsartin/hydrochlorthiazide 
(VAL/HCTZ) with amlodipine in the reduction of mean 24-h diastolic BP (DBP) 
[ 43 ]. Noninferiority of the VAL/HCTZ combination to amlodipine was demonstrated, 
and fewer adverse events were noted with the combination treatment as well. The 
null hypothesis for this analysis was that the reduction in mean 24-h DBP from 
baseline to the end of the study with VAL/HCTZ was ≥3 mmHg less (the non-
inferiority margin) compared with amlodipine. Again, a caveat has been recently 
raised by LeHenanff et al. and Kaul et al. [ 44 ,  45 ]. LeHananff et al. [ 45 ] reviewed 
studies published between 2003 and 2004 that were listed as equivalence or nonin-
feriority, and noted a number of defi ciencies, key among them being the absence of 
a stated equivalence or non inferiority margin [ 45 ]. 

 Equivalence/non-inferiority trials are further discussed in Chap.   4    .   

    Losses to Follow Up (See also Discussion 
of  Missing Data , Above) 

 Patients who are lost-to-follow-up are critical in clinical trials and are particularly 
problematic in long-term trials. Patients lost to follow-up might be regarded as 
having had poor results (that is assumed that they experienced treatment failure); so 
if there are suffi cient numbers of them, trial results can be skewed to less of an 
effect, even if, in truth, they did not have poor results. If, in the different study arms, 
there are equal numbers lost to follow-up, and they are lost for the same reasons, 
lost to follow up would not be as critical, but this is unlikely to occur. Section 4.3.4 
of the ICH E-6 Good Clinical Practice: Consolidated Guidance reads, “ Although a 
subject is not obliged to give his/her reason(s) for withdrawing prematurely from a 
trial, the investigator should make a reasonable effort to ascertain the reason(s), 
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while fully respecting the subject's rights ” This excerpt expresses the need for 
 physicians associated with clinical research trials to make a fi rst-hand effort to con-
tact patients who are lost-to-follow-up. In doing so pharmaceutical companies not 
only look out for the best interest of the patients who enroll in their clinical research 
trials, but also protect the data outcome of their clinical trials. 

 Of course, in ITT analysis, patient’s lost-to-follow-up is still counted, but the 
argument is how to count them. Some would argue that it is appropriate to count 
them as poor outcomes since this will give the most conservative result, while others 
argue that since their outcome is not known, they should not be counted. In fact, 
there is little data reported on the actual impact on a study result of patients lost to 
follow up. In one study, Joshi et al. did address this issue in a long-term follow-up 
(up to 16 years of follow-up) of patients who had undergone knee arthroplasty. With 
the concerted effort of full-time personnel and a private detective, all 123 patients 
initially lost to follow-up were traced. Patients cited a variety of reasons why they 
did not attend follow-up visits, including: change of residence, inability to travel, 
displeasure with the physician or staff, fi nancial constraints, satisfaction with the 
results so that they did not feel follow-up was necessary and poor results. They also 
found that more women than men were lost to follow-up. A few companies have 
developed methods of locating and contacting patients that are lost-to-follow-up 
and processes of handling patient information. These are options that pharmaceutical 
companies can use to fi nd patients that have become lost-to-follow-up. These lost to 
follow-up patient locate systems use customized programmed software systems, as 
well as highly customized research and communication processes.  

    Surrogate Endpoints 

 The choice of an outcome is seemingly easy and apparent. For example, mortality 
is the dominant concern for many situations, and is seldom a diffi cult outcome to 
ascertain, unless there is a high loss to follow-up, which should not be a problem if 
the study is designed properly. However, if all cause death is the outcome this 
principal holds, if the determination is the specifi c reason for death, it becomes 
decidedly more diffi cult. This diffi culty is because many deaths occur either outside 
the hospital where one has to rely on death certifi cates as the cause of death, or in 
hospital, where many patients have multi-organ disease, and trying to parse the 
specifi c cause is likely to be diffi cult. And yet, ascertaining the cause of death is 
essential for classifying disease-specifi c mortality in clinical research studies. As 
mentioned, death certifi cates often serve as the source of this information with the 
recognition that the cause of death on the death certifi cate is often fraught with mis-
classifi cation (in fact in some states in the US the cause of death is not even entered). 
The potential for bias from this misclassifi cation, and the fact that obtaining death 
certifi cates can often be time consuming and labor intensive is problematic. As a 
result, many studies also use a proxy–reported statement to determine the cause of 
death. Halanych et al. [ 46 ], assessed the validity of proxy-reported causes of death 
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in 336 participants of the REGARDS Study. Trained experts used study data, 
medical records, death certifi cates, and proxy reports to adjudicate deaths. 
Adjudicated cause of death had a higher rate of agreement with proxy reports (73 %; 
Cohens kappa = .69) then with death certifi cates (63 % kappa = .54). Using the 
adjudicator cause of death as the “gold standard”, the sensitivity for proxy reports 
was 50–89 % (depending on the cause) and specifi city; 94–98 %, compared to death 
certifi cates, sensitivity 31–81 %. They concluded: “in many settings, proxy reports 
may represent a better strategy for determining the cause of death than reliance on 
death certifi cates”. 

 For many conditions mortality is not a frequent occurrence and only in the largest 
and longest trials would it be a practical choice. Thus, If the endpoints of interest are 
rare, RCTs have to be large (and expensive), so the question might arise as to how 
one can design a study to garner more endpoints? Several considerations for increasing 
endpoints include: extending the follow-up time, broaden the defi nition of an event, 
and, don’t use the events of interest rather use surrogate endpoints. An example of 
this latter point might be a heart disease study in which coronary heart disease 
events or deaths (direct outcome of interest) and uses the surrogate of incident 
angina and/or revascularization procedures (this adds events) and even measures of 
atherosclerosis (moves to continuous measure). In a cancer study, one might be 
primarily interested in cancer recurrence and/or cancer death (direct), but one can 
move to the surrogate of tumor size that moves the outcome to a continuous measure. 

 In 1863, Farr said ‘death is a fact, the rest is inference’. In choosing outcomes 
of interest, death or a disease event is usually the event of interest. However, as 
previously mentioned, it is frequently necessary to use a surrogate for the endpoint 
of interest, such as when the disease occurrence is rare and/or far in the future. The 
main variable that drives sample size and Study Power is the difference in the 
outcome between the intervention and the control group. Table  3.10  summarizes 
the sample size necessary based upon these aforementioned differences. One can 
see from Table  3.10  that most studies would have to be quite large unless the treat-
ment difference is large, and for most outcomes these days, it is common to have 
treatment differences of no more than 20 %.

   A surrogate endpoint is simply a laboratory value, sign, or symptom that is a 
substitute for the real outcome one is interested in [ 47 ]. The assumption is that 
changes induced in a surrogate endpoint accurately and nearly completely refl ect 
changes in the clinically meaningful endpoint. To realize that assumption, an accurate 
well-documented model of the outcome of interest is a prerequisite, but it should be 
understood that the model is only that, and the model may be far from the truth. As 

      Table 3.10    Approximate sample size given the treatment effect and control group “outcome”   

 Treatment effect 

 Rate in control group (%)  10 %  20 %  30 %  50 % 

 2  100,000  25,000  10,000  3,000 
 10  65,000  15,000  6,000  2,000 
 50  2,100  518  225  80 
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is true of most defi nitions, there is debate about the best defi nition for a surrogate 
endpoint, and it is also important to distinguish surrogate endpoints from intermediate 
endpoints and statistical correlations. Speaking statistically, Prentice [ 48 ] has 
offered the following defi nition: ‘ a response variable for which a test of the null 
hypothesis of no relationship to the treatment groups under comparison is also a 
valid test of the corresponding null hypothesis based on the true endpoint.’  

 Examples of surrogate endpoints include blood pressure reduction in lieu of 
stroke (this has been termed a ‘strong surrogate’ by Anand et al.); [ 49 ] fasting blood 
sugar (or hemoglobin HbA1c) in lieu of diabetic complications; and bone mineral 
density in lieu of fractures. Surrogates are also commonly used early in drug 
development such as dose ranging or preliminary proof of effi cacy (‘developmental 
surrogates’). ‘Supportive surrogates’ are those outcomes that support and strengthen 
clinical trial data. The reasons for choosing a surrogate endpoint predominantly 
revolve around the fact that it might be easier to measure than the clinical endpoint 
of interest, or that it occurs early in the natural history of the disease of interest (and 
thus long-term trials are avoided). But as is true of almost any decision one makes 
in conducting a clinical trial, there are assumptions and compromises one has to 
make when choosing a surrogate endpoint. For example, many surrogates have been 
inadequately validated, and many if not most surrogates have several effect path-
ways (see Fig.  3.5 ). Other considerations for using a surrogate endpoint are that it 
should be easier to assess than the corresponding clinical endpoint, and in general, 
be more frequent; and, that an estimate of the expected clinical benefi t should be 
derivable from the interventions effect upon the surrogate. An example of the 
controversy regarding surrogate endpoints is highlighted by the discussion of 
Kelsen [ 50 ] regarding the use of tumor regression as an adequate surrogate for new 
drugs to treat colorectal cancer. On the basis of a meta-analysis, Buyse et al. [ 51 ] 
proposed that surrogate endpoints of effi cacy, without direct demonstration of an 
improvement in survival, could be used to identify effective new agents. The FDA, 
however, requires that there be a survival advantage before it approves such 
a drug. That is, a response rate higher than standard therapy (defi ned as tumor 
regression >50 %) is by itself an inadequate benefi t for drug approval. As stated in 
the commentary by Kelsen ‘ the critical question in the debate over the adequacy of 
response rate as a surrogate endpoint for survival is whether an objective response 
to treatment is merely associated with a better survival, or whether the tumor regres-
sion itself lengthens survival.’ 

   There are differences in an intermediate endpoint, correlate, and a surrogate 
endpoint, although an intermediate endpoint may serve as a surrogate. Examples of 
intermediate endpoints include such things as angina pectoris, or hyperglycemic 
symptoms i.e. these are not the ultimate outcome of interest (MI, or death etc) but 
are of value to the patient should they be benefi ted by an intervention. Another 
example is from the earlier CHF literature where exercise-walking time was used as 
an intermediate endpoint as well as a surrogate marker for survival. A number of 
drugs improved exercise-walking time in the CHF patient; but long-term studies 
proved that the same agents that improved walking time actually resulted in earlier 
death. A hypothetical example of a surrogate ‘misadventure’ is exemplifi ed by a 
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scenario where a new drug is used in pneumonia, and it is found to lower the patients 
white blood count (this used as a surrogate marker for improvement in the patients 
pneumonia). Subsequently, this hypothetical ‘new drug’ is found to be cytotoxic to 
white blood cells but obviously had little effect on the pneumonia. But, perhaps 
the most glaring example of a surrogate ‘misadventure’ is represented by a real 
trial – the Cardiac Arrhythmia Suppression Trial (CAST) [ 52 ]. At the time of CAST, 
premature ventricular contractions (PVC’s) were thought to be a good surrogate for 
ventricular tachycardia or ventricular fi brillation, and thereby for sudden cardiac 
death (SCD). It was determined that many anti-arrhythmic agents available at the 
time or being developed reduced PVC’s, and it was assumed would benefi t the 
real outcome of interest, SCD. CAST was proposed to test the hypothesis that these 
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anti- arrhythmic agents did actually reduce SCD (in a post MI population) and this 
study was surrounded with some furor about the studies ethics, since a placebo 
control was part of the study design (it was felt strongly by many that the study was 
unethical since it was so likely that reduction in PVCs led to a reduction in SCD and 
how could one therefore justify a placebo arm). In fact, it turned out that the anti- 
arrhythmic therapy not only failed to reduce SCD, but in some cases it increased its 
frequency. A fi nal example of surrogate misadventure occurred in 2007, when the 
Chairman of the FDA Advisory panel that reviewed the safety of rosiglitazone 
stated that the time has come to abandon surrogate endpoints for the approval of 
type 2 diabetes drugs. This resulted from the use of glycated hemoglobin as a 
surrogate for diabetes morbidity and mortality as exemplified in the ADOPT 
(A Diabetes Outcome Prevention Trial) study where patients taking rosiglitazone 
had a greater decrease in glycosylated hemoglobin than in patients taking compara-
tor drugs, yet the risks of CHF and cardiovascular ischemia were higher with rosi-
glitazone [ 53 ]. 

 Correlates may or may not be good surrogates. Recall, ‘that a surrogate endpoint 
requires that the effect of the intervention on the surrogate end-point predicts the 
effect on the clinical outcome-a much stronger condition than correlation.’ [ 47 ] 
Another major point of confusion is that between statistical correlation and proof of 
causality as demonstrated in Fig.  3.6  as discussed by Boissel et al. [ 54 ].

   In summary, it should be understood that most (many) potential surrogates 
markers used in clinical research have been inadequately validated and that the 
surrogate marker must fully (or nearly so) capture the effect of the intervention 
on the clinical outcome of interest. However, many if not most treatments have 
several effect pathways and this may not be realized, particularly early in the 
research of a given intervention. Table  3.11  summarizes some of the issues that 
support using a surrogate. Surrogate endpoints are most useful in phase 1 and 2 
trials where ‘proof of concept’ or dose-response is being evaluated. One very 
important additional down- side to the use of surrogate measures is a result of its 
effect on the safety evaluation of an intervention i.e. the ability to use smaller 
sample sizes and shorter trials imparted by the use of a surrogate endpoint, in order 
to gain insight into the benefi t of an intervention results in the loss of important 
safety information.

Unknown Causal Factor

Surrogate EventClinical Event

Intervention

* Indicates a statistically significant association

*

  Fig. 3.6    Depicts a 
correlation (statistically 
signifi cant) between a causal 
factor and a clinical event. 
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effect on the clinical event 
since it does not lie in the 
direct pathway       
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       Selection of Endpoints 

 Table  3.10  makes the point that for most clinical trials, one of the key considerations 
is the difference in events between the investigational therapy and the control. It is 
this difference (along with the frequency of events) that drives the sample size and 
power of the study. From Table  3.10 , one can compare the rate in the control group 
compared to the intervention effect. Thus, if the rate in the control group of the 
event of interest is high (say 20 %) and the treatment effect is 20 % (i.e. an expected 
50 % reduction compared to control), a sample size of 266 patients would be neces-
sary. Compare that to a control rate of 2 % and a treatment effect of 10 % (i.e. a 
reduction compared to control from 2 to 1.8 %), where a sample size of 97959 
would be necessary. Often the question is asked; “What is a meaningful difference 
in endpoints?”

  A difference to be a difference must make a difference  (Gertrude Stein) . 

      Primary and Secondary Endpoints 

 O’Neil [ 55 ] defi nes an endpoint as  “results, condition or events associated with 
individual study patients that are used to assess study treatments ”. The characteristics 
of endpoint measures should include those that are easy to diagnose, easy to identify 
(i.e. no evaluator judgment needed), free of measurement error, reliable with 
repeated measures, have high internal validity and be directly linked to property of 
interest, and have good external validity. 

 Endpoints can be primary, secondary, tertiary, etc. A primary endpoint for a drug in 
development is a “clinical endpoint that provides evidence suffi cient to fully catego-
rize clinically the effect of a treatment that would support a regulatory claim for the 

   Table 3.11    Support for and against the use of surrogate outcomes   

 Support for/against surrogates 

 Factor  Favors surrogate  Does not favor surrogate 

 Biologic 
plausibility 

 Epidemiologic evidence extensive; 
excellent animal models pathogenesis 
and MOA understood; surrogate is 
late in causal pathway 

 Less extensive evidence; no 
animal model; MOA not 
understood, surrogate early in 
causal pathway 

 Success in 
clinical trials 

 Effect on surrogate has predicted 
outcome with other drugs in class 
and in disease 

 Inconsistent results across classes 

 Risk/benefi t  Serious or life-threatening illness and no 
alternative treatment; large safety 
database; short term use; diffi culty 
studying clinical endpoint 

 Less serious disease; little safety 
data; long term use; easy to 
study clinical endpoint 

   MOA  mechanism of action  
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treatment”. A secondary endpoint is when there is “additional clinical characteriza-
tion of a treatment but could not, by itself, be convincing of a clinically signifi cant 
treatment effect”. Tertiary and other endpoints are mostly exploratory. Some ques-
tions about secondary endpoints include:

•    How does one interpret secondary endpoints when the primary endpoint for 
which the clinical trial was initially designed does not meet the proposed effect.  

•   Some argue for caution in making inferences from secondary endpoints, and 
certainly there are limitations and greater concerns for a secondary endpoint 
effect that is derived from only one study. The likelihood of replication of the 
fi nding in another study of identical size and design as a useful concept to guide 
this interpretation.  

•   O’Neill R. (1997) argues that “secondary endpoints  cannot  be validly analyzed 
if the primary endpoint does not demonstrate clear statistical signifi cance” [ 55 ], 
while Davis, C.E. (1997) argues that “secondary endpoints  can  be validly analyzed, 
even if the primary endpoint does not provide clear statistical signifi cance” [ 55 ].   

In practice, it is rare that trials use a single endpoint, and endpoints frequently cover 
clinical events, symptoms, physiologic measures, quality of life etc. One example 
is taken from the “Multiple Sclerosis literature where the result of interest was neu-
rological disability and endpoints included episodes” of focal neurological signs 
and symptoms, disability rating scales, MRI changes, and CSF changes. 

 Ultimately the choice of endpoints is a critical and challenging study design 
decision, based upon considerations such as the phase of development of the clinical 
question, the specifi c disease under study, the characteristics of the measure, and the 
questions the investigator wants answered by the trial. General guidelines in the 
choice of endpoints include the use of “hard endpoints” whenever possible (“hard” 
endpoints are clinical landmarks that are well-defi ned in the study protocol, are 
defi nitive with respect to disease process, and not subjective). It is true that some 
endpoints are useful and reliable even when they require some subjectivity, and 
the key issue is not the classifi cation of an endpoint as “hard” or “soft”, but how prone 
to measurement error the endpoint is. 

 Finally other arguments centered on study endpoints are that many advocate 
having a single primary endpoint, since this is what “drives” sample size calculations; 
and, multiple endpoints introduces the possibility of Type I error.  

    Composite Endpoints 

 It is generally realized that there is an increasing challenge to conduct adequately 
powered clinical trials. Most trials are designed to assess the time to some fi rst event 
between two arms of a study. More and more frequently, different clinical events 
related to the target disease are combined to form a composite endpoint. Composite 
endpoints (rather than a single endpoint) are being increasingly used as effect sizes 
for most new interventions are becoming smaller. Effect sizes are becoming smaller 
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because newer therapies need to be assessed when added to all clinically accepted 
therapies; and, thus the chance for an incremental change is reduced. For example, 
when the fi rst therapies for heart failure were introduced, they were basically added 
to diuretics and digitalis. Now, a new therapy for heart failure would have to show 
benefi t in patients already receiving more powerful diuretics, digitalis, angiotensin 
converting enzyme inhibitors and/or angiotensin receptor blockers, appropriately 
used beta adrenergic blocking agents, statins etc. To increase the ‘yield’ of events, 
composite endpoints are utilized (a group of individual endpoints that together form 
a ‘single’ endpoint for that trial). Thus, the rationale for composite endpoints comes 
from three basic considerations: statistical issues (sample size considerations due to 
the need for high event rates in the trial in order to keep the trial relatively small, of 
shorter duration and with less expense), the pathophysiology of the disease process 
being studied, and the increasing need to evaluate an overall clinical benefi t. There 
are several downsides associated with the use of composite endpoints, one is that 
the benefi ts ascribed to an intervention are assumed to relate to all the components 
of the composite. Consider the example of a composite endpoint that includes death, 
MI, and urgent revascularization. In choosing the components of the composite, one 
should not be driven by the least important variable just because it happens to be 
the most frequent (e.g. death, MI, urgent revascularization, would be a problem if 
revascularization turned out to be the main positive fi nding). Another downside is 
that the fi rst event within a composite endpoint may not refl ect the most clinically 
important endpoint, and if the study is designed for time to fi rst event, subsequent 
events within the composite will be missed. Thus incorporating subsequent events 
is seemingly rational [ 56 ]. Montori et al. provided guidelines for interpreting com-
posite endpoints which included asking whether the individual components of 
composite endpoints were of similar importance, occurred with about the same 
frequency, had similar relative risk reductions, and had similar biologic mechanisms 
[ 57 ]. Armstrong and Westerhaut added to this by recommending that a strategy for 
future trials would be to include not just the initial event, but all events and report 
both per patient and overall rates; and, including a gradation of event severity 
(e.g. a large MI with heart failure has a very different meaning than a small peripro-
cedural MI or a hemorrhagic stroke vs. a transient left arm weakness). 

 Freemantle et al. assessed the incidence and quality of reporting of composite 
endpoints in randomized trials and asked whether composite endpoints provide for 
greater precision but at the expense of greater uncertainty [ 58 ]. Their conclusion 
was that the reporting of composite outcomes is generally inadequate and as a result, 
they provided several recommendations regarding the use of composite endpoints 
such as following the CONSORT guidelines, interpreting the composite endpoint 
rather than parsing the individual endpoints, and defi ning the individual components 
of the composite as secondary outcomes. The reasons for their recommendations 
stemmed from their observations that in many reports they felt that there was 
inappropriate attribution of the treatment effects on specifi c endpoints when only 
composite endpoints yielded significant results, the effect of dilution when 
individual endpoints might not all react in the same direction, and the effect of 
excessively infl uential endpoints that are not associated with irreversible harm. 
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In an accompanying editorial by Lauer and Topel they list a number of key questions 
that should be considered when composite endpoints are reported or when an inves-
tigator is contemplating their use [ 59 ]. First, is whether the end points themselves 
are of clinical interest to patients and physicians, or are they surrogates; second, 
how nonfatal endpoints are measured (e.g. is judgment involved in the end point 
ascertainment, or is it a hard end point); third, how many individual endpoints make 
up the composite and how are they reported (ideally each component of the composite 
should be of equal clinical importance – in fact, this is rarely the case); and fi nally, 
how are non fatal events analyzed – that is are they subject to competing risks. 
As they point out, patients who die cannot later experience a non fatal event so a 
treatment that increases the risk of death may appear to reduce the risk of nonfatal 
events, and vice versa [ 59 ]. 

 Kip et al. [ 60 ] reviewed the problems with the use of composite endpoints in 
cardiovascular studies. The term “major adverse cardiac events:” or MACE is used 
frequently in cardiovascular studies, a term that was born with the percutaneous 
coronary intervention studies in the 1990s. Kip et al. noted that MACE encompassed 
a variety of composite endpoints, the varying defi nitions of which could lead to 
different results and conclusions, leading them to the recommendation that MACE 
as a composite endpoint should be avoided. Table  3.12  from their article demon-
strates this latter point rather well.

   As mentioned above, composite endpoints are commonly used to increase event 
rates in an effort to increase statistical power. However, attention towards whether 
the individual components of the composite are likely to be differentially affected 
by the intervention is important. Bethel et al. performed a meta-analysis to deter-
mine the effect of angiotensin-converting enzyme inhibitors or angiotensin receptor 
blockers on individual cardiovascular outcomes; and then applied these treatment 
effects to two different composite cardiovascular endpoints. They found that 
although composite endpoints did augment event rates, they did not necessarily 
increase statistical power, and in fact, in some cases reduced it [ 61 ]. As they noted, 
 “occurrence of the composite endpoint must be in keeping with the duration and 
intensity of follow-up within a clinical trial and should refl ect prior knowledge of 

   Table 3.12    An example of using MACE as a composite endpoint   

 Acute vs. non acute MI  MACE defi nition 

 1.7 (1.2–2.4)  Death; MI; stent thrombosis 
 1.15 (0.98–1.6)  Death; MI; stent thrombosis; target vessel 

revascularization 
 1.13 (0.95–1.4)  Death; MI; stent thrombosis; repeat revascularization 

  Multi-lesion vs. one lesion attempt  
 1.1 (0.75–1.5)  Death; MI; stent thrombosis 
 1.35 (1.2–1.75)  Death; MI; stent thrombosis; target vessel 

revascularization 
 1.25 (0.01–1.52)  Death; MI; stent thrombosis; repeat revascularization 

  Adapted from: Kip et al. [ 60 ]  
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the magnitude of expected treatment benefi ts. If insuffi cient data exist to estimate the 
treatment effect, pooled data based on plausibly similar mechanisms of action may 
be used instead.”  

 Central to the selection of endpoints is how the endpoints are adjudicated, and 
for most large clinical trials this is generally accomplished with a centralized 
system. This is most important when the primary endpoint is a nonfatal event since 
the defi nition may be somewhat subjective. The main concern relative to adjudica-
tion is to avoid differential misclassifi cation-that is to adjudicate events that are 
biased by applying the outcome defi nition variably or by knowing to which 
treatment assignment the patient was in (as might occur in an open-label study). 
The idea is that with a central adjudication system in which the adjudicators are 
blinded as to the treatment assignment and apply the same defi nitions uniformly, 
will yield the least biased assessment. However, this aforementioned concept has 
not been adequately investigated. Granger et al. reviewed the literature concerning 
the rationale and justifi cation for central adjudication, and came to the conclusion 
that it has not been shown to improve the ability to determine treatment effects, and 
may be overly complex and overused. And yet, the FDA and the scientifi c community 
derive confi dence in the validity of results when central adjudication is performed [ 62 ].   

    Trial Duration 

 A critical decision in performing or reading about a RCT (or any study for that matter) 
is the specifi ed duration of follow-up, and how that might infl uence a meaningful 
outcome. Many examples and potential problems exist in the literature, but basically 
in interpreting the results of any study (positive or negative) the question should be 
asked ‘what would have happened had a longer follow-up period been chosen?’ An 
example is the Canadian Implantable Defi brillator Study (CIDS) [ 63 ]. CIDS was 
a RCT comparing the effects of defibrillator implantation to amiodarone 
in preventing recurrent sudden cardiac death in 659 patients. At the end of study 
(a mean of 5 months) a 20 % relative risk reduction occurred in all-cause mortality, 
and a 33 % reduction occurred in arrhythmic mortality, when ICD therapy was com-
pared with amiodarone (this latter reduction did not reach statistical signifi cance). 
At one center, it was decided to continue the follow-up for an additional mean of 
5.6 years in 120 patients who remained on their originally assigned intervention 
[ 64 ]. All-cause mortality was increased in the amiodarone group. The Myocardial 
Ischemia Reduction with Aggressive Cholesterol Lowering (MIRACL) trial is an 
example of a potential problem in which study duration could have been problematic 
(but probably wasn’t) [ 65 ]. The central hypothesis of MIRACL was that early rapid 
and profound cholesterol lowering therapy with atorvastatin could reduce early 
recurrent ischemic events in patients with unstable angina or acute non-Q wave 
infarction. Often with acute intervention studies, the primary outcome is assessed 
at 30 days after the sentinel event. From Fig.  3.7  one can see that there was no 
difference in the primary outcome at 30 days. Fortunately the study specifi ed a 
16-week follow-up, and a signifi cant difference was seen at that time point. Had the 
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study been stopped at 30 days the ultimate benefi t would not have been realized. 
Finally, an example from the often cited controversial ALLHAT study which 
demonstrated a greater incidence in new diabetes in the diuretic arm as assessed at 
the study end of 5 years [ 66 ]. The investigators pointed out that this increase in 
diabetes did not result in a statistically signifi cant difference in adverse outcomes 
when the diuretic arm was compared to the other treatment arms. Many experts have 
subsequently opined that the trial duration was too short to assess adverse outcomes 
from diabetes, and had the study gone on longer that it is likely that a signifi cant 
difference in adverse complications from diabetes would have occurred.

       The Devil Lies in the Interpretation 

 It is interesting to consider and important to reemphasize, that intelligent people can 
look at the same data and render differing interpretations. MRFIT is exemplary of 
this principal, in that it demonstrates how mis-interpretation can have far-reaching 
effects. One of the conclusions from MRFIT was that reduction in cigarette smoking 
and cholesterol was effective, but ‘ possibly an unfavorable response to antihyper-
tensive drug therapy in certain but not all hypertensive subjects ’ led to mixed benefi ts 
[ 31 ]. This ‘possibly unfavorable response’ (thought to be due to diuretic based 
hypokalemia) has since been at least questioned if not proven to be false. 

 Differences in interpretation was also seen in the alpha-tocopherol, beta carotene 
cancer study [ 33 ]. To explain the lack of benefi t and potential worsening of cancer 
risk in the treated patients, the authors opined that perhaps the wrong dose was 
used, or that the intervention period was to short, since ‘ no known or described 
mechanisms and no evidence of serious toxic effects of this substance  (beta carotene) 
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 in humans ’ had been observed. This points out how ones personal bias can infl uence 
ones ‘shaping’ of the interpretation of a trials results. Finally, there are many examples 
of trials where an interpretation of the results is initially presented only to fi nd that 
after publication differing interpretations are rendered. Just consider the recent 
controversy over the interpretation of the ALLHAT results [ 66 ]. 

  Causal Inference , and the role of  the Media  in reporting clinical research will 
be discussed in chapters 16 and 20.  

    Conclusions 

 While randomized clinical trials are the ‘gold standard’ clinical research design, 
there remains many aspects of trial design that must be considered before accepting 
the studies results, even when the study design is a RCT. Starzi et al. in their article 
entitled ‘Randomized Trialomania? The Multicentre Liver Transplant Trials of 
Tacrolimus’ outline many of the roadblocks and pitfalls that can befall even the most 
conscientious clinical investigator [ 67 ]. Ioannidis presents an even more somber 
view of clinical trials, and has stated ‘there is increasing concern that in modern 
research’, false fi ndings may be the majority or even the vast majority of published 
research claims. He points out that this should not be surprising since it can be 
proven that most (one can argue many if not most) claimed research findings 
are false [ 68 ]. Also, many feel that misleading interpretations result from an over- 
reliance on statistical testing, that is, that the strength of evidence is often judged by 
conventional tests that rely heavily on statistical signifi cance, with less attention 
paid to the clinical signifi cance or practical importance of treatment effects [ 69 ]. 
Kaul and Diamond cite three particular technical limitations to the interpretation of 
the results from a clinical trial: the emphasis of statistical signifi cance over clinical 
importance, the use of composite endpoints, and the use of subgroup analyses (refer 
to sections on composite endpoints and subgroup analysis above). Relative to the 
over-reliance on statistical testing is the controversy that surrounds relying on the 
p value, and as a wit opined  “a p value is no substitute for a brain”  (anonymous 
source cited in Kaul and Diamond). The signifi cance level that is used most com-
monly is the P value ≤0.05 that represents the maximum probability that is tolerated 
for rejecting a hypothesis that is in fact true. But in contrast to the p ≤0.05 standard 
for statistical signifi cance is that there are no guidelines for what difference is 
clinically signifi cant and some then equate the two. Kaul and Diamond conclude 
that “while statistical signifi cance tells us whether a difference is likely to be real, it 
does not place that reality into meaningful clinical context by telling us the differ-
ence is small, large, trivial, or important. A formal evaluation of clinical importance 
(using frequentist confi dence intervals, the number needed to treat and the number 
needed to harm, or Bayesian probabilities), given the overall risk-benefi t-cost profi le 
of each therapeutic intervention, should be included in the analysis, interpretation, 
and presentation of the results of clinical trials.” Table  3.13  provides a list of at least 
12 misconceptions about P values [ 70 ].
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   One fi nal note of caution revolves around the use of reading or reporting only 
abstracts in decision-making. As Toma et al. noted, ‘not all research presented at 
scientifi c meetings is subsequently published, and even when it is, there may be 
inconsistencies between these results and what is ultimately printed’ [ 71 ]. They 
compared RCT abstracts presented at the American College of Cardiology sessions 
between 1999 and 2002, and subsequent full-length publications. Depending 
upon the type of presentation (e.g. late breaking trials vs. other trials) 69–79 % were 
ultimately published; and, discrepancies between meeting abstracts and publication 
results were common even for the late breaking trials (see Chap.   19     for further 
discussion of abstracts) [ 71 ].     
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    Abstract     There are many variations to the classical randomized controlled trial. 
These variations are utilized when, for a variety of reasons, the classical randomized 
controlled trial would be impossible, inappropriate, or impractical. Some of the 
variations are described in this chapter and include: equivalence and non-inferiority 
trials; crossover trials; N of 1 trials, case-crossover trials, and externally controlled 
trials. Large simple trials, and prospective randomized, open-label, blinded endpoint 
trials are discussed in another chapter.  

  Keywords     Equivalence/noninferiority testing   •   Superiority testing   •   PROBE 
design   •   Factorial design   •   Assay sensitivity   •   Consistency assumption   •   N of 1 trial   
•   Crossover design   •   Case-crossover design   •   Adaptive design   •   Registry randomized 
control trial   •   Null hypothesis  

    There are a number of variations of the ‘classical’ RCT design. For instance, many 
view the classical RCT as having an exposure group compared to a placebo control 
group, using a parallel design, and a 1:1 randomization scheme. However, in a given 
RCT, there may be several exposure groups (e.g. utilizing different doses of the 
drug under study), and the comparator group may be an active control rather than a 
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placebo control; and, some studies may have both. By an active control, it is meant 
that the control group receives an already approved intervention. For example, a 
new anti-hypertensive drug could be compared to placebo or could be compared to 
a drug already approved by the FDA and used in the community (frequently, in this 
case, the manufacturer of the investigational drug will compare their drug to the 
currently most frequently prescribed drug for the indication of interest). The deci-
sions regarding the use of a comparator are based upon a number of considerations 
and discussed more fully under the topic entitled equivalence testing. Also, the ran-
domization sequence may not be 1:1, particularly if (for several reasons, ethical 
issues may be one example) one wanted to reduce the number of subjects exposed 
to placebo. Also, rather than parallel groups, there may be a titration schema built 
into the design. On occasion, the study design could incorporate a placebo with-
drawal period in which at the end of the double blind comparison, the intervention 
group is subsequently placed on placebo (this can be done single-blind or double- 
blind). In this latter case, retesting 1 or 2 weeks later occurs with comparison to the 
original placebo group. Other common variants to the classical RCT are discussed 
in more detail below. 

    Traditional Versus Equivalence/Non-inferiority Testing (See 
Tables   3.6     in Chap.   3     and  4.1  in This Chapter) 

    As discussed in Chap.   3    , most clinical trials have been designed to assess if there 
is a difference in the effi cacy to two (or more) alternative treatment approaches 
(with placebo ideally being the comparator treatment). Consider the fact that for 
evidence of effi cacy there are two distinct approaches: to demonstrate a differ-
ence-showing superiority of the investigational drug to control (placebo, active, 
lower dose) which then demonstrates the drug effect; or, to show equivalence or 
non-inferiority to an active control (i.e. the investigational drug is of equal effi -
cacy or not worse than an active control). That is, one can attempt to demonstrate 
that there is similarity to a known effective therapy (active control) and attributing 
the effi cacy of the active control drug to the investigational drug, thereby demon-
strating a drug effect (i.e. equivalence). Since nothing is perfectly equivalent, 
equivalence means within a margin predetermined by the investigator (termed the 
equivalence margin). Non- inferiority trials on the other hand aim to demonstrate 
that the investigational drug is not worse than the control, but once again by a 
defi ned amount (i.e. not worse by a given amount – the non-inferiority margin), 
the margin (M or δ) being that amount no larger than the effect the active control 
would be expected to have in the study. As will be discussed later, this margin is 
not easy to determine and requires clinical judgment; and, this represents one of 
the limitations of these kinds of trials [ 2 ]. These aforementioned approaches are 
presented diagrammatically in Fig.  4.1a–c .
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  Fig. 4.1    ( a ) Outcomes for traditional (superiority) testing. ( b ) Outcomes for equivalence testing. 
Since the lower confi dence bound is not beyond theta, the null has not been rejected. ( c ) Outcome 
in equivalence testing. Since the lower confi dence bound is beyond theta, the null is rejected and 
therefore the two treatments are “equivalent”       
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   As also discussed in Chap.   3    , there are a number of reasons for the increased 
interest in equivalence and non-inferiority trials including the ethical issues associ-
ated with placebo controls. In general, for studies of effi cacy, placebo-controls are 
preferable to active controls, due to the placebo’s ability to distinguish an effective 
treatment from a less effective treatment. The ethical issues surrounding the use of 
a placebo-control aside, there are other issues that have led to the increasing interest 
and use of equivalence and non-inferiority studies. For example, clinical trials are 
increasingly being required to show benefi ts on clinical endpoints rather than on 
surrogate endpoints at the same time that the incremental benefi t of new treatments 
is getting smaller. This has led to the need for larger, longer, and more costly trials; 
and, this has resulted in the need to design trials that are less expensive. Additional 
issues are raised by the use of equivalence/non-inferiority trials, such as assay 
sensitivity, the aforementioned limitations of defi ning the margins, and the constancy 
assumption. 

    Assay Sensitivity 

 Assay sensitivity is a property of a clinical trial defi ned as the ability of the trial to 
distinguish effective from ineffective treatments [ 3 ]. That is, assay sensitivity is 
the ability of a specifi c clinical trial to demonstrate a treatment difference if such a 
difference truly exists [ 3 ]. Assay sensitivity depends on the effect size one needs 
to detect. One, therefore, needs to know the effect of the control drug in order to 
determine the trials assay sensitivity. There is then an inherent, usually unstated, 
assumption in an equivalence/non-inferiority trial, namely that the active control is 
similarly effective in the particular study one is performing (i.e., that one’s trial has 
assay sensitivity), compared to a prior study that utilized a placebo comparator. 
However, this aforementioned assumption is not necessarily true for all effective 
drugs, is not directly testable in the data collected (if there is no placebo group to serve 
as an internal standard); and this, in essence, causes an active control equivalence 
study to have elements of a historically controlled study [ 4 ]. 

 A trial that demonstrates superiority has inherently demonstrated assay sensitivity; 
but, a trial that fi nds the treatments to be similar, cannot distinguish (based upon the 
data alone) between a true fi nding, and a poorly executed trial that just failed to show 
a difference. Thus, an equivalence/non-inferiority trial must rely on the assumption 
of assay sensitivity, based upon quality control procedures and the reputation of 
the investigator. The International Conference on Harmonization (ICH) guidelines 
(see Chap.   6    ) list a number of factors that can reduce assay sensitivity, and includes: 
poor compliance, poor diagnostic criteria, excessive measurement variability, 
and biased endpoint assessment [ 5 ]. Thus, assay sensitivity can be more directly 
ascertained in an active control trial only if there is an ‘internal standard,’ a control 
vs. placebo comparison as well as the control vs. test drug comparison (e.g. a 
three-arm study).  
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    Advantages of the Equivalence/Non-inferiority Approach 

 As discussed above, the application of equivalence testing permits a defi nitive 
statement that the new treatment is ‘ as good ’ (if the null hypothesis is rejected), and 
depending upon the circumstances, this statement may meet the needs of the manu-
facturer, who may only want to make the statement that the new treatment is as good 
as the established treatment, with the implication that the new treatment is preferred 
because it may require less frequent dosing, or be associated with fewer side effects, 
less invasiveness etc. On the other hand, the advantage of superiority testing is that 
one can defi nitively state if one treatment is better (or worse) than the other, with 
the downside that if there is not evidence of a difference, you cannot state that the 
treatments are the same (recall, that the null hypothesis is never ‘accepted’ – it is 
simply a case where it cannot be rejected, i.e. ‘there is not suffi cient evidence in 
these data to establish if a difference exists’).  

    Disadvantages or Limitations of Equivalence/Non-inferiority 
Studies 

 The disadvantages of equivalence/non-inferiority testing include: (1) that the choice 
of the margin chosen to defi ne whether two treatments are equivalent is diffi cult; (2) 
that it requires clinical judgment and should have clinical relevance (variables that 
are diffi cult to measure); (3) the assumption that the control would have been 
superior to placebo (assumed assay sensitivity) had a placebo had been employed 
(constancy assumption- that is, one expects the same benefi t in the equivalence/
non-inferiority trial as occurred in a prior placebo controlled trial); and, (4) having 
to determine the margin such that it is not greater than the smallest effect size (that 
of the active drug vs. placebo) in prior placebo controlled trials [ 6 ]. In addition, 
there is some argument as to whether the analytic approach in equivalence/non-
inferiority trials should be ITT or Per Protocol (Compliers Only) [ 7 ]. While ITT is 
recognized as valid for superiority trials, the inclusion of data from patients not 
completing the study in equivalence/non-inferiority trials, could bias the results 
towards the treatments being the same, which could then result in an inferior treat-
ment appearing to be non- inferior or equivalent. On the other hand, using the 
compliers only (per protocol) analysis may bias the results in either direction. Most 
experts in the fi eld argue that the Per Protocol (some like to say non ITT analysis 
implying that it is as close to ITT analysis as possible) analysis is preferred for 
equivalence/non-inferiority trials but some still argue for the ITT approach [ 7 ]. 
Also, blinding does not protect against bias as much in equivalence/non-inferiority 
trials as it does with superiority trials- since the investigator, knowing that the trial is 
assessing equality may subconsciously assign similar ratings to the treatment 
responses of all patients. 
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    The Null Hypothesis in Equivalence/Non-inferiority Trials (Table  4.1 ) 

   It is a beautiful thing, the destruction of words…Take ‘good’    for instance, if you have a word 
like ‘good’ than is there need for the word “bad”? ‘Ungood’ will do just as well [ 8 ] 

   Recall that with traditional (superiority) hypothesis testing, the null hypothesis 
states that ‘there is no difference between treatment groups’ (i.e. New = Established, 
or placebo). Rejecting the null, then allows one to defi nitively state if one treatment 
is better than another (i.e. New > or < Established). The disadvantage is if at the conclusion 
of an RCT there is not evidence of a difference, one cannot state that the treatments 
are the same, or as good as one to the other. 

 Equivalence/non-inferiority testing in essence ‘fl ips’ the traditional null and alter-
native hypotheses. Using this approach, the null hypothesis is that the new treatment 
is worse than the established treatment (i.e. New < Old); that is, rather than assuming 
that there is no difference, the null hypothesis in equivalence/non- inferiority trials is 
that a difference exists and the new treatment is inferior. Some distinguish between 
equivalence and noninferiority, since strictly speaking equivalence means that the 
treatment effect is between the + and – margins and is therefore 2-sided, while nonin-
feriority implies that the new treatment is “no worse than the old treatment and there-
fore is 1-sided. However, many in the fi eld and an extension of the CONSORT 
Statement [ 9 ] suggest that two-sided confi dence intervals are appropriate for most 
noninferiority trials, so the need for separating the two approaches is questionable. 

 Just as in traditional testing, the two actions available resulting from statistical 
testing is: (1) reject the null hypothesis, or (2) failure to reject the null hypothesis. 
However, with noninferiority/equivalence testing, rejecting the null hypothesis is 
making the statement that the new treatment is not worse than established treatment, 
implying the alternative, that is, that the new treatment is as good as (i.e. New  ≧   
Established). Hence, this approach allows a defi nitive conclusion that the new treat-
ment is at least as good, or is not inferior to the established. 

 As mentioned before, a caveat is the defi nition of ‘as good as,’ which is defi ned 
as being in the ‘neighborhood’ or having a difference that is so small as to be con-
sidered clinically unimportant (generally, event rates within ±2 % – this is known 
as the equivalence or non-inferiority margin usually indicted by the symbol δ). The 
need for this ‘neighborhood’ that is considered ‘as good as’ exposes the fi rst short-
coming of equivalence/non-inferiority testing – having to make a statement that “I 
reject the null hypothesis that the new treatment is worse than the established, and 

    Table 4.1    Approaches to hypothesis testing in clinical trials   

 RCT Hypothesis testing 

 Hypothesis  Superiority  Equivalence/noninferiority 

 Null  New = Old  New < Old ± margin 
 Alternative  New > Old  New = Old 
 Null rejected  New is different than Old  New is at least as effective as Old 
 Failure to reject the null  Did not show that New is 

different that Old 
 Did not show that New is as effective as Old 
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accept the alternative hypothesis that it is as good  and by that I mean that it is 
within at least X % of the established ” (the wording in italics are rarely included in 
the conclusions of a manuscript). A second caveat of equivalence/non-inferiority 
testing is that no defi nitive statement can be made that there is evidence that the 
new treatment is better or worse. Just as in traditional testing, one never accepts the 
null hypothesis – one only fails to reject it. Hence if the null is not rejected, all one 
can really say is that there is no evidence in these data that the new treatment is as 
good as or better than the old treatment. In equivalence trials, the conventional 
signifi cance testing has little relevance, since failure to detect a difference does not 
imply equivalence. Rather, results should be reported with point estimates and con-
fi dence limits with the equivalence margin kept in mind. 

 In summary ,  the design of equivalence trials should mirror that of earlier successful 
trials of the active comparator as closely as possible [ 10 ] and, analysis strategies 
should not center on intention-to-treat (since ITT tends to reduce the difference 
between the intervention and control, it biases towards equivalence). Jones et al. 
also discuss why equivalence trials generally need to be larger than their placebo 
controlled counterparts, and why the standard of conduct needs to be especially 
high in terms of withdrawals, losses, and protocol deviations. 

 A potential concern has been raised over the rapid growth of noninferiority trials. 
For example, If novel therapy “A” is non-inferior to existing therapy “B” which 
itself was brought to market based upon non-inferiority data compared to therapy 
“C”, the non-inferiority margin becomes more diffi cult to ascertain. Some potential 
ways one can overcome this is by comparing A to C directly but this may not be 
feasible if B has supplanted C in clinical practice. Alternatively, the margin for 
comparing A to B can be set to narrow limits, but this will increase the sample size. 

 One might ask; which is the ‘correct’ approach, superiority or equivalence testing? 
There is simply no general answer to this question; rather, the answer depends on 
the major goal of the study. But, once an approach is taken, the decision cannot be 
changed in post-hoc analysis. That is, the format of the hypotheses has to be tailored 
to the major aims of the study and must then be followed. An example of one inno-
vative study in which the design combined a non-inferiority and superiority analysis 
is the Rivaroxaban versus Warfarin in Nonvalvular Atrial Fibrillation (ROCKET AF 
Study) which was a double-blind phase 3 study in more than 14,000 patients 
with atrial fi brillation. Patients were randomized to 20-mg rivaroxaban once daily 
(or 15 mg in patients with moderate renal impairment at screening) or to dose-
adjusted warfarin (titrated to an international normalized ratio [INR] of 2.5). In the 
ROCKET-AF trial, patients were randomly assigned to receive either rivaroxaban 
or warfarin. In a per protocol, as-treated analysis, rivaroxaban was found to be 
noninferior to warfarin with respect to the primary end point of stroke or systemic 
embolism. As a pivotal trial for the new oral factor Xa inhibitor, rivaroxaban met its 
primary end point showing the drug was noninferior to warfarin. Disappointingly, 
however, in the same study the intention-to-treat superiority analysis failed to show 
the drug had an advantage, statistically, over warfarin. In an on- treatment analysis 
addressing the superiority question, however, rivaroxaban fared better, the rates of 
the composite major and non-major clinically relevant bleeding were comparable in 
the rivaroxaban- and warfarin-treatment arms [ 11 ].    
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    Crossover Design 

 In crossover designs, both treatments (investigational and control) are administered 
sequentially to all subjects, and randomization occurs in terms of which treatment 
each patient receives fi rst. In this manner each patient serves as his/her own control. 
The two treatments can be an experimental drug vs. placebo or an experimental 
drug compared to an active control. The value of this approach beyond being able to 
use each subject as their own control, centers on the ability (in general) to use 
smaller sample sizes. For example, a study that might require 100 patients in a parallel 
group design might require fewer patients in a crossover design. But like any decision 
made in clinical research there is always a ‘price to pay.’ For example, the washout 
time between the two treatments is arbitrary, and one has to assume that they have 
eliminated the likelihood of carryover effects from the fi rst treatment period (plasma 
levels of the drug in question are usually used to determine the duration of the cross-
over period, but in some cases the tissue level of the drug is more important). 
Additionally, there is some disagreement as to which baseline period measurement, 
(the fi rst baseline period or the second baseline period-they are almost always not 
the same) should be used to compare the second period effects.  

    N of 1 Trials 

 During a clinical encounter, the benefi ts and harms of a particular treatment are para-
mount; and, it is important to determine if a specifi c treatment is benefi ting the patient 
or if a side effect is the result of that treatment. This is particularly a problem if ade-
quate trials have not been performed regarding that treatment. Inherent to any study is 
the consideration of why a patient might improve as a result of an intervention. Of 
course, what is generally hoped for is that the improvement is the result of the inter-
vention. However, improvement can also be a result of the disease’s natural history, 
placebo effect, or regression to the mean (see Chap.   7    ). Clinically (in a practice setting), 
a response to a specifi c treatment is assessed by a trial of therapy, but this is usually 
performed without rigorous methodological standards so the results may be in ques-
tion; and, this has led to the n of 1 trial (sometimes referred to as an RCT crossover 
study in single patients). In its usual form, n of 1 trials are randomized, double-blind, 
multiple crossover comparisons of an active drug against placebo in individual 
patients, and may be useful for determining individual treatment effects and as a tool 
to estimate heterogeneity of treatment effects in a population. An example of hetero-
geneity of treatment effects is the study by Pedro-Botet et al. [ 12 ]. Whereas the mean 
percent LDL-C response following 12 months of atorvastatin therapy (10 mg qd) was 
in the order of 35 %, the heterogeneity of effect is nicely portrayed in Fig.  4.2 .

   The requirements of the n of 1 design are: the patient receives active, investigational 
therapy during one period, and alternative therapy (e.g. placebo) during another 
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period as would occur with typical crossover designs. As is also true of crossover 
designs, the order of treatment from one patient to another is randomly varied, and 
other attributes-blinding/masking, ethical issues, etc.- are adhered to just as they are 
in the classical RCT. In contrast to the typical crossover design however, at a pre-
specifi ed point (perhaps a given number of crossovers, or degree of improvement or 
deterioration) the patient’s involvement in the study is stopped and their response 
held until all patients complete the trial. 

 There are at least three obvious sources of variability in clinical trials. Firstly, 
pure differences occur between patients: e.g. some are more seriously ill than 
others. Secondly, there is variability within patients: even given the same treatment 
they, or their measurements, may vary from time to time. Thirdly, some patients 
may react more favorably to a given treatment than other patients. The parallel 
group trial does not and cannot distinguish between types of variability; and, while 
the standard crossover trial will distinguish between the fi rst type of variability 
and the other two it does not distinguish easily between the second and third. The n 
of 1 trial does address some of these issues in variability. 

 The n-of-1 trial does have some characteristics of the “playing the winner, 
dropping the loser” adaptive design (see below), but unlike this latter design, the 
patient in the n-of-1 trial may end the study (for that patient) when a pre-specifi ed 
endpoint is reached. Some caveats to consider before designing an n-of-1 trial 
is that these trials are oriented towards symptomatic treatments that have rapid 
improvement upon treatment initiation, and rapid loss of effi cacy upon therapy 
discontinuation. The use of this trial design is thus problematic when dealing with 
chronic disease therapies in which the acute response does not predict long term 
outcome, when the anticipated treatment effect is diffi cult to differentiate from 
random fl uctuations of disease, and when treatment effects are small (i.e. hard to 
detect in an individual patient). 

Percent LDL-C response following 12 months of
atorvastatin therapy (10 mg qd)
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 An example of the n of 1 trial was reported by Mahon et al. [ 13 ] regarding the 
evaluation of the effi cacy of theophylline for irreversible chronic airfl ow limitation. 
As these authors state; “ though the effi cacy of theophylline for irreversible chronic 
airfl ow limitation has been established in conventional randomized controlled trials, 
its effi cacy in individual patients is often in doubt .” Patients fulfi lling the entry 
criteria for this trial (n = 31), were randomized by coin toss to either an n of 1 trial 
or standard treatment by a person unaware of their baseline characteristics. Some 
patients entered an open trial of theophylline that was given for 2 weeks at their 
previously used dose, and all patients were uncertain that theophylline was helpful 
while taking it openly. This was established by the patient not affi rmatively answer-
ing the question, “Are you certain that theophylline is helping you?” Each patient 
was then randomized to a double-blind, multiple crossover comparison of theophylline 
vs. placebo and their results were compared to use of theophylline as standard 
therapy (administered according to published guidelines). For the n of 1 trial partici-
pant’s, the order of theophylline and placebo were randomly determined and the 
physician monitoring the response was blinded as to treatment assignment. If deteri-
oration occurred the patient was immediately switched to the other treatment, while 
if on the other hand the deterioration occurred during the second treatment period 
they were switched back to the fi rst period treatment. In this way this study design 
of early switching or stopping treatment is designed to limit the ethical problem of 
a patient remaining symptomatic during alternate (particularly placebo) treatment. 

 Potentially, a number of different scenarios could occur as outlined in Table  4.2 . 
The difference in theophylline use at 6 months between the n of 1 trial and standard 
practice groups – without signifi cant changes in exercise capacity and quality of life 
– suggests that the suspected bias of standard practice towards unnecessary treat-
ment is real, by virtue of the much greater use of theophylline among standard 
practice patients (difference 47 %).

   In 2011, Gabler et al. [ 14 ] reviewed 108 n of 1 trials done between 1985 and 2010 on 
2,154 participants, and concluded that n of 1 trails are a useful tool for enhancing thera-
peutic precision in a wide range of conditions, and should be conducted more often.  

    Factorial Designs 

 Many times it is possible to evaluate 2 or even 3 treatment regimens in one study. In 
the Physicians Health Study, for example, the effect of aspirin and beta carotene was 
assessed [ 15 ]. Aspirin was being evaluated for its ameliorating effect on myocardial 

  Table 4.2    Possible outcomes 
and stopping rules in N of 1 
trials  

 Result  Continue  Stop 

 Benefi t likely, harm unlikely  × 
 Benefi t possible, harm unlikely  × 
 Benefi t possible, harm possible  × 
 Benefi t unlikely, harm unlikely  × 
 Benefi t possible, harm possible  × 
 Inconclusive result  × 

  Adapted from: Mahon et al. [ 13 ]  
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infarction, and beta carotene on cancer. Subjects were randomized to 1 of 4 groups; 
placebo and placebo, aspirin and placebo, beta carotene and placebo, and aspirin 
plus beta carotene. In this manner, each drug could be compared to placebo, and any 
interaction of the two drugs in combination could also be evaluated. This type of 
design certainly can add to the effi ciency of a trial, but this is counterbalanced by 
increased complexity in performing and interpreting the trial results. In addition, the 
overall trial sample size is increased (4 randomized groups instead of the usual 2), 
but the overall sample size is likely to be less than the total of two separate studies, 
one addressing the effect of aspirin and the other of beta carotene. In addition two 
separate studies would lose the ability to evaluate treatment interactions, if that is a 
concern. Irrespective, costs (if it is necessary to answer both questions) should be 
less with a factorial design compared to two separate studies, since recruitment, over-
head etc. should be less. The Woman’s Health Initiative is an example of a three-way 
factorial design [ 16 ]. In this study, hormone replacement therapy, calcium/vitamin 
D supplementation, and low fat diets were evaluated (see Fig.  4.3 ). Overall, factorial 
designs can be seductive but can be problematic, and it is best used for unrelated 
research questions, both as it applies to the intervention as well as the outcomes.

       Case-Crossover Design 

 Case-crossover designs are a variant, having components of a crossover, and a 
case–control design. The case cross over design was fi rst introduced by Maclure in 
1991 [ 17 ]. It is usually applied to study transient effects of brief exposures on the 
occurrence of a ‘rare’ acute onset disease. The presumption is that if there are pre-
cipitating events preceding the outcome of interest, these events should be more 
frequent during the period immediately preceding the outcome, than at a similar 
period that is more distant from the outcome. For example, if physical and/or mental 
stress triggers sudden cardiac death (SCD), one should fi nd that SCD occurred more 
frequently during or shortly after these stressors. In a sense, it is a way of assessing 

3-way factorial design of WHI

Calcium vs
no calcium

Low fat vs regular diet

HRT vs no
HRT

  Fig. 4.3    Three-way Latin 
square design       
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whether the patient was doing anything unusual just before the outcome of interest. 
As mentioned above, case-crossover studies are related to a prospective crossover 
design in that each subject passes through both the exposure (in the case-crossover 
design this is called the hazard period) and ‘placebo’ (the control period). The case-
cross over design is also related to a case–control study in that it identifi es cases and 
then looks back for the exposure (but in contrast to typical case–control studies, in 
the case-crossover design the patient serves as their own control). Of course, one 
needs to take into account the times when the exposure occurs but is not followed 
by an event (this is called the exposure-effect period). The hazard period is defi ned 
empirically (one of this designs limitations, since this length of time may be critical 
yet somewhat arbitrary) as the time period before the event (say an hour or 30 min) 
and is the same time given to the exposure-effect period. A classic example of the 
case-crossover design was reported by Hallqvist et al., where the triggering of an MI 
by physical activity was assessed [ 18 ]. To study possible triggering of fi rst events of 
acute myocardial infarction by heavy physical exertion, Halqvist et al. conducted a 
case-crossover analysis. Interviews were carried out in 699 myocardial infarction 
patients. The relative risk from vigorous exertion was 6.1 (95 % confi dence interval: 
4.2, 9.0), while the rate difference was 1.5 per million person-hours [ 18 ]. 

 In review, the strengths of the case-crossover study design include using subjects 
as their own control (self matching decreases between-person confounding, although 
if certain characteristics change over time there can be individual confounding), and 
improved effi ciency (since one is analyzing relatively rare events). In the example 
of the Halqvist study, although MI is common, MI just after physical exertion is not 
[ 18 ]. Weaknesses of the study design, besides the empirically determined time for 
the hazard period, include: recall bias, and that the design can only be applied when 
the time lag between exposure and outcome is brief and the exposure is not associated 
with a signifi cant carryover effect.  

    Externally Controlled Trials (Before-After Trials) 

 Using historical control’s as a comparator to the intervention is problematic, since 
the natural history of the disease may have changed over time, and certainly sample 
populations may have changed (e.g. greater incidence of obesity, more health awareness, 
new therapies, etc. now vs. the past). However, when an RCT with a concomitant 
control cannot be used (this can occur for a variety of reasons-see example below) 
there is a way to use a historical control that is not quite as problematic. Olson and 
Fontanarosa cite a study by Cobb et al. to address survival during out of hospital 
ventricular fi brillation [ 19 ]. The study design included a pre-intervention period 
(the historical control) during which emergency medical technicians (EMT) adminis-
tered defi brillation as soon as possible after arriving on scene of a patient in cardiac 
arrest. This was followed by an intervention period where the EMT performed CPR 
for 90 s before defi brillation. In this way many of the problems of typical historical 
controls can be overcome in that in the externally controlled design, one can use the 
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same sites and populations in the ‘control’ and intervention groups as would be true 
of a typical RCT, it is just that the control is not concomitant. Another example 
is that of Sipilä et al. who assessed the impact of a guideline implementation 
intervention on antihypertensive drug prescribing; specifi cally, to assess the effects 
of a multifaceted (education, audit, and feedback, local care pathway) quality 
program. The proportions of patients receiving specifi c antihypertensive drugs 
and multiple antihypertensive drugs were measured before and after the intervention 
for three subgroups of hypertension patients: hypertension only, with coronary heart 
disease, and with diabetes.  

    Nonconventional Clinical Trial Designs 

 As the fi eld of clinical trial methodology evolves, the need for alternative designs 
increases. This is reviewed by Howard [ 20 ] as it related to studies of stroke, but clearly 
it is not limited to that area. Howard outlined four such nonconventional approaches: 
dose selection trials; adaptive clinical trials; shift analysis; and Bayesian analysis. 

 Briefl y, dose selection trials allow for dose adjustment as the trial proceeds 
primarily based upon the occurrence and frequency of any adverse effects at the 
dose being studied (unless the event rate is so low that it is not likely to be seen in a 
limited number of patients). The intent is to fi nd the “optimal” dose (i.e. the highest 
potential dose that is associated with a low occurrence of adverse drug events). 
Adaptive clinical trials refers to a study design that is adjusted based upon data col-
lected initially (sometimes confused with group- sequential studies) [ 21 ]. As Howard 
noted, “ Shih eloquently relates that group sequential methodology has the goal of 
saving lives or resources, whereas the adaptive clinical trial approach has the goal 
of saving the study ” [ 21 ]. 

 “Shift analysis” allows for a reduction in sample size or gain in power, but 
further discussion is beyond the scope of this book. Bayesian analysis (Also see 
Chap.   14    ) is a potentially rapidly rising approach in clinical trials. Simplifying, the 
characteristic that defi nes any statistical approach is how it deals with uncertainty 
(see Chap.   18    ). The traditional approach to dealing with uncertainty is the frequentist 
approach, which deals with fi xed sample sizes based upon prior data; but otherwise 
the information present from prior studies is not incorporated into the study being 
now implemented. That is, with the frequentist approach “the difference between 
treatment groups is assumed to be an unknown and fi xed parameter”. A Bayesian 
approach uses previous data to develop a prior distribution of potential differences 
between treatment groups and updates this data with that collected during the trial 
being performed to develop a posterior distribution (this is akin to the discussion in 
Chap.   14     that addresses pre and post test probability). 

 There are strong advocates of the frequentist and the Bayesian approach, which 
should indicate that neither is perfect and that one or the other may be preferable in 
certain situations. The argument then devolves to not which is better, but in which 
circumstance might one be preferable. Further discussion is also beyond this books 
scope, but should be of interest to the more advanced student. 
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    Adaptive Designs 

 It is recognized that increased spending on biomedical research has not increased 
success rates of drug development-due to: diminished margin for improvement, 
chronic diseases are harder to study, rapidly escalating costs, and pharmaceutical 
company mergers that have decreased new-drug candidates. This has led to more 
innovative designs for evaluating drug effi cacy. Adaptive designs give fl exibility for 
identifying the optimal clinical benefi t of a test treatment without  “  signifi cantly  ”  
undermining the validity and integrity of the intended study. Some examples are the 
use of adaptive randomization; group sequential analysis (discussed in Chap.   9    ), 
and sample size re-estimation. Adaptive designs can be prospective (e.g. adaptive 
randomization, stopping a trail early due to safety, futility, or effi cacy, dropping the 
loser (playing the winner); concurrent (e.g. modifying inclusion/exclusion criteria, 
modifying a dose/regimen and treatment duration); or, retrospective (e.g. changes in 
the statistical plan prior to database lock or unblinding of treatment codes). Whereas 
some adaptive changes require no or little statistical adjustment (e.g. dropping 
a treatment arm, modifying dosing paradigms, modifying randomization ratios; 
modifying subject selection, modifying visit schedules, or modifying study eligibility 
criteria), some do (e.g. requiring statistical adjustments, resizing a study, and allowing 
for the inclusion of subjects who participated in earlier drug development studies 
in a later development study – although this not generally recommended). What 
generally cannot be recommended in adaptive designs are: changes in the primary 
endpoint, and more than 1 adjustment to sample size. 

 One example of an adaptive design and to be contrasted to n of 1 trials (see 
above) is “playing the winner – dropping the loser”, (this is an example of adaptive 
randomization). This design allows for dropping inferior treatment responses and 
adding additional arms, so it is useful, for example, in early drug development 
studies when there are uncertainties regarding dose levels. An example of how 
this is operationalized is starting out with a probability of 50 % randomization to 
both groups (allocation ratio of 1:1), and you randomize a patient to one of the 
treatments. If they do well, you increase the likelihood that the next randomiza-
tion will be to the same group, the basic idea is to keep adjusting the likelihood 
randomization to a specifi c treatment group in order to increase the chances of 
the benefi cial treatment going to the winner. For example, choose a staring base, 
say 20 subjects, and a 1:1 randomization scheme (10 A/20 A + B). One then ran-
domizes a patient, and one assumes that they went to “A” and did well. Then the 
likelihood of the next patient being randomized to A would change from 50:50 
to 52:48. Let’s assume that the next patient despite increased odds of going to 
A in fact gets randomized to B and does poorly. We now further increase the 
likelihood going to “A” (say to 55 %). If a patient is randomized to B and does 
well, one adjusts the chances that the next patient will be randomized to B, and so 
on. Over time, if one group is doing better the likelihood of a patient being randomized 
to that group increases.  
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    Registry-Based Randomized Clinical Trials (RRCT) 

 The Thrombus Aspiration in ST Elevation Myocardial Infarction in Scandinavia 
Trial (TASTE) was reported in 2013 and the study design caused a lot of excitement 
[ 22 ]. The TASTE trial enrolled ST elevation MIs as they entered a long-standing 
Swedish Web System registry for another goal. Based upon that registry (which 
provided comprehensive data collection and follow-up, TASTE built a web-based 
randomization that allocated 7,200 patients to either treatment by thrombus 
aspiration followed by PTCA or PCTA only. The enthusiasm about the design was 
that it allowed for completeness of follow-up at a lower cost, and no commercial 
involvement. As Laure and D’Agostino point out, “ with this clever design, which 
leveraged clinical information that was already being gathered for the registry and 
for other preexisting databases, the investigators were able to quickly identify 
potential participants, to enroll thousands of patients in little time, to avoid fi lling 
out long case report forms, to obtain accurate follow-up with minimal effort, and 
to report their fi ndings, all for less than a typical RO1 grant ” [ 23 ]. They do go on to 
point out a number of potential problems with the RRCT, however, including the 
quality of the data, missing data, privacy, blinding etc. But, the RRCT potentially 
presents an alternative to the standard RCT in countries with large observational 
registry programs.      
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    Abstract     Postmarketing research is a generic term used to describe all activities 
after the drug approval by the regulatory agency, such as the Food and Drug 
Administration (MedWatch: voluntary reporting by health professionals.   http://
www.fda.gov/medwatch/report/hcp.htm    . Accessed 12 Oct 2006), European 
Medicines Agency (EMA), or other regulatory agencies. Postmarketing studies 
concentrate much more (but not exclusively) on safety and effectiveness, and they 
can contribute to the drugs implementation through labeling changes, length of the 
administrative process, pricing negotiations, and marketing. However, the fact that 
not all FDA mandated (classical phase IV trials) research consists of randomized 
controlled trials (RCTs), and not all postmarketing activities are limited to safety 
issues (pharmacovigilance), these terms require clarifi cation. This chapter attempts 
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to clarify the confusing terminology; and, to discuss many of the postmarketing 
research designs-both their place in clinical research as well as their limitations.  

  Keywords     Postmarketing research   •   Surveillance study   •   Pharmacovigilance study   
•   Phase 4 trial   •   Large simple trial   •   PROBE design   •   Effectiveness (pragmatic) trial   
•   Drug utilization/pharmacoepidemiologic study   •   Comparative effectiveness 
research  

     In the past, postmarketing research, postmarketing surveillance and pharmacovigi-
lance were synonymous with phase IV studies because the main activities of the 
regulatory agency (e.g. FDA) were focused on the monitoring of adverse drug 
events and inspections of drug manufacturing facilities and products [ 3 ]. However, 
the fact that not all FDA mandated (classical phase IV trials) research consists of 
randomized controlled trials (RCTs), and not all postmarketing activities are limited 
to safety issues (pharmacovigilance), these terms require clarifi cation. Information 
from a variety of sources is used to establish the effi cacy and short-term safety 
(<3 years) of medications used to treat a wide range of conditions. Premarketing 
studies (Table  5.1 ) consist of phase I-III trials, and are represented by pharmacokin-
etic and pharmacodynamic studies, dose ranging studies, and for phase III trials the 
gold standard randomized, placebo-controlled (or active controlled), double blind, 
trial (RCT). Approximately only 20 % of the drugs that enter phase I are approved 
for marketing [ 3 ]. RCTs remain the ‘gold standard’ for assessing the effi cacy and to 
a lesser extent, the safety of new therapies; however, they do have signifi cant limi-
tations that promote caution in generalizing their results to routine clinical practice 
[ 2 ,  3 ]. For example, because of the strict inclusion and exclusion criteria mandated 
in most controlled studies, a limited number of patients who are relatively homoge-
neous are enrolled. Elderly patients, women, pregnant women, children, and those 
deemed not competent to provide informed consent are often excluded from such 
trials [ 4 – 7 ]. RCTs may also suffer from selection or volunteer bias. For example, 
clinical studies that include extended stays in a clinic may attract unemployed 
patients, and studies that involve a free physical examination may attract those con-
cerned that they are ill. Studies that offer new treatments for a given disease may 
inadvertently select patients who are dissatisfi ed with their current therapy [ 7 ].

   RCTs have other limitations as well. For example, the stringent restrictions 
regarding concomitant medications and fi xed treatment strategies bear only modest 
resemblance to the ways in which patients are treated in actual practice [ 8 ,  9 ]. The 
aforementioned difference creates a situation dissimilar from routine clinical prac-
tice in which many or even most patients are taking multiple prescription and over-
the-counter medications or supplements to manage both acute and chronic conditions 
[ 10 ,  11 ]. RCTs also generally include intensive medical follow-up in terms of num-
ber of medical visits, number and/or type of tests and monitoring events, that is 
usually not possible in routine clinical care [ 12 ]. Also, unintended adverse events 
(UAEs) are unlikely to be revealed during phase III trials since the usual sample 
sizes of such studies and even the entire New Drug Application (NDA) may range 
from hundreds to only a few thousand patients. For example, discovering an UAE 
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with a frequency of 0.1 % would require a sample size of more than 10,000 participants 
(Table  5.2 ). Castle [ 13 ] further elaborated on this issue by asking the question ‘how 
large a population of treated patients should be followed to have a good chance of 
picking up one, two, or three cases of an adverse reaction?’ He notes that if one 
defi nes ‘good chance’ as a 95 % probability, one has to still factor in the expected 
incidence of a naturally occurring event that simulates the adverse event of interest. 
If one assumes no background incidence of such events, and the expected incidence 
of the adverse event of interest is 1 in 10,000, then by his assumptions, it would 
require 65,000 patients to pick up an excess of three adverse events.

   Phase III trials also are not useful for detecting UAEs that occur only after expos-
ure to long-term therapy, because of the insuffi cient length of follow-up time of the 
majority of phase III trials, nor do they provide information on long-term effective-
ness and safety. All of the restrictions characteristic of controlled clinical studies 
may result in overestimation of the effi cacy and underestimation of the potential for 
UAEs of the medication being evaluated [ 8 ,  12 ,  14 ]. As a result of these limitations, 
additional complementary approaches to evaluation of medication effi cacy, effect-
iveness and safety are taking on increasing importance. 

 Postmarketing research (Table  5.3 ) is a generic term used to describe all activ-
ities after drug approval by the regulatory agency, such as the Food and Drug 
Administration [ 15 ]. Other regulatory agencies, such as the EMA, use the term 
post-authorization studies instead of post-marketing studies [ 16 ]. Postmarketing 
studies concentrate much more (but not exclusively) on safety and effectiveness, 
and they can contribute to the drugs implementation through labeling changes, 
length of the administrative process, pricing negotiations, and marketing. If post- 
authorization studies are focused on safety they are then known as post- authorization 
safety studies (PASS), and these can be interventional or non-interventional. 
According to the EMA, a PASS refers to “ any study relating to any authorized 
medicinal product conducted with the aim of identifying or quantifying a safety 
hazard, confi rming the safety profi le of the medicinal product, or measuring the 
effectiveness of risk management ” [ 17 ].

  Table 5.1    Premarketing 
study designs for FDA 
approval  

 I. Phase I-III studies 
  a.  Pharmacokinetic and pharmacodynamic studies 
  b. Dose-ranging studies 
  c. RCTs (Effi cacy studies) 
   1. With or without crossover designs 
   2. Drug withdrawal designs 
   3. Placebo or active controls 

   Table 5.2    Estimated number or subjects (Study size) to fi nd an adverse event of stated frequency   

 Frequency of ADE  Estimated number of subjects  Trial type 

 1 % (1/100)  1,000  Clinical trial 
 0.1 % (1/1,000)  10,000  Large clinical trial 
 0.01 % (1/10,000)  100,000  Post market surveillance 
 0.001 % (1/100,000)  1,000,000  Long term surveillance 
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   The most commonly used approaches for monitoring drug safety in humans are 
based on spontaneous reporting systems, automated linkage data, patient registries, 
case series and case reports, case–control studies, and data obtained directly from 
an interventional study. Since there are major limitations from relying on case 
reports or on voluntary reporting, postmarketing research has become an integral 
part of the drug evaluation process for assessing adverse events [ 18 – 23 ]. However, 
falling under the rubric of postmarking research is a wide variety of study designs 
and approaches, each with its own strengths and limitations. Postmarketing studies 
(Fig.  5.1  and Table  5.3 ) are not only represented by a much broader array of study 
designs, they have clearly differentiated goals compared to premarketing studies. 
Examples of study designs that might fall under the rubric of postmarketing research 
are phase IV clinical trials, practice-based clinical experience studies (mostly 
extinct now), large simple trials (LSTs), equivalence trials, post-marketing surveil-
lance studies such as effectiveness studies, pharmacovigilance studies, PASS, and 
pharmacoeconomic studies.

   There are several initiating mechanisms for postmarketing studies: (1) those 
required by a regulatory agency as a condition of the drug’s approval    (these are 
referred to as postmarketing commitments or PMC’s); (2) those that are initiated 
by the pharmaceutical company to support various aspects of the development of 
that drug; (3) investigator initiated trials that may be as scientifi cally rigorous as 

    Table 5.3    Postmarketing 
study designs  

 I. FDA ‘mandated or negotiated’ studies (phase IV) 
  a.  Any study design may be requested including 

studies of 
   i. Drug-drug interactions 
   ii. Formulation advancement 
   iii. Special safety 
   iv.  Special populations (e.g. post- authorization 

safety studies-PASS) 
  b. ‘phase V’ trials 
 II. Non FDA ‘mandated or negotiated’ studies 
  a. RCTs 
   i. Superiority vs. equivalence testing 
   ii. Large simple trials 
   iii. PROBE designs 
   iv. ‘phase V’ trials 
  b. Surveillance studies 
   i. Pharmacovigilance studies 
   ii. Effectiveness studies 
   iii. Drug utilization studies 
   iv. Observational epidemiology studies 
 III. Health Services Research (HSR) 
 IV. Health Outcomes Research (HOR) 
 V. Implementation research 

  Note: We have not included a discussion of HSR or 
HOR in this review. Implementation Research will be 
discussed in Chap.   13      
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phase III RCTs, but occur after drug approval (a recent example is some of the 
Vioxx studies that ultimately questioned the drugs safety); and, (4) investigator 
initiated observational studies. The more scientifi cally rigorous postmarketing 
studies (particularly if they are RCTs) are sometime referred to as ‘phase V’ trials. 
This review will discuss each of the common types of postmarketing research 
studies and examples will be provided in order to highlight some of the strengths 
and limitations of each. 

 Sweeping regulatory changes are pushing Pharma to do more than has been expected 
of them in the past. Additional questions are being asked such as: How do drugs com-
pare with other drugs marketed for the same indication (i.e. comparative effectiveness 
trials); and, how do drugs differ among subpopulations (e.g. elderly, pediatric patients, 
pregnant women, patients with renal or hepatic impairment etc.), and how does the new 
drug perform under real life conditions (i.e. effectiveness trials). 

    FDA ‘Mandated or Negotiated’ Studies (Phase IV Studies) 

 Phase IV studies are most often concerned with safety issues and usually have pro-
spectively defi ned end-points aimed at answering safety questions. Any type of 
study (these include standard RCTs, observational studies, drug-drug interaction 
studies, special population studies, etc.-See Table  5.3 ) may be requested by the FDA 
upon NDA approval; and, these are frequently called Phase IV Post Marketing 
Commitment Studies (PMCs), and as mentioned above if they are focused on safety 
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  Fig. 5.1    Contrasts between pre- and post-marketing studies       

 

5 Phase 4 (Postmarketing) Research



96

they are also known as PASS. Phase IV PMCs are studies required of, or agreed to 
(i.e. ‘negotiated’), by the sponsor at the time of NDA approval and this is particu-
larly true of those drugs that have had accelerated approval. Phase IV clinical trials 
usually include a larger and more heterogeneous population than phase III trials 
with emphasis on reproducing usual clinical care conditions [ 24 ]. For some special 
populations, phase IV commitment trials represent a unique opportunity to deter-
mine the safety and effi cacy of a drug [ 25 ]. This is particularly important for pedi-
atric populations because only a small fraction of all drugs approved in the United 
States in the early 1990s have been studied in pediatric patients, and more than 70 % 
of new molecular entities were without pediatric labeling. Since 1994, the FDA 
began some initiatives to improve pediatric use information in drug labeling, by 
issuing a fi nal rule revising the requirements for the Pediatric Use subsection of 
labeling (59 FR 64242, December 13, 1994). The regulation was designed to pro-
mote the inclusion of pediatric information from new clinical trials, as well as from 
previously published studies and case reports, in an effort to provide pediatric 
 dosing and monitoring information in labeling; and, it required drug manufacturers 
to survey existing data and determine whether those data were suffi cient to support 
additional pediatric use in a drugs labeling. On December 2nd, 1998 (23 FR 66632) 
the FDA issued the fi nal rule (so-called pediatric rule) “Regulations Requiring 
Manufacturers to Assess the Safety and Effectiveness of New Drugs and Biological 
Products in Pediatric Patients”. The pediatric rule was suspended by court order on 
October 17th 2002 [ 26 ]. Since then, many post-approval commitments have been 
required by the FDA and new clinical trials in pediatric populations are underway. 
It is evident that adequately designed phase IV clinical trials will impact drug utili-
zation and prescriber’s decisions particularly in children. For example, Lesko and 
Mitchell designed a practitioner-based, double blind, randomized trial in 27,065 
children younger than 2 years old to compare the risk of serious adverse clinical 
events of ibuprofen versus acetaminophen suspension. They found an overall small 
risk of serious adverse events, but no difference by medication [ 27 ]. Phase IV com-
mitments trials have also been used in exploratory special population studies, such 
as neonatal abstinence syndrome [ 28 ], and pregnant opiate-dependency [ 29 ,  30 ]. 
In those studies, the main research question focused on the effi cacy and/or safety of 
a drug in small number of patients. For example, in the pregnant-opiate dependent 
study, Jones successfully transferred four drug-dependent pregnant inpatients from 
methadone to morphine and then buprenorphine [ 31 ]. 

 An analysis of phase IV studies during 1987–1993 showed that each of the phase 
IV drugs had, on average, a commitment to conduct four studies [ 28 ]. The regulations 
regarding phase IV studies began in 1997 as part of the FDA Modernization Act. As a 
result of that act, the FDA was required to report annually on the status of postmarket-
ing study commitments. In 1999 (a rule which became offi cially  effective in 2001), 
the FDA published rules and formatting guidelines for the phase IV reports. Although 
these studies were a ‘requirement’ of NDA approval and are called ‘commitment’ 
studies, signifi cant problems exist. In March 2006, the Federal Register reported on 
the status of postmarketing study commitments. Of 1,231  commitments, 787 were 
still pending (65 %), 231 were ongoing, and only 172 (14 %) were completed. The 
problem associated with these studies has been extensively discussed. For example, a 
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recommendation by Public Citizen (a public advocacy group) followed the release of 
this FDA report, and noted that the FDA needs the ability to impose fi nancial penalties 
as an incentive for drug companies to submit required annual post-market study 
reports on time. Peter Lurie, deputy director of Public Citizen’s Health Research 
Group, told FDA news;  ‘The only thing the agency can do is take the drug off the 
market, which is a decision that often would not serve the public health very well ’ 
[ 32 ]. In addition, the only mechanism that was available to remove a drug from the 
market was through a diffi cult legal channel. The FDA did not have the authority itself 
to withdraw a drug from the market, or suspend sales of a drug. In fact, the FDA could 
not even compel completion of a post- marketing study agreed upon at the time of 
approval, limit advertising of the drug, compel manufacturers to send out ‘Dear 
Doctor’ letters, or revise the product label of a drug without the approval of the com-
pany involved. Lurie noted that  ‘the great majority of postmarketing studies address 
safety issues, at least in part, so patients and physicians are denied critical safety 
information when these studies are not completed in a timely fashion .’ Lurie also criti-
cized the FDA’s report on the status of postmarketing commitments, noting there is no 
way of knowing what the deadlines are for each stage of the commitment and if they 
are being met or not, and for inadequate tracking systems for those who are initiating 
and those ongoing trials. In summary, in the past, the FDA set the schedule for fi rms 
to complete a battery of studies on products that require a phase IV study. The agency 
then evaluated each study to see if the drug company had fulfi lled the requirements of 
the study commitment. If the company failed to submit data on time, the commitment 
was considered delayed. The reports were to contain information on the status of each 
FDA-required study specifi cally for clinical safety, clinical effi cacy, clinical pharma-
cology, and non-clinical toxicology. The pharmaceutical fi rm then continued to sub-
mit the report until the FDA determined that the commitment had been fulfi lled or that 
the agency no longer needed the reports. 

 In 2007, the FDA Amendments Act of 2007 was signed into law. Among other 
things, the Law addressed the need for ongoing evaluations of drug safety after drug 
approval, a way of addressing safety signals and performing high quality studies 
addressing those signals, new authority to require post marketing studies, civil pen-
alties for non-compliance, the registration of all phase 2–4 trials, and the designa-
tion of some of the user’s fees (10 %) to be earmarked for safety issues.  

    Practice Based Clinical Experience Studies 

 Physician Experience Studies (PES) were generally initiated by the pharmaceutical 
company that had marketed a particular drug. The name is descriptive of the intent 
of the study and in the past this was the type of study frequently associated with the 
term phase IV study. PES is generally not a RCT, and, therefore, has been most 
often criticized for its lack of scientifi c rigor. It does, however, in addition to provid-
ing physicians with experience in using a newly marketed drug, expose a large 
number of patients to that drug, potentially providing ‘real world’ information about 
the drugs adverse event profi le. 

5 Phase 4 (Postmarketing) Research



98

 An example of a PES is that of graded release diltiazem. The Antihypertensive 
Safety and Effi cacy and Physician and Patient Satisfaction in Clinical Practice: Results 
from a Phase IV Practice-based Clinical Experience Trial with Diltiazem LA (DLA). 
The study enrolled a total of 139,965 patients with hypertension, and involved 15,155 
physicians who were to perform a baseline evaluation and 2 follow- up visits [ 30 ]. 
Usual care treatment any other drug therapy was allowed as long as they were candi-
dates for the addition of DLA. The potential to record effi cacy and safety data for this 
large number of ‘real world’ patients was great. However, as a characteristic of these 
kinds of studies, only 50,836 (26 %) had data recorded for all three visits, and data on 
ADEs were missing for many as well. On the other hand, ADEs for 100,000 patients 
were available, and none of the ADEs attributed to DLA were reported in more than 
1 % of patients, supporting the general safety profi le of DLA. In recent years congres-
sional oversight and increased criticism of this type of study with the accusation that 
it was merely a “marketing ploy” has all but stopped this type of approach.  

    Non FDA Studies 

 Non FDA mandated postmarketing studies may utilize the wide array of research 
designs, and should not be confused with PES studies. Examples of postmarketing 
studies include (1) RCTs with superiority testing, equivalence testing, large simple 
trials, ‘phase V’ trials and (2) surveillance studies such as effectiveness studies, 
drug utilization trials, epidemiologic observational studies (that concentrate on a 
safety profi le of a drug), and classical RCTs. Not included in this present review is 
health services research, and health outcomes research that can also be studies of 
marketed drugs. Following is a discussion of some of the more common postmar-
keting research study designs. Postmarketing research falls under the umbrella of 
pharmacoepidemiologic studies (See Chap.   12    ).  

    Equivalence and Noninferiority Trials 

 As new drugs are fi nding it increasingly diffi cult to demonstrate superiority,  equivalence 
trials are becoming more common. These trials are discussed in Chaps.   3     and   4    .  

    Large Simple Trials 

 Not infrequently, an already marketed drug needs to be evaluated for a different condi-
tion than existed for its approval, or at a different dose, different release system, etc. In 
the aforementioned instance, the FDA might mandate a phase IV RCT that has all the 
characteristics of a classical phase III design. Some have suggested that this type of 
aforementioned study be termed a phase V study to distinguish it from the wide variety 
of other phase IV trials with all their attendant limitations and negative perceptions. 
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 One type of postmarketing research is the Large Simple Trial (LST). The con-
cept of large simple clinical trials has become more popular (as has been said the 
Large Simple Trial is an oxymoron no more). The idea is that it is increasingly 
necessary to just demonstrate modest benefi ts of an intervention, particularly in 
common conditions. The use of short-term studies, implemented in large popula-
tions is then attractive. In LSTs, the presumption is that the benefi ts are similar 
across participant types, so that the entry criteria can be broad, and the data entry 
and management can be simplifi ed, and the cost thereby reduced (this then over-
comes one of the limitations of the usual RCT –the homogeneity of the sample 
population). This model further depends on a relatively easily administered inter-
vention and an easily ascertained outcome; but if these criteria are met, the size of 
the study also allows for a large enough sample size to assess less common ADE’s. 

 The LST is also becoming more popular for certain phase III trials and RCTs in 
general. In 2013, the Institute of Medicine convened a panel that called for more LSTs. 
This report, acknowledged that one of the most persistent problems in medical care is 
the lack of evidence for clinical decisions, and one of the big issues has been the dif-
fi culty of answering the simplest questions (let alone solving complex ones). The 
Institute of Medicine report also defi ned LSTs broadly to encompass trials with sim-
ple randomization, broad eligibility, and enough participants to distinguish small to 
moderate effect; to focus on outcomes important to patient care, and to use simplifi ed 
data collection. (The National Academies Press at   http://www.nap.edu/catalog.
php?record_id=18400    ) In large part the LST has also been suggested as a replacement 
for RCTs because of the increasing complexity and burden attendant with RCTs, a 
complexity that has been increasing over time (Table  5.4 ) An example of the organiza-
tion for this type of trial is the Clinical Trial of Reviparin and Metabolic Modulation 
of Acute Myocardial Infarction (CREATE), as discussed by Yusuf et al. [ 33 ]. In this 
trial over 20,000 subjects from 21 countries were enrolled in order to compare two 
therapies-glucose-insulin-potassium infusion, and low molecular weight heparin.

       Prospective, Randomized, Open-Label, Blinded 
Endpoint (PROBE) Design 

 A variation of the LST that also addresses a more ‘real-world’ scenario is the pro-
spective randomized open-label blinded endpoint design (PROBE design). By using 
open-label therapy, the drug intervention and its comparator can be clinically titrated 

   Table 5.4    RCTs: Rising complexity and burden of RCTs   

 Median/per protocol  2000–2003     2004–2007  2008–2011 

 Unique Procedures  20.5  28.2  30.4 
 Total Procedures  105.9  158.1  166.6 
 Work Burden (Units)  28.9  44.6  47.5 
 Eligibility Criteria  31  38  35 
 CRF Pages  55  180  169 

  National Academy of Sciences: Large Simple Trials;   http://www.nap.edu/catalog.php?record_id=18400     
  RCT  Randomized controlled trial,  CRF  Case report form  
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as would typically occur in a doctor’s offi ce (as compared to the fi xed dosing  regimens 
used in most RCTs). Of course, since it is open-label, blinding is lost with the PROBE 
design, but only as to the therapy. Blinding is maintained as to the ascertainment of 
the outcome. To test whether the use of open-label vs. double-blind therapy affected 
outcomes differentially, a meta-analysis of PROBE trials and double- blind trials in 
hypertension was reported by Smith et al. [ 34 ]. They found that changes in mean 
ambulatory blood pressure from double-blind controlled studies and PROBE trials 
were statistically equivalent.  

    Post-authorization (Surveillance) Studies 

 Pharmacovigilance deals with the detection, assessment, understanding and prevention 
of adverse effects or other drug-related problems. Traditionally, pharmacovigilance 
studies have been considered as part of the postmarketing phase of drug develop-
ment because clinical trials in the premarketing phase are not powered to detect all 
adverse events, particularly uncommon adverse effects. It is known that in the 
occurrence of adverse drug reactions, other factors are involved such as the indi-
vidual variation in pharmacogenetic profi les, drug metabolic pathways, the immune 
system, and drug-drug interactions. Additionally, the dose range established in 
 clinical trials is not always representative of that used in the postmarketing phase. 
Cross et al. analyzed the new molecular entities approved by the FDA between 1980 
and 1999 and they found that dosage changes occurred in 21 % of the approved 
entities, and of these, 79 % were related to safety. The median time to change fol-
lowing approval ranged from 1 to 15 years and the likelihood of a change in dosage 
was three times higher in new molecular entities approved in the 1990s compared to 
those approved in the 1980s [ 35 ] and, this would suggest that a wider variety of dos-
ages and diverse populations need to be included in the premarketing phase and/or 
additional studies should be requested and enforced in the postmarketing phase. 
Further amplifying this point is a recent FDA news report [ 36 ] in which it was noted 
that there had been 45 Class I recalls (very serious potential to cause harm, injury, 
or death) in the last fi scal year (in many of the past years there had been only 1 or 2 
such recalls) and also 193 class II recalls (potential to cause harm). 

 A clinical trial in 8,076 patients with rheumatoid arthritis that examined the 
 association of rofecoxib (Vioxx) vs. naproxen on the incidence of gastrointestinal 
events, reported a higher percentage of incident myocardial infarction in the rofecoxib 
arm compared to naproxen during a median follow-up of 9 months that then questioned 
the drug safety of COX 2 inhibitors [ 37 ,  38 ]. The cardiac toxicity of rofecoxib was cor-
roborated in a meta-analysis [ 39 ] database study [ 38 ], and in the APPROVe trial 
(Adenomatous Polyps Prevention on Vioxx) [ 40 ], a colorectal adenoma chemopreven-
tion trial in which cardiovascular events were found to be associated with rofecoxib 
[ 38 ]. The APPROVe trial is an example of phase IV trial that was organized for another 
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potential indication of rofecoxib, the reduction of the risk of recurrent adenomatous 
polyps among patients with a history of colorectal  adenomas. In that multicenter, ran-
domized, placebo-controlled, double-blind study, 2,600 patients with history of 
colorectal adenoma was enrolled, but after 3,059 patient-years of follow-up there was 
an increased risk of cardiovascular events. All of the above evidence resulted in the 
fi nal decision of the manufacturer to withdraw rofecoxib from the market [ 41 ]. 

 The type of scandals that are associated with drug safety and the pressure of 
 society, have contributed to the development of initiatives for performing more 
pharmacovigilance studies. Some countries, for example, are now requiring manu-
facturers to monitor the adverse drug events of approved medications. In France, 
manufacturers must present a pre-reimbursement evaluation and a postmarketing 
impact study [ 42 ]. In fact, France has a policy for the overall assessment of the 
public health impact of new drugs [ 42 ]. 

 In the United States, the recent withdrawals from the market (particularly for 
drugs that were approved through the expedited process by the FDA) indicate a 
need to start pharmacovigilance programs at the earliest stages of drug develop-
ment, encouraging the identifi cation of safety signals, risk assessment, and com-
munication of those risks. The FDA has started developing algorithms to facilitate 
detection of adverse-event signals using the ‘MedWatch’, a spontaneous reporting 
adverse event system, to institute risk-management measures. 

 The ‘MedWatch’ is a voluntary system where providers, patients or manufactur-
ers can report serious, undesirable experiences associated with the use of a medical 
product in a patient. An event is considered serious if it is associated with patient’s 
death or increases the risk of death; the patient requires hospitalization, the product 
causes disability, a congenital anomaly occurs, or the adverse event requires medi-
cal or surgical intervention to prevent permanent impairment or damage [ 15 ]. 
The main obstacle of MedWatch is the high rate of underreporting adverse drug 
reactions which is then translated into delays in detecting adverse drug reactions 
[ 43 ,  44 ]. Adverse events that are associated with vaccines or with veterinary prod-
ucts are not reported to the Medwatch. The FDA collates the Medwatch reports and 
determines if more research is needed to establish a cause-effect relationship 
between the drug and the adverse event. Then, the FDA defi nes the actions that 
manufacturers, providers, and patients should take. 

 Another consequence from the recent drug withdrawals is the release of more 
safety information from the FDA to the public and press, as well as the creation of 
a new board to help monitor drugs [ 45 ]. In 2012, there were 65 MEDWATCH Drug 
Safety Alerts (e.g. the FDA notifi ed healthcare professionals of possible risks when 
using blood pressure medicines containing aliskiren with other drugs called angio-
tensin converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers 
(ARBs) in patients with diabetes or kidney (renal) impairment); and, 47 device 
alerts (e.g. four reports of incidents, one resulting in patient injury, in which a device 
apparently malfunctioned resulting in diffi culty defl ating a balloon after the surgeon 
pulled against resistance in response to the balloon moving distally during dilation. 
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The force applied to the catheter stretched and narrowed the catheter shaft, causing 
the balloon to be diffi cult or impossible to defl ate). 

 Finally, the FDA has established a “safety fi rst initiative”. The Safety First 
Initiative ensures drug safety throughout the drug lifecycle by giving pre-marketing 
drug review and post-marketing safety equal focus. This calls for inter-offi ce, mul-
tidisciplinary safety-issue teams to assess signifi cant safety issues, recommend 
actions, and monitor sponsors’ activities.  

    Effectiveness (Pragmatic) Clinical Trials 

 As mentioned before, one of the limitations of phase 3 RCTs is their limited gener-
alizability. Although the RCT may be the best way to evaluate effi cacy under 
 optimal conditions, it may not accurately refl ect the drugs effectiveness under usual 
case (‘real world’) conditions. That is many phase 3 RCTs ignore existing treat-
ments as the comparator (i.e. use a placebo control) and do not examine if a new 
treatment is better than the existing approved treatment(s), they key question for 
clinical practice. Clearly, clinical practice would follow evidence-based medicine, 
which is derived from the RCT and meta-analyses of RCTs. But often the outcomes 
of clinical practice are not equal to that of the RCTs (due to differences in patients, 
the quality of the other treatments they receive, drug-drug and drug-disease inter-
actions they may experience-these being much more common in the heterogeneity 
of clinical practice patients compared to the highly selected clinical trial patients). 
In addition, phase 3 trials are not only interested in effi cacy but also biologic mecha-
nisms for how the treatment works and often measure intermediate or surrogate 
outcomes that may be less relevant to patient care. It is in this aforementioned 
 setting that Effectiveness (Pragmatic) Trials are increasingly important. The term 
“pragmatic clinical trial” is credited to Schwartz and Lellouch [ 46 ]. They made the 
point that when comparisons are made between two treatment groups, the problem 
is often inadequately specifi ed in its overall characteristics and thus may represent 
at least one of two approaches: the fi rst corresponding to an explanatory approach 
aimed primarily at “understanding”; and, the second aimed at “decision making”. 
That is, the explanatory approach seeks to discover whether a difference exists 
between two treatments (one usually being a comparator placebo) that are specifi ed 
by strict and usually simple defi nitions, while the second (the pragmatic approach) 
aims to answer the question “which of the two treatments would be preferred where 
the treatments are complex and fl exible”. As such, explanatory trials often enroll 
homogeneous patients with few comorbid conditions in an attempt to reduce 
response variation, while pragmatic trials have fewer inclusion/exclusion criteria 
and thus enroll a more heterogeneous population. 

 As is true of any decision made in research, there are always trade-offs (compro-
mises) one has to make. While effectiveness/pragmatic trials may increase generaliz-
ability, it does so at the expense of internal validity. Also, because pragmatic trials 
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enroll a heterogeneous population, they frequently require larger sample sizes. 
Table  5.5  contrasts important considerations between effi cacy and effectiveness stud-
ies. Additional differences include: explanatory trial interventions are usually deliv-
ered by highly trained, specialized and skilled practitioners, while pragmatic trials 
mimic routine practice and the practitioner in these trials are skilled in routine clinical 
practice, but may not be as skilled in clinical research. An example of some of these 
issues was reported by Taylor et al. [ 47 ]. The British Association for Cardiac 
Rehabilitation performs an annual questionnaire of the 325 cardiac rehabilitation pro-
grams in the UK. Taylor et al. compared the patient characteristics and program details 
of this survey with RCTs included in the 2004 Cochrane review. They found ‘consid-
erable differences’ between the RCTs of cardiac rehabilitation and the actual practice 
in the UK (Table  5.6 ), differences suggesting that the real world practice of cardiac 
rehabilitation is unlikely to be as effective as clinical trials would suggest.

