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Abstract. One of the important research and technological issues in
data warehouse performance is the optimization of analytical queries.
Most of the research have been focusing on optimizing such queries by
means of materialized views, data and index partitioning, as well as var-
ious index structures including: join indexes, bitmap join indexes, mul-
tidimensional indexes or index-based multidimensional clusters. These
structures neither well support navigation along dimension hierarchies
nor optimize joins with the Time dimension, which in practice is used in
the majority of analytical queries. In this chapter we overview the basic
index structures, namely: a bitmap index, a join index, and a bitmap join
index. Based on these indexes, we show how to build another index, called
Time-HOBI, for optimizing queries that address the Time dimension and
compute aggregates along dimension hierarchies. We further discuss the
extension of the index with additional data structure for storing aggre-
gate values along the hierarchical structure of the index. The aggregates
are used for speeding up aggregate queries along dimension hierarchies.
Furthermore, we show how the index is used for answering queries in
an example data warehouse. Finally, we discuss its performance-related
characteristics, based on experiments.

Keywords: Data warehouse · Query optimization · Star query · Hier-
archical index · Bitmap index · Join index · Bitmap join index · Time-
HOBI

1 Introduction

A traditional data warehouse architecture has been developed in order to analyze
heterogeneous and distributed data managed by an enterprise. A core component
of this architecture is a database, called a data warehouse (DW) that stores
the integrated data, both current and historical ones. The content of a DW is
analyzed by various analytical queries for the purpose of discovering trends (e.g.,
demand and sales of products), discovering patterns of behavior (e.g., customer
habits, credit repayment history) and anomalies (e.g., credit card usage) as well
as for finding dependencies between data (e.g., market basket analysis, suggested
buying, insurance fee assessment). These techniques are commonly referred to
as On-Line Analytical Processing (OLAP).
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Analytical queries, commonly known as star queries process large volumes
of data. The queries join a central table with multiple reference tables (called
dimension tables) that define the context of the analyses. The queries next aggre-
gate data at various levels of granularity, from fine grained to coarse - by means
of roll-up operations and from coarse to fine grained - by means of drill-down
operations. Since a query response time is one of the key factors of a DW per-
formance, providing means for reducing the time is one of the research and
technological challenges. In this area, different mechanisms have been proposed
in the research literature, e.g., [27] and applied in commercial data warehouse
management systems (DWMSs), i.e., materialized views and query rewriting,
e.g., [20], data partitioning and parallel processing, e.g., [17,45,55] as well as
advanced indexing, e.g, [6]. The research on indexing resulted in multiple index
structures. From these structures, the successfully applied ones in commercial
DWMSs include: join indexes, e.g., [57], bitmap indexes, e.g., [38,53], bitmap join
indexes, e.g., [9,39], various multidimensional indexes, like for example R-tree
[21], Quad-tree [15], and K-d-b-tree [46], as well as index-based multidimensional
clusters [42].

We argue that the flat structure of a bitmap index can still be better opti-
mized to match a hierarchical structure of dimensions, in order to facilitate the
roll-up and drill-down operations. Moreover, the existing implementations of the
aforementioned indexes do not exploit the fact that most of the analytical queries
analyze data in time and thus require costly operations of joining a central table
with a dimension table, which stores time data.

Although bitmap indexes, join indexes, and bitmap join indexes substantially
decrease execution times of analytical queries, not all commercially available
database management systems support them. For example, Oracle implements
the bitmap index and the bitmap join index. IBM DB2 and SQL Server support
implicitly created temporary bitmap indexes only, which are used to optimize
joins.

Chapter contribution. In this chapter we overview the basic index structures,
namely: a bitmap index, a join index, and a bitmap join index. Based on these
indexes, we show how to build another index, called Time-HOBI, for optimizing
queries that compute aggregates along dimension hierarchies and that analyze
data in time. The index was originally presented in [12,36]. In this chapter, we
introduce the following additional contributions:

– the extension of Time-HOBI with additional data structure for storing aggre-
gate values along the index hierarchy (the aggregates are used for speeding
up aggregate queries along dimension hierarchies),

– the analysis of how the index is used for answering queries in an example data
warehouse,

– the experimental evaluation of the extended Time-HOBI.

Chapter content. This chapter is organized as follows. Section 2 presents basic
concepts on data warehousing used in this chapter. Section 3 outlines basic index
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structures applied in data warehouses. Section 4 discusses the components of the
Time-HOBI index and shows how the index is used in a query execution plan.
Section 5 discusses performance characteristics of Time-HOBI obtained from
multiple experimental evaluations. Section 6 presents related work in the area of
indexing DW data. Finally, Sect. 7 summarizes the chapter.

2 Data Warehouse Basics

In this section we present the basic concepts and definitions in the area of data
warehousing, i.e., a multidimensional data model and its relational implementa-
tions, as well as star queries.

2.1 DW Model and Schema

In order to support various analyses, data stored in a DW are represented in the
multidimensional data model [22,24]. In this model an elementary information
being the subject of analysis is called a fact. It contains numerical features,
called measures that quantify the fact. Values of measures are analyzed in the
context of dimensions. Dimensions often have a hierarchical structure composed
of levels, such that Li → Lj , where → denotes hierarchical assignment between a
lower level Li and upper level Lj , also known as a roll-up or an aggregation path
[32]. Following the aggregation path, data can be aggregated along a dimension
hierarchy. Level data are called level instances. Hierarchically connected level
instances form a dimension instance.

The multidimensional model is often implemented in relational databases
(ROLAP) [11], where fact data are stored in a fact table, and level instances are
stored in dimension level tables. In a ROLAP implementation two basic types of
conceptual schemas are used, i.e. a star schema and a snowflake schema [11]. In
the star schema, each dimension is composed of only one (typically denormal-
ized) level table. In the snowflake schema, a dimension is composed of multiple
normalized level tables connected by foreign key - primary key relationships. The
two basic DW conceptual schemas can be used for creating a starflake schema
[25]. In this schema some dimensions are composed of normalized and some of
denormalized level tables. Star schemas store redundant data and are generally
more efficient for queries that join upper levels of dimensions with a fact table.
Conversely, for such queries snowflake schemas offer worse performance but there
is no data redundancy.

The example “Auctions” DW snowflake schema is shown in Fig. 1. It includes
the fact table Auctions that stores data about finished Internet auctions. The
schema allows to analyze auctions and to aggregate values of measures price
and quantity, with respect to three dimensions, namely: Time, Location, and
Product. To this end, the Auctions fact table is connected to the dimensions
via foreign keys: dateID, cityID, and prodID, respectively. The dimensions have
hierarchical structures. For example, dimension Product is composed of two
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Fig. 1. The example data warehouse snowflake schema

level tables, namely Products and Categories, such that Products → Categories.
For simplicity reasons only the most important tables’ attributes are shown.
Notice that the price measure represents the current price that was paid for the
set of identical items in a given auction, whereas quantity is the number of the
sold items.

The example “Auctions” DW star schema is shown in Fig. 2. The Product,
Location, and Time dimensions were denormalized. Thus, each of them is imple-
mented as a single table.

Figure 3 shows the instance of dimension Product. It includes the instances
of level Categories and level Products. Level Categories include 2 instances,
namely ‘Ultrabook’ and ‘Tablet’. Level Products include 7 instances, namely
‘Asus Zenbook’, ‘Dell XPS Duo’, ‘Toshiba Portege Z930-14T’, etc. ‘iPad mini’,
‘Samsung Galaxy Note’, and ‘Asus Vivio Tab’ belong to category ‘Tablet’ and
the others belong to category ‘Ultrabook’.

