
Transparent Forecasting Strategies
in Database Management Systems

Ulrike Fischer(B) and Wolfgang Lehner

Technische Universität Dresden, Database Technology Group, Dresden, Germany
{ulrike.fischer,wolfgang.lehner}@tu-dresden.de

Abstract. Whereas traditional data warehouse systems assume that
data is complete or has been carefully preprocessed, increasingly more
data is imprecise, incomplete, and inconsistent. This is especially true in
the context of big data, where massive amount of data arrives contin-
uously in real-time from vast data sources. Nevertheless, modern data
analysis involves sophisticated statistical algorithm that go well beyond
traditional BI and, additionally, is increasingly performed by non-expert
users. Both trends require transparent data mining techniques that effi-
ciently handle missing data and present a complete view of the database
to the user. Time series forecasting estimates future, not yet available,
data of a time series and represents one way of dealing with missing
data. Moreover, it enables queries that retrieve a view of the database
at any point in time —past, present, and future. This article presents
an overview of forecasting techniques in database management systems.
After discussing possible application areas for time series forecasting, we
give a short mathematical background of the main forecasting concepts.
We then outline various general strategies of integrating time series fore-
casting inside a database and discuss some individual techniques from
the database community. We conclude this article by introducing a novel
forecasting-enabled database management architecture that natively and
transparently integrates forecast models.

1 Introduction

We can observe the transition of traditional data warehouse systems to big data
stores where massive amount of data arrives continuously in real-time from vast
data sources. Whereas traditional systems assume that data is complete or has
been carefully preprocessed using ETL tools, this is not true any more in the
context of big data and real-time requirements. Nowadays, data is increasingly
characterized by incompleteness, inconsistency, and imprecision. Nevertheless,
we can observe the requirements for sophisticated adhoc queries that extract
higher-level information out of the vast and incomplete data sets. This leads to
tremendous challenges of dealing with missing (past, present, and future) data
that arrives at a later point in time or might even never be available.

In fact, we require data mining techniques that fill in such non-existent data.
Various techniques from the statistical field aim at dealing with different kinds
of incomplete data, for example:

E. Zimányi (Ed.): eBISS 2013, LNBIP 172, pp. 150–181, 2014.
DOI: 10.1007/978-3-319-05461-2 5, c© Springer International Publishing Switzerland 2014

Transparent Forecasting Strategies in Database Management Systems 151

– Forecasting estimates future, not yet available, data of a time series.
– Imputation replaces missing data with substituted values based on similar

values observed in the same data set.
– Interpolation estimates a function between known data points to construct

new data points.
– Extrapolation estimates the characteristics of a whole population based on

the selection of a subset of individuals.
– Recommendation provides user ratings of items that have not been rated yet.

In the past, these techniques were often performed by highly qualified statisti-
cal experts, with long experience in the company, who manually experiment with
different algorithms and parametrization. Such manual approaches are infeasible
or even impossible for large data sets that grow and evolve at a rapid pace. More-
over, the non-expert user does not care about advanced data mining techniques.
The user expects a complete view of the data set at any point in time, inde-
pendent of its actual characteristics. Along with the traditional ANSI/SPARC
architecture of a DBMS, which has the goal to separate a users’ view of the data
from its physical representation, incomplete data should be handled transpar-
ently to the user by the underlying database system. As a consequence, data
mining techniques dealing with incomplete data should be seamlessly integrated
into the existing infrastructure of a database management system, maintaining
the declarative interface of a DBMS.

For example, assume a market research company that collects sales data
according to various retailers and product lines. Retailers communicate their
data to the market research company in regular time intervals. In this context,
it happens quite regularly that retailers fail to deliver data, provide incomplete
data or delay data delivery. Suppose a decision manager wants to create an
aggregated report of products sold between yesterday and tomorrow:

SELECT pname , time , SUM (s a l e s u n i t s)
FROM f a c t s f , products p
WHERE f . p roduct id = p . product id
AND time in (yes terday () , tomorrow ())
GROUP BY pname , time

Within this time interval, some stores might have failed to deliver their sales
data, so here an interpolation model could fill in such missing data. Alterna-
tively or additionally, an imputation model can be used to derive missing data
from similar stores. Finally, the data for tomorrow is not available at all, there-
fore, forecast models can be used to estimate future data. All these models are
created and transparently processed by the query engine, the user just receives
a traditional relational table containing the complete result set.

In fact, as most mining techniques are based on some kind of statistical model,
this will lead to a model-based database system, where incomplete, inconsistent
or imprecise data is represented trough statistical models. New query process-
ing, optimization, and execution techniques are required that work with models
instead of real data. Besides query processing, such a model-based database sys-
tem also impacts the design of a database to select and parametrize models that

152 U. Fischer and W. Lehner

allow efficient query processing as well as accurate query results. Finally, new
data has to be efficiently incorporated into the existing model configuration.

The design of such a model-based database system opens up many chal-
lenges. We have to deal with large amount of data incorporating real-time data
streams from many data sources. There are loads of existing statistical models,
ranging from very simple to rather complex ones with many parameter and tun-
ing opportunities. Both aspects, data size and parameter possibilities, pose high
challenges to the design of such a model-based database system. In addition,
data characteristics as well as query workloads are rapidly changing requiring a
self-adaptive and self-tuning approach.

Along with this overall goal of designing a model-based database system, in
this article, we turn our attention to one specific statistical technique, which is
time series forecasting. Hence, we are only interested in providing future, not yet
available data of a time series. Hereby, we focus on integrating forecast models
into a database management system in order to transparently support queries
on a future time interval, i.e., forecast queries.

The remainder of this article is organized as follows: We first outline the main
challenges of time series forecasting using three application examples (Sect. 2).
We continue by discussing the mathematical foundations of forecasting, includ-
ing frequently used statistical methods in this area (Sect. 3). We then dive into
technical aspects of extending database systems and give first of all a high level
overview of integrating statistical methods, but not necessarily time series fore-
casting, into database management systems (Sect. 4). Subsequently, in Sect. 5,
we review specific database techniques that explicitly address forecasting of time
series data. Based on the discussion of existing work, in Sect. 6, we introduce
a novel forecasting-enabled database management system that aims to fully
and transparently integrate time series forecasting within a DBMS. We finally
conclude in Sect. 7 and outline some further research challenges.

2 Forecasting Applications

Time series data appears in numerous domains and often forecasting of such
data is required for planning and decision making processes. In this section, we
discuss the characteristics of time series forecasting on three selected application
areas, namely production planning, energy load balancing, and online display
advertisement.

2.1 Production Planning

Typically, large volumes of historical sales data is stored in data warehouse sys-
tems and collected according to various characteristics of products, stores, and
customers. Often a multidimensional data model is used for such kind of appli-
cations where different facts (often called measures) are organized along several
dimensions [23]. The measures within a dimension are further divided into hier-
archies to support multiple granularities. In this context, analytical database

Transparent Forecasting Strategies in Database Management Systems 153

queries are not interested in single measures but in some form of summarized
data (e.g., sales in a certain area). The dimension hierarchies provide the key nav-
igation paths for interactive OLAP (Online Analytical Processing) on the data,
allowing for meaningful query formulation via drill-down, roll-up, or slice-and-
dice operations [47]. Besides querying historical data, forecasts of sales figures
form the basis for planning in many commercial decision-making-processes in
logistics and supply chain management.

According to Mentzer and Bienstock [57], a sales forecasting system should
follow several principles. First, sales forecasts should be provided in a central sys-
tem and tightly coupled with the database management system, allowing fast
access by various departments, such as production, distribution, and marketing.
Second, forecasts have to be available for various horizons (short-, mid-, and
long-term) and hierarchical levels, depending on the company’s needs. For exam-
ple, supply chain managers require long-term sales forecast to plan production
and storage facilities, whereas short-term forecasts are required for timely trans-
portation decisions. Third, the complexity of forecasting should be hidden from
a decision manager, who is usually not an expert in the statistical area. Forecast
results need to be provided in an easy-to-use format. Fourth, a sales forecasting
system should include a suite of time series techniques and provide a combination
of different techniques to benefit from their specific advantages, where Mentzer
and Bienstock see time series, regression and qualitative techniques (see Sect. 3)
as the most important approaches in sales forecasting. Finally, the best fore-
casting techniques for a time series should be selected automatically, by trying
a number of different techniques and selecting the technique that provides the
best forecast accuracy.

2.2 Energy Load Balancing

As another example, consider the energy market domain. One major challenge
is the constantly increasing capacities of renewable energy sources (RES) due
to governmental regulation efforts (e.g., climate saving propositions) and exces-
sive funding policies [21]. Renewable energy sources pose the challenge that
production depends on external factors (wind speed, amount of sunlight, etc.).
Hence, available power can only be predicted but not planned, which makes it
rather difficult for energy distributors to efficiently include RES into their daily
schedules.

The key to balance an energy distribution network successfully is to predict as
many of the most influencing (correlated) parameters for operations as possible.
Such forecasts are often made by domain-specific forecasting techniques specif-
ically designed for energy demand or supply. To forecast energy demand, for
example, Ramanathan et al. [72] propose a multi-equation forecasting technique
that creates a different statistical model for each hour of a day and includes
various variables that capture the seasonality of the data as well as external
influences (e.g., temperature).