    Thorpe et al. have suggested an approach to evaluate how explanatory or prag-
matic a particular study is (since many studies are a mixture of the two) by 
 developing    a pragmatic-explanatory continuum indicator summary (PRECIS) 
based upon ten domains that differentiate the two to include: practitioner exper-
tise, follow-up intensity, outcomes, participant compliance, fl exibility of the 
comparison intervention, fl exibility of the experimental intervention, eligibility 
criteria, and primary analysis. For each “spoke” a judgment is made on a con-
tinuum and the dots connected, providing a visual of how pragmatic a trial is 
(Table  5.7 ). They do note that this is a fi rst step in identifying the degree to which 
these trials are pragmatic [ 48 ].

       Drug Utilization and Pharmacoeconomic Studies 

 One of the main reasons to conduct postmarketing studies is to demonstrate the 
economic effi ciency of prescribing a new drug. In this instance, the manufacturer is 
interested in showing the relationship of risks, benefi ts and costs involved in the use 

   Table 5.5    Comparison of effi cacy/explanatory vs. effectiveness/pragmatic clinical trials   

 Effi cacy/explanatory  Effectiveness/pragmatic 

 Objective  Optimal effi cacy  Usual effectiveness 
 Motivation  FDA approval  Formulary approval 
 Intervention  Fixed regimen  Flexible regimen 
 Comparator  Placebo  Currently used treatments 
 Design  RCT  Open-label 
 Subjects  Highly selected, compliant  “All comers” 
 Outcomes  Condition of interest  Comprehensive 
 Duration  Short-term, surrogate endpoint  Long-term 
 Other  Mechanism of action  Real world performance 
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of a new drug in order to show the value for the products cost. That value is essential 
for decision makers and prescriber’s, who will select medications for formularies or 
prescribe the most appropriate medication for patients. 

 Most of the pharmacoeconomic studies have been carried out in the postmarket-
ing phase using modeling techniques. Simulation models are mathematical abstrac-
tions of reality, based on both assumptions and judgments [ 49 ]. Those models are 
built using decision analysis, state transition modeling, discrete event simulation, 
and survival modeling techniques [ 50 ]. The aforementioned models could allow for 
the adjustment of various parameters in outcomes and costs, and could explore the 
effect of changes in healthcare systems and policies if they clearly present and vali-
date the assumptions made. Unfortunately, many economic models have issues 

   Table 5.6    A comparison from the UK of differences between RCTs of cardiac rehabilitation and 
actual practice   

 Cochrane report  Rehabilitation survey  Prevention survey 

  Population characteristics  
 Mean age  54  64  Unknown 
 % Women  10.4  26.4  Unknown 
 % MI  86  54  Unknown 
 % CABG  6  24 
 % PTCA  5  13 
  Intervention characteristics  
 % Exercise only  39  0  0 
 Duration (wks)  18  7.5  7 
 Exercise duration  58  Unknown  60 
 Frequency/wk  2.8  1.66  1.67 
 % VO2  75  Unknown  Unknown 
 # of sessions  50  12.4  12 
 % Hospital based  91  66  100 

  Adapted from: Taylor et al. [ 47 ] 
  MI  myocardial infarction , CABG  coronary artery bypass grafting , PTCA  percutaneous  transluminal 
coronary artery angioplasty  

  Table 5.7    Factors that help 
determine if a study meets a 
pragmatic design  

 The pragmatic-explanatory continuum 

 Practitioner expertise in experimental research 
 Flexibility of the experimental intervention 
 Eligibility criteria 
 Primary analysis 
 Practitioner adherence 
 Participant compliance 
 Outcomes 
 Follow up intensity 
 Practitioner expertise with the comparison group 
 Flexibility of the comparison intervention 

  Adapted from: Thorpe et al. [ 48 ]  
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related to model building, model assumptions, and lack of data, that limits their 
acceptability by decision makers and consumers. 

 One of the issues for simulated models is that they usually get information from 
different sources. For example, a cost-effectiveness model of antidiabetic medica-
tions obtained information from the literature and expert panels to determine algo-
rithms of treatment; success, failures and adverse events were obtained from product 
labeling, literature and the drugs NDA; resource utilization data (i.e. physician 
offi ce visits, laboratory tests, eye exams, etc.) were acquired from the American 
Diabetes Association guidelines, and costs were obtained from the literature [ 51 ]. 
This mixture of heterogeneous information raises questions related to the validity of 
the model. As a potential solution, some manufacturers have started including phar-
macoeconomic evaluations alongside clinical trials. This ‘solution’ might appear 
logical but the approach has limitations, such as the diffi culty in merging clinical 
and economic outcomes in one study, limitations regarding the length of the trial as 
these may differ for the clinical vs. the economic measures, differing sample size 
considerations, and fi nally differences in effi cacy vs. effectiveness. 

 Frequently, trials are organized to show the effi cacy of new medications but most 
phase II (and for that matter phase III) trials use surrogate measures as their primary 
end points and the long-term effi cacy of the drug is unknown. For example, glyco-
sylated hemoglobin (HbA 1c ) or fasting plasma glucose is frequently used as an indi-
cator of drug effi cacy for phase II or phase III trials. However, when those effi cacy 
data are used for simulation models, there is a lack of long-term effi cacy  information 
that then requires a series of controversial assumptions. To overcome that latter 
issue, economists are focusing on short- term models adducing that health mainte-
nance organizations (HMOs) are more interested in those outcomes while society is 
interested in both short and long-term outcomes. For example, a decision- tree model 
was developed to assess the direct medical costs and effectiveness of achieving 
glycosylated hemoglobin (HBA 1c ) values with antidiabetic medications during the 
fi rst 3 years of treatment. The authors justifi ed the short-term period arguing that it 
was more relevant for decision makers to make guideline and formulary decisions 
[ 51 ]. Although it may look easy to switch short-term for long-term outcomes this 
switch may be problematic, because short-term outcomes may not refl ect long term 
outcomes. Another factor to consider is the length of a trial because if there is a 
considerable lag-time between premarketing trials and postmarketing trials, prac-
tice patterns may have changed thereby affecting HMO decisions. 

 The size of the trial is also a very important factor to take into account in phar-
macoeconomics because trials are powered for clinical outcomes and not for 
 economic outcomes. If economic outcomes are used to power a trial, then a larger 
sample size will be required because economic outcomes have higher variation than 
clinical outcomes [ 52 ]. 

 In addition, the use of surrogate outcomes may not be economically relevant, a 
factor that needs to be considered by health economists and trialists during a trials 
planning phase. A question could then arise: could costs be used as endpoints? The 
short-answer is no, because costs data are not sensitive surrogates endpoints since 
cost and clinical outcomes may be disparate. 
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 Finally, the effi ciency of a new product requires that the manufacturer demon-
strate the effectiveness of the product, that is, how the product behaves in the real 
world and not under ‘experimental’ conditions (effi cacy). For example, the manu-
facturers may want to show that the new product is more cost-effective than current 
therapies or at least as good as new alternatives, but they need real-life data which 
are almost always absent when that product is launched. This is an important issue 
because premarketing trials are usually carried out in selective sites that are not 
representative of the practice community at large. Why are ‘real’ data so important? 
It is known that once a product is in the market, there is a wide variation in how the 
product is used by providers (e.g. indications, target population – different age, 
gender, socioeconomic status, patients with co-morbidities or multiple medications; 
adherence to medical guidelines, and variation among providers), or used by patients 
(e.g. patient adherence to medications, variation in the disease knowledge, access to 
care, and type of care). Additionally, the new product might prompt changes in the 
resource utilization for a particular disease. For example, when repaglinide was 
introduced into the market, it was recommended that in patients with type 2 diabetes 
postprandial and fasting glucose, as well as HbA 1c  be monitored [ 53 ,  54 ], this type 
of monitoring would require testing that is additional to the usual management of 
patients with diabetes. As someone once said,  “use the new drugs now, while they 
still work.”   

    Comparative Effectiveness Research (CER) 

 Comparative effectiveness research is defi ned by the Institute of Medicine commit-
tee as  “the generation and synthesis of evidence that compares the benefi ts and 
harms of alternative methods to prevent, diagnose, treat, and monitor a clinical 
condition or to improve the delivery of care”.  The purpose of CER is to assist con-
sumers, clinicians, purchasers, and policy makers to make informed decisions that 
will improve health care at both the individual and population levels. Comparative 
effectiveness usually    compares two or more types of treatment, such as different 
drugs, for the same disease. Comparative effectiveness also can compare types of 
surgery or other kinds of medical procedures and tests. 

 Three commonly used approaches used to look for “safety signals” after a drug 
has been approved for the market are:

•    Meta-analysis of clinical trials (See Chap.   10    )  
•   Disproportionality methods using the FDAs (or other data bases) adverse event 

reporting systems (AERS)  
•   Observational analyses of administrative data bases (i.e. tapping into large health 

care data bases)   

The comparison of drugs or devices can generated from already performed research 
studies (i.e. systematic reviews), or by conducting studies that generate new 
 evidence of effectiveness or comparative effectiveness of a test, treatment, 
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procedure, or health-care service. The pragmatic (effectiveness) trial is the “bread 
and butter” design of CER (see above). 

 The Agency for Healthcare Research and Quality (AHRQ) have suggested seven 
steps that are involved in conducting CER as follows (Table  5.8 ):

 –    Identify new and emerging clinical interventions.  
 –   Review and synthesize current medical research.  
 –   Identify gaps between existing medical research and the needs of clinical 

practice.  
 –   Promote and generate new scientifi c evidence and analytic tools.  
 –   Train and develop clinical researchers.  
 –   Translate and disseminate research fi ndings to diverse stakeholders.  
 –   Reach out to stakeholders via a citizen’s forum [ 55 ].   

   Statistical fi ndings show that there is large gap in the quality and outcomes and 
health services being delivered with a signifi cant geographic variation such that 
patients in the highest-spending regions of the country receive 60 % more health 
services than those in the lowest-spending regions, yet this additional care is not 
in general, associated with improved outcomes. Some of the metrics used in CER 
are cost effective analysis; the incremental cost-effectiveness ratio (ICER) given 
by the difference in costs between two health programs divided by the difference 
in  outcomes between the programs; and, the quality-adjusted life year (QALY), a 
measure of disease burden, including both the quality and the quantity of life lived 
as a unit for measuring the health gain of an intervention calculated as the number 
of years of life saved and adjusted for quality generally applied to the denomina-
tor in the ICER. 

 There are at least two controversies over the use of CER to determine treatment:

•    There are some questions among professionals about whether cost should be one 
of the data points studied in CER. For example, suppose Treatment A turns out 
to be much more effective than Treatment B, but costs twice as much. If you 
include the cost of the treatment in the consideration of its comparison, then 
Treatment B might be considered to be more effective. Should that be the conclu-
sion? There are no easy answers to this question.  

  Table 5.8    Seven steps that 
are involved in conducting 
comparative effectiveness 
research  

 Identify new and emerging clinical interventions 
 Review and synthesize current medical research 
 Identify gaps between existing medical research and the 

needs of clinical practice 
 Promote and generate new scientifi c evidence and 

analytic tools 
 Train and develop clinical researchers 
 Translate and disseminate research fi ndings to diverse 

stakeholders 
 Reach out to stakeholders via a citizens forum 
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•   Some patients and professionals are concerned that CER results would then 
eliminate some possibilities for patients, which might be considered a form 
of rationing.    

 Although CER is a burgeoning field, further discussion is beyond the 
scope of this book and the interested reader can refer to many excellent 
reviews of this area [ 56 ]. 

 Because of the aforementioned issues, economic data alongside (or merged with) 
clinical trials are important because data obtained in premarketing trials could shed 
light on the goal of anticipating results in postmarketing trials, they could contribute 
to developing cost weights for future studies, and they could help to identify the 
resources that have the highest impact of the new drug.  

    Discussion 

 The term ‘phase IV study’ has become misunderstood and has taken on negative 
connotations that have led some experts to question the validity of such trials. 
Pocock emphasizes this latter point – ‘ such a trial has virtually no scientifi c merit 
and is used as a vehicle to get the drug started in routine medical practice ’ [ 57 ].   He 
was undoubtedly referring to phase IV physician experience studies at the time. But 
the phase IV PES may have had some merit, even given that adverse event reporting 
is voluntary, and underreporting of events is believed to be common (this is contrast 
to phase III trials where UAEs are arguably over reported). It is true that many phase 
IV studies have limitations in their research design, that the follow-up of patients 
enrolled in phase IV trials may be less rigorous than in controlled clinical trials 
(which can decrease the quantity and quality of information about the safety and 
effi cacy of the medication being evaluated) [ 58 ,  59 ] but, due to the highly varied 
designs of phase IV studies, the utility of the information they provide will vary 
substantially from one study to another. 

 Due to the limitations of the current system for identifying adverse events, Strom 
has suggested a paradigm shift from the current traditional model of drug develop-
ment and approval. He supports this paradigm shift based upon the fact that ‘…51 % 
of drugs have label changes because of safety issues discovered after marketing, 
20 % of drugs get a new black box warning after marketing, and 3–4 % of drugs are 
ultimately withdrawn for safety reasons.’ The FDA website lists 12 drugs withdrawn 
from the market between 1997 and 2001 as shown in Table  5.9 .

   Strom’s suggested paradigm for studying drug safety has a shortened phase III 
program followed by conditional approval during which time, required postmarket-
ing studies would need to be performed (and the FDA would need to be given the 
power to regulate this phase in the same manner that they now have with phase I-III 
studies). He further recommends that once the conditional approval phase has ascer-
tained safety in an additional 30,000 or more patients, the current system of optional 
and/or unregulated studies could be performed (Table  5.10 ).
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   The “conditional approval concept” has been supported by the Institute of 
Medicine and goes even further. The Institute of Medicine proposes to include a 
symbol for new drugs, new combinations of active substances, and new systems of 
delivery of existing drugs in the product label. This symbol would last 2 years and 
it would indicate the conditional approval of a drug until enough information from 
postmarketing surveillance is available, and during this period, the manufacturer 
would limit the use of direct-to-consumer advertising [ 60 ]. The question is how 
much impact this would have on prescriber’s since some studies have shown that 
prescriber’s often fail to follow black box warnings labels [ 61 ]. The Institute of 
Medicine also recommends that the FDA should reevaluate cumulative data on 
safety and effi cacy no later than 5 years after approval. However, these changes are 
expected to have low impact if they are not accompanied by changes in law. 
Currently, the FDA has authority under the Food and Drug Administration 
Modernization Act of 1997 to require sponsors to submit annual updates and pro-
gress of study commitments. However, the FDA did not have the authority and tools 
to enforce those commitments until 2006 when Congress gave special authority to 
enforce these commitments. 

 It is also important not to lump the phase IV study with other postmarketing 
research, research that may be every bit as scientifi cally rigorous as that associated 
with RCTs. Postmarketing studies are essential to establish patterns of physician 
prescribing and patient drug utilization and they are usually carried out using 
observational designs. Investigators frequently relate postmarketing surveillance 
studies with pharmacovigilance studies, and this might be a signal of what is hap-
pening in practice. In the last 25 years, 10 % of the new drugs marketed in the 
United States have been withdrawn or were the subject of major warnings about 
serious or life-threatening side effects during the postmarketing phase. This situa-
tion has called for concrete actions such as closer monitoring of new drugs, the 
development of better notifi cation systems for adverse events, and presentation of 
transparent and high quality data. 

 Clinical pharmacologists and pharmacoepidemiologists are trying to promote 
the collection of blood samples at the population level for pharmacokinetic analysis. 
A study in psychiatric inpatients treated with alprazolam collected two blood 
samples at different time intervals to assess the pharmacokinetic variability of 
heterogeneous patient populations [ 62 ]. This information could contribute to estab-
lishing dosages and frequency of drug administration in patients with co-morbidities, 

   Table 5.9    The current (traditional) vs. some proposed paradigms for drug development   

 Approximate number of participants per phase 

 Models  Phase 1  Phase 2  Phase 3  Phase 4A  Phase 4B 

 Traditional  0–100  100–500  500–2,000  >3,000  NA 
 Evolving  0–100  100–500  500–10,000  >10,000  NA 
 Proposed  1–100  100–500  500–3,000  20,000–300,000  >300,000 

  Phase 4A refers to conditional approval, 4B to full approval  
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   Table 5.10    Drugs withdrawn from the market between 1950 and 2011. Signifi cant withdrawals   

 Drug name  Withdrawn  Remarks 

 Thalidomide  1950s–1960s  Withdrawn because of risk of teratogenicity; 
returned to market for use in leprosy and 
multiple myeloma under FDA orphan drug 
rules 

 Lysergic acid diethylamide (LSD)  1950s–1960s  Marketed as a psychiatric drug; withdrawn 
after it became widely used recreationally 

 Diethylstilbestrol  1970s  Withdrawn because of risk of teratogenicity 
 Phenformin and buformin  1978  Withdrawn because of risk of lactic acidosis 
 Ticrynafen  1982  Withdrawn because of risk of hepatitis 
 Zimelidine  1983  Withdrawn worldwide because of risk of 

Guillain-Barré syndrome 
 Phenacetin  1983  An ingredient in “A.P.C.” tablet; withdrawn 

because of risk of cancer and kidney disease 
 Methaqualone  1984  Withdrawn because of risk of addiction and 

overdose 
 Nomifensine (Merital)  1986  Withdrawn because of risk of hemolytic 

anemia 
 Triazolam  1991  Withdrawn in the United Kingdom because 

of risk of psychiatric adverse drug 
reactions. This drug continues to be 
available in the U.S. 

 Terodiline (Micturin)  1991  Prolonged QT interval 
 Temafl oxacin  1992  Withdrawn in the United States because of 

allergic reactions and cases of hemolytic 
anemia, leading to three patient deaths. 

 Flosequinan (Manoplax)  1993  Withdrawn in the United States because of an 
increased risk of hospitalization or death 

 Alpidem (Ananxyl)  1995  Not approved in the US, withdrawn in France 
in 1994    and the rest of the market in 1995 
because of rare but serious hepatotoxicity 

 Chlormezanone (Trancopal)  1996  Withdrawn because of rare but serious cases of 
toxic epidermal necrolysis 

 Fen-phen (popular 
combination of fenfl uramine 
and phentermine) 

 1997  Phentermine remains on the market, 
dexfenfl uramine and fenfl uramine – later 
withdrawn as caused heart valve disorder 

 Tolrestat (Alredase)  1997  Withdrawn because of risk of severe 
hepatotoxicity 

 Terfenadine (Seldane, Triludan)  1998  Withdrawn because of risk of cardiac 
arrhythmias; superseded by fexofenadine 

 Mibefradil (Posicor)  1998  Withdrawn because of dangerous interactions 
with other drugs 

 Etretinate  1990s  Risk of birth defects; narrow therapeutic index 
 Tolcapone (Tasmar)  1998  Hepatotoxicity 
 Temazepam (Restoril, Euhypnos, 

Normison, Remestan, Tenox, 
Norkotral) 

 1999  Withdrawn in Sweden and Norway because of 
diversion, abuse, and a relatively high rate 
of overdose deaths in comparison to other 
drugs of its group. This drug continues to 
be available in most of the world including 
the U.S., but under strict controls. 

(continued)
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Table 5.10 (continued)

 Drug name  Withdrawn  Remarks 

 Astemizole (Hismanal)  1999  Arrhythmias because of interactions with other 
drugs 

 Grepafl oxacin (Raxar)  1999  Prolonged QT interval 
 Levamisole (Ergamisol)  1999  Still used as veterinary drug; in humans was 

used to treat melanoma before it was 
withdrawn for agranulocytosis 

 Troglitazone (Rezulin)  2000  Withdrawn because of risk of hepatotoxicity; 
superseded by pioglitazone and 
rosiglitazone 

 Alosetron (Lotronex)  2000  Withdrawn because of risk of fatal 
complications of constipation; reintroduced 
2002 on a restricted basis 

 Cisapride (Propulsid)  2000s  Withdrawn in many countries because of risk 
of cardiac arrhythmias 

 Amineptine (Survector)  2000  Withdrawn because of hepatotoxicity, 
dermatological side effects, and abuse 
potential 

 Phenylpropanolamine 
(Propagest, Dexatrim) 

 2000  Withdrawn because of risk of stroke in 
women under 50 years of age when taken 
at high doses (75 mg twice daily) for 
weight loss 

 Trovafl oxacin (Trovan)  2001  Withdrawn because of risk of liver failure 
 Cerivastatin (Baycol, Lipobay)  2001  Withdrawn because of risk 

of rhabdomyolysis 
 Rapacuronium (Raplon)  2001  Withdrawn in many countries because of risk 

of fatal bronchospasm 
 Nefazodone  2003  Branded version withdrawn by originator in 

several countries in 2003, and in the US 
and Canada in 2004 for hepatotoxicity. 
Generic versions available 

 Rofecoxib (Vioxx)  2004  Withdrawn because of risk of myocardial 
infarction 

 Co-proxamol (Distalgesic)  2004  Withdrawn in the UK due to overdose 
dangers 

 mixed amphetamine salts 
(Adderall XR) 

 2005  Withdrawn in Canada because of risk 
of stroke. See Health Canada press release. 
The ban was later lifted because the death 
rate among those taking Adderall XR was 
determined to be no greater than those not 
taking Adderall 

 hydromorphone extended-release 
(Palladone) 

 2005  Withdrawn because of a high risk 
of accidental overdose when administered 
with alcohol 

 Valdecoxib (Bextra)  2005  Withdrawn in US due to concerns about heart 
attack and stroke 

 Thioridazine (Melleril)  2005  Withdrawn from U.K. market because 
of cardiotoxicity 

 Pemoline (Cylert)  2005  Withdrawn from U.S. market because 
of hepatotoxicity 

(continued)
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Table 5.10 (continued)

 Drug name  Withdrawn  Remarks 

 Natalizumab (Tysabri)  2005–2006  Voluntarily withdrawn from U.S. market 
because of risk of Progressive multifocal 
leukoencephalopathy (PML). Returned to 
market July, 2006 

 Ximelagatran (Exanta)  2006  Withdrawn because of risk of hepatotoxicity 
(liver damage) 

 Pergolide (Permax)  2007  Voluntarily withdrawn in the U.S. because 
of the risk of heart valve damage. Still 
available elsewhere 

 Tegaserod (Zelnorm)  2007  Withdrawn because of imbalance of 
cardiovascular ischemic events, including 
heart attack and stroke. Was available 
through a restricted access program until 
April 2008 

 Aprotinin (Trasylol)  2007  Withdrawn because of increased risk of 
complications or death; permanently 
withdrawn in 2008 except for research use 

 Inhaled insulin (Exubera)  2007  Withdrawn in the UK due to poor sales caused 
by national restrictions on prescribing, 
doubts over long term safety and too high a 
cost 

 Lumiracoxib (Prexige)  2007–2008  Progressively withdrawn around the world 
because of serious side effects, mainly liver 
damage 

 Rimonabant (Acomplia)  2008  Withdrawn around the world because of risk 
of severe depression and suicide 

 Efalizumab (Raptiva)  2009  Withdrawn because of increased risk 
of progressive multifocal 
leukoencephalopathy 

 Sibutramine (Reductil/Meridia)  2010  Withdrawn in Europe, Australasia, Canada, 
and the U.S. because of increased 
cardiovascular risk 

 Gemtuzumab ozogamicin (Mylota)  2010  Withdrawn in the U.S. due to increased risks 
of veno-occlusive disease and based on 
results of a clinical trial in which it showed 
no benefi t in acute myeloid leukemia 
(AML) 

 Propoxyphene (Darvocet/Darvon)  2010  Withdrawn from worldwide market because of 
increased risk of heart attacks and stroke 

 Rosiglitazone (Avandia)  2010  Withdrawn in Europe because of increased 
risk of heart attacks and death. This drug 
continues to be available in the U.S. 

 Drotrecogin alfa (Xigris)  2011  Withdrawn by Lily worldwide following 
results of a study that showed lack 
of effi cacy 

  From Wikipedia, the free encyclopedia   www.wikipedia.com    . Accessed 23 Apr 2013  
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those treated with multiple medications and special populations. Clearly, the rubric 
of the phase IV study has taken on an expanded and meaningful role in drug 
development, use, and safety.      

    Appendix: The Following Defi nitions Were Used 
in This Manuscript 

 Defi nitions of phase IV trials:

•    Post-marketing studies to delineate additional information including the drug’s 
risks, benefi ts, and optimal use.   clinicaltrials.mayo.edu/glossary.cfm      

•   Postmarketing studies, carried out after licensure of the drug. Generally, a phase 
IV trial is a randomized, controlled trial that is designed to evaluate the long-term 
safety and effi cacy of a drug for a given indication. Phase IV trials are important 
in evaluating AIDS drugs because many drugs for HIV infection have been 
given accelerated approval with small amounts of clinical data about the drugs’ 
effectiveness.   www.amfar.org/cgi-bin/iowa/bridge.html      

•   In medicine, a clinical trial (synonyms: clinical studies, research protocols, 
medical research) is a research study. en.wikipedia.org/wiki/Phase_IV_trials   

   1.    adverse drug event or adverse drug experience: ‘an untoward outcome that 
occurs during or following clinical use of a drug, whether preventable or not’ 
(does not mention causality)   

   2.    adverse experience: ‘any adverse event associated with the use of a drug or 
biological product in humans, whether or not considered product related’ 
(causality not assumed)   

   3.    adverse drug reaction: ‘an adverse drug event that is judged to be caused by 
the drug’ (specifi cally refers to causality)   

   4.    ‘Studies of adverse effects examine case reports of adverse drug reactions, 
attempting to judge subjectively whether the adverse events were indeed 
caused by the antecedent drug exposure’ (specifi cally focuses on causality)   

   5.    ‘Studies of adverse events explore any medical events experienced by patients 
and use epidemiologic methods to investigate whether any given event occurs 
more often in those who receive a drug than in those who do not receive the 
drug’ (a bit equivocal about causality: positive association v. causal association).    

  ‘Pharmacovigilance is a type of continual monitoring for unwanted effects and 
other safety-related aspects of drugs that are already on the market. In practice, 
pharmacovigilance refers to the spontaneous reporting systems that allow health 
care professionals and others to report adverse drug reactions to a central agency. 
The central agency can then combine reports from many sources to produce a more 
informative safety profi le for the drug product than could be done based on one or a 
few reports from one or a few health care professionals.’   
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    Abstract     The USFDA is an agency of the US Department of Health and Human 
Services and is the nation’s oldest consumer protection agency whose function it is 
to review drugs before marketing, monitor marketed drugs, monitor drug manufac-
turing and advertising, protect drug quality, and to conduct applied research. It is 
charged with overseeing of not only human drugs and biologics, but also veterinary 
drugs, foods, medical devices, and radiopharmaceuticals, and as such serves as a 
watchdog over industry. This chapter discusses the historical development of the 
FDA, and what the FDA is today. The phases of research development (phase 0 
through phase 5) leading to the marketing of a new drug, the role of the FDA in 
surgical interventions and medical device approval, and the FDA’s role in advertising 
and adverse event reporting are discussed.  

  Keywords     FDA history   •   Drug development. Phase 0–3 trials   •   Futility/feasi-
bility trials. First in man trial   •   Investigational Drug Application (IND)   •   New 
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•   Medical device approval   •   Adverse event reporting   •   FDA and advertising   • 
  Off-label drug use  
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    The United States Food and Drug Agency (USFDA or FDA) is an agency of the US 
Department of Health and Human Services and is the nation’s oldest consumer 
protection agency, whose functions are to review drugs before marketing, monitor 
marketed drugs, monitor drug manufacturing and advertising, protect drug quality, 
and to conduct applied research. The FDA is charged with overseeing of human 
drugs and biologics; but, also veterinary drugs, foods, medical devices, and radio-
pharmaceuticals. As such, the FDA serves as a watchdog over industry. 

    Historical Considerations 

    The history leading up to the formation of the FDA is interesting. In the early days 
of our country, epidemics were common (diphtheria, typhoid, yellow fever, small 
pox etc.), there were few if any specifi c treatments, the few patent medicines were 
largely unregulated, some were dangerous, and very few were effective. In fact, 
drugs readily available in the 1800s would likely astound the average citizen today. 
For example Winslow’s Soothing Syrup and Koop’s Babyfriend contained liberal 
amounts of morphine, a marketed cough syrup contained heroin. Beginning as the 
Division of Chemistry and then (after July 1901) the Bureau of Chemistry, the 
modern era of the FDA dates to 1906 with the passage of the Federal Food and 
Drugs Act; this added regulatory functions to the agency’s scientifi c mission and 
was the result of recurrent food safety scares (Fig.  6.1 ). The Division of Chemistry 
investigation into the adulteration of agricultural commodities was actually initiated 
as early as 1867. When Harvey Washington Wiley arrived as chief chemist in 1883, 
the government’s handling of the adulteration and misbranding of food and drugs 
took a decidedly different course, that eventually helped spur public indignation 
of the problem. Wiley expanded the division’s research in this area, exemplifi ed 
by Foods and Food Adulterants, a ten-part study published from 1887 to 1902. 
He demonstrated his concern about chemical preservatives as adulterants in the 

  Fig. 6.1    Depictions of historical developments in drug safety       
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highly publicized “poison squad” experiments, in which able-bodied volunteers 
consumed varying amounts of questionable food additives to determine their impact 
on health. Wiley unifi ed a variety of groups behind a federal law to prohibit the 
adulteration and misbranding of food and drugs, including state chemists and 
food and drug inspectors, the General Federation of Women’s Clubs, and national 
associations of physicians and pharmacists [ 2 ].

   Languishing in Congress for 5 years, the bill that would replace the 1906 Act was 
ultimately enhanced and passed in the wake of a therapeutic disaster in 1937. In 
September and October of 1937, in response to consumer demand for a liquid cough 
medicine, people across the country started dying after drinking a new cough 
medicine known as Elixer Sulfanilamide (produced by the S.E. Massengill 
Company). The Elixer was released to the public after testing for fl avor, appearance 
and fragrance—but not toxicity. At the time, federal regulations did not require 
companies to certify that their drugs were safe, and the solution used to liquefy 
the sulfanilamide was diethylene glycol, a deadly poison that is found in anti-freeze. 
From the fi rst death to the FDA’s no-holds-barred response, John Swann, in a DVD 
entitled the ELIXER OF DEATH, tells the remarkable story of the incident that led 
to passage of the 1938 Food, Drug, and Cosmetic Act, which increased the FDA’s 
authority to regulate drugs. Survivors recall their harrowing ordeals, and FDA 
historians reveal how agents located 234 of the 240 gal produced—often one bottle 
at a time! 

 The public outcry not only reshaped the drug provisions of the new law to prevent 
such an event from happening again, it propelled the bill itself through Congress. 
Franklin Roosevelt signed the Food, Drug, and Cosmetic Act on June 25th, 1938. 
The new law brought cosmetics and medical devices under Federal control, and it 
required that drugs be labeled with adequate directions for safe use. Moreover, it 
mandated pre-market approval of all new drugs, such that a manufacturer would 
have to prove to the FDA that a drug was safe before it could be sold. It irrefutably 
prohibited false therapeutic claims for drugs, although a separate law granted 
the Federal Trade Commission jurisdiction over drug advertising. The act also 
corrected abuses in food packaging and quality, and it mandated legally enforceable 
food standards. Tolerances for certain poisonous substances were addressed. 
The law formally authorized factory inspections, and it added injunctions to the 
enforcement tools at the agency’s disposal. 

 The Bureau of Chemistry’s name changed to the Food, Drug, and Insecticide 
Administration in July 1927, when the non-regulatory research functions of the 
bureau were transferred elsewhere in the department. In July 1930 the name was 
shortened to the present version. The FDA remained under the Department of 
Agriculture until June 1940, when the agency was moved to the new Federal 
Security Agency. In April 1953 the agency again was transferred, to the Department 
of Health, Education, and Welfare (HEW). Fifteen years later FDA became part of 
the Public Health Service within HEW, and in May 1980 the education function was 
removed from HEW to create the Department of Health and Human Services, FDA’s 
current home. To understand the development of this agency is to understand the 
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laws it regulates, how the FDA has administered these laws, how the courts have 
interpreted the legislation, and how major events have driven all three [ 3 ]. 

 During the time period from 1906 and 1938, there were the beginnings of 
pharmaceutical research and drug discovery. For example, penicillin was discov-
ered in 1928 and insulin was also discovered during this time period. In1951 the 
Durham- Humphrey Amendment defi ned the Over the Counter drugs. The 1940–
1950s was also the golden age for pharmaceutical companies and over 90 % of all 
drugs used in 1964 were unknown before 1938. In 1960 the Kefauver Hearings were 
evaluating drug costs, prices and profi ts but the 1962 thalidomide tragedy resulted 
in the 1962 Kefauver-Harris Drug Amendments (Fig.  6.2 ). The original impetus for 
the effectiveness requirement was Congress’s growing concern about the mislead-
ing and unsupported claims made by pharmaceutical companies about their drug 
products coupled with high drug prices [ 4 ]. In this 1962 Act, Congress amended 
the Federal Food, Drug, and Cosmetics Act to add the requirement that to obtain 
marketing approval, manufacturers demonstrate the effectiveness (with “substantial” 
evidence) of their products through the conduct of adequate and well-controlled 
studies (prior to this amendment there were only safety requirements). This amend-
ment also established informed consent procedures, the reporting process for 
adverse drug events, and placed drug advertising under FDA jurisdiction. Another 
important milestone for the FDA came in 1968 when the Drug Effi cacy Study 
Implementation (DESI) was enacted. DESI required that over 4,000 drugs marketed 
between 1938 and 1962 undergo evaluation for effi cacy and safety based upon the 
existent literature (pre 1938 drugs were “grandfathered”). Other signifi cant actions 
followed, including the Medical Device Amendment of 1978 that put medical 
devices under the same kinds of Good Medical Practice (GMP) and Good Clinical 
Practice (GCP) guidelines that applied to drug development. GCP is an international 
ethical and scientifi c standard for designing, conducting, recording, and reporting 
trials that involve the participation of human subjects. The GCP principles have 
their origin in the Declarations of Helsinki.

  Fig. 6.2    The effects of 
thalidomide       
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       The FDA Now 

 The U S. Food and Drug Administration is a scientifi c, regulatory, and public health 
agency that oversees items that added together account for 20 cents of every 
dollar spent by consumers on products in the US. Its jurisdiction encompasses most 
food products (other than meat and poultry), human and animal drugs, therapeutic 
agents of biological origin, medical devices, radiation-emitting products for 
consumer, medical, and occupational use, cosmetics, and animal feed. As prior 
mentioned the agency grew from a single chemist in the U.S. Department of 
Agriculture in 1862 to a staff of approximately 12,000 employees and a budget of 
$4 billion in 2012, comprising chemists, pharmacologists, physicians, microbiolo-
gists, veterinarians, pharmacists, lawyers, and many others. About one-third of the 
agency’s employees are stationed outside of the Washington, D. C. area, staffi ng 
over 150 fi eld offi ces and laboratories, including fi ve regional offi ces and 20 district 
offi ces. Agency scientists evaluate applications for new human drugs and biologics, 
complex medical devices, food and color additives, infant formulas, and animal 
drugs. Also, the FDA monitors the manufacture, import, transport, storage, and sale 
of over $1 trillion worth of products annually at a cost to taxpayers of over $3 per 
person. Investigators and inspectors visit more than 16,000 facilities a year, and 
arrange with state governments to help increase the number of facilities checked. 

 An era of rapid change for the FDA also occurred with an increase in drug 
development and approval beginning in the early 1970s. During the period of 
1970–2002, reports on the adverse events of over 6,000 marketed drugs numbered 
in the millions, with 75 drugs removed from the market and another 11 that had 
severe restrictions placed on their use. From 1975 to 1999, 584 new chemical entities 
were approved, and over 10 % of these either were withdrawn or received a “black-
box” warning. This rapid increase in marketed drugs placed a tremendous burden on 
the post-marketing safety systems, which the FDA had in place to protect public 
safety. Subsequently, a number of drug embarrassments’ occurred that again 
reshaped the FDA. These embarrassments included concealed studies (studies that 
the manufacturer did not publish), fraudulent data (as exemplifi ed in the develop-
ment of telithromycin- Ketek), rofecoxib (the withdrawal of Vioxx still has pending 
litigation), and rosiglitazone withdrawal. After rofecoxib was withdrawn from 
the market, the Center for Drug Evaluation and Research (CDER) asked the Institute 
of Medicine (IOM) to assess the US drug-safety system. Their report was released 
in 2006. As to telithromycin, French pharmaceutical company Hoechst Marion 
Roussel (later Sanofi -Aventis) started phase II/III trials of telithromycin (HMR- 
3647) in 1998. Telithromycin was approved by the European Commission in July 
2001 and subsequently came on sale in October 2001. In the USA, telithromycin 
gained FDA approval April 1, 2004. FDA staffers publicly complained that safety 
problems were ignored, and congressional hearings were held to examine those 
complaints. Some of the data in clinical trials submitted to the FDA turned out to 
be fabricated, and one doctor went to prison. An indictment said that one doctor 
fabricated data she sent to the company. Documents, including internal Sanofi -Aventis 
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emails, show that Aventis was worried about this doctor early in study 3014 
but didn’t tell the FDA until the agency’s own inspectors discovered the problem 
independently [ 5 ]. 

 Due to the rapid increase in new drug development during the 1970s and on, 
The Prescription Drug User Fee Act (PDUFA), was enacted in 1992 and was 
revised in 1997 and 2002. PDUFA is a program under which the pharmaceutical/
biotechnology industry pays certain “user fees” to the Food and Drug Administration 
(FDA). In exchange for these fees, the FDA agreed, via correspondence with 
Congress, to a set of performance standards intended to reduce the approval time 
for New Drug Applications (NDA) and Biological License Applications (BLA). 
PDUFA assess three types of user fees: fees on applications (NDA/BLA); annual 
fees on establishments; and renewal fees on products [ 6 ,  7 ]. The law includes a set 
of “triggers” designed to ensure that appropriations for application review are not 
supplanted by user fees. These triggers require that Congressional appropriations 
for such review reach certain levels before user fees may be assessed, and that the 
FDA devotes a certain amount of appropriated funds annually to drug review activi-
ties. However, little provision was made for post marketing drug surveillance. 
PDUFA resulted in a reduction in review times from 33 to 14 months. Also, prior to 
PDUFA, the testing ground for new drugs occurred predominantly in Europe. In 
1980, only 2 % of new drugs were fi rst being fi rst used in the USA; by 1988 60 % 
were fi rst used in the USA. The glut of new approved and arguably understudied 
drugs on the US market, placed a stress on the already inadequate post marketing 
surveillance systems, and ultimately led to the commission of an Institute of 
Medicine review. This IOM review led to the FDA Amendments Act of 2007 [ 8 ]. 
This 156 page document expands the authority of the FDA particularly as it relates 
to marketed drugs (see Chap.   5    ) Briefl y, this new act grants the FDA the power to 
require postmarketing studies, to order changes in a drug’s label, and to restrict 
distribution of a drug. The Act also provides new resources (225 million dollars 
over 5 years) aimed at improving drug safety.  

    International Conference on Harmonization (ICH) 

 Ultimately, an international effort was initiated that was designed to bring together 
the regulatory authorities of Europe, Japan and the United States and experts from 
the pharmaceutical industry in the three regions to discuss scientifi c and technical 
aspects of product registration. Their stated purpose is to make recommendations 
on ways to achieve greater harmonization in the interpretation and application of 
technical guidelines and requirements for product registration in order to reduce or 
obviate the need to duplicate the testing carried out during the research and develop-
ment of new medicines. The objective of such harmonization is a more economical 
use of human, animal and material resources, and the elimination of unnecessary 
delay in the global development and availability of new medicines while maintaining 
safeguards on quality, safety and effi cacy, and regulatory obligations to protect 
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public health. The Mission Statement of the ICH (as taken from their website) is “ to 
maintain a forum for a constructive dialogue between regulatory authorities and 
the pharmaceutical industry on the real and perceived differences in the technical 
requirements for product registration in the EU, USA and Japan in order to ensure 
a more timely introduction of new medicinal products, and their availability to 
patients; to contribute to the protection of public health from an international 
perspective; to monitor and update harmonized technical requirements leading to a 
greater mutual acceptance of research and development data; to avoid divergent 
future requirements through harmonization of selected topics needed as a result of 
therapeutic advances and the development of new technologies for the production 
of medicinal products; to facilitate the adoption of new or improved technical research 
and development approaches which update or replace current practices, where 
these permit a more economical use of human, animal and material resources, without 
compromising safety; and, to facilitate the dissemination and communication 
of information on harmonized guidelines and their use such as to encourage the 
implementation and integration of common standards .” [ 9 ].  

    USA Drug Development Phases 

 Since the FDAs1962 amendment mentioned above, the FDA, Industry, and academia 
have debated the issue of what constitutes  “suffi cient evidence of effectiveness ”. 
Before getting to that point, there is a fairly regimented program for drug develop-
ment that will be discussed in the following paragraphs. 

    Preclinical Evaluation 

 First, when a new molecule is identifi ed as a possibly active drug, it undergoes 
chemical and physical characterization and screening for biological activity by 
testing in appropriate animal models. This includes toxicity studies followed by 
preclinical pharmacology where dosage, mode of action, chronic toxicology, 
safety, effi cacy, and teratogenicity are evaluated. If the drug seemingly has merit, it 
advances to clinical investigation where it undergoes three phases of evaluation 
(phase 1, 2 and 3 trials). Recently, a new phase, phase 0, has been added, especially 
for cancer drug development. However, before clinical testing can take place, an 
Investigational New Drug (IND) Application must be submitted and approved by 
the FDA. Since across state transfer of drugs is necessary for most drug related 
clinical research, and there is a federal law against such transport, an IND allows for 
an exemption in the law so that a drug can be shipped via interstate commerce. 
This is a rapid process (the FDA must respond to the IND application within 
30 days). Parenthetically, the FDA uses a broad defi nition for “new drug”. It is not 
just a new chemical moiety; rather a new drug is any drug or drug use that is not 
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included in current labeling of that drug. If the drug has no prior approval the defi nition 
is fairly obvious. However, an approved drug now being studied with a new release 
system (e.g. a transdermal patch, or a new salt side chain), a new indication, or a 
new combination (even if the two separate drugs are approved) is considered “new”. 
So, for example, when aspirin was to be studied in the Coronary Drug Project, an 
IND had to be submitted for this “new” drug [ 10 ].  

    Phase 0–3 Studies 

 Following IND approval, the new phase 0 clinical trial was developed in response 
to the FDA’s recent exploratory Investigational New Drug (IND) guidance predomi-
nantly for the study of new cancer drugs (Table  6.1 ). Even though phase 0 studies 
are done in humans, phase 0 studies are exploratory studies that often use only a few 
small doses of a new drug in each patient, to test whether the drug reaches the 
tumor, how the drug acts in the human body, and how cancer cells in the human 
body respond to the drug. The patients in these studies might need extra biopsies, 
scans, and blood samples as part of the study. The biggest difference between phase 
0 and the later phases of clinical trials is that there’s no chance the volunteer will 
be helped by taking part in a phase 0 trial. Because drug doses are low, there’s also 
less risk to the patient in phase 0 studies compared to phase I studies. Phase 0 
studies are not yet being used widely, and there are some drugs for which they 
wouldn’t be helpful. Phase 0 studies are very small, often with fewer than 20 people. 
They are not a required part of testing a new drug, but are part of an effort to speed 
up and streamline the process [ 11 ].

   More commonly the investigation of a new drug begins with a phase 1 study and, 
these are more commonly referred to as “fi rst-in-man” studies. In general phase 1 
trials have relatively small sample sizes and are usually performed in normal human 
volunteers. The goal is to evaluate pharmacokinetics (PK) and to determine if there 
are any differences compared to the preclinical studies. Early, phase 1 studies are 
acute PK evaluations; later the studies may include chronic PK and dose escalation 
in order to determine the maximum tolerated dose. First in man studies have received 
renewed interest partly as a result of the TGN-1412 study, which in its fi rst human 
clinical trials, caused catastrophic systemic organ failure in the subjects, despite 

  Table 6.1    Uses of phase 
0 trials  

 Determine if a MOA defi ned in non-clinical models 
applies to humans 

 Provide PK/PD data before phase 1 trials 
 Evaluate PK/PD of analogs in order to select the 

most promising candidate 
 Determine a dose range 
 Refi ne biomarker assays 
 Develop novel imaging probes and evaluate its 

physiology in humans 
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being administered at a supposed sub-clinical dose [ 12 ]. The adverse events in this 
trial resulted in the hospitalization of six volunteers. At least four of the six these 
suffered multiple organ dysfunction, and one trial volunteer was said to be showing 
signs of developing cancer. Tentative opinions from an as yet uncompleted inquiry 
suggest that the problems arose due to an “unforeseen biological action in humans”, 
rather than any breach of trial protocols; and, the case, therefore, has had important 
ramifi cations for future trials of potentially powerful clinical agents. In part, as a 
result of this aforementioned trial, the European Medicines Agency (EMEA the 
European equivalent of the USFDA) in 2007 approved draft guidelines for fi rst 
in man studies [ 13 ]. This initial draft guidance has been the subject of wide com-
ment in the clinical trials community, and as a result of a wide variety of opinions 
has been a challenge to fi nalize the guidelines [ 14 ]. Additionally, there has been 
some discussion about whether it is more appropriate to use healthy volunteers or 
patients in these fi rst-in-human trials [ 15 ]. Healthy volunteers are preferred if the 
perceived risk is low, but patients affl icted with the target disease might be appropriate 
when there is potential therapeutic benefi t. However, the advantages of normal 
human volunteers for the questions to be answered by these phase 1 trials include 
greater subject homogeneity, less confounding by co-morbid conditions and other 
drugs the subject might be taking, and less confounding of drug effects by symptoms, 
signs, and laboratory fi ndings. 

 Phase 2 trials are slightly larger and also examine PKs, but now in patients with 
the disease of interest. In addition, these are referred to as “proof of concept” studies. 
They are also dose-ranging, feasibility, futility, and safety studies. Recently, there 
has been a suggestion that phase 2 trials be sub-classifi ed into 2A and 2B. Phase 2B 
studies can be thought of as smaller early RCTs, while phase 2A studies are an 
extension of phase 1 studies, but in patients rather than subjects. These classifi cations 
are not fi rm, however, and there are many exceptions. Phase 2 studies can also be 
feasibility studies, in which effi cacy, response rates, and response durations are 
determined. This is also a phase in which ineffective treatment can be rejected (futility 
study) prior to the more expensive phase 3 trials (since there are an increasing 
number of phase 3 effi cacy trials which fail to fi nd benefi t). In this regard, in order 
to save money and time, phase 2 futility studies are becoming more common. In this 
variant of phase 2 trials, futility studies can be designed as a way of dealing with the 
trade-off between investment risk and clinical promise. That is, one way to reduce 
the studies sample size is to focus on futility-that is designing a study to identify 
which agents are least likely to demonstrate benefi ts rather than the more typical 
goal of identifying the most promising agents. The null hypothesis in a futility study 
is that the treatment has promise and will therefore produce results exceeding a 
meaningful threshold (Table  6.2 ). If that threshold is not met, the null is rejected and 

  Table 6.2    Null hypotheses 
for different study questions  

 Null hypothesis  Alternative hypothesis 

 Superiority  New = Old  New  ¹    Old 
 Equivalence  New < Old + δ  New = Old + δ 
 Futility  New > Old  New  ¤>    Old 
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further study is considered futile. Remember, the same provisos hold regarding the 
null discussed in chapters 3 and 18. That is, agents passing an effi cacy criterion 
are winners, but agents meeting the futility criterion are merely non-losers. Palesch 
et al. evaluated 6 phase 2 futility study designs of therapeutic stroke trials. They 
identifi ed 3 trials as futile in phase 2, and none of the 3 subsequently showed benefi t 
in phase 3 trials. In the remaining 3 phase 2 trials that did not show futility, 1 showed 
effi cacy in phase 3 [ 16 ].

   More specifi cally, the way phase 2 futility studies are designed is fi rst to estimate 
the proportion of favorable outcomes in untreated controls (this is usually done 
from historical, case-series, or control groups from previous trials) and this becomes 
the proportion of favorable outcomes for the single arm phase 2 futility study. The 
minimally worthwhile improvement of the drug under study is then estimated as 
one does in determining the sample size in phase 3 studies. If the null hypothesis is 
rejected that there is a minimally worthwhile improvement, we conclude that the 
benefi t of treatment is less than what we would want, and it is therefore futile to 
proceed to a phase 3 trial. Additionally, in phase 2 futility trials, one would want to 
minimize the risk of drawing false negative conclusions (that is the study suggests 
that the drug has no effi cacy when it in fact does-one would not want to miss studying 
a potentially effective agent). The sample size is then “hedged” towards this afore-
mentioned goal, with less concern about a false positive conclusion (that is that the 
drug is effective when in fact it is not) [ 16 ]. 

 Phase 3 trials are classical effi cacy studies generally using RCT designs as 
discussed in Chap.   3    ; and, phase 4 studies are discussed in Chap.   5    . However, it is 
the phase 3 study that was the topic of discussion resulting in the 1962 Kefauver-
Harris amendment. During those hearings, the main issue of contention about phase 
3 studies surrounded the words “ substantial evidence ” of effectiveness that the FDA 
required for drug approval. In the above mentioned FDA Act, substantial evidence 
was defi ned as “ evidence consisting of adequate and well-controlled investigations, 
including clinical investigations, by experts qualifi ed by scientifi c training and 
experience to evaluate the effectiveness of the drug involved, on the basis of which 
it could be fairly and responsibly concluded by such experts that the drug will have 
the effect it purports or is represented to have under the conditions of use pre-
scribed, recommended, or suggested in the labeling or proposed labeling thereof .” 
The argument that ensued from this defi nition centered on what the specifi c quality 
of evidence was in order to establish effi cacy. It was the FDA’s position that Congress 
intended to require at least 2 adequate and well-controlled studies, each convincing 
on its own, to establish effi cacy. There has been some subsequent fl exibility by the 
FDA in regard to the above as it applies to a specifi c drug in development. In some 
cases, for example, the FDA has relied on information from adequate and 
well- controlled studies published in the literature. In other cases where it would be 
diffi cult to perform a second study due to ethical concerns, the result of a single 
study could be accepted (as long as it was of excellent design, provided highly 
reliable and statistically strong – p < .001 – with evidence of important clinical benefi t-
such as survival). The phases of drug development are summarized in Table  6.3 .
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   The requirement of more than 1 adequate and well-controlled investigation 
refl ects the need for independent substantiation of experimental results and refers 
back to the question posed in Chapter 3 that asked why studies could presumably 
be of similar design and yet lead to different results. Indeed, the FDA realized that 
any clinical trial might be subject to unanticipated, undetected, systematic biases 
that may be operative irrespective of the best intentions of sponsors and investi-
gators. They also note that the inherent variability in biological systems may 
produce a positive trial by chance alone. In addition, results may be dependent on 
specifi c issues related to the site or the investigator (e.g. concomitant treatments, 
diets etc.) that may impact the generalizability of the results. Finally (and fortu-
nately rarely), favorable effi cacy might be the product of scientifi c fraud. Independent 
substantiation of experimental results then addresses these problems by providing 
consistency across more than 1 study, thus greatly reducing the possibility that a 
biased, chance, site-specifi c, or fraudulent result will lead to an erroneous conclusion 
that a drug is effective. 

 The concept of independent substantiation of trial results has often been referred 
to as replication, but replication may imply precise repetition of the same experi-
ment. Actually, studies that are of different design, in different populations, with 
different endpoints or dosage forms may provide evidence of effi cacy, and this may 
be even more convincing than repetition of the same study. It should be noted, that 
it is usually not necessary to rely on a single study to support the effi cacy of a drug 
under development. This is because, in most situations there is a need to explore the 
appropriate dose range, to study patients with differing complexities and severities 
of disease, to compare the drug to other therapies, to perform safety studies, so that 
before marketing, most drugs will have been evaluated in more than 1 study. 

   Table 6.3    Contrasts between the developmental pathways of new prescription drugs and new 
invasive therapeutic procedures   

 Phase or 
stage  Drug approval process  Invasive procedure process 

 0  Preclinical experiments 
(animal or bench) 

 Proof of principle: usually a report of a case or small 
case series in patients that describes the technique 

 1  Single-group trial 
(n = 20–80 volunteers) 

 Refi nement and defi nition: modifi cation of the 
technique from early experience… this phase is 
often unreported 

 2  Controlled trials in several 
hundred people with the 
target condition 

 Dissemination: technique is adopted rapidly by other 
surgeons who then report their case series 

 3  Controlled and single group 
trials for the purpose of 
establishing benefi t:risk 
ratio 

 Comparison with current standard approaches: The 
technique has stability and popularity but is it 
better than other treatment? Should be answered 
by a RCT but often isn’t 

 4  Post FDA approval: Post 
marketing studies 

 Surveillance and quality control: monitoring of 
complication rates 

  From McCulloch [ 17 ]  
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 Another trend seen by the FDA is the increase in new drug applications that use 
foreign studies as the basis for approval. In 2000, 27 % of NDA’s contained pivotal 
data from foreign studies [ 18 ]. There is no current restriction on non-US studies 
being used to support an NDA so long as they are well designed and conducted and 
the study sites are available for inspection. This trend regarding the observation 
that “the frequency with which initial clinical trials were being performed outside 
of the US” has been discussed by DeMaria [ 19 ]. His concerns centered around the 
disadvantages of conducting a clinical investigation outside the sponsors country 
(e.g. logistic and language differences) and include: monitoring of such sites; the 
apparatus needed for clinical research may be less developed and investigators less 
experienced; the nature and disease etiologies of the patients may differ from the 
US; and genetic or genomic differences may exist. He also raised concern as to 
“ whether we in America are exploiting the rest of the world to prematurely test 
potentially hazardous therapies, or conversely, whether our regulatory and fi nan-
cial environment is stifl ing access to important new innovations for patients and 
investigators. ” DeMaria does note the many advantages of performing clinical 
research in other countries noting the potential importance of the globalization of 
clinical research. Advantages he mentioned include: the cost of conducting studies 
and the ability to recruit patients into studies might be greater in other countries; 
and, that in other countries regionalization of health care facilities, that concen-
trates patients, is greater in many countries vs. the US. These trends are also a 
result of a decline in the number of active investigators in the US (a decline of 
3.5 % annually since 2001 compared to a 13.5 % increase outside the    US). 

 Over recent years, there has been increasing concern about industry-funded bias. 
Currently the pharmaceutical industry funds overall more than half of the research 
done today, while the NIH accounts for 29 %. Some have observed that industry 
funded studies may be 4–5 times more likely to be favorable to the sponsors drug 
than non-industry sponsored studies [ 20 – 22 ]. In a Point/Counterpoint editorial 
Jeff Steri argues ‘that it is not the source of research funding that counts: it is the 
quality of the research that matters” [ 23 ]. He also points out that we all have biases 
regardless of the source of funding. At least in the nutrition research arena the source 
of funding did not affect the quality of the research [ 24 ]. (See further discussion in 
Chap.   19    ). 

 Another potential problem relates to the lack of reporting the results of clinical 
trials in general and drug development clinical trials more specifi cally, particularly if 
they are negative. For drugs that receive FDA approval, disclosure of trial results can 
occur in a number of ways, including the FDAs own Summary Basis of Approval; 
but there are limitations to that reporting. Lee et al. conducted a study of trials 
supporting new drugs approved between 1998 and 2000 and determined their 
publication status and time from approval to full publication in the medical literature 
at 2 and 5 years [ 25 ]. Of 909 trials only 43 % were published after 5 years, although 
for trials classifi ed as “pivotal”, 76 % were published, and in both cases publication 
favored trials that were positive. Perhaps surprising to some, this lack of publication 
also applied to NIH funded trials [ 26 ]. In review, a number of clinical trial facts 
pertain to the FDA approval process as listed in Table  6.4 .
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        FDA and Medical Devices 

 When the US Congress fi rst mandated in 1938 that medical products demonstrate 
safety and effectiveness, the law applied only to drugs. It was not until 1976 that the 
law was amended to include devices (mostly the result of problems related to intra-
uterine devices). The 1976 law included the need for premarket approval of medical 
devices that was similar to that for new drugs. However, thousands of devices were 
already marketed in 1976 so an alternative pathway [termed the 510(k) provision   ] 
from the more rigorous premarket approval process was added to the law, in order 
to enable newer versions of existing devices to enter the market. This alternative 
process did not require clinical trials but only required that the manufacturer dem-
onstrate that the device was substantially equivalent in materials, purpose, and 
mechanism to a device already on the market (Fig.  6.3 ). The potential problem with 
this alternative pathway was demonstrated by Zuckerman et al. who found that of 
the 113 recalls from 2005 to 2009 that the FDA determined could cause serious 
health problems or death, 71 % had been cleared by the alternative 510(k) process 
[ 27 ]. Devices are classifi ed as to their perceived risk using a 3-tierd system: Class I 
devices are thought to be low risk; Class II, higher risk, but where substantially 
equivalent to existing approved devices might just require bench and/or animal test-
ing; and Class III devices are either life sustaining/supporting, or present a 
high risk of illness or injury (for example heart valves, pacemakers, etc.) (Table  6.5 ). 
The standards for demonstrating safety and effectiveness are determined in part by 
this classifi cation [ 28 ]. Women particularly are underrepresented in terms of safety 

   Table 6.4    Clinical    trial facts   

 Clinical trial facts 

 In 2004, between fi ve and six million people participated in some 80,000 clinical research 
studies in the U.S., and more will likely be needed in coming years to fulfi ll safety and 
effi cacy requirements 

 The top 20 drug companies spend $30 billion on research and development, about 40 % of which 
goes to fund clinical trials 

 Eight of the top 15 drug companies did not get the go-ahead for a single drug last year 
 In 1980, drug companies spent some $2 billion on R&D, and 34 new drugs were approved. 

In 2000, they spent close to $30 billion, but only 24 drugs were approved 

 Seven of ten of drugs approved by the FDA never make enough money to justify their 
development costs 

 Completing all the phases of clinical trials required for approval of a new drug can cost anywhere 
from $300 to $800 million 

 Although the NIH budget has doubled in the past 5 years—with the implied purpose of 
encouraging the development of new drugs—the FDA’s budget remains inadequate to review 
these drugs for qualifi cation 

 Drug costs are increasing by about 18 % a year, but only 4 % is due to price increases. The rest 
is the result of replacing older, more invasive, expensive, and less effective medical 
treatments 
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and effectiveness data in trials of CV devices according to Dhruva et al. [ 29 ]. The 
Institute of Medicine’s report examining the impact of changes in government 
support for women’s health research recommended that “all medical product evalu-
ations by the Food and Drug Administration present effi cacy and safety data sepa-
rately for men and women.” [ 30 ] Dhruva et al. performed a systematic review of the 
demographics, comments on gender bias, and analysis of results by sex for 78 high-
risk cardiovascular devices that received premarket approval by the FDA between 
2000 and 2007. FDA summaries of evidence did not report sex of enrollees in 34 
(28 %) of 123 studies. For studies reporting sex distribution, the study populations 
were, on average, 67 % men. There was no increase in the enrollment of women 
over time.

    As with the drug approval process, the postmarket evaluation of medical devices 
was also thought to be wanting, and in 1986, 400 patients were affected by a 
mechanical valve strut failure, resulting in the Safe Medical Devices Act of 1990 

  Fig. 6.3    Overview of the medical device approval process (From Maisel [ 30 ])       

   Table 6.5    Classes of medical devices relative to the degree of testing   

 Class I  Devices that are thought to be low risk 
 Class II  Higher risk, but substantially equivalent to existing approved devices and might just 

require bench and/or animal testing 
 Class III  Devices are either life sustaining/supporting, or present a high risk of illness or injury 

(for example heart valves, pacemakers, etc.) 
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and the Medical Device Amendments of 1992 which strengthened the FDAs authority 
in monitoring post market surveillance [ 31 ]. 

 There are similarities in the regulatory process in the US compared to the European 
Union (EU), but differences exist. For example the EU relies heavily on independent 
commercial organizations to implement regulatory oversight of medical devices 
(these organizations are called notifi ed bodies or NBs). Also, to receive approval to 
market class III and some class II devices in the EU, the manufacturer must demon-
strate that the device is safe and performs in the manner consistent with the manufac-
turers intended use, while in the US prospective RCTs are usually necessary [ 32 ].  

    FDA and Surgical Interventions 

    Carol     M.     Ashton and        Nelda     P.     Wray  
     Co-Director, Department of Surgery ,  Center for Outcomes Research, 
Houston Methodist Hospital Research Institute ,   Houston Methodist 
Hospital, 6550 Fannin Street ,  SM 1661 ,  Houston, TX 77030 ,  USA    

 As already discussed, prescription drugs are regulated by the FDA, and for marketing 
approval of a new drug there is the requirement that there be pre-release demonstra-
tion in randomized trials of its effi cacy and safety in humans. Medical devices, 
including the assistive and implantable devices used in surgical procedures, are also 
regulated by the FDA, though the pre-market evaluative process is less stringent 
than it is for prescription drugs; most devices are cleared for marketing by the 
agency without the requirement of human tests of device safety and effectiveness. 
The FDA’s regulatory purview does not extend to surgical procedures, and there are 
no FDA regulations governing surgical interventions. Rather, new surgical interven-
tions are developed based on anatomic and clinicopathological correlations in 
humans and studies in animals, and then used in humans, with the initial experience 
reported as case reports or a series of cases. Subsequent large-scale dissemination 
of the procedure occurs as additional surgical groups begin using it. In most cases, 
it is only when doubts set in about a given procedure that its effi cacy is evaluated in 
a randomized controlled trial. The contrasts between the developmental pathways 
of new prescription drugs and new surgical procedures are shown in Table  6.6 .

   The reasons behind the existence of a double standard for pre-release proof of 
effectiveness and safety—one for prescription drugs and biologics and another, 
much less evidence-based, for surgical procedures—are numerous and beyond the 
scope of this chapter [ 33 ]. But settling for less rigorous evidence, namely that 
generated by case series, has consequences, as can be seen from instances in which 
a surgical procedure has been tested using the gold standard study design for 
effi cacy tests, the randomized controlled trial. Those RCTs generally demonstrate 
that the procedure is less benefi cial or more harmful than originally thought, no 
better than a nonoperative course of action, benefi cial for only certain subgroups, or 
no better than a placebo (sham procedure). 
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 A classic example is the story of lung volume reduction surgery (LVRS) for 
emphysema [ 34 ]. The fi rst report of the use of LVRS in humans was published in 
1957 but the procedure did not become widely used until it was modifi ed in the mid 
1990s by Joel Cooper [ 35 ,  36 ]. Dr. Cooper reported his experience with 20 cases in 
1994 (abstract) and 1995 (paper). By 1996, 1200 LVRS were performed in Medicare 
benefi ciaries, at an estimated cost of $30,000 to $70,000 each, not counting 
physician charges. But here is where the LVRS story diverges from the typical 
scenario. Scrutiny of LVRS by a consensus of experts as well as Medicare offi cials 
led to concerns about the procedure’s effectiveness and safety. In a landmark decision, 
Medicare offi cials decided that coverage for LVRS would only be provided in the 
context of a clinical trial [ 37 ]. Dr. Cooper and others complaining about this 
decision as unethical because of the “ obvious benefi t of the procedure ” challenged 
this decision. In record time, the NIH, Health Care Financing Administration (now 
the Centers for Medicare and Medicaid Services) and the Agency for Healthcare 
Research and Quality launched a randomized trial of LVRS vs. medical therapy for 
severe emphysema, the National Emphysema Treatment Trial, enrolling the fi rst 
patient in 1997. The initial results, reported in 2003, indicated that in 1,219 patients 
followed for an average of 29 months, in certain subgroups of patients, LVRS 
resulted in higher mortality rates than medical therapy [ 38 ]. Based on the trial results, 
Medicare offi cials limited coverage to patient subgroups that appeared to benefi t or 
at least not be harmed by LVRS. But the trial seems to have quenched demand for 
LVRS. By 2006, as reported in the New York Times, “Medicare says it will pay, but 
patients say ‘no thanks,’” only 458 Medicare claims for LVRS were fi led between 
January 2004 and September 2005 [ 39 ]. Without the fi ndings of the National 
Emphysema Treatment Trial, many more patients would have undergone a major 
operation from which they had no chance of benefi t and only a chance for harm. 

 Two other examples of the consequences of this “evolutionary pattern” in the 
development of surgical interventions are provided by carotid artery endarterec-
tomy for stroke prevention and arthroscopic treatment for relief of knee pain due to 
osteoarthritis. The fi rst case report of carotid artery endarterectomy in a human 
appeared in 1956 [ 40 ]. By 1971, 15,000 carotid endarterectomies were performed 
in the USA. By 1985, this had increased to 107,000 [ 41 ]. Criteria were then developed 
for the appropriate use of this procedure; when they were retrospectively applied to 
the carotid endarterectomies performed on Medicare benefi ciaries in 1981, only 
35 % of patients were found to have undergone the procedure for “appropriate” 

    Table 6.6    Different designs for surgical studies: strengths and weaknesses   

 Comparator 
 Non-operative 
therapy 

 Alternative invasive 
procedure  Sham procedure 

 Random allocation a   Yes  Yes  Yes 
 Blind patients b   No  Yes  Yes 
 Blind adjudicator outcomes  No  Sometimes  Yes 
 Minimizes crossovers  No  Yes  Yes 

   a Controls selection bias 
  b Controls expectancy bias  
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reasons, and in another 32 % the reasons were equivocal [ 41 ]. Defi nitive randomized 
trials of carotid endarterectomy were not conducted and reported until the mid-1990s 
[ 42 – 44 ]. The results of the trials changed clinical practice: based upon the appropri-
ateness criteria, by 1999 only 8.6 % of carotid endarterectomies could be deemed 
“inappropriate” [ 45 ]. On the other hand, 75 % of all carotid artery endarterectomies 
are now performed in asymptomatic patients, in whom the risk:benefi t ratio of the 
procedure is much narrower. In 2004, the FDA approved for use the fi rst carotid 
artery stent and stent deployment system. Unfortunately, over the past decade 
numerous observational and interventional studies have provided equivocal results 
in most patient subgroups about the incremental benefi t of stenting over endarterectomy. 
In the Carotid Revascularization Endarterectomy vs. Stenting Trial (CREST) it was 
found that among patients with symptomatic or asymptomatic carotid stenosis, the 
risk of the composite primary outcome of stroke, myocardial infarction, or death 
did not differ signifi cantly in the group undergoing carotid- artery stenting and the 
group undergoing carotid endarterectomy. During the periprocedural period, there 
was a higher risk of stroke with stenting and a higher risk of myocardial infarction 
with endarterectomy [ 6 ,  46 ]. 

 A fi nal example of the consequences patients and society are paying because of 
the typical pattern of the dissemination of surgical innovations is that of arthroscopic 
lavage with or without debridement for knee pain due to osteoarthritis. Fiberoptic 
arthroscopic debridement for this condition began to be used in the mid-1970s. By 
1996, more than 650,000 of these procedures were performed in the US [ 47 ]. A defi nitive 
randomized trial of the effi cacy of this procedure was not begun until 1995. That 
trial was a single site study in which 180 people were randomized in the operating 
room to arthroscopic lavage, arthroscopic lavage plus debridement, or a sham 
procedure (skin incisions with no entry into the joint) and followed for 2 years. The 
study showed that arthroscopic lavage with our without debridement was no better 
than the sham procedure in relieving pain and restoring function [ 48 ]. Two subsequent 
trials have confi rmed that arthroscopic surgery for knee pain due to osteroarthritis is 
no better than nonoperative therapy [ 49 ,  50 ]. It is certainly feasible, if challenging, 
to design and conduct rigorous randomized trials testing the benefi ts and harms 
of surgical interventions, and many high-quality surgical trials have been done. 
However, a large proportion of surgical trials have serious defects in design and/or 
reporting that undermine their internal and external validity as well as their clinical 
usefulness [ 51 ]. Coupled with the fact that many surgical innovations disseminate 
without being tested in randomized trials, the poor methodological quality of many 
of the surgical trials that  are  conducted means that the evidence base for many of 
the invasive therapeutic procedures in use today is seriously defi cient and lags far 
beyond what we know about prescription drugs. 

 What are some of the challenges in designing an RCT to evaluate the effi cacy of 
an invasive therapeutic procedure? Potential randomized designs that could be used 
to evaluate the effi cacy of a procedure include comparing the operative procedure to 
a non-operative course of therapy, the operative procedure against a sham or placebo 
procedure, and the operative procedure against an alternate operative procedure. 
Evaluating an operative intervention against a non-operative comparator is by far 
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the most commonly used design, but blinding as to group assignment is impossible, 
and expectancy bias on the part of patients and outcome assessors can affect estimates 
of treatment effect, especially if the surgical procedure is intended to alter subjective 
endpoints such as symptoms or function rather than more objective endpoints, e.g., 
death rates. In addition, because of participants’ and doctors’ treatment preferences, 
crossovers may be a serious problem. For example, in a 2006 RCT of diskectomy 
vs. nonoperative therapy for lumbar disk herniation, only 60 % of people randomized 
to surgery actually had the surgery, while 45 % of those randomized to the nonop-
erative arm crossed over and had the surgery [ 52 ]. The use of a sham procedure as 
a comparator in an RCT is limited, among other things, by the risks associated with 
sham anesthesia and a sham procedure. These are dictated by the nature of the active 
invasive procedure that is under evaluation. For many procedures, it would be 
impossible to design a sham that would maintain blinding yet still be safe for 
the patient, which is why sham comparators are infrequently used. However, there 
have been studies that have used a Sham procedure for Parkinson’s Disease and not 
surprisingly this resulted in considerable debate about is appropriateness. In fact, a 
survey of leading Parkinson disease researchers in the US and Canada found that 
97 % believe sham surgery is necessary for evaluating the safety of cell- and gene-
based neurosurgical interventions, and fully half of the investigators said that it 
would be unethical  not  to use sham procedures to test promising cell-based and 
gene therapies for Parkinson’s Disease due to the risk of false positive fi ndings. 
Even medical ethicists are divided on the issue of sham surgery—some have 
defended it while others have been outspokenly against the procedure [ 53 ]. Finally, 
comparing a surgical innovation to an invasive procedure that is part of the accepted 
standard of care is informative only in instances when we are certain about the 
effi cacy of the comparator procedure. Blinding as to treatment group assignment is 
possible with the latter design, as it is with sham procedure controls. As Baruch 
Brody has said regarding the issue of blinding in invasive intervention trials, one 
needs a “ …balancing of the scientifi c gains from blinding against the burdens 
imposed on the subjects and deciding when the burdens are too great ” [ 53 ]. Table  6.6  
summarizes the limitations of each of the above approaches. 

 Invasive therapeutic procedures pose other challenges in the design of randomized 
trials to evaluate their effi cacy, including but not limited to:

•    The need to refi ne the surgical technique in humans: implications for the timing 
of RCTs  

•   Learning curves of individual surgeons  
•   Unequal technical skill in the individual surgeon for various procedures  
•   Patient—and doctor—preferences for operative vs. nonoperative intervention  
•   Clinical uncertainty and equipoise: who defi nes these? When is a trial justifi able?  
•   Modest effect sizes expected from most therapeutic interventions and implications 

for sample size and number of participating surgical centers  
•   Diffi culty of evaluating effects of an intervention aimed at alleviating subjective 

parameters such as pain, discomfort, disability, etc.  
•   Placebo effect associated with invasive therapeutic procedures, and  
•   Control of expectancy bias in outcome assessments (blinding of patient, surgeon, 

outcome assessors)    
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 In summary, the current standard of practice is that invasive therapeutic 
procedures are devised and become widely used in the public without fi rst having 
been put to scientifically valid demonstrations in humans (i.e., randomized 
controlled trials) to determine the extent to which their benefi ts exceed their harms 
and costs and those of alternative courses of therapy. Compared with pre-release 
standards for prescription drugs, those for invasive procedures seem antiquated at 
best and do not seem to be serving the interests of patients and our society as well 
as they could be. As Wennberg stated, “ we need a way to assure the American 
people that the needed evaluations of clinical theory are done in a timely way, 
before plausible but wrong ideas get institutionalized into the everyday practice of 
medicine ” [ 54 ]. We need to develop effi cient approaches to assessing the benefi ts 
and risks of surgical innovations, approaches that yield high-quality, rigorous data 
while at the same time protecting patients’ ethical rights and our society’s justifi able 
interests in innovation and technological advances.  

    Adverse Event Reporting 

 Up to now we have discussed the industries role in drug development, and its lack 
of a role in surgical procedure development. From the FDA standpoint, the interest 
in monitoring the trials as they proceed and to ensure patient safety during the process 
is tantamount. Thus, for each trial, a mechanism must be in place for a timely review 
of adverse events. In fact, one FDA report cited the failure to report adverse events 
as required as one of the top ten problems surrounding clinical trials. The FDA defi -
nition of an adverse event is “ any unfavorable and unintended sign, symptom, or 
disease temporally associated with the use of a medical treatment or procedure 
regardless of whether it is considered related to the treatment or procedure .” 

 The FDA has classifi ed adverse drug events (ADEs) as serious when death, life 
threatening occurrences, hospitalization, persistent or permanent disability, or 
the need for medical or surgical intervention occurs during (and up to 30 days after) 
a clinical trial. An example of this is the report by Suntharalingam et al. that occurred 
during a phase 1 trial. They describe the events that occurred when six healthy 
volunteers received a dose of TGN1412 (a monoclonal antibody that affects T-cells). 
In all six subjects, a life threatening cytokine-release syndrome developed [ 12 ]. 

 There are a number of questions that address adverse event reporting as follows:

    Are clinical trials powered in such a way as to address differences in ADE’s vs. 
placebo or active control?     

 The answer to this is generally no. Phase 1–3 trials are powered based on 
presumed effi cacy beyond that of the control treatment, not based upon any ADE 
frequency. Also, the entire drug development portfolio submitted to the FDA for 
drug approval may consist of fewer than 5,000 patients exposed and certainly fewer 
than 10,000. Most of those patients are represented by phase 3 trials, and by the time 
a phase 3 trials is launched common ADE’s will have already been ascertained. 
Given this, ADE’s that occur even at a rate of 1 in 10,000 will not be revealed in 
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the drug development portfolio submitted to the FDA for drug approval. Table  6.7  
summarizes the strengths and limitations of some of the ways of ascertaining 
adverse drug events.

     Does the manner in which ADE’s are ascertained matter?     

 This is a frequently argued point in which there is insuffi cient information to 
come to a meaningful conclusion. Of course, most studies report ADE frequency, 
but the absolute frequency depends upon whether ADE’s are ascertained verbally 
either by general questions (e.g. “have you had any new symptoms since the 
last visit” or specifi cally, e.g. “have you had any headaches since the last visit?”); or 
ascertained by checklists either fi lled out by the patient or elicited by the study coor-
dinator and/or the principal investigator. One of the attempts to evaluate the differ-
ences in the manner of ascertainment comes from the Acute Myocardial Infarction 
Study (AMIS) as shown in Table  6.8  [ 55 ]. Not surprisingly, compared to controls, 
the frequency of GI bleeding elicited by specifi c questions was greater than those 
that were volunteered observations, but the relative difference between the active 
and control treatments was nearly the same. However, the few studies that have 
specifi cally addressed the accuracy of self-reported medical events suggest rela-
tively poor agreement between those reports and medical record review [ 56 ,  57 ]. 
More recently, Bolland et al. conducted a systematic analysis of the relation-
ship between self-reported and adjudicated events (including unreported 
events) from a 5 year calcium supplementation study [ 58 ]. They found that 
almost half (48 % of MIs and 42 % of strokes) the events could not be verifi ed; and, 
43 % of verifi ed MIs and 10 % of verifi ed strokes were unreported. The authors 
concluded that although other reports have demonstrated a higher agreement 
between self-reported events and adjudicated events, if accuracy of a clinical event 
in a trial is critical, self-reported events should not be relied on.

     Does the use of surrogate endpoints affect the determination of ADE frequency?     

 Recall that a surrogate endpoint is an outcome used in lieu of the real outcome 
of interest, and the main reason surrogate endpoints are used is so the clinical trial 
will be of shorter duration and/or can be conducted with a smaller sample size. It 
is thus obvious that this would decrease one’s ability to uncover infrequent ADE’s. 
Also, whereas the FDA would prefer to approve drugs on the basis of a clinically 

   Table 6.7    Strengths and limitations of different ways of ascertaining ADEs   

 Study design  Strengths  Limitations 

 Voluntary reporting  Detects signals of rare 
diseases 

 Risk diffi cult to quantify, details 
incomplete, selective reporting, 

 RCTs  Reduced confounding  Power, duration may be inadequate 
 Non-randomized trials  Effectiveness, larger sample, 

can explore interactions 
with disease and drugs 

 Confounding, data based upon 
computerized records rather than 
real use 

 Meta-analyses  Greater sample  Relies on quality of primary data, 
missing and unreported data 
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relevant endpoint, it does consider drugs tested against surrogate endpoints. 
Between 1998 and 2008, the FDA approved 69 applications for new molecular 
entities based upon surrogate endpoints [ 59 ]. Surrogate endpoints are more fully 
discussed in Chap.   3    .

    Does the use of intention-to-treat analysis affect the determination of ADE 
frequency?     

 As with the use of surrogate endpoints, ITT analysis can reduce one’s ability to 
determine the true ADE frequency. This is because, if a patient drops out from a trial 
before completion, and does not receive the drug for the entire trial duration, they 
will not have been exposed to the drug under study for the full trial time period. 
Even if they are dropped early in the study for an ADE they might have had an addi-
tional ADE (or a more severe ADE that the one that caused them to be withdrawn 
from the study early), had they been able to continue for the entire study. Since ITT 
is the primary analysis of a RCT (already a relatively short trial for the reasons 
mentioned in Chap.   3    ) most RCTs underestimate the true ADE frequency.  

    The FDA and Advertising 

 The FDA has a clear mission of protecting the public health by assuring the safety, 
effi cacy, and security of human drugs. The FDA is also responsible for advancing 
the public health by helping to speed innovations that make medicines more 
effective, safer, and more affordable [ 60 ]. If we consider that the FDA is also 
responsible to help the public get accurate, science-based information that is needed 
for medicines to improve their health, then it is understandable that a key role of the 
FDA is as a regulator and supervisor of manufacturer promotional activities. 

 The Division of Drug Marketing and Communications (DDMAC) in the Center 
for Drug Evaluation and Research, at the US Food and Drug Administration (FDA), 
is responsible for reviewing sponsor promotional materials, including prescription 
drug advertising, promotional labeling, and materials prepared for prescribers [ 61 ]. 
The main objective of the division is to ensure that information about prescription 

   Table 6.8    Comparison of type of reporting ADEs   

 % Reporting Selected ADE’s in AMIS 

 Volunteered  Hematemesis  Tarry stools  Bloody stools 

 Aspirin  .27  1.34  1.29 
 Placebo  .09  .67  .45 
  Elicited  
 Aspirin  .62  2.81  4.86 
 Placebo  .27  1.74  2.99 

  Whereas the absolute % differs for volunteered vs. elicited, the delta is similar 
 From: The AMIS Study Group [ 55 ]  
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drugs disseminated by sponsors to health care providers and consumers is not false 
or misleading, that there is fair balance of benefi t/risk information, and that it is 
accurately communicated [ 62 ,  63 ]. 

 Since 1962, the FDA was granted the responsibility to regulate prescription drug 
advertising and labeling [ 64 ,  65 ]. The regulations include reviewing written, printed, 
or graphic material accompanying a regulated product (“promotional labeling”) and 
materials published in journals and newspapers, broadcast, and telephone commu-
nications systems [ 64 ,  66 ]. However, the FDA does not have the authority to require 
sponsors to submit promotional materials for approval prior to their use [ 67 ]. According 
to the Food, Drug and Cosmetics Act, manufacturers in their advertisements should 
include a brief summary which truthfully communicates the product’s indication, major 
side effects and contraindications, major warnings, signifi cant precautions, drug 
interactions, and they should present an adequate balance of risks and benefi ts. For 
broadcast ads, two options are available to communicate drug information: a brief 
summary or a toll-free telephone number or website [ 68 ]. 

 Because manufacturers are not required to submit copies of advertisements at 
the time of initial dissemination nor copies of advertising at the time of initial 
publication, the FDA sees promotional materials only after they have been released 
or broadcasted [ 69 ,  70 ]. However, many manufacturers do submit their materials 
before airing to avoid future problems. Once an advertisement is disseminated, if it 
contains violative messages, the FDA can require corrective actions by means of 
untitled letters, warning letters, injunctions and consent decrees, referrals for criminal 
investigation, or prosecution and seizures [ 70 ]. 

 Untitled letters or notices of violation are issued for less serious violations 
and they usually require the sponsor to discontinue use of false or misleading adver-
tising materials. Warning letters are usually issued when there are more serious 
violations (e.g. repetitive misconduct or there is a potential for serious health risks 
to the public) [ 63 ]. Warning letters contain a statement that failure to respond may 
result in another regulatory action and that the FDA can initiate court proceedings 
for a seizure, injunction, or criminal prosecution [ 65 ]. Therefore, when manufacturers 
receive a warning letter, they are supposed to correct the problem immediately and 
disseminate the correct message using mailings and journals. However, a previous 
study showed that the FDA enforcement actions against false and misleading drug 
ads declined in 2002 and that there were delays in enforcement actions [ 71 – 73 ]. 

 In November 2005, The Pharmaceutical Research and Manufacturers of America 
(PhRMA) issued some principles on the advertising of prescription drugs but the 
effect of those guidelines on warning letters is unknown. As a result of the above, 
Salas et al. described the number, type, and content of warning letters for prescribed 
medications and to assess if PhRMA guidelines had an effect on the number and 
content of warning letters issued [ 74 ]. They found that 25 % of the overall warning 
letters issued by the FDA were related directly with drugs and that 10 % were 
focused on drug-related promotional activities. They also found that half of the 
warning letters were issued because of superiority claims which encourage 
prescriber’s not only to use of drugs but also to try the use of drugs for non- approved 
indications (i.e. off-label uses). In addition, they found an increase in warning 
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letters issued in 1998 compared to previous years, which may be an effect of changes 
in the 1997 law. According to this law, the Food and Drug Administration 
Modernization Act of 1997 reauthorizes the Prescription Drug User Fee Act of 
1992, regulating advertising of unapproved uses of approved drugs, and it released 
a draft guidance for direct to consumer advertising, which might have infl uenced an 
increase in the production of promotional materials [ 75 ].  

    Off-Label Drug Use (OLDU) 

 Off-label drug use is a commonly used term that many consider pejorative. However, 
OLDU is defi ned as available (marketed) medications that are prescribed for 
indications that have not received FDA approval (for a disease, symptom, and/or at 
a specifi c dose or dosage form—i.e. see defi nition above of “new drug” according 
to the FDA). OLDU can come about by virtue of the fact that the drug had not been 
studied in a specifi c population, or it is within a class of drugs that had already been 
approved for that specifi c population. Radley et al. reported that OLDU could 
constitute 21 % of all prescriptions    [ 76 ,  77 ]. There are a number of questions 
regarding OLDU including whether a drug that is off-label can become standard of 
care, why, if the OLDU is benefi cial FDA approval is not obtained, the legal vulner-
ability of using an off-label drug, whether drug companies can promote OLDU, and 
whether speakers can discuss them, and the difference between OLDU and orphan 
use of drugs. The fact is that off-label use of drugs can be commonly used and can 
become standard of care as exemplifi ed by aspirin, which is approved for pain and 
fever, but not for the many coronary disease uses for which it is standard of care. As 
to why companies do not seek FDA approval for OLDU, obtaining such approval is 
costly and time-consuming, and may not be cost-effective particularly given that the 
medication is already being used for an off-label condition. An extensive discussion 
of the legal ramifi cation of OLDU (should an adverse effect occur) is provided by 
Wittich et al., but they list four questions physicians should ask themselves when 
prescribing medications for OLDU as follows: “does the native drug have FDA 
approval”, has the off-label use been subjected to substantial peer-review, is the 
off- label use medically necessary for treatment, and is the use of the medication 
non- experimental. Finally, speakers are allowed to discuss OLDU during their 
presentations as long as the drug’s use is based on “ evidence that it is accepted 
within the profession of medicine ” [ 78 ]. But, pharmaceutical manufacturers are 
not allowed to promote off-label drug uses although they are “allowed to respond 
to unsolicited question from health care professionals about” OLDU; and, since 
2009 are able to distribute journal articles and text-book chapters describing 
unapproved uses. 

 In summary, the USFDA has a long history of regulating new drug development, 
and in trying to insure the safety of drugs both before and after they reach the 
marketplace. The regulatory authority granted to the FDA is a dynamic process and 
the constant changes require continual updating of ones, knowledge.    
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    Abstract     There are four general reasons for clinical improvement in a patient’s 
condition: (1) natural history of the disease; (2) specifi c effects of the treatment; 
(3) regression to the mean; and (4) nonspecifi c effects of the treatment that are attrib-
utable to factors other than the specifi c active components. The latter effect is included 
under the heading ‘placebo effect’. In this chapter the placebo effect will be discussed, 
with some emphasis on regression to the mean. Placebos (‘I will please’) and their 
lesser known counterpart’s nocebo’s (I will harm’) are sham treatments. The difference 
is in the response to the inert therapy. A benefi cial response to an inert substance is a 
placebo response; a side effect to an inert substance is a nocebo response.  

  Keywords     Placebo   •   Nocebo   •   Regression to the mean   •   Placebo mechanisms   • 
  Placebo in clinical trials   •   Placebo ethics   •   Placebo characteristics  

    Placebo has been cited in PubMed over 170,000 times indicating that placebo has set 
the standard for how clinical research and particularly clinical trials are conducted. 
On the other hand, some have argued that placebo effects are overstated and can be 
explained by other variables (e.g. changes in the natural history of the disease, regres-
sion to the mean, methodological issues, conditioned answers, etc.). The importance, 
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controversy, and to date inadequate study of the placebo effect, warrants an in depth 
review of this topic. In addition, the discussion of placebos requires an understanding 
of the ethics of clinical trials, intention to treat analysis, surrogate endpoints and 
many of the other areas that have already been discussed in prior chapters. 

 Placebos (‘I will please’) and their lesser-known counterpart’s nocebos (‘I will 
harm’) are sham treatments. The difference between placebo and nocebo is in the 
response to the inert therapy. A benefi cial response to an inert substance is a placebo 
response; a side effect to an inert substance is a nocebo response. 

 There are four general reasons for clinical improvement in a patient’s condition: 
(1) natural history of the disease; (2) specifi c effects of the treatment; (3) regression 
to the mean; and (4) nonspecifi c effects of the treatment that are attributable to fac-
tors other than the specifi c active components (Table  7.1 ). The latter effect is 
included under the heading ‘placebo effect’ [ 1 ]. Each time a physician recommends 
a diagnostic or therapeutic intervention for a patient, built into this clinical decision 
is the possibility of a placebo effect, that is, a clinical effect unrelated to the inter-
vention itself [ 2 ]. Simple diagnostic procedures such as phlebotomy or more inva-
sive procedures such as cardiac catheterization have been shown to have important 
associated placebo effects [ 3 ,  4 ]. Chalmers [ 5 ] has stated that a simple review of the 
many abandoned therapies reveals that many patients would have benefi ted by being 
assigned to a placebo control group. In fact, what might represent the fi rst known 
clinical trial, and one in which the absence of a placebo control group led to errone-
ous conclusions, is a summary attributed to Galen in 250 BC, who stated that ‘some 
patients that have taken this herbivore have recovered, while some have died; thus, 
it is obvious that this medicament fails only in incurable diseases’ [ 6 ].

   Placebo effects are commonly observed in patients with cardiac disease who also 
receive drug and surgical therapies as treatments. Rana et al. noted the ‘tremendous 
power of the placebo effect’ in patients with end-stage coronary disease in clinical trials 
of angiogenesis and laser myocardial revascularization [ 7 ]. They also commented on the 
fact that the observed improvements were not limited to ‘soft’ symptomatic endpoints but 
were also observed with ‘hard’ endpoints such as exercise walking time on a treadmill, 
and in magnetic resonance imaging. Rana et al. also studied the longevity of the placebo 
effect from published clinical trials. They found that the benefi cial effects of pla-
cebo (on angina class, angina frequency, and exercise time) persisted for up to 2 years. 

    Defi nition 

 Stedman’s Medical Dictionary [ 7 ] defi nes the word ‘placebo,’ which originates 
from Latin verb meaning ‘I shall please,’ to have two meanings. First, a placebo may 
be an inert substance prescribed for its suggestive value. Second, it may be an inert 

  Table 7.1    Four general 
reasons for clinical 
improvement in a patient’s 
condition  

 Natural history of the disease 
 Specifi c effects of the treatment 
 Regression to the mean 
 Placebo effect 
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substance identical in appearance with the compound being tested in experimental 
research, and the use of which may or may not be known by the physician or the 
patient; it is given to distinguish between the action of the compound and the 
suggestive effect of the compound under study [ 8 ]. 

 Currently, there is some disagreement as to the exact defi nition of a placebo. 
Many articles on the subject include a broader defi nition, as given by Shapiro in 
1961 [ 9 ].

   “Any therapeutic procedure (or that component of any therapeutic procedure) which is 
given deliberately to have an effect or unknowingly has an effect on a patient, symp-
tom, syndrome, or disease, but which is objectively without specifi c activity for the condi-
tion being treated. The therapeutic procedure may be given with or without conscious 
knowledge that the procedure is a placebo, may be an active (noninert) or nonactive 
(inert) procedure, and includes, therefore, all medical procedures no matter how specifi c—
oral and parenteral medication, topical preparations, inhalants, and mechanical, surgical 
and psychotherapeutic procedures. The placebo must be differentiated from the placebo 
effect, which may or may not occur and which may be favorable or unfavorable. The 
placebo effect is defi ned as the changes produced by placebos. The placebo is also used to 
describe an adequate control in research.”  

   A further refi nement of the defi nition was proposed by Byerly [ 10 ] in 1976 as 
 ‘any change in a patient’s symptoms that are the result of the therapeutic intent and 
not the specifi c physiochemical nature of a medical procedure .’  

    Placebo Effect in Clinical Trials 

 The use of placebo controls in medical research was advocated in 1753 by Lind [ 11 ] 
in an evaluation of the effects of lime juice on scurvy. After World War II, research 
protocols designed to assess the effi cacy and safety of new pharmacologic therapies 
began to include the recognition of the placebo effect. 

 The roots of the placebo problem can be traced to a lie told by an Army nurse 
during World War II as Allied forces stormed the beaches of southern Italy. The 
nurse was assisting an anesthetist named Henry Beecher, who was tending to US 
troops under heavy German bombardment. When the morphine supply ran low, the 
nurse assured a wounded soldier that he was getting a shot of potent painkiller, 
though her syringe contained only salt water. Amazingly, the bogus injection 
relieved the soldier’s agony and prevented the onset of shock. 

 Returning to his post at Harvard after the war, Beecher became one of the nation’s 
leading medical reformers. Inspired by the nurse’s healing act of deception, he 
launched a crusade to promote a method of testing new medicines to fi nd out 
whether they were truly effective. At the time, the process for vetting drugs was 
sloppy at best, and Pharmaceutical companies would simply dose volunteers with 
an experimental agent until the side effects swamped the presumed benefi ts. Beecher 
proposed that if test subjects could be compared to a group that received a placebo, 
health offi cials would fi nally have an impartial way to determine whether a medi-
cine was actually responsible for making a patient better. 

7 The Placebo and Nocebo Effect
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 Placebos and their role in controlled clinical trials were recognized in 1946, when 
the Cornell Conference on Therapy devoted a session to placebos and double- blind 
methodology. At that time, placebos were associated with increased heart rate, 
altered respiration patterns, dilated pupils, and increased blood pressure. In 1951, 
Hill [ 12 ] concluded that a change in a patient to be attributable to a specifi c treatment 
(for better or worse) the result must be repeatable a signifi cant number of times 
in other similar patients. Otherwise, the result could be due simply to the natural 
history of the disease or the passage of time. He also proposed the inclusion of a 
control group that received identical treatment except for the exclusion of an ‘active 
ingredient.’ Thus, the ‘active ingredient’ was separated from the situation within 
which it was used. This control group, also known as a placebo group, would help 
in the investigations of new and promising pharmacologic therapies. 

 Beecher [ 13 ] was among the fi rst investigators to promote the inclusion of 
placebo controls in clinical trials. He emphasized that neither the subject nor the 
physician should know what treatment the subject was receiving and referred to this 
strategy as the ‘double unknown technique.’ Today, this technique is called the 
‘double-blind technique’ and ensures that the expectations and beliefs of the patient 
and physician are excluded from evaluation of new therapies. In 1955, Beecher 
reviewed 15 studies that included 1,082 patients and found that an average of 35 % 
of these patients signifi cantly benefi ted from placebo therapy (another third had a 
lesser benefi t). He also concluded that placebos can relieve pain from conditions 
with physiologic or psychological etiologies. He described diverse objective changes 
with placebo therapy. Some medical conditions improved; they included severe 
postoperative wound pain, cough, drug-induced mood changes, pain from angina 
pectoris, headache, seasickness, anxiety, tension, and the common cold. 

    The Use of Placebos in Clinical Trials 

 There has been renewed interest in the use of placebos in clinical trials, and, not just 
because of the ethical issues involved. For example, from 2001 to 2006, the percentage 
of new products dropped from development after Phase II clinical trials, when drugs 
are generally fi rst tested against placebo, rose by 20 %. During that same time 
period the failure rate in more extensive Phase III trials increased by 11 %, mainly 
as the result of surprisingly poor showings against placebo. Also, half of all drugs 
that fail in late-stage trials drop out of the pipeline due to their inability to beat 
placebo. Some examples are: a new type of gene therapy for Parkinson’s disease 
was abruptly withdrawn from Phase II trials after unexpectedly tanking against 
placebo, stem-cell trials for Crohn’s disease were suspended citing an “unusually 
high” response to placebo, and clinical trials for a much-touted new drug for 
schizophrenia was stopped when volunteers showed double the expected level of 
placebo response. And, it’s not only trials of new drugs that are crossing the futility 
boundary. Some products that have been on the market for decades are faltering in 
more recent follow-up tests, and in many cases, these are the compounds that, in the 
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late 1990s, made Big Pharma more profi table than Big Oil, yet if these same drugs 
were studied now, the FDA might not approve some of them. Further confounding 
things is the observation that while some drugs are more likely to be superior in 
American studies than in those done in Europe and South Africa, others are still 
beating placebo in France and Belgium, but not in the USA. 

 Finally, since the 1980s, two comprehensive analyses of antidepressant trials 
have uncovered a dramatic increase in placebo response. One estimated that the 
effect size in placebo groups had nearly doubled over that time; and, it’s not that 
the old treatments are getting weaker, it’s as if the placebo effect is somehow 
getting stronger.   

    Characteristics of the Placebo Effect 

 There appears to be an inverse relation between the number of placebo doses that 
needs to be administered and treatment outcomes. In a study of patients with 
postoperative wound pain, 53 % of the subjects responded to one placebo dose, 
40 % to two or three doses, and 15 % to four doses [ 12 ]. In analyzing the demo-
graphics of those who responded to placebo and those who did not, Lasagna et al. 
[ 14 ] found no differences in gender ratios or intelligence quotients between the two 
groups. They did fi nd signifi cant differences in attitudes, habits, educational 
backgrounds, and personality structure between consistent responders and 
nonresponders. In attempting to understand the reproducibility of the placebo 
effect, some have observed that there was no relation between an initial placebo 
response and subsequent responses with repeated placebo doses of saline [ 12 ]. 
Beecher concluded that placebos are most effective when stress, such as anxiety 
and pain, is greatest. But, placebo responses can be associated with dose response 
characteristics, frequency of dosing, pill color (e.g. blue vs. pink pills are more 
sedating, yellow vs. green more stimulating) and, “branded placebo” in some studies 
were more effective than generic placebo (Fig.  7.1 ). The magnitude of effect is 
diffi cult to quantitate due to its diverse nature but it is estimated that a placebo effect 
accounts for 30–40 % of an interventions benefi t.