Notice that throughout the paper we use the snowflake schema for illustration
purposes only. The Time-HOBI index, discussed in Sect. 4 is applicable to the
star, snowflake, and starflake schemas. Moreover, in Sect. 5 we evaluated the
index for both the star and snowflake schemas.
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Fig. 3. The example of the Product dimension instance

2.2 Star Queries

Star queries, executed on any of the aforementioned DW schemas, join a fact
table with multiple level tables. In Fig. 1, we marked (by means of dashed lines)
the tables joined by various star queries. For example, Q1 joins tables Auctions,
Cities, and Days, whereas Q3 joins Auctions, Cities, Regions, Countries, Days,
Months, and Years. As an example let us consider the star query Q2 that com-
putes monthly auction sales per region, as shown in Fig. 4.

3 Index Data Structures

Star queries can profit from applying some indexes in the process of retrieving
data. In this section we outline three indexes that inspired us while developing
Time-HOBI. They include: a join index, a bitmap index, and a bitmap join
index. We also outline how the oracle implementation of the bitmap join index
supports star queries exemplified by query pattern Q3.
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SELECT r.regionName, m.monthID, m.yearID, sum(a.price), sum(a.quantity)
FROM

Auctions a,
Days d, Months m,
Cities c, Regions r

WHERE
a.dateID=d.dateID
AND d.monthID=m.monthID
AND a.cityID=c.cityID
AND c.regionID=r.regionID

GROUP BY
r.regionName, m.monthID, m.yearID

Fig. 4. The example query Q2

3.1 Join Index

A join index represent the materialized join of two tables, say R and S. As
defined in [31,57], a join index is a table composed of two attributes. It stores
the set of pairs (ri, sj) where ri and sj denote identifiers of tuples from R and
S, respectively, that join on a given predicate. For the purpose of searching the
join index faster, it is physically ordered (clustered) by one of the attributes.
Alternatively, the access to the join index can be organized by means of a B-tree
or a hash index [39]. Typically, in a DW the index joins a dimension table and
a fact table. The index is created either on a join attribute (typically a primary
key) or on another attribute (typically storing unique values) of a dimension
level table. In order to illustrate the idea behind the join index let us consider
the Example 1.

Example 1. Let us consider the Products and Auctions tables from the DW
schema shown in Fig. 1. Their content is shown in Table 1. For explanatory
reasons, both tables include also explicit column ROWID that stores physical
addresses of records. ROWIDs also play the role of row identifiers. The join
index defined on column ProdID is shown in Table 2.

As one can observe from the above example, the join index stores a material-
ized (precomputed) join of tables Products and Auctions. Thus, it will optimize
queries like:

select ...
from Auctions a, Products p
where a.prodID=p.prodID ...

Table 1. Example tables in the “Auctions” data warehouse (from Fig. 1)

table Auctions table Products
ROWID price cityID prodID ROWID prodID prodName categID
0AA0 ... POZ 100 BFF1 100 HP Pavilion ELE
0AA1 ... WRO 230 BFF2 230 Dell Inspiron ELE
0AA2 ... POZ 100 BFF3 300 Acer Ferrari ELE
0AA3 ... WAW 300
0AA4 ... WAW 300
0AA5 ... WRO 230
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Table 2. Example join index on Products.prodID

Products.ROWID Auctions.ROWID

BFF1 0AA0
BFF1 0AA2
BFF2 0AA1
BFF2 0AA5
BFF3 0AA3
BFF3 0AA4

3.2 Bitmap Index

Analytical queries not only join data, but also filter data by means of query
predicates. Efficient filtering of large data volumes may be supported by bitmap
indexes [13,38,53,60]. Conceptually, a bitmap index created on an attribute am

of table T is organized as the collection of bitmaps. For each value vali in the
domain of am a separate bitmap is created. A bitmap is a vector of bits, where
the number of bits is equal to the number of records in table T . The values of
bits in bitmap for vali are set as follows. The n-th bit is set to 1 if the value of
attribute am for the n-th record is equal to vali. Otherwise the bit is set to 0.
At the implementation level, access to bitmaps can be realized either by means
of a B-tree whose leaves store pointers to bitmaps [38] or as simple arrays in a
binary file [48].

Example 2. In order to illustrate the idea behind the bitmap index let us review
the fact table Auctions, shown in Table 3. The table contains attribute prodID,
whose values are from the set {100, 230, 300}. A bitmap index created on this
attribute will be composed of three bitmaps, denoted as Bm100, Bm230, and
Bm300, as shown in Table 3.

Bitmap Bm100 describes rows whose value of attribute prodID is equal to
100, i.e., the first bit in this bitmap is equal to 1 since the value of prodID
of the first row in table Auctions is equal to 100. The second bit in Bm100
is equal to 0 since the value of prodID of the second row in Auctions does
not equal 100, etc. In exactly the same way the bits are set in Bm230 and
Bm300. Such a bitmap index will offer a good response time for a query selecting
for example data on auctions concerning products identified by 100 or by 300.

Table 3. The example table Auctions and the bitmap index created on attribute
Auctions.prodID

table Auctions bitmap index on Auctions.prodID
Bm100 Bm230 Bm300

price prodID ... prodID=100 prodID=230 prodID=300
... 100 ... ←− 1 0 0
... 230 ... ←− 0 1 0
... 100 ... ←− 1 0 0
... 300 ... ←− 0 0 1
... 300 ... ←− 0 0 1
... 230 ... ←− 0 1 0
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In order to find auction rows fulfilling this criterion, it is sufficient to OR bitmaps
Bm100 and Bm300 to construct the final result bitmap. Then, records pointed
to by bits equal to ‘1’ in the result bitmap are fetched from the Auctions table.

Bitmap indexes allow to answer queries with the count function without
accessing tables, since answers to such queries can be computed by simply count-
ing bits equal to ‘1’ in a result bitmap.

The size of a bitmap index strongly depends on the cardinality (domain
width) of an indexed attribute, i.e., the index size increases when the cardinal-
ity of an indexed attribute increases. Thus, for attributes of high cardinalities
(wide domains) bitmap indexes become very large. In order to reduce the size
of bitmap indexes defined on attributes of high cardinalities, the two following
approaches have been proposed in the research literature, namely: (1) exten-
sions to the structure of the basic bitmap index, e.g., [10,29,41,54,62,63], and
(2) bitmap index compression techniques, e.g., [4,14,37,52,59,61]. Discussing
these techniques is out of scope of this chapter and their overviews can be found
in [53,58].

3.3 Bitmap Join Index

A bitmap join index [5,39,41] combines concepts of the join index and the bitmap
index. Thus, the bitmap join index takes the advantage of the join index since it
allows to materialize a join of tables. It also takes the advantage of the bitmap
index with respect to efficient data filtering by means of AND, OR, and NOT
operations on bitmaps. Conceptually, this index is organized as the join index,
but instead of ROWIDs of a fact table’s rows the index stores bitmaps that
point to the appropriate fact table’s rows. A lookup entry to the bitmap is by
the ROWID of a row from a dimension level table (or an attribute uniquely
identifying a row in that table). Similarly as for the ordinary join index, the
access to the bitmap join index lookup column can be organized by means of a
B-tree or a hash index. In order to illustrate the idea behind the bitmap join
index let us consider the Example 3.

Example 3. Let us return to Example 1 and let us define the bitmap join index on
attribute prodID of level table Products. Conceptually, the entries of this index
are shown in Table 4. The lookup attribute of the index is prodID. A bitmap
is associated with every value of this attribute. For example, the bitmap for
prodID=100 points to the rows from table Auctions that concern this product,
i.e., the 1st and 3rd row in table Auctions concern a product of prodID=100.

3.4 Indexes in Star Query Processing

In order to asses how star queries utilize the indexes discussed above, we exe-
cuted in Oracle11g queries Q1, Q2, Q21, Q3, and Q31, as shown in Fig. 1. We
selected Oracle as it supports user-managed both bitmap indexes and bitmap join
indexes, whereas other systems, including IBM DB2 and Microsoft SQL Server,
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Table 4. Example bitmap join index organized as a lookup by attribute Prod-
ucts.prodID

Products.prodID bitmap

100 1
0
1
0
0
0

230 0
1
0
0
0
1

300 0
0
0
1
1
0

support only system defined temporal bitmap indexes [58]. In this section we
outline the execution of query Q3, expressed by means of the SQL code shown
in Fig. 5. Notice that Q3 allows to parameterize its selectivity by means of the
WHERE clause. We run the query for selectivities from 5 to 60 %.