In the past, energy balancing was typically done once per day at a specific
time and, accordingly, one-day ahead demand forecasts were calculated only on

154 U. Fischer and W. Lehner

a daily basis. The need for fast response times to react to new market situa-
tions (e.g., weather changes) as well as the continuous streams of new demand
and supply measurements poses additional real-time demands on the forecasting
process [26]. Thus, the runtime of forecasting is very critical and, more impor-
tantly, forecast models have to be continuously adapted to changes in the time
series behavior. Moreover, the hierarchical organization of the energy market
requires a careful selection of the forecasting granularity (e.g., single wind instal-
lation vs. complete regions), the efficient handling of real-time mass prediction
processes and the guarantee of consistency between hierarchy levels.

2.3 Online Display Advertisement

As a third example, online display advertisement allows advertisers to promote
products to users by having publishers display their graphical ads on web pages.
For example, a brokerage firm may wish to target males from California who visit
a Finance web site, and show an ad promoting its special offers to those users.
Such kind of targeted ads are channeled to users via ad networks — intermediates
that package and sell ad space from multiple publishers’ websites [82]. In order
to be able to accept contracts and allocate inventory, an ad network has to
have access to reliable forecasts of user visits. Overestimating user visit volumes
may result in penalties for the publisher if guarantees are not met, whereas
underestimating user visits may leave unsold user visits that often result in
substantial revenue loss.

The forecasting problem in online display advertisement has several chal-
lenges [1]. First, the data to be forecasted is very high-dimensional. Specifically,
each user visit is characterized by hundreds of attributes, including the demo-
graphics of the user (e.g., age, gender, location), explicitly stated interests of
the user (e.g., travel, spots), implicitly inferred interests of the user (e.g, plan-
ning a vacation), characteristics of the web page being visits (e.g., sports page,
travel page), and characteristics of the system being used by the user (e.g., PC vs.
mobile, IP address location). Second, as a consequence of the high-dimensionality
of the data, the number of combinations that needs to be forecasted is of the
order of trillions. A forecast can be requested for any combination of the hun-
dreds of attributes using arbitrary forecasting methods, ranging from traditional
time-series forecasting techniques up to latent class models [12]. Nevertheless,
forecasts have to be returned in real-time, of the order of a few hundred millisec-
onds. Several queries are issued to the forecasting system within a short span of
time to decide if an advertisers’ contract should be acceptable.

3 Mathematical Foundations of Time Series Forecasting

All three application areas are based on the traditional model-based time series
forecasting process, which we outline in this section. After introducing the basic
idea and terminology of forecasting (Subsect. 3.1), we detail the three main steps
of forecasting, namely model creation (Subsect. 3.3), model usage (Subsect. 3.4),

Transparent Forecasting Strategies in Database Management Systems 155

and model maintenance (Subsect. 3.5). For further readings we refer to standard
literature about time series analysis and forecasting [9,10,13].

3.1 Basic Idea and Terminology

A time series is sequence of observations taken sequentially in time, spaced at
equidistant time intervals. A time series up to the current time t is denoted as:

X = (x1, x2, ..., xt). (1)

In general, each point in time might be associated with multiple observations,
where we distinguished dependent and independent observations or variables.
Dependent variables, also known as measure or output variables, are those vari-
ables we actually want to forecast (e.g., product sales, solar energy production).
In contrast, those variables that we believe influence the value of the dependent
variables are referred to as independent or explanatory variables (e.g., product
price, sun radiation).

Forecasting refers to the estimation of values of a time series at some future
point in time. These future values are called forecast values or short forecasts
x̂t+k. The forecasts x̂[t+1;t+h] in the interval from the next point in time t+1 up
to time t+h are usually of most interest. The length of the interval is denoted as
forecast horizon h. Note that the term prediction is often used in a more general
sense and covers different problem types, e.g., classification, recommendation or
moving object prediction. In contrast, the term forecasting is only concerned
with estimating the next and future values of a sequence, i.e., a time series.

The quality of forecast values can be expressed by calculating prediction
intervals, which, for a certain probability, give an estimate of the interval in
which forecast values will fall. If new real data is available, the error of the
forecasts can be calculated by comparing forecasts with real time series data
using an error metric, e.g., the mean squared error (MSE).

A forecasting method is a procedure for computing forecasts from present
and past values. Most forecasting methods are based on a forecast model, which
is learned over historical training data and used to compute the forecast values
(model-based forecasting). Examples of approaches that do not belong to this
class of methods are judgmental or similarity-based forecasting methods.

A forecast model consists of the following parts:

– definition of input and output time series,
– definition of the forecasting method, which determines how forecast values are

calculated,
– model parameters of the forecasting method that have to be determined in

the model estimation step, and
– model state, representing internal variables of the forecasting method that

change with time.

The input of a model consists of n dependent and m independent variables,
whereas the output yields from the associated forecasts of the n dependent vari-
ables. The model parameters and model state directly depend on the used fore-
casting method.

156 U. Fischer and W. Lehner

1.1. Model Specification 1.2. Model Estimation 2. Model Usage

3.1. Model Evaluation

Selected
Model

Model
Parameters

Forecast
Values

Historical Time Series

3.2. Model Adaptation

New Real
Values

1. Model Creation

3. Model Maintenance

Forecasted Time Series

Fig. 1. General forecasting process

Finally, the different steps of forecasting can be summarized into a general
model-based time series forecasting process (Fig. 1):

1. Model Creation: A forecast model is created by defining input, output as well
as the forecasting method (model specification), and by estimating the model
parameters (model estimation).

2. Model Usage: Forecast values based on the created forecast model are calcu-
lated.

3. Model Maintenance: The forecast model is evaluated by comparing real time
series data with forecast values (model evaluation) and, optionally, model
adaption is triggered by recalculating the model parameters or choosing a
new model.

In what follows, we first discuss the characteristics of different forecasting
methods and describe two of them in more detail. We then have a closer look at
the three main steps of the forecasting process.

3.2 Overview Forecasting Methods

Numerous forecasting methods have been proposed in the literature, e.g., Gooi-
jera and Hyndman [36] summarized over 940 papers in the period 1982–2005.
Forecasting methods are often classified into time series methods (or univariate
methods) and causal methods (or multivariate methods) [13]. Time series meth-
ods assume that forecasts depend only on present and past values of the single
series being forecasted, possibly augmented by a function of time such as linear
trend. In contrast, in causal methods forecasts depend, at least partly, on one or
more additional (independent) variables (e.g., price, weather). Finally, forecast-
ing can also be implemented by machine learning approaches that exploit artifi-
cial intelligence techniques, e.g., neural networks [8]. Machine learning approaches
are not specifically designed for time series data and might be applied for

Transparent Forecasting Strategies in Database Management Systems 157

Table 1. Classification of forecasting methods

Time series methods Causal methods Machine learning

ARIMA [9] Multivariate linear Neural networks [88]
Exponential Regression [86] Support vector
Smoothing [40] ARMAX [9] Machines [60]
Multiple linear Bayesian networks [87]
Regression [34] Decision trees [56]

arbitrary predictive tasks, e.g., classification. Table 1 summarizes the different
forecasting methods and gives some literature examples where these methods
have been applied for time series forecasting. Many extensions to the basic for-
mulation of those forecasting methods have been developed, including domain
specific methods that are specifically designed to solve a prediction task in a
certain domain.

Various studies have compared the accuracy of the different forecastingar-
bitrary methods with varying results depending on the domain and forecasting
target. Exponential smoothing and ARIMA models have shown empirically to be
able to model a wide range of real world time series [54], and are usually compu-
tationally more efficient than elaborate machine learning approaches. The main
idea of both approaches is sketched in the following.

Exponential Smoothing. Exponential Smoothing is a popular scheme to pro-
duce smoothed time series, where past observations are weighted with exponen-
tially decreasing weights [33]. In other words, recent observations are given more
weight in forecasting than older observations. Different variants of exponential
smoothing have been proposed, varying in the number and characteristics of the
smoothing weights. The most common variants are called single, double, and
triple exponential smoothing.

For example, single exponential smoothing has only one weight parameter,
also known as the smoothing constant α:

at = αxt + (1 − α)at−1 with a0 = x0. (2)

The forecast of single exponential smoothing is a constant value based on the
last smoothed value at, independent of the forecast horizon h:

x̂t+h = at. (3)

This method is mainly used for stationary time series fluctuating around a
constant mean. In contrast, double exponential smoothing introduces an addi-
tional trend component, whereas triple exponential smoothing (also known as
Holt-Winters [40]) further applies a seasonal component.

158 U. Fischer and W. Lehner

ARIMA Models. ARIMA models describe the behavior of time series using
an auto-regression process [9] and consist of three main parts; the autoregression
part (AR), the integration part (I) and the moving average part (MA).