   Placebos can produce both desirable and adverse reactions. Some now use the 
term placebo for the benefi cial effects and nocebo for the adverse effects. Beecher 
et al. described >35 adverse reactions from placebos; the most common are listed 
in Table  7.2 . The aforementioned reactions were recorded without the patient’s or 
physician’s knowledge that a placebo had been administered. In one study in which 
lactose tablets were given as a placebo, major adverse reactions occurred in three 
patients [ 15 ]. The fi rst patient had overwhelming weakness, palpitation, and nausea 
after taking both the placebo and then the test drug. In the second patient, a diffuse 
rash developed with placebo administration, and the rash disappeared after placebo 
was discontinued. The third patient had epigastric pain followed by watery diarrhea, 
urticaria, and angioneurotic edema of the lips after receiving the placebo.
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   Indeed, because of the substantial evidence of placebo ‘effi cacy’ and placebo 
‘side effects,’ some investigators have wittingly suggested that if placebo were 
submitted to the United States Food and Drug Administration (FDA) for approval, 
that the agency, though impressed with the effi cacy data, would probably recommend 
disapproval on the basis of the high incidence of side effects. Some authors have 
questioned whether placebos are truly inert. Davis pointed out that part of the 
problem with the placebo paradox is our failure to separate the use of an inert 
medication (if there is such as substance) from the phenomenon referred to as the 
placebo effect. It might help us if we could rename the placebo effect the “obscure 
therapeutic effect” [ 16 ]. 

 For instance, in trials of lactase defi ciency therapy, could the amount of lactose 
in placebo tablets actually cause true side effects? Although the small amount of 

  Fig. 7.1    Pill color and its placebo effects       

  Table 7.2    Common adverse 
reactions to Placebo (Nocebo 
effect)  

 Reaction  Incidence (%) 

 Drowsiness  50 
 Headache  25 
 Sensation of heaviness  18 
 Fatigue  18 
 Diffi culty concentrating  15 
 Sleep disturbance  10 
 Nausea  10 
 Overly relaxed  9 
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lactose makes this possibility seem unlikely. Perhaps it is more likely that allergies 
to some of the so-called inert ingredients in placebos cause reactions in predisposed 
persons, although this explanation probably could not explain more than a small 
percentage of placebo side effects. 

 A validation of the placebo effect occurred in 1962 when the United States 
enacted the Harris-Kefauver amendments to the Food, Drug, and Cosmetic Act. 
These amendments required proof of effi cacy and documentation of relative safety, 
in terms of the risk-benefi t ratio for the disease to be treated, before an experimental 
agent could be approved for general use [ 17 ]. In 1970, the FDA published rules for 
‘adequate and well-controlled clinical evaluations.’ The federal regulations identi-
fi ed fi ve types of controls (placebo, dose-comparison, active, historical, and no 
treatment) and identifi ed use of the placebo control as an indispensable tool to 
achieve the standard [ 18 ]. However, the FDA does not mandate placebo controls, and 
in fact has stated that placebo groups are ‘desirable, but need not be interpreted as a 
strict requirement. The speed with which blind comparisons with placebo and/or 
positive controls can be fruitfully undertaken varies with the nature of the compound. 
In the publication regarding ‘Draft Guidelines for the Clinical Evaluation of 
Anti-anginal Drugs,’ the FDA further states that ‘ it should be recognized that there 
are other methods of adequately controlling studies. In some studies, and in some 
diseases, the use of an active control drug rather than a placebo is desirable, primarily 
for ethical reasons. ” 

    Regression Towards the Mean (or Towards Mediocrity) 

 An important statistical concept and one that may mimic a placebo response or a 
clinical response is regression towards the mean or regression towards mediocrity 
(RTM). RTM identifi es a phenomenon that a biologic variable that is extreme on its 
fi rst measurement will tend to be closer to the center of the distribution on a later 
measurement. The term originated with Sir Francis Galton who studied the rela-
tionship between the height of parents and their adult offspring. He observed that 
children of tall parents were (on average) shorter than their parents; while, children 
of short parents were taller than their parents. Galton called this regression towards 
mediocrity [ 20 ]. Another example of RTM is from Ederer, who observed that during 
the fi rst week of the 1968 baseball season the top ten and bottom ten batters 
averaged 0.414 and 0.83 respectively. The following week they hit 0.246 and 0.206 
respectively, while the average for the league remained stable [ 19 ]. 

 At least three types of studies are potentially affected by RTM: a survey in which 
subjects are selected for subsequent follow-up based upon an initial extreme value, 
studies with no control groups, and even controlled trials. An example is taken from 
the Lipid Research Clinics Prevalence Study, a sample population who had elevated 
total cholesterol was asked to return for reevaluation. According to RTM, it would 
be expected that the 2nd measurement would on average be lower, and this 
would not be so had a randomly selected sample been chosen for reevaluation [ 22 ]. 
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The reason that a randomly selected sample would be less likely to demonstrate RTM 
is because the random sample would have representative values across the spectrum 
of cholesterol measurements at the start, whereas the selected sample all initially 
had elevated values. 

 Another example of the RTM principal comes from the National Diet-Heart Study 
[ 23 ]. It had been repeatedly observed that a low cholesterol diet given to subjects 
with high cholesterol values resulted in greater cholesterol lowering that when the 
same diet was given to someone with lower cholesterol values. In the National Diet-
Heart Study subjects with a baseline cholesterol >242 mg/dL had a 15 % reduction 
while those whose baseline cholesterol was 210–241 mg/dL had a 12 % reduction 
[ 23 ]. There are two possible explanations for this observation: one, that the diet 
hypothesis holds i.e. that subjects with high cholesterol are more responsive to cho-
lesterol lowering treatment than those with lower cholesterol values; and two, that 
independent of dietary intervention subjects with high cholesterol will (on average) 
decrease more than those with lower values due to RTM. In fact, it is likely that both 
could occur simultaneously. 

 RTM then, is a phenomenon that can make a natural variation in repeated data 
look like a real change. In biologic systems, most variables increase and decrease 
around a mean (as, for instance, might be visualized as a sine wave). Thus, it is 
likely that any value measured at a specifi c point in time will, by chance, either be 
above or below the mean, and that a second measurement will be at a different 
point around the mean and, therefore, different from the fi rst measurement 
(Fig.  7.2 ). The presumption is that this variability about the mean will be the same 
in the placebo group as in the active treatment group (assuming adequate sample 
size and randomization), so that differences between the two groups relative to 
regression to the mean will cancel out. In an intervention study, RTM cannot be 
observed because it is mixed into the genuine intervention effect. This is particu-
larly true of intervention studies where the population selected for study generally 
is in the high risk groups—that is with values that are high at baseline. Yudkin and 
Stratton evaluated this by analyzing a group with high baseline cholesterol, and 
observing a 9 % fall without any intervention [ 21 ]. These authors go on to point out 
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several ways of estimating the impact of RTM, and three suggested approaches to 
minimizing the RTM problem. These approaches include the use of an RCT design, 
since the RTM effect will be part of the total effect of the response in both the 
intervention and control groups. However, the response in both groups will be 
infl ated by the RTM so the true impact of the intervention is not known and is 
likely somewhat less that that observed. A second approach to minimizing RTM is 
to obtain several measurements and average them to determine baseline. The third 
approach is to use the fi rst measurement as the basis for selection of the subject 
into the study, and a second measurement that will be used as the baseline from 
which to assess the effect of the intervention.

   The ideal comparator for a study would actually be no therapy vs. the investiga-
tional agent, however, the loss of blinding makes this approach problematic as well. 
There has been little study of the no therapy control, however, Asmar et al. did 
attempt to evaluate this as part of a larger interventional trial [ 22 ]. They used a 
randomized cross-over approach with a 1 month run-in followed by a 1 month 
placebo vs. no treatment period. BP and ABPM were measured. The results could 
be then analyzed in terms of the no treatment effect (no parameters changed in the 
two periods) and the RTM effect shown in Fig.  7.3 .

        Mechanism of the Placebo Effect 

 There has been much discussion regarding the mechanism of the placebo response. 
However, the mechanism at the cellular level and the role of biochemical mediators 
continues to escape detection. In an attempt to elucidate some mechanisms of the 
placebo effect, Beecher [ 13 ] described two phases of suffering: fi rst, the initial pain 
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  Fig. 7.3    Change in measured variables during placebo vs. no therapy. From Asmar et al. [ 22 ]       
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sensation or other symptom, and second the person’s reaction to this sensation or 
experience by the central nervous system. The fi rst, or somatic, phase is associated 
with the source of the pain or symptom; the second, or cortical, phase is superim-
posed on the pain or symptom. An example of the infl uence of the effect of the mind 
on the body is the ‘Anzio Effect.’ During World War II, injured soldiers at Anzio, 
Italy, complained less of pain after surgery, than typical patients after surgery. This 
difference was recognized because less than one third of the injured soldiers required 
morphine, compared with four fi fths of patients undergoing similar recovery from 
the same surgery in non-combatants. For the soldiers, the knowledge that they had 
survived, combined with the anticipation of returning home, probably reduced their 
pain. In contrast, typical surgical patients are required to comply with hospital 
procedures, probably producing anxiety or fear that acts to increase pain [ 23 ]. The 
physiologic mechanism involved with pain begins when fear or anxiety activates the 
hypothalamus-hypophysis-adrenal axis, resulting in release of catecholamines. 
These catecholamines act on the body, which then sends feedback to the cerebral 
cortex via neural connections. The thalamus in the diencephalons, which processes 
sensory input before relaying it to the cerebral cortex, then sends recurrent axons 
to the thalamus, presumably to allow modulation of the input received from the 
thalamus [ 23 ,  24 ]. 

 One theory to explain the placebo effect is classical conditioning, the pairing 
of an unconditioned stimulus with a conditioned stimulus until eventually the 
conditioned stimulus alone elicits the same response as the unconditioned stimulus. 
This effect of the environment on behavior was tested in a study by Voudouris 
et al. [ 25 ].  They studied responses to pain stimulation with and without a placebo 
cream. A visual analogue scale determined pain perception. To evaluate the effect 
of verbal expectancy, the patients were informed that the placebo cream had powerful 
analgesic properties (expectancy) or that the cream was neutral (no expectancy). To 
determine the role of conditioning, the level of pain stimulus was reduced after 
application of the cream (conditioning) or was maintained at the same level of pain 
(no conditioning). The patients were divided into four groups: a group receiving 
expectancy and conditioning, a group receiving only expectancy, a group receiving only 
conditioning, and a group receiving neither. Both conditioning and verbal expec-
tancy were important mediators on the placebo response, but conditioning was more 
powerful [ 25 ]. 

 A second explanation for the placebo effect is response by neurohormones, 
including motor or autonomic nervous systems, hormone systems, and immune 
systems. Endogenous neuroendocrine polypeptides, including β-endorphins, enkepha-
lins, and antiopioids, are activated by many factors. These factors include placebos, 
vigorous exercise, and other stressors. Modulation of the opioid system may occur 
by an antiopiod system of neurotransmitters. γ-Aminobutyric acid, and peptide 
neurotransmitter, is associated with the secretion of β-endorphin and β-lipotropin 
[ 23 ]. The endorphin group of neurotransmitters is created from the proopiomela-
nocortitrophin peptide and is linked through β-lipotropin with the regulation of 
the hypothalamus-hypophysis-adrenal axis. There is no understanding of the exact 
link between the opioid-antiopioid and β-lipotropin systems of neuroendocrine 
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peptides. The brain peptides and their actions on presynaptic and postsynaptic 
receptors on neurons also are not understood. Experiments in animals provide most 
of the information about control of the genetic expression of the peptides [ 23 ]. 

 In a double-blind study by Levine et al. [ 26 ], patients received placebo and then 
intravenous naloxone after tooth extraction. Naloxone, a partial opioid antagonist 
that competes with β-endorphins for the same receptor in the brain, blocked the 
placebo effect previously experienced by the patients. Levine et al. concluded that 
placebo activates β-endorphins in the brain and that naloxone increases the pain by 
inhibiting the placebo effect [ 26 ]. A double-blind study by Hersh et al. found 
ibuprofen to be more effi cacious than placebo or codeine [ 27 ]. Naltrexone, a long- 
acting oral form of naloxone, given before oral surgery reduced the analgesic 
response to placebo and to codeine received after surgery. In an additional noteworthy 
fi nding, pretreatment with naltrexone prolonged the duration of ibuprofen’s action 
rather than diminishing the peak analgesic response. This prolongation of ibuprofen’s 
action was hypothesized to result from increased central stimulation of endogenous 
opiates by ibuprofen or from competition by naltrexone for liver enzymes involved 
in the inactivation and elimination of ibuprofen. 

 A third model of the placebo response is the ability of mental imagery to 
produce specifi c and measurable physiologic effects. This model explains the 
relation between psychological and physiologic components of the placebo effect. 
There is a conversion in the brain of psychological placebo-related imagery into a 
physiologic placebo response. A patient may modify his or her imagery content in 
response to bodily reactions during treatment, in response to the behaviors and 
attitudes of doctors or nurses, or in response to information about the treatment 
from other sources (such as other patients, books, and journals) [ 28 ]. An example 
of this model is described in another study [ 29 ]. Two matched groups of patients 
preparing to undergo abdominal surgery received different types of care. In one 
group, the anesthesiologist told the patients about the operation but not about the 
postoperative pain. The other group was told about the postoperative pain and 
assured that medication was available. It was found that the patients informed 
about postoperative pain needed only half the analgesic and left the hospital 2 days 
earlier. The authors concluded that this result showed ‘a placebo effect without the 
placebo’ [ 29 ]. 

 Additional studies have been attempted to both characterize and explore the 
mechanisms of the placebo effect. One such approach has been based upon the color 
and shape of pills and how that affects how patients feel about their medication. For 
example,  ScienceDaily (Jan. 19, 2011)  reported that according to recent research 
the color, shape, taste and even name of a tablet or pill may have an effect on how 
patients feel about their medication. Choose an appropriate combination and the 
placebo effect gives the pill a boost, improves outcomes and might even reduce side 
effects. In fact, it has been observed that pill color may infl uence both the placebo 
and the nocebo effects (Fig.  7.1 ). Some general observations from this line of 
research suggests that capsules tend to be more effective than other pill forms, 
and that red and pink tables are generally more effective than other colors. A study  
was performed in order to assess the impact of the color of a drug’s formulation on its 
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perceived effect and its effectiveness, and to examine whether antidepressant 
drugs available in the Netherlands are different in color from hypnotic, sedative, 
and anxiolytic drugs [ 33 ]. The systematic review was of 12 published studies 
of which six examined the perceived action of different colored drugs and six the 
infl uence of the color of a drug on its effectiveness. The studies on perceived action 
of drugs showed that red, yellow, and orange were associated with a stimulant 
effect, while blue and green were related to a tranquillizing effect. The analysis of 
the studies that assessed the impact of the color of drugs on their effectiveness 
showed inconsistent differences between colors. However, hypnotic, sedative, and 
anxiolytic drugs were more likely than antidepressants to be green, blue, or purple. 
Their overall conclusions were that colors affect the perceived action of a drug 
and may infl uence the effectiveness of some drugs, that a relation exists between the 
coloring of drugs that affect the central nervous system and the indications for 
which they are used, and that further research contributing to a better understanding 
of the effect of the color of drugs is warranted [ 33 ].  

    Placebo Effect in Various Diseases 

    Placebo Effect in Ischemic Heart Disease and Chronic, 
Stable, Exertional Angina Pectoris 

 The rate of improvement in the frequency of symptoms in patients with chronic, 
stable, exertional angina pectoris with placebo therapy has been assessed to be 
30–80 % [ 30 ]. A summary of subjective and objective placebo effects in cardiovas-
cular disease is provided in Table  7.3 . Because of the magnitude of the placebo 
effect, most studies of new antianginal therapies were performed with placebo 
control. However, the safety of this practice came under scrutiny in the late 1980s 
because of concern that patients with coronary artery disease would have periods of 
no drug treatment. As a result, Glasser et al. explored the safety of exposing patients 
with chronic, stable, exertional angina to placebos during short-term drug trials with 
an average double-blind period of 10 weeks [ 31 ]. The study included all new drug 
applications (NDAs) submitted to the FDA between 1973 and 2001. The results of 
these drug trials were submitted, whether favorable or not, and all adverse events 
were reported. Qualifying studies used symptom-limited exercise tolerance testing 
as an end point. No antianginal medication, except sublingual nitroglycerin, was 
taken after a placebo-free or drug-free washout period. A total of 2,921 patients with 
angina pectoris and an abnormal exercise tolerance test who entered any randomized, 
double-blind, placebo-controlled trial. Since then, an additional 9 NDAs (representing 
63 trials) for angina claims have been submitted to the FDA, resulting in an updated 
total of 10,865 patients, among whom 607 (5.6 %) were withdrawn from the trials 
due to an adverse drug event. The relative risk (RR) for withdrawal (placebo 
compared to drug-treated patients) was not increased (RR = 0.92, 0.78, 1.08; p = 0.28). 
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Combined events, irreversible harm (CVA, MI, Death), and serious cardiovascular 
events (MI, CHF, CVA) also had point estimates favoring randomization to placebo 
(RR = 0.54, 0.26, 1.04; p < 0.068 and RR = 0.89; .61, 1.30; p = 0.56 respectively). 
The conclusion was that with a greater number of trials and larger numbers of 
randomized patients, the results are similar to those reported prior; and, within the 
limitations of the study, there was no evidence that the use of a placebo control is 
unsafe in short-term studies of chronic stable angina (Fig.  7.4 ). This analysis found 
evidence that supported the safety of a placebo group in short-term drug trials for 
chronic, stable, exertional angina [ 37 ]. An analysis of the safety of a placebo control 
in trials of anti-hypertensive drugs has also been published [ 38 ]. Although a slightly 
increased risk of reversible symptoms was identifi ed, there was no evidence of irre-
versible harm as a result of participation in any of these trials. The same caveats 
apply as discussed in the angina trials-that is, these were short term trials of carefully 
monitored and selected patients.

   Table 7.3    Objective placebo effects in cardiovascular disease      

  Placebo effect  

  Heart failure  [ 37 ] 
 Exercise tolerance testing 
 1 or 2 baseline measurements  90–120 s 
 3–10 baseline measurements  10–30 s 
 Increase in ejection fraction of 5 %  20–30 % of patients 

  Hypertension  [ 53 ] 
 Measured by noninvasive automatic ambulatory 24-h monitoring  0 % 

  Arrhythmia  
  Study 1  [ 63 ]  a   
 A reduction in mean hourly frequency of ventricular tachycardia  <65 % 
 A reduction in mean hourly frequency of couplets  <75 % 
 A reduction in mean hourly frequency of all ventricular ectopic beats 

without regard for complexity 
 <83 % 

  Study2  [ 64 ] b  
 Baseline VPCs > 100/h  <3 times baseline 
 Baseline VPCs < 100/h  <10 times baseline 

  Silent ischemic disease  [ 24 ] 
 Reduction in frequency of ischemic events  44 % 
 Reduction in ST-segment integral  50 % 
 Reduction in duration of ST-segment depression  50 % 
 Reduction of total peak ST-segment depression  7 % 

  Other  [ 67 ,  69 ,  72 ] 
 Compliance with treatment at rate of ≥75 %  <3 times baseline 

   VPC  Ventricular premature complexes 
  a Based on comparison of one control 24 h monitoring period to one 24-h treatment period. 
Variability is so great that it may be inadvisable to pool individual patient data to detect trends in 
ectopic frequency in evaluating new potential antiarrhythmic agents in groups of patients 
  b When differentiating proarrhythmia in patients with mixed cardiac disease and chronic ventricular 
arrhythmias from spontaneous variability, with false-positive rate of only 1 %  
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    The safety of using placebo in longer-term drug trials for chronic, stable, exertional 
angina has not been established. A placebo-controlled trial by a European group 
in 1986 enrolled 35 patients and made observations during a 6-month period of 
placebo or short-acting nitroglycerin administration [ 32 ]. This study of the long- 
term effects of placebo treatment in patients with moderately severe, stable angina 
pectoris found a shift toward the highest dosage during the titration period. Seven 
patients continued to receive the lowest dosage, but the average ending dosage was 
65 % more than the initial dosage. Compliance, when determined by pill count, for 
27 patients was >80 %. During the fi rst 2.5 months of the trial, noncompliance with 
the regimen or physical inability to continue to study was ascertained. No patients 
died or had myocardial infarction [ 32 ]. 

 There is a paucity of information regarding any gender differences in placebo 
response. Women represented 43 % of the population in the aforementioned European 
study [ 32 ] and were more likely to have angina despite normal coronary arteries. 
Because the placebo effect may be more pronounced in patients with normal 
coronary arteries, data from men were analyzed separately to compare them with 
the overall results. However, the data from men were very similar to the overall 
results. In fact, the functional status of men showed more improvement attributable 
to placebo (61 %) than overall (48 %) at 8 weeks. The results of this study showed 
no adverse effects of long-term placebo therapy: 65 % of patients reported subjective, 
clinical improvement and 27 % of patients reported objective, clinical improvement 
in exercise performance [ 32 ]. Of note, improvement in exercise performance can 
occur when patients undergo repeated testing [ 33 ]. 
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  Fig. 7.4    Forest plot of the overall relative risk of dropout for trials of chronic stable angina. From: 
Glasser et al. [ 81 ]       
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 There is a problem inherent in all modern trials of antianginal therapy: because 
anginal patterns vary and, with modern treatments, are infrequent, a surrogate 
measure of antianginal effect has been adopted by the FDA and consists of tread-
mill walking time to the point of moderate angina. Also, just as there is a placebo 
effect on angina frequency, a patient’s treadmill walking time frequently (50–
75 %) improves with placebo therapy (Fig.  7.5 ). Other potential mechanisms also 
partially explain the improvement in exercise walking time in antianginal studies 
and are unrelated to a treatment effect: they are the ‘learning phenomenon,’ and the 
‘training effect.’ Because of the learning phenomenon, patients frequently show 
an improvement in walking time between the fi rst and second treadmill test in the 
absence of any treatment. The presumption is that the fi rst test is associated with 
anxiety and unfamiliarity, which is reduced during the second test. Of greater 
importance is the training effect, with which the frequency of treadmill testing 
may result in a true improvement in exercise performance irrespective of 
treatment.

   The effect of placebo on exercise tolerance in patients with angina was demonstrated 
in the Transdermal Nitroglycerin Cooperative Study [ 35 ], which analyzed various 
doses of transcutaneous-patch nitroglycerin administered for 24-h periods, in 
comparison with placebo patch treatment. This study was particularly important 
because it was the fi rst large study to address the issue of nitrate tolerance with 
transcutaneous patch drug delivery in outpatient ambulatory patients. The result of 
the study was the demonstration of tolerance in all treated groups; the treated groups 
performed no better than the placebo group at the study’s end. However, there 
was an equally striking improvement of 80 to 90s in the placebo and active treat-
ment groups in the primary effi cacy end point, walking time on a treadmill. This 
improvement in the placebo group could have masked any active treatment effect, 

  Fig. 7.5    The placebo and nocebo effect. From: Thadani and Wittig [ 34 ]       
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but it also demonstrated the importance of a placebo control, because without 
this type of control, signifi cant improvement could have been attributed by deduction 
to active therapy. 

 It was once thought that internal mammary artery ligation improved angina 
pectoris until studies showed a similar benefi t in patients in whom a sham operation, 
consisting of skin incision with no ligation, was performed. Beecher [ 36 ] tried to 
analyze the effect of doctors’ personalities on clinical outcomes of internal artery 
ligation, by comparing the results of the same placebo procedure performed by 
one of two groups, the ‘enthusiasts’ or the ‘skeptics.’ His analysis indicated that the 
enthusiasts achieved nearly four times more ‘complete relief’ for patients than did 
the skeptics, even though the procedure has no known specifi c effects [ 36 ]. Five 
patients undergoing the sham operation emphatically described marked improve-
ment [ 37 ,  38 ]. In objective terms, a patient undergoing the sham operation had an 
increase in work tolerance from 4 to 10 min with no inversion of T waves on the 
electrocardiogram and no pain. The internal mammary artery ligation procedure 
was used in the United States for 2 years before it was discontinued, when the pro-
cedure was disproved by three small, well-planned, double-blind studies [ 39 ]. 

 Carver and Samuels also addressed the issue of sham therapy in the treatment of 
coronary artery disease [ 40 ]. They pointed out that although the pathophysiologic 
features of coronary artery disease are well known, the awareness of many of the 
expressions of myocardial ischemia are subjective, rendering the placebo effect 
more important. This factor has resulted in several treatments that are based on 
testimonials rather than scientifi c evidence and that have been touted as ‘break-
throughs.’ Among therapies cited by these authors are chelation therapy, various 
vitamin therapies, and mineral supplements. It has been estimated that 500,000 
patients per year in the United States are treated by these techniques. Before 1995, the 
data to support claims regarding the effectiveness of chelation therapy were obtained 
from uncontrolled open-label studies. In 1994, van Rij et al. performed a double- blind, 
randomized, placebo-controlled study in patients with intermittent claudication and 
demonstrated no difference in outcomes between chelation and placebo treatments 
[ 41 ] The evaluated variables included objective and subjective measures, and 
improvement in many of the measures was shown with both therapies. Again, without 
the use of a placebo control, the results could have been interpreted as improvement 
as a result of chelation treatment. Adding to the controversy, however, are the results 
from the chelation arm of the Trial to Assess Chelation Therapy, which showed that 
infusions of a form of chelation therapy using disodium ethylene diamine tetra-
acetic acid (EDTA) reduced cardiovascular events by 18 % compared to a placebo 
treatment [ 48 ]. Investigators stated that more research is needed before considering 
routine use of chelation therapy for all heart attack patients and it remains unapproved 
by the FDA. The EDTA-based chelation solution also contained high doses of 
vitamin C, B-vitamins, and other components [ 42 ]. In addition, the trial used a 
composite endpoint (see Chap.   3    ) and benefi ts were only seen in the soft endpoints 
of the composite. TACT also showed some other important deviations from adherence 
to the scientifi c principles of a well-controlled trial. The study randomized 1,708 
patients, but 311 (18 %) were lost to follow-up, nearly all because of withdrawal of 
consent (289 patients), and importantly, these withdrawals were not equally distributed 
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between the treatment groups. Signifi cantly more patients (n = 174) withdrew 
from the placebo group compared with the chelation group (n = 115; hazard ratio, 
0.66;  P  = .001). A similar imbalance in discontinuation from randomized treatment 
was observed—281 in the placebo group and 233 in the chelation group [ 43 ]. 
The substantial nonretention of study participants alone is suffi cient to compromise 
the validity of the study results.  

    Placebo Effect in Heart Failure 

 In the past, the importance of the placebo effect in patients with congestive heart 
failure had not been recognized [ 49 ]. In the 1970s and early 1980s, administration 
of vasodilator therapy was given to patients in clinical trials without placebo control. 
Investigators believed that the cause of heart failure was predictable, so placebo- 
controlled trials were unnecessary. Another view of the unfavorable course of heart 
failure concluded that withholding a promising new agent was unethical. The 
ethical issues involved when placebo therapy is considered are addressed later in 
this chapter. 

 With the inclusion of placebo controls in clinical trials, a 25–35 % improvement 
of patients’ symptoms was documented in the placebo arms of studies. This placebo 
response occurred in patients with mild to severe symptoms and did not depend on 
the size of the study. The assessment of left ventricular (LV) function can be 
determined by several methods, including noninvasive echocardiography, radionu-
clide ventriculography, or invasive pulmonary artery balloon-fl oatation catheterization. 
These methods measure the patient’s response to therapy or the natural progression 
of the patient’s heart failure [ 44 ]. Noninvasive measurements of LV ejection frac-
tion vary, especially when the ventricular function is poor and the interval between 
tests is 3–6 months. Packer found that when a 5 % increase in ejection fraction was 
used to determine a benefi cial response to a new drug, 20–30 % of patients showed 
improvement while receiving placebo therapy [ 50 ]. Overall, changes in noninvasive 
measures of LV function have not been shown to correlate closely with observed 
changes in the clinical status of patients with CHF. Most vasodilator and inotropic 
drugs can produce clinical benefi t without a change in LV ejection fraction. Conversely, 
LV ejection fraction may increase signifi cantly in patients who have heart failure 
and worsening clinical status [ 44 ]. 

 When invasive catheterization is used to evaluate the effi cacy of a new drug, 
interpretation must be done carefully because spontaneous fl uctuations in hemody-
namic variables occur in the absence of drug therapy. To avoid the attribution of 
spontaneous variability to drug therapy, postdrug effects should be assessed at fi xed 
times and threshold values should eliminate changes produced by spontaneous 
variability. Another factor that can mimic a benefi cial drug response, by favorably 
affecting hemodynamic measurements, is measurement performed immediately 
after catheterization of the right side of the heart or after ingestion of a meal. After 
intravascular instrumentation, systemic vasoconstriction occurs and resolves after 
12–24 h. When pre-drug measurements are done during the post-catheterization 
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period, any subsequent measurements will show benefi cial effects because the original 
measurements were taken in the vasoconstricted state. Comparative data must be 
acquired after the post-catheterization vasoconstricted state has resolved [ 50 ]. 

 In the past, one of the most common tests to evaluate drug effi cacy for heart 
failure was the exercise tolerance test. An increased duration of exercise tolerance 
represents a benefi t of therapy. However, this increased duration is also recorded 
during placebo therapy and possibly results from the familiarity of the patient with 
the test, as in the learning phenomenon described earlier in this chapter for antiangi-
nal therapy; and, the increased willingness of the physician to encourage the patient 
to exercise to exhaustion. Placebo response to repeated exercise tolerance testing 
can result in an increase in duration of 90–120 s, when only one or two baseline 
measurements are done. This response can be reduced to 10–30 s, when 3–10 baseline 
measurements are performed. Another interesting fi nding was that the magnitude of 
the placebo response was directly proportional to the number of investigators in the 
study! Attempts to eliminate the placebo response, including the use of gas exchange 
measurements during exercise tolerance testing, have failed [ 44 ]. 

 Because all methods used to measure the effi cacy of a treatment for heart failure 
include placebo effects, studies must include placebo controls to prove the effi cacy 
of a new drug therapy. Statistical analysis of placebo-controlled studies must compare 
results between groups for statistical signifi cance. ‘Between groups’ refers to com-
parison of the change in one group, such as one receiving a new drug therapy, with 
the change in another group, such one receiving as a placebo [ 44 ]. For example, 
Archer and Leier reported that placebo therapy for 8 weeks in 15 patients with CHF 
resulted in a mean improvement in exercise duration of 81 s, to 30 % above baseline 
[ 51 ]. This result was statistically signifi cant compared with the 12-s improvement in 
the nine patients in the nonplacebo control group. There were no statistically signifi -
cant differences between the placebo and non-placebo groups at baseline or at week 
8 of treatment by between-group statistical analysis. Echocardiography showed no 
signifi cant improvement in left ventricular function in either group, and no signifi -
cant differences between the two groups at baseline or during the treatment period. To 
prove the existence of, and to quantitate the therapeutic power of placebo treatment 
in CHF, all studies were performed by the same principal investigator with identical 
study methods and conditions, and all patients were familiarized similarly with the 
treadmill testing procedure before baseline measurements. Also, the study used a 
well-matched, nonplacebo control group and this illustrated the spontaneous vari-
ability of CHF [ 45 ].  

    Placebo Effect in Hypertension 

 Some studies of the placebo response in patients with hypertension have shown a 
lowering of blood pressure [ 46 – 51 ], but others have not [ 52 – 56 ]. In a Medical 
Research Council study, when active treatment was compared with placebo therapy 
(given to patients with mild hypertension for several months) similar results were 
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produced in the two groups—an initial decrease in blood pressure followed by 
stabilization [ 46 ]. Of historical note is a study by Goldring et al. published in 1956. 
These authors fabricated a sham therapeutic ‘electron gun’ designed to be as ‘dramatic 
as possible, but without any known physiologic action other than a psychogenic 
one.’ Initial exposure to ‘the gun’ lasted 1–3 min and was increased to 5 min three 
times daily. The investigators noticed substantially decreased blood pressure during 
therapy compared with pre-therapy. In six of nine hospitalized patients there was a 
systolic/diastolic blood pressure reduction of 39/28 mmHg. 

 An important factor to consider is the method used to measure blood pressure. 
With the use of standard sphygmomanometry, in hypertensive patients, blood pressure 
initially decreases upon multiple measurements. In other studies of BP, 24-h intraarte-
rial pressure measurements and circadian curves did not show a decrease in blood 
pressure or heart rate during placebo therapy; however, Intraarterial blood pressure 
measurements at home were lower than measurements at the hospital. The circadian 
curves from intraarterial ambulatory blood pressure monitoring were reproducible on 
separate days, several weeks apart [ 57 ]. Similar to 24-h invasive intra-arterial moni-
toring, 24-h noninvasive automatic ambulatory blood pressure also is apparently 
devoid of a placebo effect. In one study, on initial application of the blood pressure 
device, a small reduction in ambulatory blood pressure values in the fi rst 8 h occurred 
with placebo therapy. This effect, however, did not change the mean 24-h value. The 
home monitoring values were lower than the offi ce measurements. Heart rate also was 
measured, with no variance in either setting. The offi ce measurement of blood pres-
sure was lower after 4 weeks of placebo therapy, but the 24-h blood pressure measure-
ment was not [ 58 ]. This study confi rmed the absence of a placebo effect in 24-h 
noninvasive ambulatory blood pressure monitoring, as suggested by several specifi c 
studies on large numbers of patients [ 59 ,  60 ]. The 24-h monitoring was measured by 
the noninvasive automatic Spacelabs 5300 device (Spacelabs, Redmond, Wash.) [ 61 ]. 
Another important factor in 24-h noninvasive monitoring is that the intervals of mea-
surement were <60 min [ 62 ]. 

 In a study on the infl uence of observer’s expectation on the placebo effect in 
blood pressure measurements, 100 patients were observed for a 2-week single-blind 
period and for a 2-week double-blind period [ 63 ]. During this time, the patients’ 
blood pressures were measured by two methods: a 30-min recording with an 
automatic oscillometric device and a standard sphygomomanometric measurement 
performed by a physician. All patients were seen in the same examining room and 
seen by the same physician and their blood pressure monitored by the same auto-
matic oscillometric device. The results during the single-blind period showed a 
slight but statistically signifi cant decrease in diastolic blood pressure detected by 
the automatic oscillometric device and no decrease measured by the physician. 
During the double-blind period, there was no additional decline in diastolic blood 
pressure measured by the oscillometric device, but the physician measured signifi -
cant decreases in systolic and diastolic blood pressures. Overall, the blood pressures 
measured by the automatic oscillometric device, in the absence of the physician, 
were lower than those measured by the physician. However, there was signifi cant 
correlation between the two methods. It should be mentioned that although there 
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was a placebo effect in the measurement of blood pressure in the landmark Systolic 
Hypertension in the Elderly Program, it was not as signifi cant as the reduction 
in blood pressure produced by active therapy in patients ≥60 years of age who had 
isolated systolic hypertension. 

 As was true with angina studies, questions have been raised about the safety of 
placebo control studies in hypertension. As a result, two recent publications have 
addressed this issue [ 38 ,  71 ]. Al-Khatib et al. performed a systematic review of 
the safety of placebo controls in short-term trials [ 70 ]. In their meta-analysis, they 
combined the data for death, stroke, MI, and CHF from 25 randomized trials. Each 
study was relatively small (n = 20–734) but the combined sample size was 6409. 
They found a difference between the two treatment groups and at the worst there 
were no more than 6/10000 difference between placebo and active therapy. Lipicky 
et al. reviewed all original case report forms for deaths and dropouts were reviewed 
from al    anti-hypertensive drug trials submitted to the FDA (as an NDA) between 
1973 and 2001 [ 64 ]. The population at risk was 86,137 randomized patients; 64,438 
randomized to experimental drug, and 21,699 to placebo. Of the 9636 dropouts 
more were from the placebo group (RR 1.33 for placebo), the majority of the drop-
outs were, as expected, due to treatment failures, and the patients were simply 
returned to their original therapies with no sequelae. When serious adverse events 
were compared (death, irreversible harm, etc.) there were no differences between 
placebo and experimental drug.  

    Placebo Effect in Arrhythmia 

 Spontaneous variability in the natural history of disease or in its signs or symptoms 
is another reason that placebo controls are necessary. In a study of ventricular 
arrhythmias, Michelson and Morganroth found marked spontaneous variability of 
complex ventricular arrhythmias such as ventricular tachycardia and couplets [ 65 ]. 
These investigators observed 20 patients for 4-day periods of continuous electro-
graphic monitoring. They recommended that when evaluating therapeutic agents, a 
comparison of one 24-h control period to four 24-h test periods must show a 41 % 
reduction in the mean hourly frequency of ventricular tachycardia and a 50 % 
reduction in the mean hourly frequency of couplets to demonstrate statistically 
signifi cant therapeutic effi cacy. They also suggested that individual patient data not 
be pooled to detect trends because individual variability was so great. In another 
study by Morganroth et al. an algorithm to differentiate spontaneous variability 
from proarrhythmia in patients with benign or potentially lethal ventricular arrhyth-
mias was provided. Two or more Holter tracings were examined from each of 495 
patients during placebo therapy. The algorithm defi ned proarrhythmia as a >3-fold 
increase in the frequency of ventricular premature complexes (VPCs) when the 
baseline frequency of ventricular premature complexes VPCs/h and a >10-fold 
increase when the frequency was <100 VPCs/h. The false-positive rate was 1 % 
when this algorithm was used. 
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 The Cardiac Arrhythmia Suppression Trial (CAST) evaluated the effect of 
antiarrhythmic therapy in patients with asymptomatic or mildly symptomatic 
ventricular arrhythmia [ 66 ]. Response to drug therapy was determined by a ≥80 % 
reduction in ventricular premature depolarizations or a ≥90 % reduction in runs of 
unsustained ventricular tachycardia as measured by 24-h Holter monitoring 
4–10 days after initiation of pharmacologic treatment, a response previously considered 
to be an important surrogate measure of antiarrhythmic drug effi cacy. One thousand 
four hundred fi fty-fi ve patients were assigned to drug regimens, and ambulatory 
electrocardiographic (Holter) recording screened for arrhythmias. The CAST Data 
and Safety Monitoring Board recommended that encainide and fl ecainide therapy 
be discontinued because of the increased number of deaths from arrhythmia, cardiac 
arrest, or any cause compared with placebo treatment. The CAST investigators 
conclusion emphasized the need for more placebo-controlled clinical trials of 
antiarrhythmic drugs with a mortality end point.  

    Relation of Treatment Adherence to Survival in Patients 
with or Without History of Myocardial Infarction 

 An important consideration in determining study results is adherence to therapy and 
the presumption that any differences in adherence rates would be equal in the active 
versus the placebo treatment groups. The Coronary Drug Project Research Group 
[ 67 ] planned to evaluate the effi cacy and safety of several lipid-infl uencing drugs in 
the long-term treatment of coronary heart disease. This randomized, double-blind, 
placebo-controlled, multicenter clinical trial found no signifi cant difference in the 
5-year mortality of 1,103 men treated with the fi bric acid derivative clofi brate com-
pared with 2,789 men given placebo. However, subjects showing good adherence 
(patients taking ≥80 % of the protocol drug) had lower mortality than did subjects 
with low adherence in both the clofi brate group and the placebo group [ 67 ]. 

 A similar association between adherence and mortality was found in patients after 
myocardial infarction in the Beta-Blocker Heart Attack Trial data [ 72 ]. This phe-
nomenon was extended to women after myocardial infarction. On analysis of the trial 
data for 505 women randomly assigned to β-blocker therapy or placebo therapy, 
there was a 2–2.5-fold increase in mortality within the fi rst 2 years in patients taking 
<75 % of their prescribed medication. Adherence among men and women was similar, 
at about 90 %. However, the cause of the increased survival resulting from good 
adherence is not known. There is speculation that good adherence refl ects a favorable 
psychological profi le—a personal ability to make lifestyle adjustments that limit 
disease progression. Alternatively, adherence may be associated with other advanta-
geous health practices or social circumstances not measured. Another possible 
explanation is that improved health status may facilitate good adherence [ 68 ]. 

 The Lipid Research Clinics Coronary Primary Prevention Trial [ 69 ] did not fi nd 
a correlation between compliance and mortality. These investigators randomly 
assigned 3806 asymptomatic hypercholesterolemic men to receive cholestyramine 
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or placebo. The main effects of the drug compared with placebo on cholesterol level 
and death or nonfatal myocardial infarction were analyzed over a 7-year period. In 
the group receiving active drug, a relation between compliance and outcome existed, 
mediated by a lowering of cholesterol level. However, no effect of compliance on 
cholesterol level or outcome was observed in the placebo group [ 69 ,  70 ]. 

 The Physicians’ Health Study included a randomized fashion 22,000 United 
States male physicians 40–84 years old who were free of myocardial infarction and 
cerebral vascular disease [ 71 ]. This study analyzed the benefi t of differing frequen-
cies of aspirin consumption on the prevention of myocardial infarction. In addition, 
the study identifi ed factors associated with adherence and analyzed the relation of 
adherence with cardiovascular outcomes in the placebo group. Analysis showed an 
average compliance of 80 % in the aspirin and placebo groups during the 60 months 
of follow-up [ 71 ]. Adherence during that trial was associated with several baseline 
characteristics in both the aspirin and placebo groups as follows. Trial participants 
with poor adherence (<50 % compliance with pill consumption), relative to those 
with good adherence, were more likely to be younger than 50 years at randomization, 
to smoke cigarettes, to be overweight, not to exercise regularly, to have a parental 
history of myocardial infarction, and to have angina. These associations were 
statistically signifi cant. In a multivariate logistic regression model, cigarette smoking, 
excess weight, and angina remained signifi cant predictors of poor compliance. The 
strongest predictor of adherence during the trial was adherence during the run- in 
period. Baseline characteristics with little relation to adherence included regular 
alcohol consumption and a history of diabetes and hypertension [ 71 ]. Using 
intention- to-treat analysis, the aspirin group had a 41 % lower risk of myocardial 
infarction compared with the placebo group. On subgroup analysis, participants 
reporting excellent (≥95 %) adherence in the aspirin group had a signifi cant, 51 % 
reduction in the risk of fi rst myocardial infarction relative to those with similar 
adherence in the placebo group. Lower adherence in the aspirin group was not 
associated with a statistically signifi cant reduction in fi rst myocardial infarction 
compared with excellent adherence in the placebo group. Excellent adherence in the 
aspirin group was associated with a 41 % lower relative risk of myocardial infarction 
compared with low adherence in the aspirin group. Excellent adherence in the 
placebo group was not associated with a reduction in relative risk. The rate of stroke 
was different from that of myocardial infarction. On intention-to-treat analysis, 
the aspirin group had a nonsignifi cant, 22 % increased rate of stroke compared with 
the placebo group. Participants with excellent adherence in the placebo group had a 
lower rate of strokes than participants in the aspirin or placebo groups with low 
(<50 %) adherence. Excellent adherence in the placebo group was associated with 
a 29 % lower risk of stroke compared with excellent adherence in the aspirin group. 

 Also analyzed in the above study, was the overall relation of adherence to aspirin 
therapy with cardiovascular risk when considered as a combined end point of all 
important cardiovascular events, including fi rst fatal or nonfatal myocardial infarction 
or stroke or death resulting from cardiovascular disease with no previous myocardial 
infarction or stroke. On intention-to-treat analysis, there was an 18 % decrease in the 
risk of all important cardiovascular events in the aspirin group compared with the 
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placebo group. Participants with excellent adherence in the aspirin group had a 
26 % reduction in risk of a fi rst major cardiovascular event compared with those 
with excellent adherence in the placebo group. However, participants in the aspirin 
group with low compliance had a 31 % increased risk of a fi rst cardiovascular event 
compared with those in the placebo group with excellent adherence. Within the 
placebo group, there was no association between level of adherence and risk of a 
fi rst cardiovascular event. In the analysis of death resulting from any cause in persons 
with a previous myocardial infarction or stroke, low adherence in both the aspirin 
group and the placebo group was associated with a fourfold increase in the risk 
of death. When the 91 deaths due to cardiovascular causes were studied, similar 
elevations in risk were found in both the placebo and aspirin groups with poor 
adherence compared with those in the placebo group with excellent adherence. 

 The Physicians’ Health Study [ 71 ] found results similar to those of the 
Coronary Drug Project when all cause mortality and cardiovascular mortality were 
considered [ 67 ]. These relations remained strong when adjusted for potential 
confounding variables at baseline. The strong trend for higher death rates among 
participants with low adherence in both the aspirin and the placebo groups may be 
due to the tendency for subjects to decrease or discontinue study participation as 
their health declines to serious illness. Low adherence in the placebo group was not 
associated with an increased risk of acute events such as myocardial infarction. 
Thus placebo effects seem to vary depending on the outcome considered. 

 Most recently has been an analysis of the Hormone Estrogen Replacement Study, a 
secondary prevention study of CHD in postmenopausal women (Table  7.4 ) [ 30 ]. 
Investigators also evaluated the association of placebo adherence and total mortality 
and found that the more adherent participants had signifi cantly lower mortality than 
non-adherers HR 0.52 (0.29; 0.93) [ 72 ]. They speculated about the possibilities for that 
observation and suggested that adherence could be a marker for healthier lifestyles and/
or that as a fatal illness prodrome, adherence may decrease (an effect- cause artifact).

       Miscellaneous 

 Flaten conducted an experiment in which he told participants that they were receiving 
either a relaxant, stimulant, or an inactive agent, but in fact gave all of them the inac-
tive agent. Patients who were told they were getting the relaxant showed reduced 

  Table 7.4    Placebo adherence 
and mortality  

 Outcome  HR for adherence 

 Total mortality  .52 
 CVD mortality  .66 
 Non CVD mortality  .40 
 CHD mortality  .54 
 Incident cancer  .42 

  Padula et al. [ 72 ]  
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stress levels, while those who thought they were receiving the stimulant showed 
increased arousal levels. In another study, asthmatics that were told they were getting 
either a bronchodilator or bronchconstrictor and who actually received that particular 
therapy, had more effective responses when the information received actually 
matched the drug effect. 

 Linde et al. evaluated the placebo effect of pacemaker implantation in 81 patients 
with obstructive hypertrophic cardiomyopathy [ 78 ]. The study design was a 3-month 
multicenter, double-blind, cross-over study. In the fi rst study period 40 patients were 
assigned to inactive pacing, and were compared to 41 patients with active pacing. During 
inactive pacing, there was an improvement in chest pain, dyspnea, palpitations, and in 
the left ventricular outfl ow gradient. The change in the active pacing group for most 
parameters was greater.   

    Clinical Trials and the Ethics of Using Placebo Controls 

 Since the 1962 amendments to the Food, Drug, and Cosmetic Act, the FDA has had 
to rely on the results of ‘adequate and well-controlled’ clinical trials to determine the 
effi cacy of new pharmacologic therapies. Regulations govern pharmacologic testing 
and recognize several types of controls that may be used in clinical trials to assess 
the effi cacy of new pharmacologic therapies. The controls include (1) placebo 
concurrent control, (1) dose-comparison concurrent control, (2) no-treatment con-
current control, (4) active-treatment concurrent control, and (5) historical control 
(Table  7.5 ). Regulations, however, do not specify the circumstances for the use of 
these controls because there are various study designs that may be adequate in a 
given set of circumstances [ 18 ].

   There is ongoing debate concerning the ethics of using placebo controls in clinical 
trials of cardiac medications. The issue revolves around the administration of placebo 
in lieu of a proven therapy. Two articles, by Rothman and Michels [ 73 ] and Clark 
and Leaverton [ 74 ], illustrate the debate. Rothman and Michels [ 73 ] state that 
patients in clinical trials often receive placebo therapy instead of proven therapy for 
the patient’s medical condition and assert that this practice is in direct violation of 
the Nuremberg Code and the World Medical Association’s adaptation of this Code 
in the Declaration of Helsinki. The Nuremberg Code, a 10-point ethical code for 
experimentation in human beings, was formulated in response to the human 
experimentation atrocities that were recorded during the post-World War II trial of 
Nazi physicians in Nuremberg, Germany. According to Rothman and Michels [ 73 ], 

  Table 7.5    Types of treatment 
controls  

 Placebo concurrent control 
 Dose-comparison concurrent control 
 No-treatment concurrent control 
 Active-treatment concurrent control 
 Historical control 
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violation occurs because the use of placebos as controls denies the patient and 
best proven therapeutic treatment. It occurs despite the establishment of regulatory 
agencies and institutional review boards, although these authors seem to ignore that 
informed consent is part of current practice, as certainly was not the case with the 
Nazi atrocities. However, a survey of federally funded grants found that despite the 
process of informed consent almost 25 % of medical research subjects were unaware 
that they were even part of a research project or that they were receiving investiga-
tional therapies. It should be noted, however, that this survey spanned 20 years, and 
did not include analysis for the more recent time period, when, most would agree, 
there has been more emphasis on informed consent. 

 One reason why placebo-controlled trials are approved by institutional review 
boards is that this type of trial is part of the FDA’s general recommendation for 
demonstrating therapeutic effi cacy before an investigational drug can be approved. 
That is, according to the FDA, when an investigational drug is found to be more 
benefi cial by achieving statistical signifi cance over placebo therapy, then therapeutic 
effi cacy is proven [ 75 ]. As more drugs are found to be more effective than placebos 
in treating diseases, the inclusion of a placebo group is often questioned. However, 
this question ignores that in many cases drug effi cacy in the past had been estab-
lished by surrogate measures; and, as new and better measures of effi cacy become 
available, additional study becomes warranted. Regarding surrogate measures and 
their potential to mislead, the study of the suppression of ventricular arrhythmia by 
antiarrhythmic therapy was later proven to be unrelated to survival; in fact, results 
with active therapy were worse than with placebo. Likewise, in studies of inotropic 
therapy for heart failure, exercise performance rather than survival was used as the 
measure of effi cacy, when in fact a presumed effi cacious therapy performed worse 
than placebo when survival was assessed. In the use of immediate short-acting 
dihydropyridine calcium antagonist therapy for the relief of symptoms of chronic 
stable angina pectoris, again a subject might have fared better had he or she been 
randomly assigned to placebo therapy. 

 Also important to the concept that established benefi cial therapy should not 
necessarily prohibit the use of placebo in the evaluation of new therapies is that 
the natural history of a disease may change, and the effectiveness of so-called estab-
lished therapies (e.g., antibiotic agents for treatment of infections) may diminish. 
When deciding on the use of an investigational drug in a clinical trial, the prevailing 
standard is that there should be enough confi dence to risk exposure to a new drug, 
but enough doubt about the drug to risk exposure to placebo. Thus, in this situation, the 
use of a placebo control becomes warranted, particularly as long as other live- saving 
therapy is not discontinued. 

 The use of placebo-controlled trials may be advocated on the basis of a scientifi c 
argument. When pharmacologic therapy was shown to be effective in previous 
placebo- controlled trials, conclusions made from current trials without placebo 
controls may be misleading because the previous placebo-controlled trial then 
becomes a historical control. Historical controls are the least reliable for demonstra-
tion of effi cacy [ 18 ]. In active-controlled clinical trials without a placebo arm, there 
is an assumption that the active control treatment is as effective under the new 
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experimental conditions as it was in the previous placebo-controlled clinical trial. 
This assumption can result in misleading conclusions when results with an experimental 
therapy are found to be equivalent to those with the active, proven therapy. This 
conclusion of equivalence can be magnifi ed by conservative statistical methods, 
such as the use of the ‘intent-to-treat’ approach, an analysis of all randomized 
patients regardless of protocol deviations, and an attempt to minimize the potential 
for introduction of bias into the study. Concurrent placebo controls account for 
factors other than drug-effect differences between study groups. When instead of a 
placebo-control group an untreated control group is used, then blinding is lost and 
treatment-related bias may occur [ 18 ,  74 ]. 

 Clark and Leaverton [ 74 ] and Rothman and Michels [ 73 ] agree that the use of pla-
cebo controls is ethical when there is no existing treatment to favorably affect morbid-
ity and mortality. Furthermore, there are chronic diseases for which treatment exists 
that not favorably alter morbidity and mortality. For example, no clinical trial has found 
the treatment of angina to increase a patient’s survival. In contrast, treatment after a 
myocardial infarction with β-blocking agents has been convincingly proven to increase 
a patient’s survival [ 74 ]. However, Clark and Leaverton [ 74 ] disagree with Rothman 
and Michels [ 73 ] in that they assert that for chronic disease, a placebo-controlled clini-
cal trial of short duration is ethical because there is usually no alteration in long-term 
outcome for the patient. The short duration of the trial represents a small segment of the 
lifetime management of a chronic disease. For instance, the treatment of chronic symp-
tomatic CHF and a low ejection fraction (<40 %) with enalapril was shown to decrease 
mortality by 16 %. This decrease in mortality was most marked in the fi rst 24 months 
of follow- up, with an average follow-up period of 40 months. Therefore, only long-
term compliance with pharmacologic therapy resulted in some decreased mortality. 
Another example of a chronic medical condition that requires long-term treatment 
and in which short-term placebo is probably not harmful is hypertension [ 76 ]. In some 
studies men and women with a history of myocardial infarction and with a ≥80 % 
compliance with treatment, including placebo therapy, had an increased survival. This 
increased survival was also described in patients in a 5-year study of the effects of 
lipid-infl uencing drugs on coronary heart disease. [ 67 ,  68 ,  77 ]. 

 A different argument for the ethical basis of using placebo controls relies on 
the informed consent process. Before a patient’s participation in a clinical trial, the 
patient is asked to participate in the trial. The informed consent process includes a 
description of the use of placebos along with other aspects of the trial. In this written 
agreement, the patient is responsible for notifying the physician of any medical 
problems and is informed of his or her right to withdraw from the study at any time, 
as described in the Nuremberg Code and the Declaration of Helsinki. During this 
disclosure, patients are presented with the risks and benefi ts of the study. On the 
basis of this information, a patient voluntarily decides to participate, knowing that 
he or she may receive a placebo or investigational medication. 

 All parties involved in research should be responsible for their research and 
accountable for its ethics. Clinical trials failing to comply with the Nuremberg 
Code and the Declaration of Helsinki should not be conducted and should not be 
accepted for publication. Yet, there is disagreement in determining which research 
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methods are in compliance with the Nuremberg Code and Declaration of Helsinki. 
Scientifi c needs should not take precedence over ethical needs. Clinical trials need 
to be carefully designed to produce a high quality of trial performance. In addition, 
in experimentation involving human subjects, the Nuremberg Code and Declaration 
of Helsinki must be used as universal standards. The Declaration of Helsinki 
addresses the selection of appropriate controls by stating ‘the benefi ts, risks, burdens, 
and effectiveness of a new method should be tested against the best current 
prophylactic, diagnostic, and therapeutic methods. This does not exclude the use of 
placebo, or of no treatment, in studies where no proven prophylactic, diagnostic, or 
therapeutic method exists.’ Others have added that if the patient or subject is not 
likely to be harmed through exposure to placebo, and they can give voluntary 
informed consent, it is permissible to use placebo controls in some trials despite the 
existence of a know effective therapy.  

    Conclusions 

 Until the mechanism of the placebo action is understood and can be controlled, a clini-
cal trial that does not include a placebo group provides data that should be interpreted 
with caution. The absence of a placebo group makes it diffi cult to assess the true effi -
cacy of a therapy. It is easy to attribute clinical improvement to a drug therapy when 
there is no control group. As was found with heart failure, almost all chronic diseases 
have variable courses. In addition, because each clinical trial has a different setting and 
different study design within the context of the physician- patient relationship, a pla-
cebo group helps the investigator differentiate true drug effects from placebo effects. 

 More important than the inclusion of a placebo group is a careful study design 
that includes frequent review, by a data and safety monitoring board, of each patient’s 
medical condition. This monitoring is crucial to protect the study participants. 
To protect the participants, trials must include provisions that require a patient to be 
removed from a trial when the patient or doctor believes that removal is in the patient’s 
best interest. The patient can then be treated with currently approved therapies. 

 Patients receiving placebo may report subjective clinical improvements, and 
demonstrate objective clinical improvement, for instance on exercise tolerance 
testing or Holter monitoring of ischemic events. Findings such as these dispel the 
implication that placebo therapy is the same as no therapy and may occur because 
many factors are involved in the physician-patient relationship such as the psycho-
logical state of the patient; the patient’s expectations and conviction in the effi cacy 
of the method of treatment’ and the physician’s biases, attitudes, expectations, 
and methods of communication [ 2 ]. An explanation of improvement in patients 
participating in trials is the close attention received by patients from the investigators. 
Baseline laboratory values are checked to ensure the safety of the patient and com-
pliance with the study protocol. This benefi cial response by the patient is called a 
positive placebo effect when found in control groups of patients receiving placebo 
therapy [ 30 ,  33 ,  36 ,  37 ,  39 ,  44 ,  63 ,  78 ]. 
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 Conversely, the condition of patients receiving placebos has also in some cases 
worsened. Every drug has side effects. These side effects are also found with placebo 
therapy and can be so great that they preclude the patient’s continuation with the 
therapy. This phenomenon is always reported by patients in clinical trials receiving 
placebo [ 14 ,  32 ,  44 ,  63 ,  79 ,  80 ]. Finally, placebos can act synergistically and antag-
onistically with other specifi c and nonspecifi c therapies. Therefore much is still to 
be discovered about the placebo effect. 

 The arguments in support of the use of placebo controls (placebo “orthodoxy”) 
are numerous. The word “orthodoxy” is from the Greek ortho (‘right’, ‘correct’) and 
doxa (‘thought’, ‘teaching’, ‘glorifi cation’). Orthodoxy is typically used to refer to 
the correct theological or doctrinal observance of religion, as determined by some 
overseeing body. The term did not conventionally exist with any degree of formality 
(in the sense in which it is now used) prior to the advent of Christianity in the Greek- 
speaking world, though the word does occasionally show up in ancient literature in 
other, somewhat similar contexts. Orthodoxy is opposed to heterodoxy (‘other 
teaching’), heresy and schism. People who deviate from orthodoxy by professing 
a doctrine considered to be false are most often called heretics. Some of the supporting 
arguments are that there are methodologic limitations of trials using active controls 
such as:

 –    Variable responses to drugs in some populations  
 –   Unpredictable and small effects  
 –   Spontaneous improvements   

In addition, some believe that no drug should be approved unless it is clearly superior 
to placebo or no treatment, so that placebo is ethical if there is “no permanent adverse 
consequence” form its use; or, if there is “risk of only    temporary discomfort”, or if 
there “is no harm” consequent to its use. It should be noted that these latter two 
arguments are not equivalent; that is, patients may be harmed by temporary but 
reversible conditions, and that these criteria may in fact permit intolerable suffering. 
For example, in the 1990s several placebo-controlled trials of ondansetron for 
chemotherapy induced vomiting were performed when there were existent effec-
tive therapies (i.e. no permanent disability, but more than mere discomfort). Another 
example might be the use of placebo-controlled trials of antidepressants, in which 
there might occur instances of depression-induced suicide. 

 Others argue for the use of active-controls (Active-control “Orthodoxy”) in lieu of 
placebo controls. They argue that whenever an effective intervention for a condition 
exists, it must be used as the control group; that is, the clinically relevant question is not 
whether a new drug is better than nothing, but whether it is better than standard treat-
ment. The supporters of the use of active controls point to the most recent “Declaration 
of Helsinki” which states; “the benefi ts, risks, burdens, and effectiveness of a new 
method should be tested against those of the most current prophylactic, diagnostic, 
or therapeutic methods. This does not exclude the use of placebo, or no treatment, in 
studies where no proven prophylactic, diagnostic or therapeutic method exists.” 

 The problem with “Active-Control Orthodoxy” is that scientifi c validity consti-
tutes a fundamental ethical protection, and that scientifi cally invalid research cannot 
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be ethical no matter how safe the study participants are. Thus, the almost absolute 
prohibition of placebo in every case in which an effective treatment exists is too 
broad, and that patients exposed to placebo may be better off than the group exposed 
to a new intervention. These authors agree with Emmanual and Miller in support of 
a “middle ground” as discussed above.  

    Summary 

 The effect of placebo on the clinical course of systemic hypertension, angina pectoris, 
silent myocardial ischemia, CHF, and ventricular tachyarrhythmia’s has been well 
described. In the prevention of myocardial infarction, there appears to be a direct 
relation between compliance with placebo treatment and favorable clinical outcomes. 
The safety of short-term placebo-controlled trials has now been well documented 
in studies of drug treatment of angina pectoris. Although the ethical basis of per-
forming placebo-controlled trials continues to be challenged in the evaluation of 
drugs for treating cardiovascular disease, as long as a life-saving treatment is not 
being denied it remains prudent to perform placebo-controlled studies for obtaining 
scientifi c information.     
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    Abstract     Nothing is more important to a clinical research study than recruiting and 
then retaining subjects in a study. In addition, losses to follow-up can destroy a 
study. This chapter will address issues such as why people participate in clinical 
research, what strategies can be employed to recruit and then retain subjects in a 
study, issues involved with minority recruitment, and HIPAA; and, will include 
some real examples chosen to highlight the retention of potential drop-outs.  

  Keywords     Recruitment process   •   Target population   •   Recruitment failure   • 
  Minority recruitment   •   Opt in-opt out   •   Participation   •   Types of recruitment  

     Nothing is more important to a clinical research study than recruiting and then 
retaining subjects in a study. However, many studies fail to recruit their planned 
number of participants. For example, between 1997 and 2009, US federally funded 
RCTs of coronary artery disease populations required a signifi cant number of non-
 US patients for the study to achieve enrollment goals [ 1 ]. In the United Kingdom, 
more than 2 out of 3 trials failed to recruit the target population within the studies 
pre-stated time frame [ 2 ]. In an accompanying editorial to the aforementioned study, 
it was suggested that the success in recruitment to randomized trials comes down to 
“keep it simple and close to home…”. Of course, studies that recruit too few patients 
might miss clinically important effects, so the scale of the problem has been 
assessed; and, in one study that consisted of a multi-center cohort trial, only 37 % 
of the trials met their planned recruitment goals [ 3 ]. Easterbrook et al. also studied 
the issue of recruitment in 487 research protocols submitted to the Central Oxford 
Research Ethics Committee, and found that 10 never started, and 16 reported aban-
donment of the study, because of recruitment diffi culties [ 4 ]. When it comes to 
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regulatory approval of a new therapeutic entity, controlling variability is essential 
since the patient population being studied not only determines the potential market 
size for a drug, but also impacts the drug’s effi cacy conclusion. The patient’s status 
can impact variability, and that is why proper patient recruitment is so critical. At 
the other end of the spectrum is that too often patient recruitment is treated as a 
numbers game, and as such it may result in enrollment of patients whose Inclusion/
Exclusion criteria are “stretched” or who may not be reliable enough to complete 
the trial. To address this latter issue, Blinded Independent Central Reviews (BICR) 
is becoming more common, and is generally handled by the use of a Contract 
Research Organization (CRO). The importance of recruiting patients/subjects into a 
research study who will maintain good compliance and who will complete the study 
cannot be overemphasized, because patient discontinuations in a research study 
decreases the studies power, validity and potential treatment effect. 

 Not only is patient recruitment a critical issue, but patient retention is equally 
critical. Particularly, losses to follow-up can destroy a study (see Chap.   3    ). 
Recruitment and retention has become even more important in today’s environment 
of scandals, IRB constraints, HIPPA, the ethics of reimbursing study participants, 
and skyrocketing costs. For example, one researcher demonstrated how not to do 
research as outlined in a USA Today article in 2000 [ 5 ]. According to that news-
paper article, the researcher put untoward recruitment pressure on the staff, ignored 
other co-morbid diseases in the recruited subjects, performed multiple simultaneous 
studies in the same subjects, fabricated and destroyed records, and ultimately 
blamed the study coordinators for all the errors found during an audit. 

    Recruitment Process 

 Human clinical trials are critical to improving medical treatments and fi nding cures 
for chronic, debilitating diseases, yet less than 1 % of those with a given disease 
participate. The biggest obstacle to patient participation is lack of awareness about 
clinical research studies and the role they play in the drug development process. 
Currently, there is no single national listing of every current clinical trial that 
includes procedures for enrolling and lists eligibility criteria for specifi c trials. 
Finding this information may be a hit-or-miss process, dependent on a patient’s 
doctor, location, and access to informational resources rather than on appropriate-
ness/eligibility criteria .  According to CenterWatch, diffi culties in patient enroll-
ment delay 81 % of all clinical trials at least 1–6 months, with another 5 % 
postponed 6 months or more, and drug companies stand to lose between $600,000 
and $8 million each day clinical trials delay a drug’s development and launch. 
According to McKinsey & Co., the number of patients required to receive FDA 
approval has nearly doubled since the early 1990s, and more trials are needed per 
compound. These factors lead to longer trial timelines, which exacerbate an already 
burdensome issue: rising clinical costs. The average per-patient cost in the late 
2000s is about $5,500 for a Phase I trial; $6,500 for a Phase II trial; and more than 
$7,600 for a Phase III trial. Recruiting clinical trial participants “costs more and 
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consumes more time” than any other aspect of the drug development process. 
“With so many parties involved    in clinical development—study sponsors, clinical 
research offi ces (CROs), site management organizations (SMOs), patient recruit-
ers, investigators, and patients—it is no surprise that on average, trials last 30–42 % 
longer than expected” [ 6 ]. 

 Effective recruitment offers one of the greatest opportunities to stem rising clini-
cal costs and accelerate the trial process. Creating more effi cient marketing cam-
paigns and new ways of attracting patient populations will provide an edge as 
competition for patient’s increases. To further improve patient recruitment and 
retention, trial sponsors are (as summarized in Table  8.1 ):

•    Employing professional patient recruitment fi rms and site management 
organizations.  

•   Reducing the number of participants in any given trial.  
•   Outsourcing clinical trials to developing countries where costs are less. One- third 

of the participants in any given trial, however, must come from the U.S. and/or 
Europe to avoid skewing results because of cultural, nutritional, or economic dif-
ferences of foreign trial participants from the average American trial participant.  

•   Shortening trial duration by securing FDA “fast track” designation for certain drugs 
or treatments (primarily cancer). Approval is granted before all the clinical trials are 
conducted, with the sponsor promising to complete the clinical trials after approval 
is obtained. The risk is that these “catch up” trials do not always take place.   

The FDA encourages sponsors to determine why participants withdraw from studies 
because it could be indicative of an important safety problem. It is not helpful to 
record vague explanations such as “withdrew consent,” “failed to return,” or “lost to 
follow-up.” Participants who leave a study because of signifi cant safety issues 
should be followed closely until they are fully and permanently resolved. On 
December 7–8, 2012 the NHLBI convened a workshop to address successful recruit-
ment and retention in Phase III & IV clinical trials. Three key areas were addressed: 
(1) public and professional awareness and acceptance of clinical trials; (2) human 
subject research policies, guidelines, and reimbursement; and (3) clinical trial 
enrollment experience and practice. Workshop participants identifi ed several criti-
cal barriers to successful recruitment (Table  8.2 ). First, health care providers are 
gatekeepers for trial participation, yet many providers are either not aware of active 
trials or do not refer their patients to trials. Likewise, patients lack knowledge of 
clinical trials for which they may be eligible; and, often view clinical research 
with uncertainty or suspicion. Second, the administrative burden and regulatory 
requirements combined with underestimation of infrastructure, reimbursement and 

   Table 8.1    Strategies to aid in recruitment and retention in clinical trials   

 Employ professional patient recruitment fi rms and site management organizations 
 Reduce the number of participants in any given trial 
 Outsource clinical trials to developing countries where costs are less. 
 Shorten trial duration by securing FDA “fast track” designation for certain drugs or treatments 

(primarily cancer) 
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resource costs associated with recruitment and retention present unprecedented 
challenges, even for experienced trialists. Third, the fi nancial realities of funding 
clinical trials must be recognized and met. The unplanned expansion of time and 
resources often required to reach target enrollment is a major threat to the continued 
commitment of any sponsor. Fourth, institutional policies that govern clinical inves-
tigation often create barriers for clinician investigators rather than encouraging their 
participation in clinical research [ 7 ]. Many important complicating issues were 
identifi ed. For example, adverse pressure on trial enrollment is an unintended con-
sequence of the requirement to include all populations in clinical studies. Minorities 
and women, who are often underserved and under-insured or uninsured, are harder 
and more costly to recruit and retain in trials. Added costs required to enroll and 
retain diverse populations compete for available funds in a fi scal climate in which 
cost containment is encouraged. Finally, how indirect costs awarded to institutions 
conducting federally sponsored trials might better be used to aid clinical trial con-
duct was also discussed. A number of recommendations came out of this meeting 
and will be discussed in this chapter. To summarize, Probstfi eld and Frye [ 8 ] noted 
several barriers of successful recruitment that could be potentially addressed to 
improve it. One was the importance of engaging the patients gatekeeper health care 
provider, noting that many clinicians are either unaware of, or do not refer their 
patients to clinical trials. Another was the recognition of the fi nancial realities of 
clinical trial funding as an ongoing challenge that includes the concept of indirect 
costs. The last was the unprecedented administrative and regulatory burdens and 
institutional policies that create barriers for clinical investigators rather than 
 encouraging their participation (Table  8.3 ).

   Table 8.2    Some critical barriers to recruitment   

 Institutional policies that govern clinical investigation often create barriers for clinician 
investigators rather than encouragement 

 Many providers are either not aware of active trails or do not refer their patients to trials 
 Patients lack knowledge of clinical trials for which they may be eligible and often view clinical 

research with uncertainly or suspicion 
 Administrative burden and regulatory requirements combined with underestimation of 

infrastructure, reimbursement and resource costs associated with recruitment and retention are 
not fully recognized 

 The fi nancial realities of funding clinical trails may not be recognized and met 

  From: NHLBI Workshop: Clinical Research United in Successful Enrollment (CRUiSE) [ 7 ]  

   Table 8.3    Approaches to barriers of successful recruitment   

 Engage the patients health care provider, many clinicians are either unaware of, or do not refer 
their patients to clinical trials 

 Recognize the fi nancial realities of clinical trial funding as an ongoing challenge that includes the 
concept of indirect costs 

 Address administrative and regulatory burdens and institutional policies that create barriers for 
clinical investigators rather than encouraging their participation 

S.P. Glasser



181

     The recruitment process involves a number of important steps and the trial 
enrollment process is being increasingly addressed because of its importance to the 
studies ultimate generalizability [ 9 ]. An outline of the enrollment process is shown 
in Fig.  8.1  which also introduces a number of variables and defi nitions which 
should be considered and perhaps reported in large trials [ 10 ]. Recall that sampling 
(see Chap.   3    ) is perhaps one of the more important considerations in clinical 
research. Also recall, that the  target population  is the population of potentially 
eligible subjects, and how this is defi ned can have signifi cant impact on the studies 
generalizability. From the target population, a smaller number are actually recruited 
and then enrolled (eligibility fraction and enrollment fraction). The product of 
these two fractions represent the proportion of potential participants who are actu-
ally enrolled in the study (recruitment fraction) [ 10 ]. An example of the use of 
these various fractions is taken from a study, in which we found that as defi ned 
according to standards recommended by Morton et al. [ 11 ], the response rate (per-
cent agreeing to be interviewed among known eligible candidates contacted 
n = 57,253) plus an adjustment for the estimated proportion eligible among those of 
unknown eligibility (n = 25,581) was 44.7 % (36,983/82,834). The cooperation rate 
(the proportion of known eligible participants who agreed to be interviewed) was 
64.6 % (36,983/57,253). This helps the reader to understand how representative the 
study population is. However, as Halpern has pointed out, “ although more thor-
ough reporting would certainly help identify trials with potentially limited gener-
alizability, it would not help clinicians apply trial results to individual patients .” 
[ 12 ] Halpern also points out that data on patients who chose not to participate 
would be important. There follows an interesting discussion of the pros and cons 
addressing this entire issue that is important for the interested reader. Beyond the 
importance of generalizability, details of the recruitment process might also dem-
onstrate obstacles to the recruitment process.

  Fig. 8.1    The process of trial enrollment (From Gross et al. [ 10 ])       
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       Failures in Recruitment 

 Overall, clinical trial enrollment rates have dropped over time by 75 % in 2000, to 
59 % in 2006, from what was initially planned; and, retention rates fell from 69 to 
48 % during that same time period. This resulted in a delay of trial completion by 
1 month or more in the great majority of trials. In fact, the FDA has reported that 
only 6 % of trials are completed on time. There are a number of reasons for failure 
of the recruitment process including: ethical considerations, delayed start-up, inad-
equate planning, insuffi cient effort & staff, and over-optimistic expectations. In 
addition recruitment to NIH studies adds an additional burden as the NIH expects 
adequate numbers of women, minorities and children (when appropriate) to be 
recruited into studies that they fund (Table  8.4 ). 

The ethical considerations regarding recruitment are increasingly becoming an 
issue. Every researcher faces a critical weighing of the balance between informing 
patients about the benefi ts and risks of participating in a trial, against unacceptable 
encouragement to participate. IRB’s are exerting increasingly more rigorous control 
about what is appropriate and inappropriate in this regard. This has been the subject 
of debate in the United Kingdom as well, and is particularly acute due to the fact 
that the National Health Service requires that investigators adhere to strict regula-
tions [ 13 ]. In the UK (and to some extent in the USA), ethicists are insisting that 
researchers can only approach subjects who have responded positively to letters 
from their general practitioners or hospital clinician (the so-called ‘opt in’ approach). 
That is, under the opt-in system a subject is responsible for contacting their doctor 
and letting them know it is okay for a researcher to contact them. In an opt-out sys-
tem, the initial letter to the patient will explain that a researcher will be contacting 
them unless they tell their doctor that they wish not to be contacted. Hewison and 
Haines have argued that the public needs to be included in the debate about what is 
in the subject’s best interests, before an ethicist can make a unilateral decision [ 13 ]. 
Hewison and Haines feel that ‘research ethics requirements are compromising the 
scientifi c quality of health research’, and that ‘opt-in systems of recruitment are 
likely to increase response bias and reduce response rates’ [ 13 ]. There is little data 
on the subject of opt-in vs. opt-out systems in regards to the concerns expressed 
above, but the potential for bias and reduced recruitment is certainly hard to argue.

   Table 8.4    Reasons for failure of the recruitment process   

 Ethical considerations 
 Delayed start-up 
 Inadequate planning 
 Over-optimistic expectations 
 Insuffi cient effort & staffi ng 
 Recruitment to NIH studies adds an additional burden as the NIH expects adequate numbers of 

women, minorities and children (when appropriate) to be recruited into studies that they fund 
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   The above considerations just apply to the method of contacting potential sub-
jects. Other issues regarding recruitment are also becoming increasingly important 
as more studies (particularly Industry supported studies) matriculated out of aca-
demic centers and into private offi ces, where the investigator and staff might not 
have experience in clinical research. This privatization of clinical research began in 
the 1990s predominantly due to the ineffi ciencies of working with academia, includ-
ing protracted contractual and budget negotiations, bureaucratic and slow moving 
IRBs, and higher costs [ 14 ]. Today, only 1/3 of all industry-funded clinical trials are 
placed within academic centers. Now, as NIH funding is dwindling and other fed-
eral funding changes are occurring, many within academic centers are again view-
ing the potential of industry supported research studies.  

    Differences in Dealing with Clinical Trial Patients 

 There are differences in the handling of clinical practice patients in contrast to 
research subjects (although arguably this could be challenged). But at the least, 
research subjects are seen more frequently, have more testing performed, missed 
appointments result in protocol deviations, and patients lost to follow-up can erode 
the studies validity. In addition many research subjects are in studies not necessar-
ily for their own health, but to help others. Thus, the expense of travel to the site, 
the expense of parking, less than helpful staff, and waiting to be seen may be even 
less tolerable than it is to clinical practice patients. Thus, the provisions for on-site 
child care, a single contact person, fl exible appointment times, telephone and letter 
reminders, and the provision of study calendars with study appointment dates are 
important for the continuity of follow-up. In addition, at a minimum, payment for 
travel and time (payments to research subjects are a controversial issue) need to be 
considered, but not at such a high rate that the payment becomes coercive [ 15 ]. The 
use of fi nancial compensation as a recruiting tool in research is quite controversial, 
with one major concern that such compensation will unduly infl uence potential 
subjects to enroll in a study, and perhaps even to falsify information to be eligible 
[ 16 ]. In addition, fi nancial incentives would likely result in an overrepresentation 
of the poor in clinical trials. Also, these days, it is important that study sites main-
tain records of patients that might be potential candidates for trials as funding 
agencies are more frequently asking for documentation that there will be adequate 
numbers of subjects available for study. Inflating the potential for recruitment 
is never wise as the modifi ed cliché goes, ‘you are only as good as your last 
study’. Failure to adequately recruit for a study will signifi cantly hamper efforts to 
be competitive for funding for the next trial. Demonstrating to funding agencies 
that there is adequate staff, and facilities, and maintaining records of prior 
studies is also key. As Gorelick et al. point out, much has been said about the 
barriers in a clinical research study including mistrust, study costs, ineffective 
communication and lack of awareness of the importance of clinical research 
both by patients and health care providers. They provided a Research Triangle 
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(Fig.  8.2 ) whose foundation is the patient, but where any disruption in the triangles 
“structure” can result in crumbling of the triangle [ 17 ].

       Why People Participate in Clinical Research 

 There have not been many studies delving into why subjects participate in clinical 
research. In a study by Jenkins et al. the reasons for participating and declining to 
participate were evaluated (see Table  8.5 ) [ 18 ]. This was also evaluated by Hawkins 
et al. and both found that a high proportion of participants enrolled in studies to help 
others [ 19 ]. Hawkins et al. performed a cross sectional survey with a questionnaire 
mailed to 836 participants and a response rate of 31 % (n = 259). Responses were 
open-ended and an  a priori  category scale was used and evaluated by two research 
co-coordinators with a 10 % random sample assessed by a third independent party 
in order to determine inter-reader reliability (Table  8.6 ).

    Few studies have attempted to objectively quantify the effects of commonly used 
strategies aimed at improving recruitment and retention in research studies. One 
that did evaluate fi ve common strategies, assessed the effect of notifying potential 
participants prior to being approached; providing potential research subjects with 
additional information about the study; changes in the consent process; changes in 
the study design (such as not having a placebo arm); and; the use of incentives. The 
author’s conclusions were that it is not possible to predict the effect of most of these 
approaches on recruitment [ 20 ].  
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Health Care
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Successful
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  Fig. 8.2    The research triangle (Adapted from Gorelick et al. [ 17 ])       
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    Types of Recruitment 

 There are a number of additional considerations one has to make for site recruit-
ment and retention. For example, before the study starts consideration as to how 
the subjects will be recruited (i.e. from a data-base, colleague referral, advertis-
ing-print, television, radio, etc.) and once the study starts there needs to be weekly 
targets established and reports generated, The nature of the recruitment popula-
tion also needs to be considered, For example, Gilliss et al. studied the one-year 
attrition rates by the way in which they were recruited, and ethnicity [ 21 ]. They 
found that responses to and subsequent 1 year attrition rates, differed between 
whether the initial recruitment approach was through broadcast media, printed 
matter, face-to face recruitment, direct referral, and the use of the Internet; and, 
differed between American, African American, and Mexican American. For 
example, the response to broadcast media resulted in 58, 62 and 68 % being either 
not eligible or refusing to participate; and, attrition rates were 13, 17 and 10 % 
comparing American, Mexican American and African Americans respectively. In 
contrast, face-to-face recruitment resulted in lower refusal (21, 28, and 27 %) 
and attrition rates (4 %, 4, and 16 %). Remember that the effect of patient 
 discontinuations in clinical trials is to decrease the power of the study, to decrease 
the studies validity and to decrease the treatment effect. 

 There has been increasing interest in the use of electronic medical records in the 
clinical trials recruitment process, partly due to the fact that clinical trials suffer 
from low primary care physician participation. Embi et al. performed a “before- 
after” analysis of a clinical trial alert system, and compared enrollment in the 

  Table 8.5    Reasons for 
participation in clinical 
research (2000)  

  Top reasons for entering   % 
 So others may benefi t  23 
 Trust in the doctor  21 
 Cutting edge treatment  16 

  Top reasons for declining  
 My doctor told me not to  22 
 Randomization worried me  20 
 1 wanted the doctor to treat 

me not a computer 
 18 

  From: Jenkins and Fallowfi eld [ 18 ]  

  Table 8.6    Reasons for 
participation in clinical 
research (1980s)  

 Advantages  Disadvantages 

 Close observation (50 %)  Inconvenience (31 %) 
 Self knowledge (40 %)  Side effects (10 %) 
 Helping others (32 %)  Symptom worsening (9 %) 
 Free care (25 %)  Blinding (7 %) 
 Improve their disease (23 %) 

  From: Hawkins et al. [ 19 ]  
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12 months before and 4 months after its implementation [ 22 ]. During the 12- month 
“control period” for a specifi c diabetes mellitus trial, they found an enrollment rate 
of 2.9 participants/month. During the 4 months following the implementation of 
their EMR alert system this rose to 6.0/month. However, it is apparent that better 
systems need to be developed. For example the majority of the information in EMRs 
is contained in clinical notes (i.e. in free text format), and there is variability in data 
sources capturing the needed information for recruiting specifi c patients into a trial. 
There is also the issue of incentivizing practitioner involvement in clinical trials. 
One approach is to design a pragmatic trial that can mimic, and therefore be easily 
incorporated into clinical practice. In the Hastings Center Report [ 23 ], fi ve features 
were listed that were used to distinguish research from clinical practice as follows: 
was the intention to produce generalizable knowledge, was there a systematic inves-
tigation, was there less net clinical benefi t and greater risk than exists in clinical 
practice, did the research introduce burdens or risks that were usually not part of the 
patients clinical management, and was there the use of protocols to dictate what 
care the patient receives (Table  8.7 ).

       Minority Recruitment 

 The inclusion of diverse populations in clinical trials is central to generating gener-
alizable fi ndings and understanding health disparities; and, this has generated 
increased interest in enrolling minorities into clinical research trails. In fact, despite 
the recognition that minority groups are disproportionally affected by, for example, 
cardiovascular and renal disease, ethnicity-specifi c analyses have in the past, been 
generally inadequate for determining subgroup effects. 

 In 1993, the National Institutes of Health Revitalization Act mandated minority 
inclusion in RCTs, and defi ned underrepresented minorities as African Americans, 
Latinos, and American Indians. Subsequently, review criteria have formally required 
minority recruitment plans or scientifi c justifi cation for their exclusion. Yancey 
et al. [ 24 ], evaluated the literature on minority recruitment and retention and identi-
fi ed ten major themes or factors that emerged as infl uencing minority recruitment. 
Further, they noted that if addressed appropriately these ten themes facilitated 
recruitment: attitudes towards perceptions of the scientifi c and medical community; 
sampling approach; study design; disease specifi c knowledge and perceptions of 

   Table 8.7    Features that distinguish research from clinical practice   

 Was the intention to produce generalizable knowledge 
 Was there a systematic investigation 
 Was there less net clinical benefi t and greater risk than exists in clinical practice 
 Did the research introduce burdens or risks that were usually not part of the patients clinical 

management 
 Was there the use of protocols to dictate what care the patient receives 
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prospective participants; prospective participants psychosocial issues; community 
involvement; study incentives and logistics; sociodemographic characteristics of 
prospective participants; participant beliefs such as religiosity; and cultural adapta-
tions or targeting (Table  8.8 ). In general, most of the barriers to minority participa-
tion were similar for non-minorities except for the greater mistrust by African 
Americans toward participation (particularly into interventional trials), likely as a 
result of past problems such as the Tuskegee Syphilis Study [ 25 ]. Some of the 
authors conclusions based upon their review of the literature included: mass mailing 
is effective; population-based sampling is unlikely to produce suffi cient numbers of 
ethnic minorities; community involvement is critical; and, survey response rates are 
likely to be improved by telephone follow-up.

   Despite the aforementioned studies, the aggregate literature is confl icting, and 
the majority of it is broad and descriptive. Indeed, despite the generally held belief 
that minority groups are less willing to participate in research (due to mistrust or 
perceived if not real discrimination) literature on this subject is by no means con-
clusive. One group evaluated the attitudes among African American candidates 
who were recruited to the African American Study of Kidney Disease and 
Hypertension (AASK Trial) [ 26 ]. They compared candidates to the study who 
chose to participate and those who refused enrollment and found that the most 
signifi cant predictors of enrollment was the perceived impact of study participation 
on their health status, while mistrust and health-related factors did not emerge as 
barriers to participation. In the study by Martin et al. although they did fi nd 
increased diffi culty in enrolling adequate numbers of females and elderly (age >65 
year   ) there was a lack of effect of race on willingness to participate in RCTs [ 27 ]. 
When it comes to other minorities, there is even less data available. For instance, 
there is evidence of under- representation of women in study populations, and data 
suggests that women are less willing to participate in research, but the reasons are 

  Table 8.8    Major factors that 
infl uence minority 
recruitment  

 Attitudes towards perceptions of the 
scientifi c and medical community 

 Facilitated recruitment 
 Sampling approach 
 Study design 
 Disease specifi c knowledge and 

perceptions of prospective 
participants 

 prospective participants psychosocial 
issues 

 Community involvement 
 Study incentives and logistics 
 Sociodemographic characteristics of 

prospective participants 
 Participant beliefs such as religiosity; and 

cultural adaptations or targeting 

  From: Yancy et al. [ 24 ]  
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unclear and apparently complex. Ding et al. did attempt to evaluate how willingness 
to participate affected participation in men vs. women [ 28 ]. They found that women 
showed less distrust of medical researchers, but perceived a greater risk of harm 
compared to men. Overall the RR of willingness to participate was 1.15 (CI 1.02–
1.31) in men compared to women. Clearly more answers are needed in this area. 
More recently, Martin et al. attempted to objectively quantify patient and trial-
specifi c factors with participation in cardiovascular RCTs [ 27 ]. They studied a 
consecutive sample of patients who were screened and potentially eligible for 
participation into a RCT, with a main outcome measure of not participating in a 
RCT. They found that trial- specifi c factors were more strongly associated with 
non-participation than patient- specifi c factors. Two specifi c trial-related factors 
associated with non-participation were intensive testing and participation >6 months, 
while patient specifi c factors were age >65 year, female sex, and residence loca-
tion. Although other trial specifi c factors were also different between participants 
and non-participants (Industry sponsored trials, study size, trial compensation 
<$20, and outpatient recruitment) these were not evident upon multivariable analy-
sis (Fig.  8.3 ). Another interesting aspect of this study was the discordant views that 
the trial team had vs. the patient’s reasons for non-participation. The trial team 
listed things like potential non adherence, altered mental status, clinical instability 
and substance abuse, while patients talked about travel barriers and being too busy 
(again, payments for participation and fear of the drug being used in the trial were 
very infrequent reasons for non-participation).

   Although not included in the NIH defi nition of “minorities” it has been recognized 
that women and the elderly have also not been adequately represented in past clinical 
trials. For instance, Cherubuni et al. investigated the extent of exclusion of older indi-
viduals in clinical trials of heart failure, a condition in which the elderly are inordi-
nately represented [ 29 ]. They found that among 251 trials, 64 (25.5 %) excluded 
patients at an arbitrary upper age limit, and that such exclusions were more common 
amongst European trials than those conducted in the US. Overall, they concluded that 
“109 trials (43.4 %) had 1 or more unjustifi ed exclusion criterion that could limit the 
inclusion of older individuals”. In a review article by Heiat et al. they noted that there 
was no signifi cant improvement in elderly recruitment into heart failure trials among 
publications from the 1980 and early 1990s compared to those published later [ 30 ]. 

 In 2011 Burke et al. assessed (1) the reporting of race, ethnicity, and gender in 
trial publications and (2) the enrollment of women and minorities in NINDS-
funded phase III clinical trials with published results [ 31 ]. Representation of 
women and minorities in stroke related trials was assessed separately to allow for 
comparison with the relatively well-described epidemiology of stroke. Between 
1985 and 2008 56 trials reported enrollment by gender, race, and ethnicity were 
identifi ed, and the percent of African Americans, Hispanic Americans, and women 
enrolled in the trials was calculated, for those trials with available data. African 
Americans constituted 19.8 % of the enrollees in trials with available data and 
enrollment increasing over time (11.6 % period 1; 30.7 % period 2, p _ 0.001). 
Hispanic Americans constituted 5.8 % of subjects in trials with available data and 
enrollment decreased over time (7.4 % period 1; 5.0 % period 2, p _ 0.001). The 
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authors concluded that “ in the 15 years since implementation of the NIH 
Revitalization Act, representation of women and African Americans in clinical trials 
has improved signifi cantly ”. However, they cautioned that despite clear progress, 
underrepresentation persists in a number of specifi c disease states, including stroke 
and other neurologic diseases [ 31 ].  

    HIPPA 

 A fi nal word about recruitment relates to HIPAA (the Health Insurance Portability 
and Accountability Act). Issued in 1996, the impetus of HIPPA was to protect 
patient privacy. However, many have redefi ned HIPAA as  ‘How Is it Possible to 

  Fig. 8.3    Multivariable analysis of factors associated with not participating in a cardiovascular 
randomized clinical trial 
 The multivariable model included all of the factors in the Forest plot. Factors are ordered from top 
to bottom by highest to lowest chi-square. Relative risks and 95 % confi dence intervals (CI) are 
presented. The analysis included the primary analysis sample of 655 subjects without a language 
barrier. Intensive trial-related testing was defi ned as cardiac magnetic resonance imaging, retinal 
examinations requiring extended study visits, or peak oxygen uptake measurement during exercise. 
Chronic comorbidity burden was quantifi ed by the Charlson Index. Hospital admissions were for 
any cause within the past year. Duke Cardiologist was defi ned as having an outpatient encounter 
within the past year with a Duke University Medical Center-affi liated cardiologist. Martin et al. [ 29 ]       
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Accomplish Anything’ . As it applies to research subjects it is particularly confusing. 
The term protected health information (PHI) includes what physicians and other 
health care professionals typically regard as a patient’s personal health information. 
PHI also includes identifi able health information about subjects of clinical research 
gathered by a researcher. Irrespective of HIPAA, the safeguarding of a patient’s per-
sonal medical records should go without saying; and, failure of this aforementioned 
safeguarding has resulted in problems for some researchers. As it affects patient 
recruitment, however, HIPAA is problematic in that the researcher’s ability to con-
tact patients for a research study, particularly patients of another health care pro-
vider, becomes more problematic. In addition, in clinical research, the investigator 
is often in a dual role as it regards a patient—that of a treating physician and that of 
a researcher. Long-standing ethical rules apply to researchers, but in regard to 
HIPAA, a researcher is not a ‘covered entity’ (defi ned as belonging to a health plan, 
health care clearinghouse, or health care provider that transmits health information 
electronically). However, complicating the issue is when the researcher is also a 
health care provider, or employees or other workforce members are a covered entity. 
The role and scope of HIPAA, as it applies to clinical research is beyond the inten-
tion (or comprehension) of this author and, therefore, will not be further discussed.  

    Summary 

 During my over 35 years of clinical research experience I have developed a number 
of strategies aimed at retaining participants, and some examples are outlined below.

•     A participant in a 4 year outcome trial discontinued study drug over 1 year ago 
(during the second year of the trial) due to vague complaints of weakness and 
fatigue, however, the participant did agree to continue to attend study visits. At 
one of the follow up visits, we asked the participant if they would be willing to try 
the study drug again, and in so doing were able to re-establish the participant in 
the trial . Recall that based upon the intention-to-treat principle (see Chap.   3    ) 
they would have been counted as having received their assigned therapy anyway, 
and in terms of the outcome it is still better that they received the therapy for 3 of 
the 4 years, than for less than that.  

•    Another participant reported a loss of interest in the study and stopped his study 
drug. Upon questioning it was determined that he had read newspaper articles 
about recent studies involved with the study drug you are testing, and felt there is 
nothing to gain from continuing in the study. We explained how this study differs 
from those reported in the newspaper, using a fact based approach, and the sub-
ject was willing to participate once again .  

•    A participant following up on the advice of his primary care doctor (PCP) decided 
he would like to know what study drug he was receiving when the PCP noted a BP 
of 150/90 mmHg. Further, the PCP had convinced the patient to discontinue 
blinded study therapy. You receive a call from the patient stating they no longer 
wish to participate in the study.  One way of preventing this in the fi rst place is to 
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involve the patients PCP from the beginning. However, in this case, the patient 
had transferred to a new PCP and had not informed us. As a result, we called the 
PCP and communicated the importance of the study and assured the PCP that bet-
ter BP control is expected and that we would be carefully monitoring his BP.    

 In summary, a frank open discussion with the patient as to what happened 
and why he/she wants to discontinue is important, as is preserving rapport with 
the patient and their PCP, that is a key to subject retention. It is also critical that 
the principal investigator (PI) maintain frequent contact (and thereby solidify 
rapport) with the patient, given that in many studies the study coordinator and 
not the PI may see the patient on most occasions. I remember asking one study 
coordinator if they knew the defi nition of PI and the immediate response was 
‘yes-practically invisible!’     
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    Abstract     Data Safety and Monitoring Boards were introduced as a mechanism 
for monitoring interim data in clinical trials as a way to ensure the safety of 
participating subjects. Procedures for and experience with DSMBs has expanded 
considerably over recent years and they are now required by the NIH for almost 
any interventional and for some observational trials. A DSMB’s primary role is to 
evaluate adverse events and to determine the relationship of the adverse event to the 
therapy (or device). Interim analyses and early termination of studies are two aspects 
of DSMBs that are particularly diffi cult challenges. This chapter will discuss the 
role of DSMBs and address the aforementioned issues.  

  Keywords     DSMB   •   Interim analysis   •   Early study termination   •   Multiple com-
parisons   •   OSMB  

     Data Safety and Monitoring Boards (DSMBs), which have various names including 
Data Safety and Monitoring Committees and Data Monitoring Committees, were 
born in 1967, a result of a National Institute of Health (NIH) sponsored task force 
report known as the Greenberg Report [ 1 ]. Initially the responsibilities now assigned 
to a DSMB were a component of those of a Policy Advisory Board. From this 
emerged a subcommittee to focus on monitoring clinical trial safety and effi cacy. 
More specifi cally, the DSMB was introduced as a mechanism for monitoring interim 
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data in clinical trials as a way to ensure the safety of participating subjects. 
Procedures for and experience with DSMBs has expanded considerably over recent 
years, and several key publications relevant to their operations are now available 
[ 2 – 4 ]. In general, the NIH now requires DSMB’s for all clinical trials (including 
some phase 1 and 2 trials), and recently added device trials to this mandate [ 5 ]. The 
NIH website states  “Applications that include clinical trials must include a general 
description of the data and safety monitoring plan. The description of the data and 
safety monitoring plan in competing applications will be reviewed by the Scientifi c 
Review Group (SRG). A general description of a monitoring plan establishes the 
overall framework for data and safety monitoring. It must describe the entity that 
will be responsible for monitoring how adverse events will be reported to the IRB 
and the NIH and, when appropriate, how the NIH Guidelines and FDA regulations 
for INDs and IDEs will be satisfi ed.”  

  “A detailed monitoring plan must be included as part of the research protocol, 
be submitted to the local IRB, and be reviewed and approved by the NIH awarding 
IC prior to the accrual of human subjects. The awarding IC may specify the reporting 
requirements for adverse events, which are in addition to the annual report to the 
IRB. The clinical trial monitoring function is above and beyond that traditionally 
provided by IRBs; however, the IRB must be cognizant of the procedures used by 
clinical trial monitoring entities and the monitor must provide periodic reports to 
investigators for transmittal to the local IRB.” “NIH specifi cally requires the estab-
lishment of DSMBs for multi-site clinical trials involving interventions that entail 
potential risk to the participants, and generally for Phase III clinical trials. Although 
Phase I and Phase II clinical trials also may use DSMBs, smaller clinical trials 
may not require this oversight format, and alternative monitoring plans may be 
appropriate.”  [ 6 ] DSMB’s are now an established interface between good science 
and good social values. For example, the National Heart Lung and Blood Institute 
(NHLBI) at the NIH [ 7 ] requires the following:

 –    For Phase III clinical trials, a Data and Safety Monitoring Board (DSMB) is 
required. This can be a DSMB convened by the NHLBI, or by the local institution, 
depending on the study, the level of risk and the funding mechanism.  