In order to provide a query optimizer the means for optimizing the query,
we defined the following indexes: (1) the bitmap index on attribute year, (2) the
bitmap index on attribute countryName, (3) the concatenated bitmap join index
on year and countryName, using the SQL command shown in Fig. 6.

SELECT y.yearID, co.countryName, sum(a.price), sum(a.quantity)
FROM

Auctions a,
Days d, Months m, Years y,
Cities ci, Regions r, Countries co

WHERE
y.yearID in (year1, ..., yearN)
AND co.countryName in (country1, ..., countryN)
AND a.cityID=ci.cityID
AND ci.regionID=r.regionID
AND r.countryID=co.countryID
AND a.dateID=d.dateID
AND d.monthID=m.monthID
AND m.yearID=y.yearID

GROUP BY
y.yearID, co.countryName

Fig. 5. The example query Q3
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CREATE BITMAP INDEX bmi_a_years_countries
ON auctions(y.yearID, co.countryName)
FROM

Auctions a,
Days d, Months m, Years y,
Cities ci, Regions r, Countries co

WHERE
a.cityID=ci.cityID
AND r.regionID=ci.regionID
AND r.countryID=co.countryID
AND a.dateID=d.dateID
AND d.monthID=m.monthID
AND m.yearID=y.yearID

Fig. 6. The example concatenated bitmap join index

The query execution plan for selectivity equal 7 % is shown in Fig. 7. It was
constructed by the Oracle11g (Enterprise Edition Release 11.2.0.1.0 - 64bit Pro-
duction) cost query optimizer with full statistics available. We can notice that
the plan is quite complex. Even with the defined bitmap join index, 6 joins were
executed. For other tested query selectivities, their respective execution plans
were complex and expensive as well.

The analysis of execution plans of other star queries, including Q1, Q2, Q21,
and Q31 reveals that also these queries could be better optimized, i.e., the
costly join operations with hierarchical dimensions, including Time, could be

Fig. 7. Execution plan obtained from Oracle for star query Q3 with the selectivity
equal 7 %



192 A. Wojciechowski and R. Wrembel

eliminated or minimized. This observation led us to the development of the
index called Time-HOBI, originally proposed in [36].

4 Index Time-HOBI

The Time-HOBI index is build of three components, namely:

– Hierarchically Organized Bitmap Index (HOBI), where one bitmap index is
maintained for one dimension level [12],

– Time Index (TI) that implicitly encodes time in every dimension [36],
– Partial Aggregates (PA) - that store precomputed aggregates along dimension

hierarchies that is a new contribution introduced in this chapter.

In this section we present the three aforementioned components of Time-
HOBI, show how a star query can be executed based on the Time-HOBI index,
relate our index to a materialized view, and finally, we outline some alternative
implementations of HOBI, TI, and PA.

4.1 Hierarchically Organized Bitmap Index

HOBI belongs to the class of bitmap join indexes as the index is defined on
a dimension attribute and its bitmaps point to fact rows. HOBI is composed
of bitmaps organized in a hierarchy that reflects the hierarchy of a dimension.
Bitmaps on a lower level of a hierarchy are aggregated at an upper level.

Example 4. In order to illustrate the concept of HOBI let us consider dimension
Product, such that Products → Categories and the dimension instance, as shown
in Fig. 3. For this dimension, HOBI consists of two levels. At the lower level
- Products there exist 7 bitmaps, each of which describes auction sales of one
product, i.e., ‘Asus Zenbook’, ‘Dell XPS Duo’, etc. At the upper level - Categories
there exist 2 bitmaps, i.e., ‘Ultrabook’ and ‘Tablet’, one bitmap for one category
of sold products. The bitmaps are illustrated in Fig. reffig:TimeHobiExample in
the box entitled “HOBI for dimension Product”.

The upper level bitmap for ‘Ultrabook’, at level Categories, is computed by
OR-ing the four bitmaps from level Products, i.e., ‘Asus Zenbook’, ‘Dell XPS
Duo’, ‘Toshiba Portege Z930-14T’, and ‘Sony VAIO SVT1313S1E’. Similarly,
the ‘Tablet’ bitmap describes auction sales of products from this category and it
is constructed by OR-ing bitmaps for ‘iPad mini’, ‘Samsung Galaxy Note’, and
‘Asus Vivio Tab’.

4.2 Time Index

The Time dimension plays a special role as it is used in most of the star queries.
In order to eliminate the frequent join operation of a fact table with the Time
dimension, in [36] we proposed to implicitly encode the Time dimension in other
dimensions. Similarly as in [1,19,33] we assume that data stored in a fact table
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are sorted by a selected attribute, typically storing time. This assumption is
realistic since a DW is loaded incrementally in time intervals. Moreover, data
can be easily sorted by time in the ETL layer before being loaded into a DW.
The Time Index (TI) takes advantage of data ordering by time. It is created on
an attribute used to join a fact table with the Time dimension. TI stores ranges
of bit numbers belonging to a given time interval. The time intervals in TI are
identical as in the Time dimension.

The concept of TI is illustrated in Fig. 8. We assume that the Time dimen-
sion is composed of the following implicit hierarchy Days → Months → Y ears.
Dimension Di has only one denormalized level L with k instances. Thus, HOBI
defined for Di is composed of k bitmaps (denoted as B1, . . . , Bk) and they
describe rows in a fact table. Let us assume that there are z such rows in the
fact table. Therefore, every bitmap in HOBI is composed of z bits.

TI organizes bits in the bitmaps into intervals (segments) defined in the Time
dimension. Thus, bits b1, . . . , bi point to fact rows that come from day1, bits
bi+1, . . . , bi+x point to fact rows that come from day2, etc. Moreover, day1, . . . ,
dayn aggregate to month1. For this reason, bits b1, . . . , bj+x point to fact rows
that come from month1. Similarly, month1,month2, . . . ,month12 aggregate to
year1 and bits b1 to bo+x point to fact rows that come from year1.

Notice that: (1) all the bitmaps point to the same number of rows in a fact
table, i.e., the length of every bitmap is identical, and (2) all the bitmaps in HOBI
are divided into identical time intervals. For these reasons, TI is shared by all
bitmaps in HOBI. Time Index eliminates the joins of a fact table with dimension
Time as bit numbers representing fact rows that fulfill selection criteria on time
may be easily retrieved with the support of TI.

Example 5. In order to illustrate the concept of Time Index let us consider
10 auctions (stored in the table Auctions) held on some days in months from
February until July in the year 2010, as shown in Fig. 9. The TI maps the 9
distinct dates in the Time dimension into bit numbers. As the Auctions fact
table stores 10 rows, every bitmap in HOBI includes 10 bits. Thus, the date
‘25-Feb-2010’ maps to bit b1, ‘2-Mar-2010’ maps to the range of bits b2–b3, etc.
At the level Months, ‘February’ maps to bit b1, ‘March’ maps to the range of
bits b2–b4, ‘April’ maps to b5–b6, etc. At the level Year, ‘2010’ maps to b1–b10.