The autoregressive part AR(p) is computed by a linear combination of pre-
vious values up to a defined maximum lag (denoted p) combined with a random
error term εt:

xt =
p∑

i

φixt−i + εt. (4)

In contrast, the moving average part MA(q) describes a time series as a random
error term plus some linear combination of previous random error terms up to
a defined maximum lag (denoted q):

xt =
q∑

i

φiεt−i + εt. (5)

Hereby, the random error terms result from a white noise process, i.e., a set
of uncorrelated, normal-distributed, random variables with an assumed equal
variance. Most time series can not be described solely by an AR or MA forecast
model, as they show behavior of both models at the same time. For this reason, a
combination of both models is useful. Additionally, an integrated part I adjusts
the model for non-stationary time series, leading to so called ARIMA(p, d, q)
models. This basic formulation of ARIMA models can be extended to include
seasonality (SARIMA) or exogenous data (ARIMAX).

A variety of research has studied the relationship between exponential smooth-
ing and ARIMA models [33,59]. In general, all linear exponential smoothing meth-
ods have equivalent ARIMA models. However, exponential smoothing is often
preferred over ARIMA due to its simplicity, robustness and the surprising accu-
racy that can be obtained with minimal effort in model selection.

3.3 Model Creation

Model creation is the process of defining (model specification) and training
(model estimation) a forecast model for given time series data. In this section,
we discuss each of these steps separately. However, in automatic model identi-
fication approaches these two steps are often combined as models are built and
evaluated iteratively.

Model Specification. Model specification requires the definition of the input
and output time series as well as the definition of the forecasting method.

Input and Output Selection. The output time series (i.e., the dependent variables)
depends on the aim of forecasting and has to be specified by the application,
whereas the input time series (i.e., the independent variables) might be manually
or automatically selected. Hereby, the goal is to find those variables (often called
features) that are highly correlated and significantly contribute to the time series

Transparent Forecasting Strategies in Database Management Systems 159

to be forecasted. Statistical techniques, such as principal component analysis,
are often applied to find relationships between different features and to reduce
the number of features [32]. Another issue in input selection is given by the
time series history, e.g., how much history should be used for model estimation.
Hereby, existing research has studied the minimal historical length required for
specific forecasting methods [43] as well as the influence of the history length on
the forecast accuracy [5] and the runtime of the parameter estimator [77].

Forecasting Method Selection. For a given data set, we need to select the fore-
casting method with the highest accuracy, which can be done manually or auto-
matically. The manual approach requires knowledge of statistical theory and
uses diagnostic tools such as the correlogram. Choosing a model manually is not
possible if a large number of time series is involved or if the forecast is done by
non-experts in the statistical area. In the automatic approach, the best model
is selected empirically according to the in-sample error or a model selection cri-
teria such as the Akaike’s Information Criterion (AIC). AIC chooses the model
that maximizes the so-called likelihood function and includes a regularization
term, which basically avoids overfitting by increasing the training error with the
number of parameters fitted in the model. Hyndman et al. [42] developed a state
space framework for the class of exponential smoothing methods, where the best
method is chosen automatically based on AIC. Heuristic model identification
approaches for the class of ARIMA models have also been developed [41]. All
automatic approaches still have the drawback that they select a single model
that has to be best at all times. Ensemble approaches increase robustness by
combining forecasts of several models using weighted linear combinations [36].

Model Estimation. In model estimation, the parameters of the forecasting
method (called model parameters) are fitted to a given training time series. Thus,
model estimation tries to find the best parameter combination for the training
data. This process involves two main components — an optimization function (to
specify which parameter combination is best) and an optimization approach (to
control the search strategy). Most common optimization approaches follow an
iterative search process based on the steepest descent or hill climbing technique.
In each iteration one or several parameter combinations are evaluated using the
optimization function and subsequently, based on the outcome of the evaluation,
a new parameter combination is chosen for the next iteration. After termina-
tion, the best parameter combination according to the optimization function is
outputted (Fig. 2).

The optimization function is composed of the forecasting method and the
error metric used to evaluate the forecast values. Commonly used error metrics
are least squares or maximum likelihood approaches.

Optimization approaches are mainly distinguished into derivative-based and
derivative-free algorithms. Derivative-based methods (e.g., gradient descent,
quasi-newton) exploit the optimization function’s first or second derivations to
move directly into the direction of the steepest descent. If the optimization
function is not derivable gradient approximation techniques can be applied.

160 U. Fischer and W. Lehner

Parameter Evaluation

Parameter Selection

Optimization Function
(forecast method + error metric)

Best Parameter Combination

Time Series
Data

Estimation
Parameters

(max. iterations,
max. stepsize, …)

Fig. 2. Parameter estimation process

In contrast, derivative-free algorithms (e.g., simulated annealing, nelder-mead)
make only direct evaluations of the optimization function, i.e., treat it as black-
box. Finally, the optimization approach can be configured with various parame-
ters, such as the maximum number of iterations or the maximum step size for
selecting the next parameter combination.

3.4 Model Usage

Model usage applies the created model to forecast future values of the time series
for a given forecast horizon h. In model-based forecasting, the time-consuming
part is given by the model creation step, whereas model usage requires only the
application of a function (with the trained parameters).

A more complex aspect of model usage concerns the aggregation of time
series data. Time series data may be aggregated either across time, called tem-
poral aggregation, or across several time series, called contemporaneous aggrega-
tion [13]. For example, suppose we have sales figures for different brand sizes of
different products in successive weeks. Such data may be quite volatile and dif-
ficult to forecast without some form of aggregation, either across time (e.g. over
successive 4-week periods) or across products (e.g. sum all brand sizes for the
same brand). A common problem in inventory control is whether to develop a
summary forecast for the aggregate of a particular group of items and then allo-
cate this forecast to individual items based on their historical relative frequency,
called the top-down approach, or make individual forecasts for each item, called
a bottom-up approach. This line of research is called hierarchical forecasting [31].

3.5 Model Maintenance

As time proceeds, new values of the time series are observable, which impact the
forecast model. First, the state of the model has to be updated to the current
time series values, which we refer to as model update. Second, the parameters
of the model or even the forecasting method might change, which is meant by

Transparent Forecasting Strategies in Database Management Systems 161

the term model maintenance. Complex seasonal patterns or unexpected changes
in time series’ characteristics (also called concept drift) like customers’ buying
preferences or the influence of weather predictions usually require such an adap-
tion of the model. Model maintenance exhibits two major challenges: (1) when to
trigger forecast model maintenance (model evaluation) and (2) how to efficiently
adapt the forecast model parameters (model adaption).

Model Evaluation. If new real data is available, the model can be evaluated
by calculating the forecast error using a specified error metric. Commonly known
error metrics are the mean absolute error (MAE) and mean squared error (MSE).
Such error metrics, however, depend on the scale of the time series values, are
hard to judge and do not allow comparisons between time series of different scale
or mean. In contrast, percentage error metrics evaluate the error’s magnitude
instead of its size. One example is the symmetric mean absolute percentage error
(SMAPE) [53], which was also used in the M3-competition — a mayor time series
competitions in the business forecasting domain [54].

Simple model evaluation approaches trigger model adaption independently
of the actual time series data and might be time-based (after a time interval),
update-based (after a fixed number of new values) or event-based (after updating
an exogenous variable or on request). More advanced approaches monitor the
temporal development of the time series. For example, error-based approaches
evaluate the forecast error after each new real value and trigger adaption when-
ever the error surpasses a predefined threshold [16]. Other approaches use statis-
tical information about the time series like minimum and maximum values [39]
or statistical tests [51].

Model Adaption. A simple way to realize model adaption is by starting from
scratch and by re-executing the model estimation and, optionally, the model
identification step as done in the initialization. This can easily be improved by
reusing previous information, e.g., by providing the last parameters of the model
as starting parameters to the model estimation step. A more advanced app-
roach stores previous model parameters in a decision tree according to specific
context information (e.g., type of day, temperature) and uses them as starting
point in the estimation step if the same context reoccurs [17]. Another approach
extends genetic algorithms with dynamical features, where previously good mod-
els are given an advantage in future selection rounds [83]. Orthogonal approaches
adapt the training set of the models and include only recent observations in
the model creating step, either employing fixed-size or dynamic windows [85].
All these approaches use offline parameter estimation approaches, where the
parameters are fully reestimated using any of the previously discussed optimiza-
tion approaches. As an alternative, approximate online optimization algorithms
[90] may be applied, which evaluate the objective function after each new time
series value and alter the parameter estimate made so far accordingly. However,
the parameters by this approach are only approximative and will deviate from
parameter estimates produced by full optimization. Finally, the forecast model

162 U. Fischer and W. Lehner

itself might be designed in an adaptive way, which aims at completely avoid-
ing the need for recalculating the model parameters. Self-adaptive forecasting
methods extend existing forecasting methods with time-dependent parameters
(e.g., [72]). Ensemble methods combine forecasts of several models and adapt
the weights of the ensemble members over time.

4 Architectural Integration

Recall our vision of a model-based database system outlined in the introduc-
tion. In terms of time series forecasting, our overall objective is the transparent
integration of forecast models inside a database management system. We dis-
cussed the main challenges of typical forecasting applications in Sect. 2, such
as high-dimensional data, real-time requirements, complex and domain-specific
forecasting methods, diverse workloads, non-expert users, and fast evolving data
sets. Moreover, in Sect. 3, we highlighted the most important steps of the fore-
casting process and outlined challenges in this context, such as the selection
of the best forecasting method, long parameter (re-)estimation times, and the
importance of a smart maintenance strategy.