 –   For a Phase II trial, a DSMB may be established depending on the study, but in 
most cases a DSMB appointed by the funded institution may suffi ce.  

 –   For a Phase I trial, monitoring by the PI and the local IRB usually suffi ces. 
However, a novel drug, device or therapy with a high or unknown safety profi le 
may require a DSMB.  

 –   For an Observational Study, a Monitoring Board (OSMB) may be established for 
large or complex observational studies. This would be determined on a case-by- case 
basis by NHLBI.   

More specifi cally, as an investigator, the questions one should ask themselves in 
regards to whether a DSMB is likely to be needed are outlined in Table  9.1 , and 
revolve around the study size, number of study sites, expectation of safety issues, 
and whether the outcomes entail mortality and/or signifi cant morbidity.
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   The NHLBI also requires that each DSMB operate under an approved Charter 
[ 3 ], with the expectation that this Charter will delineate that the primary function of 
the DSMB will be to ensure patient safety, as well as to ensure that patients are 
adequately informed of the risk in study participation. The DSMB Charter requires 
a formal manual of operations (MOOP) and the DSMB and sponsor must agree on 
all the terms set forth in the MOOP (this is sometimes referred to a Data Safety and 
Monitoring Plan – DSMP). This includes such things as the DSMBs responsibility, 
its membership, meeting format and frequency, specifi cs about the decision making 
process, report preparation, whether the DSMB will be blinded or not to the treatment 
arms, and the statistical guidelines that will be utilized by the DSMB to determine 
whether early termination of the study is warranted. In addition, DSMBs assure 
that the rate of enrollment is suffi cient to achieve adequate numbers of outcomes, 
develop guidelines for early study termination, and to evaluate the overall quality of 
the study to include accuracy, timeliness, data fl ow, etc. 

 The DSMB is charged with assessing the progress of clinical trials and to recommend 
whether the trail should continue, be modifi ed, or discontinued. More specifi cally, 
the DSMB approves the protocol, has face-to-face meetings usually every 6 months 
(these are supplemented with conference calls), they may have subgroup meetings 
for special topics, and are on call for crises; and, DSMBs review interim analyses 
(generally required for NIH studies). An interim analysis is one performed prior 
to study completion. The role of the DSMB is outlined in Table  9.2  and includes 
identifying slow rates of accrual and high rates of ineligibility, identify protocol 
violations, dropout rates validity of the study and study safety.

  Table 9.1    Indications that 
a DSMB is warranted  

 Large study population and/
or multiple sites 

 Trial is intended for proving 
effi cacy/effectiveness and/
or safety of an intervention 

 Is there the potential for 
signifi cant toxicity 

 Is mortality or another major 
endpoint the trial outcome 

 Is early stopping a 
possibility 

  Table 9.2    The roles 
of a DSMB  

 Identify slow rates of patient/subject accrual 
 Identify high rates of ineligibility after 

randomization 
 Identify protocol violations 
 Identify high rates of dropouts 
 Ensure the overall credibility of the study 
 Ensure the validity of study results 
 Protect trial participant safety 
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   Members of DSMBs are to be expert in areas relevant to the trial, be approved by 
the sponsor, and have no confl icts of interest relative to the study to be monitored. 
The members should not be affi liated with the sponsor, and should be independent 
from any direct involvement in the performance of the clinical trial. Members of 
the DSMB tend to include clinical experts, statisticians, ethicists, and community 
representatives. Thus, the DSMB’s overarching objectives are to ensure the safety of 
participants, oversee the validity of data, and to provide a mechanism for the early 
termination of studies. 

    Early Study Termination 

 As mentioned prior, the DSMB’s primary role is to evaluate adverse events and to 
determine the relationship of the adverse event to the therapy (or device). As the 
DSMB periodically reviews study results, evaluates the treatments for excess 
adverse effects, determines whether basic trial assumptions remain valid, and judges 
whether the overall integrity of the study remains acceptable, it ultimately makes 
recommendations to the funding agency. For NHLBI sponsored studies, this recom-
mendation goes directly to the Institute Director, who has the responsibility to 
accept, reject, or modify the DSMB recommendations. 

 The issue of terminating a study early or of altering the course of its conduct is a 
critically important decision. On the surface, when to terminate a study can be obvious 
such as when the benefi t of intervention is so clear that continuing the study would 
be inappropriate, or conversely when harm is clearly evident. That is, a study should 
be stopped early if bad is happening, good is happening, or nothing is happening 
(that is, the prospects are poor that if the study continues there will be benefi t). 
Finally, the DSMB can recommend early termination if there are forces external to 
the study that warrant its early discontinuation (e.g. a new life saving modality is 
approved during the course of the study that might benefi t study participants). More 
frequently, however, it is diffi cult to sort out this balance of risk vs. benefi t, and 
judgment is necessary. As Williams so aptly put it ‘stopping too early is to soon, and 
too late is not soon enough’ i.e. no one is going to be happy in either case [ 8 ]. That is, 
stopping a trail to early leads to results that may not be judged to be convincing, might 
impact other ongoing studies, or that endpoints not yet adjudicated may affect the 
results of the study. Finally, the DSMB must be concerned with the potential for 
operational chaos that may ensue, and unnecessary costs may be realized when a 
study is terminated ahead of schedule; however, stopping a trial to late may be 
harmful to patients. In addition one may keep society waiting for potentially benefi -
cial therapy. 

 Another dilemma faced by early stopping is if the trial is in its beginning phases, 
and an excess of adverse events, for example, is already suggested. The DSMB is 
then faced with the question of whether this observation is just a ‘blip’ which will not 
be evident for the rest of the trial and stopping at this point would hamper if not cause 
cessation of a drugs development. If, on the other hand it is in the middle of the trial 
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and effi cacy, for example, is not yet fully demonstrated, the question faced by the 
DSMB is whether there can still be a turnaround such that the results will show ben-
efi t. Finally, if it is late in a trial, and there has been no severe harm demonstrated, 
but apparent effi cacy is minimal, the question is whether it is worth the cost and 
confusion to stop the trial before completion, when it will be ending shortly anyway. 
In the fi nal analysis, it is generally agreed that the recommendation to modify or 
terminate a trial should not solely be based upon statistical grounds. Rather, ‘no sta-
tistical decision, rule, or procedure can take the place of the well reasoned consider-
ation of all aspects of the data by a group of concerned, competent, and experienced 
persons with a wide range of scientifi c backgrounds and points of view’ [ 9 ]. An 
example of this dilemma is represented by the AIM-HIGH study, whose primary end 
point was the fi rst event of a composite of CHD death, nonfatal MI, ischemic stroke, 
hospitalization for ACS, or symptom- driven coronary or cerebral revascularization. At 
an interim analysis the DSMB found that there was a similar outcome in the two groups, 
occurring in 282 patients (16.4 %) in the niacin group vs. 274 patients (16.2 %) on 
placebo. There was also no difference in two secondary composite end points. The 
trial was stopped early in 2012 after a mean follow-up of 3 years. The statement from 
the National Heart Lung and Blood Institute at the time said the trial had been stopped 
because niacin was showing no additional benefi ts over placebo and there was also a 
small, unexplained increase in ischemic stroke in the niacin group. 

 On the stroke issue, the AIM-HIGH investigators reported that ischemic stroke 
occurred as the fi rst event in 27 niacin patients (1.6 %) vs. 15 placebo patients (0.9 %). 
However, eight of the strokes in the niacin group occurred between 2 months and 
4 years after discontinuation of niacin treatment. “When all    the patients with 
ischemic stroke were considered, rather than just those in whom the stroke was the 
fi rst study event, a nonsignifi cant higher trend persisted in the niacin group.” One 
medical article questioned whether this slight increased stroke risk (p value was 0.11) 
was “a causal association or the play of chance”? One medical expert was quoted as 
saying  “I do not agree with the decision to stop this trial. It was completely inap-
propriate. The NIH sponsors saw a weak signal of stroke and panicked, and when 
all the data have come in, this doesn’t appear to be an issue. Now we have lost the 
opportunity to properly answer the very important question of whether niacin adds 
any benefi t in this population with low LDL levels” .  

    Interim Analysis 

 Interim analyses may occur under two general circumstances; based on accrual – e.g. 
one interim analysis after half of the patients have been evaluated for effi cacy (this to 
some degree depends on the observation time for effi cacy), or based on time – e.g. 
annual reviews. Often the information fraction (the number of events that have 
occurred compared to those expected) provides a frame of reference [ 10 ]. 

 Stopping rules for studies, as mentioned before, are dependent upon both 
known science and judgment. For example, in a superiority trial if one treatment 

9 Data Safety and Monitoring Boards (DSMBs)



198

arm is demonstrating ‘unequivocal’ benefi t over another, study termination can be 
recommended. However there are problems with this approach. For example one of 
the study arms may show superiority at the end of year 1, but may then lose any 
advantage over the ensuing time period of the study. A way of dealing with this 
at the time of the interim analysis is to assess futility. That is, given the recruitment 
goals, if at the time of the study, an interim analysis suggests that there is no 
demonstrable difference in the treatment arms, and one can show that it would be 
unlikely (futile) that with the remaining patients a statistically signifi cant difference is 
likely to occur, the study can be stopped [ 11 ]. 

 Finally, an issue with interim analysis is the multiple comparisons problem 
(see Chap.   3    ). In other words, with each interim analysis, sometimes called a ‘look,’ 
one ‘spends’ some of the overall alpha level. Alpha is, of course, the overall signifi -
cance level (usually <0.05). Statisticians have developed various rules to deal with 
the multiple comparison problem that arises with interim data analysis. One 
approach is to stop trials early only when there is overwhelming evidence of effi -
cacy. Peto has suggested that overwhelming evidence is when p < 0.001 for a test 
that focuses on the primary outcome [ 12 ]. Perhaps the simplest method to under-
stand is the Bonferroini adjustment, which divides the overall alpha level by the 
number of tests to be conducted to obtain the alpha level to use for each interim test. 
As discussed in Hulley et al. [ 13 ] that means that if fi ve tests are done and the over-
all alpha is 0.05, then for statistical signifi cance for stopping, a p < 0.01 or less, for 
each individual test is needed. This latter approach is typically conservative in that 
the actual overall alpha level may be well below 0.05. 

 There often are compelling reasons to make it more diffi cult to cross a stopping 
boundary early rather than later in the study. Hence, another approach is to have a 
stopping boundary that changes as the trial moves closer to its predetermined end, 
with higher boundaries earlier and lower ones later. The rationale is that early in 
the study, the number of endpoint events is typically quite small and thus trends are 
subject to high variability. This makes it more likely that there is a more extreme 
difference between the treatment arms early that will settle down later. Also, as 
the end of the trial nears, a less stringent p value is required to indicate signifi cance, 
since the results are less likely to change (there will be fewer additional patients 
added to the trial compared to earlier in its conduct) [ 10 ]. 

 The three most commonly used methods for setting boundaries, sometime 
referred to as group sequential boundaries, as a frame of reference for early termination 
decisions are: the Haybittle-Peto [ 12 ,  14 ], Pocock [ 15 ], and Obrien-Fleming [ 16 ] 
methods. The Haybittle-Peto and Pocock methods do not provide higher boundaries 
early in the study, whereas, the Obrien-Fleming, and the Lan-Demets [ 10 ] modifi cation 
do. Figure  9.1  shows how these compare to each other for situations whereby 
fi ve “looks” are expected for the trial [ 17 ,  18 ]. Thus, interim safety reports pose 
well recognized statistical problems related to the multiplicity of statistical tests 
conducted on the accumulating set of data. The basic problem is well known and is 
referred to as “sampling to a foregone conclusion” [ 17 ], or the problem of repeated 
signifi cance tests [ 19 ,  20 ].
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   Califf et al. outlined the questions that should be asked by a DSMB before altering 
a trial [ 21 ]. Califf et al. also point out that statistical rules are not absolute but 
provide guidance only. Some additional issues discussed in their review include the 
role of the DSMB in event-driven (i.e. the trial continues until the pre-specifi ed 
number of events has been accrued) vs. fi xed-sample, fi xed-duration trials; how the 
DSMB should approach equivalence vs. noninferiority trials; the role of a Bayesian 
approach to DSMB concerns; the use of asymmetric vs. symmetric boundaries (the 
threshold for declaring that a trial should be stopped, should be less stringent for 
safety issues than it is when a therapy shows a positive result); and, perhaps most 
importantly, the overall philosophy of early stopping-that is, where does the committees 
primary ethical obligation lie, and what degree of certainty is required before a trial 
can be altered [ 19 ]. 

 The disadvantages of stopping a trial early are numerous. These include the fact 
that the trial might have been terminated on a random ‘high’; the reduction in the 
credibility of the trial when the number of patients studied will have been less than 
planned; and, the greater imprecision regarding the outcome of interest as the 
smaller sample size will have resulted in wider confi dence limits. Montori et al. 
performed a systematic review of randomized trials stopped early as a result of their 
demonstrating benefi t at the time of an interim analysis [ 22 ]. They noted that ‘taking 
the point estimate of the treatment effect at face value will be misleading if the 
decision to stop the trial resulted from catching the apparent benefi t of treatment at 
a ‘random high’. When this latter situation occurs, data from future trials will yield 
a more conservative estimate of the treatment effect, the so called “regression to 
the truth effect”. Montori’s fi ndings suggested that there were an increasing number 
of RCTs reported to have stopped early for benefi t; and, that the early stopping 
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occurred with (on average) 64 % of the planned sample having been entered. More 
importantly, they concluded that information regarding the decision to stop early 
was inadequately reported, and overall such studies demonstrated an implausibly 
large treatment effect and they then suggest that the results of such studies should 
be viewed with skepticism [ 20 ]. One example of early stopping for harm was the 
ILLUMINATE trial which was terminated early by the DSMB because the trial 
drug, Pfi zer’s  torcetrapib , had more events than placebo [ 23 ]. The questions 
addressed but not able to be answered were: Why this occurred? Was it the drug 
itself or the dose of the drug? What was the mechanism of adverse events/, etc. 

 Finally, as discussed in Chap.   3     the duration of the clinical trial can be an important 
consideration in the DSMB deliberations. Some studies may show early lack of 
benefi t and have a delayed benefi cial effect. The DSMB should carefully follow the 
curves elucidating the study endpoints in order to identify the potential for a delayed 
effect. Thus, the DSMB might not be only involved in early stopping, but might 
suggest a longer duration of the RCT than originally planned. 

 Finally, most journals endorse the CONSORT Statement (See C   hapter   19    ) 
which states “when applicable, explanation of any interim analyses and stopping 
guidelines” should be included. As reported by Tharmananathan et al. [ 24 ], this 
does not happen as often as it should. Figure  9.2  is a diagram outlining how often 
and for what reasons interim analyses resulted in earl stopping [ 24 ].

       Observational Study and Monitoring Boards (OSMBs) 

 OSMBs are a more recent development and are not as often necessary as they are 
with interventional trials [ 25 ]. Thus, a main question is when should an OSMB be 
established? It is the policy of the NHLBI to establish OSMBs for Institute- 
sponsored observational studies and registries when an independent group is needed 
to evaluate the data on an ongoing basis to ensure participant safety and/or study 

1772 RCTs Identified

444/566 continued as planned
75 were stopped early

28 for
futility

26 other
reasons

  Fig. 9.2    A diagram outlining 
how often and for what 
reasons interim-analyses 
resulted in early stopping of a 
clinical trial (From: 
Tharmananathan et al. [ 24 ])       
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integrity. The decision to establish an OSMB is made by the relevant Division 
Director with the concurrence of the Director, NHLBI. As a general rule, the NHLBI 
appoints OSMBs for:

•    all large, long-term Institute-initiated and selected investigator-initiated observa-
tional studies, whether multiple or single center in nature; and  

•   selected smaller Institute-initiated and selected investigator-initiated observational 
studies or registries to help assure the integrity of the study by closely monitoring 
data acquisition for comprehensiveness, accuracy, and timeliness; and monitoring 
other concerns such as participant confi dentiality.    

 The role of the OSMBs is similar to that of the DSMB, that is, to monitor study 
progress and to make recommendations regarding appropriate protocol and opera-
tional changes. They also address safety issues such as those involving radiation 
exposure or other possible risks associated procedures or measurements that are 
study components. Decisions to modify the protocol or change study operations in 
a major way may have substantial effects upon the ultimate interpretation of the 
study or affect the study’s funding. Thus, OSMBs play an essential role in assuring 
quality research. The principal role of the OSMB is to monitor regularly the data 
from the observational study, review and assess the performance of its operations, 
and make recommendations, as appropriate with respect to:

•    the performance of individual centers (including possible recommendations on 
actions to be taken regarding any center that performs unsatisfactorily);  

•   issues related to participant safety and informed consent, including notifi cation 
of and referral for abnormal fi ndings;  

•   adequacy of study progress in terms of recruitment, quality control, data analysis 
and publications;  

•   issues pertaining to participant burden;  
•   impact of proposed ancillary studies and substudies on participant burden and 

overall achievement of the main study goals; and  
•   overall scientifi c directions of the study.   

Thus, the OSMB must provide a multidisciplinary and objective perspective, 
with expert attention to all of these factors during the course of the study, and 
considerable judgment. 

 The responsibilities of the OSMBs are summarized in a document that can be 
found on the NHLBI web site [ 24 ].     
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    Abstract     Meta-analysis refers to methods for the systematic review of a set of individual 
studies (either from the aggregate data or the individual patient data) with the aim to 
quantitatively combine their results. This has become a popular approach to attempt to 
answer questions when the results from individual studies have not been defi nitive. 
This chapter will discuss meta-analyses and highlight issues that need critical assess-
ment before the results of the meta-analysis are accepted. Some of these critical issues 
include: publication bias, sampling bias, and study heterogeneity. Evidence-based 
medicine and clinical practice guidelines are dependent upon meta-analyses to guide 
their recommendations. Evidence-based medicine is an apt term to the extent that it 
advocates more reliance on clinical research than on personal experience or intuition; 
and, has led to a paradigm outlining the “level of evidence” that addresses a particular 
clinical question (also see Chap.   3    ). These “levels of evidence” are also utilized by 
clinical practice guidelines, but “as the number of available guidelines provided by 
a variety of sources has literally exploded, serious questions and controversies have 
arisen about how guidelines should be developed, implemented, and evaluated.”  
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       Introduction 

    Meta- is from Latin meaning among, with, or after; occurring in succession to, 
situated behind or beyond, more comprehensive, or transcending. This has led 
some to question if meta-analysis is to analysis as metaphysics is to physics (meta-
physics refers to the abstract or supernatural), to which a number of article titles 
would attest, such as: “is a meta-analysis science or religion?” [ 1 ]; “have meta-
analyses become a tool or a weapon?” [ 2 ]; “meta-statistics: help or hinderance?” 
[ 3 ] and, “have you ever meta-analysis you didn’t like?” [ 4 ], or as Bangalore put it 
“a meta- analysis is like a sausage. God and the butcher know what goes in it and 
neither would ever eat any” [ 5 ]. Overviews, systematic reviews, pooled analyses, 
quantitative reviews and quantitative analyses are other terms that have been used 
synonymously with meta-analysis, but some distinguish between them. For exam-
ple, pooled analyses might not necessarily use the true meta-analytic statistical 
methods, and quantitative reviews might similarly be different than a meta-analysis. 
Compared to traditional reviews, meta-analyses are often more narrowly focused, 
usually examine one clinical question, and necessarily have a strong quantitative 
component. Meta-analysis can be literature based and these are essentially, studies 
of studies. Said simply, meta-analysis is the statistical combination of two or more 
separate studies, with the potential advantages being improved precision and 
increased power. The majority of meta-analyses rely on published reports, however 
more recently, meta-analyses of individual patient (participant) data (IPD) have 
appeared. 

 The earliest meta-analysis may have been that of Karl Pearson in 1904, which 
he applied in an attempt to overcome the problem of reduced statistical power in 
studies with small sample sizes [ 6 ]. The fi rst meta-analysis of medical treatment 
is probably that of Henry K Beecher on the powerful effects of placebo, pub-
lished in 1955 [ 7 ]. But, the term meta-analysis is credited to Gene Glass in 1976 
[ 8 ]. Only four meta-analyses could be found before 1970, 13 were published in 
the 1970s and fewer than 100 in the 1980s. Since the 1980s more than 10,000 
meta-analyses have been published. Why this popularity of meta-analysis, and 
why do a meta-analysis in the fi rst place? Individual studies attempt to make 
inferences by setting up experimental contrasts that pertain to the hypothesis 
at hand. Nevertheless, observed fi ndings are subject to random variation that 
could lead the inference astray, and it is also diffi cult to test the consistency of 
fi ndings across a variety of settings from a single study. The goal of a meta-
analysis is to enhance inference by increasing power and by assessing the consis-
tency of fi ndings across studies; and in so doing one can more appreciate the 
degree of uncertainty in the research question, and the degree of heterogeneity 
between studies.  
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    Defi nition 

 Meta-analysis refers to methods for the systematic review of a set of individual 
studies or patients (subjects) within each study, with the aim to quantitatively 
combine their results. Meta-analysis has become popular for many reasons, some of 
which include : 

 –    The adoption of evidence-based medicine which requires that all reliable infor-
mation is considered  

 –   The desire to avoid narrative reviews which are often misleading or inconclusive  
 –   The desire to interpret the large number of studies that have been conducted 

about a specifi c intervention  
 –   The desire to increase the statistical power of the results by combining many 

smaller sized studies   

Some defi nitions of a meta-analysis include:

•    An observational study in which the units of observation are individual trial results 
or the combined results of individual patients (subjects) aggregated from those trials.  

•   A scientifi c review of original studies in a specifi c area aimed at statistically 
combining the separate results into a single estimate  

•   A type of literature review that is quantitative  
•   A statistical analysis involving data from two or more trials of the same treatment 

and performed for the purpose of drawing a global conclusion concerning the 
safety and effi cacy of that treatment    

 One should view the steps in designing a meta-analysis the same way as one views 
the steps take in designing a clinical trial (unless one is performing an exploratory 
meta-analysis), except that most meta-analyses are retrospective and observational. 
Beyond that, a meta-analysis is like a clinical trial except that the units of observa-
tion may be individual subjects within trials, or individual trial results. Thus, all the 
considerations given to the strengths and limitations of clinical trials should be 
applied to meta-analyses (e.g. a clearly stated hypothesis, a predefi ned protocol, 
considerations regarding selection bias, etc.). 

 The reasons one performs a meta-analysis is to ‘force’ one to review all pertinent 
evidence, to provide quantitative summaries, to integrate results across studies, 
and to provide for an overall interpretation of these studies. This allows for a more 
rigorous review of the literature, and it increases sample size and thereby potentially 
enhances statistical power. That is to say, the primary aim of a meta-analysis is to 
provide a more precise estimate of an outcome (say a medical therapy in reducing 
mortality or morbidity) based upon a weighted average of the results from the studies 
included in the meta-analysis (Table  10.1 ). The concept of a ‘weighted average’ is 
an important one. In the most basic approach, the weight given to each study is the 
inverse of the variance of the effect; that is, on average, the smaller the variance, and 
the larger the study, the greater the weight one places on the results of that study. 
Because the results from different studies investigating different but hopefully simi-
lar questions are often measured on different scales, the dependent variable in a 
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meta-analysis is typically some standardized measure of effect size. In addition, 
meta-analyses may enhance the statistical signifi cance of subgroup analysis, and 
enhance the scientifi c credibility of certain observations.

   Finally, meta-analyses may identify new research directions or help put into focus 
the results of a controversial study. As such, meta-analyses may resolve uncertainty 
when reports disagree, improve estimates of effect size, and answer questions that 
were not posed at the start of individual trials, but are now suggested by the trial 
results. Thus, when the results from several studies disagree with regard to the mag-
nitude or direction of effect, or when sample sizes of individual studies are too small 
to detect an effect, or when a large trial is too costly and/or too time consuming to 
perform, a meta-analysis should be considered. 

 One should make the distinction between meta-analysis, a systematic review, 
and an expert review. Meta-analysis is quantitative and employs statistical methods 
to combine and summarize the results of several studies; a systematic review is 
the process for searching the literature appropriately, in order to fi nd the relevant 
information. Expert reviews are broad and frequently biased summaries by a leading 
authority in a given fi eld (Table  10.2 ).

  Table 10.1    Some reasons 
to perform a meta-analysis  

 “Force” a rigorous literature review 
 Resolve uncertainty when reports disagree 
 Increase sample size 
 Enhance statistical signifi cance of 

subgroup analyses 
 Enhance scientifi c credibility of some 

observations 
 May identify new research directions 
 May help put into focus a controversial study 
 Provide more precise effect size estimates 
 Allow one to assess variability between 

studies 
 Increase statistical power 
 May identify characteristics associated 

with particularly effective treatments 
 Allow for study of heterogeneity 

   Table 10.2    Comparison of expert reviews vs. meta-analysis   

 Expert review  Meta-analysis 

 Question  Broad  Focused 
 Sources  Often not specifi ed  Comprehensive 
 Search  Ad-hoc  Explicit 
 Selection  Often not specifi ed  Criterion-based 
 Appraisal  Variable  Rigorous 
 Synthesis  Usually qualitative  Qualitative or quantitative 
 Inference  Sometimes evidence-based  Usually evidence-based 
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       Weaknesses 

 As is true for any analytical technique, meta-analyses have weaknesses. For 
example, they are sometimes viewed as more authoritative than is justifi ed. After 
all, meta-analyses are retrospective repeat analyses of prior published data. 
Rather, meta-analyses should be viewed as nearly equivalent (if performed prop-
erly under rigid study design characteristics) to a large, multi-center study. In fact, 
meta- analyses are really studies in which the ‘observations’ are not under the 
control of the meta-investigator (because they have already been performed by the 
investigators of the original studies); the included studies have not been obtained 
through a randomized and blinded technique; and, one must assume that the origi-
nal studies have certain statistical properties they may not, in fact, have. In addi-
tion, one must rely only on reported rather than directly observed values, unless 
an IPD meta- analysis is undertaken. 

 There are at least nine important considerations in performing or reading a meta- 
analysis (Table  10.3 ):

    1.    They are sometimes performed to confi rm an observed trend (this is equivalent 
to testing before hypothesis generation)   

   2.    The sample of studies included in a meta-analysis may not be representative   
   3.    Publication bias   
   4.    Diffi culty in pooling across different study designs   
   5.    Dissimilarities of control treatment   
   6.    Differences in the outcome variables   
   7.    Studies are reported in different formats with different information available   
   8.    The issues surrounding the choice of fi xed versus random modeling   
   9.    Alternative modeling    

  Table 10.3    At least nine 
considerations when 
performing or reading 
a meta-analysis  

 Is it being done to confi rm observed trends? 
 Pooling across studies is diffi cult 
 Sample bias 
 Publication bias 
 Control treatment dissimilarities 
 Differences in primary and secondary outcomes 

across studies 
 Differences in reporting outcomes 
 Weighting 
 Modeling 
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      Meta-analyses are Sometimes Performed to Confi rm Observed 
Trends (i.e. Testing Before Hypothesis Generation) 

 Frequently in meta-analyses, the conduct of the analysis is to confi rm observed 
‘trends’ in sets of studies; and, this is equivalent to examining data to select which 
statistical analyses should be performed, rather than the reverse. This is well known 
to introduce spurious fi ndings. It is important to be hypothesis driven i.e. to perform 
planning steps in the correct order (if possible). 

 In planning the meta-analysis, the same principles apply as planning any other study. 
That is, one forms a hypothesis, defi nes inclusion and exclusion criteria, collects data, 
tests the hypothesis, and reports the results. But, as previously mentioned, just like 
other hypothesis testing, the key is to avoid spurious fi ndings by keeping these steps in 
the correct order, and this is sometimes  NOT  the case for meta- analyses. For example, 
frequently the ‘trend’ in the data is already known; in fact, most meta-analyses are per-
formed because of a suggestive trend. In Petitti’s steps in planning a meta-analysis she 
suggests fi rst addressing the objectives (i.e. state the main objectives, specify second-
ary objectives); perform a review; information retrieval; specify MEDLINE search 
 criteria; and explain approaches to capture ‘fugitive’ reports (those not listed in 
MEDLINE or other search engines and therefore not readily available) [ 9 ].  

    The Sample of Studies Included in a Meta-analysis 
May Not Be Representative 

 As with sampling in clinical trials identifying studies to be considered for inclusion 
is in essence, defi ning the ‘sampling frame’ for the meta-analysis. The overall goal 
is to include all pertinent studies; and, several approaches are possible. One approach 
could be: ‘I am familiar with the literature and will include the important studies’. 
With this approach, there may be a tendency to be aware of only certain types of 
studies and selection will therefore be biased. A more scientifi c and valid approach 
is where one uses well-defi ned criteria for inclusion and exclusion applying an 
objective screening (search) tool such as MEDLINE. Clearly defi ned keywords and 
MESH terms, clearly defi ned years of interest, and a transparent description of 
what the meta-investigator did must be included in any report. Also, the impact of the 
‘Search Engine’ on identifying papers must be adequately reported to allow for 
study replication. Surprising to some is that there may be problems with using 
MEDLINE alone to screen for articles. Other searches can be done with EMBASE 
or PUBMED and seeking the help of a trained Biomedical Librarian is generally 
advisable. In addition, not all journals are included in these search engines and there 
is dependence on keywords assigned by authors and MESH terms by Medline indexers 
[ 10 ]. Further, searches may not include fugitive or grey literature, government reports, 
book chapters, proceedings of conferences, published dissertations, etc. 
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 As previously stated, the included studies in a meta-analysis have not been obtained 
through a randomized and blinded technique, so that selection bias becomes an issue. 
Selection bias occurs because studies are ‘preferentially’ included and excluded 
and these decisions are infl uenced by the meta-investigators prior beliefs as well as 
the fact that studies are included based upon recognized ‘authorities’. That is, inves-
tigator bias occurs because the investigators who conducted the individual studies 
included in the meta-analysis may have introduced their own bias. 

 It is necessary for a complete meta-analysis to go to supplemental sources for 
studies, such as studies of which authors are personally aware, studies referenced in 
articles retrieved by Search Engines, and searches of Dissertation Abstracts to name 
a few. The biggest limitation, however, is how to search for unpublished and unreported 
studies. This latter issue is clearly the most challenging (impossible?), and opens the 
possibility for publication bias and the “fi le-drawer” problem.  

    Publication Bias (and the File-Drawer Problem) 

 Publication bias is one of the major limitations of meta-analysis as it derives from the 
fact that for the most part, studies that are published have positive results, so that nega-
tive studies are underrepresented and if published take longer to appear in the literature 
(“pipeline effect”). Stated another way, publication bias results from the selective 
publication of studies based on the direction and magnitude of their results. As an 
example, Turner et al. found that 17 % of 24 FDA registered trials were unpublished 
and 3 of 4 of the unpublished trials failed to show benefi t over placebo [ 11 ]. 

 The pooling of results of published studies alone can lead to an overestimation of 
the effectiveness of the intervention, and the magnitude of this bias tends to be 
greater for observational studies compared to RCTs. In fact, positive studies are 
three times more likely to be published than negative ones and this ratio is even 
greater for observational studies. Thus, investigators tend not to submit negative 
studies (this is frequently referred to as the ‘fi le-drawer’ problem), journals do not 
publish negative studies as readily, funding sources may discourage publication of 
negative studies, negative studies that do get published are published in lower 
impact journals some of which might not be indexed in Medline or other databases. 
One also has to be wary of overrepresentation of positive studies because duplicate 
publication can occur. The scenario resulting in publication bias goes something 
like this: one thinks of an exciting hypothesis, examines the possibility in existing 
data, if signifi cant, the fi ndings are published, but if non-signifi cant the investigator 
loses interest and buries the results (i.e. puts them in a fi le drawer). Even if one is 
‘honorable’ and attempts to publish a non-signifi cant study, often the editor/reviewer 
will bury the result for you, since negative results are diffi cult to publish. One then 
continues on to the next idea and forgets that the analysis was ever performed. The 
obvious result of this is that the literature is more likely to include mostly positive 

10 Meta-analysis, Evidence-Based Medicine, and Clinical Guidelines



210

fi ndings and thereby is biased toward benefi t. Publication bias is equivalent to 
performing a screen to select patients who only respond positively to a treatment 
before performing a clinical trial to examine the effi cacy of that treatment. 

 To moderate the impact of publication bias, one attempts to obtain all published 
and unpublished data on the question at hand. There are also tests for the presence 
of publication bias, and methods to estimate the impact of publication bias and adjust 
for it. It should be noted that publication bias is a greater problem in epidemiological 
studies than clinical trials, since it is diffi cult to perform a major RCT and not 
publish the results even if negative, while for epidemiologic studies negative results 
are much less likely to be published. 

 As mentioned, there are ways that one can determine the likelihood that publica-
tion bias is infl uencing the meta-analysis. One of the simplest methods is to con-
struct a funnel plot, which is a scatter plot of individual study effects against a 
measure of precision within each study. In the absence of bias, the funnel plot 
should depict an inverted ‘funnel’ shape centered about the true overall mean which 
the meta-analysis is trying to estimate. This is because we expect a wider spread of 
effects among the smaller studies. If the funnel appears truncated, it is likely that a 
group of studies is missing from the analysis set. It should be kept in mind however 
that publication bias is but one potential reason for this ‘funnel plot asymmetry’, 
and for this reason, current practice is to consider other mechanisms for the miss-
ing studies, such as English language bias, clinical heterogeneity, and location bias 
to name a few [ 12 ]. 

 There are a number of relatively simple quantitative methods for detecting pub-
lication bias in the literature, including the rank correlation test of Begg and the 
regression-based test of Egger et al. [ 13 ,  14 ]. The Trim and Fill method can be used 
to estimate the number of missing studies and to provide an estimate of the treatment 
effect after adjustment for this bias [ 15 ]. The mechanics of this approach are 
displayed in Fig.  10.1a , using a meta-analysis of the effect of gangliosides and 
mortality from acute ischemic stroke [ 16 ]. Although in this example, the effect size 
is not great, the striking aspect of the plot is that it appears that there are no negative 
effects of therapy. The question is whether that observation is true or if this is an 
example of publication bias where the negative studies are not represented. Figure  10.1b  
shows what happens when the asymmetric studies are ‘trimmed’ to generate a sym-
metric plot to allow estimation of the true pooled effect (in this example, the fi ve 
rightmost studies are trimmed). These trimmed studies are then returned, along with 
their imputed or ‘fi lled’ symmetric counterparts. An adjusted pooled estimate and 
corresponding confi dence interval are then calculated based on the now presumed 
complete dataset (bottom panel). The authors of this method stress that the main goal 
of such an analysis is to allow a ‘what if’ approach; that is, to allow sensitivity 
analyses to the missing studies, rather than actually fi nding the values of those studies 
per se. Heterogeneity, reporting bias, and chance may all lead to asymmetry or other 
shapes in funnel plots (box). Funnel plot asymmetry may also be an artifact of the 
choice of statistics being plotted. Reporting biases arise when the dissemination 
of research fi ndings is infl uenced by the nature and direction of results. As noted 
by Sterne et al. [ 12 ], positive studies are more likely to be published, published 
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rapidly, published in English, published more than once, published in high impact 
journals, and cited by others; while negative studies may be fi ltered, manipulated, or 
presented in such a way that they become positive. Reporting biases can have three 
types of consequence for a meta-analysis:

•    A systematic review may fail to locate an eligible study because all information 
about it is suppressed or hard to fi nd (publication bias)  

•   A located study may not provide usable data for the outcome of interest because 
the study authors did not consider the result suffi ciently interesting (selective 
outcome reporting)  

•   A located study may provide biased results for some outcome—for example, by 
presenting the result with the smallest P value or largest effect estimate after 
trying several analysis methods (selective analysis reporting).   

These biases may cause funnel plot asymmetry if statistically signifi cant results 
suggesting a benefi cial effect are more likely to be published than non-signifi cant 
results. Such asymmetry may be exaggerated if there is a further tendency for 
smaller studies to be more prone to selective suppression of results than larger stud-
ies. This is often assumed to be the case for randomized trials. For instance, it is 
probably more diffi cult to make a large study disappear without a trace, while a 
small study can easily be lost in a fi le drawer. The same may apply to specifi c out-
comes. For example, it is diffi cult not to report on mortality or myocardial infarction 
if these are outcomes of a large study. Smaller studies have more sampling error in 
their effect estimates. Thus even though the risk of a false positive signifi cant fi nd-
ing is the same, multiple analyses are more likely to yield a large effect estimate that 
may seem worth publishing. However, biases may not act this way in real life; fun-
nel plots could be symmetrical even in the presence of publication bias or selective 
outcome reporting for example, if the published fi ndings point to effects in different 

  Fig. 10.1    ( a ) A of the studies included in the meta-analysis. ( b ) Filled “presumed” negative 
studies shown as unfi lled circles, with the adjusted odds ratio calculated       
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directions but unreported results indicate neither direction. Alternatively, bias may 
have affected few studies and therefore not cause glaring asymmetry.

   Perhaps the best approach to avoid publication bias is to have a registry of all trials 
at their inception, that is, before results are available, thereby eliminating the possi-
bility that the study results would infl uence inclusion into the meta-analysis. After a 
period of apathy, this concept is taking hold and a website ( clinicaltrials.gov ) is now 
available. But, to emphasize the importance of this, Table  10.4  points out an example 
of the publication status of studies that were statistically signifi cant vs. those that 
were not; and Table  10.5  emphasizes the magnitude of outcome bias seen in this set 
of published vs. registered studies.

    The effect of publication bias on meta-analytical outcomes was demonstrated by 
Glass et al. in 1979 [ 18 ]. They reported on 12 meta-analyses, and in every instance 
where it could be determined, found that the average experimental effect from studies 
published in journals was larger than the corresponding effect estimated from 
unpublished work (mostly from theses and dissertations), accounting for almost a 
33 % bias in favour of the benefi t. As a result, some have suggested that a complete 
meta-analysis should include attempts to contact experts in the fi eld as well as authors 
of referenced articles for access to unpublished data. More recent estimates have sug-
gested that the effect of publication bias accounts for 5–15 % in favour of benefi t. 

 Some literature that is available but hard to fi nd includes grey and fugitive literature. 
Grey literature refers to a body of materials that cannot be found easily through 
conventional channels, “but which is frequently original and usually recent”. The 
“Grey Information Functional Plan,” defi nes grey literature as foreign or domestic 
open source material that usually is available through specialized channels and may 
not enter normal channels or systems of publication, distribution, bibliographic con-
trol, or acquisition by booksellers or subscription agents. Examples of grey literature 

   Table 10.4    Publication of studies based upon positive vs. negative results   

 Publication status of studies reviewed by the Central Oxford Research Ethics 
Committee (1984–1987) 

 Statistically signifi cant  Statistically non-signifi cant 

 % Published  60  35 
 % Only presented  45  22 
 % Neither  15  42 

  Adapted    from Easterbrook [ 17 ]  

   Table 10.5    Magnitude of effect size in published vs. registered studies   

 Meta-analysis of published vs. registered studies of treatment with alkylating agents 
for advanced ovarian cancer 

 Published studies (n = 16)  Registered studies (n = 13) 

 Survival ratio  1.16  1.06 
 95 % CI  1.06–1.27  0.97–1.15 
 P-Value  0.02  0.24 

  Adapted from Easterbrook [ 17 ]  
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include technical reports from government agencies or scientifi c research groups, 
working papers from research groups or committees, and white papers. But, the 
identifi cation and acquisition of grey literature poses diffi culties for librarians and 
other information professionals for several reasons. Generally, grey literature lacks 
strict bibliographic control, meaning that basic information such as author, publica-
tion date or publishing body may not be easily discerned. Similarly, non-professional 
layouts and formats and low print runs of grey literature make the organized collection 
of such publications challenging compared to more traditional published media 
such as journals and books. Fugitive literature is literally the ones for which you have 
to hunt. On the World Wide Web, it is not always easy to hunt for specifi c informa-
tion, particularly if you do not know where to begin. The following provides a partial 
list of websites that provide entry points for searching fugitive literature:

•      http://www.google.com     Meta search engine that searches across other engines  
•     http://www.healthfi nder.gov     Healthcare information from the USDHHS  
•     http://www.guidelines.gov/index.asp     Summary Guidelines info from the AHRQ  
•     http://www.cdc.gov     Healthcare information from the CDC     

    The Diffi culty in Pooling Across a Set of Individual 
Studies and Heterogeneity 

 One of the reasons that it is diffi cult to pool studies is selection bias. Selection bias 
occurs because studies are ‘preferentially’ included and excluded and these are 
infl uenced by the meta-investigators prior beliefs as well as the fact that studies 
included are based upon recognized ‘authorities’. That is, this type of bias occurs 
because the investigators who conducted the individual studies included in the 
meta-analysis may have introduced their own bias. In addition, there is always a 
certain level of heterogeneity of study characteristics included in a given meta- 
analysis so that as the cliché goes ‘by mixing apples and oranges with an occasional 
lemon, ones ends up with an artifi cial product.’ Glass argued this point rather 
eloquently as follows:

  ‘… Of course it mixes apples and oranges; in the study of fruit nothing else is sensible; 
comparing apples and oranges is the only endeavor worthy of true scientists; comparing 
apples to apples is trivial. …’  

  The same persons arguing that no two studies should be compared unless they were 
studies of the ‘same thing’ are blithely comparing persons within studies i.e. no two 
things can be compared unless they are the same…but if they are the same then they are 
not two things     .’  Glass went on to use the classic paradox of Theseus’s ship, which set sail 
on a 5-year journey. After nearly 5 years, every plank had been replaced. The question 
then i s ‘are Theseus and his men still sailing the ship that was launched 5 years earlier? 
What if as each plank was removed, it was taken ashore and repositioned exactly as it had 
been on the waters so that at the end of 5 years, there exists a ship on shore, every plank 
of which once stood exactly as it had been 5 years before. Is this new ship Theseus’s ship, 
or is it the one still sailing?’ The answer depends on what we understand the concept of 
‘same’ to mean.  
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  Glass goes on to consider the problem of the persistence of personal identity when 
he asks the question ‘how do I know that I am the same person who I was yesterday, or 
last year…?’  

 Glass notes that probably there are no cells that are in common between the 
current organism called Gene Glass and the organism 40 years ago by the same 
name [ 19 ]. 

   Recall that a number of possible outcomes and interpretations of clinical trials 
is possible. When one trial is performed, the outcome may be signifi cant, and one 
concludes that a treatment is benefi cial, or the results may be inconclusive leading 
one to say that there is not convincing statistical evidence to support a treatment 
benefi t. But when multiple trials are performed other considerations present 
themselves. For example, when ‘most’ studies are signifi cant and in the same 
direction one can conclude a treatment is benefi cial, but when ‘most’ studies are 
signifi cant in different directions one might question whether there are differences 
in the population studied or methods performed that warrant further consideration. 
The question that may then be raised is ‘Could we learn anything by combining 
the studies?’ It is this latter question that is the underlying basis for meta-analysis. 
Thus, when there is some treatment or exposure under consideration we assume 
that there is a ‘true’ treatment effect that is shared by all studies, and that the 
average has lower variance than the data themselves. We then consider each of 
the individual studies as one data point in a ‘mega-study’ and presume that the 
best (most precise) estimate of this ‘true’ treatment effect is provided by ‘averaging’ 
across studies. But, when is it even reasonable to combine studies? The answer 
to this latter question is that studies must share characteristics, including similar 
‘experimental’ treatment or exposure, similar ‘standard’ treatment or lack of 
exposure, similar follow-up protocol, outcome(s) and patient populations. 
It is diffi cult to pool across different studies, even when there is an apparent 
similarity of treatments. This leads to heterogeneity when one performs any 
meta-analysis. The causes of study heterogeneity are numerous. Some of them 
are (Table  10.6 ):

 –    Differences in inclusion/exclusion criteria of the individual studies comprising 
the meta-analysis  

 –   Different control or treatment interventions [dose, timing, brand], outcome mea-
sures and defi nition, and different follow-up times were likely to be present in 
each individual study  

   Table 10.6    Some causes of heterogeneity   

 Differences in inclusion/exclusion criteria of the individual studies 
 Different control or treatment interventions (dose, timing, brand), outcome measures and defi nition, 

and different follow-up times 
 The reasons for withdrawals, drop-outs, cross-overs will likely differ between individual studies, as 

will the baseline status of the patients and the settings 
 The quality of the study design and its execution will likely differ 
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 –   The reasons for withdrawals, drop-outs, cross-overs will likely differ between 
individual studies, as will the baseline status of the patients and the settings for 
each study.  

 –   Finally, the quality of the study design and its execution will likely differ   

   Heterogeneity of the studies included in the meta-analysis can be tested. For exam-
ple, Cochran’s Q is a test of homogeneity that evaluates the extent to which differences 
among the results of individual studies are greater than one would expect if all studies 
were measuring the same underlying effect and the observed differences between them 
were due only to chance. A measure of the proportion of variation in individual study 
estimates that is due to heterogeneity rather than sampling error, (known as I 2 ), is avail-
able and is the preferred method of describing heterogeneity [ 20 ]. This index does 
not depend on the number of studies, the type of outcome data or the choice of treat-
ment effect. I 2  is related to Cochran’s Q statistic and lies between 0 and 100 %, making 
it useful for comparison across meta- analyses. Most reviewers consider that an I 2  
greater than 50 % indicates heterogeneity between the component studies. Rather sen-
sitivity analysis to differences in study quality is more common. Sensitivity analy-
sis describes the robustness of the results by excluding some studies such as those 
for example, of greater risk of bias and/or smaller studies.  

    Dissimilarities in Control Groups 

 Just as important as the similarity in treatment groups, is that one needs to take great 
caution to ensure that control groups between studies included in the meta-analysis 
are similar. For example, one study in a meta-analysis may have a statin drug vs. 
placebo, while another study compares a statin drug plus active risk factor management 
(smoking cessation, hypertension control, etc.) compared to placebo plus active risk 
factor management. Certainly, one could argue that the between study control 
groups are not similar (clearly they are not identical), and one can only surmise the 
degree of bias that would be introduced by including both in the meta-analysis.  

    Heterogeneity in Outcome 

 One might expect that the choice of an outcome to be evaluated in a meta-analysis 
is a simple choice. In many meta-analyses, it is not as simple as one would think. 
For example, consider a meta-analysis shown in Table  10.7 . The range of effect has 
a risk differential from an approximately 60 % decrease to 127 % increase. One 
should reasonably ask whether the studies included in the meta-analysis should 
demonstrate approximately consistent results. Does it make sense to combine studies 
that are signifi cant in different directions? If studies provide remarkably different 
estimates of treatment effect, what does an average mean? This particular scenario 
is used to further illustrate the use of sensitivity analyses in meta-analysis. 
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A so-called ‘infl uence analysis’ is derived in which the meta-analysis is re- estimated 
after omitting each study in turn. It may be reasonable to consider excluding par-
ticular studies, or to present the results with one or two studies included and then 
excluded. Many analyses start out with the intention of producing quantitative 
syntheses, and fall short of this goal [ 21 ]. If the reasons are well argued, this can 
often be the most reasonable outcome.

        Studies are Reported in Different Formats with Different 
Information Available 

 Since studies are reported in different formats with different information available, 
the abstraction of data can become problematic. There is no reason to anticipate 
that investigators will report data in a consistent manner. Frequently, differences in 
measures of association (odds ratio versus regression coeffi cients versus risk 
ratios, etc.) are presented in different reports which then forces the abstractor to try 
to reconstruct the same measure of association across studies. When abstracting 
information for meta-analyses, one must go through each study and attempt to 
collect the information in the same format. That is, one needs either a measure of 
association (e.g. an odds ratio) with some measure of dispersion (e.g. variance, 
standard deviation, confi dence interval), or cell frequencies in 2 × 2 tables. If one 
wants to present a meta-analysis of subgroup outcomes, pooling may be even more 
problematic than pooling primary outcomes. This is because subgroups of interest 
are frequently not presented in identical categories. 

 The issue of consistency in the reporting of studies is a particular problem for 
epidemiological studies where confounders are a major issue. Although confounders 
are easily addressed by multivariable models, there is no reason to assume that 
authors will use the same models in adjusting for confounders. Another related 
problem is the possibility that there are multiple publications from a single population, 

   Table 10.7    Meta-analysis of stroke as a result of an intervention   

 Study  Estimate (95 % CI) 

 1  1.12 (0.79–1.57)  Fatal and nonfatal fi rst stroke 
 2  1.19 (0.67–2.13)  Hospitalized F/NF stroke 
 3  1.16 (0.75–1.77)  Occlusive stroke 
 4  0.64 (0.06–6.52)  Fatal SAH 
 5  2.27 (1.22–4.23)  Fatal and nonfatal stroke or TIA 
 6  0.40 (0.01–3.07)  Fatal stroke 
 7  0.97 (0.50–1.90)  Fatal and nonfatal fi rst stroke 
 8  0.63 (0.40–0.97)  Fatal occlusive disease 
 9  0.97 (0.65–1.45)  Fatal and nonfatal stroke 

 10  0.65 (0.45–0.95)  Fatal and nonfatal fi rst stroke 
 OVERALL  0.96 (0.82–1.13) 
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and it is not always clear that this has occurred. For example, let’s say that there is 
a publication reporting results in 109 patients. Three years later a report from the 
same or similar authors reports the results of a similar intervention in 500 patients. 
The question is, were the 500 patients all new, or did the fi rst report of 109 patients 
get included in the 500 now being reported?  

    The Use of Random vs. Fixed Analysis Approaches 

 By far, the most common approach to weighting the results in meta-analyses is to 
calculate a ‘weighted average’ of the effects (e.g. odds ratios, risk ratios) across the 
studies. This has the overall goal of:

 –    Calculating an ‘weighted average’ measure of effect, and  
 –   Performing a test to see if this estimated effect is different from the null hypoth-

esis of no effect   

In considering whether to use the fi xed effect or random effects modeling approach, 
the fi xed effect approach assumes that studies included in the meta-analysis are the 
only studies to which the inference will be applied, while the random effects approach 
assumes that the studies are a random sample of studies that may have occurred, and 
inference can be extended to “studies like these”. The fi xed effect model weights the 
studies by their ‘precision’ only. Precision is largely driven by the sample size and 
refl ected by the widths of the 95 % confi dence limits about the study-specifi c 
estimates. In general, when weights are assigned by the precision of the estimates 
they are proportional to (1/var(study)). This method assigns a bigger weight to a 
big and poorly-done study than it does to a small and well-done study. Thus, a 
meta-analysis that includes one or two large studies is largely a report of just those 
studies. Random effects models estimate a between study variance component, and 
incorporate that into the model. This effectively makes the contributions of individual 
studies to the overall estimate more uniform. It also increases the width of the 
confi dence interval of the overall effect. The random effects approach is likely more 
representative of the underlying statistical framework and the use of the ‘fi xed’ 
approach can provide an underestimate of the true variance and may falsely infl ate 
power to see effects. Most older meta-analyses have used the fi xed effect approach, 
while many newer meta-analyses are using the random effects approach since it is 
more representative of the ‘real’ world. A reasonable approach is to present the results 
from both models.  

    Assignment of Weights 

 Alternative weighting schemes have been suggested, such as weighting by the quality 
of the study, with points given based on the number of variables [ 22 ]. The problem 
with weighting is that one has started the meta-analysis in order to have an objective 
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method to combine studies to provide an overall summary, and with weighting we 
are subjectively assigning weights to factors so that we can objectively calculate a 
summary measure. However, this aforementioned weighting is but one scheme and 
its use has been questioned by many experts in the fi eld. Most meta-investigators 
now use fi xed, random, or Bayesian approaches [ 23 ].   

    Statistical and Graphical Approaches 

    Forest Plot 

 The forest plot is a common graphical way of portraying the data in a meta-analysis. 
In this plot, the point is the estimate of the effect, the size of the point is proportional 
to the size of the study, and the confi dence intervals around that point estimate are 
displayed (for example, an odds ratio of 1 means the outcome is not affected by the 
intervention under study). In Fig.  10.2 , a hypothetical forest plot of log hazard ratios 
for each study, ordered by the size of the effect within each study is shown. At the 
bottom, a diamond shows the combined estimate from the meta-analysis.

   An example of some of these aforementioned principles is demonstrated in a 
theoretical meta-analysis of six studies. For this ‘artifi cial’ meta-analysis, only multi-
center randomized trials were included, and the outcome is total mortality. Tables  10.8a , 
 10.8b , and  10.8c , present the raw data, mortality rates and odds ratios.

     The fundamental statistical approach in meta-analysis is similar to that of an 
RCT in that the hypothesis is conceived to uphold the null. According to the Mantel-
Haenszel- Peto method, a technique commonly used when events are sparse, a 2 × 2 
table is constructed for each study to be included, and the observed number for the 
outcome of interest is computed [ 24 ]. From that computation one subtracts the 
expected outcome had no intervention been given. If the intervention of interest has 
no effect, the observed minus the expected should be about zero; if the intervention 
is favorable (with the measure of association being the odds ratio-OR) the OR 
will be greater than 1 (as will its confi dence limits). The magnitude of effect can be 
calculated in meta-analyses using a number of measures of association, such as 
the odds ratio (OR), relative risk (RR), risk difference (RD), and/or the hazard ratio 
(HR), to name a few. The choice is, to a great degree, subjective as discussed in 
Chap.   16    , and briefl y in section “ Studies are reported in different formats with different 
information available ” above. 

 One limited type of meta-analysis, and a way to overcome some of the limitations 
of meta-analysis in general, is to preplan them with the prospective registration of 
studies, as has been done with some drug developments. Berlin and Colditz present 
the potential uses of meta-analyses (primarily of RCTs) in the approval and 
postmarketing evaluation of approved drugs [ 25 ]. If a sponsor of a new drug has a 
program to conduct a number of clinical trials, and the trials are planned as a series 
with prospective registration of studies at their inception, one has a focused question 
(e.g. drug effi cacy for lowering the total cholesterol), all patients are included (so no 
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   Table 10.8a    The raw data from the six studies included in the meta-analysis   

 Raw data 

 Treatment A  PLACEBO 

 Study 
 Total no. 
of patients  No. dead  No. alive 

 Total no. 
of patients  No. dead  No. alive 

 1  615  49  566  624  67  557 
 2  758  44  714  771  64  707 
 3  317  27  290  309  32  277 
 4  832  102  730  850  126  724 
 5  810  85  725  406  52  354 
 6  2267  246  2021  2257  219  2038 
 Total  5599  553  5046  5217  560  4657 

   Table 10.8b    The individual mortality rates from the six studies included in the meta-analysis   

 ASPIRIN  PLACEBO  Aspirin-Placebo 

 Study  Mortality rate  Mortality rate  Diff  SE of diff  P-value 

 1  .0797  .1074  −.0277  .0165  0.047 
 2  .0580  .0830  −.0250  .0131  0.028 
 3  .0852  .1036  −.0184  .0234  0.216 
 4  .1226  .1482  −.0256  .0167  0.062 
 5  .1049  .1281  −.0231  .0198  0.129 
 6  .1085  .0970  .0115  .0090  0.898 

   Table 10.8c    The odds ratios from the six studies included in the meta-analysis   

 Odds ratios for the six trials 

 Study  Log odds ratio  SE [log OR]  Odds ratio  CI on OR 

 1  −0.33  0.197  0.72  [0.49,1.06] 
 2  −0.38  0.203  0.68  [0.46,1.02] 
 3  −0.22  0.275  0.81  [0.47,1.38] 
 4  −0.22  0.143  0.80  [0.61,1.06] 
 5  −0.23  0.188  0.80  [0.55,1.15] 
 6  0.12  0.098  1.13  [0.93,1.37] 

publication bias occurs), one then has the elements of a well-planned meta-analysis. 
In Table  10.9 , Berlin and Colditz present their comparison of trials as they relate to 
four key elements of several types of clinical trials [ 23 ].

   In designing a meta-analysis (or reading one in the literature) one should be 
certain that a number of details are included so the validity of the results can be 
weighed. Some of the considerations are: listing the trials included and excluded 
in the meta-analysis and the reasons for doing so; clearly defi ning the treatment 
assignment in each of the trials; describing the ranges of patient characteristics, 
diagnoses, and treatment assignment; and, addressing what criteria were used to 
decide that the studies analyzed were similar enough to be pooled. Finally, meta-
analyses can provide more precise estimates of the effects of interventions, increase 
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statistical power, assess the amount of variability between studies, reach agreements 
when results from different studies are discordant, and identify study characteristics 
associated with particularly effective treatments (Table  10.10 ). Typically, analyses 
should include: the point estimate, 95 % confi dence limits, a graphical display 
(forest plot), p values, a statistical test for heterogeneity, sensitivity analyses, and 
potential sources of bias (e.g. publication bias using the funnel plot).

   As is true for clinical trials and the CONSORT Guidelines, there are guidelines for 
the reporting of meta-analyses: PRISMA (Preferred Reporting Items for Systematic 
reviews and Meta-Analyses) is an update of QUORUM (QUality Of Reporting of 
Meta-Analyses), for meta-analyses of RCTs; and, Meta-analysis Of Observational 

   Table 10.9    Variables relating to publication bias, generalizability, and validity with different 
study approaches   

 Approach 
 Avoids publication 
bias 

 Generalizes across 
protocols 

 Generalizes across 
centers  Validity 

 Pre-planned  +++  +++  +++  ++ 
 LST  ++   −   +++  ++ 
 Retrospective   −   ++  ++  + 
 2 RCTs   −   ++  ++  ++ 
 1 RCT   −    −    −   + 

   LST  Large Simple Trial  

NOTE: Weights are from random effects analysis

Overall  (I-squared = 48.3%, p = 0.085)

3

Study

2

6

1

4

5

1.4 1 2

Odds ratio

  Fig. 10.2    Example of a forest plot       
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Studies in Epidemiology (MOOSE) for meta-analyses of Observational studies 
see Chap.   2     [ 26 ]. In addition, a critical appraisal checklist for a systematic review has 
been developed under the guidance of the Critical Appraisal Skills Program [ 27 ].   

    Evidence-Based Medicine 

    ‘It ain’t so much what we don’t know that gets us into trouble as what we do know that ain’t 
so’ (Will Rogers)  (  http://humrep.oxfordjournals.org    ) 

   Clinical Effectiveness, Clinical Governance, Risk Management, Benchmarking—
Essence of Care, NHS Knowledge and Skills Framework, and Evidence-based Practice 
are but a few of the terms that have now become part of everyday practice for health 
professionals. Such terms appear to be open to interpretation and confusion. 
Evidence-based medicine was originally defi ned as the process of  “…integrating 
 individual clinical expertise and the best available external clinical evidence from 
systematic research .” [ 28 ] Meta-analysis and evidence-based medicine (EBM) arose 
together as a result of the fact that the traditional way of learning (the Historic Paradigm 
i.e. ‘evidence’ is determined by the leading authorities in the fi eld from textbooks, 
review articles, seminars, and consensus conferences) was based upon the assumption 
that experts represented infallible and comprehensive knowledge. Numerous examples 
of the fallibility of that paradigm are present in the literature e.g.:

 –    Prenatal steroids for mothers to minimize risk of Respiratory Distress Syndrome 
(RDS)  

 –   Treatment of eclampsia with magnesium sulfate vs. diazepam  
 –   NTG use in suspected MI  
 –   The use of diuretics for pre-eclampsia    

 In 1979 Cochrane stated ‘It is surely a great criticism of our profession that we 
have not organised a critical summary, by specialty or sub-specialty, updated periodi-
cally, of all relevant randomized controlled trials’ [ 29 ]. The idea of EBM then was to 
devise answerable questions, track down the best evidence to answer them, critically 
appraise the validity and usefulness of the evidence, apply the appraisal to clinical 
practice, and to evaluate one’s performance after applying the evidence into practice 
[ 30 ]. As such, EBM called for the integration of individual clinical expertise with the 

  Table 10.10    What can 
meta-analyses provide?  

 Provide more precise estimates of the effects 
of interventions 

 Increase statistical power 
 Assess the amount of variability between studies 
 Reach agreements when results from different 

studies are discordant 
 Identify study characteristics associated with 

particularly effective treatments 
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best available external evidence from systematic research (i.e. meta- analysis). One 
defi nition of EBM is the conscientious, explicit judicious use of current best avail-
able evidence in making decisions about the care of individual patients with the 
use of RCTs, wherever possible, as the gold standard [ 31 ]. EBM also incorporates 
the need to encourage patterns of care that do more good than harm. 

 It has been said, it is not that we are reluctant to use evidence-based approaches, 
it is that we may not agree on what the evidence is, so why shift to an EBM approach? 
The answers are many, but include the fact that the volume of new evidence can 
be overwhelming (this remains the clinician’s biggest challenge), there is limited time 
available to keep up, up-to-date knowledge and clinical performance deteriorate 
with time; and, traditional CME has not been shown to improve clinical performance. 

 The necessary skills for EBM include the ability to precisely defi ne a patient 
problem, ascertain what information is required to resolve the problem, the ability 
to conduct an effi cient search of the literature with the selection of the most relevant 
articles, the ability to determine a study’s validity, extract the clinical message and 
apply it to the patient’s problem [ 32 ]. 

 There are, of course criticisms of the EBM approach. For example, some feel 
that evidence is never enough i.e. evidence alone can never guide our clinical actions 
and that there is a shortage of coherent, consistent scientifi c evidence. Also, the 
unique biological attributes of the individual patient render the use of EBM to that 
individual, at best, limited. For many, the use of EBM requires that new skills be 
developed in an era of limited clinician time and technical resources. Finally, who 
is to say what the evidence is or that evidence-based medicine works? Some have 
asked, are those who do not practice EBM practicing ‘non-evidence-based 
medicine’? Karl Popper perhaps summarized this best in a very thoughtful and 
insightful commentary, where he discussed the differences between evidence, truth, 
and knowledge when he noted that there are all kinds of sources of our knowledge 
but none has authority [ 33 ,  34 ].  “Evidence is information that is used to approach 
truth, whereas truth is an infallible, unequivocal, immutable fact. The defi nition of 
knowledge…is typically used as a representation of a person’s comprehension of a 
particular subject.”  He further notes that  although truth is our ultimate desire it is 
likely unattainable, and that although evidence imbues us with knowledge, it does not 
affi rm truth.”  [ 34 ] As an example, RCTs use inductive reasoning to draw conclusions 
that are expressions of probability (not truth), but are often dubbed as truth. Baum 
cites Prasad et al. who defi ne to “ signify the phenomenon of a new trial-superior to 
predecessors because of better design, increased power, or more appropriate con-
trols-contradicting current clinical practice .” [ 35 ] In Baum’s study 212 original 
publications in the New England Journal of Medicine were reviewed, 124 of which 
made some claim with respect to medical practice. Of these 124 there were 16 
reversals (13 %). That is “truth” was reversed 13 % of the time [ 35 ]. 

 Baum ends with the following “… through the medical systems endowment of the 
P value and the RCT with boundless unfounded power, the lay public and physicians 
alike have become confused. Confl icting publications are released nearly on a 
weekly basis, each of them being treated as gospel with its message being shouted 
from the rooftops by the media as well as the camera-adoring members of our profession. 
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The fact that science is a process is ignored. Undecipherable statistical jargon cloaks 
the fact that medical evidence emanates not from truth, but instead the falsifi able 
proof (the rejection of the null hypothesis).”  [ 35 ] 

 Evidence-Based Medicine is perhaps a good term to the extent that it advocates 
more reliance on clinical research than on personal experience or intuition. But, 
medicine has always been taught and practiced based upon available scientifi c inter-
pretation. The question can then be asked is whether the results of a clinical trial 
hardly deserve the title  evidence  as questions arise about the statistical and design 
aspects, and data analysis, presentation, and interpretation contain many subjective 
elements as we have discussed in prior chapters. Thus, even if we observe consis-
tency in the results and interpretation (a rare occurrence in science) how many times 
should a successful trial be replicated to claim proof? That is, whose evidence is  the 
evidence in evidence-based medicine ? 

 The fi ve steps of EBM were fi rst described in 1992 as follows [ 36 ]

    1.    The translation of uncertainty into an answerable question   
   2.    Systematic retrieval of the best evidence available   
   3.    A critical appraisal of the evidence (e.g. confounding, selection bias etc.)   
   4.    Application of results into clinical practice (see Chapter on Implementation 

Research)   
   5.    Performance evaluation    

  Several guidelines have been suggested as a way of assessing the quality of 
evidence and include the US Preventative Task Force, the UK National Health 
Service, and the GRADE Working Group. The US Preventive Services Task Force 
guidelines rank evidence about the effectiveness of treatments or screening 
(  http://en.wikipedia.org/wiki/Levels_of_evidence    ):

   Level I: Evidence obtained from at least one properly designed randomized 
controlled trial.  

  Level II-1: Evidence obtained from well-designed controlled trials without 
randomization.  

  Level II-2: Evidence obtained from well-designed cohort or case-control analytic 
studies, preferably from more than one center or research group.  

  Level II-3: Evidence obtained from multiple time series with or without the 
intervention. Dramatic results in uncontrolled trials might also be regarded as 
this type of evidence.  

  Level III: Opinions of respected authorities, based on clinical experience, descriptive 
studies, or reports of expert committees.     

    UK National Health Service 

 The UK National Health Service uses a similar system with categories labeled A, B, 
C, and D. These levels are only appropriate for treatment or interventions; different 
types of research are required for assessing diagnostic accuracy or natural history 
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and prognosis, and hence different “levels” are required. For example, the Oxford 
Centre for Evidence-based Medicine suggests levels of evidence (LOE) according 
to the study designs and critical appraisal of prevention, diagnosis, prognosis, ther-
apy, and harm studies [ 34 ]:

•    Level A: Consistent randomised controlled clinical trial, cohort study, all or none 
(see note below), clinical decision rule validated in different populations.  

•   Level B: Consistent retrospective cohort, exploratory cohort, ecological study, 
outcomes research, case-control study; or extrapolations from level A studies.  

•   Level C: Case-series study or extrapolations from level B studies.  
•   Level D: Expert opinion without explicit critical appraisal, or based on physiology, 

bench research or fi rst principles.     

    Categories of Recommendations 

 In guidelines and other publications, recommendations for a clinical service are 
classifi ed by the balance of risk versus benefi t of the service  and  the level of 
evidence on which this information is based. The U.S. Preventive Services Task 
Force uses [ 35 ]:

•    Level A: Good scientifi c evidence suggests that the benefi ts of the clinical service 
substantially outweigh the potential risks. Clinicians should discuss the service 
with eligible patients.  

•   Level B: At least fair scientifi c evidence suggests that the benefi ts of the clinical 
service outweigh the potential risks. Clinicians should discuss the service with 
eligible patients.  

•   Level C: At least fair scientifi c evidence suggests that there are benefi ts provided 
by the clinical service, but the balance between benefi ts and risks are too close 
for making general recommendations. Clinicians need not offer it unless there 
are individual considerations.  

•   Level D: At least fair scientifi c evidence suggests that the risks of the clinical 
service outweigh potential benefi ts. Clinicians should not routinely offer the 
service to asymptomatic patients.  

•   Level I: Scientifi c evidence is lacking, of poor quality, or confl icting, such that 
the risk versus benefi t balance cannot be assessed. Clinicians should help patients 
understand the uncertainty surrounding the clinical service.     

    The Grading of Recommendations Assessment, Development 
and Evaluation (The GRADE Working Group) 

 A newer system was developed by the GRADE working group and takes into 
account more dimensions than just the quality of medical research. It requires users of 
GRADE who are performing an assessment of the quality of evidence, usually as part 
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of a systematic review, to consider the impact of different factors on their confi dence in 
the results. Authors of GRADE tables, divide the quality of evidence into four levels, 
on the basis of their confi dence in the observed effect (a numerical value) being 
close to what the true effect is. The confi dence value is based on judgments assigned 
in fi ve different domains in a structured manner. The GRADE working group defi nes 
‘quality of evidence’ and ‘strength of recommendations’ as two different concepts 
which are commonly confused with each other. 

 Systematic reviews may include randomized controlled trials that have low risk of 
bias, or, observational studies that have high risk of bias. In the case of randomized 
controlled trials, the quality of evidence is high, but can be downgraded in fi ve 
different domains.

•    Risk of bias: Is a judgment made on the basis of the chance that bias in included 
studies has infl uenced the estimate of effect.  

•   Imprecision: Is a judgment made on the basis of the chance that the observed 
estimate of effect could change completely.  

•   Indirectness: Is a judgment made on the basis of the differences in characteristics of 
how the study was conducted and how the results are actually going to be applied.  

•   Inconsistency: Is a judgment made on the basis of the variability of results across 
the included studies.  

•   Publication bias: Is a judgment made on the basis of the question whether all the 
research evidence has been taken to account.   

In the case of observational studies, the quality of evidence starts out lower and may 
be upgraded in three domains in addition to being subject to downgrading.

•    Large effect: This is when methodologically strong studies show that the observed 
effect is so large that the probability of it changing completely is less likely.  

•   Plausible confounding would change the effect: This is when despite the presence 
of a possible confounding factor which is expected to reduce the observed effect, 
the effect estimate still shows signifi cant effect.  

•   Dose response gradient: This is when the intervention used becomes more 
effective with increasing dose. This suggests that a further increase will likely 
bring about more effect.   

Meaning of the levels of quality of evidence as per GRADE

•    High Quality Evidence: The authors are very confi dent that the estimate that is 
presented lies very close to the true value. One could interpret it as: there is very low 
probability of further research completely changing the presented conclusions.  

•   Moderate Quality Evidence: The authors are confi dent that the presented esti-
mate lies close to the true value, but it is also possible that it may be substantially 
different. One could also interpret it as: further research may completely change 
the conclusions.  

•   Low Quality Evidence: The authors are not confi dent in the effect estimate and 
the true value may be substantially different. One could interpret it as: further 
research is likely to change the presented conclusions completely.  
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•   Very Low Quality Evidence: The authors do not have any confi dence in the estimate 
and it is likely that the true value is substantially different from it. One could 
interpret it as: New research will most probably change the presented conclusions 
completely.   

Guideline panelists may make strong or weak recommendations on the basis of 
 further criteria. Some of the important criteria are:

•    Balance between desirable and undesirable effects (not considering cost)  
•   Quality of the evidence  
•   Values and preferences  
•   Costs (resource utilization)   

Despite the differences between systems, the purposes are the same: to guide users 
of clinical research information on which studies are likely to be most valid. However, 
the individual studies still require careful critical appraisal. 

 In summary, the term EBM has been linked to three potentially false premises: 
that evidence has a purely objective meaning in biomedical science; that one can 
distinguish between what is evidence and what is lack of evidence; and that there is 
evidence-based, and non-evidence-based medicine. As long as it is remembered that 
the term evidence, while delivering forceful promises of truth, is limited in the sense 
that scientifi c work can never prove anything but only serves to falsify, the term has 
some usefulness. Finally, EBM does rely upon the ability to perform systematic 
reviews (meta-analyses) of the available literature, with all the attendant limitations 
of meta-analyses discussed above. 

 In a “tongue and cheek” article, Smith and Pell addressed many of the above 
issues in an article entitled “ Parachute use to prevent death and major trauma related 
to gravitational challenge: systematic review of randomized controlled trials ” [ 37 ]. 
In their results section, they note that they were unable to fi nd any RCTs of 
“parachute intervention”. They conclude that:

   only two options exist. The fi rst is that we accept that under exceptional circumstances, 
common sense might be applied when considering the potential risks and benefi ts of 
interventions. The second is that we continue our quest for the holy grail of exclusively 
evidence-based interventions and preclude parachute use outside of a properly conducted 
trial. The dependency we have created in our population may make recruitment of the unen-
lightened masses to such a trial diffi cult. If so, we feel assured that those who advocate 
evidence-based medicine and criticize use of interventions that lack evidence-base will not 
hesitate to demonstrate their commitment by volunteering for a double blind, randomized, 
placebo controlled, crossover trail.  (See Fig.  10.3 )

     Isaacs has embellished this with a list for the basis of clinical decision making 
(Table  10.11 ) in which evidence is one, and then eminence, vehemence, eloquence, 
providence, diffi dence, nervousness, and confi dence round out the list [ 38 ]. For each 
they describe the bias as follows: eminence based medicine-“the more senior the 
colleague, the less importance he or she placed on the need for anything as mundane 
as evidence”; vehemence based medicine- is determined by the loudest colleague; 
eloquence based medicine is predicted on sartorial elegance as a powerful substitute 
for evidence; providence based medicine occurs when you have no clue what to 
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do and you turn to God to give you a hand with decision making; diffi dence 
based medicine is when nothing is done out of a sense of despair, however they 
further point out that this may be benefi cial since doing something may be worse 
(“don’t just do something, stand there” as the axiom goes); nervousness based 
medicine is decision making based on fear of litigation (here the only bad test is 
“the one you didn’t think of ordering”); and fi nally, confi dence based medicine, 
which the authors point out is restricted to surgeons.

  Fig. 10.3    Humorous example of evidence-based medicine (With permission: Smith and Pell [ 37 ]       

   Table 10.11    Humorous outline of the basis of clinical decision making   

 Basis for clinical 
decision making  Marker  Measuring device  Unit of measurement 

 Evidence  RCT  Meta-analysis  Odds ratio 
 Eminence  Grey hair  Luminometer  Optical density 
 Vehemence  Stridency  Audiometer  Decibels 
 Eloquence  Sartorial splendor  Tefl ometer  Adhesion score 
 Providence  Religious fervor  Genufl ection angle  Piety units 
 Diffi dence  Gloom level  Nihilometer  Sighs 
 Nervousness  Litigation phobia  Every conceivable test  Bank balance 
 Confi dence  Bravado  Sweat test  No sweat 

  Adapted from: Isaacs and Fitzgerald [ 38 ]  
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       Clinical Practice Guidelines 

 Another outcropping from evidence-based medicine is clinical practice guidelines. 
Guideline recommendations have become the standard of care, and quality of care is 
increasingly assessed on the basis of adherence to these recommendations. In 1990 
the Institute of Medicine defi ned practice guidelines as  “systematically developed 
statements to assist practitioner and patient decisions about appropriate health care 
for specifi c clinical circumstances ” [ 39 ]. In an editorial, Gibbons et al. noted that “ as 
the number of available guidelines provided by a variety of sources has literally 
exploded, serious questions and controversies have arisen about how guidelines 
should be developed, implemented, and evaluated. ” [ 40 ] They go on to point out that 
guideline developers have been criticized for failing to control for confl icts of inter-
est, for variable quality, and for failing to prove that guidelines benefi t patients. 

 Despite the fact that guideline recommendations are being used to asses standard 
of care, clinical practice guidelines are recommendations (not rules or standards) 
about the care of patients with a specifi c condition and ideally are based upon the 
“best available evidence”, but should always be tempered on the basis of individual 
patient circumstances and preferences. The American Academy of Family Practice 
defi nes guidelines as  “a recommendation issued for the purpose of infl uencing decisions 
about health interventions .” The “best available evidence” is generally considered 
evidence from systematic reviews ideally of randomized controlled trials. Although 
guidelines are intended for clinicians, they are (perhaps unfortunately) used by others 
to monitor physician practice and in medical-legal proceedings. These aforemen-
tioned uses sometimes do not recognize that guidelines are suggestions for care not 
mandates, and only apply to a percentage of patients with a condition and certainly 
not all patients. However, the impetus for practice guidelines is many and includes:

 –    Increasing/changing medical knowledge  
 –   Rising health care costs unrelated to health outcomes  
 –   Wide variations in clinical decisions  
 –   Desire for evidence-based, outcomes-oriented clinical decisions   

The reality in medicine is that there has been an explosion of knowledge technology, 
and of patient expectations and “just keepin’ up” with the literature (much less 
reviewing older literature) is problematic. For example in 1998 there were at least 
20,657 articles involving human beings. If one slept 4 h a night, spent 25 h a week 
seeing patients and 1 h a day on personal activities, and read three articles an hour 
in the remaining awake time, after 1 year one would be 3,800 additional articles 
behind. There is no question that the complexity of medical decisions is rapidly 
growing and that there is uncertainty and variability in medical practice and even 
the best-trained physician with the greatest experience is not perfect. The above-
average physician has even more problems with consistency and accuracy. Thus, 
there is variability in clinical judgment, a question about the reliability of diagnostic 
judgment (If a doctor tells you that you have a disease, do you have it? If a doctor does 
not fi nd a disease, are you well?), and physician decisions can be highly variable 
(it is well known that physicians can disagree with their peers who have reviewed 
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the same patient, and that they can disagree with themselves when presented with 
the same patient records at two points in time). An example of this aforementioned 
disagreement is a study of four cardiologists presented with high-quality angiograms 
and asked to determine if stenosis in the proximal or distal left anterior descending 
artery was >50 %.

 –    The cardiologists disagreed on 60 % of the cases [ 41 ]  
 –   Cardiologists looking at the same angiograms at two points in time disagree with 

themselves 8–37 % of the time [ 42 ]   

It is also known that there is substantial geographic variability in the rates of procedures. 
 Guideline recommendations come from medical textbooks, review articles, 

meta-analyses, expert opinion and consensus panel recommendations, but whereas the 
US government was once the primary source of guidelines, this is now mostly the pro-
vince of specialty and subspecialty societies with the exception of the US Preventive 
Service Task Force. There are instances where there is disagreement amongst the 
guidelines and although the disagreements are usually minor, the disagreements are 
certainly a barrier to their acceptance, although clinicians are most likely to accept 
the recommendations from their own specialty society (and least likely to accept 
recommendations from managed care organizations or insurance companies). 

 Some guideline panels use a grading system (discussed above) attached to their 
recommendations based on the strength of evidence leading to the recommendation.

  Summary of Concerns About Guidelines 

 –   Guidelines are often outdated by the time they are released. (Burn your textbooks, 
except this one, of course)  

 –   Guidelines often emphasize peer consensus rather than outcome evidence  
 –   Guidelines ignore patient preference.    

    Other Concerns 

 Evidence-based guidelines disregard effective treatments that have not been evaluated 
in systematic experimental studies. A treatment might get a low rating because it 
does not work  or  because it has not been evaluated in a randomized clinical trial. 
Evidence-based medicine assumes that untested treatments are ineffective. Finally, 
many clinicians view practice guidelines as “cook book medicine” with “not enough 
recipes in the cookbook” [ 43 ]. 

 The limitations in the evidence EBM is nicely reviewed by Sniderman et al. in 
response to a commentary by Prasad who discusses the two medical world views of 
whether RCTs are needed to accept new practices [ 44 ]. Some of the limitations 
discussed by Sniderman et al. include:

   For many clinical problems there simply is no RCT evidence  
  Other times multiple RCTs have been performed but the conclusions are in confl ict  
  RCTs are limited in their generalizability  
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  There are limitations in applying the results in a group of patients to the individual  
  In an attempt to overcome some of the above limitations meta-analyses are performed, 

but meta-analyses have their own set of limitations (see above)  
  There are limitations in the guideline process which is also developed to address 

some of the above problems (e.g. confl icts of interest, failure to ensure dissenting 
and minority viewpoints, the absence of a process to challenge the validity of 
specifi c conclusions that guidelines reach)  

  There can be a diminution of clinical reasoning as a result of guideline 
recommendations         
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Abstract This chapter introduces the basic concepts of fundamental methods for 
genotype-phenotype association studies and relevant issues in interpretation of genetic 
epidemiology studies to clinicians. An overview of genetic association studies is 
provided, which is the current state-of-the-art for clinical and translational genetics. 
Discussion of future directions in this field is also included.

Keywords Genetic research • Genomics • Hardy Weinberg disequilibrium • 
Familial aggregation • Linkage disequilibrium • Genome-wide association

This chapter introduces the basic concepts of genes and genetic studies to clinicians. 
Some of the relevant methods and issues in genetic epidemiology studies are briefly 
discussed with an emphasis on association studies which are currently the main 
focus of clinical and translational genetics.

Genetics is the fundamental basis of any organism so understanding of genetics 
will provide a powerful means to discover hereditary elements in disease etiology. 
In recent years, genetic studies have shifted from disorders caused by a single gene 
(e.g. Huntington’s disease) to common multi-factorial disorders (e.g. hypertension) 
that result from the interactions between inherited gene variants and environmental 
factors, including chemical, physical, biological, social, infectious, behavioral or 
nutritional factors.

A new field of science, Genetic Epidemiology emerged in the 1960s as a hybrid 
of genetics, biostatistics, epidemiology and molecular biology, which has been the 
major tool in establishing whether a phenotype (any morphologic, biochemical, 
physiologic or behavioral characteristic or trait of an organism) has a genetic com-
ponent. A second goal of genetic epidemiology is to measure the relative size of that 
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genetic effect in relation to environmental effects. Morton and Chung defined 
genetic epidemiology as

a science that deals with the etiology, distribution, and control of disease in groups of rela-
tives, and with inherited causes of disease in populations [1].

In the era of known human genome sequences from multiple individuals, genetic 
epidemiology methods have been instrumental in identifying the contribution of 
genes, the environment, and their interactions to better understand disease processes 
and biological mechanisms.

Genomic scientists have predicted that comprehensive, genomic-based care will 
become the norm, with individualized preventive medicine, early detection of ill-
nesses and tailoring of specific treatments to an individual’s genetic profile. 
Practicing physicians and health professionals must be knowledgeable in the prin-
ciples, applications, and limitations of genetics to understand, prevent, and treat any 
biological disorders in their everyday practice. The primary objective of any genetic 
research is to translate information from individual laboratory tests to infer the rele-
vance of segments of the human genome in relation to disease risk. This chapter will 
focus on the fundamental concepts and principles of genetic epidemiology that are 
important to help clinicians understand genetic studies.

 Important Principles of Genetics

In the nineteenth century, long before DNA was known, an Augustinian clergyman, 
Gregory Mendel, described genes as the fundamental unit that transmits traits from 
parents to offspring [2]. Based on the observations from his cross-breeding experi-
ments in his garden, Mendel developed some basic concepts on genetic information 
which still provides the framework upon which all subsequent work in human genet-
ics has been based. Mendel’s first law, referred to as the “The principle of segrega-
tion”, basically states that alleles (alternate forms of the gene or sequence at a particular 
location of the chromosome) at one of the parent’s genes segregate independently of 
the alleles from another parent. Mendel’s law, therefore, states that alleles transmitted 
to an offspring are random (i.e., a matter of chance). It is now known that segregation 
of alleles occurs during the process of sex cell formation, known as meiosis. His sec-
ond law is referred to as “The principle of independent assortment” which states that 
two genetic factors are transmitted independently of one another in the formation of 
gametes. As a result, new combinations of genes can be present in the offspring that 
are otherwise not possible in either of the parents. These two principles of inheritance 
and the concepts of dominance and recessive alleles established the foundation of our 
modern science of genetics. However, Mendel’s law is not always true and there are 
exceptions to these rules, e.g. loci in the same chromosomes tend to transmit together, 
a key concept in modern genetic epidemiology.

All human cells except the red blood cells (RBC) have a nucleus that carries the 
individual’s genetic information organized in chromosomes. Chromosomes are 
composed of molecules called deoxyribonucleic acid (DNA) which contain the 
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basic instructions needed to construct proteins and other cellular molecules. Given 
the diploid nature, each human inherits one copy of the chromosome from the father 
and the other from the mother. Humans have 22 pairs of autosomal chromosomes 
and 2 sex-specific chromosomes (X and Y), where males have XY and females have 
XX chromosomes.

At the molecular level, DNA is a linear strand of alternating sugars (deoxyribose) 
and phosphate residues with one of four types of bases attached to the sugar. All 
information necessary to maintain and propagate life is contained within these four 
simple bases: adenine (A), guanine (G), thymine (T), and cytosine (C). In addition 
to this structure of a single strand, the two strands of the DNA molecule are connected 
by a hydrogen bond between two opposing bases of the two strands (T always bonds 
with A and C always bonds with G) forming a slightly twisted ladder, also referred 
as double helix. It was not until 1953 that James Watson and Francis Creek described 
this structure of DNA which became the foundation for our contemporary under-
standing of genes and disease.

The basic length unit of the DNA is one nucleotide, or one base pair (bp) which 
refers to the two bases that connect the two strands. In total, the human DNA con-
tains approximately 3.3 billion base pairs and any two DNA fragments differ only 
with respect to the order of their bases. Three base units, together with the sugar and 
phosphate component (referred to as codons) translate into amino acids. According 
to the central dogma of molecular biology, DNA is copied into single stranded ribo-
nucleic acid (RNA) in a process called transcription, which is subsequently trans-
lated into proteins. With the knowledge of underlying molecular biology, “gene” is 
defined as the part of the DNA segment that encodes a protein which forms the 
functional unit of the “hereditary” factor. It is now estimated that there are approxi-
mately 27,000 genes. The encoded proteins make intermediate phenotypes which 
regulate the biology of all diseases, so any difference in the DNA sequence could 
change the disease phenotype. In many species, only a small fraction of the total 
sequence of the genome encodes protein, and the function and relevance of the 
remaining noncoding sequences are still unknown. For example, over 98 % of the 
human genome is noncoding. However, the Encyclopedia of DNA Elements 
(ENCODE) project recently reported that over 80 % of DNA in the human genome 
has some biochemical function, most of which is still unknown. We are still in the 
infant stage of understanding the significance of the rest of these non-coding DNA 
sequence; however, the sequence could have structural purposes, or be involved in 
regulating the use of functional genetic information.

 Units of Genetic Measure

Different genetic markers, which are a segment of DNA with a known physical 
location on a chromosome with identifiable inheritance, can be used as measures 
for genetic studies. A marker can be a gene, structural polymorphisms (e.g. inser-
tion/deletion) or it can be some section of DNA such as short tandem repeat (STR) 
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and single nucleotide polymorphism (SNP). Recent advancements in molecular 
technology have resulted in the discovery of numerous DNA markers and the data-
base of each marker is increasing daily. Polymorphism (poly = many and mor-
phism = form) is a DNA sequence variation at any locus (any segment or region in 
the genome) in the population that has existed for some time and observed in at 
least 1 % of the population, whereas a mutation is often recent and the frequency 
in populations is less than 1 %. The terms mutation and polymorphism are often 
used interchangeably but mostly defined in the context of frequency. Variants 
within coding regions may change the protein function (missense) or predict pre-
mature protein truncation (non-sense) and as a result can have effects ranging from 
beneficial to mutual to deleterious. Likewise, although introns (intragenic regions 
between coding sequences) do not encode for proteins, polymorphisms can affect 
intron splicing or regulation of gene expression. To understand the role of genetic 
factors with any phenotype, it is important to understand these sequence variations 
among those with and without the phenotype within (population) and between 
(family) generations. We briefly describe the commonly used markers for genetic 
testing (Table 11.1).

 Short Tandem Repeats (STRs)

STRs are tandemly repeated simple DNA sequence motifs of 2–7 bases in length 
that are arranged head-to-tail and are well distributed throughout the human 
genome, primarily in the intragenic regions. They are abundant in essentially all 
ethnically and geographically defined populations and are characterized by sim-
ple Mendelian inheritance. STR polymorphisms originate due to mutations caused 
by slipped-strand mispairing during DNA replication that results from either the 
gain or loss of repeat units. Mutation rates typically range from 10−3 to 10−5 events 
per gamete per generation, compared to single nucleotide rates of mutation of 10−7 
to 10−9. In humans, STR markers are routinely used in gene mapping, paternity 
testing and forensic analysis, linkage and association studies, along with evolu-
tionary and other family studies. STRs have served as valuable tool for linkage 
studies of monogenic diseases in pedigrees, but have limited utility for candidate 
gene association studies.

Table 11.1 Some significant DNA sequence variants

Sequence variations Description

Short Tandem Repeats (STR) Tandemly repeated simple sequence motifs of 2–7 base lengths
Single Nucleotide  

Polymorphism (SNP)
Variations in a single nucleotide occurring in >1 % of the 

population
Structural variants Variation in the structure of the chromosome, that includes 

deletions, inversions, rearrangements, copy number 
variations
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 Single Nucleotide Polymorphisms (SNPs)

SNPs are the variations that occur at a single nucleotide of the sequence. Ninety 
percent of the polymorphisms in the genome are single nucleotide polymor-
phisms (SNPs). It has been estimated that there are over 17 million SNPs (1 in 
every 180 base pairs on average). Most of these variants have been identified 
through massive efforts of the International HapMap Project (2003) and the 1000 
Genomes Project (2008). SNPs are the markers of choice for association studies 
because of their high frequency, low mutation rates and the availability of high-
throughput detection methods. Most SNPs are found in the non-coding region 
and often have no known biological function, but may be surrogate markers or be 
involved in regulation of gene (e.g. expression and splicing). With few excep-
tions, the majority of the SNPs are bi-allelic and the genotypes (genetic makeup 
at both chromosomes) can be heterozygote (different allele in each chromosome) 
or homozygote (same allele in both chromosomes) for either allele (Fig. 11.1). 
All SNPs are catalogued centrally in major databases such as the dbSNP at the 
National Center for Biotechnology Information (NCBI) and given unique identi-
fiers (rs#) for standard reference.

Haplotypes
Alleles

Locus 1 2 3 4

Individual 1

Individual 2

Individual 3

Individual 4

Chromosome

Haplotypes
Alleles

Locus 1 2 3 4

Individual 1

Individual 2

Individual 3

Individual 4

Fig. 11.1 Alleles and genotypes determined for bi-allelic Single Nucleotide Polymorphisms 
at four different loci and the corresponding haplotypes. At locus 1, G and A are the alleles; 
Individuals 1 and 2 have AG heterozygote genotype and Individuals 3 and 4 have AA homo-
zygote genotype. If the phase is known as shown above, the haplotypes for individual 1 would 
be ACTA and GGTA. However, in most cases, the variant loci are not physically close and the 
assays may not be able to partition the phase, thus haplotypes are usually estimated with vari-
ous methods
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 Structural Variants

The human genome consists of a myriad of structural variants that include dele-
tions, duplications, inversions, translocations and copy number variations (CNVs) 
that can influence the functions of the encoded proteins. CNVs are the most com-
mon structural variants and have been associated several phenotypes and diseases.

It was generally thought that genes occurred in two copies in the genome. Recent 
studies have suggested that large segments of DNA, ranging from 1 kb to several 
million bp can vary in copy number, some of which contain several genes. Such 
CNVs are more common in the human genome than originally thought and can have 
dramatic phenotypic consequences as a result of altering gene dosage, disrupting 
coding sequences, or perturbing long-range gene regulation [3]. These regions are 
estimated to cover 5–20 % of the whole genome.

Although there are different genetic markers (as described above), SNPs are the 
most frequent variant in the genome and are widely used in genetic studies, so we 
will refer to SNP polymorphisms to explain the basic concepts in genetic epidemi-
ology, especially in the context of association studies.

 Terms and Basic Concepts in Genetic Epidemiology 
(Table 11.2)

 Hardy-Weinberg Equilibrium (HWE)

HWE is one of the key concepts of population genetics that can be used to deter-
mine whether a genetic variant could be a valid marker in genetic epidemiology 
studies. In HWE, allele and genotype frequencies are related through the Hardy- 
Weinberg law which states that if two alleles, “A” and “a”, at any locus with 
frequencies “p” and “q”, respectively, are in equilibrium in a population, the 
proportions of the genotypes, “AA” homozygotes, “Aa” heterozygotes and “aa” 
homozygotes will be p2, 2pq, and q2, respectively. This law holds as a conse-
quence of random mating in the absence of mutation, migration, natural selec-
tion, or random drift. One of the implications of HWE is that the allele 
frequencies and the genotype frequencies remain constant from generation to 
generation maintaining equilibrium in overall genetic variations. Extensions of 
this approach can also be used with multi- allelic and X-linked loci. Deviation 
from these proportions could indicate (a) genotyping error (b) presence of non-
random mating, thus bias in the control selection (c) existence of population 
stratification (as described later) or (d) recent mutation, migration or genetic 
drift that has not reached equilibrium. Cases are more likely to represent the tail 
of a distribution of disease, and any putative genetic variant for that disease may 
not be in HWE; therefore, it is generally recommended to assess HWE in non-
diseased (control) groups.
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 Linkage and Linkage Disequilibrium (LD)

Linkage and LD are the sine qua non of genetic epidemiology. While genes in differ-
ent chromosomes segregate, Thomas Hunt Morgan and his co-workers observed that 
genes physically linked to one another on chromosomes of drosophila tended to be 
transmitted together. This phenomenon, where two genetic loci are transmitted 
together from parent to offspring more often than expected under independent inheri-
tance, is termed linkage. Linkage was first demonstrated in humans by Julia Bell and 
J.B.S Haldane who showed that hemophilia and color blindness tended to be inherited 
together in some families [4]. Two loci are linked if recombination (exchange of 
genetic information between two homologous chromosomes during meiosis) occurs 
between them with a probability of less than 50 %. Recombination is inversely related 
to the physical distance between the two loci. However, after several generations, suc-
cessive recombinations (especially in regions of recombination hotspots) may lead to 
complete independence even between loci that may be physically close together.

Table 11.2 Some commonly used genetic terms

Term Brief description

Hardy-Weinberg Equilibrium 
(HWE)

Used to determine whether a genetic variant could be a valid 
marker

Linkage When two genetic loci are transmitted together from parent to 
offspring more often than expected

Linkage Disequilibrium (LD) The extent of non-random association between two genetic loci
Haplotype (Fig. 11.1) A specific combination of alleles along a chromosome, one 

from the father and one from the mother
Epigenetic changes Biochemical alterations in DNA that affect gene expression 

and function without altering DNA sequence
Transmission Disequilibrium  

Test (TDT)
Alleles of parents are used as “virtual control” genotypes

LOD score Logarithm10 of odds-the likelihood of observing a segregation 
pattern of recombination frequency compared to chance

Hardy-Weinberg equilibrium: The stable frequency distribution of genotypes, AA, Aa, and aa, in 
the proportions p2, 2pq, and q2 respectively (where p and q are the frequencies of the alleles, A and 
a, respectively) that results from random mating in a population in the absence of mutation, migra-
tion, natural selection, or random drift
Linkage: co-segregation of alleles at two or more loci (family-based)
Linkage disequilibrium: the extent and associations of non-randomness of alleles at two/more 
loci in a population
Haplotype: A set of closely linked genetic markers present on one chromosome which tend to be 
inherited together (e.g. Fig. 11.1 – ACTA and GGTA for individual 1)
Epigenetic Changes: genetic control of the expression and activation of genes that involves fac-
tors other than changes in DNA sequence
Transmission Disequilibrium Test (TDT): a test that measures overtransmission of alleles from 
parents to offspring with the disease/trait (more frequently than expected by chance)
LOD Score: Logarithm10 odds of likelihood of observing the segregation pattern of the marker 
alleles at a given recombination frequency (linked) to the likelihood of the same segregation 
pattern in the absence of linkage (by chance)
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In population genetics, LD is defined as the extent of non-random association 
between two genetic loci such that the presence of one allele at a locus provides 
information about the allele of the other loci [5]. The level of LD in a population is 
influenced by several factors including genetic linkage, the rate of recombination, 
mutation, random genetic drift, selection, non-random mating and population 
admixture. Many different measures of LD have been proposed in the literature, 
most of which capture the strength of association between pairs of SNPs. Although 
concepts of LD date to early 1900s, the first commonly used LD measure, D’ was 
developed by Richard Lewontin in 1964. D’ measures the departure from allelic 
equilibrium between separate loci on the same chromosome that is due to the gen-
etic linkage between them. The other pairwise measure of LD used in association 
studies is r2 also denoted as ∆2.

For two loci with alleles A/a at the first locus and B/b at the second allele, D is 
estimated as follows:

 D p p pAB A B= −  (1)

The disadvantage of D is that the range of possible value depends greatly on the 
marginal allele frequency. D΄ is a standardized D coefficient and is estimated as 
follows:
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and r2 is the correlation between two loci and is estimated as follows:
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Both D΄ and r2 range from 0 (no disequilibrium) to 1 (complete disequilibrium), but 
their interpretation is slightly different. In the case of true SNPs, D΄ equals 1 if just two 
or three of the possible haplotypes are present and is <1 if all four possible haplotypes 
are present. On the other hand, r2 is equal to 1 if only two haplotypes are present. 
Association is best estimated using the r2 because it acts as a direct correlation to the 
allele at the other SNP. Additionally, there is a simple inverse relationship between r2 
and the sample size to detect association between susceptibility loci and SNPs.