4.3 Partial Aggregates

Inspired by the concepts of Small Materialized Aggregates [33], Zone Maps [1],
and Zone Filters [19] (Sect. 6), we augmented HOBI and TI with sets of aggre-
gates that we call Partial Aggregates (PA). PA are computed for: (1) selected
measures, (2) selected aggregation functions, (3) a given dimension, (4) a given
dimension level, (5) a given dimension level instances, (6) a given time inter-
val. The aggregates are associated with HOBI and they also have a hierarchical
structure, which is identical to the structure of HOBI.
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Fig. 8. The concept of Time Index

Let, in a given data warehouse schema:

– M denote the set of measures (e.g., price, quantity) and mi ∈ M,
– AF denote the set of aggregate functions (e.g., min, max, avg, sum, count)

and aggFi ∈ AF,
– D denote the set of dimensions (e.g., Time, Product, Location) and di ∈ D,
– DL denote the set of dimension levels (e.g., Products, Categories, Cities,
Regions, Countries) and dli ∈ DL,

– LI denote the set of dimension level instances (e.g., ‘Ultrabook’, ‘Asus Zen-
book’, ‘iTablet’, ‘iPad mini’, ‘Poznan’, ‘Warsaw’) and lii ∈ LI,

– TI denote the set of time intervals in the Time dimension (e.g., 01-JAN-2013,
JAN-2013, 2013) and ti ∈ TI.

Then, formally PA is a function F : (mi, aggFi, di, dli, lii, ti) �→ v (v ∈ R).
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For example, F : (price, sum, Location, Cities, Warsaw, MAR−2013) maps
to the aggregate - sum of sales prices in ‘Warsaw’ (in dimension Location, level
Cities) in March 2013.

Partial Aggregates may be used:

– for selecting these segments of bitmaps that fulfill selection criteria based
on aggregates and intersect the segments with segments selected by selection
criteria defined by the intervals from the Time dimension, e.g.,
SELECT ...
WHERE sum(price) > 5000 AND yearID=2013
GROUP BY monthNr

– for computing aggregates on an upper level based on aggregates from a lower
level of a dimension hierarchy (for distributive and algebraic aggregate func-
tions), e.g., based on aggregate sales price per product in JAN 2013 computing
aggregate sales per product category in the same time interval,

– in aggregate queries without selection predicates, e.g.,
SELECT sum(price), c.countryName
FROM Auctions a, Countries c, ...
GROUP BY c.countryName

– in aggregate queries with multiple selection predicates defined by means of
dimensions, like for example Q3.

The application of Time-HOBI to index the tables in our example schema
(Fig. 1) is shown in Fig. 9. We assume that fact table Auctions stores 10 rows.
HOBI for dimension Product is composed of 7 bitmaps stored on level Prod-
ucts and 2 bitmaps on level Categories, as explained in Sect. 4.1. Since every
bitmap is composed of 10 bits, Time Index points to 10 rows. Auction row from
25-FEB-2010 is represented by bit b1, auction rows from 02-MAR-2010 are rep-
resented by bits b2 and b3. Auction rows from March 2010 are represented by
bits b2, . . . , b4, etc.

Following the definition of Partial Aggregates, they are stored for every bitmap
and for every time interval in Time Index, i.e., day, month, and year. For exam-
ple, at the level of bitmap ‘Asus Vivio Tab’, for 13-MAY-2010 there exist the
following partial aggregate: (price, sum, Product, Products, Asus Vivio Tab,13-
MAY-2010) → 100, for MAY-2010 there exist the following partial aggregate:
(price, sum, Product, Products, Asus Vivio Tab,MAY-2010) → 100, and for the
whole year 2010 there exist the following partial aggregate: (price, sum, Product,
Products, Asus Vivio Tab, 2010) → 205. For simplicity reasons we assumed that
only the price measure is aggregated by the SUM aggregate function.

Notice that HOBI (being the part of Time-HOBI ) is applicable to any dimen-
sion but Time, since the Time dimension is used to organize bits in HOBI.

4.4 Star Query Optimization with the Support of Time-HOBI

As we have shown in Sect. 3.4, the optimization of a simple star query Q3 requires
a complex execution plan with 6 joins. While applying Time-HOBI, we could
optimize the query more efficiently since Time-HOBI :
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Fig. 9. Time-HOBI for the Product dimension
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– eliminates joins of a fact table with the Time by applying TI ;
– allows efficient processing of bitmaps in HOBI ;
– allows to fetch only the segments of bitmaps that are relevant to a time period

selected in a query, by applying TI to HOBI ;
– eliminates joins of a fact table with other dimensions by applying HOBI ;
– eliminates or reduces the costs of computing aggregates of measures at various

levels of a dimension hierarchy by applying PA.

The theoretical execution plan of Q3 with the support of Time-HOBI is
shown in Fig. 10. The WHERE clause included the following selection criteria,
resulting in 7 % query selectivity:

WHERE
y.yearID in (2010, 2011)
AND countryName in (‘Poland’, ‘Germany’)

As it can be noticed, no joins are needed in this plan. The query can be
answered by accessing the following PA:

– (price, sum,Location,Countries, Poland, 2010),
– (price, sum,Location,Countries, Poland, 2011),
– (price, sum,Location,Countries,Germany, 2010),
– (price, sum,Location,Countries,Germany, 2011).

Addressing the partial aggregates is symbolized by:

– PA-Address(SUM)Y EARS
year=2010 or year=2011,

– PA-Address(SUM)COUNTRIES
countryName=′Poland′ or countryName=′Germany′ ,

whereas fetching the aggregates is symbolized by PA-Fetch.

4.5 Time-HOBI vs. Materialized View

Time-HOBI takes advantage of materialized partial aggregates. With this respect,
our index is similar to a materialized view as it can be applied to answering queries

COUNTRIES

countryName= 'Poland'
or countryName=’Germany’

year=2010
or year=2011

yearID, countryName, sum(price*quantity)

PA-Fetch

PA-Address(SUM)
YEARS

PA-Address(SUM)

Fig. 10. Query execution plan for query Q3 constructed with the support of Time-
HOBI
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computing the aggregates being materialized in PA. It also associates the aggre-
gates with their proper dimension levels and organizes the access to these aggre-
gates by means of PA. Unlike a materialized view, Time-HOBI additionally can
facilitate the execution of queries that filter fact data based on restrictions defined
at various levels of dimensions. It is done by means of HOBI - being a kind of
bitmap join index. In such cases, queries can be executed more efficiently with
the support of Time-HOBI than with the support of bitmap, join, or bitmap join
indexes, as it was shown in [36] and in Sect. 5. Finally, Time-HOBI eliminates the
need to join a fact table with theTime dimension, especially in snowflake schemas.
Such queries take advantage of Time Index in their execution plans. To this end,
the following star query processing algorithm is applied.

Star query processing with the support of Time-HOBI

1. By means of the Time Index find the bit numbers that correspond to the
given time interval < tk, tk+m >; let [bk : bk+m] denote the corresponding
range of bit numbers.

2. ∀i = (j, . . . , j + m) fetch fragments of bitmaps di pointed to by bit numbers
[bk : bk+m]; let the fetched fragments be denoted as f(dj) for dimension
instance dj and f(dj+m) for dimension instance dj+m.

3. Compute the final bitmap fragment F from f(di) (i = (j, . . . , j + m)) by
applying logical operators that were defined in the where clause of the star
query.

4. ∀bi ∈ [bk : bk+m]: if the bit value is equal to 1, then transform bi into the
physical addresses of the corresponding row and fetch the row.

To sum up, we believe that Time-HOBI offers slightly more flexibility than
materialized views as it combines materialized aggregates at multiple levels of
dimension hierarchies, bitmap join indexes, and encodes time on other dimen-
sions.

4.6 Implementation Issues

There are three major implementation issues that impact query performance
with the support of Time-HOBI, namely: (1) organizing access to bitmaps in
HOBI, (2) implementing Time Index, and (3) organizing access to Partial
Aggregates.

In the simplest case, when the domain of an indexed attribute is narrow,
HOBI bitmaps can be accessed by means of an array or list sorted by the bitmap
name (i.e., the value of the indexed attribute). In either of these implementations,
an element of an array cell or a list stores: (1) the value of an indexed attribute
and (2) a pointer to an appropriate bitmap. For wide domains, an access to the
bitmaps may be organized either as a B-tree-like index or hash function.