We now turn our attention to the actual integration of forecasting inside a
database management systems. First of all, in this section, we review general
solutions to the integration of any kind of statistical method, not necessarily
time series forecasting, into a DBMS and outline to what extent they support
our overall objective as well as the discussed challenges. We classify existing
methods into (1) no integration approaches (Subsect. 4.1), (2) partial integra-
tion approaches that try to keep changes to the database as small as possi-
ble (Subsect. 4.2), and (3) full integration approaches that actually extend the
functionality of a database system (Subsect. 4.3).

4.1 No Database Integration

No database integration approaches refer to the use or integration of statistical
approaches in other system categories, such as external software or Map-Reduce
environments.

Statistical Software Environments. Traditionally, statistical computations
have been performed outside the database system by specialized software, which
uses the DBMS primarily as backend data server. Ganesan and Shenoy [50]
provide a survey of forecasting software up to the year 2006. Probably the most
well-known commercial software environments are Matlab [55], SAS [75] and
SPSS [78]. All include a large variety of specific forecasting methods including
approaches for automatic and ensemble forecasting.

A popular open-source statistical software package is the R framework [71].
With over 2,000 add-on packages, it is comparable to the big commercial pack-
ages SAS and SPSS. In the context of time series forecasting, it contains a wide

Transparent Forecasting Strategies in Database Management Systems 163

variety of model types and parameter estimators. Model types range from lin-
ear models, exponential smoothing, ARIMA up to machine learning approaches.
Additionally, automatic model identification approaches for ARIMA and expo-
nential smoothing models are available [41]. A general-purpose optimization
functions including five different optimization approaches (e.g., Nelder-Mead,
Simulated Annealing) is used to estimate the parameters of the various model
types. As R is open-source it can be easily extended with new, domain-specific,
forecasting methods. A number of approaches aim at improving the handling of
large amount of data in R [76]. The proposed techniques range from simple ones
that require rewriting and adapting of existing scripts and functions up to more
complex ones that try to adapt the R environment in a transparent manner. For
example, an approach called RIOT [89] focuses on storing and querying arrays,
and tries to make R more I/O efficient by introducing a new expression algebra.

Map-Reduce Environments. Massive data sets and and large clusters of
machines have led to an increased interest in implementing statistical algorithms
on Map-Reduce environments. Several research has investigated the implement-
ing of scalable versions of machine learning algorithms on Map-Reduce, ranging
from proprietary (e.g., [67]) to open source implementations [6]. In contrast,
declarative machine learning approaches try to avoid the low-level implementa-
tions of specific algorithms on Map-Reduce. For example, SystemML [35] pro-
vides a declarative high-level language for writing machine learning algorithms,
which is automatically compiled and optimized into a set of Map-Reduce jobs.
Another declarative approach is MLbase [49], which proposes an optimizer that
selects and dynamically adapts the choice of the learning algorithm.

All discussed approaches exhibit the general problem of being outside the
database system. This might be valid in application scenarios where data is
stored in external files or fits into main memory, and database characteristics
such as transaction management are not required. However, if data is managed in

Fig. 3. Exploiting SQL and UDFs

164 U. Fischer and W. Lehner

a traditional database management system those approaches have several draw-
backs. They require data transfer from the database to the statistical software
system and vice versa, might lead to inconsistencies between data and models
and miss optimization potential such as the reuse of models by multiple queries.
Surely, some or all of this functionality could be implemented in the external
system. This, however, requires the re-implementation of existing concepts of the
DBMS and will eventually lead to the design of a new database system outside
of the actual database system.

4.2 Partial Database Integration

Partial database integration approaches try to leave the database system itself
unchanged or include advanced analytical functionality by keeping the changes
to the databases as small as possible. We distinguish three approaches in this
area: SQL extensions and UDFs, customized functions, and bi-directional com-
munication approaches.

Exploiting SQL and UDFs. The first set of approaches uses database query
languages to express linear algebra functions or even higher-level algorithms and,
thus, try to get a database system to act like a statistical software environment.
Such approaches either (1) use directly SQL to implement data mining algo-
rithms, (2) hide mining functionality behind user defined functions and provide
high-level SQL extensions to interact with mining models and results, or (3) sup-
port the implementation of mining algorithms by providing low-level language
extensions (Fig. 3).

First, SQL can be used to directly implement data mining algorithms, such
as Bayesian classifiers [65] and clustering approaches [64]. Figure 3(a) shows an
excerpt of the k-means clustering algorithm in SQL, namely the computation of
the Euclidean distance between the data points and the centroids.

Second, high level language constructs for specific mining tasks have been
proposed. The MAD approach [15] consists of a hierarchy of mathematical con-
cepts in SQL that enable vector and matrix operations, simple functions as well
as sophisticated analytical methods such as ordinary least squares, conjugate
gradient, or support vector machines (Fig. 3(b)). The Splash system [22] views
statistical models, such as probability density functions, as SQL aggregation
operations and proposes extensions to the relational data model and SQL query
language for interaction with such models. Ordonez and Pitchaimalai [66] pro-
pose a general system that integrates statistical models such as correlation, linear
regression, principal component analysis, and clustering into a database using
SQL queries and UDFs. Besides these general approaches, a large number of
research papers has addressed specific data mining methods. Examples include
association rule mining [45] and sequential patterns [74]. All approaches provide
a high-level query language that hide statistical details from less sophisticated
users.

Transparent Forecasting Strategies in Database Management Systems 165

In contrast, the ATLaS system [84] introduces a lower-level language, where
the user can integrate simple data mining algorithms with user-defined aggre-
gates by implementing three standard functions in SQL — initialize, iterate, and
terminate. The ATLaS language processor optimizes and translates ATLaS SQL
programs (e.g., decision tree classifier, apriori) into C++ code. In another work,
Feng et al. [24] propose a unified architecture (called BISMARCK) for convex
programming problems, such as support vector machines, where local solutions
are always globally optimal. Their main component is an in-RDBMS implemen-
tation of the incremental gradient descent optimization approach that allows
to solve a number of convex programming tasks in a unified way. Analogue to
ATLaS, a developer can integrate analytic tasks by implementing three stan-
dard functions using user-defined aggregates, using any language supported by
the DBMS (Fig. 3(c)). Additionally, performance optimizations, namely parti-
tioning and parallelization schemes, are studied.

Exploiting SQL and UDFs for data mining algorithms has the advantage of
being flexible: the analyst is able to develop algorithms independently on top
of the database and nevertheless is able to profit from performance gains by
running analytical methods inside the database [15,66]. However, SQL itself is
not designed to express statistical computations. SQL follows a declarative logic
(e.g., it lacks a convenient syntax for iteration), whereas statistical computing
requires imperative and functional programming logic. This leads to a high over-
head of statistical computations and makes it impossible to express sophisticated
time series methods in SQL. In contrast, UDFs allow arbitrary programming lan-
guages supported by the DBMS and might be used to implement advanced time
series methods. However, within all approaches models are explicitly queried and
not transparently processed as first class citizens inside the database. Further-
more, within an UDF, all decision have to be made locally, whereas a DBMS
exhibits a global view over all queries and operators, allowing joint optimization
techniques such as model reuse and maintenance in multidimensional data sets.

Customized Functions with Proprietary Languages. Instead of devel-
oping SQL extensions, another possible approach is to implement data mining
functionality internally as customized black box functions and offer proprietary
languages to the corresponding methods. This approach has been used by most
commercial database management systems, which provide advanced time series
forecasting methods to some extend.

Microsoft SQL Server offers a Data Mining Extension (DMX) for creating
models for various mining tasks such as association rule mining, clustering, and
also time series forecasting [79]. Two explicit time series forecasting methods
are included, autoregressive trees and ARIMA models, which are by default
combined to a hybrid forecasting method. DMX supports a set of functions
that allow to query a forecast model for predictions and additional statistical
information (Fig. 4 (a)). Chaudhuri et al. [14] propose optimizations for queries
on classification and clustering models in SQL Server. Using model-specific

166 U. Fischer and W. Lehner

Fig. 4. Comparison of forecast functionalities in SQLServer and Oracle

algorithms, predicates on data mining models are transformed to simple selection
predicates, which can then be exploited for access path selection.

Oracle Data Mining (ODM) provides twelve data mining algorithms that
address classification, regression, association rules, clustering, attribute impor-
tance, and feature selection problems [63]. ODM provides PL/SQL and Java
application programming interfaces for model building and model scoring func-
tions as well as a Oracle Data Miner graphical user interface for data analysts
who want to use a GUI. Additionally, Oracles offers a FORECAST command as
part of its OLAP DML (Fig. 4 (b)), which supports linear as well as non-linear
regression methods or exponential smoothing [61].

The IBM DB2 Warehouse data mining capabilities provide algorithms for
mining tasks such as clustering, classification, association rule mining and regres-
sion [7], but no specific time series forecasting methods are supported. Data
mining models are represented using the Predictive Model Markup Language
(PMML) and stored in relational tables.