 Haplotype

Haplotype is a specific combination of alleles along a chromosome, one inherited 
from the mother and the other from the father (Fig. 11.1). Recent studies have shown 
that the human genome can be parsed into discrete blocks of high LD interspersed 
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by shorter regions of low or no LD. Only a small number of characteristic (“tag”) 
SNPs are sufficient to capture most of the haplotype structure of the human genome 
in each block. Tag SNPs are loci that can serve as proxies for many other SNPs such 
that only a subset of loci needs to be genotyped to obtain the same information and 
power obtained from genotyping a larger number of SNPs. The SNPs within the 
same block show a strong LD pattern while those in different blocks generally show 
a weak LD pattern. This advantage, along with the relatively smaller number of 
haplotypes defined by tag SNPs in each block provides another way to resolve the 
complexity of haplotypes.

High LD between adjacent SNPs, also result in a much smaller number of haplo-
types observed than the theoretical number of all possible haplotypes (2n haplotypes 
for n SNPs). There is also biological evidence that several linked variations in a 
single gene can cause several changes in the final protein product and the joint effect 
can have an influence on the function, expression and quantity of protein resulting 
in the phenotype variation. The most robust method to determine haplotypes is 
either pedigree analysis or DNA sequencing of cloned DNA. Both of these methods 
are limited by data collection of families or intensive laboratory procedures, but the 
phase (knowledge of the orientation of alleles on a particular transmitted chromo-
some) of the SNPs in each haplotype can be directly determined. Haplotypes can 
also be constructed statistically, although constructing haplotypes from unrelated 
individuals is challenging because the phase is inferred rather than directly meas-
ured. Unless all SNPs are homozygous or at most only one heterozygous SNP is 
observed per individual, haplotypes cannot be discerned. To account for ambiguous 
haplotypes, several statistical algorithms have been developed [6]. Three common 
algorithmic approaches used in reconstructing population-based haplotypes are (i) 
a parsimony algorithm, (ii) a Bayesian population genetic model that uses coales-
cent theory, and (iii) a maximum likelihood approach that is based on expectation- 
maximization (EM) algorithm. The details of these methods are beyond the scope 
of this book, but readers are referred to the book “Computational Methods for SNPs 
and Haplotype Inference” [6] for further discussion. Recent haplotype estimation 
methods often use a hybrid approach of EM and Bayesian models.

 Biological Specimens

Although the focus of this chapter is not on the laboratory methods of specimen 
collection, we briefly describe the samples used in clinical studies and their 
importance. Clinicians deal with different biological organs and tissues in their 
everyday practice. Most of these however may not be an efficient or convenient 
source for DNA, the most commonly used resource for genetic studies. Based on 
factors including cost, convenience for collection and storage, quantity and qual-
ity of the source, DNA is commonly extracted from four types of biological speci-
mens: (1) dried blood spots collected in special filter paper (2) whole blood 
collected in ethylenediaminetetraacetic acid (EDTA) or other anticoagulants such 
as heparin and acid citrate dextrose (ACD) (3) lymphocytes isolated from whole 
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blood and EBV- transformed for unlimited source of DNA and (4) buccal epithelial 
cells collected from swabs or mouth-washes (non-invasive and child-friendly). In 
certain circumstances, samples derived from surgery or other treatment or therapy 
procedures can also be used for extracting DNA. For instance, formalin-embedded 
samples of biopsies can be used; however, special laboratory protocols or reagents 
may be needed (for instance to process the DNA crosslinking).

 Ethical, Legal and Social Implications (ELSI)

Even for well-intentioned research, one can raise legitimate concerns about the 
potential misuse of genetic data in regard to social status, employment, economic 
harm and other factors. A significant amount of work has been done on ethical, legal 
and social implications (ELSI) research of genetics and policies, but ethics remains 
an area of major concern. All research protocols can only be conducted upon 
approval from an institutional review board (IRB) with an appropriate informed 
consent from the participants. Pediatric genetic research often can be cumbersome 
as it may require approval from both parents or the legal guardians. It is a routine 
practice to label the samples with unlinked coded identifiers rather than personal 
identifiers, so that the individual’s identity is masked when linking to phenotypic, 
demographic, or other personal information. The confidentiality of the DNA results 
needs to be maximized to protect individual privacy. All reports of genetic studies 
including manuscripts and grants often require detailed description of ethical con-
cerns and data protection.

 Measurable Outcome and Phenotype

Phenotype is an observable and measurable trait which can be defined qualita-
tively or quantitatively and does not necessarily have to be related to a disease. 
Some traits or diseases, like the simple Mendelian traits, have a distinctly measur-
able phenotype definition. However, other illnesses (e.g. psychiatric disorders) are 
complex to define and require various symptoms and clinical criteria that may 
have different biological system and pathways combined. The misclassification of 
cases and controls can be a major problem in any study that can easily introduce 
biases and inconsistencies between studies. Phenotypes can be defined qualita-
tively (absent or present) or measured quantitatively. A qualitative trait can be 
categorized into two or more groups. For example, qualitative traits can be dichot-
omous (e.g. HIV+ vs. HIV−), ordinal (low, average and high blood pressure group) 
or nominal (green, black, blue eyes) based on certain distinct criteria. On the other 
hand, measurable physiological quantities such as height, blood pressure, serum 
cholesterol levels, and body mass index (BMI) can vary among different indi-
viduals. Often it may be difficult to examine the genetic effect of quantitative 
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measures; however, they can be transformed into meaningful qualitative values 
where the genetic effect can be more distinct. To make the quantitative traits more 
interpretable through statistical analyses, the overall distribution in a given popu-
lation is viewed graphically. Often these distributions produce a familiar bell-
shaped curve (normal distribution), where several statistical methods can be used 
to assess the effect of genotypes. For example, the individuals at the extreme tails 
of the curves can have different genetic distributions. Some diseases may also 
have intermediate phenotypes that can be measured with molecular markers, 
while others are strictly based on clinical diagnoses. For example, blood choles-
terol levels which can be precisely measured may be a better intermediate out-
come of cardiovascular disease than a self reported “headache” where the 
symptoms may be heterogeneous in the population and the measurement is sub-
jective. Other measures, including exposures (e.g. HIV viral load) can define a 
phenotype better than the clinical symptoms since virally infected individuals can 
be asymptomatic for undefined period of time. In that specific example, everyone 
positive for HIV virus test could be defined as the outcome of interest (cases) 
while in another scenario specific clinical symptoms of HIV infection (e.g. 
immune cell counts or viral load) could define case status. Even among pheno-
types with clinical diagnoses, some have distinct symptoms or signs, with high 
sensitivity tests, whereas others do not. Some diseases, like Alzheimer’s, can have 
phenotypic heterogeneity, where the same disease shows different features in 
different families or subgroups of patients. Like in any other clinical study, the 
key to a genetic study is a clear and consistent definition of the phenotype with 
underlying biology. Since the main interest in conducting genetic study is to see 
how variants that change the expression and encoding of protein is related to the 
biology of the disease, the phenotype has to be clearly defined.

 General Methods in Clinical Genetic and Genetic 
Epidemiology Studies

In the past 20–30 years, epidemiologic methods and approaches have been inte-
grated with those of basic genetics to identify the role of genetic factors in disease 
occurrence in families and populations [7]. Family studies examine the rates of dis-
eases in the relatives of proband cases versus the relatives of internally matched 
controls. For a quantitative trait, such as blood pressure, we can measure correlation 
of trait values among family members to derive estimates of heritability. Mendelian 
diseases are transmitted in families and recur in the relatives of affected individuals 
more frequently (103–106 fold) compared to the general population. In contrast, 
diseases such as cancer, Alzheimer’s Disease, and myocardial infarction are quite 
common among older adults; however, their occurrence does not follow Mendelian 
inheritance patterns, but rather are multifactorial with several interactions between 
environment and genetic factors.
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The first step in clinical or epidemiologic genetic studies is to determine 
whether a phenotype of interest is controlled by a genetic component. There are 
five key scientific questions that are addressed in sequence in genetic epidemio-
logic studies (Fig. 11.2): (1) Is there familial clustering? (2) Is there evidence of 
genetic effect? (3) Is there evidence for a particular genetic model? (4) Where is 
the disease gene? (5) How does this gene contribute to disease in the general 
population? The first three questions do not require DNA data and are referred 
as phenometric studies, but the latter two depend on DNA and referred as geno-
metric studies.

 Familial Aggregation

The first step to determine whether a phenotype has a genetic component is to 
examine the clustering within families. Familial aggregation estimates the likeli-
hood of a phenotype in close relatives of cases compared to the non-cases. If the 
phenotype is a binary trait, familial aggregation is often measured by the relative 
recurrence risk. The recurrence risk ratio is the ratio of prevalence of the phenotype 
in relatives of affected cases to the general population. Greater risk associated with 
closer degrees of relatedness could also indicate the genetic component. If the 
prevalence of the phenotype is higher in 1st degree relatives (father, mother, sib-
lings) versus 2nd degree relatives (uncle aunt, cousins) it would suggest a genetic 
component since the 1st degree relatives share more genetic information than the 
2nd degree relatives. For example, cancer and heart disease tend to run in families, 
as measured by measurements such as relative risk. On the other hand, assessment 
of familial aggregation of a continuous trait, such as height, can be estimated with 
a correlation or covariance-based measure such as intrafamily correlation coeffi-
cient (ICC). The ICC indicates the proportion of the total variability in a phenotype 
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Fig. 11.2 Systematic designs and approaches in genetic epidemiology studies to identify the genetic 
and non-genetic causes of disease
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that can reasonably be attributed to real variability between families. Disease or 
traits may cluster in families; however, this does not necessarily mean that they 
share the common genetic factors. Since families often share the same household 
or geographic region they share common cultural attitudes, socioeconomic status, 
diet and environmental exposures – all of which can be known or unknown and 
may not be easily measured. It is difficult to disentangle the genetic effect from the 
environmental effect due to this shared physical environment. For example, obesity 
could be due to shared genes within the family or the eating or physical activity 
habits in the family.

 Genetic Effect

Once the familial aggregation is established, the next step is to distinguish 
between genetic and non-genetic factors and estimate the extent of genetic effect. 
Different variance component models estimate heritability, which is defined as 
the proportion of variation directly attributable to genetic differences among 
relatives to the total variation in the population (both genetic and environmental). 
Although traditionally used to estimate the genetic effect in familial aggregation, 
it is a theoretical concept. Heritability is population-specific and must be used 
with caution when comparing different populations. Other classical designs for 
distinguishing non-genetic family effects from genetic effects have been studies 
of twins, adoptees and migrants.

 Twin studies

Studies of twins are useful in estimating the contribution to a phenotype through the 
comparison of monozygotic (MZ) pairs (who share all genes) with dizygotic (DZ) 
pairs (who share on average half of their genes). If family upbringing acts equally 
on monozygotic twins as it does on dizygotic twins, then the greater similarity of 
phenotypes in MZ than DZ twins is attributed to genetic factors. While MZ twins 
reared together have the same genetic and environment exposures, MZ twins separ-
ated at birth and raised apart will have different environment exposures but same 
genetics. Thus, such studies will provide insights into the contribution of strong 
environment factors in common diseases such as substance abuse and eating disorders. 
In contrast, DZ twins may have a similar genetic makeup as other siblings, but they 
share the same womb, so early environmental exposure related studies can be con-
ducted with these pairs. Concordance rates are used in twin studies which measures 
and compares the frequency of disease occurrence between MZ and DZ twins. For 
example, the concordance rate of sickle cell disease among MZ is 100 %, indicating 
pure genetic effect; whereas Type I Diabetes is 25–35 % among MZ, 5–6 % among 
DZ twins or siblings and 0.4 % among the general population, suggesting both 
genetic and environment effects.
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 Adoption Studies

This study design examines the similarity and differences in the phenotype in the 
biological parents and foster parents of adoptees, and in their biological and adopted 
siblings, respectively. The assumptions are that the similarity between an adopted 
child and biological parent is primarily due to genetic effects, while the similarity 
between the adopted child and the adoptive parent or adoptive siblings is mainly due 
to the shared environment since they do not share genetic background as they are 
not biologically related.

 Migration Studies

While with modern globalization, humans are constantly travelling, we are also mov-
ing to new areas in search of better opportunities. Patterns in environmental expo-
sures in different areas among different ethnic groups or related family members can 
be assessed to make some inferences about genetic and environmental influence in 
phenotypes or diseases. A similar incidence of phenotype or disease in migrants 
compared to the aboriginal population’s incidence suggests a strong environmental 
factor, whereas similar incidence to the original ethnic group or relatives in the origi-
nal residence could suggest a genetic effect. Genes do not change as easily as envi-
ronmental exposures, so the variation in the phenotype after taking into account all 
the common and new environmental factors could point to a genetic effect.

 Genetic Model

After the genetic basis is established, the next step is to find the mode of inheritance 
which historically was done using segregation analyses, although these methods 
are not as common in the era of SNP association studies. Segregation analyses does 
not use DNA-based genetic data, but rather, the methods test whether or not the 
observed phenotype follows a Mendelian inheritance in the offspring in the pedi-
gree. Mendelian diseases can be autosomal dominant, autosomal recessive, X-linked 
dominant, or X-linked recessive (usually with high penetrance and low frequency of 
risk alleles). Traditional segregation analysis primarily studied simple Mendelian 
disorders where a single gene mutation is sufficient and necessary to cause a disorder. 
However, most common chronic diseases are regarded as complex where a large 
number of genetic variants along with environmental factors interact with each 
other (necessary or un-necessary but not sufficient) to affect the disease outcomes. 
These diseases usually cluster in families, but do not follow a traditional Mendelian 
inheritance pattern. While segregation analyses are powerful to test different modes 
of Mendelian inheritance in the family, it is not useful for complex traits. Linkage 
and association analysis, both of which utilize DNA, are more powerful to study 
genetic effects of complex diseases.
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 Disease Gene Location

 Linkage Studies

Linkage studies are performed based on the principle that alleles at two nearby loci 
on the genome tend to be transmitted together from parent to offspring. Linkage 
analysis are often the first stage in genetic epidemiology studies to identify broad 
genomic regions that contain gene or genes that predispose to the phenotype, in the 
absence of previous biologically driven hypotheses. Genetic linkage analysis tests 
whether the marker segregates with the disease in pedigrees with multiple affected 
individuals, according to a Mendelian mode of inheritance. The approach relies 
entirely on the tendency for genomic regions that affect the phenotype to be passed 
on to the next generation intact, without recombination events at meiosis. If a 
marker is passed down through family generation and occurs more commonly 
among those with the phenotype, then the marker can be used as a surrogate for the 
location of the gene.

Two types of linkage analysis can be performed: parametric and nonparametric 
analysis. Parametric linkage analysis involves testing whether the inheritance 
patterns fits a specific model and is traditionally measured with a statistical test, 
LOD score (logarithm (base 10) of odds) – L(θ)/L(θ = 0.5) i.e., the likelihood of 
observing the segregation pattern of the marker alleles at a given recombination 
frequency θ (linked) compared with the likelihood of the same segregation pattern 
in the absence of linkage (by chance). While the approach is very powerful, the 
study design can be challenging logistically since as it requires recruitment of 
families (with history of the phenotype) to estimate a number of recombination 
occurrences in order to calculate the LOD score. STRs with multiple alleles are 
more powerful for linkage studies than SNPs, which are mostly biallelic. The objec-
tive of parametric linkage analysis is to estimate the recombination frequency (θ) 
and to test whether θ is less than 0.5, which is the case when two loci are genetically 
linked. The nonparametric approach evaluates the statistical significance of excess 
allele sharing for specific markers among affected sibs and does not require infor-
mation about the mode of disease inheritance. With this approach, often the inheri-
tance pattern is measured in terms of identical by descent (IBD), where the same 
allele is inherited from a common ancestor, and identical by state (IBS), where the 
allele is the same but not necessarily inherited from the same ancestor. Thus, these 
methods are based the fact that affected relatives have a higher probability of sharing 
genes IBD at or near a locus of susceptibility allele/gene to a disease than sharing 
an unlinked locus. The genes contributing to the phenotypic variation have been 
successfully localized by linkage analysis for Mendelian diseases that have a strong 
genetic effect and are relatively rare (e.g. cystic fibrosis, Huntington disease). 
However, for more complex and common diseases (e.g. cancer, cardiovascular 
diseases), linkage analysis has had less success. The method of choice for complex 
genetic diseases has evolved to association studies which are followed by fine- 
mapping studies to narrow down the putative disease locus.
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 Association Studies

Genetic association studies aim to correlate differences in allelic frequencies at 
any locus with differences in disease frequencies or quantitative traits [8]. Genetic 
association occurs if the specific genetic variant is more frequent in the affected 
group than the non-affected group. Most association studies represent classical 
case–control approaches where the risk factor under investigation is the allele at 
the genetic marker (mostly with SNPs). SNP-based association studies can be 
performed in two ways: (i) direct testing of an exposure SNP with a known vary-
ing function such as altered protein level or structures and (ii) indirect testing of a 
SNP which is a surrogate marker for locating adjacent functional variant that 
contributes to the phenotype or disease state (Fig. 11.3a). The first method requires 
the identification of all “functional” variants in coding and regulatory regions of 
genes. The latter method avoids the need for cataloguing potential susceptibility 
variants by relying instead on association between disease and neutral polymor-
phisms tagging a SNP near a risk-conferring variant. It exploits the phenomenon 
of linkage disequilibrium (LD) between alleles of closely linked loci within the 
genomic regions.

Given the diallelic nature of majority of the SNPs, a disease locus may be dif-
ficult to identify unless the surrogate marker is closely linked to the disease 
locus. Apart from a single SNP association strategy, a dense panel of SNPs from 
the coding and non-coding regions of the gene that form haplotypes can also be 
tested. Some studies have also demonstrated that the analysis of haplotypes 
rather than individual SNPs can detect association with complex diseases. It has 
been suggested that single SNP-based candidate gene studies may be statistically 
weak as true associations may be missed because of the incomplete information 
from individual SNPs. For example, haplotypes contain more heterozygosity 
than any of the individual markers that comprise them and also mark more of the 
variation in the gene than single SNPs. Several haplotype association studies 
have shown the power of haplotypes over individual SNPs as it can either com-
bine multiple causal variants or tag a less common causal variant than a more 
frequent single SNP.

Phenotype status Genetic marker
LD

True association
and LDTrue risk

Population 
Stratification

LD

True association
and LDTrue risk
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Fig. 11.3 True association, LD and the effect of population stratification. (a) Genetic marker that 
is in LD with causal variant serves as a surrogate of the true association with the phenotype. (b) 
Population stratification is a confounder that leads to spurious association
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 Candidate Gene vs. Genome Wide Association  
Studies (GWAS)

Candidate gene approaches examine polymorphisms in genes with potential 
 biological mechanisms or pathways related to the phenotype of interest. Some of the 
candidate genes are also based on physical location or sequence homology to a gene 
encoding protein that is in the etiologic pathway. As attractive as this hypothesis- 
driven candidate gene approach is, it focuses exclusively on the relatively few known 
genes, ignoring many that have not yet been characterized to play a role, suffering 
from potential publication bias in the process of selection of the genes. One major 
drawback of candidate gene approach is that a priori knowledge of the pathogenesis 
of the disease is required – when the molecular mechanism is poorly understood or 
complex, it could lead to selection of the wrong genes. Even with the right genes 
within the pathway, the challenge is to find variants that influence the regulation of 
gene function. Candidate gene studies have proven to be more successful when used 
as a follow-up of linkage studies. For example, APOE4, the most common genetic 
factor associated with Alzheimer’s disease, was primarily discovered by candidate 
gene approach following the linkage study which mapped to chromosome 19.

Alternatively, with assurance of adequate power, hypothesis-generating genome 
wide association studies (GWASs) have been widely used. While the study design 
and methodological approaches are the same as for the candidate gene approach [8], 
GWAS studies rely on the microarray chips that consists of thousands to millions of 
genomic variants that has resulted from large projects such as the HapMap, 1000 
Genome Project, and continuing sequencing efforts by various groups and investiga-
tors. Technological advances have dramatically resulted in cost-effective high- 
throughput genotyping arrays making GWAS more promising and attractive. GWAS 
has the advantage in the sense that no a priori knowledge of the structure or function 
of the genes involved is required. Additionally, with complex statistical models, 
untyped SNPs can also be imputed using GWAS data, which has been proven to be 
very reliable for common variants. Hence, this approach provides the possibility of 
identifying variants and genes that influence the phenotype or the disease that had 
previously not been biologically suspected. A two step design has often been used by 
researchers where common variation is first screened for association signals using 
cost-effective typing of tagging SNPs with GWAS followed by denser sets of SNPs 
in regions of potentially positive signals. If the sample size is large enough, a third 
stage of validation of association can also be conducted with proper power calcula-
tions. Although promising results have been found for different phenotypes with 
GWAS, analytical considerations are still underway to develop a robust strategy to 
interpret the findings especially for complex diseases with multiple gene- gene and 
gene-environmental interactions. Such large datasets still require new methods and 
approaches to understand the true biology of the phenotype. A lot of emphasis has 
been made towards using stringent statistical criteria for handling false positive 
issues; however, new biologically-driven methods are required to dissect such large 
datasets to understand and identify the complex nature of common diseases.
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 Risk Quantification

 Gene-Gene and Gene-Environment Interaction

A central theme of genetic epidemiology is that human disease is caused by inter-
actions within and between genetic and non-genetic environmental factors. Thus, in 
the design and analysis of epidemiologic studies, such interaction needs to be expli-
citly considered. A simple approach would be to create a classic 2 × 2 table with 
genotypes at the two loci classified as present or absent and compute odds ratios for 
all groups with one reference group. The extent of the joint effect of two loci can be 
compared with the effects for each locus independently. The same approach can be 
considered for gene-environmental interaction for qualitative measurements. 
However, as more genes are involved and the environmental exposure is quantita-
tively measured, the analysis and interpretation of the interaction can be compli-
cated, but various methods are being continuously developed. Large sample sizes 
are needed to observe true interactions, especially if they are small effects.

 Gene Contribution

Once the association of the genetic allele is discovered, it is important to assess the 
contribution of this variant to the phenotype. The public health relevance of a given 
polymorphism is addressed by estimating the proportion of diseased individuals in 
the population that could be prevented if the high-risk alleles were absent (known as 
attributable fraction, etiologic fraction, or population attributable risk percent). 
Accurate estimation of the population frequency of the high-risk variant (allele and/
or genotype) is important because the attributable fraction is a function of the 
frequency of the high-risk variant in the population and the penetrance (i.e., the 
likelihood that the trait will be expressed if the patient carries the high-risk variant). 
Attributable fractions can also be used to estimate the proportion of disease that is a 
result of the interaction of a genetic variant and an environmental exposure. Genetic 
variants are not usually modifiable within the longevity of an individual (although 
very possible evolutionarily over time in populations); therefore the prevention of 
disease will depend on interventions that target environmental factors that interact 
with genetic susceptibility to influence the risk of disease.

 Additional Applications of Genetic Studies

Most of the genetic studies (candidate or genome-wide) are focused on case–control 
designs with the underlying goal of understanding the biological cause of the dis-
ease. Other time dependent studies can be performed to understand the genetic 
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effect in the natural history or progression of the disease. The outcomes of these 
studies are helpful for providing counseling to individuals about their offspring 
(genetic screening) or the interaction between environmental factors. However, 
there are a growing number of genetic studies examining the differential response to 
drugs or vaccines, with potential application of translational science. For instance, 
“pharmacogenetic” studies focus on genetic determinants of individual variation 
in response to drugs, including variation in the primary domain of drug action and 
variation in risk for rare or unexpected side effects of drugs. Likewise, “vaccinoge-
netic” studies examine the genetic determinants of differential vaccine response 
(e.g. antibody titer) and side effects between individuals.

 Beyond Association Studies

While other factors such as epigenetic and regulatory factors are beyond the scope 
of this chapter, it is important to understand that association studies itself may not 
fully delineate the genetic effect on a disease. Epigenetic changes are biochemical 
alterations in DNA that affect gene expression and function without altering the 
underlying DNA sequence. DNA methylation is one epigenetic process implicated 
in human disease that involves methylation of cytosine, usually at CpG dinucleo-
tides. Micro-array methods are available to capture the methylation patterns across 
genes that could help in addition to the variant findings. Recent insights of the 
ENCODE project has helped shift focus to complex molecular mechanisms by 
which genetic factors such as microRNAs (miRNAs) may regulate genes. MiRNAs 
are evolutionarily conserved small non-coding RNAs (~22 bp) that inhibit transla-
tion of proteins by binding to the target transcript in the 3′ untranslated region. It has 
been estimated that miRNAs contribute to expression of over 60 % of protein cod-
ing genes in humans. In this regard, as the testing costs are being lowered, it may be 
beneficial to perform whole genome sequencing (versus GWAS or even exome- 
sequencing that targets variants in the exons of all known genes) that will provide 
information on all the known and the unknown variants of the human genome. 
Although new approaches and analytical methods are warranted to fully understand 
the genome, sequencing data will provide both rare and common variants in both 
genic and non-genic regions which can have regulatory or unknown functions, as 
suggested by ENCODE.

 Major Issues and Limitations in Genetic Studies

In most cases with complex diseases, the effect of any genetic variant is small and 
can only be observed in studies with a large sample size or the frequency of the 
allele is rare and has a large relative risk. There are very few common variants 
(>10 % allele frequency) with a relative risk exceeding 2 (e.g. APOE and Alzheimer’s 

11 Research Methods for Genetic Studies



252

disease). A major concern with respect to genetic association studies has been lack 
of replication, especially contradictory findings across studies. Replication of find-
ings is very important before any causal inference can be drawn. For example, since 
2005, over 1,600 publications have identified more than 2,000 genetic associations 
with approximately 300 common diseases and traits, but many of these studies need 
to be replicated. Several study design and statistical issues need to be seriously con-
sidered when conducting genetic studies which are briefly described below:

 Genetic Heterogeneity

There are several cases where multiple alleles at a locus are associated with the 
same disease. This phenomenon is known as allelic heterogeneity and can be 
observed with a multi-allelic locus. This may explain why in some studies one allele 
is associated with the disease and in other studies it is another allele. Likewise, locus 
heterogeneity may also exist where multiple genes influence the disease independ-
ently and thus a gene found to be associated in one study may not be replicated in 
the other but rather another gene may be associated.

 Confounding

One crucial consideration in genetic studies is the choice of an appropriate com-
parison group. In general, as in any well-designed epidemiological case–control 
study, controls need to be sampled from the same source population as the cases. 
The use of convenient comparison groups without proper ascertainment criteria 
may lead to spurious findings as a result of confounding caused by unmeasured 
genetic and environmental factors. Population stratification can occur if cases and 
controls are not matched by ethnicity or if individuals have differential admixture 
(the proportions of the genome that have ancestry from each subpopulation). 
Stratification can results when phenotypes of interest differ between ethnic groups 
(Fig. 11.3b). Although most genetic variation is inter-individual, there is also sig-
nificant inter- ethnic variation irrespective of disease status. One classic example is 
reported by Knowler et al. [9] who showed spurious inverse association between 
variants in the immunoglobulin haplotype Gm3;5,13,14 and non-insulin dependent 
diabetes mellitus among the Pima-Papago Indians [9]. Individuals with the haplo-
type Gm3;5,13,14 had a higher prevalence of diabetes than those without it (29 % 
vs.8 %). This haplotype, however, measured the subjects’ degree of Caucasian 
genetic heritage and when the analysis was stratified by degree of admixture, the 
association did not exist.

One way to overcome such issue of confounding by population stratification is to 
conduct family based designs with special statistical analyses such as transmission- 
disequilibrium test (TDT). Basically, in TDT, alleles of parents not transmitted to 
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the patients are used as “virtual control” genotypes so any population-level allele 
frequency differences become irrelevant. Several other family-based and population- 
based methods have also been derived from TDT. While these methods are attractive 
because they correct false positives from population stratification, family-based 
samples are difficult to collect and might not be feasible for late-onset diseases 
where the parents might be deceased. Another approach is to use a “homogeneous” 
population. In recent years, there is growing interest to study genetically isolated 
populations such as Finland and Iceland. These populations have been isolated for 
several years and expanded from a small group of individuals called “founder 
population”. Founder population limits the degree of genetic diversity making 
more or less a homogenous population. One major limitation of finding from such 
isolated population is the generalizability to other populations which may have 
different genetic make-ups.

Studies have shown that there is admixture even within such isolated popula-
tions. An alternate method to control for population stratification is to use unrelated 
markers from the non-functional region of the genome as indicators of the amount 
of background diversity in individuals. The first approach, referred as “genomic 
control”, measures the extent of inflation due to population stratification and this 
value can be adjusted in the standard analyses. The second approach would be infer-
ring genetic ancestry, by either the structured-association approach where individuals 
are assigned to subpopulation clusters using model-based clustering program such 
as STRUCTURE; or infer population structure with principal component analysis 
(PCA). Either association analyses are performed by stratifying clusters or covari-
ates derived from ancestry information are adjusted in the analyses.

 Genotype Error and Misclassification

For family-based studies (trio data for TDT), genotyping errors have been shown to 
increase type I and type II errors and for population-based (case–control) studies it 
can increase type II errors and thus decrease the power. Additionally, misclassifica-
tion of genotypes can also bias LD measurements.

In general, genotyping errors could be a result of poor amplification, assay fail-
ure, DNA quality and quantity, genomic duplication or sample contamination. It is 
important that a quality-check be performed for each marker and the low- 
performance once be removed from the analysis before the results are interpreted. 
Several laboratory based methods such as (a) genotyping duplicate individuals 
(b) genotyping the same individuals for the same marker using different assay 
platforms or (c) genotyping in family pedigrees to check for Mendelian inconsis-
tency, (i.e. the offspring should share the genetic makeup of the parents and any 
deviation could indicate genotype error) can be used to assure the quality of the 
genotypic data. Testing for HWE is also commonly used, however it is important to 
note that deviation from HWE does not necessarily indicate genotype error and 
could be due to any of the underlying causes as described earlier.
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 Multiple Testing

Regardless of whether each SNP is analyzed one at a time or as part of a haplotype, 
the number of individual tests can become very large and can lead to an inflated 
(false positive) type I error rate both in candidate gene approach and whole genome 
approach. If the selected SNPs are all independent, then adjustments to the conven-
tional p-value of 0.05 with Bonferroni correction could account for the multiple 
testing. However, given the known LD pattern between SNPs, such adjustments 
would overcorrect for the inflated false-positive rate, resulting in a reduction in 
power. An alternate method would be to use the False Discovery Rate (FDR) 
approach which rather than correcting the p-value, corrects for fraction of false- 
positives with the significant p-value. When a well defined statistical test is per-
formed (testing a null against an alternative hypothesis) multiple times, the FDR 
estimates the expected proportion of false positives from among the tests declared 
significant. For example, if 100 SNPs are said to be significantly associated with a 
trait at a false discovery rate of 5 %, then on average 5 are expected to be false posi-
tives. However, the gold standard approach that is being appreciated more is the 
permutation testing where the groups status of the individuals are randomly per-
muted and the analysis repeated several times to get a distribution for the test statis-
tics under the null hypothesis but this method can also be computationally intensive 
and time-consuming.

 Concluding Remarks

The completion of the Human Genome Project in 2003 heightened expectations of 
the health benefits from genetic studies [10]. Other projects such as the HapMap 
and 1000 Genome projects have complemented knowledge from the Human 
Genome Project. The markedly low cost to sequence the genome has provided add-
itional information from various projects, which was not possible a few years ago. 
The ENCODE project has furthered our knowledge that previously thought “junk” 
DNA sequences are important as they have regulatory and other unknown functions. 
While the known genetic factors and methods drive our paths ahead, all the unknown 
factors make us all strive to answer the multitude of important translational ques-
tions in the field of clinical research and medicine.

Methods in genetic epidemiology are very powerful in examining and identify-
ing the underlying genetic basis of any phenotype if conducted properly. There are 
several study designs that can be used with a common goal of finding both the indi-
vidual effects and interactions within and between genes and environmental expos-
ures that causes the disease. While the technology has provided us better and 
efficient platforms to conduct the studies, the underlying purpose of genetic epi-
demiology studies have always remained the same – what genetic variants cause the 
phenotype or the disease and how can we complement this deficit or control the 
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overload of the protein encoded by the variant in the gene to stop the disease? 
Regardless of the approach, several design and methodological issues need to be 
considered when conducting studies and interpreting the results (Table 11.3). 
Although these studies may find association of the phenotype with a genetic variant, 
the challenge is to meaningfully translate the findings. In most instances the alleles 
are in the non-coding region and the frequencies are rare but this the stepping stone 
in the process of understanding the complexity of common diseases. Very rarely can 
we find a conclusive evidence of genetic effect from a single study, so replication 
studies with larger samples size should be encouraged to provide insurance against 
the unknown confounders and biases. To understand the biologic significance of the 
variants, animal studies and gene expression studies can be conducted as follow-up 
studies. Of note, most of the loci from the association studies, singly or in aggre-
gate, only explain a small proportion of trait heritability. This “missing heritability” 
is reflected by small odds ratios and often has limited predictive utility. Overall, 
clinicians need to be aware of the potential role of genetics in disease etiology and 
be cautiously familiar with issues and limitations in conducting genetic epidemi-
ology studies before interpreting them for clinical or public health use.
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    Abstract     Pharmacoepidemiology (PE) is the discipline that studies the frequency and 
distribution of health and disease in human populations, as a result of the use and effects 
(benefi cial and adverse) of drugs. PE uses methods similar to traditional epidemiologic 
investigation, but applies them to the area of clinical pharmacology. This chapter will 
review the factors involved in the selection of the type of pharmacoepidemiologic study 
design, and advantages and disadvantages of these designs. Since other chapters describe 
randomized clinical trials in detail, we will focus on observational studies.  

  Keywords     Pharmacoepidemiology   •   Effectiveness trials   •   Pragmatic trials   •   Case- 
time control study  

     Pharmacoepidemiology (PE) is the discipline that studies the frequency and distri-
bution of health and disease in human populations, as a result of the use and effects 
(benefi cial and adverse) of drugs. PE uses methods similar to traditional epidemio-
logic investigation, but applies them to the area of clinical pharmacology [ 1 ]. Many 
of the same precepts hold for PE studies as has been discussed in previous chapters, 
however, this chapter can serve as a review of many of the same principles; but, then 
as they specifi cally apply to PE research. 
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 In the last few years, PE has acquired relevance because of various drug withdrawals 
from the market; and, as a result of public scandals related to drug safety and regulatory 
issues. Some of these withdrawn and controversial drugs include troglitazone, [ 2 – 4 ] 
cisapride, [ 5 ,  6 ] cerivastatin, [ 7 – 10 ] rofecoxib, [ 11 – 13 ] and valdecoxib [ 13 – 15 ]. One of 
the major allegations cited with each of these drug withdrawals were fl aws in the study 
designs that were used to demonstrate drug effi cacy or safety. Furthermore, the study 
designs involved with these withdrawn drugs were variable and reported confl icting 
results [ 16 ]. An example of the controversies surrounding drug withdrawals is the asso-
ciation of nonsteroidal antiinfl amatory drugs (NSAID) with chronic renal disease 
[ 17 – 21 ]. The observation that one study may produce different results from another, 
presumably similar study (and certainly from studies of differing designs) is, of course, 
not unique to PE, as has been discussed in prior chapters. 

 Pharmacoepidemiologic studies have been used with many purposes, for example 
to: examine the natural history of a disease, determine the incidence rates of events in 
the general population, characterize safety signals associated with medications, describe 
drug utilization patterns, determine risk factors for specifi c events, assessing the benefi ts 
and risks of products or evaluating strategies to enhance the benefi t/risk balance [ 22 ]. 

 In addition, pharmacoepidemiology is growing around the world because of 
availability of electronic databases (e.g. claims, medical records), advances in com-
puters with more powerful software and hardware, and improvements in method-
ological approaches to deal with various types of confounding particularly 
confounding by indication [ 23 ]. 

 This chapter will review the factors involved in the selection of the type of 
pharmacoepidemiologic study design, and advantages and disadvantages of these 
designs. Since other chapters describe randomized clinical trials in detail, we will 
focus on observational studies. 

    Selection of Study Design 

 Many of the considerations necessary to determine the optimal study in PE are simi-
lar to those discussed in prior chapters; however, a brief review here will serve as a 
necessary reminder. Thus, before one can select the appropriate study design, one 
needs an appropriate research question that includes the objective and the purpose of 
the study (as is true for traditional epidemiologic studies). There is a consensus that 
an appropriate research question includes information about the exposure, outcome, 
and the population of interest, and they are included in the protocol. For example, an 
investigator might be interested in the question of whether there is an association of 
rosiglitazone with cardiac death in patients with type 2 diabetes mellitus. In this case, 
the exposure is the antidiabetic drug rosiglitazone, the outcome is cardiac death, and 
the population is a group of patients with type 2 diabetes. Although this may seem 
simplistic, it is surprising how many times it is unclear what the exact research 
question of a study is, and what the elements are which are under study. 

 The key elements for clearly stated objectives are keeping them SMART: 
Specifi c, Measurable, Appropriate, Realistic and Time-bound (SMART) [ 24 ]. An 
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objective is specifi c if it indicates the target; in other words, who and what is the 
focus of the research, and what outcomes are expected. By measurable, it is meant 
that the objective includes a quantitative measure. Appropriate, refers to an objec-
tive that is sensitive to target needs and societal norms, and realistic refers to an 
objective that includes a measure which can be reasonably achieved under the given 
conditions of the study. Finally, time-bound refers to an objective that clearly states 
the study duration. For example, a clearly stated objective might be: ‘to estimate the 
risk of rosiglitazone used as monotherapy on cardiac death in patients with type 2 
diabetes treated between the years 2000–2007.’ 

 In summary, in PE as in other areas of clinical research, clearly stated objectives are 
important in order to decide on the study design and analytic approach. That is, when a 
researcher has a clear idea about the research question and objective, it leads naturally to 
the optimal study design. Additionally, the investigator then takes into account the nature 
of the disease, the type of exposure, and available resources in order to complete the 
thought process involved in determining the optimal design and analysis approach. By 
the ‘nature of the disease’ it is meant that one is cognizant of the natural history of the 
disease from its inception to death. For example, a disease might be acute or chronic, 
and last from hours to years, and these considerations will determine whether the study 
needs to follow a cohort for weeks or for years in order to observe the outcome of inter-
est. In PE research, the exposure usually refers to a drug or medication, and this could 
result in a study that could vary in duration (hours to years), frequency (constant or 
temporal) and strength (low vs. high dose). All of these aforementioned factors will have 
an impact on the selection of the design and the conduct of the study. In addition, a 
researcher might be interested in the effect of an exposure at one point in time (e.g. 
cross-sectional) vs. an exposure over long periods of time (e.g. cohort, case-control). 

 Since almost every research question can be approached using various designs, the 
investigator needs to consider both the strengths and weaknesses of each design in order 
to come to a fi nal decision. For example, if an exposure is rare, the most effi cient design 
is a cohort study (provided the outcome is common) but if the outcome is rare, the most 
effi cient design is a case-control study (provided the exposure is common). If both the 
outcome and exposure are rare, a case-cohort design might be appropriate where odds 
ratio might be calculated with exposure data from a large reference cohort (Fig.  12.1 ).

Prevalence or Incidence of Outcome

Not Rare Rare

Drug Exposure Not Rare Cohort or clinical trial Case-control

Rare Cohort Case-Cohort

  Fig. 12.1    Designs by frequency of exposure and outcome       
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       Study Designs Common in PE 

 Table  12.1  demonstrates the study designs frequently used in PE research. 
Observational designs are particularly useful to study unintended drug effects in the 
postmarketing phase of the drug cycle. It is also important to consider the compara-
tive effectiveness trial that is used in postmarketing research (see Chap.   5    ).

   Effectiveness trials can be randomized or not randomized, and they are characterized 
by the head-to-head comparison of alternative treatments in large heterogeneous popu-
lations, imitating clinical practice [ 25 – 27 ]. As it is mentioned in Chap.   3    , randomized 
clinical trials provide the most robust evidence, but they have often limited utility in 
daily practice because of selective population (e.g. specifi c disease severity, number of 
comorbidities and concomitant medications), small sample size, low drug doses, short 
follow-up period, and highly controlled environment [ 28 ].  

    Descriptive Observational Studies 

 Recall that these are predominantly hypothesis generating studies where investiga-
tors try to recognize or to characterize a problem in a population. In PE research, for 
example, investigators might be interested in recognizing unknown adverse effects, 
in knowing how a drug is used by specifi c populations, or how many people might 
be at risk of an adverse drug event. As a consequence, these studies do not generally 

  Table 12.1    Classifi cation 
of postmarketing studies  

 I. Descriptive observational studies 
  A. Case report 
  B. Case series 
  C. Ecologic studies 
  D. Cross-sectional studies 
 II. Analytical studies 
   Observational studies  
   A. Case-control studies 
   B. Cross-sectional studies 
   C. Cohort studies 
   D. Hybrid studies 
    1. Nested case-control studies 
    2. Case-cohort studies 
    3. Case-crossover studies 
    4. Case-time studies 
   Interventional studies  
   A. Controlled clinical trials 
   B. Randomized, control clinical trials 
   C. N of trials 
   D. Simplifi ed clinical trials 
   E. Community trial 

M. Salas and B. Stricker

http://dx.doi.org/10.1007/978-3-319-05470-4_5
http://dx.doi.org/10.1007/978-3-319-05470-4_3


261

measure associations; rather, they use measures of frequency such as proportions, 
rate, risk and prevalence.  

    Case Report 

 Case reports are descriptions of the history of a single patient who has been exposed 
to a medication and experiences a particular and unexpected effect, whether that 
effect is benefi cial or harmful. In contrast to traditional research, in pharmacoepide-
miologic research, case reports have a privileged place, because they can be the fi rst 
signal of an adverse drug event, or the fi rst indication for the use of a drug for 
conditions not previously approved (off-label indications by the regulatory agency 
e.g. Food and Drug Administration). As an example, case reports were used to com-
municate unintended adverse events such as phocomelia associated with the use of 
thalidomide [ 29 ]. Case reports also make up the key element for spontaneous report-
ing systems such as MedWatch, The FDA Safety Information and Adverse Event 
Reporting Program. The MedWatch program allows providers, consumers and man-
ufacturers to report serious problems that they suspect are associated with the drugs 
and medical devices they prescribe, dispense, or use. By law, manufacturers, when 
they become aware of any adverse effect, must submit a case report form of serious 
unintended adverse events that have not been listed in the drug labeling within 15 
calendar days [ 30 ].  

    Case Series 

 Case series is essentially a collection of ‘case reports’ that share some common 
characteristics such as being exposed to the same drug; and, in which same outcome 
is observed. Frequently, case series are part of phase IV postmarketing surveillance 
studies, and pharmaceutical companies may use them to obtain more information 
about the effect, benefi cial or harmful, of a drug. For example, Humphries, et al. 
reported a case series of cimetidine carried out in its postmarketing phase, in order 
to determine if cimetidine was associated with agranulocytosis [ 31 ]. The authors 
followed new cimetidine users, and ultimately found no association with agranulo-
cytosis. Often, case series characterize a certain drug-disease association in order to 
obtain more insight into the clinicopathological pattern of an adverse effect; such as, 
hepatitis occurring as a result of exposure to nitrofurantoin [ 32 ]. The main limita-
tion of case series is that they do not include a comparison group(s). The lack of a 
comparison group is critical, and the result is that is diffi cult to determine if the drug 
effect is greater, the same or less than the expected effect in a specifi c population 
(a situation that obviously complicates the determination of causality).  
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    Ecologic Studies 

 Ecologic studies evaluate secular trends and are studies where trends of drug-related 
outcomes are examined over time or across countries. In these studies, data from a 
single region can be analyzed to determine changes over time; or, data from a single 
time period can be analyzed to compare one region vs. another. Since ecologic studies 
do not provide data on individuals (rather they analyze data based on study groups), 
it is not only impossible to adjust for confounding variables; but, it does not reveal 
whether an individual with the disease of interest actually used the drug (this is 
termed the ecologic fallacy). In ecologic studies, sales, marketing, and claims data-
bases are commonly used. For example, one study compared urban vs. the rural 
areas in Italy using drug sales data to assess for regional differences in the sales of 
tranquilizers [ 33 ,  34 ]. For the reasons given above, ecologic studies are limited in 
their ability to associate a specifi c drug with an outcome; and, invariably there are 
usually other factors that could also explain the outcome.  

    Cross-Sectional Studies 

 Cross-sectional studies are particularly useful in drug utilization studies and in prescrib-
ing studies, because they can present a picture of how a drug is actually used in a popula-
tion or how providers are actually prescribing medications. Cross-sectional studies can be 
descriptive or analytical. Cross-sectional studies are considered descriptive in nature 
when they describe the ‘big’ picture about the use of a drug in a population, and the infor-
mation about the exposure and the outcome are obtained at the same point in time. Cross 
sectional designs are used in drug utilization studies because these studies are focused on 
prescription, dispensing, administration of medication, marketing, and distribution; and, 
also address the use of drugs at a societal level, with special emphasis on the drugs resul-
tant effect on medical, social, and economic consequences. Cross-sectional studies in PE 
are particularly important to determine how specifi c groups of patients, e.g. elderly, chil-
dren, minorities, pregnant, etc. are using medications. As an example, Paulose-Ram et al. 
analyzed the U.S. National Health and Nutrition Examination Survey (NHANES) from 
1988 to 1994 in order to estimate the frequency of analgesic use in a nationally represen-
tative sample from the U.S. From this study it was estimated that 147 million adults used 
analgesics monthly, women and Caucasians used more analgesics than men and other 
races, and more than 75 % of the use was over the counter [ 35 ]. 

    Analytical Studies 

 Analytic studies, by defi nition, have a comparison group and as such are more able to 
assess an association or a relationship between an exposure and an outcome. If the 
investigator is able to allocate the exposure, the analytical study is considered to be an 
interventional study; while if the investigator does not allocate the exposure; the study 
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is considered observational or non-experimental (or non-interventional). Analytical 
observational pharmacoepidemiologic studies quantify benefi cial or adverse drug 
effects using measures of association such as rate, risk, odds ratios, rate ratios, or risk 
difference. Analytic pharmacoepidemiologic studies are particularly important when 
there are uncommon or delayed adverse events because clinical trials would be imprac-
tical and/or unfeasible especially if event rates are lower than 1:2,000 or 1:3000 [ 36 ].   

    Cross-Sectional Studies 

 Cross-sectional studies can be analytical if they are attempting to demonstrate an 
association between an exposure and an outcome. For example, Paulose-Ram et al. 
used the NHANES III data to estimate the frequency of psychotropic medication used 
among Americans between 1988 and 1994; and, to estimate if there was an associa-
tion of sociodemographic characteristics with psychotropic medication use. They 
found that psychotropic medications were associated with low socioeconomic status, 
lack of high school education, and whether subjects were insured [ 37 ]. The problem 
with analytical cross-sectional studies is that it is often unknown whether the exposure 
really precedes the outcome because both are measured at the same point in time. This 
is obviously important since if the exposure does not precede the outcome, it can not 
be the cause of that outcome. This is especially important in cases of chronic disease 
where it may be diffi cult to ascertain which drugs preceded the onset of that disease.  

    Case-Control Studies (or Case-Referent Studies) 

 Case control and cohort studies are designs where participants are selected based on 
the outcome (case-control) or on the exposure (cohort) Fig.  12.2 . In PE case-control 
studies, the odds of drug use among cases (the ratio exposed cases/unexposed cases) 
are compared to the odds of drug use among non cases (the ratio exposed  controls/
unexposed controls). The case-control design is particularly desirable when one 
wants to study multiple determinants of a single outcome [ 38 ]. The case-control 
design is a particularly effi cient study when the outcomes are rare, since the design 
guarantees a suffi cient number of cases. For example, Ibanez et al. designed a case- 
control study to estimate the association of non-steroidal anti-infl ammatory drugs 
(NSAID) (common exposure) with end-stage renal disease (a rare outcome). In this 
study, the cases were patients entering a local dialysis program from 1995 to 1997 
as a result of end-stage renal disease; while controls, were selected from the hospital 
where the case was fi rst diagnosed (in addition, the controls did not have conditions 
associated with NSAID use). Information on previous use of NSAID drugs 
(exposure) was then obtained in face-to-face interviews (which, by the way, might 
introduce bias – this type of bias may be prevented if prospectively gathered pre-
scription data are available, although for NSAIDs the over-the-counter use is almost 
never registered on an individual basis).
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   As implied above, case-control studies are vulnerable to selection, information and 
confounding bias. For example, selection bias can occur when the cases enrolled in the 
study have a drug use profi le that is not representative of all cases. For instance, selec-
tion bias occurs if cases are identifi ed from hospital data and if people with the medical 
condition of interest are more likely to be hospitalized if they used the drug (than if they 
did not). Selection bias may also occur by selective nonparticipation in the study, or 
when controls enrolled in a study have a drug use profi le that differs from that of the 
‘sample study base’ (Fig.  12.3 ). Selection bias can then be minimized if controls are 
selected from the same source population (study base) as the cases [ 39 ,  40 ].

   Since the exposure information in case-control studies is frequently obtained 
retrospectively-through medical records, interviews, and self-administered ques-
tionnaires, case-control studies are often subject to information bias. Most informa-
tion bias pertains to recall and measurement bias. Recall bias may occur, for 
example, when interviewed cases remember more details about drug use than non- 
cases. The use of electronic pharmacy databases, with complete information about 
drug exposure, could reduce this type of bias. Finally, an example of measurement 
or diagnostic bias occurs when researchers partly base the diagnosis of interpret-
ation of the diagnosis on knowledge of the exposure status of the study subjects.  

    Cohort Studies 

 Recall, that in cohort studies, participants are recruited based on the exposure and 
they are followed up over time while studying differences in their outcome. In PE 
cohort studies, users of a drug are compared to nonusers or users of other drugs with 

Case-Control Design Cohort Design

Outcome                   Exposure Exposure                    Outcome

  Fig. 12.2    Case-control and cohort designs       

Hypothetical Study Base. All users & nonusers of a drug A observed through
the theoretical time period required to develop an adverse drug event.

Sample Study Base is a subpopulation of users and nonusers of drug A in a
particular setting observed for a particular period of time

  Fig. 12.3    Study base and sample study base       
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respect to rate or risk of an outcome. PE cohort studies are particularly effi cient for 
rarely used drugs, or when there are multiple outcomes from a single exposure. The 
cohort study design then allows for establishing a temporal relationship between the 
exposure and the outcome because drug use precedes the onset of the outcome. In 
cohort studies, selection bias is generally less likely to occur than in case-control 
designs. Selection bias is less likely to occur, for example, when the drug use profi le 
of the sample study base is similar to that of subjects enrolled in the study. 

 The disadvantages of cohort studies include the need for large number of sub-
jects (unless the outcome is common, cohort studies are potentially uninformative 
for rare outcomes – especially those which require a long observation period); they 
are generally more expensive than other designs, particularly if active data collec-
tion is needed. In addition, they are vulnerable to bias if a high number of partici-
pants are lost during the follow-up (high drop-out rate). Finally, for some 
retrospective cohort studies, information about confounding factors might be lim-
ited or unavailable. With retrospective cohort studies, for example, the study popu-
lation is frequently dynamic because the amount of time during which a subject is 
observed varies from subject to subject. PE retrospective cohort studies are fre-
quently performed with information from automated databases with reimbursement 
or health care information (e.g. Veterans Administration database, Saskatchewan 
database, PHARMO database). 

 A special bias exists with cohort studies, the immortal time bias, which can occur 
when, as a result of the exposure defi nition, a subject, cannot incur the outcome 
event of interest during the follow up. For example, if an exposure is defi ned as the 
fi rst prescription of drug ‘A’, and the outcome is death, the period of time from 
the calendar date to the fi rst prescription where the outcome does not occur is the 
immortal time bias (red oval in Fig.  12.4 ). If during that period, the outcome occurs 
(e.g. death), then the subject won’t be classifi ed as part of the study group, rather, 

Calendar date (e.g. Jan 1st
,

2000)
 

Calendar date (e.g. Jan 1st
,

2000)
 

Outcome (e.g. death)

Exposure= 1st prescription of drug A

1st prescription (e.g. inhaled steroids) 

Outcome (e.g. death)

Non-exposed to drug A

  Fig. 12.4    Immortal time bias in exposed (Study) and non-exposed (Control) groups (Adapted 
from Refs. [ 44 – 49 ])       

 

12 Research Methods for Pharmacoepidemiology Studies



266

that subject will be part of the control group. This type of bias was described in the 
seventies when investigators compared the survival time of individuals receiving a 
heart transplant (study group) vs. those who were candidates but did not receive the 
transplant (control group). They found longer survival in the study group [ 41 ,  42 ]. 
A reanalysis of data demonstrated that there was a waiting time from diagnosis of 
cardiac disease to the heart transplant, where patients were ‘immortal’ because if 
they died before the heart transplant, they were part of the control group [ 43 ]. This 
concept was adopted in pharmacoepidemiology research and since then, many pub-
lished studies have been described with this type of bias [ 44 – 49 ]. (Fig.  12.4 ).

   As prior mentioned, the consequence of this immortal time bias is the spurious 
appearance of a better outcome in the study group such as lower death rates. In other 
words, there is an underestimation of person-time without a drug treatment leading 
to an overestimation of a treatment effect [ 50 ]. One of the techniques to avoid 
immortal time bias is time-dependent drug exposure analysis [ 51 ].  

    Hybrid Studies 

 In PE research, hybrid designs are commonly used to study drug effects and drug 
safety. These designs combine several standard epidemiologic designs with result-
ing increased effi ciency. In these studies, cases are selected on the basis of the out-
come; and, drug use is compared with the drug use of several different types of 
comparison groups (see Table  12.2 ). These designs include: nested-case control 
studies, case-cohort design, case-crossover design, case-time-control design, and 
self-controlled case series [ 52 ].

       Nested Case-Control Studies 

 Recall that a nested case-control study refers to a case-control study which is 
nested in a cohort study or RCT. In PE, nested case-control studies, a defi ned 
population is followed for a period of time until a number of incident cases of a 

   Table 12.2    A description of some hybrid postmarketing study designs   

 Design  Control group 

 Nested case-control  Subjects in the same cohort, without the case condition 
 Case-cohort  A sample of the cohort at baseline (may include later cases) 
 Case-crossover  Cases, at an earlier time period 
 Case-time-control  Cases, at an earlier time period but time effect is considered 
 Self-controlled case series  Cases are their own controls 
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disease or an adverse drug reaction is identifi ed. If the case-control study is 
nested in a cohort with prospectively gathered data on drug use, recall bias is no 
longer a problem. In PE as in other clinical research, nested case-control studies 
are used when the outcome is rare or the outcome has long induction time and 
latency. Frequently, this type of design is used when there is the need to use 
stored biological samples and additional information on drug use and confound-
ers are needed. When it is ineffi cient to collect the aforementioned data for 
the complete cohort, (a common occurrence) a nested case-control study is 
desirable.  

    Case-Cohort Studies 

 Recall that this type of study is similar to a nested case-control design, except the 
exposure and covariate information is collected from all cases, whereas controls 
are a random representative sample selected from the original cohort [ 53 ,  54 ]. 
Case- cohort studies are recommended in the presence of rare outcomes or when 
the outcome has a long induction time and latency, but especially when the expo-
sure is rare (if the exposure in controls is common, a case-control study is prefer-
able). In PE case-cohort studies, the proportion of drug use in cases is compared 
to the proportion of drug use in the reference cohort (which may include cases). 
An example of the use of this design was to evaluate the association between 
immunosuppressive therapy (cyclophosphamide, azathioprine and methotrexate) 
and haematological changes in lung cancer, in patients with systemic lupus 
 erythematosus (this was based on a lupus erythematosus cohort from centers in 
North America, Europe and Asia, where exposure and covariate information for 
all cases was collected). Cases were defi ned as SLE, with invasive cancers 
 discovered at each center after entry into the lupus cohort; and, the index time 
for each risk set was the date of the case’s cancer occurrence. Controls were 
obtained from a random sample of the cohort (10 % of the full cohort) and they 
represented cancer free patients up to the index time. Authors found that immu-
nosuppressive therapy may contribute to an increased risk of hematological 
malignancies [ 55 ].  

    Case-Crossover Studies 

 Recall that the case-crossover design was proposed by Maclure, and in this design 
only cases that have experienced an outcome are considered. In that way, each case 
contributes one case window and one or more control windows at various time periods, 
and for the same patient. In other words, control subjects are the same as cases, just 
at an earlier time, so cases serve as own controls (see Chap.   4    ) [ 56 ,  57 ]. This type of 
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design is particularly useful when a disease does not vary over time and when expo-
sures are transient, brief and acute [ 56 ,  58 ]. The case-crossover design  contributes to 
the elimination of control selection bias and avoids diffi culties in selecting and 
enrolling controls. However, case crossover designs are not suitable for studying 
chronic conditions [ 59 ]. In PE, case-crossover studies might compare the odds of 
drug use at a time close to onset of a medical condition compared with odds at an 
earlier time (Fig.  12.5 ).

   Case-crossover designs have been used to assess the acute risks of vehicular 
accidents associated with the use of benzodiazepines [ 60 ] and also to study changes 
in medication use associated with epilepsy-related hospitalization. In this latter 
study, Handoko et al. used the PHARMO database from 1998 to 2002. For each 
patient, changes in medication in a 28-day window before hospitalization, were 
compared with changes in four earlier 28-day windows; and, pattern of drug use, 
dosages, and interaction with medications were analyzed. Investigators found that 
patients starting with three or more new non antiepileptic drugs had a fi ve times 
higher risk of epilepsy-related hospitalization [ 61 ]. In case-crossover designs, con-
ditional logistic regression analysis is classically used to assess the association 
between event and exposure [ 62 ,  63 ].  

    Case-Time-Control Studies 

 The case-time control design was proposed by Suissa [ 64 ] to control for con-
founding by indication. In this design subjects from a conventional case-control 
design are used as their own controls. This design is an extension of the case-
crossover design but it takes into account the time effect, particularly the variation 
in the drug use over time. This type of design is recommended when an exposure 
varies over time and when there are two or more points measured at different 
times, and it is expected to be able to separate the drug effect from the disease 
severity. Something to consider is that the same precautions used in case-cross-
over designs should also be taken into account in case-time-control designs, and 
the exposures of control subjects must be measured at the same points in calendar 
time as their cases.  

Exposed and Unexposed Periods in the Same Subject

Unexposed
time period

Control
time1

Exposed
time period

Case

Unexposed
time period

Control
time2

Exposed
time period

Case

Unexposed
time period

Control
time3

  Fig. 12.5    Case-crossover design       
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    Self-Controlled Case Series 

 In this design, case series are used to study the temporal association between a time- 
varying exposure and an adverse event (acute event) using data on cases only [ 52 ]. 
In this case, the effect of exposure is transitory and limited to a certain risk period, 
and then it returns to baseline. For example, if there is interest in studying thrombo-
cytopenia associated with a vaccine administered at specifi c age, the risk period is 
limited to that age period. The assumptions of self-controlled case series include: 
the occurrence of an event must not alter the probability of subsequent exposure, the 
occurrence of the event must not affect the observation period and recurrent events 
should be independent or if they are not but the event is rare, only the fi rst event can 
be used. The advantage of this design is that cases are their own controls which 
imply an adjustment of confounders (e.g. socioeconomic factors). In addition, it 
reduces the effort and cost of data collection [ 52 ].  

    Biases in PE 

 In PE, a special type of bias (confounding by indication) occurs when those subjects 
who receive the drug have an inherently different prognosis from those who do not 
receive the drug. If the indication for treatment is an independent risk factor for the 
study outcome, the association of this indication with the prescribed drug may cause 
confounding by indication. A variant of confounding by indication (confounding by 
severity) may occur if a drug is prescribed selectively to patients with specifi c dis-
ease severity profi les [ 65 ]. Some hybrid designs and statistical techniques have been 
proposed to control for confounding by indication. In terms of statistical techniques, 
it has been proposed that one use multivariable model risk adjustment, propensity 
score risk adjustment, propensity-based matching and instrumental variable analy-
sis to control for confounding by indication. Multivariable model risk adjustment is 
a conventional modeling approach that incorporates all known confounders into the 
model. Controlling for those covariates produces a risk-adjusted treatment effect 
and removes overt bias due to those factors [ 66 ]. 

 Propensity score risk adjustment is a technique used to adjust for nonrandom 
treatment assignment. It is a conditional probability of assignment to a particular 
treatment given a set of observed patient-level characteristics [ 67 ,  68 ]. In this tech-
nique, a score is developed for each subject based on a prediction equation and the 
subject’s value of each variable is included in the prediction equation [ 69 ], and it is 
a scalar summary of all observed confounders. Within propensity score strata, 
covariates in treated and non-treated groups are similarly distributed, so the stratifi -
cation using propensity score strata is claimed to remove more than 90 % of the 
overt bias due to the covariates used to estimate the score [ 70 ,  71 ]. Unknown biases 
can be partially removed only if they are correlated with covariates already mea-
sured and included in the model to compute the score [ 72 – 74 ]. 
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 Instrumental variable analysis is an econometric method used to remove the 
effects of hidden bias in observational studies [ 75 ,  76 ]. Instrumental variables 
are highly correlated with treatment and they do not independently affect the 
outcome. Therefore, they are not associated with patient health status. 
Instrumental variable analysis compared groups of patients that differ in likeli-
hood of receiving a drug [ 77 ].  

    Summary 

 In pharmacoepidemiology research as is true for traditional research, the selection 
of an appropriate study design requires the consideration of various factors such as 
the frequency of the exposure and outcome, and the population under study. 
Investigators frequently need to weigh the choice of a study design with the quality 
of information collected along with its associated costs. In fact, new pharmacoepi-
demiologic designs are being developed to improve study effi ciency. 

 Pharmacoepidemiology is not a new discipline, but it is currently recognized as 
one of the most challenging and growing areas in research, and many techniques 
and methods are being tested to confront those challenges. Pharmacovigilance (See 
Chap.   5    ) as a part of pharmacoepidemiology is of great interest for decision makers, 
researchers, providers, manufacturers and the public, because of concerns about 
drug safety. Therefore, we should expect in the future, the development of new 
methods to assess the risk/benefi t ratios of medications.     
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Abstract Implementation research is a new scientific discipline emerging from 
the recognition that the public does not derive sufficient or rapid benefit from advances 
in the health sciences (Berwick DM, JAMA 289:1969–1975, 2003; Lenfant C, N Engl 
J Med 349:868–874, 2003). One often-quoted estimate claims that it takes an average 
of 17 years for even well-established clinical knowledge to be fully adopted into routine 
practice (Kiefe CI, Sales A, J Gen Intern Med 21(Suppl 2):S67–S70, 2006). In this 
chapter, we will discuss particular barriers to evidence implementation, present tools 
for implementation research, and provide a framework for designing implementation 
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research studies, emphasizing the randomized trial. The reader is advised that this 
chapter only provides a basic introduction to several concepts for which new approaches 
are rapidly emerging. Therefore, our goal is to stimulate interest and promote 
additional in-depth learning for those who wish to develop new implementation 
research projects or better understand this exciting field.

Keywords Implementation research tools • Rogers Diffusion Theory • Translational 
barriers • Academic detailing • Pay-for-performance

 Introduction

 Overview and Definition of Implementation Research

Implementation research is an emergent discipline born from the recognition that 
the public does not derive sufficient or rapid benefit from advances in the health 
sciences [1, 2]. Implementation research bridges the gap between scientific knowl-
edge and its application to daily practice with the overall purpose of improving the 
health of individuals and populations. One often-quoted estimate claims that it takes 
an average of 17 years for even well-established clinical knowledge to be fully 
adopted into routine practice [3]. In addition, approximately half of trials funded 
by the National Institutes of Health were published in peer-reviewed publications 
two and a half years after study completion [4].

For example, in 2000, only one-third of patients with coronary artery disease 
received aspirin when no contraindications to its use were present; [2] furthermore, 
a landmark study estimated that the American public was only receiving about 55 % of 
recommended care [5]. Implementation research definitions are shown in Table 13.1.

A glossary of terms used in implementation research is now available [13, 14]. 
The definition of implementation research may be expanded to encompass work 
that promotes patient safety and eliminates racial and ethnic disparities in health 
care. Health disparities implementation research aims to identify strategies to close 
gaps in health care through culturally-appropriate interventions for patients, clin-
icians, health care systems, and populations [15–18]. Under-represented popula-
tions make up a significant portion of the U.S. population, shoulder a disproportionate 
burden of disease, and receive inadequate care [19]. According to the U.S. National 
Institute of Health (NIH), ‘dissemination and implementation research intends to 
bridge the gap between public health, clinical research, and everyday practice by 
building a knowledge base about how health information, interventions, and new 
clinical practices and policies are transmitted and translated for public health and 
health care service use in specific settings’ [6].

Gaps in health care may be classified as ‘errors of omission,’ (failure to provide 
necessary care [20]) and ‘errors of commission,’ such as the delivery of unnecessary 
or inappropriate care which causes harm. A landmark report from the Institute of 
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Medicine drew attention to patient safety and the concept of preventable injury [21]. 
Studies of patient safety have focused on ‘medical error resulting in an inappropriate 
increased risk of iatrogenic adverse event(s) from receiving too much or hazardous 
treatment (overuse or misuse)’ [20].

For example, inappropriate antibiotic use may promote microbial resistance and 
cause unnecessary adverse events. Since 1999, public efforts have been underway 
to promote appropriate prescribing of antibiotics for acute respiratory infections 
(ARIs) [22]. Based on well-designed studies demonstrating no benefit, guidelines 
have long recommended against antibiotic use for acute bronchitis; [23, 24] 
however, physicians continue to prescribe antibiotics for patients diagnosed with 
ARIs. Although overall antibiotic use for ARIs declined between 1995 and 2002, use 
of broad-spectrum antibiotic prescriptions for ARIs increased [25]. A more recent 
implementation research project successfully used a multidimensional intervention 
in emergency departments to decrease antibiotic prescribing [26].

In response to what may be perceived as overwhelming evidence that thousands 
of lives are lost each year from errors of omission and commission, there have 
been strong national calls for health systems, hospitals, and physicians to adopt 
new approaches for moving evidence into practice, but rigorous supporting evidence 
is often lacking [27, 28].

As our understanding of implementation science is evolving, local clinicians and 
health systems must strive to improve the quality of care for every patient. Certain 
local decisions must be based on combinations of incomplete empiric evidence 
and personal experience. As with the clinician caring for the individual patient, 
every decision about local implementation cannot be guided by data from a ran-
domized trial [29, 30]. However, a stronger evidence base is needed to inform 
wide-spread implementation efforts. Widespread implementation beyond evidence 

Table 13.1 Implementation research – definitions and terms

‘is the scientific study of methods to promote the integration [and rapid uptake] of research 
findings and evidence-based interventions into healthcare practice and policy, [and hence 
improve the health of individuals and populations]’ [6, 7]

‘…scientific investigations that support movement of evidence-based, effective health care 
approaches from the clinical knowledge base into routine use. …. Implementation science 
consists of a body of knowledge on methods to promote the systematic uptake of new or 
underused scientific findings into the usual activities…’ [8]

‘[Knowledge translation] is a dynamic and iterative process that includes synthesis, 
dissemination, exchange and ethically-sound application of knowledge to improve the health 
of Canadians, provide more effective health services and products and strengthen the health 
care system’ [9, 10]

‘is the scientific study of methods to promote the systematic uptake of clinical research findings 
and other evidence-based practices into routine practice, and hence to improve the quality 
(effectiveness, reliability, safety, appropriateness, equity, efficiency) of health care. It includes 
the study of influences on healthcare professional and organizational behavior’ [11]

‘is the systematic study of how a specific set of activities and designed strategies are used to 
successfully integrate an evidence-based public health intervention within specific settings 
(e.g., primary care clinic, community center, school)’ [12]
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raises concern about unintended consequences and opportunity costs from public 
resources wrongly expended on ineffective interventions [30].

Implementation researchers use a variety of techniques, ranging from qualitative 
exploration to the controlled, group-randomized trial. For example, methods used in 
social, cognitive, and organizational psychology are also applicable to implementa-
tion research [31]. Berwick reminds us of the importance of understanding the 
mechanism and context through which implementation techniques exert their poten-
tial effects within complex human systems [32]. Berwick cautioned that important 
lessons may be lost through aggregation and rigorous scientific experimentation, 
challenging the implementation research community to reconsider the basic con-
cept of evidence, itself.

Interventions for translating evidence into practice must operate in complex, 
poorly understood environments with multiple interacting components that may not 
be easily reducible to a clean, scientific formula. Therefore, we later present situ-
ational analysis as a framing device for implementation research. Nonetheless, in 
keeping with the theme of this book, we mainly focus on the randomized trial as one 
of the many critical tools for implementation research.

In summary, implementation research is an emerging body of scientific work 
seeking to close the gap between knowledge generated from the health sciences and 
routine practice, ultimately improving patient and population health outcomes. 
Implementation research, which encompasses the patient, clinician, health system, 
and community, may promote the use of needed services or the avoidance of 
unneeded services. Implementation research often focuses on patients who are vul-
nerable because of race/ethnicity or socioeconomic position. By its very nature 
implementation research is inter-disciplinary.

In this chapter, we discuss barriers to evidence implementation, present tools for 
implementation research, and provide a framework for designing implementation 
research studies. The reader is advised that this chapter only provides a basic intro-
duction to several concepts for which new approaches are rapidly emerging. 
Therefore, our goal is to stimulate interest and promote additional in-depth learning 
for those who wish to develop new implementation research projects or better 
understand this exciting field.

 Overcoming Barriers to Evidence Implementation

Successful implementation of evidence-based interventions largely depends on 
their fit with the preferences and priorities of those who shape, deliver, and partici-
pate in healthcare [33]. Although the conceptual basis for moving evidence into 
practice has not been fully developed, a solid grounding in relevant theory may be 
useful to those designing new implementation research projects [34]. Many concep-
tual models have been developed in other settings and subsequently adapted for 
translating evidence into practice [35]. For example, implementation researchers 
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frequently apply Roger’s theory describing innovation diffusion. Rogers proposed 
three clusters of influence on the rapidity of innovation uptake is influenced by:

• Perceived advantages of the innovation
• The classification of new technology users according to rapidity of uptake; and
• Contextual factors [36].

First, potential users are unlikely to adopt an innovation that is perceived to be 
complex and inconsistent with their needs and cultural norms. Second, rapidity of 
innovation uptake often follows a sigmoid-shaped curve, with an initial period of 
slow uptake led by the ‘innovators.’ Next follows a more rapid period of uptake 
led by the early adopters, or ‘opinion leaders.’ During the last adoption phase, the 
rate of diffusion again slows as the few remaining ‘laggards’ or traditionalists adopt 
the innovation. Finally, contextual or environmental factors such as organizational 
culture exert a profound impact on innovation adoption, a concept that is explored 
in more detail in the following sections of this chapter.

Consistent with the model proposed by Rogers, multiple barriers often work 
synergistically to hinder the translation of evidence into practice [37]. Interventions 
often require significant time, money, and staffing. Implementation sites may expe-
rience difficulties in implementation as a result of limited resources, competing 
demands, and entrenched practices. For example, the intervention may have been 
developed and tested under circumstances that differ from those at the planned 
implementation site. Further, the implementation team may not adequately understand 
the environmental characteristics proposed by Roger’s diffusion theory as critical to 
the adoption of innovation. Because of such concerns a thorough environmental 
analysis is needed prior to widespread implementation efforts [37].

Building upon models proposed by Sung et al. [38] and Rubenstein et al. [8], 
Figure 13.1 depicts the translational barriers implementation research seeks to 
overcome. The first translational roadblock lies between basic science knowledge and 
clinical trial design. The second roadblock involves translation of knowledge gained 
from clinical trials into meaningful clinical guidance, which often takes the form of 
evidence-based guidelines.

The third roadblock specific to implementation science occurs between current 
clinical knowledge and routine practice, carrying important implications for 
individual practitioners, health care systems, communities, and populations. Given 
the expansive nature of this third roadblock, a multifaceted armamentarium of 
tools is required. One tool, industrial-style quality improvement, described below in 
more detail, operates at the level of the clinical microsystem, the smallest, front-line 
functional unit that actually delivers care to a patient [39]. Clinical microsystems 
consist of complex adaptive relationships among patients, providers, support staff, 
technology, and processes of care. To achieve sustainable success, researchers 
seeking to overcome this third translational barrier need to be effective advocates 
for changes in larger macrocosms of the healthcare system including local and 
governmental health policy. Finally, implementation research may inform clinical 
trials and basic science.
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As an underlying source of challenge for the U.S. healthcare system as a 
whole, health disparities contribute equally as a barrier to overcome in implementa-
tion research. Members of minority populations such as African-Americans and 
Latinos in particular, as well as individuals of low socioeconomic status dispropor-
tionately fall victim to markedly dismal health outcomes as compared to their white 
counterparts [40]. Despite the advancements in health and life expectancy as a 
country, population specific black-white gaps continue to persist in areas such as 
access to care, quality of care, chronic disease risk factors, and disease incidence 
and related mortality [41–43]. These examples of inequity have seeped into multiple 
tiers of the healthcare system from which implementation research is not exempt.

The rapidly changing U.S. demographics indicate that this very marginalized 
minority population will soon comprise the majority of the U.S. population. The 2012 
U.S. Census reported that 50.4 % of 1-year olds born nationwide were racial/ethnic 
minorities and that Latinos are the largest and fastest growing ethnic group, currently 
comprising 16.7 % of the population [42, 44]. At this rate of growth, it is postulated 
that the U.S. will be a majority minority society by 2050, if not sooner [44].

As such, health disparities are an added dimension to the barriers to overcome in 
evidence implementation. Implementation science aims to make evidence-based 
findings work in real world patients. However systems, providers and patients in the 
real world are much different than what is encountered in the research process. 
Therefore, studies must be specially tailored to include these specific differences 
among communities and cultures. Should the health disparities in minority groups 
continue to persist, they will inevitably impede upon the success of implementation 
research and impose upon the well-being of the nation.

Finally, to promote the spectrum of research depicted in Fig. 13.1, the 2003 NIH 
Roadmap acknowledges translational research as an important discipline [45]. 
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In fact, several branches of the NIH now have open funding opportunities for 
implementation research. The integration of research findings from the molecular 
to the population level is a priority. The Roadmap seeks to join communities and 
interdisciplinary academic research centers to translate new discoveries into 
improved population health [46].

 Implementation Research Tools

The tools used to translate clinical evidence into routine practice are varied, and no 
single tool or combination of tools has proven sufficient or completely effective. 
Furthermore, it may not be the tool itself but how it is implemented in a system that 
drives change [47]. In fact, this lack of complete effectiveness spurs implementation 
research to develop innovative adaptations or combinations of currently available 
tools [48].

Below, we provide an overview of available tools, which are intended as basic 
building blocks for future implementation research projects. Although different 
classification systems have been proposed [49], we arranged these tools by their focus: 
on the patient, the community, the provider, and the healthcare organization. We 
acknowledge that this classification is somewhat arbitrary because several imple-
mentation tools overlap multiple categories.

 Patient-Based Implementation Tools

A growing body of evidence suggests that patients may be successfully ‘activated’ 
to improve their own care. For example, a medical assistant may review the medical 
record with the patient and encourage the patient to ask questions at an upcoming 
visit with the physician. Patients exposed to such programs had better health 
outcomes, such as improved glycemic control for those with diabetes [50, 51]. In 
another study, a health maintenance reminder card presented by the patient to the 
physician at appointments significantly increased rates of influenza vaccination and 
cancer screening [52].

Other interventions have taught disease-management and problem solving skills 
to improve chronic disease outcomes. Teaching patient self-management skills is 
more effective than passive patient education, and these skills have been shown to 
improve outcomes and reduce costs for patients with arthritis and asthma [53]. 
As part of the ‘collaborative model,’ self-management is encouraged through better 
interactions between the patient, physician, and health care team. The collaborative 
model includes: (1) identifying problems from the joint perspective of the patient 
and clinical care team; (2) targeting problems, setting appropriate goals, and 
developing action plans together; (3) continuing self-management training and 
support services for patients; (4) active follow up to reinforce the implementation of 
the care plan [53].
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 Community-Based Implementation Tools

The Community Health Advisor (CHA) model has been implemented throughout 
the world to deliver health messages, promote positive health behavior change, and 
facilitate access to the health care system [54]. Similarly, the Community Health 
Worker (CHW) model has been used to engage medically underserved communities 
on a number of different health issues to help individuals overcome financial, social, 
political, and cultural barriers to health care [55]. Based on the CHA/CHW models, 
community members, usually without formal education in the health professions, 
undergo special training and certification in order to carry out an intervention or 
research protocol in their local community. CHA/CHW interventions have been 
used to promote prevention and treatment for a large array of conditions, including 
cancer, asthma, cardiovascular disease, depression, and diabetes. These programs 
have also been developed to decrease youth violence and risky sexual behavior, and 
may be especially relevant for underserved populations and those living in rural 
areas. Although promising, CHA/CHW interventions often rely on volunteer 
workers who may be vulnerable to stress and burnout from work overload. Also, 
intense training and oversight is often required to assure the accuracy of the health 
messages being transmitted. A review by Swider found limited high-quality evi-
dence that CHA interventions actually improve health outcomes, which is postulated to 
be a result of the poor quality of the studies. As such, Swider also called for addi-
tional rigorous research on the efficacy and underlying mechanisms through which 
CHA/CHW interventions work [56]. A more recent review commissioned by the 
Robert Wood Johnson Foundation found that specific CHA interventions may reduce 
health disparities, particularly for patients with hypertension and diabetes [17].

As a vital community-based implementation tool, it is useful to consider the 
basic principles of interaction with a community as the foundation for research 
success. In the city of Lawrence, Massachusetts the Lawrence Research Initiative 
was created in order to promote community-participatory and community-responsive 
research [57]. A document to closely guide the research process was created that 
included:

• The core principles of a partnership approach to research
• Questions for research partnership agreements for researchers and community 

groups to review
• Steps to building successful research partnerships
• Glossary of research terms in order to develop a common vocabulary that empowers 

the community to communicate with researchers.

The core principles of partnership as defined in the Lawrence Research Initiative are 
notions that are applicable to a broad scope of community-based implementation 
projects [58]. The principles are as follows:

• Research is helpful to community development
• True partnerships between the community and academia make better science
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• Researchers and members of the community can and should create good 
 partnerships based on fairness and positive exchanges.

• Partnerships should be based on fair and equitable distribution of resources

For community-based implementation research to be truly successful, it should 
be rooted in the foundation of good community partnerships and relationships. 
This is a principle that will hold true across the use of community health workers, 
community health advisors, and community based participatory research. Equitable 
partnerships are key.

 Provider-Based Implementation Tools

 Clinical Guidelines

Clinical guidelines have been defined as ‘systematically developed statements to 
assist practitioners’ and patients’ decisions about appropriate health care for specific 
clinical circumstances’ [59]. Ideally, guideline development involves a complete 
review of the relevant literature; however, a Canadian group demonstrated literature 
reviews were less likely to be completed on more recently developed guidelines 
[60]. During the last 30 years, guideline dissemination efforts may be suboptimal, 
leading only to modest improvements in care [60, 61]. However, guideline dissemi-
nation alone is not sufficient for implementation of best practices [62].

For many clinical situations encountered today, thousands of evidence-based 
guidelines and practice recommendations have been published. Such sheer volume 
often precludes the individual practitioner from implementing all recommendations 
for every patient. As an example, Boyd et al. noted that if one were to treat a 
hypothetical 79 year old woman with diabetes, chronic obstructive pulmonary 
disease (COPD), hypertension, osteoporosis, and osteoarthritis, and follow all 
recommended guidelines for her multiple co-morbidities, the patient would require 
12 medications at a cost of $406 per month [63].

 Continuing Medical Education

Continuing medical education (CME), a requirement for ongoing medical licensure, has 
traditionally relied on text-based, didactic methods to affect clinical knowledge, 
skills, attitudes, practice patterns, and patient outcomes [64]. However, passive, 
text-based educational materials and formal CME conferences do not lead to 
measurable improvements in practice patterns [65, 66]. Rather, CME using interactive 
techniques which actively engage physicians may have small effects improving 
practice patterns and patient outcomes [67–70]. Physicians who reflect on their own 
individual performance may identify areas for improvement and seek CME through 
multifaceted, self-directed learning opportunities. The use of multiple modalities 
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that promote active learning – such as case-based problem solving – has yielded 
modest improvements in clinical practice [71]. In general, however, more complex 
behavioral change likely requires practicing skills similar to traditional quality 
improvement (QI) [72].

With the advantages of being convenient, flexible, and inexpensive, the Internet 
has become a useful platform to reach a wider audience for interactive CME, while 
maintaining an effectiveness comparable to traditional approaches [73]. Fordis et al. 
conducted a randomized controlled trial comparing live, small-group interactive 
CME workshops with Internet CME [74]. Both groups focused on cholesterol 
management. All physicians received didactic instruction, interactive cases with 
feedback, practice tools and resources, and access to expert advice. Knowledge 
scores for physicians in the Internet CME group increased more than scores for 
those in the live CME group. Additionally, the online CME group demonstrated a 
statistically significant improvement in appropriate drug treatment for high-risk 
patients. Success of the Internet CME may have been partially driven by the participants’ 
ability to repeatedly return to the website for reinforcement and the ability to structure 
the learning experience to meet individual needs.

 Academic Detailing

Academic detailing relies on site visits to physicians’ offices for intense relationship 
building and one-on-one information delivery. Important components for successful 
detailing include: (1) assessment of baseline knowledge and motivations for current 
behavior; (2) articulating clear objectives for education and behavior; (3) gaining 
credibility with ties to respected organizations through ongoing relationship 
building; (4) encouraging physicians to actively participate in educational interven-
tions; (5) using graphic representations for educational materials; (6) focusing on a 
limited number of ‘take-home’ points; and, (7) supplying positive reinforcement for 
improved behaviors during follow up [75]. Representatives from pharmaceutical 
companies have effectively used academic detailing to boost product sales. In a 
systematic review, academic detailing alone yielded small effects on medication 
prescribing practices [76].

 Opinion Leaders

Several implementation programs have relied on influential colleagues to disseminate 
evidence-based practices [79]. Opinion leader strategies may include using celebri-
ties, employing people in leadership positions, and asking those doing front-line 
work to refer ‘up the ladder.’ In a systematic review, opinion leaders may have a 
positive effect on evidence-based practice uptake when tested in randomized con-
trolled trials [77].
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 Physician Audit and Feedback

The utility of audit and feedback hinges on developing credible data-driven summaries 
of how patient populations are being managed. In theory, such reports may prompt 
clinicians to reflect on their personal clinical practices and motivate subsequent 
improvement. Performance feedback may focus on outcomes (such as percentage of 
patients with diabetes who have achieved glycemic control) or process (such as the 
percentage of patients with diabetes for whom the physician measured glycemic 
control). The credibility of performance feedback relies on the ability to capture the 
many clinical nuances that the physician must consider when delivering care to the 
individual patient. Because the difficulties in capturing these clinical nuances have 
not yet been completely surmounted, comparisons of performance to a data-driven, 
peer-based benchmark may be more appropriate than comparison to an arbitrary 
standard of perfect performance [80]. A systematic review of randomized trials of 
audit and feedback studies demonstrated small effects on professional performance. 
The effect varied by which targeted behavior was chosen. Additionally, the analy-
sis suggests that audit and feedback may be more effective when: the baseline per-
formance is low; the information is provided by a manager or colleague multiple 
times, communicated in verbal and written formats, and when it is linked to specific 
goals and an action plan [78].

 Organization-Based Implementation Tools

 Industrial-Style Quality Improvement

This type of improvement activity originated outside of health care and has acquired 
such labels as Total Quality Management (TQM) and Continuous Quality 
Improvement (CQI). These approaches make two fundamental assumptions: (a) that 
poor outcomes are attributable to system failures, rather than lack of individual 
effort or individual mistakes, and (b) achieving improvement and excellence, even 
in the absence of system failures, is possible through iterative cycles of planning, 
acting, and observing the results. In general, complex systems must have built-in 
redundancy to function well. If an individual makes a mistake at one point in the 
system, checks and balances built into other parts of the system may prevent an 
adverse event. However, as described in the example below, patient safety maybe 
endangered by simultaneous failure of multiple system components, thus defeating 
built-in redundancy.

As a simple example, multiple mechanisms should be in place to ensure that 
incompatible blood products are not given to hospitalized patients. Delivery of the 
wrong blood type to a patient requires failure at multiple points, including preparation 
of the blood in the blood bank and administration of the blood by the nurse. Taking 
such a systems approach stands in stark contrast to blaming individuals, thereby 
avoiding low morale and reluctance to disclose mistakes.
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Improvement activity usually proceeds through a series of ‘plan-do-study-act’ 
cycles. These cycles emphasize measuring the process of clinical care delivery at 
the level of the clinical microsystem, which has been previously described. Here, 
small amounts of data guide the initial improvement process. The process emphasizes 
small, continuous gains through repeated cycles and does not rely on the statistical 
significance of the measurements. Although many health care institutions have 
adopted such methodology based on compelling case studies, additional studies 
with high-quality experimental methods are still needed [81].

 Systems Reengineering

Instead of incremental changes to clinical microsystems, major redesign of the 
entire system may be undertaken. For example, in the 1990s the Veterans’ Health 
Administration (VHA) undertook a major reengineering of its health care system, 
focusing on the improved use of information technology (IT), the measurement and 
reporting of performance, and the integration of services [82]. By 2000, the VHA 
had made statistically significant improvements in nine areas, including preventive 
care, outpatient care (diabetes, hypertension, and depression), and inpatient care (acute 
myocardial infarction and congestive heart failure). Additionally, the VHA performed 
better than the fee-for-service Medicare system on 12 of 13 quality measures [82]. 
Because systems engineering requires changes on such a large scale, little evidence 
exists about its efficiency and effectiveness in yielding more improvements than 
smaller changes [3].

With the passage of the Affordable Care Act of 2010, U.S. healthcare systems 
are making necessary changes to how care is delivered and reimbursed in order 
to increase the quality of care, reduce costs, and improve patient outcomes. The 
Center for Medicare & Medicaid Innovation (CMMI) [83] has funded hundreds 
of demonstration projects to test new models of accountable care organizations, 
primary care transformation, bundled payments of related services, adoption of best 
practices, and new care and payment models. The aim is for healthcare systems to 
implement improvements, and demonstrate positive changes to patient outcomes 
and cost savings, then CMMI will disseminate the knowledge for quick uptake. 
Further study of how these changes are implemented as well as program evaluation 
is needed in the coming years.

 Computer-Based Systems

Computer-based systems target links in the process of care delivery that are most 
prone to human error. Such systems may provide clinical decision support by assisting 
the clinician with making a diagnosis, choosing among alternative treatments, or 
deciding upon a particular drug dosage. Other functions may include delivery of 
clinical reminders and computerized provider order entry (CPOE) [84]. A systematic 
review documented improvements in time to therapeutic goals, decreases in toxic 
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drug levels and adverse reactions, and shorter hospital stays [85]. However, adverse 
effects of computer-based systems have also been reported, including increased 
mortality rates, increased rates of adverse drug reactions, delays in medication 
administration, increased workload, and new types of errors [86–89]. A systematic 
review of studies reporting the effect of CPOE on inpatient medication errors also 
demonstrated mixed results [90], with increases as well as decreases in errors after 
the introduction of computer-based systems. Therefore, computer-based systems 
should not be implemented without safeguards to prevent unintended consequences. 
We need more work to better understand how computer-based systems interact with 
human users and the complex health care environment and how these interactions 
affect quality, safety, and outcomes.

 Public Report Cards

Public reports on the quality of health care delivered by institutions are proliferating. 
For example, public reports may focus on risk-adjusted mortality after cardiac 
surgery or quality at long-term care facilities. In addition, such reports will probably 
be expanded to include physician groups and individual physicians. Public reports 
are often promoted under the assumption that the public will use them to choose 
high-quality providers, thus better enabling a competitive ‘medical marketplace.’ 
Although scant evidence links report cards to improved health care [91], report 
cards may have profound adverse effects: (1) physicians may avoid sicker patients 
to improve their ratings; (2) physicians may strive to meet the targeted rates for inter-
ventions even in situations where intervention is inappropriate; and, (3) physicians 
may ignore patient preferences and neglect clinical judgment [92]. Even worse, 
report cards may actually widen gaps in health disparities [92].

The Centers for Medicare & Medicaid Services (CMS) introduced public reporting 
of quality measures in 2001 [93]. In the last several years, the amount of information 
accessible to the public has grown tremendously. On the CMS website, the public 
can see data from hospitals, inpatient rehabilitation facilities, long term care hospitals, 
nursing homes, and home health agencies.

 Pay-for-Performance (P4P)

Currently, there is mounting pressure to tie reimbursement for health care services 
to quality measurement. Although allowing market forces to freely operate through 
P4P reimbursement may seem logical, systematic reviews have not yielded conclusive 
results. Because not everything that is important is currently measured, linking 
reimbursement to measured quality may divert attention from important, but unmea-
sured aspects of care (i.e., ‘spotlight’ effect). As with public reporting, P4P may 
actually widen health disparities, although empiric data are lacking.

To date, evidence for the effectiveness of P4P in improving the delivery of health care 
is uncertain [94]. One study found that when implemented in physician practice 
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groups, P4P produced improvements for those with higher baseline performance 
but had minimal effect on the lowest performers [95]. Glickman et al. found hospitals 
voluntarily participating in the P4P initiative for myocardial infarction did not show 
appreciable improvement [96]. A recent study found that hospitals participating in 
P4P and public reporting programs sponsored by CMS had slightly greater improve-
ments in quality than those only participating in the public reporting program [97]. 
Several ongoing studies may soon deliver new insights about P4P.

 Designing Implementation Research Studies

Because the implementation science base is still emerging, researchers have at their 
disposal an array of tools that are variously effective, depending upon the patient 
population and delivery setting. Moving beyond the tools described above, is the 
need to develop innovative adaptations and approaches to bridge the gap between 
clinical knowledge and health care practice. It is necessary to test the effectiveness 
of these new approaches with rigorous scientific methods to avoid adverse conse-
quences from the wide-spread dissemination and adoption of unproven interven-
tions [30]. Therefore, in the remainder of this chapter, we discuss the critical design 
elements for implementation randomized controlled trials, followed by an example 
of an implementation research study.

 Overview of Implementation Research Study Design

Randomized designs for implementation research, somewhat analogous to the tradi-
tional clinical trial, allow causal inference and offer protection from measured and 
unmeasured confounding (See Chap. 3) [48]. As described below in more detail, 
such designs include an active intervention, random allocation to a comparison or 
intervention group, and blinded assessment of objective endpoints. Although many 
of the same principals are involved in clinical RCTs and implementation RCTs, 
these will be reviewed with emphasis on some of the differences between the two.

Falling lower in the hierarchy of evidence, implementation studies may use 
other non-randomized or controlled designs. For example, a research team may 
observe a single group for changes in health care delivery or patient outcomes 
before and after intervention implementation. In this case, the observed changes 
may result from multiple factors not associated with the intervention. Secular trends 
may produce broad, population-based changes, independent of the intervention 
under study. Without a comparison group, secular trends may be confused with 
intervention effects [48]. Interrupted time-series designs, with data collected 
from multiple points in time before and after the intervention, can better account 
for secular trends.
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In addition to confounding from secular trends, uncontrolled study designs are 
susceptible to other ‘non-interventional’ aspects of the intervention. For example, 
an intervention may bestow more attention on patients or clinicians through data 
collection, leading to self-reported improvement through placebo-like effects. 
Comparison groups, even without randomization, offer important protection against 
secular trends and placebo-like effects. Non-randomized allocation to intervention 
and comparison groups does not assure that both groups are similar in all important 
characteristics. Matched study designs may balance study groups for a limited 
number of measured characteristics. In contrast, successfully implemented random-
ization equalizes recognized and unrecognized confounders across study groups 
and is, therefore, essential for cause-and-effect inference.

In summary, limitations of study designs without randomization or a comparison 
group include difficulty establishing causality, confounding, bias, and spurious 
associations from multiple comparisons [29]. Although such studies are generally 
considered to be lower within the evidence hierarchy, they may provide useful infor-
mation when randomized controlled trials (RCTs) are not feasible or generate 
important hypotheses for subsequent testing with more rigorous study designs. We 
focus the remainder of this chapter on key RCTs for implementation research, in 
particular the cluster RCT – where clusters of individuals (groups) are randomized 
[98] rather than individuals. Due to the complex design, we strongly recommend 
that investigators obtain expert consultation with methodologists and statisticians 
early during the planning stages.

Other study designs applicable for implementation research and quality improve-
ment projects are reviewed elsewhere [99, 100]. Proctor et al. reviews funding 
mechanisms and provides key ingredients for implementation research proposals 
(Table 13.2) [33]. Competencies for trainees of implementation and dissemination 
research are also available elsewhere [101].

Table 13.2 Key components 
for implementation research 
proposals

1. Gap in care or quality of care identified
2. Evidence-based of intervention demonstrated
3. Conceptual model and theory justified
4. Stakeholders’ priorities recognized and engagement 

proven
5. Setting’s readiness to adopt intervention articulated
6. Implementation strategy and process defined  

and justified
7. Team experience with the setting, treatment,  

and implementation process demonstrated
8. Research design, methods, and contingency plans 

are feasible
9. Measurement and analysis detailed and 

scientifically sound
10. Policy and funding environment aligned

Adapted from Proctor et al. [33]
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 Implementation Randomized Controlled Trials

Many principles for the design of high-quality, traditional RCTs discussed elsewhere 
in this book also apply to implementation research. As a discussion guide, our 
approach parallels the Consolidated Standards of Reporting Trials (CONSORT), 
which were designed to encourage high-quality clinical randomized trials and 
promote a uniform reporting style. The CONSORT criteria emphasize the ability to 
understand the flow of all actual and potential research participants through the 
experimental design. Although originally designed for the traditional or ‘parallel’ 
clinical trial [102, 103], the CONSORT criteria were subsequently modified for the 
cluster RCT [104, 105].

We refer the reader to specific example of an implementation randomized trial 
illustrating the formative development of one of the outcomes [106], challenges and 
barriers with recruitment [107], main outcome, [108] and secondary outcomes [109] 
(ClinicalTrials.gov Identifier: NCT00403091; Available at: http://clinicaltrials.gov).

 Participants and Recruitment

In contrast to the randomized clinical trial where patients are the unit of intervention 
and analysis, implementation randomized trials and interventions have a broader 
reach. For example, key participants in implementation RCTs may be doctors, 
patients, clinics, or hospitals, or hospital wards. Because implementation research is 
conducted in the ‘real world’ and often seeks to engage busy clinicians, systems, 
and patients who are otherwise overwhelmed with their usual activities, recruitment 
may be particularly difficult. Therefore, recruitment protocols for implementation 
research demand careful consideration and may require a dedicated recruitment and 
retention team that is specific to the target population. Often multiple approaches 
(e.g., word of mouth, e-mail, phone, fax, personal contacts, or lists from profes-
sional organizations) must be pursued, and still the desired number of participants 
may not be reached. This is a particular challenge as it pertains to recruiting individ-
uals and engaging systems that cater to marginalized minority populations.

African Americans and Latinos continue to bear an unequal burden of disease. 
Individuals from these populations are underrepresented in implementation research. 
To reach wide applicability, a diverse pool of participants in research studies is 
necessary. However, racial and ethnic minorities remain underrepresented in research 
participation. For example, less than one-third of those enrolled in research studies 
sponsored by the National Institutes of Health (NIH) are minorities [110, 111],– 
African Americans comprising 12.6 % and Latinos 7.5 % [111].

Minorities have often been underrepresented in traditional clinical research studies 
for several reasons. Researchers and participants often do not share common 
cultural perspectives, which may lead to lack of trust. Moreover, limited resources, 
such as low levels of income, education, health insurance, social integration, and 
health literacy, may also preclude participation in research studies studies [112]. In 
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addition, the history of racism in the U.S. and particularly in medical research and 
clinical care, has contributed to deep suspicion among minority communities about 
the motives of the medical system [113–115].