Regarding Time Index, a crucial implementation issue is to organize ranges
of bits for every time interval defined in the Time dimension. There are two
straightforward methods of implementing TI. The first one is based on a record
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structure and the second one is based on a tree structure. In a record-based
implementation every instance of the Time dimension is stored as a record in a
table. The record-based implementation can be altered in order to use a nested
table (in the spirit of Oracle), where the days records are nested in months,
which in turn are nested in a year record. A record-based and a nested table-
based implementations can be further indexed in order to reduce access time
to data. In the tree-based implementation, ranges of bits in the Time Index
are organized in n trees, where n is equal to the number of years in the Time
dimension. Each tree has a root that stores the year. A root points to the lower
level time intervals, e.g., months, that in turn point to the lower level time
intervals, e.g., days. This implementation is visualized in Fig. 9.

A straightforward storage implementation of Partial Aggregates is a table
with columns mi, aggFi, di, dli, lii, ti, v (Sect. 4.3). The access to the aggregates
may be organized by an index either on all the columns but v or on the lead-
ing columns. Alternatively, PA may be accessed by a hash function on the same
columns. PA may be implemented also as a n-dimensional array, dimensioned by
mi, aggFi, di, dli, lii, ti, with the cells storing v. Thus, the values of the dimen-
sions are used as indexes to the cells of interest.

4.7 Time-HOBI Limitations

As already mention, we assumed that data in a fact table must be sorted by the
value of an attribute storing time. The values of the ordering time attribute are
used to construct Time Index. For this reason, Time-HOBI can only be created
on the ordering time attribute.

For fine grained instances of the Time dimension, like seconds, milliseconds,
etc., Time Index would include millions or billions of items, resulting in a huge
and inefficient size. Moreover, the number of PA would also contributed to the
size of the whole Time-HOBI. These issues needs further investigation in the
future.

5 Experimental Evaluation

Time-HOBI was implemented as an application layer in Oracle11g that stored
all the data structures discussed in Sect. 4. In the experiments we use a sorted
list for HOBI, the record-based storage for TI, and table storage for PA.

The Oracle instance used 3.4 GB of SGA (i.e., the main memory allocated
to handle various instance buffers), 1.7 GB of which was allocated to a data
cache. The experiments were conducted on a computer equipped with: processor
- Intel Core i7-820QM 1.7 GHz, disk - Seagate ST9320423AS, and 8 GB RAM,
under Windows7 Server. The DW schemas for the experimental evaluation are
shown in Figs. 1 and 2. In the snowflake schema, the tables included the following
number of rows: Years: 6, Months: 72, Days: 2190, Cities: 10 000, Regions: 200,
Countries: 10, Categories: 230, Products: 48 000, and Auctions: 500 000 000, of
the total size equal 30 GB. In the star schema, the tables included the following
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SELECT ci.cityName, d.dayName, d.dayNr,
sum(a.price), sum(a.quantity)

FROM
Auctions a, Cities ci, Days d

WHERE
ci.cityName like ’pattern’
AND a.cityID=ci.cityID
AND a.dateID=d.dateID

GROUP BY
ci.cityName, d.dayName, d.dayNr

Fig. 11. The example query Q1 used in the experiments for the snowflake and star
schemas

number of rows: Days: 2190, Cities: 10 000, Products: 48 000, and Auctions:
500 000 000, of the total size slightly over 30 GB, due to the redundancy in the
dimension tables. The data used in the experiments were artificially generated
but data distributions reflected real data that we used in [12].

In this schema we run five different query patterns, as shown in Fig. 1 and
mentioned in Sect. 2.2 as well as the equivalents of the query patterns in the
star schema. For example, the pattern of Q1 is shown in Fig. 11. Its selectivity
is parameterized in the WHERE clause by means of attribute Cities.cityName.
Notice that Q1 is identical for the snowflake and the star schema.

The patterns of Q3 for the snowflake and the star schema are shown in
Figs. 12 and 13, respectively. Their selectivities are parameterized in the WHERE
clause by means of attributes countryName and yearID. Since the filtering pred-
icates are defined by means of the highest levels (i.e., Countries, and Years) of
the Location and Time dimensions, the lowest possible selectivity for Q3 is 1.6 %.

In the snowflake schema, the Q2 query pattern computes the aggregates
sum(a.price) and sum(a.quantity) at the levels of Months and Regions (cf. Fig. 1.
It is parameterized by means of attributes Regions.regionName and Months.

SELECT y.yearID, co.countryName,
sum(a.price), sum(a.quantity)

FROM
Auctions a,
Days d, Months m, Years r,
Cities ci, Regions r, Countries co

WHERE
NOT (co.countryName like ’pattern’)
AND (y.yearID > v_year)
AND a.cityID=ci.cityID
AND ci.regionID=r.regionID
AND r.countryID=co.countryID
AND a.dateID=d.dateID
AND d.monthID=m.monthID
AND m.yearID=y.yearID

GROUP BY
y.yearID, co.countryName

Fig. 12. The pattern Q3 in the
snowflake schema

SELECT d.yearID, ci.countryName,
sum(a.price), sum(a.quantity)

FROM
Auctions a, Days d, Cities ci

WHERE
NOT (ci.countryName like ’pattern’)
AND (d.yearID > v_year)
AND a.cityID=ci.cityID
AND a.dateID=d.dateID

GROUP BY
d.yearID, ci.countryName

Fig. 13. The pattern Q3 in the star
schema
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monthNr. Pattern Q21 computes the same aggregates at the levels of Days and
Regions and it is parameterized by means of attributes Regions.regionName
and Days.dayNr. Pattern Q31 computes the same aggregates as Q2 but at the
levels of Days and Countries. It is parameterized by Countries.countryName and
Days.dayNo.

In the star schema, the query patterns Q2, Q21, and Q3 compute the same
aggregates as their equivalents in the snowflake schema, however, Auctions is
joined with the denormalized dimension tables Days and Cities.

In the experiments we decided no to use any of the standard benchmarks
like TPC-H, TPC-DS [3], SSB [40], and [2] for two reasons. First, because the
benchmarks are typically designed to measure an overall system’s response time
and query processing efficiency for given query workloads. We found that it
is inadequate to our setting where we aimed at comparing the performance of
particular indexes with respect to parameterized selectivities of the queries and
parameterized number of joins. Second, the patterns of queries that we applied
in our experiments reflect real queries that were run in a real system [12] that
we modeled with the snowflake and the star schema.

The experiments that we conducted aimed at comparing the following char-
acteristics of Time-HOBI with respect to:

1. the performance of the aggregate query patterns Q1, Q2, Q21, Q3, and Q31,
2. index sizes,
3. index creation times.

We related the three characteristics to the competitors being:

– Oracle indexes in the snowflake schema,
– Oracle indexes in the star schema,
– Oracle materialized views in the snowflake schema,
– Oracle materialized views in the star schema.

In each of the experiments described below, for comparison, we defined the
following Oracle indexes:

– the bitmap index on attribute yearID in both the snowflake and the star
schema,

– the bitmap index on attribute countryName in both the snowflake and the
star schema,

– the concatenated bitmap join index on year and countryName that joined
tables Years, Months, Days, Countries, Regions, Cities, and Auctions in the
snowflake schema,

– the bitmap index on attribute monthNr in both the snowflake and the star
schema,

– the bitmap index on attribute regionName in both the snowflake and the star
schema,

– the concatenated bitmap join index on monthNr and regionName that joined
tables Months, Days, Regions, Cities, and Auctions in the snowflake schema,
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– the bitmap index on attribute dayNr in both the snowflake and the star
schema,

– the bitmap index on attribute cityName in both the snowflake and the star
schema,

– the concatenated bitmap join index on dayNr and cityName that joined tables
Days, Cities, and Auctions in the snowflake schema,

– the concatenated bitmap join index on yearID, monthNr, dayNr, country-
Name, regionName and cityName that joined tables Locations, Time and
Auctions in the star schema.