Commercial database systems increase the efficiency by pushing statistical
computation closer to the database and also offer some advanced time series fore-
casting methods. However, due to the usage of proprietary languages, forecast-
ing is not integrated within the relational processing and optimization of SQL
queries. Additionally, the black box approach makes it difficult to customize,
extend and optimize data mining functionality, including the whole forecasting
life cycle. Subsequently, models are not handled as first class citizens leading to
same drawbacks as discussed for UDFs.

Bi-directional Communication. Finally, a third possibility is to reuse exist-
ing statistical tools like R and improve the cooperation between the database
and the statistical software system.

Ricardo [18] focuses on large-scale data management systems such as Hadoop
and proposes a system where large-scale computations are expressed in JAQL,
a high level query interface on top of Hadoop, while R is called for smaller-scale
single-node statistical tasks. This requires the programmer to identify scalabil-
ity of different components of an algorithm, and re-express large-scale matrix
operations in terms of JAQL queries.

Transparent Forecasting Strategies in Database Management Systems 167

A second example is the integration of R into the SAP in-memory comput-
ing engine. Große et al. [37] developed a shared memory-based data exchange
to reduce the communication overhead between R and the database, and, addi-
tionally, included R scripts as part of the database execution plan. The latter
approach allows multiple R runtimes in parallel processing advanced analytic
functionality.

On the commercial side, Oracle R Enterprise [62] embeds the functionality
of R inside the Oracle database. A transparency layer supports mapping of R
data types to Oracle Database objects and generates SQL transparently from R
expressions. Additionally, R scripts can be executed inside the database and the
Oracle R Connector for Hadoop enables R users to work with a Hadoop cluster.

Bi-directional communication approaches avoid the re-implementation of sta-
tistical functionality and reuse well established statistical software environments,
which usually provide advanced time series forecasting functionality. As proposed
by Große et al. [37], R scripts can be encapsulated into a native database opera-
tor, allowing the processing and optimization of statistical computations within
the traditional query execution plan. However, again, the whole statistical com-
putation is treated as black box within the R operator and statistical models
are hidden within R scripts. Therefore, models can not be transparently precom-
puted, materialized and managed within the database system, and optimization
possibilities on the forecasting process itself are limited.

4.3 Full Database Integration

In contrast to partial integration approaches, full integration approaches either
design a completely new special-purpose database system or extend the core
functionality of a traditional database system.

Special-Purpose Database System. A representative of a special-purpose
database system is SciDB [11], which targets application domains that involve
very large array data such as scientific applications. The SciDB database is orga-
nized as collections of n-dimensional arrays and addresses challenges like array
storage and partitioning as well as parallel processing of array operations. SciDB
supports query patterns such as array slicing and dicing, array scans, and binary

time x y temp
0 1 1 20
0 15 10 18
1 10 8 15

time x y temp
0 10 10 19.5
0 10 20 20.5
1 10 10 16

Fig. 5. Model-based views in MauveDB

168 U. Fischer and W. Lehner

array operations, but no advanced statistical methods like time series forecasting.
The approach of SciDB adapts and optimizes the database system specifically
to the target use case and goes far beyond the idea of integrating statistical
methods inside a database system. Our goal is to provide time series forecasting
within traditional database processing for various use cases and to benefit from
existing database technologies, requiring a more general full database integration
approach.

Traditional Database System. The MauveDB project [19] integrates statis-
tical modeling inside a DBMS using so-called model-base views. Model-based
views generalize the view concept and allow the definition of views as statistical
models using extensions to SQL (Fig. 5). Such views can be queried like tra-
ditional view leading to new classes of view access operators inside the DBMS.
Additionally, MauveDB provides different maintenance strategies that keep mod-
els consistent with changes to the data, e.g., no, partial, or full materialization.
A similar motivation follows FunctionDB [80], where mathematical functions are
treated as first-class citizens inside a DBMS. Queries are answered with discrete
points that are computed from piecewise polynomial functions, where the data
is discretized as late as possible. These leads to various new relational operations
that operate directly on the symbolic representations of the functions.

Akdere et al. [3] expand the idea of MauveDB and propose a Predictive Data-
base Management System (PDBMS), called Longview, that enables declarative
predictive queries as well as automatic model training and selection. Longview
provides two interfaces for access to its predictive functionality. A direct inter-
face offers direct access to the functionality of the prediction models (regression
and classification), whereas a declarative interface is used for high-level access by
non-expert users. Prediction models can be built using the CREATE PREDICTOR
command and then directly queried or referenced in traditional views. Internally,
a model manager is responsible for creating materialized models or selecting
models in an ad-hoc fashion. However, Akdere et al. [3] provide only a high-
level overview over such a system and identify several open research aspects,
including automatic selection of materialized models for given cost and accuracy
constraints as well as execution and optimization of predictive queries.

Both projects, MauveDB and Longview, integrate statistical methods within
a database by viewing models as first class citizens. However, they target statis-
tical methods such as interpolation or classification, and not time series forecast-
ing. Forecasting requires specific time series forecasting methods as well specific
model identification, model evaluation, and model maintenance strategies. Fur-
thermore, both approaches require the explicit selection of a model in a query
and do not realize declarative and transparent forecast queries.

Besides these general approaches, a number of papers has addressed database
aspects of specific mining models. For example, the HAZY project [48] builds
upon the work of MauveDB [19] and addresses the incremental maintenance of
classification views. The Monte Carlo Database System [46] allows the creation
of arbitrary stochastic models for uncertain data and focuses on Monte Carlo

Transparent Forecasting Strategies in Database Management Systems 169

analysis of such models. Simple regression methods have been natively supported
by relational database systems for about a decade, and have been incorporated
into the SQL language [4]. Other approaches focus on support vector machines
[58] and interpolation functions [38].

Additionally, specific time series approaches have been proposed, which we
discuss in more detail in the next section.

5 In-DBMS Time Series Forecasting Techniques

We now review dedicated time series forecasting techniques in the database con-
text. Such approaches usually address a specific forecasting method or scenario
and discuss individual aspects of the forecasting process in this context.

The processing of declarative forecast queries in traditional databases was
first introduced within the Fa System [20]. The main contribution of Duan and
Babu [20] is an automatic feature selection approach for forecasting multidi-
mensional time series. A query execution plan in Fa consists of a sequence of
transformers, which shift or remove attributes from the input data set; a builder,
which computes a forecast model from the transformed data set; and a predictor
to make the forecast itself. Fa’s plan search is based on an iterative algorithm.
Each iteration selects a set of attributes using several heuristics and empirically
evaluates five different forecasting methods (regression and machine learning
approaches) for the selected attributes, leading to more and more accurate plans
over time. Furthermore, an adaptive version of the plan search algorithm for
continuous forecast queries is proposed.

Later, Ge and Zdonik [34] proposed an automatic model selection approach
for multivariate regression models. Their approach is based on the observation
that the best history length of the time series, in terms of accuracy and effi-
ciency, varies according to the requested forecast horizon. An empirical approach
iteratively increases the history as well as the number of data points and uses
statistical tests of hypotheses to build a single regression model. A skip-list data
structure supports the efficient selection of the data at a certain granularity.
Additionally, a randomized algorithm is provided that chooses a set of forecast
models for a given query workload and maintenance constraints. Maintenance
either involves rebuilding the regression model or choosing new properties of the
models, i.e., history length and data granularity, where the latter is done after
a fixed number of new time series values. Ge and Zdonik also introduce query
optimization techniques for range, aggregation, and join queries exploiting the
properties of regression models. To compute a join over a future time range,
for example, a simple approach would generate all future data points using the
regression models and then perform a traditional join on the raw data. In con-
trast, the second relation could simply use the regression functions of the first
relation and solve an equality condition to retrieve the matching tuples. How-
ever, such optimization techniques can only be exploited by simple regression
function and are not applicable to more sophisticated time series methods, which
require additional input data to compute the forecast values (e.g., auto-regressive
models).

170 U. Fischer and W. Lehner

A formal definition of a forecast operator was developed by Parisi et al. [69]
Also, the integration of forecast operators with standard relational operators
was explored by identifying simple plan restructuring rules for three relational
operators; selection, projection, and union.

In another work, Akdere et al. [2] present optimization techniques for contin-
uous prediction queries using Bayesian Networks as forecasting method. They
propose to model point and range-based prediction queries as query plans and
introduce different materialization options within a plan. A selection approach
finds an execution plan with minimum computation costs for given memory
constraints.

The challenge of forecasting high-dimensional data was addressed in the
area of online display advertisement [1]. Hundreds of attributes and trillions
of attribute combinations have to be forecasted, making it impossible to build a
forecast model for each single time series in the database. To solve this issue, only
forecast models for a small subset of attribute combinations are built, which are
selected manually for seasonality and historical importance. Forecasts for remain-
ing attributes are obtained by exploiting correlations between the attributes.
Specifically, three different correlation approaches are evaluated: a Naive Bayes
approach that assumes attribute independence, a partwise independence app-
roach that infers combinations of correlated attributes, and a sampling-based
approach that computes correlations for a sample of the data.

In the area of data stream management, research has investigated the joint
forecasting of multiple data streams. The MUSCLES method [86] uses multi-
variate linear regression to forecast values of one stream based on the previous
values of all streams. MUSCLE is able to adapt to changing correlations among
time sequences. SPIRIT [68] finds correlations among data streams by comput-
ing the principal components. An auto-regressive model is built directly over the
principal components and used for the estimation of missing values.