Low research participation from communities of color stems directly from these 
historical inequities and power imbalances that have created a lack of trust between 
community and academic medical institutions.

Within the past two decades, a series of nationwide mandates for federally funded 
research have been created in order to directly address the concerns of distrust in these 
populations including: the NIH Revitalization Act created in 1993 and updated in 
2001 mandating the inclusion of women and minorities in clinical trials [41, 116], 
the 1997 Federal and Drug Administration (FDA) Modernization Act providing 
strict requirements on the standardization of data collection on racial/ethnic minority 
groups in clinical trials [116], and the Centers for Medicare and Medicaid Services 
(CMS) authorization of routine care costs for Medicare beneficiaries who are partici-
pants in clinical trials in 2000 [116].

Despite these mandates, challenges in the recruitment of minorities still exist. 
Chapter 8 of this textbook offers additional insight on broad recruitment strategies 
for implementation research. Table 13.3 offers some solutions to these commonly 
faced barriers [117].

 Human Subjects

Review and approval of implementation studies by an institutional review board 
(IRB) is necessary. Often, the research protocol may pose minimal danger to partici-
pants and the review may be conducted under an expedited protocol. We refer the 
reader to more detailed reviews on this topic [118–120]. Randomization, intent 

Table 13.3 Solutions to commonly faced barriers to minority recruitment

Barrier encountered Offered solution to overcome barrier

Lack of public awareness/community 
participation

Creation of culturally sensitive, targeted marketing 
for recruitment

Underrepresentation of minorities  
in a population sample

Oversampling of targeted minority population

Limited research literacy of target 
population

Creation of culturally and linguistically competent 
study materials. This may include language 
translation, or use of vernacular terms specific 
to a particular community

Unfamiliarity with community/where  
to find target population

Dispersal of recruitment materials to areas of broad 
attendance such as: mass transportation, radio 
stations, grocery stores

Researchers may neglect to offer  
research studies to individuals  
from underrepresented groups

Researchers should offer research study 
participation to all, negating preconceived 
notions about who may or may not have an 
interest in participating
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to publish study findings, or present at scientific conferences places the work in the 
research domain. Although usual local quality improvement activities, which are 
important in health care, do not require IRB approval, the addition of a rigorous 
design for implementation research does require review.

Investigators designing cluster RCTs must carefully consider the ethical issues 
that arise when consent occurs at the cluster level with subsequent enrollment of 
participants within the cluster. If the target of the research is clearly the clinician, 
informed consent may often be waived for the patient. For studies that focus on the 
clinician but collect outcomes from medical record review or administrative patient 
records, the researchers may consider applying for a waiver of informed patient con-
sent. Such waivers are especially reasonable when a large volume of patient records 
would make patient informed consent impractical. Implementation research usually 
generates personally identifiable health information, which may be subject to the 
Health Insurance Portability and Accountability Act (HIPAA). Waiver of HIPAA 
consent by the patient may often be obtained based on requirements similar to 
waiver of informed patient consent. Finally, it may be necessary to obtain consent 
from both patients and providers if the intervention targets both populations.

Investigators should develop detailed plans to protect the security and confidentiality 
of study data. Data should be housed in physically secured locations with strong 
logical protection, such as password protection and encrypted files. Access to 
study data should be only on a ‘need-to-know’ basis. Participant identifiers should 
be maintained only as necessary for data quality control and linkage. Patients and 
clinicians should be assured that personal information will not be revealed in publica-
tions or presentations. Data integrity should also be protected with detailed protocols 
for verification and cleaning, which are beyond the scope of this chapter [121].

We agree with the International Committee of Medical Journal Editors (ICMJE) 
that descriptions of all randomized clinical trials should be deposited in publically 
available registries before recruitment begins [122]. The ICJME includes interventions 
focusing on process-of-care within the rubric of clinical trials. Trial registries guard 
against the well-recognized bias that negative studies are less likely to be published 
than positive studies. Negative publication bias may significantly limit meta-analytic 
studies, leading to the false conclusion that ineffective interventions are actually 
effective. Registries also increase the likelihood that participation in clinical 
trials will promote the public good, even if the study is negative. Although the template 
is not customized for implementation research, one such registry may be found at 
http://clinicaltrials.gov.

 Intervention Design

Based on the concepts described earlier in this chapter, the design of the intervention 
is often guided using a formative-evaluation process [123, 124]. Formative evaluation 
incorporates input from end users and stakeholders to refine an intervention during 
the early stages of development. It is critical that investigators carefully explore and 
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understand the need of those who will be affected by the intervention. For example, 
the design can be guided by focus groups or nominal group technique [125–128]. 
Glasgow et al. [37] recommend key features to include in the content design:

• barrier analysis
• integration of multiple types of evidence
• adoption of practical trials that address clinician concerns
• investigation of multiple outcomes, generalizability, and contextual factors
• design of multilevel programs using systems and social networking models 

mindful of the integration of the study’s components and levels, and
• adaptation of program to local needs and ongoing issues.

For example, for an internet-delivered intervention for physicians important fea-
tures to consider include [129]:

• needs assessment from office practice data
• multimodal strategies
• modular design with multiple parts
• clinical cases for contextual learning
• tailoring intervention based on individual responses
• interactivity with the learner
• audit and feedback
• evidence-based content
• established credibility of organization providing website and funding entity
• patient education resources
• high level of usability, and
• accessibility to the Internet site despite limited bandwidth.

 Comparison Group

In behavioral research, it is often appropriate to randomize participants to either an 
active intervention versus an attention control. The attention control – in contrast to 
‘placebo’ or no intervention- accounts for changes in behavior attributable to social 
exposure when participants receive services and attention from study personnel [130]. 
Positive social interactions may create expectations for positive outcomes, potentially 
confounding intervention effects collected through such methods as self- report. 
However, the precise implementation of attention controls may be difficult [131].

In our experience, clinicians and communities may be reluctant to enter a study 
with the possibility of being randomized to a group with no apparent benefit. This 
problem may be compounded by intensive procedures needed for data collection, 
regardless of the study group. To overcome such barriers, investigators may offer to 
open the intervention to the comparison group at the close of the study. Alternatively, 
study design might more formally incorporate a delayed intervention or test two 
variations of an active intervention.
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 Blinding

‘Blinding’ is important to decrease bias in outcome ascertainment (similar to 
randomized clinical trials). Study personnel who perform outcome assessment 
should be unaware of whether an individual participant has been assigned to the 
intervention or comparison group. For example, it may be necessary to blind 
those doing patient examinations, those performing medical record abstraction, or 
those administering patient, physician, or organizational surveys. When participants 
are blinded to the allocation arm, the study is single-blinded. If those delivering the 
intervention and collecting the outcomes are blinded as well, then the study is 
double-blinded. If the analysts are unaware of the assignments, then the study is triple-
blinded. For implementation research, it is often not feasible to conceal study allocation 
from the research team.

 Units of Intervention, Randomization, and Analysis

Investigators planning an implementation randomized trial must carefully consider 
the units of study assignment for intervention, randomization, and analysis. 
Examples of units of intervention are patients, physicians, nurses, clinics, hospitals, 
hospital wards, among others. Within any given study, the unit level may vary across 
components, meaning that the analysis plan must account for the clustered nature of 
the outcome data.

For example, consider a study of a patient-based intervention that will be imple-
mented through a group of affiliated multi-physician clinics. ‘Contamination’ could 
arise from physicians learning about the intervention and then exposing comparison 
patients to part of the intervention. Therefore, for this particular study, the investigators 
may choose to randomize at the physician level to avoid contamination. Thus, 
all patients assigned to a given physician will be allocated to the same condition: 
intervention or comparison.

In practice, the threat of contamination may be more perceived than real, depending 
upon the exact nature of the intervention and study setting. When present, contami-
nation decreases the precision with which the intervention effect will be measured 
and increases the risk of a Type II error. As an alternative to cluster-based random-
ization to overcome contamination, the sample size could be increased [122].

 Measurement and Outcomes

In implementation research, the science of determining an approach to define the 
measures to obtain and the specific outcomes is rapidly evolving [132]. Concepts of 
treatment integrity utilized in the traditional randomized controlled trial also apply 
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to implementation research, also known as treatment fidelity. In addition, concepts 
are also applicable for the assessment of external validity – the applicability of the 
findings in other settings.

The use of a systematic strategy allows the implementation researcher to plan 
ahead and define the measures and relevant outcomes. The ultimate goal is to have 
a strong foundation for formative and summative evaluations utilizing quantitative 
and qualitative methods. Similar in importance as knowing whether an intervention 
worked (or did not) is to understanding ‘how’ the intervention worked (or did not).

Research that uses a mixed methods (or multimethods) approach is suitable to 
understand problems from multiple perspectives and contextualize information [133]. 
Mixed methods research is defined as “the type of research in which a researcher or 
team of researchers combines elements of qualitative and quantitative research 
approaches (e.g., use of qualitative and quantitative viewpoints, data collection, analysis, 
inference techniques) for the broad purposes of breadth and depth of understanding 
and corroboration” [134].

Strategies are available to design, evaluate, and report implementation research 
studies. A systematic review and a book are available elsewhere; [135, 136] in this 
chapter, we briefly review the following:

• Reach, Effectiveness, Adoption, Implementation, and Maintenance (RE-AIM)
• Pragmatic-Explanatory Continuum Indicator Summary (PRECIS)
• Predisposing, Reinforcing, and Enabling Constructs in Ecosystem Diagnosis and 

Evaluation (PRECEDE)-Policy, Resourcing, and Organization for Educational 
and Environmental Development (PROCEDE).

• Realist Evaluation

The ‘RE-AIM’ approach is particularly helpful to evaluate the public health impact of 
interventions [37, 137–142]:

• Reach – the intended target population, study’s reach and representativeness, 
participants and setting – ‘How many participate?’

• Effectiveness – the magnitude of intervention effect, adverse outcomes, and 
costs – ‘Does it work in usual settings?’

• Adoption – use by the target audience – ‘How many use it?’
• Implementation – the consistency of use, costs, and adaptations made during 

delivery – ‘Is it used as intended?’
• Maintenance – the intervention’s long-term effects, sustainability, and attrition 

rates - ‘Is it sustained over time?’

The Pragmatic-Explanatory Continuum Indicator Summary (PRECIS) originated 
from a Canadian and European initiative to promote trials in developing and middle-
income countries [143]. Within this context, a pragmatic trial seeks to answer the 
question, “Does an intervention work in usual settings under usual conditions?;” a 
pragmatic trial tests the effectiveness of the intervention and informs decision mak-
ers [144]. An explanatory trial seeks to answer the question, “Does an intervention 
work in research settings?;” an explanatory trial tests the efficacy of an intervention 
[145, 146].
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The visual representation of measures among the ten domains described in 
PRECIS allows scientists and community in general understand the applicability 
of the interventions. The ten domains include: (1) participant eligibility criteria, 
(2) experimental intervention flexibility, (3) practitioner expertise (experimental), 
(4) comparison intervention, (5) practitioner expertise (comparison), (6) follow-up 
intensity, (7) primary trial outcome, (8) participant compliance, (9) practitioner 
adherence, and (10) analysis of primary outcome. For a more detailed discussion, 
the reader is referred elsewhere [143, 147].

First proposed in 1974, the PRECEDE-PROCEED is an approach to assess the 
effects of health programs and health education applicable for implementation 
research [148–150]. The realist approach offers a quantitative and qualitative model 
for synthesis of the effects of complex programs that are intimately related to the 
contextual factors where the program is developed and evaluated [151–153]. A real-
ist approach addresses some of the short-comings of purely quantitative methods for 
program evaluation [152].

Reviews are available to guide the design, measurement, and reporting of imple-
mentation research studies [132, 142, 144, 154]. The addition of information about 
the context, protocol implementation, and generalizability – among other character-
istics – are enhancements to the CONSORT reporting guidelines for the traditional 
efficacy study [142, 154].

 Approaches to Randomization

Randomization, also described elsewhere in this book, is a procedure to assure that 
study units are allocated to the study conditions according to chance alone. The 
specific approach to randomization is described as ‘sequence generation’ and may 
include matching or stratification [104]. Allocation concealment is a ‘technique 
used to prevent selection bias by concealing the allocation sequence from those 
assigning participants to intervention groups, until the moment of assignment, the 
purpose of which is to prevent researchers from influencing which participants 
are assigned to a given group [102, 103]. The concealment may be simply based on 
a coded list of randomly ordered study groups created by a statistician who is not a 
member of the intervention team. After enrollment, each participant is assigned to 
a study group based on the sequence in the list.

For cluster-randomized trials, the assignment of individuals to a study group is 
determined at the level of the cluster, which increases the opportunity for selection 
bias from failed concealment. For example, consider a cluster RCT where random-
ization occurs at the physician level with subsequent enrollment of patients 
with diabetes from the physicians’ practice. Depending upon the nature of the 
intervention, physicians may be able to determine their randomization group. If 
the randomized physician also recruits patients for the study, this knowledge of the 
randomization group may lead to biased patient selection. An ‘attention control’ 
comparison group described above would also decrease the chances of the physician 
to discover the assignment.
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Successful randomization ensures balanced characteristics at the unit of 
randomization, and larger numbers of randomized units increase the chance of 
successful randomization. Investigators should be aware that for cluster RCTs, 
successful randomization does not ensure balanced characteristics at units below the 
level of randomization [155]. Again, consider the illustration above where randomiza-
tion occurs at the physician level. Although this design may produce intervention 
and comparison groups that are balanced based on physician characteristics, there 
may be important imbalances in patient characteristics, decreasing the power of 
randomization. To guard against imbalances of lower-level units in cluster random-
ized trials, investigators might consider stratifying or matching on a limited number 
of critical characteristics [156]. Alternatively, imbalances may require statistical 
adjustment at the point of analysis after the study has been completed. Decisions 
about matched study designs for cluster randomized trials are complex and beyond 
the scope of this chapter.

 Intent-to-Treat

As with the traditional clinical randomized trial, the primary analysis for an imple-
mentation randomized trial should test hypotheses specified a priori and should 
follow intent-to-treat principles [157]. With the intent-to-treat approach, all units 
are analyzed with the group to which they were originally randomized, regardless of 
whether the units are subsequently exposed to the intervention (i.e., cross over). For 
example, in a randomized trial of an Internet-based continuing medical education 
(CME) intervention for physicians, outcomes for all physicians randomized to the 
intervention group must be analyzed as part of the intervention group, regardless 
of whether the physician visited the Internet site. Intent-to-treat protocols preserve 
the power of randomization by protecting against bias resulting from differential 
participation or cross-over among intervention units with a greater or lesser propen-
sity for success.

Unfortunately, participants lost to follow up may generate no data for analysis. 
As with violation of the intent-to-treat principle, loss to follow up may reduce the 
power of randomization. Although complete follow up is desirable, it is usually not 
obtainable. Many scientists hold that for clinical trials, loss to follow up of greater 
than 20 % introduces severe potential for bias [158]. Therefore, many study designs 
include run-in phases before randomization. From the perspective of internal validity, 
it is better to exclude participants before randomization than have participants lost 
to follow up, cross between study groups, or become non-adherent to intervention 
protocols after randomization. For example, in the study of Internet-based CME 
described above, physicians might be required to demonstrate a willingness to 
engage in Internet learning and submit data for study evaluation before randomiza-
tion. According to the CONSORT criteria for group randomized trials, investigators 
must carefully account for all individuals and clusters that were screened or ran-
domized [104].
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 Retention, Special Populations

Retention of research participants is a challenging issue in research, and can be of 
particular concern when working with vulnerable and underserved populations. The 
broad goal of implementation science is to translate evidence-based practice into 
real world application. Specific to this goal, there is an overarching need to target 
and tailor implementation to the specific system, providers, and patients that exist 
in a given community. Methods that to date have been typically implemented at the 
system and provider level within academic health settings, and included predomin-
ately homogenous white patient participation, will not translate well in more diverse, 
community driven settings.

Lack of retention and loss to follow up can be a barrier in implementation 
research, especially for projects concerning health disparities in minorities. In the 
recently conducted Healthy Aging in Neighborhoods of Diversity Across the Life 
Span (HANDLS) study, Ejogu et al. present a multifaceted approach to recruitment 
and specifically retention strategies for minority and low socioeconomic status 
(SES) participants [159]. In this 20-year longitudinal examination of how race and 
SES influence the development of age-related health disparities, the investigators 
created a multifactorial recruitment and retention strategy that targeted known 
barriers and identified those unique to the study’s urban environment [159]. Through 
this approach, they were able to recruit over 3,700 participants, of whom 59 % were 
African American with a 75 % baseline completion [159]. The success of the 
HANDLS investigation relied primarily on the emphasis of the community-based 
platform to alleviate many of the barriers that might exclude this key population 
from participation and retention.

Underrepresented minorities are a special population whose participation in 
implementation research holds promise in revealing methods to reduce health dis-
parities [160–162]. It may be difficult to ascertain the true population benefit or 
effectiveness of an intervention if a significant proportion of its participants are lost 
to follow-up. While Chap. 8 of this textbook is solely dedicated to addressing broad 
strategies for recruitment and retention, this section offers specific insight into reten-
tion issues pertaining to the participation of minorities. As an overarching challenge 
between the health care system and minority communities, the establishment of 
trust continuously strikes a chord as a key necessity in retaining the attention and 
participation of this population in implementation research [160, 163]. Yancey et al. 
suggest some targeted approaches to decreasing participant loss specifically in 
underrepresented and minority groups [160–162, 164–166]:

• Intensive follow-up and contact with subjects
• Retain interviewers, field staff, and study staff over time
• Involve staff from the targeted community
• Provide social support and offering accessible locations for study visits and/or 

data collection
• Ensure timely incentive payments and accessibility of project staff
• Encourage study staff’s knowledge of community dynamics and project leadership/

staff visibility and involvement in the community.
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 Statistical Analysis

Statistical analysis for cluster RCTs is a vast, technical topic that falls largely 
beyond the domain of the basic introduction provided in this book. However, an 
example will illustrate some important principles. More specifically, consider the 
previous illustration in which physicians are randomized to an intervention or 
comparison group, with patients being subsequently enrolled and assigned to the 
same study condition as their physician. To conduct the analysis at the physician 
level, the investigators might simply compare the mean post-intervention outcomes 
for the two study groups. However, this approach leads to loss of statistical power, 
because the number of physicians randomized will be less than the number of 
patients included in the study. Alternatively, the investigators could plan a patient-level 
analysis that appropriately considers the clustering of patients within physicians. 
The investigators could also collect outcomes for intervention and comparison 
patients before and after intervention implementation. Generalized estimation 
equations could then be used to compare the change in study endpoints over time 
for the intervention versus comparison group. Here, the main study effect will be 
reflected by a group-time interaction variable included in the multivariable model. 
This approach uses a marginal, population-averaged model to account for clustered 
observations and potentially adjust for observed imbalances in the study groups. 
Alternatively, the analyst may use a cluster-specific (or conditional) approach that 
directly incorporates random effects. Murray reviewed the evolving science and 
controversies surrounding the analysis of group-randomized trials [156].

Although the main analysis should follow intent-to-treat principles as described 
above, most implementation randomized trials include a range of secondary analyses. 
Such secondary analyses may yield important findings, but they do not carry the 
power of cause-and-effect inference. ‘Per-protocol’ or ‘compliers only’ analyses may 
address the impact of the intervention among those who are sufficiently exposed 
or may examine dose-response relationships between intervention exposure and 
outcomes. Mediation analysis using a series of staged regression models may inves-
tigate mechanisms through which an intervention leads to a positive study effect 
[167, 168].

 Sample Size Calculations

The investigator must determine the number of participants necessary to detect a 
meaningful difference in study endpoints between the intervention and comparison 
groups, i.e., the power of the study. Typically, a power of 80 % is considered adequate 
to decrease the likelihood of a false negative result. If an intervention is sustained 
over an extended period of time, the investigators may wish to test specifically for 
effect decay, perhaps with a time-trend analysis. Such a hypothesis of no difference 
demands a special approach to power calculation. Sample size calculations for 
traditional randomized trials are discussed elsewhere in this book (see Chap. 15).

13 Implementation Research: Beyond the Traditional Randomized Controlled Trial

http://dx.doi.org/10.1007/978-3-319-05470-4_15


300

The analysis for an implementation randomized trial may be at a lower level than 
the unit of randomization. Under these circumstances, the power calculations must 
account for the clustering of participants within upper-level units, such as the clus-
tering of patients within physicians from the example above. Failure to account for 
the hierarchical data structure may inflate the observed statistical significance and 
increase the likelihood of a false positive finding [169].

Several approaches to accounting for the clustering of, say, patients within 
physicians from the above example, rely on the intra-class correlation coefficient 
(ICC). The ICC is the ratio of the between-cluster variance to the total sample variance 
(between clusters + within cluster). In this example, the ICC would be a measure of 
how ‘alike’ patient outcomes were within the physician clusters. If the ICC is 1, the 
outcomes for all patients clustered within a given physician are identical. If the ICC 
is 0, clustering within physicians is not related to patient outcomes [170]. In other 
words, with an ICC of 1, adding additional patients provides no additional informa-
tion. Therefore, as the ICC increases, one must increase the sample size to retain the 
same power. For 0 < ICC < 1, increasing the number of patients will increase study 
power less than increasing the number of physicians. Typical values for ICCs range 
from 0.01 to 0.50 [171].

Although the topic of power calculations for group randomized trials is vast 
and largely beyond the scope of this book, Donner provides a straight-forward 
framework for simple situations [169]. Taking this approach, the analyst first 
calculates an unadjusted sample size (Nun) using approaches identical to those 
described elsewhere in this book for the traditional randomized clinical trial. Next, 
the analyst calculates a sample inflation factor (IF) that is used to derive a cluster-
adjusted  sample size (Nadj). Then:

 
IF m and= + −( ) 1 1  ρ

 

 
N N IFadj un= ( )∗ ,

 

where m is the number of study units per cluster, and ρ is the ICC.

 Situational Analysis and External Validity

Because implementation randomized trials occur in a ‘real-word’ setting, we place 
special emphasis on understanding and reporting of context. In contrast to the 
traditional randomized clinical trial, the study setting for the implementation trial is 
an integral part of the study design. To address the importance of context in imple-
mentation research, Davidoff and Batalden promote the concept of situational 
analysis for quality improvement studies [81]. We believe that many of these principles 
are relevant to the implementation randomized trial. For example, published reports 
for implementation research should include specific details about the clinic setting, 
patient population, prior experience with system change, and how the context contributed 
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to understanding the problem for which the study was designed. In addition, 
specialized approaches to economic evaluation provide additional important context 
for interpreting the results from implementation trials [172].

Because implementation research often focuses on dissemination to large 
populations, external validity, or generalizability, acquires special importance. One 
must consider how study findings are applicable to other patients, doctors, clinics, 
or geographic locations.

 Summary

Implementation research bridges the gap between scientific knowledge and its 
application to daily practice with the overall purpose of improving the health of 
individuals and populations. To advance the science of implementation research, the 
Institute of Medicine published findings from the Forum on the Science of Health 
Care Quality Improvement and Implementation in 2007 [173] and the Veterans’ 
Health Administration sponsored a state-of-the-art (SOTA) conference in 2004 [3]. 
Together, these documents summarized current knowledge, identified barriers to 
implementation research, and defined strategies to overcome these barriers. Given 
the well-documented quality and safety problems of our health care system despite 
the vast resources invested in the biomedical sciences, we need to promote interest 
in implementation research, an emerging scientific discipline focused on improving 
health care for all, regardless of geography, socioeconomic status, race, or 
ethnicity.

Acknowledgement We thank Winter Williams, Kierstin Leslie, and Natalie Wilson for critically 
reviewing a prior version of this chapter.

 Resources

 Selected Journals That Publish Implementation Research

• Annals of Internal Medicine
• BMJ Quality and Safety in Health Care
• Implementation Science
• JAMA
• Journal of General Internal Medicine
• Journal of Hospital Medicine
• Medical Care
• Pediatrics
• The Joint Commission Journal on Quality and Patient Safety
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 Selected Checklists and Reporting Guidelines

• Standards for Quality Improvement Reporting Excellence (SQUIRE)

 – SQUIRE are guidelines for publishing quality improvement interventions.
 – The guidelines provide specific details to be addressed in each section of 

manuscripts that report quality improvement interventions.
 – http://squire-statement.org/
 – Davidoff F, Batalden P. Toward stronger evidence on quality improvement. 

Draft publication guidelines: the beginning of a consensus project. Qual Saf 
Health Care 2005;14:319–25.

• Enhancing the Quality and Transparency of Health Research (EQUATOR)

 – EQUATOR is an international initiative that seeks to improve the quality of 
scientific reporting.

 – This initiative includes statements about reporting for a range of experimental 
and observational study types, including randomized trials, group randomized 
trials, behavioral trials, and quality interventions. It also provides education 
and training on the use of reporting guidelines.

 – http://www.equator-network.org

• Consolidated Standards of Reporting Trials (CONSORT)

 – This initiative focuses on design and reporting standards for randomized 
controlled trials (RCTs) in health care.

 – Although originally designed for the traditional ‘parallel’ randomized clinical 
trial, the CONSORT criteria have been extended to include cluster RCTs and 
behavioral RCTs.

 – http://www.consort-statement.org/

• Workgroup for Intervention Development and Evaluation Research (WIDER)

 – This checklist is useful in reporting the quality of behavioral change inter-
vention studies.

 – http://interventiondesign.co.uk/wp-content/uploads/2009/02/wider- 
recommendations.pdf

 Selected Resources for Intervention Design

• Agency for Healthcare Research and Quality (AHRQ) website for clinicians and 
providers

 – The Effective Health Care (EHC) Program invites clinicians to join networks 
that promote patient-centered outcomes research. http://www.ahrq.gov/
professionals/clinicians-providers/
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 – Closing the Quality Gap: Revisiting the State of the Science Quality 
Improvement Interventions to Address Health Disparities: http://www.ahrq.
gov/legacy/clinic/tp/gapdisptp.htm

 – Morbidity & Mortality Reviews on the Web. Education site with cases, 
commentaries, and reviews. http://webmm.ahrq.gov.

• Patient-Centered Outcomes Research Institute: http://www.pcori.org/ 
• Patient Reported Outcomes Measurement Information System (PROMIS): a 

National Institutes of Health (NIH) funded system of patient–reported assess-
ment tools to health status. http://www.nihpromis.org/default

• The National Guideline Clearinghouse is a database of evidence-based practice 
guidelines available to the public. http://www.guideline.gov

• Veterans’ Administration Quality Enhancement Research Initiative (QUERI) 
Implementation Guides

 – The QUERI Implementation Guide is a three-part series focusing on practical 
issues for designing and conducing implementation research.

 – The guide includes material on conceptual models, diagnosing performance 
gaps, developing interventions, evaluating implementation research, lessons 
learned from prior QUERI projects, tools and toolkits, as well as many 
resources.

 – http://www.queri.research.va.gov/implementation/

• Finding Answers

 – This program is sponsored by the Robert Wood Johnson Foundation to 
develop interventions for eliminating racial/ethnic disparities in health care.

 – The Finding Answers Intervention Research (FAIR) database includes 388 
summaries of journal articles from 11 systematic reviews of interventions to 
decrease racial/ethnic disparities for many commonly encountered diseases, 
such as diabetes and hypertension. Interventions based on cultural leverage 
and performance-based reimbursement are also included.

 – http://www.solvingdisparities.org/

• National Center for Cultural Competence

 – This center is sponsored by Georgetown University and offers several 
implementation tools, manuscripts, and policy statements for organizations, 
clinicians, and consumers.

 – The Internet site has a section describing ‘promising practices’ which may be 
particularly useful in designing new interventions.

 – http://nccc.georgetown.edu/

• Clinical Microsystems

 – The Dartmouth Institute for Health Policy and Clinical Practice maintains this 
website that offers tools for improving clinical microsystems.

 – Most tools are generally available to the public at no cost.
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 – The Clinical Microsystems Action Guide (under the materials, workbooks 
tab) may be particularly useful for designing new interventions.

 – http://www.clinicalmicrosystem.org/

• Institute for Healthcare Improvement

 – This not-for-profit organization maintains an Internet site that contains several 
tools for improving the quality, safety, and efficiency of health care. Many 
tools are publically available at no cost.

 – White papers describing the ‘Breakthrough Series’ may be particularly useful 
for those developing new interventions.

 – http://www.ihi.org

 Selected Resources for Implementing and Disseminating  
Quality Improvement

• Splaine, M. E., Dolansky, M. A., Patrician, P. A., Estrada, C. A. Editors. Oakbrook: 
Joint Commission Resources. Practice-based Learning and Improvement: A 
Clinical Improvement Action Guide, 3rd Edition. 2012.

 – Authors explain proven methods for integrating the core competency of 
practice-based learning and improvement (PBLI) into daily clinical work. 
Practical tools are described for health professionals working on quality 
improvement.

• Ogrinc GS, Headrick LA, Moore SM, Barton AJ, Dolansky MA, Madigosky 
WS. Oakbrook: Joint Commission Resources. Fundamentals of Health Care 
Improvement: A Guide to Improving Your Patients’ Care. 2nd Edition. 2012.

 – The book provides a single source for nursing students, medical students, and 
resident physicians to learn and practice the basics of QI.

• Brownson RC, Colditz GA, Proctor EK. Dissemination and Implementation 
Research in Health: Translating Science to Practice. Oxford Scholarship. 
2012.

 – The authors provide a comprehensive roadmap for implementation research.

 Selected Training Programs

• Veterans Affairs Quality Scholar Fellowship Program

 – A two-year inter-professional education program that offer scholars opportu-
nities to become leaders by applying knowledge and methods of health care 
improvement to the care of veteran, innovate and continually improve health 
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care, teach health professionals about health care improvement, perform 
research and develop new knowledge for the ongoing improvement of the 
quality and value of health care services.

 – http://www.vaqs.org

• Quality and Safety Education for Nurses (QSEN) Institute

 – The Institute offers comprehensive, competency based resources to empower 
nurses with knowledge, skills, and attitudes to improve quality and safety 
across the healthcare system.

 – http://qsen.org/

• Training in Dissemination and Implementation Research in Health (TIDIRH).

 – This training is sponsored by the NIH’s Office of Behavioral and Social 
Sciences Research and the U.S. Department of Veterans Affairs.

 – See Meissner et al. Implement Science 2013 Jan 24;8:12.
 – http://conferences.thehillgroup.com/OBSSRinstitutes/TIDIRH2013/

• VA Enhancing Implementation Science in VA Cyber Seminar

 – http://www.queri.research.va.gov/meetings/eis
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    Abstract     Much of clinical research is aimed at assessing causality. However, clinical 
research can also address the value of new medical tests, which will ultimately be 
used for screening for risk factors, to diagnose a disease, or to assess prognosis. In 
order to be able to construct research questions and designs involving these con-
cepts, one must have a working knowledge of this fi eld. In other words, although 
traditional clinical research designs can be used to assess some of these questions, 
most of the studies assessing the value of diagnostic testing are more akin to 
descriptive observational designs, but with the twist that these designs are not 
aimed to assess causality, but are rather aimed at determining whether a diagnostic 
test will be useful in clinical practice. This chapter will introduce the various ways 
of assessing the accuracy of diagnostic tests, which will include discussions of 
sensitivity, specifi city, predictive value, likelihood ratio, and receiver operator 
characteristic curves.  
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       Introduction 

 Up to this point in the book, we have been discussing clinical research predomin-
antly from the standpoint of causality. Clinical research can also address the value 
of new medical tests, which will ultimately be used for screening for risk factors, to 
diagnose a disease, or to assess prognosis. The types of research questions one 
might formulate for this type of research include: “How does one know how good a 
test is in giving you the answers that you seek?” or “What are the rules of evidence 
against which new tests should be judged?” In order to be able to construct research 
questions and designs involving these concepts, one must have a working know-
ledge of this fi eld. Although traditional clinical research designs can be used to 
assess some of these questions, most of the studies assessing the value of diagnostic 
testing are more akin to descriptive observational designs, but with the twist that 
these designs are not aimed to assess causality, but are rather aimed at determining 
whether a diagnostic test will be useful in clinical practice.  

    Bayes Theorem 

 Thomas Bayes was an English theologian and mathematician who lived from 
1702 to 1761. In an essay published posthumously in 1863 (by Richard Price), 
Bayes’ offers a solution to the problem “…to fi nd the chance of probability of its 
happening (a disease in the current context) should be somewhere between any 
two named degrees of probability” [ 1 ]. Bayes’ Theorem provides a way to apply 
quantitative reasoning to the scientifi c method. That is, if a hypothesis predicts 
that something should occur and it does, it strengthens our belief in that hypoth-
esis; and, conversely if it does not occur, it weakens our belief. Since most predic-
tions involve probabilities i.e. a hypothesis predicts that an outcome has a certain 
% chance of occurring, this approach has also been referred to as probabilistic 
reasoning. Bayes’ Theorem is a way of calculating the degree of belief one has 
about a hypothesis. Said in another way, the degree of belief in an uncertain event 
is conditional on a body of knowledge (this is in contrast to the traditional statisti-
cal model called the frequentist approach which does not incorporate prior knowl-
edge in its statistical calculations). Suppose we’re screening people for a disease 
(D) with a test that gives either a positive or a negative result (A and B, or T+ and 
T− respectively). Suppose further that the test is quite accurate, in the sense that, 
for example, it will give a positive result 95 % of the time when the disease is 
present (D+), i.e. P(T+∣D+) = 0.95 (this formula asks what is the probability of the 
disease being present GIVEN a positive test?), or said another way, what is the 
probability that a person who tests positive has disease? The naive answer is 95 %; 
but this is wrong. What we really want to know clinically is P(D+∣T+), that is, 
what is the probability of testing positive if one has the disease; and, Bayes’ theo-
rem (or predictive value) tells us that. 
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 In modern medicine the fi rst useful application of Bayes’ theorem was reported 
in 1959 [ 2 ]. Ledley and Lusted demonstrated a method to determine the likelihood 
that a patient had a given disease when various combinations of symptoms known 
to be associated with that disease were present [ 2 ]. Redwood et al. utilized 
Bayesian logic to reconcile seemingly discordant results of treadmill exercise 
testing and coronary angiography [ 3 ]. In 1977, Rifkin and Hood pioneered the 
routine application of Bayesian probability in the non-invasive detection of coro-
nary artery disease (CAD) [ 4 ]. This was followed by other investigative uses of 
Bayesian analysis, an approach which has now become one of the common ways 
of evaluating all diagnostic testing. 

 As noted above, diagnostic data can be sought for a number of reasons beside 
just the presence or absence of disease. For example, the interest may be the severity 
of the disease, the ability to predict the clinical course of a disease, or to predict a 
therapy response. For a test to be clinically meaningful one has to determine how 
the test results will affect clinical decisions, what are its cost, risks, and what is the 
acceptability of the test; in other words, how much more likely will one be about 
this patients problem after a test has been performed than one was before the test; 
and, is it worth the risk and the cost? Recall, that the goal of studies of diagnostic 
testing seeks to determine whether a test is useful in clinical practice. To derive the 
latter we need to determine whether the test is reproducible, how accurate it is, 
whether the test affects clinical decisions, etc. One way to statistically assess test 
reproducibility (i.e. inter and intra-variability of test interpretation), is with a kappa 
statistic [ 5 ]. Note that reproducibility does not require a gold standard, while accur-
acy does. In order to talk intelligently about diagnostic testing, some basic defi n-
itions and understanding of some concepts is necessary.  

    Kappa Statistic (k) 

 The kappa coeffi cient is a statistical measure of inter-rater reliability. It is generally 
thought to be a more robust measure than simple percent agreement calculation 
since κ takes into account the agreement occurring by chance. Cohen’s kappa mea-
sures the agreement between two raters [ 5 ]. 

 The equation for κ is:

  
Pr Pr / Pra e e( ) − ( ) − ( )1

   

where Pr(a) is the relative observed agreement among raters, and Pr(e) is the prob-
ability that agreement is due to chance. 

 If the raters are in complete agreement then κ = 1. If there is no agreement among 
the raters (other than what would be expected by chance) then κ ≤ 0 (See Table  14.1 ). 
Note that Cohen’s kappa measures agreement between two raters only. For a similar 
measure of agreement when there are more than two raters Fleiss’ kappa is used [ 5 ]. 
An example of the use of the kappa statistic is shown in Table  14.2 .
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        Defi nitions 

    Pre-test Probability 

 The pre-test probability (likelihood) that a disease of interest is present or not, is the 
index of suspicion for a diagnosis,  before  the test of interest is performed. This 
index of suspicion is infl uenced by the prevalence of the disease in the population 
of patients you are evaluating. Intuitively, one can reason that with a rare disease 
(low prevalence) that even with a high index of suspicion, you are more apt to be 
incorrect regarding the disease’s presence, than if you had the same index of suspi-
cion in a population with high disease prevalence.  

    Post-test Probability and Test Ascertainment 

 The post-test probability is one’s index of suspicion  after  the test of interest has 
been performed. Let’s further explore this issue as follows. If we construct a 2 × 2 
table (Table  14.3 ) we can defi ne the following variables: If disease is present and the 
test is positive, that test is called a true positive (TP) test (this forms the defi nition 
of test sensitivity – that is the % of TP tests in patients with the index disease). If the 
index disease is present and the test is negative, that is called a false negative (FN) 
test. Thus, patients with the index disease can have a TP or FN result (but by 
 defi nition cannot have a false positive – FP, or a true negative -TN result).

    Table 14.2    An example of the use of the kappa statistic   

 Doctor A 

 Total  No  Yes 

 Doctor B  No  10(34.5 %)  7(24.1 %)  17(58.6 %) 
 Yes  0(0.0 %)  12(41.4 %)  12(41.4 %) 

 Total  10(34.5 %)  19(65.5 %)  29 

  Kappa = (Observed agreement – Chance agreement)/(1 – Chance agreement) 
 Observed agreement = (10 + 12)/29 = 0.76 
 Chance agreement = 0.586 * 0.345 + 0.655 * 0.414 = 0.474 
 Kappa = (0.76 − 0.474)/(1 − 0.474) = 0.54  

  Table 14.1    Strength 
of agreement using the kappa 
statistic  

 Kappa  Strength of agreement 

 0.00  Poor 
 0.01–0.20  Slight 
 0.21–0.40  Fair 
 0.41–0.60  Moderate 
 0.61–0.80  Substantial 
 0.81–1.00  Almost perfect 
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       Sensitivity and Specifi city 

 The sensitivity of a test then can be written as TP/TP+FN. If the index disease is not 
present (i.e. it is absent) and the test is negative, this is called a true negative (TN) test 
(this forming the defi nition of specifi city-that is the % of TN’s in the absence of disease). 
The specifi city of a test can then be written as TN/TN+FP. Finally, if disease is absent 
and the test is positive one has a false positive (FP) test. Note that the FP % is 1-specifi c-
ity (that is, if the specifi city is 90 % – in 100 patients without the index disease, 90 will 
have a negative test, which means 10 will have a positive test – i.e. FP is 10 %).  

    Predictive Value 

 Another concept is that of the predictive value (PV+ and PV−) of a test. This is ask-
ing the question differently than what sensitivity and specifi city address – that is 
rather than asking what the TP and TN rate of a test is, the PV+ of a test result is 
asking how likely is it that a positive test is a true positive (TP)? i.e. TP/TP+FP (for 
PV− it is TN/TN+FN). See the example of the calculation of PV in Table  14.4 .

        Ways of Determining Test Accuracy and/or Clinical Usefulness 

 There are at least six ways of determining test accuracy and they are all interrelated 
so the determination of which to use is based on the question being asked, and one’s 
personal preference. They are:

   Sensitivity and Specifi city  
  2 × 2 Tables  

  Table 14.3    The relationship 
between disease and test 
result  

 Abnormal test  Normal test 

 Disease present  True positive (TP)  False negative (FN) 
 Disease absent  False positive (FP)  True negative (TN) 

   Table 14.4    An example of the pre and post-test probability given disease prevalence and the 
sensitivity and specifi city of a test   

  Pre vs post-test probability  

 Prev = 10 % of 100 patients, Se = 70 %, Sp = 90 % 

  T+    T−  
  D+   7/10 (TP)  3/10 (FN) 
  D−   9/90 (FP)  81/90(TN) 

   PV+ 7/16 = 44 % (10 % → 44 %) 
   PV− 81/84 = 97 % (90 % → 96 %) 
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  Predictive Value  
  Bayes Formula of Conditional Probability  
  Likelihood Ratio  
  Receiver Operator Characteristic Curve (ROC)    

    Bayes Theorem 

 We have already discussed sensitivity and specifi city as well as the tests predictive 
value, and the use of 2 × 2 tables; and, examples will be provided at the end of this 
chapter. But, understanding Bayes Theorem of conditional probabilities will help 
provide the student interested in this area with greater understanding of the concepts 
involved. First let’s discuss some defi nitions and probabilistic lingo along with 
some shorthand. The conditional probability that event A occurs given population B 
is written as P(A∣B). If we continue this shorthand, sensitivity can be written as 
P(T+∣D+) and PV+ as P(D+∣T+). Bayes’ Formula can be written then as follows: 
The post test probability of disease =

  

Sensitivity disease prevalence

Sensitivity disease preval

( )( )
( ) eence specificity diseaseabsence( ) + ( )( )1−    

or

  

P D T P T D prevalence D

P T D prevalence D P T D

+ +( ) = + +( ) +( )
+ +( ) +( ) +

| |
| | −−( ) −( )P D

   

where P(D+∣T+) is the probability of disease given a T+ (otherwise known as PV+), 
P(T+∣D+) is the shorthand for sensitivity, P(T+∣D−) is the FP rate or 1-specifi city. 
Some axioms apply. For example, one can arbitrarily adjust the “cut-point” separat-
ing a positive from a negative test and thereby change the sensitivity and specifi city. 
However, any adjustment that increases sensitivity (this then increases ones comfort 
that they will not “miss” any one with disease as the false negative rate necessarily 
falls) will decrease specifi city (that is the FP rate will increase – recall 1-specifi city 
is the FP rate). An example of this is using the degree of ST segment depression 
during an electrocardiographic exercise test that one has determined will identify 
whether the test will be called “positive” or “negative”. The standard for calling the 
ST segment response as positive is 1 mm of ST segment depression from baseline, 
and in the example in Table  14.2  this yields a sensitivity of 62 % and specifi city of 
89 %. Note what happens when one changes the defi nition of what a positive test is, 
by using 0.5 mm ST depression as the cut-point for calling test positive or negative. 
Another important axiom is that the prevalence of disease in the population you are 
studying does not signifi cantly infl uence the sensitivity or specifi city of a test (to 
derive those variables the denominators are defi ned as subjects with or without the 
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disease i.e. if you are studying a population with a 10 % disease prevalence one is 
determining the sensitivity of a test – against a gold standard- only in those 10 %). 
In contrast, PV is very dependent on disease prevalence because more individuals 
will have a FP test in populations with a disease prevalence of 10 % than they would 
if the disease prevalence was 90 %. Consider the example in Tables  14.5  and  14.6 .

        Receiver Operator Characteristic Curves (ROC) 

 The ROC is another way of expressing the relationship between sensitivity and spe-
cifi city (actually 1-specifi city). It plots the TP rate (sensitivity) against the FP rate 
over a range of “cut-point” values (actually the ROC curve is a plot of likelihood 
ratios – see below). It thus provides visual information on the “trade off” between 
sensitivity and specifi city, and the area under the curve (AUC) of a ROC curve is a 
measure of overall test accuracy (Fig.  14.1 ). ROC analysis was born during WW II 
as a way of analyzing the accuracy of sonar detection of submarines and differenti-
ating signals from noise [ 6 ]. In Fig.  14.2 , a theoretic “hit” means a submarine was 
correctly identifi ed, and a false alarm means that a noise was incorrectly identifi ed 
as a submarine and so on. You should recognize this fi gure as the equivalent of the 
table above discussing false and true positives.

    Another way to visualize the tradeoff of sensitivity and specifi city and how ROC 
curves are constructed is to consider the distribution of test results in a population. 
In Fig.  14.3 , the vertical line describes the threshold chosen for a test to be called 
positive or negative (in this example the right hand curve is the distribution of 

   Table 14.5    An example of calculating post test probability of disease using Bayes formula   

  Pre vs post-test probability  

 Prev = 50 % in 100 patients, Se = 70 %, Sp = 90 % 

  T+    T−  
  D+   .7 × 50 = 35 (TP)  .3 × 50 = 15 (FN) 
  D−   .1 × 50 = 5 (FP)  .9 × 50 = 45 (TN) 

    PV+ 35/40 = 87 % 
    PV− 45/60 = 75 % 

  P D T+ +( ) =
( )

( ) + − ( ) =
+

=
. .

. . . .

.

. .
.

7 5

7 5 1 9 5

35

35 05
87

 

  

   Table 14.6    Estimations of pre and post test probabilities of disease given the clinical presentation   

 Pre vs post-test probabilities 

 Clinical presentation  Pre test P (%)  Post test P T+ (%)  Post test P T− (%) 

 Typical angina  90  98  75 
 Atypical angina  50  88  25 
 No symptoms  10  44  4 
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subjects within the population that have the disease, the left hand curve those who 
do not have the disease). The uppermost fi gure is an example of choosing a very low 
threshold value for separating positive from negative. By so doing, very few of the 
subjects with disease (recall the right hand curve) will be missed by this test (i.e. the 
sensitivity is high-97.5 %), but notice that 84 % of the subjects without disease will 
also be classifi ed as having a positive test (false alarm or false + rate is 84 % and the 
specifi city of the test for this threshold value is 16 %). By moving the vertical line 
(threshold value) we can construct different sensitivity to false + rates and construct 
a ROC curve as demonstrated in Fig.  14.4 .

    As mentioned before, ROC curves also allow for an analysis of test accuracy (a 
combination of TP and TN), by calculating the area under the curve as shown in the 
fi gure above. Test accuracy can also be calculated by dividing the TP and TN by all 

1-Specificity

Sensitivity
No information (50-50)

AUC can be calculated, the closer to 1 the better the test. Most good tests run .7-.8 AUC

Tests that discriminate well, crowd toward the upper left corner of the graph.

1

1

.5

.5

  Fig. 14.1    An example of a Receiver Operator Characteristic (ROC) curve       

  Fig. 14.2    A diagram of the 
use of sonar to correctly 
identify submarines (  http://
www-psych.stanford.
edu/~lera/psych115s/notes/
signal/    . Accessed 
11/05/2013)       
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  Fig. 14.3    An example of 
how moving the defi nition of 
positive vs negative tests alter 
the results of correctly 
identifying a target (  http://
www-psych.stanford.
edu/~lera/psych115s/notes/
signal/    . Accessed 
11/05/2013)       

  Fig. 14.4    Examples of ROC curves from three different tests (  http://en.wikipedia.org/wiki/
Receiver_operating_characteristic    . Accessed 11/05/2013)       

possible test responses (i.e. TP, TN, FP, FN). The way ROC curves can be used dur-
ing the research of a new test, is to compare the new test to existent tests as demon-
strated by Maisel et al. [ 7 ].  
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    Likelihood Ratios 

 Positive and Negative Likelihood Ratios (PLR and NLR or LR+ and LR−) are 
another way of analyzing the results of diagnostic tests. Essentially, PLR is the 
odds that a person with a disease would have a particular test result, divided by 
the odds that a person without disease would have that result. In other words, how 
much more likely is a test result to occur in a person with disease than a person 
without disease. If one multiplies the pretest odds of having a disease by the PLR, 
one obtains the posttest odds of having that disease. The PLR for a test is calcu-
lated as the tests sensitivity/1-specifi city (i.e. FP rate). So a test with a sensitivity 
of 70 % and a specifi city of 90 % has a PLR of 7 (70/1 − 90). Unfortunately, it is 
made a bit more complicated by the fact that we generally want to convert odds to 
probabilities. That is, the PLR of 7 is really an odds of 7 to 1 and that is more dif-
fi cult to interpret than a probability (the probability from a 7:1 odds is 87.5 %, see 
below). Recall that odds of an event are calculated as the number of events occur-
ring, divided by the number of an events  not  occurring (i.e. non events, or p/p − 1). 
So if blood type O occurs in 42 % of people, the odds of someone having a blood 
type of O are .42/1 − .42 i.e. the odds of a randomly chosen person having blood 
type O is .72:1. Probability is calculated as the odds/odds + 1, so in the example 
above .72/1.72 = 42 % (or .42 – that is one can say the odds have having blood 
type O is .72 to 1 or the probability is 42 %-the latter is easier to understand for 
most). Recall, that probability is the extent to which something is likely to hap-
pen. To review, take an event that has a 4 in 5 probability of occurring (i.e. 80 % 
or .8). The odds of its occurring is 0.8/1 − 0.8 or 4:1. Odds then, are a ratio of 
probabilities. Note that an odds ratio (often used in the analysis of clinical trials) 
is also a ratio of odds. 

 To review: 
 The likelihood ratio of a positive test (LR+) is usually expressed as

  Sensitivity Specificity/1-    

and the LR− is  usually  expressed as

  1- Sensitivity Specificity/    

If one has estimated a pretest odds of disease, one can multiply that odds by the LR 
to obtain the post test odds, i.e.:

  Post test odds pre test odds LR- -= ×    

  To use an exercise test example consider the sensitivity for the presence of CAD 
(by coronary angiography) based on 1 mm ST segment depression. In this afore-
mentioned example, let’s assume that the sensitivity of a “positive” test is 70 % and 
the specifi city is 90 % (PLR = 7; NLR = .33). Let’s assume that based upon our 
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history and physical exam we feel the chance of a patient having CAD before the 
exercise test is 80 % (0.8). If the exercise test demonstrated 1 mm ST segment 
depression, your post-test odds of CAD would be .8 × 7 or 5.6 (to 1). The probability 
of that patient having CAD is then 5.6/1 + 5.6 = .85 (85 %). Conversely if the exer-
cise test did not demonstrate 1 mm ST segment depression the odds that the patient 
did not have CAD is .33 × 7 = 2.3 (to 1) and the probability of his not having CAD is 
70 %. In other words  before  the exercise test there was an 80 % chance of CAD, 
while  after  a positive test it was 85 %. Likewise before the test, the chance of the 
patient not having CAD was 20 %, and if the test was negative it was 70 %. 

 To add a bit to the confusion about using LRs, there are two lesser-used deriv-
ations of the LR as shown in Table  14.7 . One can usually assume that if not other-
wise designated, the descriptions for PLR and NLR above apply. But, if one wanted 
to express the results of a negative test in terms of the chance that the patient  has  
CAD (despite a negative test) rather than the chance that he  does not  have disease 
given a negative test; or wanted to match the NLR with NPV (i.e. the likelihood that 
the patient does NOT have the disease given a negative test result) an alternative 
defi nition of NLR can be used (of course one could just as easily subtract 70 % form 
100 % to get that answer as well). To make things easier, a nomogram can be used 
instead of having to do the calculations [ 8 ].

   In summary, the usefulness of diagnostic data depends on making an accurate 
diagnosis based upon the use of diagnostic tests, whether the tests are radiologic, 
laboratory based, or physiologic. The questions to be considered by this approach 
include: “How does one know how good a test is in giving you the answers that you 
seek?”, and “What are the rules of evidence against which new tests should be 
judged?” Diagnostic data can be sought for a number of reasons including: diagno-
sis, disease severity, to predict the clinical course of a disease, to predict therapy 
response. That is, what is the probability my patient has disease x, what do my his-
tory, physical exam, and baseline laboratory data tell me, what is my threshold for 
action, and how much will the available tests help me in patient management. An 
example of the use of diagnostic research is provided by Miller and Shaw, which 
demonstrates how the coronary artery calcium (CAC) score can be stratifi ed by age 
and the use of the various defi nitions described above [ 9 ].   

   Table 14.7    Different ways of calculating Likelihood Ration (LR)   

 End point  LR  Ratio  Se:Sp 

  D+ for T+    LR+    %D+ with T+    Se/1−SP  
  %D −  with T+    TP/FP  

 D− for T−  LR−  %D− with T−
%D+ with T− 

 Sp/1−Se 

 TN/FN 
 D− for T+  1/LR+  %D− with T+

%D+ with T+ 
 1−Sp/Se 

 FP/TP 
  D+ for T −   1/LR −   %D+ with T −   1−Se/Sp  

  %D− with T −   FN/TN  
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    Beyond the ROC Curve 

 Over 30 years after the construction of the fi rst multivariable risk prediction 
model predicting the probability of developing cardiovascular disease (CVD) 
new risk factors that can predict CVD and that can be incorporated into risk 
assessment algorithms has progressed. An individual’s age, baseline levels of 
systolic and diastolic blood pressure and serum cholesterol, smoking and diabe-
tes status are all useful predictors of the CVD risk over a reasonable future time 
period, typically 1–10 years. Quantifi cation of vascular risk is accomplished 
through risk equations or risk score sheets that have been developed on the basis 
of observations from large cohort studies. For example, the Framingham risk 
score has been routinely applied, validated and calibrated for use. However, 
CVD risk prediction is an ongoing work in progress and new risk factors or 
markers are being identifi ed and proposed constantly. The critical question arises 
is to how to evaluate the usefulness of a new marker? Four initial decisions that 
guide the process are:

 –    defi ning the population of interest  
 –   defi ning the outcome of interest  
 –   choosing how to incorporate the competing pre-existing set of risk factors  
 –   selecting the appropriate model and tests to evaluate the incremental yield of a 

new biomarker   

Since, none of the numerous new markers proposed comes close in magnitude 
to the necessary levels of association, some have argued that we need to wait for 
new and better markers; others have sought model performance measures 
beyond the AUC calculated from a ROC curve to evaluate the usefulness of 
markers. For example, the Net Reclassifi cation Index (or Improvement-NRI), 
focuses on reclassifi cation tables constructed separately for participants with 
and without events, and quantifi es the correct movement in categories – upwards 
for events and downwards for non-events. In its simplest terms, the NRI is 
defi ned as a measure of the net % of those who do or do not develop an endpoint 
within a given time period that are correctly reclassifi ed to a different category 
when a new risk factor is added to the risk estimation [ 1 ]. Again in its simplest 
terms, one can construct a 2 × 2 table and assess an endpoint, then add a new risk 
factor and reassess. The % improvement in TP and TN is the NRI. One example 
of this is the use of the coronary artery calcium (CAC) score to reclassify the 
patients risk say from that predicted by the FRS. The addition of a CAC score in 
one study, altered conventional risk determination (Framingham Risk Score 
[FRS]) such that the posttest probability could reclassify a patient to a new cat-
egory of risk. 

 Although the data using the NRI are conceptually appealing for patient care, 
there are still many unanswered questions with substantial clinical implications 
that will need to be addressed prior to using this reclassifi cation in clinical 
practice.  
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    Screening Testing 

 Screening tests are ubiquitous in contemporary practice, yet the principles of screen-
ing are widely misunderstood. Screening is the testing of apparently well people to 
fi nd those at increased risk of having a disease or disorder. Those identifi ed are 
sometimes then offered a subsequent diagnostic test or procedure, or, in some 
instances, a treatment or preventive medication. Looking for additional illnesses in 
those with medical problems is termed case fi nding. Although an earlier diagnosis 
generally has intuitive appeal, earlier might not always be better, or worth the cost. 
For tests with continuous variables – e.g., blood glucose – sensitivity and specifi city 
as mentioned prior, are inversely related; where the cutoff for abnormal is placed 
should indicate the clinical effect of wrong results. As also prior mentioned, the 
prevalence of disease in a population affects screening test performance: in low- 
prevalence settings, even very good tests have poor positive predictive values. 
Hence, knowledge of the approximate prevalence of the index disease is a prerequi-
site to interpreting screening test results. 

 Screening differs from the traditional clinical use of tests in several important 
ways. Ordinarily, patients consult with clinicians about complaints or problems; 
and, this prompts testing to confi rm or exclude a diagnosis. Because the patient is in 
pain and requests help, the risk and expense of tests are usually deemed acceptable 
by the patient. By contrast, screening engages apparently healthy individuals who 
are not seeking medical help (and who might prefer to be left alone). Hence, the 
cost, injury, and stigmatization related to screening are especially important (though 
often ignored in our zeal for earlier diagnosis). Furthermore, the medical and ethical 
standards of screening should be, correspondingly, higher than with diagnostic 
tests. Bluntly put: every adverse outcome of screening is iatrogenic and entirely pre-
ventable; thus, screening has a darker side that is often overlooked.  

    Guidelines for Publishing or Assessing Research 
in Diagnostic Tests  

 Finally, just as there are guidelines for publishing and assessing published articles 
addressing clinical and observational trials (see Chaps.   3     and   19    ) there are also 
guidelines for publishing studies of new diagnostic tests. McReid et al. have sug-
gested seven methodological standards for diagnostic tests [ 2 ] as follows.

 –     Spectrum Composition : i.e. if one changes the population under study one can 
change the tests diagnosticity, thus in assessing the results of a new diagnostic test, 
information on age and sex distribution, presenting symptoms and/or disease stage, 
and eligibility criteria for study patients should be included in published works.  

 –    Pertinent Subgroups : Se and Sp represent average values for a population. Unless 
the condition is narrowly defi ned, the indices may vary for different medical sub-
groups, thus these subgroups should be clearly described.  
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 –    Avoidance of Workup Bias : patients with a positive or negative “gold standard” 
diagnostic tests might be preferentially referred to evaluate the diagnosticity of a 
newly reported test. For example, a new DNA test to detect the breast cancer 
gene was administered to biopsy proven breast cancer and cancer-free controls. 
Since the biopsy may be ordered preferentially in women with a family history 
of breast cancer, the cases selected for the new test will be enriched by a clinical 
factor that itself may be associated with the new DNA test.  

 –    Avoidance of Review Bias : The new test needs to be interpreted independently 
of other tests, and the new test and the gold standard test need to be interpreted 
separately by persons unaware of the results of the other (akin blinding in clini-
cal trials).  

 –    Precision of Results for Test Accuracy : Like any other research, point estimates 
should have confi dence limits reported.  

 –    Presentation Of Indeterminate Results : Not all tests come out Yes or No. 
Sometimes they are equivocal or indeterminate. The frequency of these results 
may limit the tests applicability, or make it cost more because additional test are 
then needed. Finally,  

 –    Test Reproducibility : must be reported.        
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Abstract This chapter aims to arm clinical researchers with the necessary conceptual 
and practical tools (1) to understand what sample size or power analysis is, (2) to 
conduct such analyses for basic low-risk studies, and (3) to recognize when it is 
necessary to seek expert advice and input. I hope it is obvious that this chapter aims 
to serve as a general guide to the issues; specific details and mathematical presentations 
may be found in the cited literature. Additionally, it should be obvious that this 
discussion of statistical power is focused, appropriately, on quantitative investigations 
into real or hypothetical effects of treatments or interventions. It does not address 
qualitative study designs. The ultimate goal here is to help practicing clinical researcher 
get started with power analyses.
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mailto:oakes007@umn.edu


328

 Introduction

My experience as both and educator and collaborator is that clinical researchers 
are frequently perplexed if not unnerved by questions of statistical power, detectable 
effect, number-needed-to-treat, sample size calculations, and related concepts. Those 
who have taken a masters-level biostatistics course may even become paralyzed 
by authoritative cautions, supporting the quip that a little knowledge can be a 
dangerous thing. Unfortunately, anxiety and misunderstanding seem to push some 
to ignore the issues while others appear rigid in their interpretations, rejecting all 
‘under-powered’ studies as useless. Neither approach is helpful to researchers or 
medical science.

I do not believe clinician researchers, especially, are to blame for the trouble. My 
take is that when it comes to statistical power and related issues, instructors, usually 
biostatisticians, are too quick to present equations and related algebra instead of the 
underlying concepts of uncertainty and inference. Such presentations are under-
standable since the statistically-minded often think in terms of equations and are 
obviously equipped with sufficient background information and practice to make 
sense of them. But the same is not usually true of clinicians or perhaps even some 
epidemiologists. Blackboards filled with Greek letters and algebraic expressions, to 
say nothing of terms like ‘sampling distribution,’ only seem to intimidate if not turn- 
off students eager to understand and implement the ideas. What is more, I have 
come across strikingly few texts or articles aimed at helping clinician-researchers 
understand key issues. Most seem to address only experimental (e.g., drug trial) 
research, offer frightening cautions, or consider only painfully simple studies. Little 
attention is paid to less glorious but common clinical studies such as sample-survey 
research or perhaps the effects of practice/cultural changes to an entire clinic. Too 
little has written about the conceptual foundations of statistical power, and even less 
of this is tailored for clinician-researchers.

I find that clinical researchers gain a more useful understanding of, and appreciation 
for, the concepts of statistical power when the ideas are first presented with some 
utilitarian end in mind, and when the ideas are located in the landscape of inference 
and research design. Details and special-cases are important, but an emphasis must 
be placed on simple and concrete examples relevant to the audience. Mathematical 
nuance and deep philosophical issues are best reserved for the few who express 
interest. Still, I agree with Baussel and Li [1] who write,

… a priori consideration of power is so integral to the entire design process that its 
consideration should not be delegated to individuals not integrally involved in the conduct 
of an investigation…

Importantly, emphasis on concepts and understanding may also be sufficient 
for clinical researchers since I believe the following three points are critical to a 
successful power-analysis:

 1. The More, the Merrier – Except for exceptional cases when study subjects are 
exposed to more than minimal risk, there is hardly any pragmatic argument for 
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not enrolling as many subjects as the budget permits. Over-powered studies 
are not much of a threat, especially when authors and readers appreciate the 
abundant limitations of p-values and other summary measures of ‘significance.’ 
While perhaps alarming, I have found analytic interest in subgroup comparisons 
or other ‘secondary’ aims to be universal; few researchers are satisfied when 
‘real’ analyses are limited to main study hypotheses. It follows that more subjects 
are always needed. But let me be clear: when risk is elevated, clinical researchers 
must seek expert advice.

 2. Use Existing Software – Novice study designers should rely on one or more of 
the high-quality and user-friendly software packages available for calculating 
statistical power. Novice researchers should not attempt to derive new equations 
nor should they attempt to implement any such equation into a spreadsheet 
package. The possibility of error is too great and efforts to ‘re-invent the wheel’ 
will likely lead to mistakes. Existing software packages have been tested and will 
give the correct answer, provided researchers input the correct information. This 
means, of course, that the researcher must understand the function of each input 
parameter and the reasonableness of the values entered.

 3. If No Software, Seek Expert – If existing sample-size software cannot accommo-
date a particular study design or an analysis plan, novice researchers should seek 
expert guidance from biostatistical colleagues or like-minded scholars. Since 
existing software accommodates many (sophisticated) analyses, exceptions 
mean something unusual must be considered. Expert training, experience, and 
perhaps an ability to simulate data are necessary in such circumstances. Expert 
advice is also necessary when risks of research extend beyond the minimal 
threshold.

The upshot is that clinical researchers need to minimally know what sort of sam-
ple size calculation they need and, at most, what related information should be 
entered into existing software. Legitimate and accurate interpretation of output is 
then paramount, as it should be. Concepts matter most here, and are what seem to 
be retained anyway [2].

Accordingly, this chapter aims to arm clinical researchers with the necessary 
conceptual and practical tools (1) to understand what sample size or power analy-
sis is, (2) to conduct such analyses for basic low-risk studies, and (3) to recognize 
when it is necessary to seek expert advice and input. I hope it is obvious that this 
chapter aims to serve as a general guide to the issues; specific details and mathe-
matical presentations may be found in the cited literature. Additionally, it should 
be obvious that this discussion of statistical power is focused, appropriately, on 
quantitative investigations into real or hypothetical effects of treatments or inter-
ventions. I do not address qualitative study designs. The ultimate goal here is to 
help practicing clinical researcher get started with power analyses. Alternative 
approaches to inference and ‘statistical power’ continue to evolve and merit careful 
consideration if not adoption, but such a discussion is far beyond the simple goals 
here; see [3, 4].
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 Fundamental Concepts

 Inference

Confusion about statistical power often begins with a misunderstanding about the 
point of conducting research. In order to appreciate the issues involved in a power 
calculation, one must appreciate that the goal of research is to draw credible infer-
ences about a phenomena under study. Of course, drawing credible inferences is 
difficult because of the many errors and complications that can cloud or confuse our 
understanding. Note that, ultimately, power calculations aim to clarify and quantify 
some of these potential errors.

To make issues concrete, consider patient A with systolic pressure of 140 mmHg 
and, patient B, with a reading of 120 mmHg. Obviously, the difference between 
these two readings is 20 mmHg. Let us refer to this difference as ‘d’. To sum up, 
we have

 140 120− = d  

Now, as sure as one plus one equals two, the measured difference between the two 
patient’s BPs is 20. Make no mistake about it, the difference is 20, not more, not less.

So, what is the issue? Well, as any clinician knows either or both the blood- 
pressure measures could (probably do!) incorporate error. Perhaps the cuff was 
incorrectly applied or the clinician misread the sphygmomanometer. Or perhaps the 
patient suffers white-coat hypertension making the office-visit measure different 
from the patient’s ‘true’ measure. Any number of measurement errors can be at 
work making the calculation of the observed difference between patients an error- 
prone measure of the true difference, symbolized by Δ, the uppercase Greek-letter 
‘D’, for True or philosophically perfect difference.

It follows that what we actually measure is a mere estimate of the thing we are 
trying to measure, the True or parameter value. We measure blood-pressures in both 
patients and calculate a difference, 20, but no clinician will believe that the true or 
real difference in pressures between these two individuals is precisely 20 now or for 
all time. Instead, most would agree that the quantity 20 is an estimate of the true 
difference, which we may believe is 20, plus or minus 5 mmHg, or whatever. And 
that this difference changes over time if not place.

This point about the observed difference of 20 being an estimate for the true 
difference is key. One takes measures, but appreciates that imprecision is the rule. 
How can we gauge the degree of measurement error in our estimate of d = 20 → Δ?

One way is to take each patient’s blood-pressures (BP) multiple times and, say, 
average them. It may turn out that patient A’s BP was measured as 140, 132, 151, 
141 mmHg, and patient B might have measures 120, 121, 123, 119, 117. The average 
of patient A’s four measurements is, obviously, 141 mmHg, while patient B’s five mea-
surements yield an average of 120 mmHg. If we use these presumably more accurate 
average BPs, we now have this

 140 120 21− = = d *  
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where d* is used to show that this ‘d’ is based on a different calculation (e.g., averages) 
than the previously discussed ‘d’.

How many estimates of the true difference do we need to be comfortable making 
claims about it? Note that the p-value from the appropriate t-test is less than 0.001. 
What does this mean? Should we take more measures? How accurate do we need 
the difference in blood pressure to be before we are satisfied that patient A’s BP is 
higher than patient B’s? Should we worry that patient A’s BP was much more variable 
(standard deviation = 7.8) than patient B’s (standard deviation = 2.2)? If patient A is 
male and patient B female, can we generalize and say that, on average, males 
have high BP than females? If we are a little wrong about the differences in blood 
pressures, which is more important: claiming there is no difference when in fact 
there is one, or claiming there is a difference when in fact there is not one? It is questions 
like these that motivate our discussion of statistical power.

The basic goal of a ‘power analysis’ is to appreciate approximately how many 
subjects are needed to detect a meaningful difference between two or more experi-
mental groups. In other words, the goal of power analysis is to consider natural 
occurring variance of the outcome variable, errors in measurement, and the impact 
of making certain kinds of inferential errors (e.g., claiming a difference when in 
truth the two persons or groups are identical). Statistical power calculations are 
about inference, or making (scientific) leaps of faith from real-world observations to 
statements about the underlying truth.

Notice above, that I wrote ‘approximately.’ This is neither a mistake nor a subtle 
nuance. Power calculations are useful to determine if a study needs 50 or 100 
subjects; the calculations are not useful in determining whether a study needs 50 or 
52 subjects. The reason is that power calculations are loaded with assumptions, too 
often hidden, about distributions, measurement error, statistical relationships and 
perfectly executed study designs. As mentioned above, it is rare for such perfection 
to exist in the real world. Believing a given power analysis is capable of differenti-
ating the utility of a proposed study within a degree of a handful of study subjects is 
an exercise in denial and is sure to inhibit scientific progress.

I also wrote that power was concerned with differences between ‘two groups.’ 
Of course study designs with more groups are possible and perhaps even desirable. 
But power calculations are best done by keeping comparisons simple, as when only 
two groups are involved. Furthermore, this discussion centers on elementary principles 
and so simplicity is paramount.

The other important word is ‘meaningful’. It must be understood that power 
calculations offer nothing by way of meaning; manipulation of arbitrary quantities 
through some algebraic exercise is a meaningless activity. The meaningfulness of a 
given power calculation can only come from scientific/clinical expertise. To be 
concrete, while some may believe a difference of, say, 3 mmHg of systolic blood 
pressure between groups is important enough to act on, others may say such a dif-
ference is not meaningful even if it is an accurate measure of difference. The proper 
attribution of meaningfulness, or perhaps importance or utility, requires extra-statistical 
knowledge. Clinical expertise is paramount.
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 Standard Errors

A fundamental component of statistical inference is the idea of ‘standard error.’ As 
an idea, a standard error can be thought of as the standard deviation of a test statistic 
in the sampling distribution. You may be asking, what does this mean?

Essentially, our simplified approach to inference is one of replicating a given 
study over and over again. This replication is not actually done, but is instead a 
thought, experiment, or theory that motivates inference. The key is to appreciate 
that for each hypothetical and otherwise identical study we observe a treatment 
effect or some other outcome measure. Because of natural variation and such, 
for some studies the test statistic is small/low, for others, large/high. Hypothetically, 
the test statistic is distributed in a bell-shaped curve, with one point/measure for 
each hypothetical study. This distribution is called the sampling distribution. 
The standard deviation (or spread) of this sampling distribution is the standard 
error of the test statistic. The smaller the standard deviation, the smaller the stan-
dard error.

We calculate standard errors in several ways depending on the study design and 
the chosen test statistics. Standard error formulas for common analytic estimators 
(i.e., tests) are shown in Fig. 15.1. Notice the key elements of each standard error 
formula are the variance of the outcome measure, σ2, and sample size, n. Researchers 
must have a sound estimate of the outcome measure variance at planning. Reliance 
on existing literature and expertise is a must. Alternative approaches are discussed 
by Browne [5].

Estimator Standard Error

Sample mean
2

n

Difference between independent
sample means 21

2 11
nn

Binomial proportion (1 )p p
n

Log Odds-ratio 1 1 1 1
a b c d

Difference between two means in a
Group-randomized trial

2 22 m
g

Fig. 15.1 Common standard error formulas
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Since smaller standard errors are usually preferred (as they imply a more precise 
test statistic), one is encouraged to use quality measurement tools and/or larger 
sample sizes.

 Hypotheses

A fundamental idea is that of the ‘hypothesis’ or ‘testable conjecture.’ The term 
‘hypothesis’ may be used synonymously with ‘theory’. A necessary idea here is that 
the researcher has a reasoned and a priori guess or conjecture about the outcome of 
their analysis or experiment. The a priori (or in advance) aspect is critical since 
power is done in the planning stage of a study.

For purposes here, hypotheses may be of just two types: the null and the alternative. 
The null hypothesis is, oddly, what is not expected from the study. The alternative 
hypothesis is what is expected given one’s theory. This odd reversal of terms or 
logic may be a little tricky at first but everyone gets used to it. Regardless, the key 
idea is that researchers marshal information and evidence from their study to either 
confirm or disconfirm (essentially reject) their a priori null hypothesis. For us, a 
study is planned to test a theory by setting forth a null and alternative hypothesis and 
evaluating data/results accordingly. Researchers will generally be glad to observe 
outcomes that refute null hypotheses.

Several broad kinds of hypotheses are important for clinical researchers but two 
merit special attention:

 1. Equality of groups – The null hypothesis is that the, say, mean in the treatment 
group is strictly equal to the mean in the control group; symbolically μT = μC, 
where μT represents the mean of the treatment group and μC represents the mean 
of the control group. The analysis conducted aims to see if the treatment is 
strictly different from control; symbolically μT ≠ μC. As can be imagined, this 
strict equality or difference hypothesis is not much use in the real world.

 2. Equivalence of groups – In contrast to the equality designs, equivalence designs 
do not consider just any difference to be important, even if statistically significant! 
Instead, equivalence studies require that the identified difference be clinically 
meaningful, above some pre-defined value, d. The null hypothesis in equivalence 
studies is that the (absolute value of) the difference between treatment and 
control groups be larger than some meaningful value; symbolically, |μT − μC| ≥ d. 
The alternative hypothesis is then that the observed difference is smaller than 
the predefined threshold value d, or in symbols |μT − μC| < d. If the observed is 
less than d, then two ‘treatments’ are viewed as equivalent, though this does not 
mean strictly equal.

Finally, it is worth pointing out that authors typically abbreviate the term null 
hypothesis with H0 and the alternative hypothesis with HA.
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 Type I and Type II Error

When it comes to elementary inference, it is useful to define two kinds of errors. 
Using loose terms, we may call them errors of commission and omission, with 
respect to stated hypotheses.

Errors of commission are those of inferring a relationship between study variables 
when in fact there is not one. In other words, errors of commission are rejecting a 
null hypothesis (no relationship) when in fact it should have been accepted it. In 
other words, you have done something you should not have.

Errors of omission are those of not inferring a relationship between study 
variables when in fact there is a relationship. In other words, not rejecting a null in 
favor of the alternative, when in fact the alternative (a relationship) was correct. 
That is, you have failed to do something you should have.

The former – errors of commission – are called Type I errors. The latter, Type II 
errors. A simple figure is useful for understanding their inter-relationship, as shown 
in Fig. 15.2. Statistical researchers label Type I error α, the Greek letter ‘a’ or alpha. 
Type II errors are labeled β, the Greek letter ‘b’ or beta (the first and second letters 
of the Greek alphabet).

Both Type I and Type II errors are quantified as probabilities. The probability of 
incorrectly rejecting a true null hypothesis – or accepting that there is a relationship 
when in fact there is not – is α (ranging from 0 to 1). So, Type I error may be 0.01, 
0.05 or any other such value. The same goes for Type II error.

For better or worse, by convention researchers typically plan studies with an 
Type I error rate of 0.05, or 5 %, and a Type II error rate of 0.20 (20 %) or less. 
Notice this implies that making an error of commission (5 % alpha or Type I error) 
is four times more worrisome than making an error of omission (20 % beta or Type 
II error). By convention, we tolerate less Type I error than Type II error. Essentially, 
this relationship reflects the conservative stance of science: scientists should accept 

Mother Nature or True State of Null Hypothesis

Researcher’s
Inference

H0 is True H0 is False

Reject H0

Type I error

probability = a

Correct Inference

probability = 1 − b

Power (HA)

Accept H0

Correct Inference

probability = 1 − a

Type II error

probability = b

Fig. 15.2 Type I and Type II errors
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the null (no relationship) unless there is strong evidence to reject it and accept the 
alternative hypothesis. That is the scientific method.

Statistical Power

We can now define statistical power. Technically, power is the complement of the 
Type II error (i.e., the difference between 1 and the amount of Type II error in the 
study). A simple definitional equation is,

 Power = −1 b.  

Statistical power is, therefore, about the probability of correctly rejecting a null 
hypothesis when in fact one should do so. It is a population parameter, loosely 
explained as a study’s ability or strength to reject the null when doing so is 
 appropriate. In other words, power is about a study’s ability to find a relationship 
between study variables (e.g., treatment effect on mortality) when in fact there is 
such a relationship. Note that power is a function of the alternative hypothesis; 
which essentially means that the larger the (treatment) effect, the more power to 
detect it. It follows that having more power is usually preferred since researchers 
want to discover new relationships between study variables. Insufficient power 
means some existing relationships go undetected. This is why underpowered studies 
are so controversial; one cannot tell if there is in fact no relationship between two 
study variables or whether the study was not sufficiently powered to detect the rela-
tionship; inconclusive studies are obviously less than desirable.

Given the conventional error rates mentioned above (5 % Type I and 20 % 
Type II) we can now see where and why the conventional threshold of 80 % power 
for a study obtains: it is simply

 Power = − = − =1 1 0 20 0 80b . .  

To be clear, 80 % statistical power means that if everything in the study goes as 
planned and the alternative hypothesis in fact is true, there is an 80 % chance of 
observing a statistically significant result and a 20 % chance of erroneously missing 
it. All else equal, lower Type II error rates mean more statistical power.

Power and Sample Size Formula

There are a large number of formulae and approaches to calculating statistical power 
and related concepts, and many of these are quite sophisticated. It seems useful 
however to write down a/the very basic formula and comment on it. Such founda-
tional ideas serve as building blocks for more advanced work. The basic power 
formula may be written as,
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Z Z
1 2−

+ = ( )a Power SE

∆
∆

 

where Za
2

 is the value of Z for a given α
2

 Type I error rate, ZPower is the value of 

Z for a given power value (i.e., 1 – Type II error rate), Δ is the minimal detectable 
effect for some outcome variable (discussed below), and SE(Δ) is the standard error 
for the same outcome variable.

Let us now explore each of the four (just four!) basic elements in more detail. In 
short, the equation states that the (transformed) probability of making the correct 
inference equals the effect of some intervention divided by the appropriate standard 
error.

The term Za
2

 is the value of a Z statistic (often found in the back of basic statis-

tics textbooks) for the Type I error rate divided by two, for a two-sided hypothesis 
test. If Type I error rate is 0.05, the value of this element is 0.975. Looking up the 
value of Z shows that the Z at 0.975 is 1.96.

The term ZPower is the value of the Z statistic, a specified level of power. Type II 
error is often set a 20 % (or 0.20), which yields a ZPower of 0.84.

We may now rewrite the equation for use when two-sided Type I error is 5 % and 
power is set at 80 % (Type II error is 20 %),

 

1 96 0 84. .+ =
( )
∆
∆SE

 

The other two elements in the equation above depend on the data and/or theory. 
The critical part is the standard error of the outcome measure, symbolized as SE(Δ). 
This quantity depends on the study design and the variability of the outcome meas-
ure under investigation. If may be helpful to regard this quantity as the noise that is 
recorded in the outcome measure. Less noise means a more precise outcome meas-
ure; and, the more precision the better.

It should now be easy to see that the key part of the formula is the standard error, 
and thus two elements really drive statistical power calculations: variance of the 
outcome measure, σ2, and sample size, n. The rest is more or less given, although the 
importance of the study design and statistical test cannot be over emphasized. It fol-
lows that for any given design researchers should aim to decrease variance and 
increase sample size. Doing either or both reduces the minimal detectable effect, Δ, 
which is generally a good thing.

Minimal Detectable Effect

As mentioned above, applied or collaborating statisticians rarely directly calculate 
the statistical power of a given study design. Instead, we typically ask clinician 
researchers how many subjects can be recruited given budget constraints and then 
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using the conventional thresholds of 80 % power and 5 % Type I error rates calculate 
the study’s minimum detectable difference [6]. In other words, given that (1) most 
find 80 % power and 5 % Type I error satisfactory and (2) that budgets are always 
tight, there is no point in calculating power or how many subjects are needed. 
Instead the values of 80 %, 5 %, and number of subject’s affordable, along with the 
variance and other information are taken as given or immutable. The formula is 
algebraically manipulated to yield the smallest or minimal study effect (on the scale 
of the outcome measure) that is to be expected.

 
∆ ∆= ( ) +



−

SE PowerZ Z
1 2

a
 

For the conventional Type I and II error rates, the formula is simply

 
∆ ∆= ( )SE * . .2 8

 

If this value is clinically meaningful – that is, not as large as to be useless – then the 
study is well-designed. Notice, one essentially substitutes any appropriate standard 
error. Again, standard errors are a function of study design (cross-sectional, cohort, or 
experiment study, etc.) It is worth noting that there are some subtle but important aspects 
to this approach; advanced learners may begin with the insights of Greenland [7].

P-Values and Confidence Interval

P-values and confidence intervals are practically related and convey a sense of 
uncertainty about an effect estimate. There remains a substantial degree of contro-
versy about the utility or misuse of p-values as a measure of meaning [8–10], but the 
key idea is that some test statistic, perhaps Z or t, which is often the ratio of some 
effect estimate divided by its standard error, is assessed against a threshold value in 
a Z-table, say Z of 0.05 which is 1.96. If the ratio of the effect estimate divided by 
its standard error is greater than 1.96 (which is 1.96 standard deviations away from 
mean of the sample distribution) then we say the estimated effect is unlikely to arise 
by chance if the null hypothesis were in fact true… that is, the estimated effect is 
statistically significant.

Confidence intervals, often called 95 % confidence intervals, are another meas-
ure of uncertainty about estimated effects [11]. Confidence intervals are often writ-
ten as the estimated mean or other statistic of the effect plus or minus some amount, 
such as 24 ± 11, which is to say the lower 95 % confidence interval is 24 − 11 = 13 
and the upper 95 % confidence interval is 24 + 11 = 35. In other words, in 95 out of 
100 replications of the study being conducted, the confidence interval will include 
(or cover) the true mean (i.e., parameter). Confidence intervals are too often errone-
ously interpreted as saying that there is a 95 % probability of the true mean being 
within the limit bounds.
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 Two Worked Examples

The benefits of working through a few common examples seem enormous. In what 
follows I offer two different ‘power analyses’ for common study designs: the first 
is a t-test for a difference between two group means, the second example considers 
an odds-ratio from a case-control study. I rely on the PASS software package for 
each analysis [12]. There are other programs that yield similar results and I do not 
mean to suggest PASS is the best. But I do rely on it personally and find it 
user-friendly.

Two points must be emphasized before proceeding: (1) power analyses are 
always tailored to a particular study design and null hypothesis and (2) use of exist-
ing software is beneficial, but if study risks are high then expert guidance is 
necessary.

 (Example 1) t-Test with Experimental Data

Imagine a simple randomized experiment where 50 subjects are given some treat-
ment (the treatment group) and 50 subjects are not (the control or comparison 
group). Researchers might be interested in the difference in the mean outcome of 
some variable between groups. Perhaps we are interested in the difference in body 
mass index (BMI) between some diet regime and some control condition. Presume 
that it is known from pilot work and the existing literature that the mean BMI for the 
study population is 28.12 with a standard deviation of 7.14.

Since subjects were randomized to groups there is no great concern with con-
founding. A simple t-test between means will suffice for the analysis. Our null 
hypothesis is that the difference between means is nil; our alternative hypothesis is 
that the treatment group mean will be different (presumably but not necessarily less) 
than the control group mean.

Since we could only afford a total of N = 100 subjects, there is no reason to con-
sider altering this. Additionally, we presume that in order to publish the results in a 
leading research journal we need 5 % Type I error and 20 % Type II error (or what 
is the same, 80 % Power). The question is, given the design and other constraints, 
how small an effect of the treatment can we detect? Inputting the necessary informa-
tion into a software program is easy. The PASS screen for this analysis is shown in 
Fig. 15.3.

Notice that we are solving for ‘Mean 2 (Search < Mean 1)’ which implies that we 
are looking for the difference between our two sample means, where the second 
mean is less than the first or visa versa. Again, the alternative hypothesis is that our 
treatment group BMI mean will be different from the control groups, which is a 
non-directional or two-sided test. The specification here merely adds a sign (+ or −) 
to the estimated treatment effect. The question at hand is how small an effect can we 
minimally detect?
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• We have given error rates for ‘Power’ to be 0.80 and our ‘Alpha (Significance)’ 
to be 0.05.

• The sample size we have is 50 for ‘N1 (sample size Group 1)’ and the same for 
‘N2 (sample size Group 2)’. Again, we presume these are given due to budget 
constraints.

• The mean of group 1 ‘Mean1 (Mean of Group 1)’ is specific at 28.12, a value we 
estimated from our expertise and the existing literature. We are solving for the 
mean of group two ‘Mean2 (Mean of Group 2)’.

• The standard deviation of BMI also comes from the literature and is thought to 
be 7.14 for our target population (in the control or non-treatment arm). We 
assume that the standard deviation for the treatment arm will be identical to S1 
or 7.14. Again, these are hypothetical values for this discussion only.

• The alternative hypothesis under investigation is that the means are unequal. This 
framework yields a 2-sided significance test, which is almost always indicated.

Clicking the ‘run’ button (top left) yields this PASS screen seen in Fig. 15.4, which 
is remarkably self-explanatory and detailed. The output shows that for 80 % Power, 
5 % alpha or Type I error, two-sides significance test, 50 subjects per group, and a 
mean control-group BMI of 28.1 with a standard deviation of 7.1, we can expect to 
minimally detect a difference of 4.1 BMI units (28.1 − 44.1 = 4.0). To be clear, we 
have solved for Δ and it is 4.0. Given this design, we have an 80 % chance to detect 

Fig. 15.3 PASS input screen for t-test analysis
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a 4.0 unit difference in BMI if in fact that difference exists. If our treatment actually 
has a larger impact on BMI, we will have more power to detect it.

If this change of 4.0 BMI units between treatment groups is thought to be pos-
sible and is clinically meaningful, then we have a well-designed study. If we can 
only hope for a 2.1 unit decrease in BMI from the intervention, then we are under- 
powered and should alter the study design. Possible changes include more subjects 
and or reducing the standard deviation of the outcome measure BMI, presumably by 
using a more precise instrument, or perhaps stratifying the analysis.

It is worth noting that more experienced users may examine the range of minimal 
detectable differences possible over a range of sample sizes or a range of possible 
standard deviations. Such ‘sensitivity’ analyses are very useful for both investiga-
tors and peer-reviewers.

 (Example 2) Logistic Regression with Case-Control Data

The second example is for a (hypothetical) case-control study analyzed with a logis-
tic regression model. Here again we navigate to the correct PASS input screen 
(Fig. 15.5) and input our desired parameters:

Fig. 15.4 PASS output for t-test power analysis
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• Solve for an odds-ratios, expecting the exposure to have a positive impact on the 
outcome measure; in other words OR > 1.0

• Power = 80 % and Type I or alpha error = 5 %
• Let sample size vary from N = 100 to N = 300 by 25 person increments
• Two sided hypothesis test
• Baseline probability of exposure (recall this is case-control) of 20 %

And the explanatory power of confounders included in the model is 15 %.
But given the range of sample size values we specified, the output screen is 

shown in Fig. 15.6.
Given the null hypothesis of no effect (OR = 1.0), it is easy to see that the mini-

mum detectable difference of exposure in this case-control study with N = 100 sub-
ject is 0.348 − 0.200 = 0.148, which is best understood as an OR = 2.138. With 300 
subjects the same parameter falls to 1.551. As expected, increasing sample size 
(threefold) decreases the smallest effect one can expect to detect. Again, practically 
speaking, the smaller the better.

One can copy the actual values presented into a spreadsheet program (e.g., Microsoft 
Excel) and graph the difference in odds-ratios (that is, Δ) as a function of sample size. 
Reviewers tend to prefer such ‘sensitivity’ analyses. When it comes to such simple 
designs, this is about all there is to it, save for proper interpretation of course.

Fig. 15.5 PASS input screen
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 Conclusions

Sample size and statistical power are important issues for clinical research and it 
seems clinical researchers continue to struggle with the basic ideas. Accordingly, 
this chapter has aimed to introduce some fundamental concepts too often ignored in 
the more technical (i.e., precise) literature. Abundant citations are offered for those 
seeking more information or insight.

In closing, five points merit emphasis. First, sound inference comes from well- 
designed and executed studies. Planning is the key. Second, power analyses are 
always directly linked to a particular design and analysis (i.e., null hypothesis). 
General power calculations are simply not helpful, correct, and may even lead to 
disaster. Third, while used throughout this discussion, I emphasize that I do not 
advocate for the conventional 80 % power and 5 % Type I error. I simply use these 

Fig. 15.6 PASS output screen
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above as common examples. Error rates should be carefully considered. Power 
 analyses are properly done in the planning stage of a study. Retrospective power 
analyses are to be avoided [13]. Fourth, assumptions of planned analyses are key. 
Multiple comparisons and multiple hypothesis tests undermine power calculations 
and assumptions. Further, interactive model specification (i.e., data mining) invali-
dates assumptions. Finally, cautions of when to consult a statistical expert are 
important, especially when research places subjects at risk.

For greater technical precision and in-depth discussion, interested readers are 
encouraged to examine the following texts, ordered from simplest to more demand-
ing discussions: [1, 14, 15] A solid and more technical recent but general discus-
sion is by Maxwell, Kelley and Rausch [16]. Papers more tailored to particular 
designs include Oakes and Feldman [17], Feldman and McKinlay [18], Armstrong; 
[19] Greenland; [20] Self and Mauritsen [21]. Of note is that Bayesian approaches 
to inference continue to evolve and merit careful study if not adoption by practicing 
statisticians [3]. Because the approach incorporates a priori beliefs and is focused 
on decision-making under uncertainty, the Bayesian approach to inference is actu-
ally a more natural approach to inference in epidemiology and clinical medicine.

Acknowledgements This chapter would not have been possible without early training by Henry 
Feldman and the outstanding comments and corrections of Peter Hannan.
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    Abstract     Anything one measures can become data, but only those data that have 
meaning can become information. Information is almost always useful; data may or 
may not be. This chapter will address the various ways one can measure the degree 
of association between an exposure and an outcome and will include a discussion of 
relative and absolute risk, odds ratios, number needed to treat, and related measures. 
In addition, this chapter will introduce the concept of causal inference.  

  Keywords     Probability   •   Chi-square test   •   Relative risk   •   Attributable risk   •   Relative 
risk reduction   •   Number needed to treat   •   Correlation   •   Regression   •   Causation  
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  The star of the play is the effect size i.e. what you found  
  The co-star is the effect size’s confi dence interval i.e. the 

precision that you found  
  If needed, supporting cast is the adjusted analyses i.e. the 

exploration of alternative explanations  
  With a cameo appearance of the p value, which, although its 

career is fading, insisted upon being included  
  Do not let the p value or an F statistic or a correlation 

coeffi cient steal the show, the effect size must take center stage!  
  But remember it takes an entire cast to put on a play!  

mailto:sglasser@uabmc.edu


346

       Introduction 

 Anything one measure’s can become data, but only those data that have meaning can 
become information. Information is almost always useful; data may or may not be. 
Types of data include dichotomous, categorical, and continuous. For fi nding asso-
ciations in clinical research data, there are several tools available. For categorical 
analyses one can compare relative frequencies or proportions, cross classifi cations 
(grouped according to more than one attribute at the same time) offering three 
different kinds of percentages (row, column, and joint probabilities), and to assess 
whether these are different from what one might expect by chance: chi square tests. 
When comparing continuous measures one can use correlation, regression, analysis 
of variance (ANOVA), and survival analyses. The techniques for continuous vari-
ables can also accommodate categorical data into their assessments.  

    Relative Frequencies and Probability 

 Let’s address relative frequencies fi rst, or how often something appears relative to 
all results. The simplest relative frequency can be a probability, a rate (a numerator 
divided by what is in the numerator plus what is not in the numerator) i.e. A/A + B 
(Infl uenza fatality rate: those who are infected with infl uenza and die denoted by A 
divided by those infected who die (A) plus those infected who recover (B)). In con-
trast, a ratio is written as A/B, where the numerator is not part of the denominator. 
Examples of rates are the probability of a 6 on the throw of a die (there is one 6 and 
5 other ‘points’ on the die), or the probability of a winning number in roulette. Three 
key concepts in probability and associations are: joint probability, marginal proba-
bility, and conditional probability (i.e. probability of A occurs given B has already 
occurred). Figure  16.1  diagrams these three types of probabilities. These concepts 
are key to cross classifi cations of variables.

   Dependence is another way of saying association, and two events are dependent 
if the probability of A and B (A & B) occurring is not equal to the probability of 
A times the probability of B. If the probability of A & B is equal to the product of 
the probability of A times the probability of B the two events are said to be independent. 
For example, there are 4 suits in a deck of cards, thus, the probability of drawing a 
card that is a heart is ¼. There are 4 queens in a deck of cards, thus the probability 
of drawing a queen is 4/52. The probability of drawing the queen of hearts is ¼ 
times 4/52 = 1/52. Thus we can say that the suit of the card is independent of the face on 
the card. How does this apply to epidemiology and medical research? To illustrate, 
consider the 2 × 2 table shown in Table  16.1 .

   By applying the above to an exploration of the association of hormone 
replacement therapy (HRT) and deep venous thrombosis (DVT) from the following 
theoretic data we can calculate the joint, marginal, and conditional probability as 
seen in Table  16.2 .
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A&BA not B B not A

Joint

Marginal = entire circle A or entire circle B

Conditional

  Fig. 16.1    Venn diagram 
of conditional vs. joint 
probability       

How to summarize or compare this dataHow to summarize or compare this data

Marginal probabilityMarginal probability
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prob exposureprob exposure

P(Exp)=(A+B)/NP(Exp)=(A+B)/N

NB+DB+DA+CA+CTotalTotal
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A+BA+B

TotalTotal

DCNot ENot E

BAExpExp

No No DxDxDxDx Conditional probabilityConditional probability
prob disease given exposureprob disease given exposure

A/(A+B)A/(A+B)

ConditionalConditional probability 
prob disease given no exposure

C/(C+D)

   Table 16.1    An example of summarizing data and defi ning marginal and conditional probability       

   Table 16.2    An example of calculating outcome (Deep Vein Thrombosis-DVT) and exposure 
to Hormone Replacement Therapy (HRT)   

  The two by two table HRT and DVT  

  DVT    No DVT    Total  

  On HRT   33  1,667  1,700 
  No HRT   27  2,273  2,300 
  Total   60  3,940  4,000 

   Marginal Probability of DVT On HRT
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   To test the hypothesis of independence, we can use the above probability rules to 
determine how well the observed compares to the expected occurrence under the 
assumption that the HRT therapy is independent of the DVT. One way to do this is 
to use the chi square statistic (basically the observed value in any of the cells of our 
cross-classifi cation minus the expected value squared, divided by the expected for 
each cell of our cross-classifi cation table; and, add up these squared deviations to 
achieve a test statistical value). If the value that is calculated occurs by chance 
(found by comparing to the appropriate chi-square distribution table) is less than say 
5 % we will reject the hypothesis that the row and column variables are independent, 
thereby implying that they are  not  independent i.e. an association exists. Any 
appropriately performed test of statistical signifi cance lets you know the degree of 
confi dence you can have in accepting or rejecting a hypothesis. Typically, the 
hypothesis tested with chi square is whether or not two different samples (of people, 
texts, whatever) are different enough in some characteristic or aspect of their behavior 
that we can say from our sample that the populations from which our samples are 
drawn appear to be different from the expected behavior. 

 A non-parametric test (specifi c distributions of values are not specifi ed a priori, 
some assumptions are made such as independent and identically distributed values) 
makes fewer assumptions about the form of the data occurring, but compared to 
parametric tests (like t-tests and analysis of variance, for example) it is less powerful 
or less likely to identify an association and, therefore, has less status in the list of 
statistical tests. Nonetheless, its limitations are also its strengths; thus, because 
chi- square is more ‘forgiving’ in the data it will accept, it can be used in a wide 
variety of research contexts.  

    Generalizing from Samples to Populations 

 Converting raw observed values or frequencies into percentages does allow us to 
more easily see patterns in the data, but that is all we can see, unless we make some 
additional assumptions about the data. Knowing with great certainty how often a 
particular drink is preferred in a particular group of 100 students is of limited use; 
we usually want to measure a sample in order to infer something about the larger 
populations from which our samples were drawn. On the basis of raw observed 
frequencies (or percentages) of a sample’s behavior or characteristics, we can make 
claims about the sample itself, but we cannot generalize to make claims about the 
population from which we drew our sample. To make assumptions about the popula-
tion from which we drew our sample, we make some assumptions on how that sample 
was obtained and submit our results to quantifi cation, so called inferential statistics; 
and, often to make inferences, a test of statistical signifi cance. A test of statistical 
signifi cance tells us how confi dently we can generalize to a larger (unmeasured) 
population from a (measured) sample of that population (see the Chap.   18    ). 