Additionally, we created the set of materialized views in the snowflake schema.
Their structures are shown in Fig. 14. The corresponding views in the star schema
computed the same aggregates.

CREATE MATERIALIZED VIEW MV_A_CITY_DAY ... AS
SELECT ci.cityId, d.dateId, ci.cityName, d.dayName, d.dayNr,

sum(a.price) as pricesum, sum(a.quantity) as quantitysum, count(*) as count
FROM Auctions a, Cities ci, Days d
WHERE a.cityId=ci.cityId AND a.dateId=d.dateId
GROUP BY ci.cityId, d.dateId, ci.cityName, d.dayName, d.dayNr

CREATE MATERIALIZED VIEW MV_A_REGION_MONTH ... AS
SELECT r.regionID, m.monthID, r.regionName, m.monthNr,

sum(a.pricesum) as pricesum, sum(a.quantitysum) as quantitysum, sum(a.count) as count
FROM MV_A_CITY_DAY a, Cities ci, Regions r, Says d, Months m
WHERE a.cityID=ci.cityID AND a.dateID=d.dateID AND ci.regionID=r.regionID

AND d.monthID=m.monthID
GROUP BY r.regionID, m.monthID, r.regionName, m.monthNr

CREATE MATERIALIZED VIEW MV_A_COUNTRY_YEAR ... AS
SELECT c.countryID, y.yearID, c.countryName,

sum(a.pricesum) as pricesum, sum(a.quantitysum) as quantitysum, sum(a.count) as count
FROM MV_A_REGION_MONTH a, Regions r, Months m, Countries c, Years r
WHERE a.regionID=r.regionID AND a.monthID=m.monthID AND r.coutnryID=c.coutnryID

AND m.yearID=y.yearID
GROUP BY c.coutnryID, y.yearID, c.countryName

CREATE MATERIALIZED VIEW MV_A_LOCATION_TIME ... AS
SELECT l.countryName, l.regionName, l.cityName, locationID,

t.year, t.monthNr, t.dayNr, timeID,
sum(a.price) as pricesum, sum(a.quantity) as quantitysum, count(*) as count

FROM Auctions a, Time t, Locations l
WHERE a.timeid=t.timeid AND a.locationID=l.locationID
GROUP BY l.countryName, l.regionName, l.cityName, locationID,

t.year, t.monthNr, t.dayNr, timeID

CREATE MATERIALIZED VIEW MV_A_LOCATION_TIME_R2 ... AS
SELECT countryName, regionName, yearID, monthNr,

sum(pricesum) as pricesum, sum(quantitysum) as quantitysum, sum(count) as count
FROM MV_A_LOCATION_TIME
GROUP BY countryName, regionName, yearID, monthNr

CREATE MATERIALIZED VIEW MV_A_LOCATION_TIME_R3 ... AS
SELECT countryName, yearID, sum(pricesum) as pricesum,

sum(quantitysum) as quantitysum, sum(count) as count
FROM MV_A_LOCATION_TIME_R2
GROUP BY countryName, yearID

Fig. 14. The materialized views created in the snowflake schema
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Fig. 15. Elapsed execution times of query pattern Q1 with the parameterized query
selectivity

5.1 Query Performance

In these experiments we measured the performance characteristics of the indexes
for query patterns Q1, Q2, Q21, Q3, and Q31. The selectivities of these queries
were parameterized and ranged from 0.001 % to 100 % of rows in the Auction fact
table. Time-HOBI indexes were defined in every dimension used in the queries,
thus the indexes included the Partial Aggregates by (Product, Time) as well as
(Location, Time), for all the levels in these dimensions. PA were created in the
snowflake and the star schema.

The obtained results for query pattern Q1 are shown in Fig. 15. Notice that
the query performance with the support of Time-HOBI is the same in the
snowflake and star schema. It is because, the structure of the index is the same
for both of the schemas. This observation is true also for the rest of the test
queries.

From Fig. 15 we can observe that the elapsed execution times of the queries
are much lower with the support of Time-HOBI than with the support of the
set of Oracle indexes, for the whole range of the query selectivity. Moreover,
the execution times of the queries are almost the same for Time-HOBI and the
materialized views, for the same range of the selectivity.

The performance characteristics of query patterns Q2, Q21, Q3, and Q31
are shown in Figs. 16, 17, 18, and 19. From the figures we can observe that
Time-HOBI also offers better performance than the Oracle indexes in both DW
schemas and offers similar performance to the Oracle materialized views.

For the above characteristics we computed ratio γ = tIND
Oracle

tTime−HOBI
, where

tIND
Oracle and tTime−HOBI denote elapsed query execution times with the support

of the set of Oracle indexes and Time-HOBI, respectively. Similarly, we computed
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Fig. 16. Elapsed execution times of query pattern Q2 with the parameterized query
selectivity

20 s

30 s

1 min

2 min

5 min

10 min

30 min

 0.01  0.1  1  10  100

e
x
e
c
u
t
i
o
n
 
t
i
m
e

% of rows

Time-HOBI
Oracle IND Snow
Oracle IND Star
Oracle MV Snow
Oracle MV Star

Fig. 17. Elapsed execution times of query pattern Q21 with the parameterized query
selectivity

ratio λ
tMV
Oracle

tTime−HOBI
, where tMV

Oracle denotes elapsed query execution times with the
support of the set of Oracle materialized views.

The minimum and maximum values of the ratios γ and λ obtained for query
patterns Q1, Q2, Q21, Q3, and Q31 are shown in Table 5. For every minimum
and maximum value we indicated the query selectivity.

From the performance characteristics shown above we conclude that:

– Time-HOBI outperforms the Oracle indexes for aggregate queries, for the
whole tested range of selectivities. As the experiments confirmed, this state-
ment is true for the snowflake and the star schema.
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Fig. 18. Elapsed execution times of query pattern Q3 with the parameterized query
selectivity
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Fig. 19. Elapsed execution times of query pattern Q31 with the parameterized query
selectivity

– Time-HOBI offers similar performance characteristics as the Oracle materi-
alized views for aggregate queries, for the whole tested range of selectivities.
As the experiments confirmed, this statement is true for the snowflake and
the star schema.

– Time-HOBI offers the same query performance for the snowflake and the
star DW schema as the structure of the index is the same for both of the
schemas.
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Table 5. The minimum and maximum values of the γ and λ ratios obtained for the
test queries

γ snow sch. γ star sch. λ snow sch. λ star sch.

min max min max min max min max

Q1 4.09 10.35 5.11 10.29 0.81 0.99 0.95 1.32

sel.75–100% sel.0.01% sel.0.01% sel.0.01% sel.0.01% sel.0.005–0.05% sel.5% sel.0.05%

Q2 283 1997 282 721 0.73 1.27 0.79 1.60

sel.0.5% sel.0.01% sel.0.2% sel.75% sel.0.125% sel.20% sel.5% sel.0.02%

Q21 5.29 32.37 5.71 31.90 0.92 3.14 0.41 4.37

sel.100% sel.0.01% sel.50% sel.0.01% sel.5% sel.0.01% sel.100% sel.0.01%

Q3 450 1292 417 853 0.84 1.09 0.87 1.07

sel.50% sel.100% sel.10% sel.75% sel.10% sel.1.6% sel.100% sel.1.6%

Q31 8.37 27.36 8.32 27.13 0.86 2.65 1.02 3.47

sel.10% sel.0.005% sel.10% sel.0.005% sel.10% sel.0.005% sel.100% sel.0.005%

5.2 Index Sizes

In these experiments we measured the sizes of Time-HOBI and compared them
to the sizes of Oracle indexes and Oracle materialized views, for various data vol-
umes being indexed (from 1 GB to 18 GB). The results are visualized in Fig. 20.
As it can be observed from the figure, the size of Time-HOBI is larger than the
size of the materialized views for the whole range of the fact table sizes and for
both DW schema implementations. It is not surprising as Time-HOBI stores
not only aggregates but also bitmaps. As compared to the Oracle indexes, in
the snowflake schema our index is about 2.1 times larger in the whole tested
range of DW size. In the star schema our index is about 1.5 times larger in the
whole tested range of DW size. Table 6 shows the exact sizes of the tested data
structures.
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Fig. 20. The sizes of Time-HOBI, Oracle indexes, and Oracle materialized views for,
a parameterized data volume
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Table 6. The sizes of Time-HOBI, the Oracle indexes, and the Oracle materialized
views, for the snowflake and the star schema