In terms of model maintenance, Rosenthal and Lehner [73] developed an
incremental model adaption approach for simple auto-regressive models and pro-
pose a generic approach, called on-demand estimation, for more complex ARIMA
models. The parameters of ARIMA models can be estimated using the maximum
likelihood approach, which tries to maximizes the probability of reproducing the
training data from the given parameters. On-demand estimation incrementally
maintains the so called likelihood function and triggers model adaption if new
time series values lead to significant changes in the function’s optimum.

Maintenance issues have also been discussed in the context of streaming
databases and sensor networks. Tulone and Madden [81] propose an error-based
model evaluation strategy for auto-regressive models. Model adaption is trig-
gered based on two thresholds, which distinguish outlier values and distribution
changes in the data. The latter suggest that re-learning the model might be
necessary. In contrast, the sensor data management architecture PRESTO [52]
retrains models periodically. Ikonomovska et al. [44] propose an incremental

Transparent Forecasting Strategies in Database Management Systems 171

stream mining algorithm for regression and model trees, including drift detec-
tion and model adaptation to maintain accurate and updated regression models
at any time.

To sum up, the need for integrating analytical methods into traditional data-
bases has been identified by many existing research projects, addressing general
approaches as well as specific forecasting methods. However, non of the exist-
ing approaches provide a complete solution for in-DBMS forecasting, includ-
ing declarative forecast queries, arbitrary forecasting methods, relational query
processing, query optimization, forecast model maintenance, transparent model
reuse, and automatic model selection. Following the discussion of the general
forecasting process from Sect. 3.1, we now introduce an architecture that inte-
grates the whole forecasting life cycle natively into an existing DBMS and, addi-
tionally, benefits from existing work on in-DBMS forecasting techniques.

6 A Flash-Forward Database System

In contrast to flash back queries that allow a view on the data in the past, we
developed a Flash-Foreward Database System. We explain the necessary exten-
sions to a traditional DBMS from two angles. First, in Subsect. 6.1, we investigate
changes to the different types of schemas of a DBMS, which are usually described
by the ANSI/SPARC architecture. Subsequently, in Subsect. 6.2, we discuss the
actual implementation of a forecast-enabled database management system.

6.1 ANSI/SPARC Architecture

The ANSI/SPARC architecture forms an abstract design standard for a data-
base management systems and gives a general architecture for database func-
tions, interfaces, and usages. The objective of the three-level architecture is to
separate the users’ view of the data from the way that it is physically repre-
sented. Specifically, the use of the data is described in the external schema, the
meaning of the data in the conceptual schema, and the data storage in the inter-
nal schema. Time series forecasting consists of two major data entities — time
series and forecast models — that have to be arranged within the ANSI-SPARC
architecture. We now systematically study each of the three levels of the archi-
tecture and discuss where we have to add new concepts and where we can reuse
existing concepts from the ANSI-SPARC architecture (see Fig. 6) [25].

External Schema. The external schema in the traditional ANSI/SPARC archi-
tecture consists of user-defined data views, which can be seen as virtual tables
storing the results of specific queries. Time series can just be seen as a special
view that ensure the representation of the data as time series. A time series view
requires at least a time attribute containing discrete points in time and another
attribute exhibiting the measurements at these specified moments, for example:

172 U. Fischer and W. Lehner

Conceptual
Schema

Internal
Schema

Par��oning

Materializa�on

Index Structures Model Index Structures

Logical
Access Path

facts

date
quan�ty
price
l_id

loca�on

l_id
city

Physical
Access Path

Time Series View

date
salesunits

�me
value

External
Schema

Rela�onal
Data

Forecast
Models

CM Output

future_date
forecast_value

Tradi�onal View

city
quan�ty

Composite
Forecast
Model

Atomic
Forecast
Model

Materializa�on

Data Storage

AM
Output

Fig. 6. Integration of forecasting within the ANSI/SPARC architecture

CREATE VIEW t imeSer iesView AS
SELECT MONTH (date) AS month , SUM (s a l e s u n i t s) as s a l e s
FROM f a c t s f , products p
WHERE f . p roduct id = p . product id
AND p . pname = ’ audio ’
AND month in (now() − 3 months , now() + 3 months)
GROUP BY month

A time series view can represent historical values, forecast values, or both. If
forecast values are involved, the time series view has to be defined by a query
requesting future values. It might contain further information such as standard
deviation or prediction intervals, which clearly distinguish future from historical
values. Once real values are available, they replace the forecast values.

Conceptual Schema. The conceptual level includes a data schema that
describes available entities, their relationship and contained attributes and can
be seen as an abstraction from the internal data representation. Likewise, a
composite forecast model is defined as a conceptual abstraction from a concrete
atomic forecast model. A composite model might directly refer to a single atomic
forecast model from the internal schema, representing a simple forecast of a time
series, e.g., sales units of audio devices. However, composite forecast models can
also describe a (hierarchical) forecast model composition. When forecasting sales
units of audio devices in Germany, for example, the forecasting can be decom-
posed into forecasts of the sales units for all German states, or further down in
the hierarchy, sales units of all German cities. The composite forecast model can
define a hierarchical forecast composition referring further composite models on
multiple hierarchy levels and, on the leaf level, ultimately refer to atomic forecast

Transparent Forecasting Strategies in Database Management Systems 173

CM123

CM1

AM11 AM12

CM2

AM21

CM3

CM31 CM32

AM311 AM321

Munich

Holt
Winters

 = 0.8
 = 0
 = 0.5

Method Parameter State
a = 30.4
b = 20.5
 ...

Bavaria

Germany

Fig. 7. Example model composition

models defined in the internal schema (see Example in Fig. 7). Multiple atomic
forecast models, with different forecasting methods or parameter combinations,
might be referenced by one composite model on the leaf level, enabling ensemble
forecasting.

With respect to the external layer, each composite forecast model is linked
with a single time series view from the external schema. It further defines a
single output, the composite model output (CM output), which is a special table
complying to the same rules as the time series view and exhibits the same hier-
archical forecast model composition as defined for the associated composite fore-
cast model. The forecast values, i.e., the composite forecast model output, are
computed by a weighted linear combination of the referenced forecast models
according to the defined forecast model composition.

Internal Schema. The logical and the physical data access paths are defined
in the internal schema of the ANSI-SPARC architecture. Logical access paths
refer to data organization aspects like partitioning and materialization, whereas
the physical access paths define low level access structures like indexes. Likewise,
atomic forecast models are defined that represent a non-decomposable forecast
model. A single atomic forecast model is represented by input and output defi-
nitions, the forecasting method, model parameters, and the current model state
(see Subsect. 3.1). Here, the input is the data as defined in the associated time
series view, referenced through the connected composite forecast model. The
forecasting method is chosen from a forecast model catalog that represents all
forecasting methods available in the DBMS and is predefined with respect to
the application domain (similar to the approach of Longview [3]). The output of
atomic forecast models is represented by a special data structure called atomic
forecast model output (AM Output). Optionally, additional attributes might be
included in the model output (e.g., prediction intervals).

Traditionally, materialization is performed to precompute complex database
queries. Similarly, composite and atomic models can be materialized for faster
query response times. Materialized models might store composition rules, model
parameters, model states, or even the model output, i.e., forecast results. On
the physical access paths, specific model specific index structures might be

174 U. Fischer and W. Lehner

applied [27,34]. Additionally, traditional or customized time series index struc-
tures ensure efficient processing of time series data and access of time series
values in a subsequent order.

6.2 DBMS Architecture

In contrast to the ANSI/SPARC architecture, which mainly describes interfaces,
we now discuss the actual realization of a flash-forward database system [28].
Figure 8 shows the main components of a database management systems, exem-
plary on the open-source DBMS PostgreSQL [70]. Our extensions to traditional
database components are shown by grey boxes. In what follows, we shortly out-
line the core idea of the main components, more details can be found in [27–30].

First of all, declarative forecast queries require the extension of the parser
so that forecast-specific keywords (e.g., forecast horizon, forecasting attributes,
forecasting method) are recognized. After parsing, the statement is identified
as complex (e.g., select, insert, delete) or simple (e.g., create table) by the
traffic cop. Simple utility commands are processed by a dedicated component,
which contains forecast model specific utility commands (e.g., create model, drop
model). This enables a database administrator to explicitly create and delete
models. Complex statements are planned by the optimizer. Hereby, the existing
optimizer is extended with (1) new forecast-specific physical operators, (2) new
cost models for those operators as well as (3) new optimizer rules.

Following the general forecasting process, forecast operators decouple model
creation and model usage functionality. The CreateModel operator is responsi-
ble for model creation. It receives a time series view as input and outputs a set
of forecast models. Subsequently, the Forecast operator receives as input a set
of forecast models and outputs a time series relation containing corresponding
forecast values. In case of ad hoc forecast queries, these two operators appear
jointly, with the Forecast operator sitting on top of the CreateModel opera-
tor. However, the separation of both operators enables the transparent reuse of
materialized models.