 How does the chi square distribution and test statistic allow us to draw inferences 
about the population from observations on a sample? The chi-square statistic is 
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what statisticians call an enumeration statistic. Rather than measuring the value of 
each of a set of items, a calculated value of chi-square compares the frequencies of 
various kinds (or categories) of items in a random sample, to the frequencies that are 
expected if the population frequencies are as hypothesized by the investigator. Chi 
square is often called a ‘goodness of fi t’ statistic. That is, it compares the observed 
values to how well they fi t what is expected in a random sample and what is expected 
under a given statistical hypothesis. For example, chi-square can be used to determine 
if there is a reason to reject the statistical hypothesis (i.e. the change that it arose from 
the underlying model given the expected frequencies is so low that we choose to 
assume the underlying model is incorrect). For example, we might want to know 
that the frequency in a random sample is consistent with items that come from a 
normal distribution. We can divide up the normal distribution into areas, calculate 
how many items would fall within those areas and compare to how many fall in 
those areas from the observed values. 

 Basically then, the chi square test of statistical signifi cance is a series of mathe-
matical formulas that compare the actual observed frequencies of some  phenomenon 
(in a sample) with the frequencies we would expect. In terms of determining 
associations, we are testing that the fi t of the observed data to that expected if there 
were no relationships at all between the two variables in the larger (sampled) 
population. The chi-square tests our actual results against the null hypothesis that 
the items were the result of an independent process and assesses whether the actual 
results are different enough from what might occur just by sampling error. 

    Chi Square Requirements 

 As mentioned before, chi square is a nonparametric test, that is it does not require 
the sample data to be more or less normally distributed (like parametric tests such 
as the t-tests do); although it relies on the assumption that the variable is sampled 
randomly from an appropriate population. 

 But, chi square, while forgiving, does have some requirements as noted below:

    1.    It must be assumed that the sample is randomly drawn from the population. 
 As with any test of statistical signifi cance, your data is assumed to be from a 
random sample of the population to which you wish to generalize your claims. 
While nearly never technically true, we make this assumption and must consider 
the implications of violating this assumption (i.e. a biased sample).   

   2.    Data must be reported in raw frequencies (not percentages); one should only use 
the chi square when your data are in the form of raw frequency counts of things 
in two or more mutually exclusive and exhaustive categories. As discussed 
above, converting raw frequencies into percentages standardizes cell frequencies 
as if there were 100 subjects/observations in each category of the independent 
variable for comparability; but, this is not to be used in calculations of the chi 
square statistic. Part of the chi square mathematical procedure accomplishes this 
standardizing, so computing the chi square on percentages would amount to 
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standardizing an already standardized measurement and would always assume 
that there were 100 observations irrespective of the true number, thus in general, 
would give the wrong answer except when there are exactly 100 observations   

   3.    Measured variables must be measured independently between people; 
 That is, if we are measuring disease prevalence using sisters in the group, the 
measurement may not be an independent assessment, since there may be strong 
familial risk of the disease.   

   4.    Values/categories on independent and dependent variables must be mutually 
exclusive and exhaustive (each person or observation can only go into one place)   

   5.    Expected frequencies cannot be too small. The computation of the chi-square 
test involves dividing the difference between the observed and expected value 
squared by the expected value. If the expected value were to small, this calcula-
tion could wildly distort the statistic. A general rule of thumb is that the expected 
must be greater than 1 and not more than 20 % of the expected values and should 
be less than 5.     

 We will discuss expected frequencies in greater detail later, but for now remember 
that expected frequencies are derived from observed frequencies under an indepen-
dence model.   

    Relative Risk and Attributable Risk (Fig.  16.2 ) 

    One of the more common measures of association is relative risk (RR). Relative 
Risk is the incidence of disease in one group compared to the other. As such it is 
used as a measure of association in cohort studies and RCTs. Said in other ways, RR 
is the risk of an event (or of developing a disease) in one group relative to another; 
or, it is a ratio of the probability of the event occurring in the exposed group versus 
the probability of an event occurring in the control (non-exposed) group.

  
RR

p

p
= exposed

control    

For example, if the probability of developing lung cancer among smokers was 20 % 
and among non-smokers 1 %, then the relative risk of cancer associated with smoking 
would be 20. Smokers would be twenty times as likely as non-smokers to develop 
lung cancer. Relative risk is used frequently in the statistical analysis of binary 
outcomes where the outcome of interest has relatively low probability. It is thus 
often an important outcome of clinical trials, where it is used to compare the risk of 
developing a disease say in people not receiving a new medical treatment (or receiving 
a placebo) versus people who are receiving a new treatment. Alternatively, it is used 
to compare the risk of developing a side effect in people receiving a drug as 
compared to the people who are not receiving the treatment (or receiving a placebo). 
A relative risk of 1 means there is no difference in risk between the two groups (since 
the null hypothesis is operative a RR implies no association between exposure and 
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outcome) and the study then seeks to disprove that there is no association (the 
alternative hypothesis).

•    A RR of <1 means the event is less likely to occur in the experimental group than 
in the control group.  

•   A RR of >1 means the event is more likely to occur in the experimental group 
than in the control group.    

 In the standard or classical hypothesis testing framework, the null hypothesis is 
that RR = 1 (the putative risk factor has no effect). The null hypothesis can be 
rejected in favor of the alternative hypothesis that the factor in question does affect 
risk (if the confi dence interval for RR excludes 1, a so-called two sided test, since 
the RR can be less than one or greater than 1). A RR of >2 suggests that the inter-
vention is ‘more likely than not’ (also a legal term) responsible for the outcome. 
Since RR is a measure of incident cases, RR cannot be used in case control studies 
because case control studies begin with the identifi cation of existent cases, and 
matches controls only to cases. With the RR one needs to know the incidence in the 
unexposed group, and because the number of nonexposed cases is under the control of 
the investigator, there isn’t an accurate denominator from which to compute incidence. 
This latter issue also prevents the use of RR even in prospective case-control studies 
(see discussion of case control study designs). In such situations, we use an approxi-
mation to the RR, called the Odds Ratio (OR, discussed below), which when 
 incident rates are under 10 % the comparison of RR and OR works very well. 

 Whether a given RR can be considered statistically signifi cant is dependent on 
whether the relative difference between conditions are being compared, and the 
amount of measurement and “noise” associated with the measurement. In other words, 
the amount of confi dence that one has that a given RR is non-random is dependent on 
the effect size, the amount of noise, and the sample size of the study. A small effect 

Real  
Population

- Outcome
(B)

+ Exposure

- Exposure

Study 

Population

- Outcome
(D)

+ Outcome
(A)

+ Outcome
(C)

Relative risk or risk ratio
A

A+B

C

C+D
RR    =

Risk of
outcome in
exposed =

A

A+B

Risk of
outcome in
unexposed =

C
C+D

Is there an association between
exposure and disease?

Risk Difference = Risk exposed -Risk unexposed

  Fig. 16.2    A schematic diagram of determining the association between exposure and disease       
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size may be important in some situations (i.e. may be clinically important) and 
whether a given treatment is worthy is further infl uenced by its risks, benefi ts and cost. 

 Attributable risk (AR) is a measure of the excess risk that can be attributed to an 
intervention, above and beyond that which is due to other causes. When the AR 
exceeds 50 %, it is about equivalent to a RR >2. AR = incidence in the exposed 
group minus incidence in the unexposed divided by the incidence in the exposed. 
Thus, if the incidence of disease in the exposed group is 40 % and in the unexposed 
is 10 %, the proportion of disease that is attributable to the exposure is 75 % (30/40). 
That is, 75 % of the cases are due to the exposure. By the way, ‘attributable’ does 
not mean causal.  

    Odds Ratio 

 Another common measure of association is the odds ratio (OR). As noted above, it 
is used in case control studies as an alternative to the RR. The OR is a way of com-
paring whether the probability of a certain event is the same for two groups, with an 
OR of 1 implying that the event is equally likely in both groups (as is true with 
the RR). The odds of an event occurring, is a ratio; the occurrence of the event divided 
by the lack of its occurrence (Table  16.3 ). Commonly one hears in horse racing that 
the horse has 4 to 1 odds of winning. This means that if the race were run four times, 
this horse is expected to win three times and lose one time. Another horse may have 
2 to 1 odds. The odds ratio between the two horses would be 3/1 divided by 2/1 or 
1.5. Thus, the odds ratio of the fi rst horse winning to the second is 1.5.

   
Odds ratio Pi Pi Pc Pc= −( )( ) −( )( )/ / /1 1

   

  The odds ratio approximates the relative risk only when the probability of end- 
points (event rate or incidence) is lower than 10 %. Above this threshold, the odds 
ratio will overestimate the relative risk. It is easy to verify the ‘lower than 10 %’ 
rule. The relative risk from the odds ratio is:

  
Relative risk Odds ratio Pc Odds ratio= + −( )( )/ *1 1

   

   Table 16.3    An example 
of how to calculate 
the odds ratio  

  The odds ratio  

  Dx    No Dx  

  Exp   A  B 
  Not E   C  D 

  The odds of cancer given exposure is A:B 
or A/B 
 The odds of cancer given no exposure is 
C:D or C/D 
 The odds ratio of cancer is: A/B divided 
by C/D 
  O.R. = AD/BC   
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Thus, for ORs larger than 1, the RR is less than or equal to the OR. The odds ratio 
has much wider use in statistics. Because the log of the odds ratio is estimated as a 
linear function of the explanatory variables, statistical models of the odds ratio often 
refl ect the underlying mechanisms more effectively. When the outcome under study 
is relatively rare, the OR and RR are very similar in terms of their measures of 
association, but as the incidence of the outcome under study increases, the OR will 
underestimate the RR [ 1 ]. 

 Since relative risk is a more intuitive measure of effectiveness, the distinction 
above is important, especially in cases of medium to high event rates or probabilities. 
If action A carries a risk of 99.9 % and action B a risk of 99.0 % then the relative 
risk is just slightly over 1, while the odds associated with action A are almost 
ten times higher than the odds with B. In medical research, the odds ratio is used 
frequently for case-control studies and retrospective studies because it can be 
obtained more easily and with less cost than studies which must estimate incidence 
rates in various risk groups. Relative risk is used in randomized controlled trials 
and cohort studies, but requires longitudinal follow-up and thus is more costly and 
diffi cult to obtain [ 2 ].  

    Relative Risk Reduction (RRR) and Absolute Risk 
Reduction (ARR) and Number Needed to Treat (NNT) 

 The RRR is simply 1 –RR times 100, and is the difference in event rates between 
two groups (e.g. a treatment and control group). Let’s say you have done a trial with 
100 patients in the intervention group and 100 patients in the control group, and 
there are 30 events in the former and 40 in the latter. The RRR is 25 % (   i.e. 30/100 
compared to 40/100) or a 10 % absolute reduction. The absolute risk reduction ARR 
is just the difference in the incidence rates. So the ARR above is .40 minus 0.30 or 
.10, a difference of 10 cases. But, what if in another trial we see events of 20 % in 
the control group vs.15 % in the intervention group. The RRR is 5/20 or 25 % while 
the ARR is only 5 %. 

 Absolute risk reduction (ARR) is another possible measure of association that is 
becoming more common in reporting clinical trial results of a drug intervention. 
Its inverse is called the number needed to treat or NNT. The ARR is computed by 
subtracting the proportion of events in the control group from the proportion of events in 
the intervention group. NNT is 1/ARR and is a relative measure of how many patients 
need to be treated to prevent 1 outcome event (in a specifi ed time period). If there are 
5 out of 100 outcomes in the intervention group (say you are measuring strokes with 
BP lowering in the experimental group over12 months of follow-up) and 30/100 in the 
control group, the ARR is .30 − .05 = .25, and the NNT is 4 (1/.25), that is for every 
four patients treated for a year (in the period of time of the study usually amortized per 
year) 1 stroke would be prevented (this, by the way, would be a highly effective inter-
vention). Table  16.4  summarizes the various measures of association and, Table  16.5  
summarizes the calculations of therapeutic effect from the example above.

16 Association, Cause, and Correlation



354

    The main issue in terms of choosing any statistic, but specifi cally a measure of 
association, is to not use a measure of association that could potentially mislead the 
reader. An example of how this can happen is shown in Table  16.6 . In this example 
the RR of 14 for annual lung cancer mortality rates is compared to the RR of 1.6 for 
the annual mortality rate of CAD. However, at a population level, the mortality rate 
for CAD per 100,000 is almost twice that of lung cancer. Thus, while the RR is 
enormously higher, the impact of smoking on CAD in terms of disease burden 
(ARR) is nearly double. A further example from the literature is shown in Table  16.7 , 
where the NNT to avoid one death with captopril is markedly different between two 
studies while the RRs were similar. One can also compute the NNH (number needed 
to harm), an important concept to carefully represent the downside of treating along 
with the upsides. The NNH is computed by subtracting the proportion of adverse 
events in the control and intervention group per Table  16.8 .

     Some experts argue that attention should also be paid to the absolute event rate 
observed in a trial and if it is not what is expected, questions about the trial and its 

   Table 16.4    Formulas for common measures of association   

 Measure of effect  Formula 

 Relative Risk (RR)  Event rate in intervention group/event rate in control group 
 Relative Risk Reduction (RRR)  1- RR or absolute risk reduction/event rate in control group 
 Absolute Risk Reduction (ARR)  Event rate in intervention group – event rate in control group 
 Number Needed to Treat (NNT)  1 + ARR 

   Table 16.5    Calculations from example in text and summarized below for Drug X   

 Parameter  Treatment drug X  Control treatment 

 Events/N = Rate  5/100 = 0.05  30/100 = .30 
 Relative risk  .05/.30 = 0.17  .40/.05 = 6 
 Odds ratio  5 × 70/30 × 95 = 0.12  30 × 95/5 × 70 = 8.1 
 Absolute risk reduction  .30 − .05 = 0.25 
 Number Needed to Treat (NNT)  1/(.30 − .05) = 4 
  Drug X (5 events) compared to control (30 events) in 100 patients per group  

   Table 16.6    A potentially misleading measure of association   

 Annual mortality 
rate lung cancer 

 Annual mortality rate 
coronary heart disease 

 Smokers  140  669 
 Non-smokers  10  413 
 Relative risk  14  1.6 
 Attributable risk  130/100,000/year  256/100,000/year 

   Table 16.7    Example of marked differences of NNT (treatment with captopril to prevent one death)   

 Control deaths  Intervention deaths  RR  NNT 

 SAVE trial  275/1,115 (24.7 %)  228/1,116 (20.4 %)  0.828   24 
 ISIS 4  2,231/29,022 (7.69 %)  2,088/29,028 (7.19 %)  0.936  201 
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results should be raised. Psaty and Prentice, compared the MI rates in control groups 
of six studies and pointed out the disparities between them also noting that the 
differences did not seem to be explained by differences in baseline risk factors [ 3 ]. 
They further suggested that the differences were more likely due to variations in event 
ascertainment or other study procedures. Indeed, they stated that “ the complete and 
accurate ascertainment of events in these trials seems key to the interpretation of their 
results and provides confi dence about efforts to translate related new interventions 
into practice .” They point out that this is particularly problematic in non-inferiority 
trials and that “ without an explanation for the deviation from anticipated event 
rates, it may be unclear whether the fi ndings are free from bias or whether their 
interventions merit widespread dissemination. ”  

    Correlations and Regression 

 Other methods of fi nding associations are based on the concepts above, but using 
methods that afford the incorporation of other variables and include such tools as 
correlations and regression (e.g. logistic, linear, non-linear, least squares regression 
line, multivariate or multivariable regression, etc.). We use the term regression to 
imply a co-relationship, and the term correlation to show relatedness of two or more 
variables. Linear regression investigates the linear association between two con-
tinuous variables. Linear regression gives the equation of the straight line that 
best describes an association in terms of two variables, and enables the prediction 
of one variable from the other. This can be expanded to handle multiple variables 
(multivariable regression). In general, regression analysis examines the dependence 
of a random variable, called the dependent or response variable, on other random or 
deterministic variables, called independent variables or predictors. The mathematical 
model of their relationship is known as the regression equation. This is an extensive 
area of statistics and in its fullest forms are beyond the scope of this chapter. Well 
known types of regression equations are linear regression for continuous responses, 
the logistic regression for discrete responses, and nonlinear regression. Besides 
dependent and independent variables, the regression equations usually contain one 
or more unknown regression parameters, which are to be estimated from the given 
data in order to maximize the quality of the model. Applications of regression 
include curve fi tting, forecasting of time series, modeling of causal relationships 
and testing scientifi c hypotheses about relationships between variables. A graphical 
depiction of regression analysis is shown in Fig.  16.3 . Correlation is the tendency for 
one variable to change as the other variable changes (it is measured by rho).

   Table 16.8    Example of NNH   

 Adverse event  Finasteride (%)  Control (%)  NNH 

 Impotence  13.2  8.8  23 
 Decreased libido   9  6  33 

  Number needed to treat to result in one adverse event  
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   Correlation, also called correlation coeffi cient, indicates the strength and direction 
of a linear relationship between two random variables. In general statistical usage, 
correlation or co-relation refers to the departure of two variables from independence, 
that is, knowledge of one variable better informs an investigator of the expected 
results of the dependent variable than not considering this covariate. Correlation 
does not imply causation, but merely that additional information is provided about 
the dependent variable when the covariate (independent variable) is known. In this 
broad sense there are several coeffi cients, measuring the degree of correlation, 
adapted to the nature of data. The rate of change of one variable tied to the rate of 
change of another is known as a slope. The correlation coeffi cient and the slope of 
the regression line are functions of one another, and a signifi cant correlation is 
the same as a signifi cant regression. You may have heard of a concept called the 
r-squared. We talk of r-squared (r 2 ) as the percent of the variation in one variable 
explained by the other. This means that if we compute the variation in the dependent 
variable by taking each observation, subtracting the overall mean and summing the 
squared deviations and dividing by the sample size we arrive at our estimated 
 variance. To assess the importance of the covariate we compute a ‘regression’ model 
using the covariate, and assess how well our model explains the outcome variable. 
We compute an expected value based on the regression model for each outcome. 
Then we assess how well our observed outcomes fi t our expected. We compute the 
observed minus the expected, called the residual or unexplained portion and fi nd the 
variance of these residuals. The ratio of the variance of residuals to the variation in 
the outcome variable overall is the proportion of unexplained variance and 1 minus 
this ratio is the R-squared or proportion of variance explained. 

 A number of different coeffi cients are used for different situations. The best 
known is the Pearson product-moment correlation coeffi cient, which is easily 

Anatomy of Regression Analysis

y=dependent variable

x=independent variable

a=intercept; point where line crosses the y axis; value of y for x=0

b=slope; the increase in y corresponding to a unit increase in x

y=a+bx

y

a

0
x

1 unit change in X

change in y = b

  Fig. 16.3    A diagram of regression analysis       
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obtained by standard formulae. Geometrically, if one thinks of a regression line, it 
is a function of the angle that the regression line makes with a horizontal line parallel 
to the x-axis. Importantly, it should be realized that correlation can measure preci-
sion and/or reproducibility, but does not measure accuracy or validity.  

    Causal Inference 

 An association (or a correlation) does not imply causation. In an earlier chapter, various 
clinical research study designs were discussed, and the differing ‘levels of scientifi c 
evidence’ that are associated with each were reviewed. A comparison of study designs 
is complex, with the metric being that the study design providing the highest level of 
scientifi c evidence (usually experimental studies) is the one that yields the greatest 
likelihood of cause and effect between the exposure and the outcome. The basic tenet 
of science is that it is almost impossible to prove an association or cause, but it is 
easier to disprove it. Causal effect focuses on outcomes among exposed individuals, 
but what would have happened had they not been exposed? The outcome among 
exposed individuals is called the factual outcome. To draw inferences, exposed and 
non-exposed individuals are compared. Ideally, one would use the same popula-
tion expose them, observe the result and then go back in time and repeat the same 
experiment among the same individuals but without the exposure to observe the 
counterfactual outcome. Randomized clinical trials attempt to approximate this ideal 
by using randomly assigned individuals to groups (to avoid any bias in assignment) 
and observe the outcomes. Because the true ideal experiment is impossible, replication 
of results with multiple studies is the norm. Another basic tenet is that even when 
the association is statistically signifi cant, association does not denote causation. 
Causes are often distinguished into two types: Necessary and Suffi cient. 

    Necessary Causes 

 If x is a necessary cause of y; then the presence of y necessarily implies the presence 
of x. The presence of x, however, does not imply that y will occur.  

    Suffi cient Causes 

 If x is a suffi cient cause of y, then the presence of x necessarily implies the presence 
of y. However, another cause z, may alternatively cause y. Thus the presence of y does 
not imply the presence of x. 

 The majority of these tenets and related ones (Koch’s postulates, Bradford Hills 
tenets of causation) were developed with infectious diseases. There are more tenuous 
conclusions that emanate from chronic diseases. 
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 Consider the fi nding of an association between coffee drinking and myocardial 
infarction (MI) (Table  16.9 ). Coffee drinking might be a ‘cause’ of the MI, as the 
fi nding of that association from a study might imply. However, some persons who 
have had an MI may begin to drink more coffee, in which case (instead of a 
cause- effect relationship) the association would be an ‘effect-cause’ relationship 
(also referred to as reverse causation).

   The association between coffee drinking and MI might be mediated by some 
confounder (e.g., persons who drink more coffee may smoke more cigarettes, and it 
is the smoking that precipitates the MI) (Table  16.3 ). Finally, observed associations 
may be spurious as a result of chance (random error) or because of some systematic 
error (bias) in the study design. To repeat, in the fi rst conceptual association in 
Table  16.9 , coffee drinking leads to MI, so it could be casual. The second associa-
tion represents a scenario in which MI leads to coffee drinking (effect-cause or 
reverse causation). An association exists, but coffee drinking is not causal of MI. 
In the third association, the variable x results in coffee drinking and MI, so it 
confounds the association between coffee drinking and MI. In the fourth and fi fth 
associations, the results are spurious because of chance or some bias in the way in 
which the trial was conducted or the subjects were selected. 

 Thus, establishing cause and effect, is notoriously diffi cult and with chronic 
 diseases has become even more of a challenge. In terms of an infectious disease – 
think about a specifi c fl u – many fl u-like symptoms occur without a specifi c viral 
agent, but for the specifi c fl u, we need the viral agent to be present to produce the 
fl u. What about Guillian-Barre Syndrome – it is caused by the Epstein Barr Virus 
(EBV), but the viral infection and symptoms have often occurred previously. It is 
only thru the antibodies to the EBV that this cause was identifi ed. Further, consider 
the observation that smokers have a dramatically increased lung cancer rate. This 
does not establish that smoking must be a cause of that increased cancer rate: maybe 
there exists a certain genetic defect which both causes cancer and a yearning for 
nicotine; or even perhaps nicotine craving is a symptom of very early-stage lung 
cancer which is not otherwise detectable. In statistics, it is generally accepted that 
observational studies (like counting cancer cases among smokers and among non- 
smokers and then comparing the two) can give hints, but can never establish cause 
and effect. The gold standard for causation is the randomized experiment: take a 
large number of people, randomly divide them into two groups, force one group to 
smoke and prohibit the other group from smoking (obviously ethically unfeasible), 
then determine whether one group develops a signifi cantly higher lung cancer rate. 

    Table 16.9    Five explanations for an association   

 Association  Basis  Type  Explanation 

 1. C → MI  Cause-effect  Real  Cause-effect 
 2. MI → C  Cart before horse  Real  Effect-cause 
 3. C ← x → MI  Confounding  Real  Effect-cause 
 4. C ≠ MI  Random error  Spurious  Chance 
 5. C ≠ MI  Systematic error  Spurious  Bias 
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Random assignment plays a crucial role in the inference to causation because, in the 
long run, it renders the two groups equivalent in terms of all other possible effects 
on the outcome (cancer) so that any changes in the outcome will refl ect only the 
manipulation (smoking). Obviously, for ethical reasons the above experiment cannot 
be performed, but the method is widely applicable for other experiments. And our 
search for causation must try to inform us with data as similar to possible as the RCT. 

 Because causation cannot be proven, how does one approach the concept of 
‘proof’? The Bradford Hill criteria for judging causality remain the guiding princi-
ples as follows: the replication of studies in which the magnitude of effect is large; 
biologic plausibility for the cause-effect relationship is provided; temporality and a 
dose response exist; similar suspected causality is associated with similar exposure 
outcomes; and, systematic bias is avoided.  

    Deductive vs Inductive Reasoning 

 Drawing inferences about associations can be approached with deductive and 
inductive reasoning. An overly simplistic approach is to consider deductive reasoning 
as truths of logic and mathematics. Deductive reasoning is the kind of reasoning in 
which the conclusion is necessitated by, or reached from, previously known 
facts (the premises). If the premises are true, the conclusion must be true. This is 
distinguished from inductive reasoning, where the premises may predict a high 
probability of the conclusion, but do not ensure that the conclusion is true. That is, 
induction or inductive reasoning, sometimes called inductive logic, is the process 
of reasoning in which the premises of an argument are believed to support the 
conclusion but do not ensure it. 

 For example, beginning with the premises ‘All ice is cold’ and ‘This is ice’, you 
may conclude that ‘This ice is cold’. An example where the premise being correct 
but the reasoning incorrect is ‘this French person is rude so all French must be rude’ 
(although some still argue that this is true). That is, deductive reasoning is dependent 
on its premises-a false premise can possibly lead to a false result, and inconclusive 
premises will also yield an inconclusive conclusion. We induce truths based on the 
interpretation of empirical evidence; but, we learn that these ‘truths’ are simply our 
best interpretation of the data at the moment and that we may need to change as new 
evidence is presented. 

 When using empirical observations to make inductive inferences, we have a 
greater ability to falsify a principle than to affi rm it. This was pointed out by Karl 
Popper [ 3 ] in the late 1950s with his now classic example: if we observe swan after 
swan, and each is white, we may infer that all swans are white. We may observe 
10,000 white swans and feel more confi dent about our inference. However, it takes 
but a single observation of a non-white swan to disprove the assertion. It is this 
Popperian view from which statistical inferences using the null hypothesis is born. 
That is we set our hypothesis that our theory is not correct, and then set out to 
disprove it. The p value is the probability (thus ‘p’), that is the mathematical 
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probability, that we would fi nd a difference if the null hypothesis was true. Thus, the 
lower the probability of the fi nding, the more certain we can be in stating that we 
have falsifi ed the null hypothesis. 

 Errors in making inferences about associations can also occur due to chance, 
bias, and confounding (See Chap.   17    ). Bias refers to anything that results in error 
i.e. compromises validity in a study. It is not (in a scientifi c sense) an intentional 
behavior, but rather it is an unintended consequence of a fl aw in study design or 
conduct that affects an association. The two most common examples are selection 
bias (the inappropriate selection of study participants) and information bias (a fl aw 
in measuring either the exposure group or disease group). These biases are the 
‘achilles heel’ of observational studies which are essentially corrected for in 
randomized trials. However, randomized trials may restrict the study populations to 
a degree that also leads to selection biases. When an association exists, it must be 
determined whether the exposure caused the outcome, or the association is caused 
by some other factor (i.e. is confounded by another factor). A confounding factor is 
both a risk factor for the disease and a factor associated with the exposure. Some 
classify confounding as a form of bias. However, confounding is a reality that actually 
infl uences the association, although confounding can introduce bias (i.e. error) 
into the fi ndings of a study. Confused with confounding is effect modifi cation. 
Confounding and effect modifi cation are very different in both the information each 
provides as well as what is done with that information. For confounding to exist, a 
factor must be unevenly distributed in the study groups, and as a result has infl uenced 
the observed association. Confounding is a nuisance effect, and the researchers 
main goal is to control for confounding and eliminate its effect (by stratifi cation or 
multivariate analysis). In a statistical sense confounding is inextricably tied to the 
variable of interest, but in epidemiology we consider confounding a covariate. 
Effect modifi cation is a characteristic that exists irrespective of study design or 
study patients. It is to be reported, not controlled (See further discussion of effect 
modifi cation in Chap.   17    ). 

 Stratifi cation is used to control for confounding, and to describe effect modifi -
cation. If, for example, an association observed is stratifi ed for age and the effect is 
not uniform across age groups, this suggests confounding by age. In contrast, if the 
observed association is not uniform, effect modifi cation is present. For example, 
amongst premature infants, stratifi ed by birth weight; 500–749 g, 750–999 g and 
1,000–1,250 g, the incidence of intracranial hemorrhage (ICH) is vastly different 
across these strata, thus birth weight is an effect modifi er of ICH. 

 Kohli and Cannon said “ because they (referring to each study design) are all 
different, the same language cannot be used to describe the results from distinct 
types of studies when drawing conclusions and characterizing the risk relationship 
between intervention and the outcome ”. The importance of matching language to 
type of evidence avoids the pitfalls of reporting outcome data [ 4 ]. One of the main 
points they were trying to make is that RCT’s come closest in approaching the issue 
of causality so it is appropriate to say that an intervention reduces clinical events, 
assuming that is what the data shows. The problem as they point out is when results 
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from an observational study are described as a treatment that provides direct clinical 
evidence of benefi t or harm. In an accompanying editorial they point out that the 
descriptive statement for an RCT would be that the intervention reduced the risk by 
x amount but the same effect size in an observational study might best be stated as 
“a lower risk was observed, or there was a relationship or association with the expo-
sure and outcome”. Kohli and Cannon after pointing out that the language used in 
observational trials with hormone replacement therapy might have been overstated 
based upon the strength of the evidence conclude that “ therefore, it is important to 
be mindful of reporting these results with clear, accurate and consistent language 
that refl ects the evidence being cited: for registry data, ‘associated with’ or ‘relative 
risk ratio’ are appropriate, whereas for the randomized data, ‘risk reduction’ is 
preferred ” (Table  16.10 ). Kohli and Cannon go on to point out that although the 
differences in the use of these terms may seem subtle, the implications can be 
 signifi cant, “in all types of observational studies, the authors should report the 
 difference in outcome between two groups of patients descriptively; they cannot 
make conclusions about ‘reductions’ or ‘increases’ from this type of study.” They 
point out that the use of “reduction or increase” implies causality in comparison to 
“ correlated or associated with”.

      The p Value 

 Most often associations are thought of in terms of p-values. The signifi cance level 
that is used most commonly is < 0.05 that represents the maximum probability that 
is tolerated for rejecting a hypothesis that is in fact true. For a further discussion 
see Chaps.   3     and   18    . However, it should be realized that p values are infl uenced 
by sample size and variability in the measurement of outcomes and are favored by 
clinicians and clinical journals because they dichotomize an outcome into a “yes or 
no” answer. Epidemiologists prefer point estimates and confi dence intervals because 
they feel this gives a much more representative picture. 

   Table 16.10    The type of language suggested for different study designs   

 Randomized trial  Observational study 

 Type of language 
 Descriptive statement  “reduced risk by…”  “a lower risk was observed. There 

is a relationship, there is an 
association” 

 Descriptive noun  “relative risk reduction/benefi t”  “difference in risk, risk ratio” 
 Verbs  “affected, caused, modulated 

risk, treatment resulted 
in…, reduced hazard” 

 “correlates with, is associated 
with” 

 Terms to avoid  “reduced risk, lowered risk, 
benefi ted” 

  From: Kohli and Cannon [ 4 ]  
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 In summary, Vaux [ 5 ] noted that the number of papers that have basic statistical 
mistakes is alarming. To address this he provided a statistics glossary, as modifi ed 
in Table  16.11 .
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   Table 16.11    Statistics glossary. Some common statistical concepts and their use in analyzing 
experimental results   

 Term  Meaning  Common uses 

 Standard 
deviation (s.d.) 

 Typica1 difference between each 
value and the mean 

 Describes how broadly the sample 
va1ues are distributed 

 Standard error 
of the mean 
(s.e.m.) 

 Estimate of how variable the means 
will be if the experiment is 
repeated multiple times 

 Inferring where a population mean 
is likely to lie, or whether sets 
of samples are likely to come 
from the same population 

 Confi dence 
interval (Cl; 
95 %) 

 With 95 % confi dence, the population 
mean will lie in this interval 

 To infer where the population 
mean lies, and to com pare two 
populations 

 Independent data  Values from separate experiments of 
the same type that are not linked 

 Testing hypotheses about the 
population 

 Replicate data  Values from experiments where 
everything is linked as much 
as possible 

 An internal check on the 
performance of an experiment 

 Sampling error  Variation caused by sampling part 
of a population 

 Can reveal bias in the data 
or problems with the conduct 
of the experiment 
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    Abstract     Bias, confounding, and random variation/chance are the reasons for a 
non-causal association between an exposure and outcome. This chapter will defi ne 
and discuss these concepts so that they may be appropriately considered whenever 
one is interpreting the data from a study. Several types of common bias will be 
discussed (e.g. measurement bias, sampling bias, etc.) and effect modifi cation 
(interaction) will be explained.  

  Keywords     Bias   •   Confounding   •   Effect modifi cation   •   Interaction  

       Introduction 

 Bias, confounding, and random variation/chance are alternate explanations for an 
observed association between an exposure and outcome. They represent a major 
threat to the internal validity of a study, and should always be considered when 
interpreting data. Whereas statistical bias is usually an unintended mistake made 
by the researcher; confounding is not a mistake; rather, it is an additional variable 
that can impact the outcome (negatively or positively; all or in part) separately 
from the exposure. Sometimes, confounding is considered to be a third major 
class of bias [ 2 ] (Table  17.1 ).

    Chapter 17   
 Bias, Confounding, and Effect 
Modifi cation (Interaction) 

             Stephen     P.     Glasser     

        S.  P.   Glasser ,  M.D.      (*) 
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   As will be further discussed, when a confounding factor is  known  or suspected, it 
can be controlled for (albeit never perfectly) in the design phase (e.g. during randomi-
sation, restriction or matching) or in the analysis phase (by stratifi cation, multivari-
able analysis and matching). The best that can be done about  unknown  confounders 
is to use a randomised design (see Chap.   3    ). Bias and confounding are not affected 
by sample size, but chance effect (random variation) diminishes as the sample size gets 
larger. A small p-value and a narrow confi dence intervals (CIs) are reassuring signs 
against chance effect but the same cannot be said for bias and confounding [ 3 ]. 

    Bias 

 Bias is a systematic error that results in an incorrect (invalid) estimate of a measure 
of association. That is, the term bias ‘describes the systematic tendency of any fac-
tors associated with the design, conduct, analysis, and interpretation of the results of 
clinical research to make an estimate of a treatment effect deviate from its true 
value’ [ 3 ]. Bias can either create or mask an association; that is, bias can give the 
appearance of an association when there really is none, or can mask an association 
when there really is one. Bias can occur with all study designs, be it experimental, 
cohort, or case-control; and, can occur in either the design phase of a study, or dur-
ing the conduct of a study. For example, bias may occur from an error in the meas-
urement of a variable; confounding involves an incorrect interpretation of an 
association even when there has been accurate measurement. Also, whereas adjust-
ments can be made in the analysis phase of a study for confounding variables, bias 
cannot be controlled, at best; one can only suspect that it has occurred. The most 
important design techniques for avoiding bias are blinding and randomization. 

   Table 17.1    Alternative explanations (other that truth) for observed associations between exposure 
and outcome   

 Variable  Description  Correction 

 Bias  A systematic error in the design, 
recruitment, data collection 
or analysis 

 The most important design techniques 
for avoiding bias are blinding and 
randomization 

 Confounding  A situation in which the effect 
or association between an 
exposure and outcome 
is distorted by the presence 
of another variable 

 In the design phase (e.g. during 
randomization, restriction 
or matching) or in the analysis phase 
(by stratifi cation, multivariable 
analysis and matching) 

 Effect 
modifi cation 

 A variable that differentially 
(positively and negatively) 
modifi es the observed effect 
of a risk factor on disease status 

 Statistical testing for interaction 

 Random chance  A chance effect (random variation)  Diminishes as sample size gets larger. 
A small p-value and a narrow CIs 
are reassuring signs against chance 
effect-the same cannot be said for 
bias and confounding 
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 An example of systematic bias would be a thermometer that always reads three 
degrees colder than the actual temperature because of an incorrect initial calibration 
or labeling, whereas one that gave random values within fi ve degrees either side of 
the actual temperature would be considered a random error [ 4 ]. If one discovers that 
the thermometer always reads three degrees below the correct value one can correct 
for the bias by simply making a systematic correction by adding three degrees to all 
readings. In other cases, while a systematic bias is suspected or even detected, no 
simple correction may be possible because it is impossible to quantify the error. The 
existence and causes of systematic bias may be diffi cult to detect without an inde-
pendent source of information; the phenomenon of scattered readings resulting 
from random error calls more attention to itself from repeated estimates of the same 
quantity than the mutually consistent incorrect results of a biased system. 

 There are many types of bias (Table  17.2 ), but two common types are; selection 
and observation bias [ 5 ].

      Selection Bias 

 Selection bias is the result of the approach used for subject selection. That is, when 
the sample in the study ends up being different from the target population, selection 
bias is a cause. Selection bias is more likely to be present in case-control or retro-
spective cohort study designs, because the exposure and the outcome have already 
occurred at time of subject selection. For a case-control study, selection bias occurs 
when controls or cases are more (or less) likely to be included in study if they have 
been exposed – that is, inclusion in the study is not independent of the exposure. 
The result of this is that the relationship between exposure and disease observed 
among study participants is different from relationship between exposure and 

   Table 17.2    Examples of bias   

 We all know about the common problems in doing research 

 Selecting study participants  Information biases 

 Selection bias  Recall bias 
 Non-respondent bias:  Reporting bias 
 Volunteer or referral bias  Family information bias 
 External validity  Measurement bias 
 Sampling bias  Misclassifi cation bias 
 Ascertainment bias  Reporting bias 
 Prevalence-incidence bias  End-aversion bias 
 Berkson bias  Attention bias 
 Healthy worker effect 
 Detection bias: The risk factor investigated itself may lead to increased 
 Diagnostic 
 Overmatching bias 

  Berkson’s bias is a type of selection bias which may occur in case-control studies which are based 
entirely on hospital studies  
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disease in individuals who would have been eligible but were not included, thus the 
odds ratio from a study that suffers from selection bias will incorrectly represent the 
relationship between exposure and disease in the overall study population [ 2 ]. 

 A biased sample is a statistical sample of a population in which some members 
of the population are less likely to be included than others. If the bias makes the 
estimation of population parameters impossible, the sample is a non-probability 
sample. An extreme form of biased sampling occurs when certain members of the 
population are totally excluded from the sample (that is, they have zero probability 
of being selected). For example, a survey of high school students to measure teen-
age use of illegal drugs will be a biased sample because it does not include home 
schooled students or dropouts. A sample is also biased if certain members are 
underrepresented or overrepresented relative to others in the population. For exam-
ple, a “man on the street” interview which selects people who walk by a certain 
location is going to have an over-representation of healthy individuals who are more 
likely to be out of the home than individuals with a chronic illness. A biased sample 
causes problems because any statistic computed from that sample has the potential 
to be consistently erroneous [ 6 ]. Bias can lead to an over- or under-representation of 
the corresponding parameter in the population. Almost every sample in practice is 
biased because it is practically impossible to ensure a perfectly random sample. If 
the degree of under-representation is small, the sample can be treated as a reason-
able approximation to a random sample. Also, if the group that is underrepresented 
does not differ markedly from the other groups in the quantity being measured, then 
a random sample can still be a reasonable approximation. 

 The word bias in common usage has a strong negative connotation, and implies 
a deliberate intent to mislead. In statistical usage, bias represents a mathematical 
property. While some individuals might deliberately use a biased sample to produce 
misleading results, more often, a biased sample is just a refl ection of the diffi culty 
in obtaining a truly representative sample [ 6 ]. 

 Let’s take as an example the data shown in Fig.  17.1 , which addresses the ques-
tion of whether otitis media differs in bottle-feeding, as opposed to breast feeding. 
100 infants with ear infection are identifi ed among members of one HMO, and the 

EXPOSURE odds ratio = = 3
50/50
25/75

CASES CONTROLS

Bottle
feeding

Breast
feeding

50 25

50 75

100 100

  Fig. 17.1    Example of 
potential selection bias       
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controls are 100 infants in that same HMO without otitis. The potential bias is 
whether being included in the study as a control is not independent of the exposure, 
that is, they were not representative of the whole study population that produced the 
cases. In other words, one could ask the reason(s) that infants were being seen in an 
HMO in the fi rst place and how many might have had undiagnosed otitis.

   So, what are the solutions for selection bias? Little or nothing can be done to fi x 
selection bias once it has occurred. Rather one needs to avoid it during the design 
and conduct of the study by, for example, using the same criteria for selecting cases 
and controls, obtaining all relevant subject records, obtaining high participation 
rates, and taking into account diagnostic and referral patterns of disease. But, almost 
always (perhaps always) one cannot totally remove selection bias from any study.  

    Observation Bias 

 While selection bias occurs as subjects enter the study, observation bias occurs after 
the subjects have entered the study. Observation bias is the result of incorrectly clas-
sifying the study participant’s exposure or outcome status. There are several types 
of observation bias: recall bias, interviewer bias, loss to follow up, and differential 
and non-differential misclassifi cation. 

 Recall bias occurs because participants with and without the outcome of interest 
do not report their exposure accurately (because they do not remember it accurately) 
and more importantly report the exposure differently (this can result in an over- or 
under-estimate of the measure of association). It is not that unlikely that subject’s 
with an outcome might remember the exposure more accurately than subjects with-
out an outcome, particularly if the outcome is a disease. Solutions for recall bias 
include using controls, who are themselves sick; and/or, using standardized ques-
tionnaires that obtain complete information and that mask subjects to the study 
hypothesis [ 7 ]. 

 Whenever exposure information is sought, information is recorded and inter-
preted. If there is a systematic difference in the way the information is solicited, 
recorded, or interpreted, interviewer bias can occur. One solution to reduce inter-
viewer bias is to mask interviewers, so that they are unaware of the study hypothesis 
and disease or exposure status of subjects, and to use standardized questionnaires or 
standardized methods of outcome (or exposure) ascertainment [ 8 ]. 

 Loss to follow up is a concern in cohort and experimental studies if people who 
are lost to follow up differ from those that remain in the study (which is likely 
almost always the case). Bias results if subjects lost, differ from those that remain, 
with respect to both the outcome and exposure. The main solution for lost to follow 
up is to minimize its occurrence. Excessive numbers of subjects lost to follow up 
can seriously damage the validity of the study. (See discussion of lost to follow up 
in Chap.   3    ). 

 Misclassifi cation bias occurs when a subject’s exposure or disease status is erro-
neously classifi ed. Two types of misclassifi cation are non-differential (random) and 
differential (non random). Non-differential misclassifi cation results in inaccuracies 
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with respect to disease classifi cation that is independent of the exposure; or, with 
inaccuracies with respect to the exposure that are independent of disease. Non- 
differential misclassifi cation makes the exposure and non- exposure groups more 
similar. The probability of misclassifi cation may be the same in all study groups 
(non-differential misclassifi cation) or may vary between groups (differential 
misclassifi cation).  

    Measurement Bias 

 Let’s assume that a true value does in fact exist. Both random and biological 
 variation modifi es that true value by the time the measurement is made. Performance 
of the instrument and observer bias, and recording and computation of the results 
further modifi es the ‘true value’ and this now becomes the value used in the study. 
Reliability has to do with the ability of an instrument to measure consistently, 
repeatedly, and with precision and reproducibility. But, the fact is, that every instru-
ment has some inherent imprecision and/or unreliability. This latter fact negatively 
impacts one of the main objectives of clinical research, to isolate between-subject 
variability from measurement variability. Measurement error is intrinsic to research. 

 In summary, in order to reduce bias, ask yourself these questions:’ given the con-
ditions of the study, could bias have occurred? Is bias actually present? Are conse-
quences of the bias large enough to distort the measure of association in an important 
way? Which direction is the distortion, that is, is it towards the null or away from the 
null? (Table  17.3 ) [ 8 ].

        Confounding 

 A confounding variable (confounding factor or confounder) is a variable that cor-
relates (positively or negatively) with both the exposure and outcome. One, there-
fore, needs to control for these factors in order to avoid what is known as a type 1 
error, which is a ‘false positive’ conclusion that the exposure is in a causal relation-
ship with the outcome. Such a false relation between two observed variables is 
termed a spurious relationship. Thus, confounding is a major threat to the validity 
of inferences made about cause and effect, i.e. internal validity, as the observed 
effects should be attributed all or in part to the confounder rather than the outcome. 

  Table 17.3    Questions 
to consider about bias  

 Could bias have occurred 
 Is bias actually present 
 Is bias large enough to distort the measure 

of association in an important way 
 Which direction is the distortion; toward or away 

from the null 
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For example, assume that a child’s weight and a country’s gross domestic product 
(GDP) rise with time. A person carrying out an experiment could measure weight 
and GDP, and conclude that a higher GDP causes children to gain weight. However, 
the confounding variable, time, was not accounted for, and is the real cause of both 
rises [ 9 ]. By defi nition, a confounding variable is associated with both the probable 
cause and the outcome, and the confounder should not lie in the causal pathway 
between the cause and the outcome. Though criteria for causality in statistical stud-
ies have been researched intensely, Pearl has shown that confounding variables can-
not be defi ned in terms of statistical notions alone; some causal assumptions are 
necessary [ 10 ]. In a 1965 paper, Austin Bradford Hill proposed a set of causal cri-
teria [ 11 ]. Many working epidemiologists take these as a good place to start when 
considering confounding and causation. 

 There are various ways to modify a study design to actively exclude or control 
confounding variables [ 12 ]:

•    Case-control studies assign confounders to both groups, cases and controls, 
equally. For example if somebody wanted to study the cause of myocardial 
infarct and thinks that the age is a probable confounding variable, each 67 years 
old infarct patient will be matched with a healthy 67 year old “control” person. 
In case-control studies, matched variables most often are the age and sex.  

•   Cohort studies: A degree of matching is also possible and it is often done by only 
admitting certain age groups or a certain sex into the study population, and thus 
all cohorts are comparable in regard to the possible confounding variable. For 
example, if age and sex are thought to be confounders, only 40–50 years old 
males would be involved in a cohort study that would assess the myocardial 
infarct risk in cohorts that either are physically active or inactive.  

•   Stratifi cation: As in the example above, physical activity is thought to be a  behavior 
that protects from myocardial infarct; and age is assumed to be a possible con-
founder. The data sampled is then stratifi ed by age group – this means, the associa-
tion between activity and infarct would be analyzed per each age group. If the 
different age groups (or age strata) yield much different risk ratios, age must be 
viewed as a confounding variable. There are statistical tools like Mantel- Haenszel 
methods that deal with stratifi ed data.    

 All these methods have their drawbacks. This can be clearly seen in the  following 
example: a 45 year old African-American from Alaska, who is an avid football 
player and vegetarian, working in education, suffers from a disease and is enrolled 
into a case- control study. Proper matching would call for a person with the same 
characteristics, with the sole difference of being healthy – but fi nding one would be 
an enormous task. Additionally, there is always the risk of over- and under-match-
ing of the study population. In cohort studies, too many people can be excluded; and 
in stratifi cation, single strata can get too small and thus contain only a few, non-
signifi cant number of samples [ 4 ]. 

 An additional major problem is that confounding variables are not always known 
or measurable. This leads to ‘residual confounding’ – epidemiological jargon for 
incompletely controlled confounding. Hence, randomization is often the best solution 
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since, if performed successfully on suffi ciently large numbers, all  confounding 
 variables (known and unknown) will be equally distributed across all study groups. 

 In summary, confounding is an alternative explanation for an observed associa-
tion between the exposure and outcome. Confounding is basically a mixing of effect 
such that the association between exposure and outcome is distorted because it is 
mixed with the effect of another factor that is associated with the disease. The result 
of confounding is to distort the true association toward the null (negative confound-
ing) or away from the null (positive confounding). It should be re-emphasized, that 
a variable cannot be a confounder if it is in the causal chain or pathway. For exam-
ple, moderate alcohol consumption increases serum HDL-C levels that in turn, 
decreases the risk of heart disease. Thus, HDL-C levels are a step in the causal 
chain, not a confounder that needs to be controlled [ 8 ]. Rather, this latter example is 
something interesting that helps us understand the disease mechanism. In contrast, 
because confounding factors are nuisance variables (for example, smoking is a 
 confounder of the effect of occupational exposures (to dyes) on bladder cancer), and 
therefore does need to be controlled for. That is, when confounders get in the way 
of the relation you want to study; one wants to remove their effect. Recall that here 
are three ways of attenuating the effect of a confounder. The fi rst is with the use of 
a case-control design, in which the confounder is matched between the cases and 
the controls. The second way of attenuating the effect of a confounder is mathemati-
cally, by the use of multivariate analysis. And, the third and best way to attenuate 
the effect of confounding is to use a randomized design; but, remember “likely to 
control the effect of a confounder” means just that, it’s not a guarantee. 

 Confounding by indication (treatment selection bias) is a bias frequently encoun-
tered in observational epidemiologic studies of drug effects. Because selection of 
treatments is not random and is determined by patient and physician characteristics, 
the observed effect is infl uenced by factors other than the treatment (that is the indi-
viduals at most risk are likely to be treated vs those at lesser risk), the resulting 
imbalance in the underlying risk profi le between treated and comparison groups can 
generate biased results. A simple example is that subjects taking aspirin for primary 
prophylaxis might actually be found to have a worse outcome than the comparator 
group not receiving aspirin. But this latter observation might be infl uenced by the 
fact that patients taking aspirin might have had a higher disease risk burden. Once 
we control for disease severity and other confounders that determine who receives 
aspirin, we have a more accurate assessment of the relative effects of each treatment 
on outcome.  

    Confounding vs. Effect Modifi cation 

 As discussed above, confounding is another explanation for apparent associations 
that are not due to the exposure. Also recall, that confounding is defi ned as an extra-
neous variable in a statistical or research model that affects the outcome measure, 
but has either not been considered or has not been controlled for during the study. 
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The confounding variable can then lead to a false conclusion that the outcome has a 
causal relationship with the exposure. Consider the example where coffee drinking 
is found to be associated with myocardial infarction (MI). If there is really no effect 
of coffee intake on MI but more coffee drinkers smoke cigarettes than non coffee 
drinkers, then cigarette smoking is a confounder in the apparent association of cof-
fee drinking and MI. If one corrects for smoking, the true absence of the association 
of coffee drinking and MI will become apparent. 

 Effect modifi cation (also referred to as interaction) is sometimes confused with 
confounding but with effect modifi cation an apparent association between an expos-
ure and outcome is “shared” with the confounder. Clinically, this can be expressed 
by understanding that the relationship between the exposure and outcome is differ-
ent among different subgroups, or that there is a change in the magnitude of an 
effect according to some third variable. Referring back to the example above, let us 
say that coffee drinking and smoking impact on the outcome (MI). If one corrects 
for smoking, and there is still some impact of coffee drinking on MI, some associ-
ation is imparted by cigarette smoking. In the hypothetical example above, let’s say 
we fi nd a RR of 5 for the association of coffee drinking and MI. When cigarette 
smokers are eliminated from the analysis and smoking is a confounder, the RR will 
be 1. In the case of effect modifi cation where both coffee drinking and smoking 
equally contribute to the outcome (i.e. both smoking and coffee drinking have an 
equal impact on the association) the RR for each will be 2.5.   

    Summary 

 When examining the relationship between an explanatory factor and an outcome one 
is interested in identifying factors that may modify the factor’s effect on the outcome 
(effect modifi ers). We must also be aware of potential bias or confounding in a study 
because these can cause a reported association (or lack thereof) to be misleading. 
Bias and confounding are related to the measurement and study design. To review:

•     Bias : A systematic error in the design, recruitment, data collection or analysis 
that results in a mistaken estimation of the true effect of the exposure and the 
outcome.  

•    Confounding : A situation in which the effect or association between an expos-
ure and outcome is distorted by the presence of another variable.  Positive  con-
founding (when the observed association is biased away from the null) and 
 negative  confounding (when the observed association is biased toward the null) 
both occur.  

•    Effect modifi cation : a variable that differentially (positively and negatively) 
modifi es the observed effect of a risk factor on disease status. Different groups 
have different risk estimates when effect modifi cation is present.    

 If the method used to select subjects or collect data results in an incorrect asso-
ciation, think bias, If an observed association is not correct because a different 
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(lurking) variable is associated with both the potential risk factor and the outcome, 
but it is not a causal factor itself, think confounding; and, if an effect is real, but the 
magnitude of the effect is different for different groups of individuals (e.g., males vs 
females or blacks vs whites), think effect modifi cation.     
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    Abstract     This chapter is aimed at providing the foundation for common sense issues 
that underlie why and what statistics is, so it is not a math chapter, relax! We will start 
with the concepts of “the universe” and a “sample”, discuss the conceptual issues of 
estimation and hypothesis testing and put into context the question of how certain are 
we that a research result in the sample studied refl ects what is true in the universe.  

  Keywords     Estimation   •   Hypothesis testing   •   Statistical power   •   Univariate  statistics   
•   Multivariate statistics   •   Bayesian analysis  

    It is surprising that as a society we accept poor math skills. Even if one is not an 
active researcher, one has to understand statistics to read the literature. Fortunately, 
most of statistics are common sense. This chapter is aimed at providing the founda-
tion for common sense issues that underlie why and what statistics is, so it is not a 
math chapter, relax! As one popular cartoon portrayed “ no one will enter heaven 
without answering the question related to a train leaving the station at 12 noon trav-
eling in one direction at 100 mph and another train is traveling towards it leaving at 
1 PM and traveling at 60 mph when will they meet?” 
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 Let’s start with the concepts of “the universe” and of a “sample”. The  “universe” 
is that group of people (or things) that we really want to know about … it is what 
we are really trying to describe. For example, for a study we might be interested 
in the blood pressure for British white males – then the “universe” is every white 
man in the Great Britain. The trouble is that the “universe” is simply too big for 
research purposes, we cannot begin to measure everybody in Great Britain, so we 
select a representative part of the universe – which is our study sample. Since the 
sample is much smaller than the universe we have the ability to measure things on 
everybody in the sample and analyze relationships between factors in the sample. 
If the sample is really representative of the universe, and we understand what is 
going on in that sample, we gain an  inferential  understanding of what is happen-
ing in the universe. The critical concept is that we perform our analysis on the 
sample (which is not what we really want to describe) and infer that we under-
stand what is going on in the universe (which is our real goal) (as an aside, when 
the entire universe is measured it is called performing a  census  and we all know 
even that has its problems). There are, however, advantages of measuring every-
one if we could. For example, if we could measure everyone, we will get the cor-
rect answer – there is almost no uncertainty when everyone is measured; and, one 
will not need a statistician – because the main job of a statistician is to deal with 
the uncertainty involved in making inferences from a sample. However, since 
measuring everyone is impractical (impossible?), and very expensive, for practi-
cal reasons one is forced to use an inferential approach, which if done correctly, 
one can  almost  be certain to get  nearly  the correct answer. The entire fi eld of 
statistics deals with this uncertainty, specifi cally to help defi ne or quantify 
“almost” and “nearly” when making an inference (Fig.  18.1 ). The characteristic 
that defi nes any statistical approach is how it deals with uncertainty. The 

The “Universe”and the “Sample”

The 
Universe
(we can never

really understand
what is going on
here, it is just too

big)

The
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(a representative
part of the

universe, it is
nice and small,

and we can
understand this)

Statistics
The mathematical description

of the sample Analysisinference

Participant Selection

  Fig. 18.1    What is the purpose of statistics? Characterizing the universe from a sample       

 

S.P. Glasser and G. Howard



375

traditional approach to dealing with uncertainty is the Frequentist approach, 
which assumes the existence of “parameters” which represent the “correct answer” 
in the universe. For example, is there a true height of British white males. The 
Frequentist approach then takes a sample of British while males, measures how 
tall they are, and then “guesses” the value of the parameter. The trick of statistics 
is that this guess comes with a measure of the uncertainty in the guess … that is, 
the guess may be that British white males are 5 ft, 11 in. tall, but this guess comes 
with a statement that we are pretty certain (say 95 %) that the true value is some-
where between 5 ft, 9 in. and 6 ft, 1 in. A Bayesian approach can use previous data 
to develop a prior distribution of potential heights of white male British, and 
updates this data with that collected to develop a posterior distribution (this is akin 
to the discussion in Chap.   14     that addresses pre and post-test probability). We will 
discuss the Bayesian approach later in this chapter. However, the focus of this 
chapter is the Frequentist approach.

   There are two kinds of inferential activities statisticians perform – estimation and 
hypothesis testing, each described below. 

    Conceptual Issues in Estimation 

    Estimation is simply the process of producing a very educated guess for the value of 
some parameter (“truth”) in the universe. In statistics, as in guessing in other fi elds, 
the key is to understand how close the estimate is to the true value. Conceptually, 
 parameters  (such as an average BP of men in the US) exist in the  universe  and do 
not change, but we cannot know them without measuring everyone. The natural 
question would then be “ how good is our guess ;” and, for this we need to have some 
measure of the reliability of our estimate or guess. 

 If we select two people out of the universe, one would not expect them to have 
the same exact measurement (i.e. for example, we would not expect them to have 
the identical blood pressure). People in a population have a dispersion of outcomes 
that is characterized by the standard deviation. We might recall from standardized 
testing for college and graduate programs that about 95 % of the people are within 
about 2 standard deviations of the average value. That is, getting people who are 
more than two standard deviations away from the mean will not happen very often 
(in fact, less than 5 % of the time). 

 Returning to the example mentioned above, suppose we are interested in estimat-
ing (guessing) the mean blood pressure of white men in Great Britain. How much 
variation (uncertainty) can we reasonably expect between two estimates of the mean 
blood pressure? To answer this, consider that the correct answer exists in the 
 universe, but the estimate from a sample will likely be somewhat different from that 
true value. In addition, a different sample would likely give a result that is both dif-
ferent from the “true” value and different from the fi rst estimate. If one repeats the 
experiment in a large number of samples, the different estimates that would be 
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 produced from the repeated experiments would have a standard deviation. This 
standard deviation of estimates from repeated estimates has a special name – the 
 standard error of the estimate . The standard error is nothing more than the standard 
deviation of the estimate, if the same experiment was repeated a large number of 
times. That is, if one repeats an experiment 100 times, (i.e. obtain100 different sam-
ples of white men, and each time calculate a mean blood pressure), just as we would 
not expect individual people to have the same blood pressure, we would not expect 
these samples to have the same mean blood pressure. The standard deviation of 
means is called the standard error of the mean. The real trick of the fi eld of statistics 
is to provide an estimate of the standard error of a parameter when the experiment is 
only performed a single time. That is, if a single sample is drawn from the universe, 
on the basis of that single sample is it possible to say how much you would expect 
the mean of future samples to differ from that obtained in this fi rst sample (if one 
thinks about it … that is quite a trick). 

 As mentioned above, we are all familiar with the fact that 95 % of people are 
within two standard deviations of the mean (again, think about the standardized 
tests we have all taken). It turns out that 95 % of the estimates are also within two 
standard deviations (except we call it two standard errors) of the true mean. This 
observation is the basis for “confi dence intervals” and this can be used to charac-
terize the uncertainty of the estimation. The calculation of a confi dence interval 
is nothing more than a refl ection of the same concept that 95 % of the people 
(estimates) are within about two standard deviations (standard errors) of the 
mean. The use of confi dence intervals permits a more refi ned assessment of the 
uncertainty of the guess, and is a range of values calculated from the results of a 
study, within which the true value lies; the width of the interval refl ecting random 
error. The width of the confi dence limit differs slightly from the two standard 
errors, (due to adjustment for the uncertainty from sampling), and the width is 
also a function of sample size (a larger sample size reduces the uncertainty). 
Also, the most common interpretation of a confi dence interval is that “I am 95 % 
sure that the real parameter is within this range” is technically incorrect, albeit 
not that incorrect. The correct interpretation is much less intuitive (and therefore 
is not as frequently used) – that if an experiment were repeated a large number of 
times, and 95 % confi dence limits were calculated each time using similar 
approaches, then 95 % of the time these confi dence limits would include the true 
parameter. We are all accustomed to hearing about confi dence limits, since con-
fi dence intervals are what pollsters mean when they talk about the “margin of 
error” of their poll. 

 To review, estimation is an educated guess of a parameter, and every estimate 
(not only estimated means, but also estimated proportions, slopes, and measures of 
risk) has a standard error. The 95 % confi dence limits depict the range that we can 
“reasonably” expect the true parameter to be within (approximately ±2 SE). For 
example, if the mean SBP is estimated to be 117 and the standard error is 1.4, then 
we are “pretty sure” the true mean SBP is between 114.2 and 119.8 (the slightly 
incorrect interpretation of the 95 % confi dence limit is “I am 95 % sure that the real 
parameter is between these numbers”). 

S.P. Glasser and G. Howard



377

 Studies frequently focus on the association between an “exposure” (treatment) and 
an “outcome”. In that case, parameter(s) that describe the strength of the association 
between the exposure and the outcome are of particular interest. Some examples are:

 –    The difference in cancer recurrence at a given time, between those receiving 
a new versus a standard treatment  

 –   The reduction in average SBP associated with increased dosage of an antihyper-
tensive drug  

 –   The differences in the likelihood of being a full professor before age 40 in those 
who read this book versus those who do not   

Let’s say we have a sample of 51 University of Alabama at Birmingham students 
some of whom have read an early draft of this book years ago. We followed each of 
these students to establish their academic success, as measured by whether they 
made the rank of full professor by age 40. The, resulting data is portrayed in 
Table  18.1 . From a review of Table  18.1  what types of estimates of the measure of 
association can we make from this sample? We can:

    1.    Calculate the  absolute difference  in those achieving the goal.

    (a)    Calculating the proportion that achieved the goal among those reading the 
book (20/31 = 0.65 or 65 %)   

   (b)    Calculating the proportion that achieved the goal among those not reading 
the book (8/20 = .40 or 40 %)   

   (c)    By calculating the difference in these two proportions (0.65 − 0.40 = 0.25), 
we can demonstrate a 25 % increase in the likelihood of academic success 
by this measure.

  Or…    

          2.    We can calculate the  relative risk (RR)  of achieving the goal

    (a)    By, calculating the proportion that achieved the goal among those reading 
the book (20/31 = 0.65 or 65 %)   

   (b)    By, calculating the proportion that achieved the goal among those not  reading 
the book (8/20 = .40 or 40 %)   

       Table 18.1    Types of estimates of the measure of association   

 Full professor by age 40 

 Yes  No  Total 

 Attended course  Yes  20  11  31 
 No  8  12  20 
 Total  28  23 

  Proportion that achieved goal among those reading this book 20/31 = 65 % 
 Proportion that achieved goal among those not reading this book 8/20 = 40 % 
 Difference between the two proportions .65 − .40 = .25 or a 25 % increase in success 
 The RR of achieving the goal 0.65/0.40 = 1.61 (about a 61 % increase) 
 The OR of achieving the goal the odds of achieving the goal by reading the book 20/11 = 1.81; 
achieving the goal in those not reading the book 8/12 = 0.67; the odds ratio is 1.81/0.67 = 2.73  
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   (c)    And then calculating the ratio of these two proportions (RR is 0.65/0.40 = 1.61) 
– or there is a 61 % increase in the likelihood of making full professor among 
those reading the book.

  Or…    

          3.    We can calculate the  odds ratio (OR)  of achieving this goal:

    (a)    By calculating the odds (the “odds” is the chance of something happening 
divided by the chance of it not happening) of achieving the goal among those 
reading the book (20/11 = 1.81)   

   (b)    By calculating the odds of achieving the goal among those not reading the 
book (8/12 = 0.67)   

   (c)    And then, calculating the ratio of these two odds (OR is 1.81/0.67 = 2.73) – 
or there is a 2.73 times greater odds of making full professor among those 
reading the book.    

    The point of this example is to demonstrate that there are different estimates that can 
reasonably be produced from the very same data. Each of these approaches is cor-
rect, but they give extremely different impressions of what is occurring in the study 
(that is, is there a 25 % increase, a 65 % increase or a 173 % increase?). In estimation, 
therefore, great care should be taken to make sure that there is a deep understanding 
of what is being estimated.To review the major points about estimation (Table  18.2 ):

•      Estimates from samples are only educated guesses of the truth (of the 
parameter)  

•   Every estimate has a standard error, which is a measure of the variation in the 
estimates. When standard errors are not provided, care should be taken in the inter-
pretation of the estimates – they are guesses without an assessment of the quality 
of the guess (by the way, note that standard errors were not provided for the guesses 

  Table 18.2    Major points 
regarding estimation  

 Estimates from samples are only educated 
guesses of the truth 

 Every estimate has a standard error, which is a 
measure of the variation in the estimates 

 If you were to repeat a study, one should no: 
expect to get the same answer 

 When you have two estimates, you can conclude: 
  It is almost certain that neither is correct 
 However, in a well-designed experiment 
  The guesses should be “close” to “correct” 
 Statistics can help us understand how far our 

guesses are likely to be from the truth… 
  And how far they would be from other 

guesses 
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made from Table     18.1  of the difference, the relative risk, or the odds ratio of the 
chance of making full professor).  

•   If you were to repeat a study, one should not expect to get the same answer (just 
like if one sampled people from a population, one should not expect them to have 
the same blood pressure amongst individuals in that sample).  

•   When you have two estimates, you can conclude:

 –    It is almost certain that neither is correct  
 –   However, in a well-designed experiment

•    The guesses should be “close” to “correct”  
•   Statistics can help us understand how far our guesses are likely to be from 

the truth, and how far they would be from other guesses (were they made).           

    Conceptual Issues in Hypothesis Testing 

 The other activity performed by statisticians is hypothesis testing, which is simply 
making a yes/no decision regarding some parameter in the universe. In statistics, as 
in other decision-making areas, the key to decision-making is to understand what 
kind of errors can be made; and, what the chances are of making an incorrect deci-
sion. The basis of hypothesis testing is to assume that whatever you are trying to 
prove is not true –i.e. that there is no relationship (or technically, that the null hypoth-
esis H o  is supported). To test the hypothesis of no difference, one collects data (on a 
sample), and calculates some “test statistic” that is a function of that data. In general, 
if the null hypothesis is true, then the test statistic will tend to be “small;” however, if 
the null hypothesis is incorrect the test statistic is likely to be “big.” One would then 
calculate the chance that a test statistic as big (or bigger) as we observed would occur 
under the assumption of no relationship (this is termed the  p-value !). That is, if the 
observed data is unlikely under the null, then we either have a strange sample, or the 
null hypothesis of no difference is wrong and should be rejected. To return to 
Table  18.1 , let’s ask the question “how can one calculate the chance of getting data 
this different for those who did versus those who did not read this book, under the 
assumption that reading the book has no impact?” The test statistic is then calculated 
to assess whether there is evidence to reject the hypothesis that the book is of no 
value. Specifi cally, the test statistic used is the Chi-square (χ 2 ), the details of which 
are unimportant in this conceptual discussion – but the test statistic value for this 
particular table is 2.95. Now the question becomes is 2.95 “large” (providing evi-
dence that the null hypothesis of no difference is not likely) or “small” (failing to 
provide such evidence). It can be shown that in cases like the one considered here, 
that if there is really no association between reading the book and the outcome, that 
only 5 % of the time is the value of the test statistic larger than 3.84 (this, therefore, 
becomes the defi nition of “large”). Since 2.95 is less than 3.84, this is not a “large” 
test statistic; and, therefore, there is not evidence to support that the null hypothesis 
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is wrong (i.e. that reading the book has no impact is wrong – however, one cannot use 
these hypothetical data to prove that you are currently otherwise spending your time 
wisely). We acknowledge and regret that this double-negative statement must be 
made, i.e. “there is not evidence that the null hypothesis is wrong”. This is because, 
one does not “accept” the null hypothesis of no effect, one just does not reject it. This 
is a small, but critically important concept in hypothesis testing – that a “negative” 
test (as was true in the above example) does not prove the null hypothesis, it only fails 
to support the alternative. On the other hand, if the test statistic had been bigger than 
3.84, then we would have rejected the null hypothesis of no difference and accepted 
the alternative hypothesis of an effect (i.e. that reading this book does improve one’s 
chances of early academic advancement-obviously the correct answer). 

    P Value 

 The “ p-value ” is the chance that the test statistic from the sample could have hap-
pened under the null hypothesis. What constitutes a situation where it is “unlikely” 
for the data to have come from the null, that is, how much evidence are we going to 
require before one “rejects” the null? The standard is that if the data has less than a 
5 % chance (p < 0.05) of happening by chance alone, then the observation is consid-
ered “unlikely”. One should realize that this p value (0.05) is an arbitrary number, and 
many argue that too much weight is given to the p-value. None-the-less, the p-value 
being less than or greater than 0.05 is inculcated in most scientifi c work. However, 
consider the example of different investigators performing an identical experiment 
and one gets p = 0.053, whereas the other gets p = 0.049. Should one really come to 
different conclusions? In one case there is a 5.3 % chance of getting data as observed 
under the null hypothesis, and in the other there is a 4.9 % chance. If one accepts the 
0.05 threshold as “gospel,” then these two very similar results appear to be discor-
dant. Many people do, in fact, adhere to the position that they are “different” and are 
discordant, while others feel that they are confi rmatory. To make things even more 
complex, one could argue that the interpretation of the p value may depend on the 
context of the problem (that is, should one always require the same level of evi-
dence?). See Table   3.12     for a list of some common p-value misinterpretations. 

 Aside from the arguments above, there are a number of ways to “mess up” the 
p value. One certain way is to not follow the steps in hypothesis testing, one surprising, 
but not uncommon way to mess things up. Consider the following steps one researcher 
took: after looking at the data the investigator created a hypothesis, tested that hypoth-
esis, and obtained a p-value; that is, the hypothesis was created from the data (see 
discussion of subgroup and post-hoc analysis). Forming a hypothesis from data already 
collected is frequently referred to as “data dredging” (a polite term for the same activ-
ity is “exploratory data analysis”). Another way of messing up the p value is to look at 
the data multiple times during the course of an experiment. If one looks at the data 
once, the chance of a spurious fi nding is 0.05; but with multiple “peeks”, the chance of 
spurious fi ndings increase signifi cantly (Fig.  18.2 ). For example, if one “peeks” at the 
data fi ve times during the course of one’s experiment, the chance of a spurious fi nding 
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increases to almost 20 % (i.e. we went from 1 chance in 20 to about a 4 in 20 chance 
of a spurious fi nding). What do we mean by peeking at the data? This frequently 
occurs from: interim examinations of study results; looking at multiple outcome mea-
sures; analyzing multiple predictor variables; or, performing subgroup analyses. Of 
course, all of these can be legitimate; it just requires planning (that is pre-planning) . 

   Regarding subgroup analysis, It is not uncommon that after trial completion, and 
while reviewing the data one discovers a previously unsuspected relationship (i.e. a 
post-hoc observation). Because this relationship was not an  a priori  hypothesis, the 
interpretation of the p value is no longer reliable. Does that mean that one should 
ignore the relationship and not report it in one’s manuscript? Of course not, it is just 
that one should be honest about the conditions of the discovery of the observation. 
What should be said in the paper is something similar to:

  In exploratory analysis, we noted an association between X and Y. While the nominal 
p-value of assessing the strength of this association is 0.001, because of the exploratory 
nature of the analysis we encourage caution in the interpretation of this p-value and encour-
age replication of the fi nding. 

 This is a “proper” and honest statement that might have been translated from:

  We were poking around in our data we found something that is really neat. We want to be on 
record as the fi rst to report this. We sure do hope that you other guys see this in your data too. 

       Type Error I, Type II Error, and Power 

 To this point, we have been focusing on a specifi c type of error – one where there 
really is no difference (null hypothesis is true) between the groups, but we are con-
cerned about falsely saying there is a difference. This would be akin to a false posi-
tive result and this is termed a “Type I Error.” Type II errors occur if one says there 

Confounders of relationships

Confounder (SES)

Risk Factor (Estrogen) Outcome (CHD risk)
???

A “confounder” is a factor that is associated to both the
risk factor and the outcome, and leads to a false apparent
association between the the risk factor and outcome

  Fig. 18.2    Depicts an example of trying to prove an association of estrogen and CHD (indicated 
by the  question marks ) but that socioeconomic status (SES) is a factor that infl uences the use of 
estrogen and also affects CHD risk separate from estrogen. As such, SES is a confounder for the 
relationship between estrogen and CHD risk       
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is not evidence of a difference when a difference does indeed exist; and this is akin 
to a false negative result. To recap, recall that one initially approaches hypothesis 
testing with the statement that there was no difference (the null hypothesis is true), 
one then calculated the chance that a difference as big as the one you observed in the 
data was due to chance alone, and if you reject that hypothesis (P < .05), you say 
there really is a difference, then the p value gives you the chance that you are wrong 
(i.e. p < .05 means there is less than 1 chance in 20 that you are wrong and 19 
chances out of 20 that you are right- i.e., that there really is a difference). Table  18.1  
portrays all the possibilities in a 2 × 2 table (Table     18.3 ).

       Statistical Power (Also See Chap.   15    ) 

 Statistical power, is the probability that given that the null hypothesis is false (i.e. 
that there really is a difference) that we will see that difference in our experiment. 
Power is infl uenced by:

•    The signifi cance level (α): if we require more evidence to declare a difference 
(i.e. a lower p value –say p < .01) , it will be harder to get, and the sample size will 
have to be larger, as this determination will allow one to provide for greater (or 
less) precision (i.e. see smaller differences);  

•   the true difference: this is from the null hypothesis (i.e. big differences are easier 
to see than small differences)  

•   The other parameter values related to “noise” in the experiment. For example, if 
the standard deviation (δ) of measurements within the groups is larger (i.e., there 
is more “noise” in the study) then it will be harder to see the differences that exist 
between groups  

•   The sample size (n). It is not wrong to think of sample size as “buying” power. 
The only reason that a study is done with 200 rather than 100 people is to buy the 
additional power.   

To review, some major conceptual points about hypothesis testing are:

•    Hypothesis testing is making a yes/no decision  
•   The order of steps in statistical testing is important (the most important thing 

is to state the hypothesis before seeing the data)  

   Table 18.3    A depiction of Type I and Type II error   

 Null hypothesis 
(No difference) 

 Alternative hypothesis 
(There is a difference) 

 Test conclusion: No evidence 
of difference 

 You win!  You lose! 
 Correct decision  Incorrect decision 

  Β  = Type II error 
 Test conclusion: There is a difference  You lose!  You win! 

 Incorrect decision  Correct decision 
 α = Type I error  1 − β = Power 
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•   There are many ways to make a mistake, including

 –    Saying there is a difference when there is not one

•    By design, the α level gives the chance of a Type I error  
•   The p-value is the chance in the specifi c study     

 –   Saying there is not a difference when there is one

•    By design, the β level gives the chance of a type II error, with 1- β being 
the “power” of the experiment  

•   Power is the chance of seeing a difference when one truly exists        

•   P-values should be interpreted in the context of the study  
•   Adjustments should be made for multiple “peeks” (or interpretations should be 

made more carefully if there are multiple “peeks”) – See Fig.  18.3 

           Univariate and Multivariate (Multivariable) Statistics 

 To understand these analyses one must have an understanding of confounders (also 
see Chaps.   3     and   17    ). A confounder is a factor that is associated with both the expo-
sure (say a risk factor) and the outcome; and, leads to a false apparent association 
between the two. Let’s use, as an example, the past observational data on the benefi -
cial association of hormone replacement therapy and beta-carotene on atherosclero-
sis, MI and stroke risk. When RCTs were performed, these associations not only 
disappeared, but there was a suggestion that some of these exposures were poten-
tially harmful. Confounders are one of the major limitations of observational stud-
ies, (recall that for RCTs, randomization equalizes known and unknown confounders 
between the intervention and control groups so they are not a factor in the observed 
associations). In observational studies, however, it is necessary to “fi x” the effect of 
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  Fig. 18.3    The chance of spurious fi ndings related to the number of times the data is analyzed 
 during the course of a trial       
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confounders on the association one is trying to evaluate. In observational studies 
there are two basic ways of “fi xing” confounders: (1) match the  interventional and 
control groups for known confounders, at the start of the study, or (2) to adjust for 
potential confounders during data analysis (See discussion of Propensity Scoring in 
Chap.   3    ). One should note that either of these approaches can only “fi x”  known  
confounders, which is unlike randomization that also “fi xes” any  unknown  con-
founders (this being one of the major reasons that RCTs result in the highest level 
of scientifi c evidence). Remember too, that for something to be a confounder it must 
be associated with both the exposure and the outcome. In a case-control study, for 
example, one matches the cases and controls (for example by matching for age and 
race) so that there can be no association between those confounders (age and race) 
and the outcome (i.e., the cases and controls have the same distribution of race and 
age – because they were made to). 

 A way to mathematically adjust for confounders is multivariate analysis. That is, 
in case-control, cross-sectional, or cohort studies, differences in confounders 
between those with and without the “exposure” can be made to be equal by math-
ematical adjustment. Covarying for confounders is the main reason for multivariate 
statistics. The interpretation of the exposure variable in a multivariate model is “the 
impact of a change in the exposure variable at a fi xed level of the confounding 
variable(s).” Saying that the association of the predictor and the outcome “is at a 
fi xed level of the confounding variable” is the same as saying that there is not an 
association between the exposure and the confounding variable (really, that the rela-
tionship has been “accounted for”). 

 Again however, many things can “go wrong” in multivariate analysis. As already 
mentioned, one must know about the confounders in order to adjust or match for 
them. In addition, one must be able to appropriately measure confounders (take 
SES for example, since there is much argument as to what components should 
make up this variable the full effect of SES may be diffi cult to account for in the 
analysis). Not only can one not quantify parts of a confounder, a confounder can 
never be perfectly measured and as a result confounders cannot be perfectly 
accounted for. Also, even when a potential confounder is identifi ed, the more mea-
surement error there is in the confounder, the more likely that “residual confound-
ing” can still occur.  

    Bayesian Analysis 

 One of the many confusing statistical concepts for the non-statistician is the argu-
ment over which approach- Frequentist or Bayesian-is preferable. With the 
Frequentist approach (this has become the traditional approach for clinical trials) an 
assumption is made that the difference between treatment groups is unknown and the 
parameter is fi xed (for example, the mean SBP of all British citizens is a fi xed num-
ber). With the Bayesian approach (some argue becoming a much more common 
approach in the future) parameters are assumed to be a distribution of potential 
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differences between treatment groups and that there is information existent about 
these differences before you do the proposed trial. This latter idea defi nes one of the 
major strengths of the Bayesian approach- that is that one can use prior information 
(prior distribution) known from other studies before one conducts their trial, and 
this can be “added to the information gained in the current trial (posterior distribu-
tion) with the potential benefi t of a reduced sample size necessary to show a differ-
ence (with the Frequentist approach one starts statistically with a ‘clean slate’)”. 
Howard et al argues for the Frequentist approach by noting that “ we have a diffi cult 
time agreeing what we know ”-that is the choice of studies guiding the prior knowl-
edge is largely subjective [ 1 ]. Frequentists also argue that if there is little prior 
knowledge, there would be no meaningful reduction in sample size, while substan-
tial prior knowledge brings into play the ethical need to do a new study. Finally, 
Frequentists argue, that there are at least two reasons why previous studies might 
provide incorrect information (sampling variation which can be adjusted for, and 
bias which cannot) and the inclusion of these in the prior distribution then adversely 
affects the posterior distribution [ 1 ]. Berry argues that the Bayesian approach is 
optimal because it is “tailored to the learning approach”, that is as information is 
accrued one “updates what one knows”; and, that this fl exibility makes it ideal for 
clinical research [ 2 ]. Howard argues that rather than being one or the other, one 
should be an opportunist. Howard makes this latter point using thoughts from 
Wikipedia on Tools: as an opportunist, one should take advantage of the optimal 
tools for the problem at hand; only a fool would use the same tool for all problems!

 –    When one needs to drive a nail, a hammer is a neat tool  
 –   When one needs to cut a board, a saw is awfully handy    

    Thoughts from Wikipedia on Tools (Figs.  18.4  and  18.5 ) 

     The question then is:  Does a Bayesian approach provide a meaningful advantage 
over the traditional approach particularly if we focus on the Phase III randomized 
clinical trial?  Bayesian Analysis really pays off if there is substantial “prior” infor-
mation that can be used to powerfully inform the posterior information. Some argue 
that Bayesian analysis allows adaptive designs to be implemented, and this is true! 
But adaptive designs can also be implemented under a Frequentist approach. Some 
argue that Bayesian analysis “answers the logical question” … actually it can be 
easily argued that both approaches can be used to answer the logical questions. 
Bayesian approaches have the advantage of optimally using the information avail-
able from previous studies to inform the Phase III trials. This allows for the “smooth 
transition from Phase II to Phase III trials”. And, who would not use all the informa-
tion that is available? As briefl y discussed above, the problem is that we may not 
agree on “what we know”, and there are at least three issues in this regard:  we have 
to agree on what we know; and, we have to know just the right amount; and, we may 
be systematically wrong about both.  
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  Fig. 18.4    Contrasting frequentist and Bayesian statistical approaches using a hammer and saw 
example       

  Fig. 18.5    Contrasting frequentist and Bayesian statistical approaches using a hammer and saw 
example       
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    Issue #1: We Have to Agree About What We Know 

 Consider that in academics, we write papers, we care for patients, and we teach 
students. What we do poorly is agree about what we know. There are many exam-
ples of large clinical trials in which experts disagree about what the results mean 
(Fig.  18.6 ).

       Issue #2: We Have to Know Just the Right Amount 

 Remember, we only truly gain from Bayesian analysis if we know something, so if 
we know nothing … we gain virtually nothing. Also remember that randomization 
is based on equipoise, so if we know too much, we are not at equipoise. How would 
an Informed Consent statement sound if we said w e are only 80 % sure that you will 
benefi t from the new treatment; however, to remove our uncertainty, we would like 
to assign you at random to treatment . Where does one draw the line … if we are 
60 %/40 % … how about 70 %/30 %?  

  Fig. 18.6    An example demonstrating the Bayesian approach       
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    Issue #3: We May Be (Systematically) Wrong About What We Know 

 We can unrealistically pretend that the current study is the only study, but let’s 
 consider that there are 100’s of compounds introduced to assess effi cacy and of 
these only a few will make it through Phase II to a Phase III trial. The reason why a 
compound advances is that it is promising, and there are two reasons for a com-
pound to be promising:

•    It works!!!  
•   Through a random process, it (inappropriately) appears to work   

Thus, conditional on making it to a Phase III trial, the Phase II results are biased. 
But, If Phase II results are biased, then incorporating that information will also bias 
the Phase III results. Also, one might ask:  Do we really want to use that prior infor-
mation anyway ? The knee-jerk is … we need to use all the information available to 
make a decision. But, suppose we are getting ready to do a pivotal trial, does it make 
sense to “ wipe the board clean”  and have a true independent test of the compound? 
Is it a bad decision to have an independent assessment of the new treatment? On the 
other hand, do we really understand the prior information?

•    Could some of the previous scientists have “had an agenda”?  
•   Is our understanding of the information really the true status of the information   

Thus, should the argument about the Frequentist Approach vs the “Bayesian 
Approach” really be, we are just someone who tries to understand the best tools for 
a problem.    

    Selection of Statistical Tools (Or Why Are There 
So Many Statistical Tests?) 

 Each research problem can be characterized by the type and function of the variable 
and whether one is doing single or repeated assessments of the data. These are the 
characteristics of an experiment that determine the statistical tool used in the study. 
The fi rst characteristic that infl uences the choice of which statistical “tool” to use, is 
the  data type . Data types are categorical, ordinal or continuous. Categorical data 
(also called nominal or dichotomous if one is evaluating only two groups), is data 
that are in categories i.e. neither distance nor direction is defi ned e.g. gender (male/
female), ethnicity (AA, NHW, Asian), or outcome (dead/alive), hypertension status 
(hypertensive, normotensive). Ordinal data, is data that are in categories and direc-
tion but not distance, good/better/best; normotensive, borderline hypertension, 
hypertensive. With continuous (also called interval) data, both distance and direc-
tion are defi ned e.g. age or systolic blood pressure. 

  Data function  is another characteristic to consider. With data function, we are deal-
ing with whether the data is the dependent or independent variable. The dependent 
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variable is the outcome in the analysis and the independent variable is the exposure 
(predictor or risk factor). 

 Finally, one needs to address whether single or repeated assessments are being 
performed. That is, a single assessment is a variable that is measured once on each 
study participant (for example baseline blood pressure measured on two different 
participants); while repeated measures (if there are two measures, it is also called 
“paired measures”) are measurements that are repeated multiple times (frequently 
at different times), for example, repeated measures on the same participant at base-
line and then 5 years later, or blood pressures of siblings in a genetic study (in this 
latter case the study is of families not people, and there are two measures on the 
same family). Why do there have to be so many approaches to these questions? Just 
as a carpenter needs a saw and a hammer for different tasks, a statistician needs 
 different types of analysis tools from their “tool box” (Table  18.4 ).
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    Abstract     Perhaps nothing is more important to a new investigator than how to 
properly prepare a grant to request funding for clinical research or how to write a 
manuscript for publication. In this chapter we will review the basic elements for 
successful grant and manuscript writing, discuss advantages and disadvantages of 
K versus R applications for National Institutes of Health (NIH) funding, illustrate 
the “fundamentals” for each section for a standard NIH R-series application, and 
describe the key components necessary to transition to a successful NIH research 
career.  

  Keywords     Research grant structure   •   Writing a manuscript   •   Journal guideline 
statements   •   CONSORT   •   Confl icts of interest   •   Coercive citations   •   Open access 
journals  

        Basic Tenets of Grant Writing 

    The three fundamental principles involved in the successful preparation of an 
NIH grant are to understand the mission of the particular NIH branch from which 
you wish to secure funding, to know the peer review process, and to build the 
best team possible to accomplish the work proposed. It is very important, par-
ticularly to new investigators, to secure collaborators for areas in which you lack 

    Chapter 19   
 Grant and Manuscript Writing 

                Donna     K.     Arnett      and     Stephen     P.     Glasser     

        D.  K.   Arnett ,  Ph.D., MPH   
  Department of Epidemiology ,  University of Alabama at Birmingham ,   Birmingham ,  AL ,  USA     

    S.  P.   Glasser ,  M.D.      (*)
  Division of Preventive Medicine ,  University of Alabama at Birmingham , 
  1717 11th Ave S MT638 ,  Birmingham ,  AL 35205 ,  USA   
 e-mail: sglasser@uabmc.edu  

mailto:sglasser@uabmc.edu


392

experience and training. While this often proves to be challenging for the new 
investigator since it is diffi cult to secure the attention of busy senior investiga-
tors, it is a critical step toward securing funding for the work you propose. Finally, 
grant writing like any skill, can only be optimized by doing it repeatedly. You can 
read all about the physics of learning to ride a bicycle, but until one does it repeti-
tively, one will not be good at it. The same is true with respect to grant writing: 
writing, editing, and re- writing of the grant should occur on a regular basis. 

 Having all the tools described above in your “toolbox”, however, will not neces-
sarily lead to a successful grant. The ideas must be presented, or “marketed” in such 
a way as to show the review team the importance of the proposed work as well as its 
innovative elements. The grant proposal must be presented in an attractive way and 
the information placed where reviewers expect to fi nd it. Complex writing styles are 
also ill advised for grants. It is important to use clear and simple sentence structures, 
and to avoid complicated words. Also avoid the temptation to use abbreviations to 
save space since many abbreviations, or unusual abbreviations, make a grant diffi -
cult to read. Instead, use a reviewer friendly approach where the formatting is sim-
ple and the font is readable. Organize and use subheadings effectively (e.g., like a 
blueprint to the application), and use topic sentences for each section that build the 
“story” of your grant in a logical and sequential way. Use spell-checking programs 
before submission, and also, ask a colleague to read through the fi nal draft before 
submission. Most importantly, be consistent in specifi c aims and format throughout 
the application. 

 Very importantly, the proposal must convince evaluators that the problem you 
are addressing is critical and signifi cant, and that the team can deliver. Also, it 
is important to recognize that when investigators possess knowledge about a 
subject, it is hard for them to imagine what it is like not to know, and this is 
referred to as “the curse of expertise” [ 1 ]. This “curse” prevents effective com-
munication. VanEkelenberg also points to the “chain of reasoning” to refer to 
the importance of a “roadmap that guides the reader through the proposal”. He 
also has developed a table (Table  19.1 ) that provides a model for the chain of 
reasoning.

   Table 19.1    The  PROSANA  model for developing the “chain of reasoning”   

 Step  Guide word  Explanation 

 1.  Problem  Carefully describe the perceived problem 
 2.  Root causes  Describe the underlying causes in statements 
 3.  fOcus     Narrow the problem by focusing on the causes addressed by the proposal 
 4.  Solutions  Briefl y mention potential solutions making clear that the writer is aware 

of alternative approaches 
 5.  Approach  Narrow the approach to the chosen solution for the proposal 
 6.  Novelty  Describe the associated novelty either in the approach, technology, etc. 
 7.  Arguments  List the main arguments that explain/support the logic for the proposed 

solution 
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       The Blueprint of a Research Grant 

 For the scientist, the most important content of the NIH grant for which the  proponent 
is fully responsible consists of the:

   Abstract  
  Budget for initial period  
  Budget for 5-year period  
  Introduction (Revised or Supplemental applications)  
  Research Plan, which includes:

 –    Specifi c Aims  
 –   Background and Signifi cance  
 –   Preliminary Studies/Progress Report  
 –   Research Design and Methods  
 –   Use of Human Subjects  
 –   Use of Vertebrate Animals  
 –   Literature Cited  
 –   Data Sharing Plan      

There are many administrative forms that also must be included from your agency 
(such as the face page and the checklist, to name a few), but the items described 
above are where you will spend the majority of your time. It is important to care-
fully read the instructions, and also to check with your agency’s grants and contracts 
offi cer to resolve any questions  early  in the process of preparing your application.  

    Writing the Research Grant 

 In writing the research grant, start with strengths by clearly articulating the problem 
you will address and how it relates to the present state of knowledge. Find the gap 
in knowledge and show how your study will fi ll that gap and move the fi eld closer 
to the desired state of knowledge. Pick the “right” question, knowing that the ques-
tion should have potential to get society closer to an important scientifi c answer 
while at the same time knowing that there are many, more questions than one can 
answer in an individual career. In other words, get the right question, but don’t 
spend so much time fi guring out what the right question is that you don’t move 
forward. The questions should lead you to research that have the potential for being 
fun. While securing NIH funding is an important milestone in your career, remem-
ber if your study is funded, you will be doing it for at least the next 2–5 years and 
it will impact your future area of research. Don’t propose any research question that 
you really do not think you will enjoy for the “long term”. Aside from the fun aspect 
(which is an important one), the “right” research question should lead to a hypoth-
esis that is testable, that is based upon existing knowledge and fi lls and existing gap 
in specifi c areas of knowledge. Finally, the “right” research question is a question 
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that can be transformed into a feasible study plan. How does one fi nd the “right” 
research question? Open your eyes and observe: patients often provide clues into 
what is known and unknown about clinical practice. This approach formed the basis 
of one of the authors R01 (“does the variable left ventricular hypertrophy response 
in the context of hypertension have a genetic basis?”). Another way of coming by 
the “right” research question is through teaching and through new technologies. 

    Abstract 

 The abstract and specifi c aims (described below) are the two most important com-
ponents of any grant application and must provide a cohesive framework for the 
application. The abstract provides an outline of the proposed research for you and 
the reviewer. Include in the abstract the research question that the study will address 
with a brief justifi cation to orient the reviewer, the overall hypotheses to be tested, 
the study population you will recruit, the methods you will use, and the overall 
research plan (Table  19.2 ). These details are important so that study section person-
nel can decide which study section best fi ts the grant. The fi nal statement in the 
abstract should indicate how the proposed research, if, successful, will advance 
your fi eld of research. Always revise the abstract after your complete proposal has 
been written so that it agrees with what you have written in the research section.

       Developing a Research Question and Specifi c Aims 

 In developing a research question, one needs to choose a “good” or the “right” 
 question as discussed above (also see Chap.   2    ). The “right” research question should 
lead you towards a testable hypothesis about the mechanisms underlying the disease 
process you are studying. A testable hypothesis will also require a feasible experi-
mental design such that you can test the various predictions of your hypotheses in 
the most rigorous way so that your study does all that it can to fail to refute the null 
hypothesis if it is true. Once you have a testable hypothesis and a feasible and 

  Table 19.2    Components 
of an abstract  

 The research question that the study will address 

 A brief justifi cation to orient the reviewer 
 The overall hypotheses to be tested 
 The study population to be recruited 
 The methods you will use 
 The overall research plan 
 How the proposed research, if, successful, will 

advance your fi eld of research 
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 rigorous design to translate the research question into the hypothesis, there are 
certain necessary components that one needs to consider. Certainly, the hypothesis 
should defi ne the study purpose, but should also address: the patient/subject eligibil-
ity (i.e., characterize the study population); the exposure (or the intervention); the 
comparison group; and the endpoints (outcomes, dependent variable – refer to PI(E)
COS in Chap.   3    ). As described by Hulley et al. the criteria of a good hypothesis is 
that it is feasible, interesting, novel, ethical, manageable in scope, and relevant. It is 
helpful to engage colleagues to respond to how novel and interesting the hypothesis 
is and to address whether the results of your study will confi rm extend, or refute 
prior fi ndings, or provide new knowledge. Arguably, the most common mistake a 
new investigator makes is to have failed to narrowly focus the question such that it 
is feasible to answer with the research proposed. That is, avoid having a question 
that is too broad or vague to be reasonably answered. Finally, include only experi-
ments that you and your colleagues and you’re your institution have the expertise 
and resources to conduct. 

 For the NIH grant, the hypotheses are written in Section A of the proposal, 
named “Specifi c Aims.” Specifi c aims are extensions of your research questions and 
hypotheses, and they should generally be no more than one page and should include 
(i) a brief introduction that underscores the importance of the proposed research, 
(ii) the most important fi ndings to date, and (iii) the problem that the proposed 
research will address. Using the example of the genetic determinants of ventricular 
hypertrophy mentioned above, the aims section began with “(i) LVH is a common 
condition associated with cardiovascular morbidity and mortality… (ii) we have 
shown that LVH is, at least in part, genetically determined…. (iii) we anticipate 
these strategies will identify genetic variants that play clinically signifi cant roles in 
LVH (Table  19.3 )”. Such knowledge may suggest novel pathways to be explored as 
targets for preventive or therapeutic interventions.

   Even though the specifi c aims should be comprehensive in terms of the proposed 
research, the aims should be brief, simple, focused, and limited in number. Draft the 
specifi c aims like you would a novel such that you create a story that builds logically 
(i.e. each aim should fl ow logically into the next aim). The aims should be “realis-
tic”, that is, they should represent one’s capacity for completing the work you pro-
pose and within the budget and the time requested. Use a variety of action verbs, 
such as characterize, create, determine, establish, delineate, analyze, or identify, to 

   Table 19.3    Components of specifi c aims   

 Components  Example 

 A brief introduction that underscores the 
importance of the proposed research 

 LVH is a common condition associated with 
cardiovascular morbidity and mortality… 

 The most important fi ndings to date  We have shown that LVH is, at least in part, 
genetically determined… 

 The problem that the proposed research 
will address 

 We anticipate these strategies will identify genetic 
variants that play clinically signifi cant roles 
in LVH 
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name a few. Most importantly, keep the aims simple, at the appropriate level of your 
team’s expertise, and where you have supporting preliminary data. 

 Writing specifi c aims can take on a variety of models. One model might be to 
have each aim present a different approach that tests a central hypothesis. Another 
model may be to have each aim develop or defi ne the next logical step in a disease 
process. You should avoid a model in which an aim is dependent of the successful 
completion of an earlier aim. In other words, do not have aims that could only suc-
cessfully move when and if the earlier aim is successful. Such contingent aims 
reduce the scientifi c merit of the grant since reviewers cannot assess their probabil-
ity of success.  

    The Background and Signifi cance Section 

 The background and signifi cance section must convince your reviewers that your 
research is important; in other words, you must market your idea to reviewers in 
such a way that it engages them intellectually and excites them in terms of the 
potential for impact on clinical practice, and ultimately, health. You must also pro-
vide the foundation for your research, and show your knowledge of the literature. To 
provide the reviewer evidence of your ability to critically evaluate existing know-
ledge, the background and signifi cance section should not only clearly state and 
justify the hypotheses, but should also justify variables and measurements to be 
collected, and how the research will extend knowledge when the hypotheses are 
tested. The wrap-up paragraph should discuss how your proposed research fi ts into 
the larger picture and demonstrate how the work proposed fi lls an important gap in 
knowledge. Some key questions to address are (Table  19.4 ):

•    What is the current state of knowledge in this fi eld?  
•   Why is this research important? Does it fi ll a specifi c gap in knowledge?  
•   What gaps in knowledge will this project fi ll?  
•   More generally, why is this line of research important?   