PA HOBI Time-HOBI Oracle IND Oracle IND Oracle MV Oracle MV
Data volume [MB] [MB] [MB] snow [MB] star [MB] snow [MB] star [MB]

1 [GB] 980 1105 2085 435 216 597 1412
5 [GB] 1310 1479 2789 1997 991 1644 1871
10 [GB] 1310 1505 2815 3638 1809 2508 1902
14 [GB] 1380 1458 2838 5324 2694 3356 1923
18 [GB] 1380 1472 2852 6644 3319 4026 1009

Recall that Time-HOBI stores three sets of data, i.e., time in Time Index,
bitmaps in HOBI, and precomputed aggregated values of selected measures in
Partial Aggregates. Table 6 shows the sizes of the aforementioned data structures,
the Oracle indexes and materialized views, for five data volumes in the snowflake
schema. The size of TI for 10 years time period is about 85 kB and it can be
neglected, [36]. The size of PA should be constant for a given constant number
of rows in dimension level tables. In our experiments, the size of PA changes
slightly with the increase of the data volume, cf. Table 6. In our opinion it may
be caused by a data allocation in database blocks (with different percentage
free for different data volume sizes). Thus with the almost constant size of PA
w.r.t. a data volume, for data volume sizes greater than 18 GB Time-HOBI
will be smaller than the Oracle indexes, for both the snowflake and the star
schema. Since the number of PA and the number of bitmaps in HOBI depends
on the number of levels in dimensions and does not depend on the schema
implementation, the size of Time-HOBI remains the same for the snowflake and
star schema.

5.3 Index Creation Times

In these experiments we measured the creation times of Time-HOBI and com-
pared them to creation times of Oracle indexes and Oracle materialized views,
for various data volumes being indexed (from 1 GB to 18 GB). The results are
shown in Fig. 21. The creation time characteristics are consistent with the index
size characteristics, i.e., the larger the index is the longer it takes to create it.
However, for data volumes larger than 5GB, Time-HOBI is created faster than
the Oracle indexes. Moreover, its creation time is comparable to the creation
time of the materialized views in the whole range of the test data volume.

As our index was implemented at an application layer, the procedure for
creating Time-HOBI was not optimized and data volumes processed for creating
HOBI were not shared while creating PA. In fact, the procedure executed joins
on Auctions and its dimensions (Time and Location) twice (two independent
queries). We believe that this procedure can be optimized at some extent, thus
reducing the index creation time.
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Fig. 21. Creation times of Time-HOBI, Oracle indexes, and Oracle materialized views,
for a parameterized data volume

5.4 Experiments Summary

Query performance comparison of Time-HOBI to the Oracle indexes reveals
that:

– the star queries that we tested in the snowflake DW schema were executed
from 4 to 1292 times faster (depending on a query) with the support of Time-
HOBI,

– the queries in the star DW schema were executed from 5 to 853 times faster
with the support of our index.

Query performance comparison of Time-HOBI to the Oracle materialized
views reveals that:

– the queries in the snowflake schema were executed in comparable times (λ
ranges from 0.81 to 2.65),

– the queries in the star schema were executed also in comparable times (λ
ranges from 0.79 to 4.37).

Size comparison of Time-HOBI to the Oracle indexes reveals that:

– in the snowflake schema our index is up to 4.8 times larger for a DW volume
1–7.5 GB, and it is up to 2.3 times smaller for a DW data volume 8–18 GB,

– in the star schema our index is up to 9.6 times larger for a DW volume 1–
16 GB, and it is up to 1.2 times smaller for a DW data volume over 16 GB.

Size comparison of Time-HOBI to the Oracle materialized views reveals that:

– in the snowflake schema our index is about 2.1 times larger in the whole tested
range of DW size,
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– in the star schema our index is about 1.5 times larger in the whole tested
range of DW size.

Creation time comparison of Time-HOBI to the Oracle indexes reveals that:

– in the snowflake schema our index is created from 1.18 to 3.37 times faster in
the whole tested range of DW size,

– in the star schema our index is created from 1.17 to 2 times faster for a DW
data volume greater than 5 GB.

Creation time comparison of Time-HOBI to the Oracle materialized views
reveals that:

– in the snowflake schema our index is created from 1.2 to 1.4 times slower in
the whole tested range of DW size,

– in the star schema our index is created from 1.1 to 1.5 times slower in the
whole tested range of DW size.

6 Related Work

Assuring an efficient access to large volumes of data is an important research
problem. Various physical structures have been proposed in the research liter-
ature to solve the problem. In this section we outline the physical structures
that inspired the development of Time-HOBI. The structures include indexes
and materialized aggregates.

6.1 Traditional Indexes

Various indexes have been proposed for different application domains. In rela-
tional databases and data warehouses, most widely applied index structures
in practice include: B-tree like indexes, bitmap indexes, and join indexes. They
gained popularity due to their relatively simple structures and maintenance algo-
rithms. In geographical databases, various multi-dimensional indexes have been
developed. For advanced data analysis in statistical databases, for data mining,
as well as for object databases hierarchical indexes have been developed.

The indexes from the B-tree family [26] are efficient only in indexing data
of high cardinalities (i.e., wide domains) and they well support queries of high
selectivities (i.e., when few records fulfill query criteria). However, for OLAP
queries that are often expressed on attributes of low cardinalities (i.e., narrow
domains), B-tree indexes do not provide an acceptable performance. For this
reason, for indexing data of low cardinalities, for efficient filtering large data
volumes, and for supporting OLAP queries of low cardinalities, bitmap indexes
have been developed (Sect. 3.2). A drawback of a bitmap index is that its size
increases when the cardinality of an indexed attribute increases. As a conse-
quence, bitmap indexes defined on attributes of high cardinalities become very
large or too large to be efficiently processed in main memory [63]. In order
to improve the efficiency of accessing data with the support of bitmap indexes
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defined on attributes of high cardinalities, either different kinds of bitmap encod-
ings have been proposed, e.g., [10,29,47,54,62] or compression techniques have
been developed, e.g., [4,52,53,61].

For efficient executions of star queries, a join index was developed [31,39,57].
It can be perceived as the materialized join of a level table and a fact table.
The index is created on a join attribute of a level table. The index is typically
organized as a B-tree. It differs from a traditional B-tree with respect to the
content of its leaves. The leaves of the join index store physical addresses of
records from all the joined tables. An extension to the join index was proposed in
[39] where the authors represented precomputed joins by means of bitmaps. The
join index whose leaves store bitmaps rather than ROWIDs is called a bitmap
join index. Bitmap join indexes provide an efficient optimization mechanism for
star queries not only in traditional data warehouses but also in spatial data
warehouses [8,51].

6.2 Multi-level Indexes

Concepts similar to the join index were developed for object databases for the
purpose of optimizing queries that follow the chain of references from one object
to another (oi → oi+1 → . . . oi+n). Persistent (precomputed) chains of object
references are stored either in an access support relation [28] or in a join index
hierarchy [23]. In [66] two index structures for indexing hierarchies of classes
were described. Both of them are based on tree-like structures.