Materialized models are handled by two new components —model matching
and model maintenance [27]. Model matching is responsible for finding suitable
models for a given forecast query, including atomic forecast models and poten-
tial model compositions. Depending on the query type, model matching can be
accessed by either the optimizer or executor. In contrast, model maintenance is
performed after insert statements. It is responsible for finding models that are
based on those inserts. Model maintenance includes a model update step, an
evaluation step and, optionally, a parameter re-estimation step.

Besides, the transparent reuse of materialized models, the optimizer is also
responsible for processing ad hoc forecast queries that require the creation of
a model at query runtime. Hereby, we exploit traditional database sampling
techniques to reduce the amount of processed data by the CreateModel operator
[29]. For example, one optimization techniques reduces the time series length for
parameter estimation.

Transparent Forecasting Strategies in Database Management Systems 175

Parser

Traffic Cop

Rewriter

Optimizer

Executor

Utility Commands

Forecast Query
Parser

Forecast Query
Optimizer

Forecast
Operators

Catalog

Access Methods

Storage Manager

Model
Index

Nodes/Lists
Forecast
Nodes

Utilities

Query Processor

User / Application

Model
Maintenance

Model
Commands

Model
Matching

Forecast
Methods

Model Configuration Advisor

DBMS

Fig. 8. Architecture of a flash-forward database system

The discussed query processing components are supported by other modules.
The catalog stores meta data about atomic and composite forecast models as
well as the previously mentioned forecasting method catalog. As discussed in
Subsect. 6.1 access methods are extended with model-specific access structures,
supporting the model matching and model maintenance components [27]. Infor-
mation about internal query structures and query plans are stored in nodes and
lists in PostgreSQL. Thus, new nodes for forecast queries have to be added. The
remaining two components, the storage manager and utilities, containing sup-
port functions, are currently not touched by our extensions. Traditional tables
are used to store time series data as well as models, which enables the direct
reuse of the different functionalities of a storage manager.

Besides the extension of internal components, one additional external com-
ponent, the model configuration advisor, is available [30]. Similar to a traditional
index or materialized view advisor, which proposes a physical design of indexes
and materialized views to the database system, the model configuration advi-
sor recommends a physical design of forecast models. In contrast to traditional
advisers, which usually focus on minimizing the runtime of a given workload
(optionally giving some storage constraints), the optimization objective of the
model configuration advisor is twofold — minimize the query runtime and max-
imize the forecast accuracy. The technical challenge of the advisor comes from
the fact that there are no known ways to estimate the accuracy of a physical
design of forecast models without actually deploying and querying it. Hence, the

176 U. Fischer and W. Lehner

model advisor is based on an iterative process that, based on heuristics, selects
a set of candidate time series in each iteration for which a model should be built
and analyzed. Parameters of the advisor like the number of candidate models
are automatically tuned in a control phase.

7 Conclusions and Future Work

The need for integrating statistical methods into databases has been identified
by many existing research projects, addressing general approaches as well as
specific statistical methods. In this article, we provided a review of existing
work and discussed its applicability for supporting a transparent model-based
database system, where we specifically focused on forecast models. Based on the
traditional ANSI/SPARC architecture, we introduced a novel forecast-enabled
database management system, the flash-forward database system. Our approach
belongs to the class of full database integration approaches and integrates the
whole forecasting life cycle.

Recall the application scenarios and associated requirements presented in
Sect. 2. The proposed flash-forward database systems enables forecasting by non-
expert users (e.g., supply chain managers) and hides the complexity of the fore-
casting process. It allows the integration of a suite of forecasting techniques
and domain-specific forecasting methods (e.g., for energy demand and supply
forecasting). The reuse of materialized forecast models enables the processing of
forecast queries in real-time as required, for example, in energy load balancing or
display advertisement. The maintenance component continuously and efficiently
adapts models to changes in the time series behavior (e.g., weather changes in
the energy domain). Finally, the model configuration advisor selects a physical
design of forecast models for large multi-dimensional data sets (e.g., in product-
ing planning), balancing query efficiency and forecast accuracy.

Although we specifically focused on forecast models in this article, many
of the discussed challenges, foundations, and concepts can be applied to other
statistical models. We have taken a first step towards a model-based database
system and opened up interesting opportunities for further research. We conclude
by mentioning a few of them:

– Configuration Maintenance: How can we maintain a configuration of forecast
models in an online fashion? Can we develop incremental algorithms that
avoid the complete re-execution of the forecast model advisor?

– Parallelized Query Execution: How can we improve the execution of adhoc
forecast queries that require the creation of a new model? Can we develop
efficient operators that exploit parallelization opportunities of modern (het-
erogeneous) hardware environments?

– Lineage: Can we provide the user with information about the origin as well
as reliability of the query result?

Transparent Forecasting Strategies in Database Management Systems 177

References

1. Agarwal, D., Chen, D., Lin, L., Shanmugasundaram, J., Vee, E.: Forecasting high-
dimensional data. In: Proceedings of the 2010 ACM SIGMOD International Con-
ference on Management of Data, pp. 1003–1012 (2010)

2. Akdere, M., Çetintemel, U., Upfal, E.: Database-support for continuous prediction
queries over streaming data. Proc. VLDB Endowment 3, 1291–1301 (2010)

3. Akdere, M., Cetintemel, U., Riondato, M., Upfal, E., Zdonik, S.B.: The case
for predictive database systems: opportunities and challenges. In: Fifth Biennial
Conference on Innovative Data Systems Research, pp. 167–174 (2011)

4. Alur, N., Haas, P., Momiroska, D., Read, P., Summers, N., Totanes, V., Zuzarte,
C.: DB2 UDB’s High Function Business Intelligence in e-Business. IBM Redbook
Series (2002)

5. Andersen, T.G., Bollerslev, T., Lange, S.: Forecasting financial market volatility:
sample frequency vis-a-vis forecast horizon. J. Empirical Finan. 6, 457–477 (1999)

6. Apache. Apache Mahout (2013). http://mahout.apache.org/
7. Ballard, C., Rollins, J., Ramos, J., Perkins, A., Hale, R., Doerneich, A., Mil-

ner, E.C., Chodagam, J.: Dynamic Warehousing: Data Mining Made Easy.
IBM Redbooks Series (2007). http://www.redbooks.ibm.com/redbooks/pdfs/
sg247418.pdf

8. Bontempi, G., Ben Taieb, S., Le Borgne, Y.-A.: Machine learning strategies for
time series forecasting. In: Aufaure, M.-A., Zimányi, E. (eds.) eBISS 2012. LNBIP,
vol. 138, pp. 62–77. Springer, Heidelberg (2013)

9. Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis: Forecasting and
Control, 4th edn. Wiley, New York (2008)

10. Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting. Pren-
tice Hall, Englewood Clifs (2002)

11. Brown, P.G.: Overview of sciDB: large scale array storage, processing and analysis.
In: Proceedings of the 2010 ACM SIGMOD International Conference on Manage-
ment of Data, pp. 963–968 (2010)

12. Cetintas, S., Chen, D., Si, L., Shen, B., Datbayev, Z.: Forecasting counts of user
visits for online display advertising with probabilistic latent class models. In:
International Conference on Research and Development in Information Retrieval,
pp. 1217–1218 (2011)

13. Chatfield, C.: Time-Series Forecasting. Chapman & Hall, Boca Raton (2000)
14. Chaudhuri, S., Narasayya, V., Sarawagi, S.: Efficient evaluation of queries with

mining predicates. In: Proceedings of the 18th International Conference on Data
Engineering, pp. 529–540 (2002)

15. Cohen, J., Dolan, B., Dunlap, M., Hellerstein, J.M., Welton, C.: MAD skills: new
analysis practices for big data. Proc. VLDB Endowment 2, 1481–1492 (2009)

16. Dannecker, L., Böhm, M., Lehner, W., Hackenbroich, G.: Forcasting evolving time
series of energy demand and supply. In: Eder, J., Bielikova, M., Tjoa, A.M. (eds.)
ADBIS 2011. LNCS, vol. 6909, pp. 302–315. Springer, Heidelberg (2011)

17. Dannecker, L., Schulze, R., Böhm, M., Lehner, W., Hackenbroich, G.: Context-
aware parameter estimation for forecast models in the energy domain. In: Bayard
Cushing, J., French, J., Bowers, S. (eds.) SSDBM 2011. LNCS, vol. 6809, pp.
491–508. Springer, Heidelberg (2011)

18. Das, S., Sismanis, Y., Beyer, K.S., Gemulla, R., Haas, P.J., McPherson, J.:
Ricardo: integrating r and hadoop. In: Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data, pp. 987–998 (2010)

http://mahout.apache.org/
http://www.redbooks.ibm.com/redbooks/pdfs/sg247418.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247418.pdf

178 U. Fischer and W. Lehner

19. Deshpande, A., Madden, S.: MauveDB: supporting model-based user views in
database systems. In: Proceedings of the 2006 ACM SIGMOD International Con-
ference on Management of Data, pp. 73–84 (2006)

20. Duan, S., Babu, S.: Processing forecasting queries. In: Proceedings of the VLDB
Endowment, pp. 711–722 (2007)

21. European Commission. Energy Roadmap 2050. Brussels (2011)
22. Fang, L., LeFevre, K.: Splash: ad-hoc querying of data and statistical models. In:

Proceedings of the 13th International Conference on Extending Database Tech-
nology, pp. 275–286 (2010)