Captivate the reviewer by emphasizing why the research question is fascinating. For 
instance, what is known? What question is still unanswered? And why do we want 
to answer this particular question? Finally, you must address what your proposed 
project has to do with the public health or clinical medicine.

  Table 19.4    What should be 
in the background and 
signifi cance section  

 What is the current state of knowledge 
 Why is this research question important 
 What gaps in knowledge will this project fi ll 
 Does it fi ll a specifi c gap in knowledge 
 More generally, why is this line of research 

important 
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   Background and signifi cance sections will be read by experts in your fi eld 
since reviewers are selected based on their matched expertise with your project. 
Therefore, you must be both factual and provide “readable” material. Whenever 
possible, use cartoons or diagrams to clarify concepts and to visually break up the 
page. It is also useful to create a “road map” for your application in the introduc-
tory paragraph (e.g. in one of the author’s section, the following was used: “in this 
section, we review (1) the epidemiology of hypertension; (2) the pathophysiology 
of hypertension; (3) other medical consequences of hypertension; (4) the clinical 
treatment of hypertension; (5) the genetics of hypertension, and (6) implications 
for proposed research”. Having this roadmap is particularly important for the 
reviewer, since often a busy reviewer may only skim headings. Your headings 
within the background and signifi cance section should lead the reviewer to know 
fully why that section is in the application. Like the specifi c aims, it is important 
to keep the background and signifi cance section simple, to avoid jargon, to defi ne 
acronyms, to use “sound bites”, and repeatedly use these “sound bites” through-
out the application. Finally, engage a colleague from a close but unrelated fi eld to 
read the background section to test the ease of understanding of its structure and 
content to a non-expert.  

    Preliminary Studies Section 

    The best predictor of what you will do tomorrow is what you did yesterday  

   The NIH has specifi c Instructions for the preliminary studies section, and “sug-
gest” this section should provide an account of the principal investigator’s prelimi-
nary studies relevant to the work proposed and/or any other information—from the 
investigator and/or the research team—that will help to establish their experience 
and competence to pursue the proposed project. Six to eight pages are recommended 
for this section. Content should include previous research, prior experiments that set 
the stage for the proposal and build the foundation for the proposed study. The pilot 
data provided should be summarized using tables and fi gures. Interpretation is also 
important so that you demonstrate your ability to articulate accurately the relevance 
of your pilot data and correctly state the impact of your prior work. In a related way, 
this section also uses the previous results to demonstrate the feasibility of your 
proposed project. To convince reviewers of your research feasibility, you should 
discuss your own work--and that of your collaborators - on reasonably related 
projects, in order to convince reviewers that you can achieve your research aims. 
Pilot studies are required for many (but  not  all) R-series grants, and are extremely 
important to show your project is “do-able”. 

 The preliminary study section is particularly important for junior investigators 
where there may be inadequate investigator experience or training for the proposed 
research, a limited publication record, and/or a team that lacks the skill set required 
for the research proposed. The quality of the preliminary study section is critically 
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important for junior investigators as the quality of the presentation of the pilot work 
is evidence of your ability to complete the work you propose.  

    Research Design and Methods 

 The research design and methods section is the place where you cover all the 
 materials and methods needed to complete the proposed research. You must leave 
adequate time and suffi cient space to complete this section. Many applicants run out 
of time and page requirements before the last aim is addressed in suffi cient detail, 
signifi cantly weakening the application. As concordant with the aims, it is impor-
tant to not be overly ambitious. In the opening paragraph of this section it is also 
an important time to re-set “the scene” by refreshing the reviewer regarding the 
overview for each specifi c aim. Sometimes, this is the section where reviewers 
began to read the application. As you progress, use one paragraph to overview each 
specifi c aim, and then to deal with each sub-aim separately. 

 You should be clear, concise, yet detailed regarding how you will collect, ana-
lyze, and interpret your data. As stated in the specifi c aims section, it is important 
to keep your words and sentence structure simple because if the reviewer is con-
fused and has to read your proposal numerous times, your score will suffer. At the 
end of this section give your projected sequence or timetable. This is the section to 
convince reviewers that have the skills, knowledge and resources to carry out the 
work, and that you have considered potential problems and pitfalls and considered 
a course of action if your planned methods fail. Finally, by providing data interpre-
tation and conclusions based on the expected outcome, or on the chance that you 
fi nd different results than expected (a not uncommon occurrence), it demonstrates 
that you are a thoughtful scientist. 

 One should provide a bit of detail for each section, such as addressing the design 
chosen for your research project and why you chose that design rather than another, 
what population you will study and why, what will be measured and how it will be 
operationalized in the clinical setting, and on what schedule. Develop each specifi c 
aim as a numerical entity by reiterating it, and using  BOLDING  or a text box in 
order to highlight it. Briefl y re-state the rationale for your each aim. 

     Patient Enrollment 

 Convey to the reviewer your appreciation for the challenges in recruiting. Discuss 
from where the population will be recruited, what the population characteristics 
(gender, age, inclusion and exclusion criteria) will be, how subjects will be selected 
and the specifi c plans for contact and collaboration with clinicians that may assist 
you. Provide any previous experience you have with recruitment and include some 
numbers of subjects, and response rates, from previous or preliminary studies. 
Provide strategies to remedy any slow recruitment that might occur. Be cognizant of 
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NIH policies in order to properly address issues related to gender, minority, and 
children inclusions and exclusions. 

 One also needs to consider and address the participant burden for the proposed 
research in order to properly weigh the benefi ts and costs of participation. In many 
studies, research subjects should be paid but not to the degree that it is coercive 
(See Chap.   8    ). 

    Methods 

 One should provide details for the most important techniques to be used in your research. 
For commercially available methods you need only to briefl y describe or reference the 
technique; but, for methods crucial to your aims, you need to provide adequate descrip-
tion such as referencing published work, abstracts, or preliminary studies. 

 In the author’s experience, there are some common weaknesses of the Methods 
Section. These weaknesses include such issues as an illogical sequence of study 
aims and experiments; that subsequent aims (also known as contingent aims) rely 
on previous aims such that if the previous aims fail, the study comes to a halt. 
Inadequate description of contingency plans, or poorly conceived plans, or plans 
that are not feasible signifi cantly weaken a proposal. Other weaknesses include not 
adequately describing or constructing the control groups; and/or underestimating 
the diffi culty of the proposed research.    

    Tips for Successful Grants 

 A successful grant proposal generally “tells a story” and engages the reviewer. The 
proponent should anticipate questions that are likely to occur and present a balanced 
view for the reviewers. To be successful, you must not take things for granted, and you 
must deliver a clear, concise, and simply stated set of aims, background, preliminary 
studies, and experimental methods that has addressed threats to both internal and 
external validity. You must be able to follow directions precisely and accurately, and 
target your grant to the expected audience (i.e., your reviewer). Your timeline and 
budget must align with your aims. As stated earlier, you should obtain an independent 
review both from your mentors and collaborators, but from external reviewers if pos-
sible. And fi nally, and perhaps most importantly, remember, not every proposal gets 
FUNDED!, in fact only a minority get funded so it is prudent to submit a number of 
different proposals, understanding that you won’t get funded unless you submit 
proposals. When resubmitting proposals you should be careful to revise it based upon 
the critique and realize that reviewers are attempting to help you make your study 
better. There is no use getting mad–get funded instead! Every application must be 
above any level of embarrassment (i.e., do not submit anything that is not your best 
work). Develop a game face after submission, and be confi dent about your proposal. 
To maintain your sanity through the process, convince yourself that your grant won’t 
get funded while concurrently reminding your colleagues it is tough to get funded.  
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    Types of NIH Research Funding 

 There are a number of types of NIH research funding, but of most relevance to  clinical 
research are:

   Grant (Investigator Initiated)  
  Cooperative Agreement (NIH is a partner; assistance with substantial involvement)  
  Contract (purchaser)  
  Training Awards  
  Research career development awards  
  Mentored NIH Career Development Awards  
  K01/K08 Research/Clinical Scientist  
  K23 and K24 Patient Oriented Research  
  Mentored Research Scientist Development Award (K01)   

These awards provide support for an intensive, supervised career development 
experience, leading to research independence for early or mid-career training, 
as well as to provide for a mechanism for career change (K24). The K24 requires 
that the applicant have a substantial redirection, appropriate to the candidate’s 
current background and experience, or that the award provides for a signifi cant 
career enhancement. “Unlike a postdoctoral fellowship, the investigator must 
have demonstrated the capacity for productive work following the doctorate, and 
the institution sponsoring the investigator must treat the individual as a faculty 
member.” 

 The characteristics of the ideal candidate may vary. For example, the candidate 
may have been a past PI on an NIH research or career development award; but, if the 
proposed research is in a fundamentally new fi eld of study or there has been a sig-
nifi cant hiatus because of family or other personal obligations, they may still be a 
candidate for one of these awards. However, the candidate may not have a pending 
grant nor may they concurrently apply for any other career development award.  

    Summary 

 Remember; logically develop your aims, background, preliminary studies and 
research design and methods into a cohesive whole. Clearly delineate what will be 
studied, why it is important, how you will study it, who(m) you will study, and what 
the timeline is to complete the research. When writing, say what you’re going to say, 
then say it, and fi nally summarize what you said. Write a powerful introduction, 
particularly if you are constructing a revised application. Develop your “take-home 
messages” and reiterate them throughout your application. Finally, be tenacious: 
learn from your mistakes, pay careful attention to critiques, collaborate with smart 
people and fi nd a good mentor. And, above all, keep it simple.  
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    Manuscript Preparation 

 Many manuscripts follow after work is presented in abstract form at a major 
medical meeting. But, Fosbol has noted “while conferences allow abstracts public 
airing and media attention, we fi nd it perplexing that two-thirds of these abstracts 
will not be published within a 2-year period” [ 2 ], and only 40 % will be published 
at 5 years. Fosbol also pointed out that abstracts rejected for presentation still had 
a 1 in 4 chance of being published; and, Winnik et al. found that among abstracts 
accepted to the European Society of Cardiology the subsequent publication of a 
manuscript reached 38 % and for rejected abstracts 24 % [ 3 ]. To analyze this issue 
further, Krzyzanowska et al. [ 4 ] reported on identifying factors associated with 
time to publication. They found that of 510 randomized trials, 26 % were not 
published in full within 5 years after presentation at a meeting. Eighty-one percent 
of the studies with signifi cant results had been published but only 68 % with 
non-signifi cant results were published in this same time period. They stated 
“non-publication breaks the contract that investigators make with trial participants, 
funding agencies, and ethics boards”. 

 The quality of reporting of abstracts is another issue that has been examined. 
Krzyzanowska et al. evaluated 510 abstracts and reported defi ciencies in almost all 
[ 5 ]. For example 22 % of the abstracts failed to provide explicit identifi cation of the 
primary endpoint. The general recommendations for abstract content are shown in 
Table  19.5 .

   There are many areas of overlap between writing a grant and writing a manu-
script, but many differences as well. Irrespective of whether one is writing a grant 
or a manuscript (or anything else for that matter) it is important to remember that 
your writing is a refl ection of your thinking, and as such, it should be clear and 
concise. If you want to be taken seriously, one must become a better writer (and that 
applies to all of us). Kerpan [ 6 ] outlined fi ve steps to become a better writer as 
follows: practice, practice, practice; say it out loud; make it more concise; work on 
your headlines, and read great works. 

  Table 19.5    Suggested 
guidelines for what should 
be included in an abstract  

 Abstract guidelines 

  Reported if space permits  
 Dates of accrual 
 Description of statistical analysis 
 Whether ITT was used if an RCT 
 Patient attrition 
 Pre-specifi ed secondary and/or subgroup analyses 
  Should not be reported  
 Results of secondary analyses not pre-specifi ed 
 Results of subgroup analyses not 

pre-specifi ed 
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 The basic outline of a manuscript and a grant are the same: Title, Abstract, 
Introduction, Methods (to include patient recruitment, characteristics of the study 
population, study design etc.), and Statistical Analysis. Unlike a grant, however, 
save for preliminary study results, the actual results of the study are then presented 
followed by a focused Discussion, which should include study limitations, and 
fi nally, conclusions. Obviously budgetary data, data sharing considerations, and a 
few other issues peculiar to grants are not part of the manuscript preparation; but, 
funding sources and potential confl icts of interest (see below) should be listed. 

 In general, formulating relevant and precise questions that can be answered can 
be complex and time consuming. A structured approach for framing questions that 
uses fi ve components may help facilitate the process. This approach is commonly 
known by the acronym “PICOS or PECOS” (Table  19.6 ): the patient population or 
the disease being addressed (P), the interventions (I) or exposure (E), the compara-
tor group (C), the outcome or endpoint (O), and, the study design chosen (S). 
Providing information about the population requires a precise defi nition of a group 
of participants (often patients), such as men over the age of 65 years, their defi ning 
characteristics of interest (often disease), and possibly the setting of care considered, 
such as an acute care hospital. The interventions (exposures) under consideration in 
the manuscript need to be transparently reported. For example, if the reviewers 
answer a question regarding the association between a woman’s prenatal exposure 
to folic acid and subsequent offspring’s neural tube defects, reporting the dose, fre-
quency, and duration of folic acid used in different studies is likely to be important 
for readers to interpret the review’s results and conclusions. Other interventions 
(exposures) might include diagnostic, preventative, or therapeutic treatments, arrange-
ments of specifi c processes of care, lifestyle changes, psychosocial or educational 
interventions, or risk factors. Clearly reporting the choice of the comparator 
(control) group, and the intervention(s), such as usual care, drug, or placebo, is 
essential for readers to fully understand the reasons for one’s choice. Comparator 
groups are often very poorly described as are the reason(s) for that choice. Clearly 
reporting what the intervention or exposure is compared with is very important and 
may sometimes have implications. The outcomes of the intervention being assessed, 
such as mortality, morbidity, symptoms, or quality of life improvements, should 
be clearly specifi ed as they are required to interpret the validity and generalizability 
of the studies results.

  Table 19.6    Pneumonic 
for helping to remember 
a structured approach for 
framing questions  

 PICOS or PECOS 

 The patient population or disease 
being addressed (P) 

 The interventions (I) or exposure (E) 
 The comparator group (C) 
 The comparator group (C) 
 The study design chosen (S) 
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       Guideline Statements for Manuscript Preparation (Table  19.7 ) 

    Guideline statements for manuscripts include:

   CONSORT (Consolidated Standards of Reporting Trials)  
  STROBE (Strengthening the Reporting of Observational Studies in Epidemiology)  
  PRISMA (Preferred Reporting items for Systematic Reviews and Meta-Analyses) 

that is an extension of QUOREM (Quality of Reporting of Meta-Analyses for 
meta-analyses of RCTs)  

  MOOSE (Meta-analysis of Observational Studies in Epidemiology, for  meta- analyses 
of observational trials)  

  STREGA (Strengthening the Reporting of Genetic Association Studies -  an extension 
of STROBE)    

 A checklist has been formulated for each, and these guidelines have been 
accepted by many (most) Journals. These checklists vary somewhat from each other 
but there are many areas in common as well. 

    CONSORT [ 7 ] 

 The CONSORT 2010 Statement is a 25-item checklist and a fl ow (exclusionary 
 cascade) diagram (see Fig.  19.1 ). It provides guidance for reporting all randomized 
controlled trials, but focuses on the most common design type—individually ran-
domized, two-group, parallel trials. Other trial designs, such as cluster randomized 
trials and non-inferiority trials, require varying amounts of additional information.

      Title 

 Often, the title of the manuscript is added just before the manuscript is submitted to 
a journal for their consideration for publication, and yet it is the fi rst thing that the 
editor and reviewers will see. Therefore, the title for the manuscript should be given 
some thought. A catchy title might grab the interest of the potential reader, but it 

   Table 19.7    Examples of some guideline statements for what should be included in manuscripts   

 CONSORT  Consolidated Standards of Reporting Trials 
 STROBE  Strengthening the Reporting of Observational Studies in Epidemiology 
 PRISMA  Preferred Reporting items for Systematic Reviews and Meta-Analyses 
 MOOSE  Meta-analysis of Observational Studies in Epidemiology 
 STREGA  Strengthening the Reporting of Genetic Association Studies 
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should be accurate and refl ect what was actually addressed by the study. It is often 
surprising how frequently the two are disparate. An example of this disparity (a true 
example with some words changed to protect the author) is a manuscript entitled 
“Discrepancy of Drug X and Drug Y Between the Blood Pressure Lowering Effect 
and Effect on Endothelial Function”, and the studies conclusion which stated “in 
conclusion, our results suggest that Drug X is recommended as second-line treat-
ment despite the failure to lower blood pressure as much as Drug Y.” Finally, whereas 
the title of an oral presentation might include alliterations, these should be avoided 
in manuscript submissions (in the authors opinion Editors have little sense of 
humor).  

    Abstract 

 After the title, the Abstract is the next thing editors, reviewers, and ultimately read-
ers will see. In fact, sometimes it is the only thing about the manuscript that will be 
read. It frequently is also what will be electronically accessible. Thus, like the title, 
considerable thought should be given to its content. Most journals are now suggest-
ing and even requiring a structured abstract. This begins with the Background of the 
Study or Study Objectives depending on the specifi c journal. The Methods Section 
is usually next followed by a Results Section, and fi nally Study Conclusions. For 
most journals the word count for Abstracts ranges from 200 to 350 so one needs to 
carefully read the Instructions to Authors Section for details. Many (most) journals 
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Received and Did not
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Lost to follow-up;
Discontinued (reasons) 
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  Fig. 19.1    Flow diagram of the progress through the phases of a parallel randomized trial of two 
groups (that is, enrolment, intervention allocation, follow-up, and data analysis)       
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are now using an online submission format, so if the word count is in excess of what 
the journal allows it will automatically prevent submission. Thus, the abstract needs 
to be on the one hand concise, but on the other hand include all pertinent aspects of 
the design and results. Frequently it takes longer to write the abstract than the manu-
script which brings to mind a quote by the French philosopher and mathematician 
Blaise Pascal who is quoted as saying  “I am sorry to have wearied you with so long 
a letter but I did not have time to write you a short one”  [ 8 ].  

    Keywords 

 Often, not much thought is given to keyword selection, and yet it is these words that 
will allow for future searches to identify the appropriate studies for literature 
searches and meta-analyses. One should, in fact, give due thought to these words by 
considering what you would want to enter into your search engine to fi nd the data 
included in one’s manuscript.  

    Introduction 

 The manuscript introduction should be compared to the grant’s background and sig-
nifi cance section but briefer. It should set the stage for the aims and/or hypothesis 
for the study one is writing about, thus, again it should be relatively brief and 
focused, that is, it should not be a literature review. It should also state the aim, 
hypothesis, and/or objective of the study about which one is reporting. The main 
function of the introduction though, is to “motivate the audience to read the paper 
and care about its results” [ 9 ].  

    Methods 

 The Methods section includes discussions of the trial design (e.g. parallel, factorial, 
crossover etc.) including the allocation ratio, eligibility criteria, the settings and 
location of the study population, and intervention details (e.g. how and when admin-
istered) with enough detail to allow replication. In addition, outcome(s) should be 
completely defi ned, pre-specifi ed, and include both primary and secondary out-
comes and how and when they were assessed. A statistical section should include 
sample size calculations and any planned interim analyses and stopping guidelines, 
randomization methods, type, etc., blinding (method and who was blinded), and 
statistical methods. In addition, the analytical approach used (e.g. intention to 
treat, etc.), should be included. If subgroup analyses are performed, the numbers of 
such analyses and whether they were pre-specifi ed or  post hoc  should be mentioned. 
In addition, a discussion should be included of how patients/subjects who are lost to 
follow-up were handled.  
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    Results 

 The results section should include a participant fl ow diagram (so that the reader can 
assess the studies generalizability, and other potential biases, recruitment strategies, 
baseline data (i.e. a description of the baseline features important to the study), 
almost always this includes demographics (e.g. comparing age, sex, socioeconomic 
differences between the groups studied). This baseline table is frequently called 
“table 1” of most manuscripts. The collection of baseline data has at least four 
main purposes:

•    To characterize the patients included in the trial, i.e. to determine how successful 
randomization was  

•   To allow assessment of how well the different treatment groups are balanced,  
•   To allow for analysis per treatment group,  
•   To allow for subgroup analysis in order to assess whether treatment differences 

depend on certain patient characteristics    

 Some questions raised by baseline data analysis are; how is it measured? What 
does it mean if there is or is not statistically signifi cant differences? And, does sample 
size matter? [ 10 ] An argument that exists is over whether to use statistical testing of 
baseline differences or to rely on a subjective comparison of baseline variables. One 
side of the argument is that on the one-hand, just because there is a difference in a 
baseline variable it doesn’t mean that it infl uences the outcome(s); and, on the other 
hand, just because there is no statistical difference doesn’t mean that there is not a 
baseline variable that does infl uence outcome. Furthermore, if the sample size is 
large, small differences that may not be clinically meaningful might show very sig-
nifi cant statistical differences. Irrespective, it is generally agreed that statistically sig-
nifi cant differences or lack thereof should not be completely relied upon, statistically 
signifi cant differences are less of an issue for sample sizes over 500, and that baseline 
variables give some measure to assess comparability between the groups under study. 
Table  19.8  is an example of the “table 1” baseline comparability’s. This table can also 
be used to illustrate the issue of “column vs. row’ percentages and how data is dis-
played. If one is interested in emphasizing how a variable is distributed over out-
comes (i.e. the percentages of each outcome per group) the data would be portrayed 
one way. On the other hand, if the interest is in emphasizing the percentages of groups 
that have the outcome, the data would be portrayed in another way (See Table  19.9 ).

    In addition, the numbers analyzed for each group, estimated effect size and its 
precision (both absolute and relative effect size) any ancillary analyses, and any 
safety or analyses for harm.  

    Discussion 

 The discussion section should begin with a summary of results presented in 
general terms. Next should be a focused discussion of the study results in terms of 
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what is already in the literature, to include similarities and differences. If mecha-
nisms have been explored or suggested by the study, a discussion should include 
that as well. 

 Every study has limitations, so a frank discussion of those limitations, and the 
degree to which they might alter the results is appropriate. This should include any 
sources of potential bias and the generalizability of the study results. 

   Table 19.8    An    example of a baseline variables table   

 Table 1. Pre-hypertension analysis cohort, REGARDS, N = 24,393 

 Baseline characteristics by different classes of hypertension, 

 All 
parti-
cipants 
(N = 24,
39 3) 

 Normoten-
sive 
(n = 4,585), 
(18.8 %) 

 Pre- Hypertension 
(n = 6,066) 

 Hypertension 
(n = 13,742} 

 P value 

 Pre- HTN1  
(n = 4,000) 
(16.4 %) 

 Pre- HTN2  
(n = 2,066) 
(8.5 %) 

 Not 
Controlled 
(n = 5,364) 
(22.0 %) 

 Controlled 
(n = 8,378), 
(34.4 %) 

  Demographics  
 Age, years, 

 M ( SD ) 
 64.1 (9.3)  61.0 (9.1)  62.8 (9.3)  64.6 (9.3)  65.9 (9.3)  65.2 (9.0)  <.001 

 Gender, (%)  <.001 
  Male  41.6  37.0  47.7  50.3  45.5  36.5 
  Female  58.4  63.0  52.3  49.7  54.5  63.5 

 Race, (%)  <.001 
  Black  42.4  24.9  31.6  37.3  54.3  50.7 
  White  57.6  75.1  68.4  62.7  45.7  49.3 

 Region, (%)  <.001 
  Belt  34.7  33.8  32.9  34.6  36.1  35.2 
  Buckle  20.9  21.9  20.8  17.8  18.9  22.5 
  Nonbelt  44.4  44.3  46.3  47.7  44.9  42.4 

 Education, (%)  <.001 
  Less than 

high 
school 

 11.6  6.2  8.1  11.3  16.2  13.3 

  High 
school 
only 

 25.4  21.6  23.1  25.3  28.1  26.9 

  Some 
college or 
College 
graduate 

 63.1  72.3  68.8  63.5  55.8  59.8 

 Annual 
income, 
(%) 

 <.001 

  $20K or 
less 

 19.6  12.3  15.1  17.3  25.8  22.0 

  All other  80.4  37.2  85.0  82.7  74.2  78.0 
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 Finally the manuscript should end with a focused conclusion that is again  refl ective 
of the study title and aims, followed by any acknowledgements, potential confl icts of 
interest, and funding sources. Welch [ 9 ,  11 ] have published outlines of what should 
go into the discussion and in what order and this is reproduced in Table  19.10 .

   In a humorous but appropriate list of rules developed by Frank l. Vasco entitled 
“How to Write Good” [ 12 ], there are 23 tips provided as follows: avoid alliterations 
 always ; prepositions are not words to end a sentence with; avoid clichés like the 
plague (they are old hat); employ the vernacular; eschew ampersands & abbrevia-
tions etc.; parenthetical remarks (however relevant) are unnecessary; it is wrong to 
ever split an infi nitive; contractions aren’t necessary; foreign words and phrases are 
not  apropos ; one should never generalize; eliminate quotations (as Ralph Waldo 
Emerson once said, “I hate quotations. Tell me what you know”); comparisons are 
as bad as clichés; don’t be redundant, don’t use more words than necessary, it’s 
highly superfl uous; profanity sucks; be more or less specifi c; understatement is 
always best; exaggeration is a billion times worse than understatement; one word 
sentences…: eliminate analogies in writing, they are like feathers on a snake; the 

   Table 19.9    Compares the presentation of column vs. row data   

 Column vs. Row % comparing BP classes 

 No HTN  preHTN  Controlled HTN  Uncontrolled HTN  Total n 

 Black  26.2  36.2  50.7  54.3  10331 
 White  73.8  63.8  49.3  45.7  14057 
 Male  40.0  49.8  36.5  45.5  14251 
 Female  60.0  50.2  64.5  54.5  10137 
 Total n (%)  6791 (100 %)  3860 (100 %)  8378 (100 %)  5359 (100 %) 

 No HTN  preHTN  Controlled HTN  Uncontrolled HTN  Total n (%) 

 Black  17.2  13.5  41.1  28.2  10331 (100 %) 
 White  35.7  17.5  29.4  17.4  14057 (100 %) 
 Male  26.8  19.0  30.2  24.1  14251 (100 %) 
 Female  28.6  13.6  37.3  20.5  10137 (100 %) 
 Total n  6791  3860  8378  5359 

  The top table addresses the % of subjects with No Hypertension (HTN), prehypertension (preHTN) 
etc who are Black, White, Female, and Male; while the bottom table addresses what % of Blacks 
have No HTN, preHTN etc  

   Table 19.10    An outline of how to construct the discussion section of a manuscript   

 Paragraph #  What the paragraph should include 

 1  Describe the major fi ndings and answer the research question 
 2  Interpret and explain the major fi ndings 
 3–5  Compare the results with the literature and highlight literature that confl icts with 

the fi ndings 
 6  Discuss the study limitations and its generalizability 
 7  Discuss unanswered questions and propose further research 
 8  Make conclusions supported by the fi ndings and consistent with the manuscripts title 
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passive voice is to be avoided; go around the barn at noon and avoid colloquialisms; 
even if a mixed metaphor sings, it should be derailed; who reads rhetorical ques-
tions. Added to this is the proper choice of words to realistically refl ect what you as 
the author is really saying.  Accad  [ 13 ] makes this point by suggesting that authors 
have embraced the activity of fortunetelling with the increasing use of the word 
“predicts” in medical writing which he sites a hyperbole. His point is that the use of 
the much mis-understood P value (to provide a sense of objectivity) refers to a 
group effect and not an individual patient. As an example of this latter concept he 
points out that when one “…is told that cardiac troponin predicts death because its 
elevation in the postsurgical setting is more prevalent among those who later died” 
when the actual results were when elevated values were identifi ed 21 % died vs. 6 % 
who lived (and this ignores the fact that in this particular group, elevated levels 
could foretell a fatal outcome in only 32 %).   

    STROBE [ 14 ] 

 The STROBE statement defi nes the scope of the recommendations that cover three 
main study designs: cohort, case-control, and cross-sectional studies. A checklist of 
22 items has been developed that relate like the CONSORT statement to the title, 
abstract, introduction, methods, results, and discussion Section. 18 items are com-
mon to all three observational study designs, and four are specifi c for cohort, case- 
control, or cross-sectional studies. 

 Otherwise, the same or similar principles hold for STROBE and CONSORT. 
Some differences between STROBE and CONSORT relate to the study designs. For 
example, for cohort studies the matching criteria and number of exposed and unex-
posed subjects should be mentioned, while for a case-control study the matching 
criteria and the number of controls per case should be emphasized. In terms of sta-
tistical analyses those used for control of confounding should be described as well 
as how missing data was addressed (see Chap.   3    ) along with a description of any 
sensitivity analyses.  

    PRISMA [ 15 ] 

 The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of 
RCTs again has many common features of the other guideline statements and con-
sists of a 27-item checklist and a four-phase fl ow diagram. Some differences 
between the guidelines include the mention in the title that identifi es the report as a 
systematic review, meta-analysis, or both; and a mention of the synthesis and search 
methods in both the abstract and methods sections. In the methods section one 
should indicate if a review protocol exists, if and where it can be accessed (e.g., web 
address), and, if available, provide registration information including registration 
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numbers. Eligibility in the context of meta-analyses specifi es the characteristics of 
the studies included in the analysis (e.g., length of follow-up) and report character-
istics (e.g., years considered, language, publication status) used as criteria for eligi-
bility, giving rationale. Information sources should be described (e.g., databases 
with dates of coverage, contact with study authors to identify additional studies) the 
date last searched, and one should present a full electronic search strategy for at 
least one database, including any limits used, such that it could be repeated. State 
the process for selecting studies (i.e., screening, eligibility, included in systematic 
review, and, if applicable, included in the meta-analysis). More specifi cally, the 
method of data extraction from reports (e.g., piloted forms, independently, in dupli-
cate) and any processes for obtaining and confi rming data from investigators should 
be mentioned. The risk of bias in the individual studies that make up the meta- 
analysis and the methods used for assessing those risks (including specifi cation of 
whether this was done at the study beginning, or outcome level), and how this infor-
mation was to be used in any data synthesis. One should present the numbers of 
studies screened, assessed for eligibility, and included in the review, with reasons 
for exclusions at each stage, ideally with a fl ow diagram (Fig.  19.2 ). The results 
section should include for each study, the characteristics for which data were 
extracted (e.g., study size, follow-up period) and the results of individual studies. 
For all outcomes considered (benefi ts or harms), there should be a presentation for 
each study that includes: (a) simple summary data for each intervention group and 
(b) effect estimates and confi dence intervals, ideally with a forest plot, including 
confi dence intervals and measures of consistency.

   For meta-analyses of observational trials the Meta-analysis of Observational 
Studies in Epidemiology (MOOSE) guidelines are suggested [ 16 ].  
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  Fig. 19.2    The fl ow of identifying and choosing studies to be included in the meta-analysis       
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    STREGA [ 17 ] 

 The STREGA statement for reporting genetic association studies builds on the 
STROBE guidelines and provides additions to 12 of the 22 items on the STROBE 
checklist. The components of the title, abstract, study design and population are 
similar to STROBE. But, things unique to genetic studies (e.g. whether the Hardy- 
Weinberg equilibrium was considered, methods used for genotypes or haplotypes, 
reporting of the numbers of individuals in whom genotyping was attempted and the 
numbers in whom it was successful) are obviously necessary for this specialized 
fi eld. The interested reader can refer to the guideline document for more details and 
Chap.   11    .   

    Confl icts of Interest, Authorship, Coercive Citation, 
and Disclosures in Industry-Related Associations 

 The International Committee of Medical Journal Editors (ICMJE) have published 
authorship criteria and to summarize “authorship credit should be based upon 
(1) substantial contributions to the conception and design, acquisition of data, or 
analysis and interpretation of data; (2) drafting the article or revising it critically 
for important intellectual content; and (3) fi nal approval of the version to be 
published”. Authors should meet all three criteria. Regarding authorship, there has 
been a war on so called “ghost authorship”. According to one report, in 2008, hon-
orary authors were attached to 25 % of research reports, 15 % of review articles, and 
11 % or Editorials published in six major journals; [ 18 ] while in another report 
Mowatt et al. 39 % had evidence of honorary authorship [ 19 ] Greenland and 
Fontanarosa note that many times honorary authorship amounts to “coercive author-
ship” in which a senior person insists on being listed as an author even though they 
did not contribute substantially to the work; while in other cases the senior author is 
added in the hopes of increasing the chance of a manuscript being accepted [ 20 ]. 
Ghostwriting is defi ned as a person who writes books, articles, stories, reports, or 
other texts that are offi cially credited to another person-the opposite of honorary 
authorship. However, in the medical arena, what really happens is a ghostwriter 
submits their work to a medical investigator who then has the chance to edit, delete 
or add to the text as they see fi t. None-the- less ghostwriting is highly discouraged in 
the scientifi c literature. Honorary and ghost authorship are frequently lumped 
together as “inappropriate authorship”. 

 Coercive citation is the practice in which an editor “forces” an author to add cit-
ations to an article (usually from that Editor’s Journal) before they will agree to 
publish it. This is done to infl ate the journal’s impact factor (IF). Wilhite and Fong 
noted that despite the IFs shortcomings they continue to be a means by which the 
quality of science is weighed [ 21 ]. The Impact Factor of a journal was devised as a 
way to rank scientifi c journals, and is a measure of how often, on average, papers 
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published in a journal are cited in other academic publications. IFs are used in some 
institutions as a promotional tool, but more recently IFs have become a source of 
increasing controversy, and Franck has criticized the practice where “success in sci-
ence is rewarded with attention” [ 22 ]. 

 The Institute of Medicine defi nes confl ict of interest (COI) as “ a set of circum-
stances that creates a risk that professional judgment or actions regarding a pri-
mary interest will be unduly infl uenced by a secondary interest ”. The term COI has 
taken on an almost presumption of guilt, partially the result of a few highly publi-
cized incidents in which there was an attempt to manipulate clinical research by 
blocking publications, withholding data, and falsely reporting results of a 12-month 
study as a 6 month trial. These events led in 2004 to the ICMJE’s call for mandatory 
clinical trial registration [ 23 ] –(this reference also serves as an excellent in-depth 
review of the subject). 

 There is a good deal of variation between journals in what information they 
require before accepting manuscripts for publication. One journal requires a 17-page 
questionnaire to be fi lled out. This has resulted in attempts to develop a uniform 
disclosure form, but with little success. In this regard, the authorship issue involved 
with industry-supported studies highlights the confl icts between academia and 
Industry. The general view is such funded studies particularly those with industry 
authors would be more biased and of lesser quality that studies funded through other 
sources. The increasing number of clinical trials that have full or partial industry 
funding has been increasing, and industry employees are increasingly appearing as 
coauthors of clinical trials that adds fuel to this belief, and yet there is little proof to 
support that belief. Booth et al. evaluated reports of RCTs evaluating systemic ther-
apy of breast, colorectal and non-small cell lung cancer [ 24 ] and found that for- 
profi t sponsorship and statistically signifi cant results are independently associated 
with the endorsement of the experimental arm, even though authors who perform 
key roles in the conception, design, analysis, and interpretation of oncology trials 
are likely to have fi nancial ties to industry [ 25 ]. Kaiser et al. published a non- industry 
supported study entitled “Is Funding Source Related to Study Design Quality in 
Obesity or Nutrition Supplement Randomized Control Trials (RCTs)?” The purpose 
of that study was to examine systematic quality differences amongst obesity and 
nutrition RCTs based on funding status in top tier journals. Thirty-eight obesity or 
nutrition intervention RCT articles were selected from high-profi le journals (Lancet, 
Annals of Internal Medicine, JAMA, British Medical Journal) published between 
2000 and 2007. Paired papers were selected from the same journal published in the 
same year, one not reporting industry funding and the other reporting industry fund-
ing. Papers had the following identifying information redacted: journal, title, 
authors, funding source and institution(s). Three raters independently and blindly 
rated each paper according to the Chalmers Method [ 26 ]. Total quality scores were 
calculated. The Wilcoxon signed ranks test and paired- samples t-test were used to 
compare Chalmer’s Index score between industry- funded versus non-industry 
funded studies. Inter-rater reliability using an intraclass correlation coeffi cient = 0.82 
(95 % C.I. = .80 − .84). Mean quality score for industry- funded studies = 13.7, 
SD = 3.01; for non-industry funded studies mean score = 13.2, SD = 4.09. The 
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Wilcoxon Signed Ranks test statistic,  Z  = −.523,  p  = .601 (two-tailed) indicated no 
categorical difference in study quality. Paired-samples t-test also indicated no sig-
nifi cant mean difference in total quality scores between funding categories, 
 t (18) = .587,  p  = .564 (two-tailed). They concluded that recently published RCTs in 
nutrition and obesity that appear in top-tier journals seem to be equivalent in quality 
of design, regardless of funding source (Table  19.11 ).

   In terms of confl ict of interest, attention has been focused on whether fi nancial 
ties to one drug company are associated with favorable results or conclusions. These 
ties have been questioned both as it relates to authors but also to journals. This has 
led the Cochrane Collaboration to put out a statement of its current policy that states 
“the sponsorship of a Cochrane review by any commercial source or sources…is 
prohibited” [ 28 ]. However, this area has been dominated by perceptions and not 
necessarily fact. Yank et al. [ 29 ] attempted to study fi nancial ties by evaluating 124 
meta-analyses that evaluated the effects of antihypertensive drugs in adults that 
compared any comparator on clinical endpoints. They concluded that “meta- 
analyses on antihypertensive drugs and with fi nancial ties to one drug company are 
not associated with favorable results but are associated with favorable conclusions” 
(a so-called “spin” on the interpretation of the results) and that this discordance was 
not apparent in studies supported by non-profi t groups. In an effort to address the 
fi nancial confl ict of interest and the impact that it has on the results of trials, Aneja 
et al. studied this question with respect to major cardiovascular trials. In their analy-
sis they found that “self declared fi nancial confl ict of interest and source of funding 
do not seem to impact outcomes…” [ 30 ] and that a sub-analysis based upon the type 
of funding, or the selection of a surrogate over a clinical endpoint also did not seem 
to increase the likelihood of favorable trial results. In an accompanying editorial by 
Califf [ 30 ] some limitations of Aneja’s results was pointed out (e.g. three major 
journals were selected and how representative these journals were compared to all 
the literature was pointed out, along with the fact that self-reported fi nancial confl ict 
of interest could be inaccurate). 

 One major concern about confl icts of interest revolves around the development of 
clinical practice guidelines, since these guidelines are being increasingly used in 

   Table 19.11    Descriptive and test statistics for total and subscale scores for each funding category   

 Industry funded 
studies (M, SD, 
n = 19) 

 Non-industry funded 
studies (M, SD, n = 19) 

 Wilcoxon signed 
ranks test (two-tailed) 

 Overall total quality 
score 

 84.5, 7.04  79.4, 13.00  p = .334 

 Study protocol score  50.4, 6.25  46.3, 11.13  p = .331 
 Statistical analysis 

score 
 25.2, 2.68  24.5, 2.87  p = .450 

 Presentation of results 
score 

 8.9, 2.03  8.6, 2.18  p = .553 

  From   : Kaiser et al. [ 27 ]  
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malpractice cases and for forming the basis of many pay-for-performance  initiatives. 
For example a study published in 2011 reported that more than half of the partici-
pants involved in writing recent American College of Cardiology/American Heart 
Association clinical practice guidelines reported some fi nancial confl ict of interest 
[ 31 ]. Rochan et al. developed a fi nancial confl ict of interest checklist for clinical 
research studies and invited comments, but there is still wide variation in require-
ments [ 32 ]. Controversy even exists about the term “confl ict” which Weber points 
out “… almost implies that in order to receive the funding to do the research, the 
physician had to do something that had an adversarial or negative impact on the 
patients he was caring for. ” [ 33 ]  Indeed, Stossel states in that same article that 
“medicine is incomparably better than when I started out practicing about 40 years 
ago,” it is not because doctors are now somehow more ethical or have been more 
heavily regulated — rather, it is because of the products that they have developed 
and gotten through their collaborations with industry.  

 Another trend that is occurring with regard to manuscript publication is the 
increased frequency of open-access journals. Part of the justifi cation for open 
access journals is the fl awed peer-review process. Horton (Richard Horton, FRCP 
FMedSci, editor-in-chief of The Lancet) has opined, “ … we know that the system of 
peer review is biased, unjust, unaccountable, incomplete, easily fi xed, often insult-
ing, usually ignorant, occasionally foolish, and frequently wrong. ” We also know 
that the agreement between reviewers is often low, reviewers miss many mistakes, 
and reviewers can be biased against certain institutions and work that disagrees 
with what they have published. Peer review has resulted in the rejection of at least 
two papers that ultimately led to Nobel prizes; and that part of the reason for this is 
that there is little reward for the time spent in peer review, either monetarily of 
towards promotion. 

 Open access journals are scholarly journals that are available online to the reader 
“without fi nancial, legal, or technical barriers other than those inseparable from 
gaining access to the internet itself” [ 34 ,  35 ]. Open access got its start about a dec-
ade ago and quickly won widespread acclaim with the advent of well-regarded, 
peer-reviewed journals like those published by the Public Library of Science, known 
as PLoS. Such articles were listed in databases like  PubMed , which is maintained 
by the National Library of Medicine, and selected for their quality. 

 Some open access journals are subsidized, and some require payment on behalf 
of the author. Subsidized journals are fi nanced by an academic institution, learned 
society or a government information center; those requiring payment are typically 
fi nanced by money made available to researchers for the purpose from a public or 
private funding agency, as part of a research grant. There have also been several 
modifi cations of open-access journals that have considerably different natures: 
hybrid open-access journals and delayed open-access journals. 

 Open-access journals may be considered as:

•    Journals entirely open access  
•   Journals with research articles open access (hybrid open-access journals)  
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•   Journals with some research articles open access (hybrid open-access journals)  
•   Journals with some articles open access and the other delayed access  
•   Journals with delayed open access (delayed open-access journals)
•    Journals permitting self-archiving of articles       

 Advantages and disadvantages of open access journals are the subject of much 
discussion amongst scholars and publishers. A few obvious advantages of open 
access journals include the free access to scientifi c papers regardless of affi liation 
with a subscribing library, lower costs for research in academia and industry, in 
addition to improved access for the general public and higher citation rates for the 
author. The argument for open access is that peer review has many problems by 
itself, and it has become increasingly diffi cult to fi nd qualifi ed peer reviewers 
willing to spend uncompensated time for that task. For open access journals, it is 
expected that the reader will act as the peer reviewer, but some researchers are 
now raising the alarm about what they see as the proliferation of online journals 
that will print seemingly anything for a fee. They warn that non- experts doing 
online research will have trouble distinguishing credible research from junk. 
In fact Jeffrey Beall, a librarian at Auraria Library, University of Colorado 
Denver, in Denver, Colorado, has been posting frequently updated lists of 
potential predatory open access journals [ 36 ] and Nissan [ 37 ] cites an example 
reported in the New Science Magazine of a hoax designed to test the legitimacy 
of a certain publisher. 

 Another consideration in manuscript preparation is the expense of publishing, 
thus, manuscripts must be as brief as possible. And many journals are moving 
toward “open access” publications where the cost of the publication is borne by the 
author. To emphasize the brevity that manuscripts must strive for, a rather humorous 
exchange has been published in; 

 THE JOURNAL OF APPLIED BEHAVIOR ANALYSIS 1974, 7, 497 NUMBER 3, 
entitled THE UNSUCCESSFUL SELF-TREATMENT OF A CASE OF “WRITER’S 
BLOCK” by DENNIS UPPER, VETERANS ADMINISTRATION HOSPITAL, 
BROCKTON, MASSACHUSETTS

   Abstract, None  
  Introduction, none  
  Methods and Results, None  
  Discussion, Blank  
  References, 0  
  Portions of this paper were not presented at the 81st Annual American Psychological 

Association Convention, Montreal, Canada, August 30, 1973. Reprints may be 
obtained from Dennis Upper, Behavior Therapy Unit, Veterans Administration 
Hospital, Brockton, Massachusetts 02401.  

  Received 25 October 1973. (Published without revision.)  
  COMMENTS BY REVIEWER A  
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   I have studied this manuscript very carefully with lemon juice and X-rays and have 
not detected a single fl aw in either design or writing style. I suggest it be pub-
lished without revision. Clearly it is the most concise manuscript I have ever 
seen-yet it contains suffi cient detail to allow other investigators to replicate 
Dr. Upper’s failure. In comparison with the other manuscripts I get from you 
containing all that complicated detail, this one was a pleasure to examine.   

   Surely we can fi nd a place for this paper in the Journal-perhaps on the edge of a 
blank page.     

  A follow-up manuscript was published some years later in the same Journal 
(JOURNAL OF APPLIED BEHAVIOR ANALYSIS 2007, 40, 773 NUMBER 4 
(WINTER 2007)) entitled A MULTISITE CROSS-CULTURAL REPLICATION 
OF UPPER’S (1974) UNSUCCESSFUL SELF-TREATMENT OF WRITER’S 
BLOCK by ROBERT DIDDEN RADBOUD UNIVERSITY NIJMEGEN JEFF 
SIGAFOOS UNIVERSITY OF TASMANIA MARK F. O’REILLY UNIVERSITY 
OF TEXAS AT AUSTINGIULIO E. LANCIONI UNIVERSITY OF BARI PETER 
STURMEY QUEENS COLLEGE, CITY UNIVERSITY OF NEW YORK    

  ABSTRACT: None   
   INTRODUCTION: None   
   METHODS and RESULTS: None   
   DISCUSSION: None   
   Reviewers Comments   
   The Consistency Between the Findings of This Multisite Cross-cultural Replication 

by Didden, Sigafoos, O’Reilly, Lancioni, and Sturmey and those reported in 
Upper’s classic paper on writer’s block (Upper, 1974) are remarkable and serve 
to substantially extend the generality of Upper’s fi ndings.   

   The consistency between the editorial opinion of the action editor, Linda LeBlanc, 
whose reviewer comments are enclosed verbatim parenthetically here    
   (     ) and this paper is equally remarkable.   

   This kind of symmetry is rare in any science and particularly rare in behavior ana-
lysis, and because of it I was compelled to accept the Didden et al. paper without 
revision. I did not change one word, and this is a fi rst in my tenure as editor. 
Another virtue of the paper is its awe-inspiring brevity. It is my hope that it will 
one day serve as the model for Brief Reports in JABA.   

   Preparation of this article was supported by a grant of $2.50 from the fi rst author’s 
personal funds. We hope to submit a version of this paper at the next international 
conference in St. Tropez. Received July 2, 2007 Final acceptance July 5, 2007.         
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    Abstract     The news media are an increasingly important source of information about 
new medical treatments. The media can be persuasive, pervasive, and can infl uence 
health care beliefs and behaviors. This chapter briefl y addresses the maturation process 
of medical controversy, discusses some of the reasons for the “tension” that develops 
between scientists and the media, and hopefully allows the reader when they are asked 
to discuss their research fi ndings, to develop some strategies for dealing with the media.  

  Keywords     Media in clinical research   •   Medical controversies   •   Embargo rule   • 
  Academic health center and the media  

    The media (whether we like it or not) is playing an increasing role in helping or con-
founding the transmission of knowledge to patients. The news media are an increas-
ingly important source of information about new medical treatments. The media can 
be persuasive, pervasive, and can infl uence health care beliefs and behaviors [ 1 ]. 
Caspermeyer et al. investigated nine large newspapers to determine how often the 
coverage of neurological illness contained errors and stigmatizing language [ 2 ]. 
They determined that medical errors occurred in 20 % and stigmatizing language in 
21 % of the articles evaluated. In another report, seven stories regarding three preven-
tative treatments (cholesterol, osteoporosis, and aspirin) were analyzed [ 3 ]. Of those 
media reports, 40 % did not report benefi ts quantitatively; of those that did, 83 % 
reported relative (not absolute) benefi ts only, while 98 % reported potential harm. 

    Chapter 20   
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    The Natural History of Medical Controversies (Table  20.1 ) 

    In 1997 Weber reviewed the “natural history” of reports on medical controversies 
(approximately a 10 year evolution) which I believe are instructional [ 4 ]. The fi rst 
phase in the natural history of media reports about medical innovations, he entitled 
the Genesis Phase. During the Genesis Phase new information is identifi ed. The 
next phase in the natural history of media reporting is the Development Phase, 
where questions of safety and/or effi cacy about the innovation arise; print and 
broadcast publicize the debate; and, complex issues tend to be oversimplifi ed and/
or sensationalized. This is followed by the Maturation Phase where more data and 
studies become available, but public interest by this time tends to be waning and 
media coverage is less intense. Finally, there is the Resolution Phase where object-
ive re-evaluations are published, and a more fair-balance of the pros and cons of the 
innovation are presented (Table  20.1 ). Weber presents two examples of this natural 
evolution process: the silicone gel breast implant; and, the calcium channel blocker 
(CCB) controversies, the latter of which is discussed below. 

 The genesis of the CCB controversy began in 1995 when Psaty et al. presented a 
Case Control Study from a single center suggesting that short-acting nifedipine 
could harm patients treated for hypertension (specifi cally they reported an increased 
risk of myocardial infarction) [ 5 ]. The RR for harm was reported as 1.6. The 
Development Phase was evident after the American heart Association published a 
press release that was hyped by the media. Many who were treating patients with 
hypertension at that time will recall being inundated with telephone calls from con-
cerned patients. Examples of the news reports are shown in Fig.  20.1 .

   The CCB controversy that arose was followed by a meta-analysis (see Chap.   10    ) 
of 16 studies also suggesting the same harm [ 6 ]. Subsequently, all CCBs were said 
to be harmful and furthermore were additionally said to be associated with cancer 
and GI bleeding [ 5 – 7 ]. During the Maturation Phase of this controversy, the FDA 
and NIH reviewed the CCB data and gave them a clean bill of health (with the 
exception of short-acting CCBs). Reanalysis of the data began to show the fl aws in 
the methodology of studies impugning the CCBs. The methodological fl aws 
included selection bias and prescription bias, that is, sicker patients were more 
likely to be given CCBs. In the Resolution Phase (8–10 years after the controversy 
began), the CCB controversy was “put to rest” most recently by ALLHAT [ 8 ]. 
It should be noted that during this process another issue surfaced relative to the 
Multicenter Isradipine Diuretic Atherosclerosis Study (MIDAS), a large multi- 
center study that compared the effects of isradipine (a short-acting CCB) compared 

    Table 20.1    The 10 year “natural history” of medical controversies   

 Genesis phase  New information is identifi ed 
 Development phase  Questions of safety and/or effi cacy arise 
 Maturation phase  More data and studies become available; interest by public and media 

wanes 
 Resolution phase  Objective re-evaluations are published 
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to the diuretic hydrochlorothiazide on the course of carotid artery disease in 
hypertensive patients [ 9 ]. The investigators found that the progression of carotid 
atherosclerosis did not differ between the two treatment groups, but that there was 
an increased incidence of vascular events in patients treated with the CCB. A side 
issue in this study was the withdrawal of some of the investigators from the manu-
script preparation due to what they perceived as “undue infl uence” exerted by the 
sponsor of the study (See Chap.   19     and confl ict of interest)   . Needless to say, this 
resulted in some interesting media reporting such as a headline that said “a high-
tension drug study has been reported”.  

    The “Tension” Between Scientists and the Media 

 Why the media publicized the CCB controversy and deemed it newsworthy while 
another controversy is not so publicized seems to be a mystery to most readers and 
listeners. In great part the publicizing of such studies depends upon what the media 
editors think will have “headline potential”. As Semir noted, “…news of killer bacteria, 
exterminating viruses, and miraculous therapies tend to have greater appeal because 
such stories compete with murders, rapes, ecologic catastrophes, and declarations 
from famous people…” [ 10 ]. In fact, this author had a personal experience follow-
ing publication of 13 subjects who underwent a roll-a-coaster ride [ 11 ]. The heart 
rate response (by ambulatory ECG monitoring) was quite impressive; but, let’s face 

  Fig. 20.1    Two examples of media reports on the CCB controversy       
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it, 13 healthy subjects with no adverse outcomes? Yet this became a story for 
national media attention, probably because there had been a few recent deaths on 
similar rides throughout the country. Marilyn Chase reported in the Wall Street 
Journal ways of putting hyped study results under the microscope [ 12 ]. Every week, 
she noted, medical science makes headlines with a promising new study or “cure”, 
and it is “often hard to tell ephemeral fi ndings from epochal breakthroughs- 
especially when distilled into a few paragraphs or sound bites spiced with hype” 
[ 12 ]. Interestingly, she cites a number of questions that need to be addressed in 
media reports, questions that should sound familiar from reading chapters in this 
book, regarding clinical trial methodology. Some of the questions Chase cited were: 
Was the study large enough to make it signifi cant? Was the study fair i.e. were the 
two groups equally matched? Who paid for the study? Who was the control group? 
Were volunteers randomly assigned? Was there appropriate blinding? (Table  20.2 )

   Deary et al. report their media experience with a study that had been reported in 
Lancet [ 13 ]. The Lancet report concluded that women with more submissiveness 
were less likely to have myocardial infarction compared to those women who were 
less submissive. The Lancet publication was under embargo (a topic to be discussed 
shortly); however, a newspaper ran the story prematurely under the headline “put 
down that rolling pin, darling, it’s bad for your heart”. Other headlines included “do 
as you’re told girls…and live to be old”, “stay home and you’ll live longer”, “do what 
hubby says and you will live longer”, and “meekness is good for a women’s heart…” 
The authors further note that one phone interview included questions like: “So these 
feminists are all barking up the wrong tree?” and, “   Should women be getting back to 
the kitchen sink?” Of course, these questions did not accurately represent what the 
study in fact showed, and I recommend reading Deary’s editorial, as it should be 
instructive to all researchers interested in communicating their studies results.  

    The Importance of the Media in Providing Health Information 

 The importance of the media in providing the public with health information should 
not be underestimated. Timothy Johnson (in the 108th Shattuck Lecture) noted a 
survey in which 75 % of the respondents said they pay either a great deal or moder-
ate amount of attention to the medical and health news reported by the media; and, 
58 % said that they have changed their behavior or have taken some type of action 
based upon what was reported (read, seen, or heard) [ 14 ]. Thus, the role of the 

  Table 20.2    Questions cited 
by one science media reporter  

 Was the study large enough 
 Was the study fair 
 Who paid for the study 
 Who was the control group 
 Were volunteers randomly assigned 
 Was there appropriate blinding 
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 clinical researcher in providing news to the media is important. Some basic tenants 
for the researcher to follow are: be certain you are the best person to provide the 
media with the necessary information; do not digress – start with your main conclu-
sion fi rst and then do not wander; consider the 2–3 points that are important about 
one’s study, and keep returning to those points; do not become defensive or argu-
mentative; and, be concise – particularly with television interviews. As an example 
of the above let us assume that you have hypothetically just published a study on the 
benefi ts of a new drug and the interview proceeds with a question such as “what 
were your primary fi ndings?” Having briefl y discussed the outcomes with great 
pride, the reporter than asks “but doctor weren’t there three deaths in your study 
and do you really think it was ethical to perform such a trial?” The response by most 
of the uninitiated would go something like this- “yes there were three deaths, but in 
this population we expected there to be deaths, and blah blah blah”. In general it is 
best not to repeat the negative, and the answer perhaps could have been better 
shaped with something like “the important thing is that we found a signifi cant over-
all benefi t of our new drug treatment, and this was in a very sick population. In addi-
tion we did everything possible to protect the safety of our patients.” Many might 
remember the very funny interview in the Bob Newhart comedy television series, 
when off camera a very pleasant reporter pumped up Newhart’s ego, and when they 
went live totally blind-sided him with embarrassing and demeaning questions such 
as “since psychologists hardly ever cure anyone, don’t you think the fees that you 
charge them are outrageous?”. In actuality, this type of blind-siding is rare with 
health reporting, the reporter is generally your colleague, and is attempting (with 
their limited knowledge) to impart accurate information, but being prepared for that 
occasional problem is not a bad idea.  

    The Medias Control of Information (The Embargo Rule) 

 Perhaps the most important issue that results in researcher-media confl icts is the 
long struggle over the “Ingelfi nger rule” since it involves the control of information, 
a control the media despises. The pressure to be the fi rst or to be able to claim to be 
the exclusive report of a story results in signifi cant tension when they are asked to 
hold (embargo) a story until it is published in a scientifi c journal. 

 Scientists also expect that they are the ones to control the fl ow of information, 
and view the media as but a pipeline to inform the public about recent discoveries 
[ 1 ]. Most journalists, however, do not view themselves merely as a spokesperson for 
the scientist, but rather they view their role as raising probing questions about the 
research. In fact, both scientists and journalists are committed to communicating 
accurate information, but the media aims for brevity, readability, simplicity; and, are 
usually pressured by time constraints; whereas the scientist has been working on the 
research that is being reported for years, are interested in precautionary qualifi ca-
tions, and are aware that their scientifi c readership can assimilate the nuances of 
their research [ 3 ]. 
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    The Academic Medical Centers Role in Promoting 
Health Research 

 In Academic Medical Centers the investigator interaction with the media is fre-
quently channeled through a media relations or public relations offi ce that provides 
some insulation for the investigator. Woloshin et al. noted that “medical journalism 
is often criticized for what reporters cover…and how they cover it” and also note 
that the tension between scientists and journalists exists because scientists want to 
promote the truth, the media just wants to sell newspapers [ 15 ]. In order to assess 
the role that academic medical centers play in the release of scientifi c information 
(with the presumption that their releases would be measured and unexaggerated), 
the authors examined press releases from academic medical centers in a systematic 
fashion. The details of the study can be found by referring directly to the cited ref-
erence, but what they found was that there were a mean of 49 press releases annu-
ally. That 44 % promoted animal or laboratory research, of which 74 % claimed 
human health relevance; and, that among 95 press releases about human research, 
23 % omitted study size, 34 % failed to quantify results, and only 17 % promoted 
studies with the strongest study designs. Furthermore they found that 40 % reported 
on uncontrolled interventions, small sample size studies, surrogate outcome studies, 
and yet 585 lacked the relevant cautions. Among the recommendations suggested 
by the authors they listed that they should include basic facts and explicit cautions, 
that investigators should forego responding to requests for releases of studies with 
obvious limitations, taking care to temper their tone if they do respond, and that 
journalists have the opportunities to acquire skills through a number of programs 
and workshops available to them. 

 In summary, the media is playing an increasing role in the reporting of health 
news. Most health reporters are attempting to write a credible and accurate story. 
The enduring tensions between medicine and the media are largely due to the differ-
ent perspectives between researchers and journalists. As Nelkin noted, “these ten-
sions arise because of perceived differences in defi ning science news, confl icts over 
styles of science reporting, and most of all disagreement about the role of the media” 
[ 16 ]. It is incumbent upon the researcher, if they are going to accept a media inter-
view, to know how to present clear concise answers to question about their research.      
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    Abstract     Mentorship refers to the development of a relationship between a more 
experienced individual (the mentor) with a less experienced individual (the mentee 
or protégé). The role and expectations of the mentor in the development of the jun-
ior faculty member’s academic relationship is extremely important. As such, this 
chapter discusses the expectations of the mentor, mentee, and the mentor-mentee 
relationship.  

  Keywords     Mentorship   •   Mentoring guidelines   •   Advising  

       Mentoring vs. Advising 

 Mentorship refers to the development of an ongoing, advisory relationship between 
a more experienced individual (the mentor) with a less experienced individual (the 
mentee or protégé). Historically, mentorship goes back to ancient Greek and Hindu 
times and the word itself was inspired by the character of Mentor in Homer’s 
Odyssey. Today, the defi nition of mentor continues to encompass ‘a trusted 
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counselor or guide’, and a ‘wise, loyal advisor or coach.’ True mentoring however 
is more than just answering occasional questions or providing  ad hoc  help. It is 
about an ongoing relationship of learning, dialog, and challenge. “Mentoring” is a 
process that always involves communication and is relationship based, but its pre-
cise defi nition is elusive. One of the many defi nitions that have been proposed, is: 
 mentoring is a process for the informal transmission of knowledge, social capital, 
and the psychosocial support perceived by the recipient as relevant to work, career, 
or professional development; “mentoring entails informal communication, usually 
face-to-face and during a sustained period of time, between a person who is per-
ceived to have greater relevant knowledge, wisdom, or experience (the mentor) and 
a person who is perceived to have less (the protégé   )” [ 1 ]. 

 Mentoring in the research sense developed mostly in the basic science laborator-
ies, where an experienced researcher would literally take a junior person ‘under 
their wing’ and would help them develop research independence. This concept has 
been adopted and encouraged by the NIH through its K23 and K24 programs which, 
in turn, serve as templates for career development programs supported by other 
organizations. The problem has always been, that there is little in the way of formal 
training in how to be a good mentor, and there is usually little external reward for 
the time spent in mentoring. 

 In academic settings, mentoring and academic advising are frequently used 
synonymously, but we view advising as a lesser responsibility than mentoring. 
One can over-simplistically say that advising is an ‘event’ while mentoring is a 
‘process’. A mentor has both a professional and personal relationship with the 
mentee while an advisor, in general, does not have the same sort of personal rela-
tionship. Also, mentoring is more dynamic, in that there is a distinct, evolutionary 
change over time. 

 Although there is no single formula for good mentoring, most would agree that 
a good mentor is approachable and available, and this is where good mentoring too 
often comes up short, since in a busy academician’s life (who has multiple demands 
including their own requirements for promotion, research grants, manuscripts, 
etc.); little academic reward is provided for mentoring. It is for this reason that, 
although perhaps more empathetic with the role of the mentee, junior faculty are 
often ill- equipped to serve as mentors. Factors militating against effective mentor-
ship by junior faculty include an (appropriate) emphasis on one’s own career 
advancement, limited resources to devote to the mentee, and limited opportunities 
to promote the mentee’s career by virtue of limited personal recognition as a result 
of being early in one’s career. Students, for their part, must recognize the profes-
sional pressures and time constraints faced by their mentors, but still must insist on 
obtaining adequate time and availability from their mentors, or be willing to change 
who their mentor is. Much misunderstanding can be circumvented with a well-
intentioned discussion about these issues prior to choosing a given mentor. As 
such, both the mentor and mentee should be clear about their respective expecta-
tions, have a clear agreed upon career development plan, with regular meetings a 
priority. On the one hand, the mentor cannot be to busy, otherwise they should 
not have accepted the responsibility, but the mentee cannot expect unlimited access. 
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In some instances the use of a “mentoring contract” which both the mentor and mentee 
work together to delineate the goals and structure of the relationship in writing can 
provide the clarity of purpose that is the foundation of most successful mentoring 
relationships. 

 Prior research has suggested that mentorship in academic health science centers 
has an important infl uence on productivity and personal development [ 2 ]. But, most 
programs have been modest in scope. Feldman et al. did analyze the baseline 
variables prior to instituting a structured comprehensive mentoring program at one 
institution in order to assess the characteristics associated with having a mentor 
along with the content of mentor-mentee interactions. More than half the respond-
ents to a survey (with a 56 % response rate) stated that they had a mentor, and that 
there were no differences in having a mentor based upon gender or ethnicity. Having 
a mentor was associated with greater satisfaction with time allocation at work, and 
reported that discussions of funding, manuscript preparation, promotion and tenure 
were among the most important topics. 

 A 1995 study of mentoring techniques most commonly used in business [ 3 ] found 
that the fi ve most commonly used techniques among mentors were (Table  21.1 ):

     1.     Accompanying:  making a commitment in a caring way, which involves taking 
part in the learning process side-by-side with the learner.   

   2.     Sowing:  mentors are often confronted with the diffi culty of preparing the learner 
before he or she is ready to change. Sowing is necessary when you know that 
what you say may not be understood or even acceptable to learners at fi rst but 
will make sense and have value to the mentee when the situation requires it.   

   3.     Catalyzing:  when change reaches a critical level of pressure, learning can escalate. 
Here the mentor chooses to plunge the learner right into change, provoking 
a different way of thinking, a change in identity or a re-ordering of values.   

   4.     Showing:  this is making something understandable, or using your own example 
to demonstrate a skill or activity. You show what you are talking about, you show 
by your own behavior.   

   5.     Harvesting:  here the mentor focuses on “picking the ripe fruit”: it is usually used 
to create awareness of what was learned by experience and to draw conclusions. 
The key questions here are: “What have you learned?”, “How useful is it?”.    

  Table 21.1    Five common 
techniques used by mentors  

 Accompanying: Committing in a caring way 
 Sowing: Laying the foundation even if the mentee 

does not yet understand its importance 
 Catalyzing: Plunging the mentee into a new way 

of thinking 
 Showing: Making something understandable 
 Harvesting: What have you learned, and how 

useful is it 

  From: Aubrey and Cohen [ 3 ] 
 This material is reproduced with permission of John 
Wiley & Sons, Inc.  
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      Guidelines for Faculty/Student Interactions 

 Faculty members often develop a close working relationship with students, 
 especially advisees. Often a relationship is formed that provides benefi ts to both the 
faculty member and the student. Faculty should be cognizant of the power differen-
tial in these types of relationships and set appropriate boundaries. Although faculty 
members may not intend a favor or request to be an obligation, they should be aware 
that this may place some students in a diffi cult position. Some students are intimi-
dated by faculty members and may not feel free to decline such requests [ 4 ]. It is 
recognized that many situations are ambiguous. Examples are of some of these 
ambiguous situations include:

•     Asking a student to drive you someplace, including the airport, home, or 
main campus . Such a request does not fall under a student’s duties. A situation 
when this may be acceptable is when the student has the same destination.  

•    Asking student to work extra hours or late hours . Students should be expected 
to work the hours they are paid for. Students may volunteer to put in extra hours 
to gain more experience (e.g. grant writing) or gain authorship on a paper or help 
meet a deadline – but these extra hours should not be an expectation.  

•    Asking an advisee to housesit, take care of your children or pets, or help you 
move . While some students may not mind house sitting, taking care of children 
or pets, or helping someone move, others may only agree to do this because they 
feel obligated or worry that saying no will somehow affect their relationship with 
the faculty member. To avoid this situation, faculty members may post a request 
for a sitter or mover for pay without any faculty names attached to the fl yer – 
ensuring that respondents really want this job.     

    Advising 

 Expectations for advising vary between institutions but mainly in terms of fre-
quency of meetings. It seems to these authors that minimal expectations should 
include (Table  21.2 ):

    1.    academic advisors should meet with their advisees at least twice per semester, 
but more often is preferable. These meetings should be scheduled, but there 
should also be opportunities for  ad hoc  meetings to deal with acute 
problems.   

   2.    Academic advisors should respond in a timely manner to requests from advisees 
for meetings or responses by telephone or e-mail, even if this is to schedule the 
requested meeting.   

   3.    Academic advisors should provide general guidance to students about course-
work, fi eldwork, project selection, and career planning.   

   4.    Academic advisors should make students feel welcome to the Division.   
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   5.    Academic advisors should act as a contact person for the student and help direct 
them to the appropriate resources in the Division given whatever issues or prob-
lems the students may have.   

   6.    Academic advisors should act as a resource for the student when bureaucratic or 
political problems in the University, School or Division may be interfering with 
the student’s effective progress toward his or her degree.   

   7.    Although the advisors role is to help the advisee to not over-extend themselves, 
they should also help them see what an important opportunity is.    

Advising may include a number of diverse activities such as procedural advising (e.g. 
should the student drop a course), academic advising (e.g. how satisfi ed are they with 
the program, career planning, selecting course work), and advising ‘students’ on the 
conduct of their research. Excellent advising requires a signifi cant time commitment.

   What are the mentor’s responsibilities? They should fi nd out what are the junior 
investigators career goals, determine how often formal meetings should take place, 
what the mentor’s expectations are (this should be spelled out in terms of frequency of 
meetings, metrics, and outcomes), and devise the best way(s) to communicate (face to 
face, e-mail, telephone). The advisee also has responsibilities. They should take the 
lead in scheduling meetings, and contacting the advisor if there are problems. Finally, 
there should be clear expectations of what protected time will be provided for the 
mentee’s career development. If this is not under the control of the mentor, the mentor 
should aid the mentee in establishing protected time with whoever the responsible 
person is. There are many pitfalls in the term ‘protected time’. One of the most important 
is the denominator for calculating it. For example, is the % of protected time based 
upon a 40 h, 60 h, or 80 h-week. What other responsibilities will the mentee have 
(i.e. clinics, ward rotations, committee meetings, teaching, conferences etc.).  

    Mentoring Committees 

 With increasing emphasis on translational research as a career path, mentorship by 
committee has become more popular. This approach provides trainees with access 
to content experts in several different disciplines relevant to their career 

  Table 21.2    Advising 
expectations  

 Meet regularly: Scheduled not ad hoc 
 Respond in a timely manner to requests 
 Provide general guidance about course work, etc. 
 Be welcoming 
 Act as a contact person and direct to appropriate 

resources 
 Act as a resource for bureaucratic and political 

issues in the school 
 Balance over extending ones self with 

important opportunities 
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development and can be quite successful. There are several potential pitfalls to 
mentorship by committee as well. The benefi ts of a mentoring committee are 
maximized when the committee meets as a whole with the mentee to discuss plans 
and progress, not when the mentee is subjected to a series of individual meetings in 
which different mentors may differ in terms of their advice regarding prioritization 
and progress. A second common problem with mentoring by committee is the 
failure to identify a “primary” mentor who has major responsibility for advice to 
the trainees. When this does not occur and problems are encountered, a failure 
to take responsibility for the mentoring process can lead to confusion and misdirection 
for the mentee. 

 Effective mentorship has been shown to be essential for faculty career success 
and good mentoring relationships are more likely to result in the mentee remaining 
at an academic health center and be promoted more rapidly. Binkley and Brod point 
out that effective mentorship is also associated with greater career satisfaction, and 
better performance [ 5 ], Despite this, they note that at one large academic health 
center, the average prevalence of mentorship was 50 %.  

    K23 and K24 Awards (Figs.  21.1 ,  21.2 , and  21.3 ) 

      The NIH has developed a number of Career Development Programs (K awards), in 
fact there are now 13 different awards available and these are dependent upon such 
factors as one’s career stage and how they may interact with other NIH Awards. 
However, there are common elements of NIH career awards, such as specifi ed levels 
of salary support, allocations for research/development costs, and award duration. 
In addition, entry-level awards require a mentor, and at least 75 % protected time for 
the awardees to spend on research and other career development activities. For non- 
mentored senior awards a 25–50 % time commitment is typically required. 
Eligibility for NIH awards requires a Doctoral Degree (generally), that the applicant 
be a US citizen, Non-Citizen National, or a Permanent Resident. Should the awardee 
change their Institution or Mentor prior approval of the NIH awarding component 
must be advised. 

 For most of the readers of this book, the K23 award is likely to be the most 
appropriate. The guidelines for K23 Awards include an application that includes 
information about the nature and extent of supervision that will occur during the 
award period (co-mentors must supply similar information), and there must also be 
a career development plan that incorporates a systematic approach towards obtain-
ing the necessary skills necessary to become an independent researcher. This plan 
should include course work appropriate to the experience of the candidate. The 
mentor’s research qualifi cations in the area of the project and the extent and quality 
of his/her proposed role in guiding and advising the mentee, as well as previous 
experience in mentoring are critical. The application must include the applicant’s 
career goals and objectives with a detailed description of what the candidate wants 
to achieve following the completion of the award. 
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Independent
InvestigatorInternship/Residency       SpecialtyMedical

School

Career Development Awards (Ks)

Midcareer Investigator
in Patient-Oriented 

Research  (K24)

Mentored Patient-Oriented
Research CDA (K23)

Scientist Development
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Mentored Clinical Scientist
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Career Enhancement 
Award Stem Cells (K18)

  Fig. 21.1    The NIH career development awards (K awards)       
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  Fig. 21.2    A description of the K08 and K23 awards       
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 The K23 application should be very detailed about the mentor’s role and respon-
sibilities, how the mentor’s area of expertise relates to the research interests of the 
applicant, how often the applicant will meet with the mentor (and co-mentors), what 
will happen during those meetings, and how short-comings in the applicant’s per-
formance will be addressed. The mentor, on the other hand, should provide the same 
information, as well as extol the mentor’s virtues with prior mentoring activities. 

 Typically, career development applications should also contain information 
about formal coursework that will be taken in support of the applicant’s career plan, 
and ideally one that will lead to a degree, such as a Master of Science Degree in 
Clinical Research (a K30 supported Program). Ideally, the applicants plan will 
include both an Internal as well as an External Advisory Committee which is formed 
to provide an objective review of the candidate’s progress. More details are spelled 
out in the grant description, but I have highlighted key components that have been 
problematic in K23 grants that I have reviewed. 

 The K24 is a senior non-mentored award that is a natural extension once the K23 
is completed. It allows for funded protected time to mentor junior investigators, 
 particularly those seeking a K23 award. 

 In summary, a number of pitfalls face the junior faculty member interested in a 
career in patient oriented research. A good mentor/advisor can be of enormous help 
in guiding young researchers toward their career goals. Unfortunately, many 

Independent
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School

Career Development Awards (Ks)

Midcareer Investigator
in Patient-Oriented 

Research  (K24)
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• Protects between 25% and 50% of their professional effort

• must engage in patient-oriented research

• must serve as a mentor to developing patient-oriented researchers

• salary pro-rated (up to maximum rate)

• Nearly all ICs participate 

• Goal: 80 awards/year

  Fig. 21.3    A description of the K24 awards       
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mentors/advisors, acting as role models have fallen into the same traps that they 
should be preventing in a new researcher, so the mentors role-modeling is somewhat 
tarnished. We agree with Grigsey that fi ve of the most important pitfalls in the 
mentor- mentee relationship are: committing to excessive service time; ‘diffusion 
and confusion’ i.e. a new faculty member has no clue as to what is or is not a priority 
without a good advisor guiding them; lack of mentoring/advising; exploitation by 
other faculty; and, lack of discipline and perseverance.     
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    Abstract     This book is about designing, implementing and interpreting clinical 
research. This chapter is aimed at a discussion of how to present the research that 
has been performed. Although almost no one currently disagrees that a formal cur-
riculum in research methodology is critical for a new investigator, the manner in 
which the results of a study are presented is presumed to be obvious, and training in 
the art of presentations is much less common. The belief is that good speakers are 
born, not made, and this is no more true than good researchers are born and not 
made. And so, the methodology of presentations should be an important part of a 
young investigators training. This chapter provides an introduction to delivering an 
effective presentation.  

  Keywords     Presentation structure   •   Stages of a speaker   •   Presentation audiovisuals   
•   Question and answer period  

    This book is about designing, implementing and interpreting clinical research. This 
chapter is aimed at a discussion of how to present the research that has been 
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  Speech is power; Speech is to persuade, to convert, to compel  

  Ralph Wald Emerson  

  I know from experience that “sometimes it is better to be quiet 
and be thought a fool than to open your mouth and remove all 
doubt”…
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performed. Although almost no one currently disagrees that a formal curriculum in 
research methodology is critical for a new investigator, the manner in which the 
results of a study are presented is presumed to be obvious, and training in the art of 
presentations is much less common. The belief is that good speakers are born, not 
made, and this is no more true than good researchers are born and not made. And 
so, the methodology of presentations should be an important part of a young inves-
tigators training. The ability to communicate effectively is a key to professional 
success. The investigator who wants to express complex ideas, inform, and educate 
realizes that effective presentations are an important skill. If you are relatively 
inexperienced and suffer from stage-fright, relax – you are not alone. Public speak-
ing ranks at the top of the list of peoples fears surpassing even the fear of death. But 
like any skill, public speaking takes training, experience, persistence, motivation 
and practice. So what makes a great public speaker? I will attempt to answer that 
question in this chapter. 

 In a handbook by Foley and Smilansky [ 1 ] the authors quote Frost as follows 
(Table  22.1 ), ‘ in a lecture given by a brilliant scholar, with an outstanding topic, 
and a highly competent audience, ten percent of the audience displayed signs of 
inattention within fi fteen minutes. After eighteen minutes, one third of the audience 
and ten percent of the platform guests were fi dgeting. At 35 minutes everyone was 
inattentive; at 45 minutes trance was more notable than fi dgeting; and at 48 minutes 
some were asleep and at least one was reading. A casual check twenty-four hours 
later revealed that the audience recalled only insignifi cant details, and these were 
generally wrong.’  How long should a talk be? ‘A speech, like a bathing suit, should 
be long enough to cover the subject-but short enough to be interesting   ’. 1 

1   The majority of this chapter was taken from personal experience and extensive notes that I had 
taken from a large number or Presentation Skills Workshops that I have attended. Although I can-
not give specifi c credit for individual pieces of information, I can credit the Instructors of those 
workshops as follows:

   (a)   Sue Castorino, President, The Speaking Specialist, Chicago, IL, 1993. 
   (b)   Gerald Kelliher PhD, Associate Dean, Medical College of Pennsylvania. 
   (c)   Eleanor Lopez, Let’s Communicate Better,  www.eleanorlopez.com 
   (d)   Power Speaking, and More, Joyce Newman Communications Inc. 
   (e)   Jerry Michaels-Senior Consultant CommCore Communication Strategies. 
   (f)   Science and Medicine Canada, Presentation and Platform Skills Workshop, 1992. 
   (g)   Wyeth Ayerst Laboratories, Ciba-Geigy, Schering, Pfi zer, and KOS Pharmaceuticals for spon-

soring many of the Presentation Skills Workshops that I attended. 

   Table 22.1    What does an audience remember?   

 In a lecture given by a brilliant scholar with an outstanding topic and a highly competent 
audience, 

 –10 % of the audience displayed signs of inattention within 15 min 
 –After 18 min 1/3rd were fi dgeting 
 –At 35 min everyone was inattentive 
 –At 45 min trance was more noticeable, some were asleep and a few were reading a newspaper 

S.P. Glasser
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   Table 22.2    What are the best ways to transmit information?   

 Effi ciency  Convenience  Amount of information 

 Print  High  High  High 
 Audio CD  High  Moderate  Moderate 
 Video DVD  High  Moderate  Moderate 
 Interactive  High  Moderate  Moderate 
 Lecture  Low  Low  Low 

   What is the least effi cient way of communicating a lot of information, particularly 
technical information (Table  22.2 )? Think about it, and the answer will probably be 
the oral presentation. Why? for a number of reasons, the most important being that 
the ear is a limited learning tool. Additionally, the oral lecture is of low effi ciency, is 
associated with low audience recall, and forces the audience to assimilate the infor-
mation on the speakers schedule, in contrast to a written document or an audio tape 
or DVD, where a ‘student’ can review the information at a time when there are no 
other deadlines that have to be met, or an upcoming appointment for which they do 
not want to be late etc. Also, the information can be reviewed and re-reviewed at their 
leisure, important points underlined, and so on. So what is it about the oral presenta-
tion that makes it so valuable? Two things: the rapport the speaker can gain with the 
audience, and the ability of the audience to ask the ‘expert’ (as one wit defi ned as 
someone who lives more than 50 miles away and has slides) questions. In fact, some 
studies have shown that how a lecture is perceived is 55 % visual, 38 % related to 
how the speaker sounds, and 7 %, the content. The cliché goes that a famous profes-
sor is introduced, and with much fanfare walks to the podium, calls for the lights to 
be dimmed, and says ‘for my fi rst slide….’ thereby removing the 55 % visual com-
ponent needed to gain the necessary rapport that renders the oral presentation so 
valuable in the fi rst place. If the lights go down, and you can no longer see the 
speaker, you might as well have an audio tape playing. Standing behind the podium 
(a protective mechanism) or leaning on it (a message of disinterest), also takes away 
from the presentation, so when possible it is to be avoided.

     The Structure of a Presentation 

 The old adage for the outline of a talk is the Introduction to the talk – tell them what 
you are going to tell them; the Body of the talk -Tell them; and, the Conclusion – 
tell them what you’ve told them (Table  22.3 ). Because your audience is most atten-
tive during the introduction and conclusion, those are really the most important 
parts of the presentation, and of the two probably the introduction is the key in 
gaining their attentiveness, and the conclusion is most important for the take home 
messages. Thus, if possible, memorize the conclusion so you do not have to look 
at the slide, but rather you can look directly at the audience while you make your 
concluding remarks.
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   During the introduction you have a free ride for about 2 min and it is during this 
time, if you use it wisely, that you need to catch the audience’s attention. This author 
likes to use ‘hooks’ or ‘grabbers’ during the introductory comments, such as a joke- 
but be careful in this era of political correctness this can backfi re (I have had it 
 happen to me!). Glasbergen has opined about this noting “always start your presen-
tation with a joke, but be careful not to offend anyone! Don’t mention religion, poli-
tics, race, age, money, technology, men, women, children, plants, animals, food…” 
(  www.glasbergen.com    ; 2002). One can also use a short video clip relevant to the 
topic that can engage the audience and demonstrate to them that you have given 
thought to the presentation. Self-effacing humor (if not overdone) can be useful, a 
speaker who can laugh at him or herself gains rapport with the audience. 

 Some examples of humor follow: Groucho Marx’s famous quote of ‘Before I 
speak, I have something important to say’; Or, for a presentation about a drug that 
caused sinus bradycardia, but had no other hemodynamic effect, this author once 
began a presentation by asking the audience what they thought the most important 
anti-ischemic mechanism of beta adrenergic blockers was. Most of the audience 
answered ‘sinus bradycardia’ after which I responded ‘that was my thought as well, 
but now I am going to tell you about a drug that slows the sinus rate but has no anti- 
ischemic effects’. Catchy titles for your talk also demonstrate to the audience that 
you have given some thought to your presentation. Some examples I have used 
were: ‘What do the fi rst fl ight of the Columbia and quinidine have in common?’ (for 
a talk on re-entry as a mechanism of arrhythmias), or ‘What do the Japanese puffer 
fi sh and silent ischemia have in common? Alliterations can be catchy also, such as 
‘Palpitations, Prolapse, and Palpating the Pachyderm’ (for this talk on mitral valve 
prolapse-by the way, I began this talk with the famous poem of the blind man pal-
pating different parts of the pachyderm and coming away with different impressions 
about what the animal might look like; in order to make the simile of the many ways 
that mitral valve prolapse can present clinically). Should one consider posing the 
title of one’s talk as a question? Doing so can get the audience thinking, and changes 
them from taking a passive role in the presentation to taking an active role; thereby 
gaining more audience attentiveness. Or, one can pose a question in the opening of 
your introduction such as ‘how many of you have patients who have suffered an MI 

  Table 22.3    Anatomy 
of a lecture  

 The Lecture 

 Introduction 
 –Opening-use an attention getter 
 –Do not apologize 

 Body 
 –Transitions 
 –Rhetorical questions 

 Summary 
 –Know when to stop 
 –Most important part of the speech 
 –Briefl y restate main points and then STOP 

S.P. Glasser
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despite the LDL being at goal?’ During the author’s fi rst exposure to formal training 
in presentation skills, I was asked to prepare a 5 min presentation. I entitled it ‘What 
do exercise testing and stratigraphy have in common? Digging for answers’ – the 
thesis of the talk being stratifi cation (layers) of risk based on exercise test results, 
just as a stratigrapher tries to make interpretations based upon the rock layers they 
observe. In addition to the ‘grabber’ one should also begin with the thesis of the 
talk, that is, the ‘what’s in it for the audience question’. One should also cover the 
outline of the presentation. The outline should have no more than fi ve points and 
ideally three points, because studies have shown that after a 10 min presentation, the 
average listener forgets 25 % of what was said within the fi rst 24 h and 80 % within 
4 days [ 2 ]. By highlighting the three main points of your presentation and repeating 
them in the conclusion, you increase the chances that your audience will at least 
remember the most important points that you wanted to communicate. However, the 
outline of your presentation should be specifi c rather than broad. I have heard speak-
ers who have picked up on the point that an outline is important, but unknowingly 
have ‘gotten around it’ by using broad general topics. As an example, I heard one 
speaker, talking on the metabolic syndrome, have an outline that included outline 
points like: ‘I will cover lipid metabolism, the different defi nitions of metabolic 
syndrome, and all the treatment options’; when the focus of the talk was really to 
discuss whether the metabolic syndrome was a precursor to diabetes.  

   Stages of a Speaker 

 Almost all speakers have to go though three stages before they become accom-
plished presenters. The speed with which they traverse these stages depends upon 
their personalities and whether one follows the precepts outlined in this chapter.

    Stage 1  is the fear centered stage. Novice speakers are almost always more nervous 
than the situation dictates, but being nervous (stage fright) is common to even the 
most experienced speaker. I remember when Johnny Carson was doing his ump-
teenth monologue and it was being telemetered as part of the show. Before he 
went on stage and as he was being introduced his pulse rate surged to 120 bpm! 
Many novice speakers read from a prepared text to help deal with nerves, but a 
speech that reads well does not necessarily ‘listen’ well. The bottom line is that 
at this stage or any stage, if dressing up like Superman makes you more comfort-
able, then do it!  

   Stage 2  is the speaker-centered stage that is characterized by imparting the points you 
as a speaker wants to make. You have now given enough presentations that there is 
the appropriate amount of nervousness, you know your subject well, and then you 
go about presenting everything you know about it. The underlying motivation is 
probably to impress upon your audience how much you do know, and it is your job 
to tell them everything! The fact is that for most audiences you will know more 
about the subject you are presenting then they will (exceptions might be at a 
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national specialty meeting), and this is where another major  mistake is made by the 
stage 2 speaker-assuming a level of knowledge that is really not present and thereby 
leaving the audience in the dark. This fl ies in the face of what a good speech should 
be- clarity, simplicity, and repetition (it is a good idea in talks over 15 or 20 min that 
after each point you have elaborated in your outline, that you repeat what you just 
said in one sentence-this entrenches the bullet point that you want them to ‘take 
home’); that is, present a small number of essential ideas, simplicity, and being 
conversational (see, I just did it) are the attributes of a good presentation. You 
should strive for keeping your message simple for three reasons: (1) so that you can 
remember it, (2) so that the audience will understand it, and (3) so that the audience 
will remember it. Novice speakers and speakers frozen in stage 2 are also notorious 
for apologizing-apologizing about not having enough time to cover the subject, for 
not having had time to prepare adequately, for the time of day, month, or season; 
and, for anything else they can think of. I remember one speaker apologizing for 
something, then catching himself and apologizing for apologizing! My advice is 
never apologize! Deal with what you are dealt and go on with it!  

   Stage 3 . It is the third stage that every good speaker should strive for-this is the 
audience-centered stage characterized by understanding the audience, having a 
feel for what they really need to know; and, that is dependent upon who the audi-
ence is. The fact is that expectations among most audiences, accustomed to the 
general inadequacy of speakers, are so low that almost any well-intentioned 
bumbler is, at the very least, accepted – provided that the speaker doesn’t drone 
on too long. With this knowledge, the speaker should now be confi dent enough 
in their knowledge of the subject, and relaxed enough that they can control their 
nervousness. They can now focus on what the specifi c audience to whom they 
are presenting absolutely needs to know about the subject-and with almost every 
subject this can be accomplished with 3–5 main points. It is the integration of the 
last two stages that makes an excellent speaker, and the approach to message 
building is fundamental to the art of ‘getting to the point’. It is also the stage 
where you know when to stop! Never, never, never, go over the allotted time, you 
will not impart any additional information to the audience, and you will antagon-
ize them. I have heard many complaints about talks that have gone on too long, 
but I have never heard anyone complain about a talk that is too short. One char-
acteristic of the presenter still frozen in stage 2, but knowledgeable enough that 
he or she knows not to go over time, is to simply take the same amount of mater-
ial but talk faster; rather than reducing the number of points to be covered. These 
latter presenter’s are sometimes dubbed the ‘speed demon’ or the ‘talking ency-
clopedia’, and this should obviously be avoided.     

   Audiovisuals 

 Audiovisuals should be used-but not overused. Most speakers use audiovisuals as a 
crutch rather than the stepping stones that helps an audience understand the mes-
sage the speaker is trying to make. Many (most?) speakers also crowd too much 
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information on a slide, and some, knowing that the slides are too crowded, even 
apologize for it. Comments such as ‘I know you cannot see it because the print is 
too small, but the point I am trying to make is…’ If you know it cannot be seen why 
are you using it for? Epidemiologists are renown for using to much detail in their 
slides (I can say this because I am one). One of my mentors (Dr. Roy Behnke- 
referred to as ‘Reverend Roy’ behind his back because of the way he preached his 
presentations) used 3–5 slides for an entire Grand Rounds presentation-and those 
slides had at the most three lines on each. My suggestion is to synthesize the infor-
mation as is shown in Tables  22.4A  and  22.4B . In general, three bullet points per 
slide is ideal and each slide should have only one unifying idea.

    The other common mistake speakers make with slides is related to the use of the 
pointer. As an experiment one day, watch the eyes of the audience as the speaker uses 
the pointer like a weapon and is roaming all over the slide instead of holding it steady 
on the point that they wish to emphasize. As the eyes follow the pointer the listener is 
distracted from the point that is being made. In fact, if you use a limited number of lines 
per slide, you can also minimize your use of the pointer, minimize pointer wander, and 
for those of us who are red-green color blind, it will not matter that one cannot see the 
red dot from the pointer in the fi rst place. Four types of laser use are (Table  22.5 ): 

•    The circle  
•   The underline  
•   The back-handed fl ick  
•   The epileptic-seizure inducer    

 Remember,

•    DO NOT POINT AT EVERYTHING

   – Not everything is equally important  
  – Your voice can provide emphasis too       

 An accomplished speaker arrives at the venue early enough to become familiar 
with the AV equipment so that they do not stumble around trying to control the 
lights (remember to keep the lights as high as possible while ensuring that the slides 
can be seen by the audience). Reviewing the slide advancement mechanism (hope-
fully on a PowerPoint or related computer presentation format) is also important so 
that when their actual presentation begins there is not a lot of stumbling (recall the 
importance of the opening impression one makes on the audience). As Glasbergen 
points out, considering “what software would you recommend to give my presenta-
tion so much fl ash and sizzle that nobody notices that I have nothing to say” is not 
the way to go (  www.glasbergen.com    ; 2002).  

   The Question and Answer Period 

 The two main fears about the Q and A are that no questions will be asked, or that 
questions will be asked for which you do not know the answer. To elicit questions, 
be invitational such as ‘I have been looking forward to your questions’ or ‘I would 
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be happy to answer any questions’. If there are none, try jumping in with something 
like ‘I am almost always asked about…’, and this frequently gets the Q and A going. 
When a question is asked, keep the answer brief (this is not the time for a mini-talk); 
and, if you do not know the answer, it is fi ne to say something like ‘I do not know-do 
you have experience in this area?’- no-one expects you to know everything even if 
you are ‘the expert’. Also, ALWAYS repeat the question so members of the audi-
ence who did not hear it are not left out. You can also sometimes rephrase the ques-
tion so that it is clearer. If the question has nothing to do with the presentation, one 
can either very briefl y address it and then segue into the points you feel are impor-
tant, or say you would be happy to answer it individually after the Q and A period. 

 There are a number of other things a speaker can learn about presentations, such 
as how to answer questions, how to deal with an audience member who is carry-
ing on a conversation during the presentation, the heckler, the know-it-all, the 
media  etc. One should take advantage of courses, seminars etc. that teach these 
skills. As an example, during a formal seminar on presentation skills, our talks 
were videotaped and then played back. One of my colleagues-an accomplished 
speaker-(fortunately it was not me-I had plenty of my own affectations) had his 

   Table 22.4B    Compared to Table  22.4A  summarizing the information in a more readable fashion 
is advised   

 Is Pulse Pressure an Independent Risk Factor for Incident Acute Coronary Heart Disease? 

  Table: Risks of CHD events associated with pulse pressure levels in participants  

  Any acute CHD 
event  

  PP <45 mmHg 
n = 8,099  

  PP 45–54.9 mmHg 
n = 7,539  

  PP 55–64.9 mmHg 
n = 4,421  

  PP ≥65.0 mmHg 
n = 2,850  

  Events (n)   139  173  166  203 
  Unadjusted   1 (ref)   1.28(1.02, 1.59)    2.06(1.65, 2.58)    3.82(3.08, 4.73)  
  Fully 

adjusted + SBP  
 1 (ref)  0.95(0.75, 1.21)  1.15(0.88, 1.50)   1.56(1.12, 2.18)  

   Table 22.5    Common mistakes made when using a laser pointer       
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fi nger in his ear during the entire 5 min mock talk. He was totally unaware that he 
had done that and even questioned whether the tape had been altered. 

 As a researcher, it is becoming more and more common to interact with the media 
about research that you have done (see Chap.   20    ). Answers to the media have to be 
even more carefully thought out, because journalists are not only interested in getting 
the information correctly, but want the ‘headline grabber’ to get people to read about 
it. They also unknowingly (sometimes knowingly) take things out of context. Despite 
my experience, I cannot think of an instance where what I intended to be the message 
of the interview actually came out to my total satisfaction (you might want to think 
about this when reading an article of someone else who has been interviewed and 
‘quoted’). Almost never will a reporter allow you to review beforehand what they are 
going to print (or edit, if it is a television interview) because they feel they want to 
maintain their autonomy (by the way, in my view this is more important to them than 
getting it right). Also, there is a famous (among the presentation skills people) clip 
from the Bob Newhart show (the one in which he portrayed a psychologist). When he 
was about to be interviewed before airtime, the reporter was as sweet as sugar, telling 
him how wonderful his reputation was, what a great fi eld psychology was etc. Then 
the lights came on, and the interviewer’s fi rst question went something like, ‘Since 
your fi eld never cures anyone, how can you justify the outrageous fees you charge?’-
and it went downhill from there. Hopefully, if you have watched that series, you can 
imagine how the bumbling Newhart responded.  

   Conclusion (Table  22.6 ) 

    I have found the following points to be critical for a good presentation.

     1.    A speech that reads well does not necessarily listen well   
    2.     A good speech consists of a surprisingly small number of ideas- do not saturate 

the audience   
    3.     A secret of an effective speech is simplicity, another is the use of conversational 

language   
    4.    Content alone will not insure a successful talk   
    5.    Do not apologize about the topic, time etc.   
    6.    Vary the volume of your voice, rate of speaking, etc.   
    7.    Use pauses and infl ection along with body movement to emphasize key points   
    8.    Do not exceed your time limit   
    9.    Stand up, speak up, and then shut up   
   10.    Always repeat the question asked, and answer the question briefl y.   
   11.     Like your presentation, keep audiovisuals simple with a limited number of 

points on each slide   
   12.    Keep the room lighting as bright as possible     

 Griswold outlined 9 ways to “sound like you know what you are talking about” 
and the list includes: record yourself and play it back, identify and break bad habits 
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(the ums, ers, and uhs), be aware of body language, fi nd your optimal pitch (use 
your natural speaking voice), speak at the “rate of no mistakes”, take advantage of 
pauses (rather than being concerned about them-pauses are one of the tricks used by 
great speakers) focus on the continuity of a phrase (think about speaking from one 
punctuation mark to the next), remember to breathe, and let your enthusiasm show 
[ 3 ]. Additional cautions include speaking to quickly, speaking to quietly, trailing off 
at the end of phrases, and speaking in monotone     
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  Table 22.6    Twelve 
commandments of a 
presentation  

 A speech that reads well does not necessarily listen well 
 A good speech consists of a surprisingly small number of ideas 
 A secret of effective speech is simplicity and the use of 

conversational language 
 Content alone will not insure a successful talk 
 Do not apologize about the topic, time etc. 
 Vary the volume of your voice, rate of speaking, etc. 
 Use pauses and infl ection along with body movement to 

emphasize key points 
 Do not exceed your time limit 
 Stand up, speak up, and then shut up 
 Always repeat the question asked, and answer the question briefl y 
 Like your presentation, keep audiovisuals simple with a limited 

number of points on each slide 
 Keep the room lighting as bright as possible 
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