In [34,35,49,50] indexes of multi-level structures have been proposed. A
multi-resolution bitmap index was presented in [49,50] for the purpose of index-
ing scientific data. The index is composed of multiple levels. Lower levels are
implemented as standard bitmap indexes offering exact data look-ups, while
upper levels, are implemented as binned bitmaps, offering data look-ups with
false positives. An upper level index (the binned one) is used for retrieving a
dataset that totally fulfills query search criteria. A lower level index is used for
fetching data from boundary ranges in the case when only some data from bins
fulfill query criteria.

In [34,35], a hierarchical bitmap index was proposed for set-valued attributes
for the purpose of optimizing subset, superset, and similarity queries. The index,
being defined on a given attribute, consists of the set of index keys, where every
key represents a single set of values. Every index key comprises signature S. The
length of the signature, i.e. the number of bits, is equal to the size of the domain
of the indexed attribute. S is divided into n-bit chunks (called index key leaves)
and the set of inner nodes. Index key leaves and inner nodes are organized into
a tree structure. Every element from the indexed set is represented once in the
signature by assigning value ‘1’ to an appropriate bit in an appropriate index
key leaf. The next level of the index key stores information only about these
index key leaves that contain ‘1’ on at least one position. A single bit in an
inner node represents a single index key leaf. If the bit is set to ‘1’ then the
corresponding index key leaf contains at least one bit set to ‘1’. The i-th index
key leaf is represented by j-th position in the k-th inner node, where k = �i/l�
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and j = i − (�i/l� − 1) ∗ l. Every upper level of the inner nodes represents the
lower level in an analogous way. This procedure repeats recursively up to the
root of the tree.

6.3 Multidimensional Indexes

Since more than 40 years of research in this domain a few dozens of multidi-
mensional indexes have been proposed, including the most frequently applied
families of R-trees [43,44,64] grid files, and K-D-trees. Excellent overviews of
existing multidimensional indexes have been proposed in [7,18]. Most of the
indexes have been designed for the support of access methods to spatial data
in geographical databases, mostly in a two dimensional space. Multidimensional
indexes are also applied to supporting top-k (e.g., [65]), k-NN queries (e.g., [67]),
and data mining (e.g., [30]).

Most of the multi-dimensional indexes are very complex data structures.
They are difficult to implement and to maintain and sometimes their complexity
penalizes the performance. For these reasons, some research efforts focus on
mapping the multidimensional indexes into relational DBMSs [7,16].

6.4 Materialized Aggregates

The second data storage structure that inspired our work on Time-HOBI are
materialized aggregates. Two types of such aggregates can be distinguished,
namely: (1) materialized views and (2) summary data. A materialized view is a
precomputed query whose result is stored in a database. Typically, various data
warehouse queries take advantage of materialized views in the process of query
rewriting. An overview of multiple research problems on materialized views can
be found in [20].

Summary data are materialized sets of aggregates, typically associated with
storage units of data, e.g., segments, extents (like in Oracle), buckets [33], or
zones [1,19]. The first concept, called Small Materialized Aggregates (SMA) was
proposed in [33]. The concept of SMA assumes that data are ordered on disk
by the value of a selected attribute, typically date. Physically, a disk is divided
into logical storage units called buckets. Every bucket stores at most n rows.
SMA is associated with each bucket. For each bucket, SMA typically include
aggregates like minimum and maximum value of the ordering attribute as well
as the number of rows in the bucket. The min and max values allow to check
whether the bucket fulfills selection criteria on an ordering attribute. If so, the
bucket is fetched from disk, otherwise it is skipped.

A concept similar to SMA, called Zone Maps, was implemented in Netezza
[1]. Netezza organizes disk space in zones, each of which has its own zone map.
The zone map includes minimum and maximum values of every attribute of a
table stored in the zone. Zone maps are used for verifying whether a given zone
qualifies to be accessed by a query.

Finally, [19] extends the two aforementioned concepts by means of zone filters
and zone indexes. The first mechanism generalize SMA and zone maps. It is
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similar to zone maps but it stores n minimum and n maximum values of every
attribute in a zone (where n>2). An separate index - a zone index is dedicated
to every zone to facilitate searching data within the zone. All the aforementioned
structures assume that the summary data are maintained within by a process
that loads a data warehouse.

Although SMA, zone maps, and [19] inspired the development of PA, it dif-
fers from these three concept as PA store aggregated values of measures at all
levels of dimension hierarchies, whereas in the three concepts minimum and max-
imum values of attribute values are stored for every bucket/zone. Moreover, PA
organizes the aggregates in hierarchies, whereas the three concepts not.

6.5 The Missing Functionality

From the index structures discussed above none was proposed for indexing hier-
archical dimensional data in a data warehouse. Moreover, none of them reflects
the hierarchy of dimensions. Such a feature may be useful for computing aggre-
gates in an upper level of a dimension based on data computed for a lower level.
Furthermore, none of them exploits the fact that the Time dimension is used in
most of the star queries in predicates and is used for aggregating measures.

From commercial DBMSs, IBM DB2 supports a cluster index and a multidi-
mensional cluster. Both data structures use B-tree based indexes to order data
by the values of selected attributes. Oracle11g supports a sorted hash cluster
used for the same purpose. Nonetheless, none of these data structures support
indexing hierarchical dimensions.

7 Summary

In this chapter we gave an overview of the indexes typically applied to the opti-
mization of star queries in a data warehouse, i.e., the bitmap, join, and bitmap
join indexes. We showed how an example star query is executed in Oracle, which
motivated us to develop an alternative index structure. We also presented the
previously developed Time-HOBI index. This chapter introduced as additional
contributions: (1) an extension to Time-HOBI by means of Partial Aggregates
and (2) experimental evaluation of the extended Time-HOBI. The performance
of the extended Time-HOBI was compared to the Oracle bitmap and bitmap
join indexes as well as to materialized views, for the snowflake and the star DW
schema.

In summary, Time-HOBI offers the following functionality:

– it eliminates joins of a fact table with the Time dimension as Time Index
stores bit ranges for all the time intervals in the Time dimension;

– it eliminates joins of a fact table with other dimensions as HOBI stores
bitmaps at all levels of a given dimension and the bitmaps point to rows
in a fact table;
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– it eliminates or reduces the costs of computing aggregates of measures at
various levels of a dimension hierarchy as Partial Aggregates provide access
to precomputed aggregates;

– it offers the same query performance for the snowflake and the star schema
as the structure of Time-HOBI is the same for both of the schemas.

The experimental evaluation of Time-HOBI shows that:

– the index outperforms the Oracle indexes for aggregate queries, for the whole
tested range of selectivities, which is true for the snowflake and the star
schema;

– the index offers similar performance characteristics as the Oracle materialized
views for aggregate queries, for the whole tested range of selectivities, which
is true for the snowflake and the star schema;

– for the DW data volume over 7.5 GB - for the snowflake and over 16 GB - for
the star schema the size of our index is smaller than the size of the Oracle
indexes;

– Time-HOBI is larger from 2 to 3.4 times than the set of materialized views;
– our index was created from 1.1 to 1.5 times slower than the set of material-

ized views (as the size impacts the creation time), however, Time-HOBI was
created from 1.17 to 3.37 times faster than the Oracle indexes.

Notice that for the experiments Time-HOBI was implemented as an applica-
tion on top of DBMS Oracle, resulting in some additional time overheads. One
may expect yet better performance while building the index in the DBMS so
that it could be efficiently managed by a system and used by a query optimizer.
Our ongoing work is focused on developing efficient algorithms for maintaining
all the components of Time-HOBI as well as on embedding the index and the
maintenance algorithms in the Oracle DBMS by means of the data cartridge
technology [56]. Next, we plan to evaluate the performance of the implementa-
tion w.r.t. query processing and maintenance. Our research in the future will
concentrate also on analyzing the impact of fine grained Time dimensions on
the size and performance of the index.
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