23. Feng, H.: Performance problems of forecasting systems. In: 15th East-European
Conference on Advances in Databases and Information Systems, pp. 254–261
(2011)

24. Feng, X., Kumar, A., Recht, B., Ré, C.: Towards a unified architecture for in-
rdbms analytics. In: Proceedings of the 2012 ACM SIGMOD International Con-
ference on Management of Data, pp. 325–336 (2012)

25. Fischer, U., Dannecker, L., Siksnys, L., Rosenthal, F., Boehm, M., Lehner, W.:
Towards integrated data analytics: time series forecasting in dbms. Datenbank-
Spektrum, 1–9 (2012)

26. Fischer, U., Kaulakienė, D., Khalefa, M.E., Lehner, W., Pedersen, T.B., Šikšnys,
L., Thomsen, C.: Real-time business intelligence in the MIRABEL smart grid
system. In: Castellanos, M., Dayal, U., Rundensteiner, E.A. (eds.) BIRTE 2012.
LNBIP, vol. 154, pp. 1–22. Springer, Heidelberg (2013)

27. Fischer, U., Rosenthal, F., Böhm, M., Lehner, W.: Indexing forecast models for
matching and maintenance. In: IDEAS, pp. 26–31 (2010)

28. Fischer, U., Rosenthal, F., Lehner, W.: F2DB: the flash-forward database system.
In: Proceedings of the 28th International Conference on Data Engineering, pp.
1245–1248 (2012)

29. Fischer, U., Rosenthal, F., Lehner, W.: Sample-based forecasting exploiting hier-
archical time series. In: Proceedings of the 16th International Database Engineer-
ing and Applications Sysmposium, pp. 120–129 (2012)

30. Fischer, U., Schildt, C., Hartmann, C., Lehner, W.: Forecasting the data cube:
a model configuration advisor for multi-dimensional data sets. In: Proceedings of
the 29th International Conference on Data Engineering (2013)

31. Fliedner, G.: Hierarichal forecasting issues and use guidelines. Ind. Manage. Data
Syst. 101, 5–12 (2001)

32. Ganapathi, A., Kuno, H., Dayal, U., Wiener, J.L., Fox, A., Jordan, M., Patterson,
D.: Predicting multiple metrics for queries: better decisions enabled by machine
learning. In: Proceedings of the 25th International Conference on Data Engineer-
ing, pp. 592–603 (2009)

33. Gardner Jr, E.S.: Exponential smoothing: the state of the art. Int. J. Forecast. 4,
1–28 (1985)

34. Ge, T., Zdonik, S.B.: A skip-list approach for efficiently processing forecasting
queries. Proc. VLDB Endowment 1, 984–995 (2008)

35. Ghoting, A., Krishnamurthy, R., Pednault, E., Reinwald, B., Sindhwani, V.,
Tatikonda, S., Tian, Y., Vaithyanathan, S.: SystemML: declarative machine learn-
ing on mapreduce. In: Proceedings of the 2011 IEEE 27th International Confer-
ence on Data Engineering, pp. 231–242 (2011)

36. Gooijera, J.G.D., Hyndman, R.J.: 25 years of time series forecasting. Int. J. Fore-
cast. 22, 443–473 (2006)

Transparent Forecasting Strategies in Database Management Systems 179

37. Große, P., Lehner, W., Weichert, T., Färber, F., Li, W.-S.: Bridging two worlds
with rice integrating r into the sap in-memory computing engine. Proc. VLDB
Endowment 4, 1307–1317 (2011)

38. Grumbach, S., Rigaux, P., Segoufin, L.: Manipulating interpolated data is easier
than you thought. In: Proceedings of the 26th International Conference on Very
Large Data Bases, pp. 156–165 (2000)

39. Harries, M., Horn, K.: Detecting concept drift in financial time series prediction
using symbolic machine learning. In: Proceedings of the 8th Australian Joint
Conference on Artificial Intelligence, pp. 91–98 (1995)

40. Holt, C.C.: Forecasting seasonals and trends by exponentially weighted moving
averages. Int. J. Forecast. 20, 5–10 (2004)

41. Hyndman, R.J., Khandakar, Y.: Automatic time series forecasting: the forecast
package for R. J. Stat. Softw. 27, 1–22 (2008)

42. Hyndman, R.J., Koehler, A.B., Snyder, R.D., Grose, S.: A state space framework
for automatic forecasting using exponential smoothing methods. Int. J. Forecast.
18, 439–454 (2002)

43. Hyndman, R.J., Kostenko, A.V.: Minimum sample size requirements for seasonal
forecasting models. Foresight: the Int. J. Appl Forecast. 6, 12–15 (2007)

44. Ikonomovska, E., Gama, J., Džeroski, S.: Learning model trees from evolving data
streams. Data Min. Knowl. Discov. 23, 128–168 (2011)

45. Imieliński, T., Virmani, A.: Msql: a query language for database mining. Data
Min. Knowl. Discov. 3, 373–408 (1999)

46. Jampani, R., Xu, F., Wu, M., Perez, L.L., Jermaine, C., Haas, P.J.: Mcdb: a
monte carlo approach to managing uncertain data. In: Proceedings of the 2008
ACM SIGMOD International Conference on Management of Data, pp. 687–700
(2008)

47. Kimball, R., Ross, M.: The Data Warehouse Toolkit. Wiley, New York (2002)
48. Koc, M.L., Ré, C.: Incrementally maintaining classification using an rdbms. Proc.

VLDB Endowment 4, 302–313 (2011)
49. Kraska, T., Talwalkar, A., Duchi, J., Griffith, R., Franklin, M.J., Jordan, M.:

Mlbase:a distributed machine learning system. In: 6th Biennial Conference on
Innovative Data Systems Research (2013)

50. Kusters, U., McCullough, B., Bell, M.: Forecasting software: past, present and
future. Int. J. Forecast. 22, 599–615 (2006)

51. Lazarescu, M.M., Venkatesh, S., Bui, H.H.: Using multiple windows to track con-
cept drift. Intell. Data Anal. J., 1–28 (2003)

52. Li, M., Ganesan, D., Shenoy, P.: Presto: feedback-driven data management in
sensor networks. In: Proceedings of the 3rd Conference on Networked Systems
Design & Implementation, pp. 23–23 (2006)

53. Makridakis, S.: Accuracy measures: theoretical and practical concerns. Int. J.
Forecast. 9, 527–529 (1993)

54. Makridakis, S., Hibon, M.: The M3-Competition: results, conclusions and impli-
cations. Int. J. Forecast. 16, 451–476 (2000)

55. Matlab. The language of technical computing (2012). http://www.mathworks.
com/products/matlab/

56. Meek, C., Chickering, D.M., Heckerman, D.: Autoregressive tree models for time-
series analysis. In: SIAM International Conference on Data Mining (2002)

57. Mentzer, J.T., Bienstock, C.C.: The seven principles of sales-forecasting systems.
Supply Chain, Manage. Rev. 11, 76–83 (1998)

http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/

180 U. Fischer and W. Lehner

58. Milenova, B.L., Yarmus, J.S., Campos, M.M.: Svm in oracle database 10g: remov-
ing the barriers to widespread adoption of support vector machines. In: Proceed-
ings of the VLDB Endowment, pp. 1152–1163 (2005)

59. Mills, T.C.: Time Series Techniques for Economists. Business & Economics (1991)
60. Müller, K.-R., Smola, A.J., Rätsch, G., Schölkopf, B., Kohlmorgen, J., Vapnik, V.:

Predicting time series with support vector machines. In: Gerstner, W., Hasler, M.,
Germond, A., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 999–1004.
Springer, Heidelberg (1997)

61. Oracle OLAP DML Reference 11g. Forecast - dml statement (2012). http://docs.
oracle.com/cd/B28359 01/olap.111/b28126/dml commands 1052.htm

62. Oracle R. Enterprise user’s guide (2012). http://docs.oracle.com/cd/E27988 01/
doc/doc.112/e26499.pdf

63. Oracle White Paper. Oracle data mining 11g release 2 - competing on in-database
analytics (2012)

64. Ordonez, C.: Programming the k-means clustering algorithm in sql. In: Proceed-
ings of the Tenth ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, pp. 823–828 (2004)

65. Ordonez, C., Pitchaimalai, S.K.: Bayesian classifiers programmed in sql. IEEE
Trans. Knowl. Data Eng. 22, 139–144 (2010)

66. Ordonez, C., Pitchaimalai, S.K.: One-pass data mining algorithms in a dbms
with udfs. In: Proceedings of the 2011 ACM SIGMOD International Conference
on Management of Data, pp. 1217–1220 (2011)

67. Panda, B., Herbach, J.S., Basu, S., Bayardo, R.J.: Planet: massively parallel learn-
ing of tree ensembles with mapreduce. Proc. VLDB Endowment 2, 1426–1437
(2009)

68. Papadimitriou, S., Sun, J., Faloutsos, C.: Streaming pattern discovery in multiple
time-series. In: Proceedings of the 31st International Conference on Very Large
Data Bases, pp. 697–708 (2005)

69. Parisi, F., Sliva, A., Subrahmanian, V.S.: Embedding forecast operators in data-
bases. In: Benferhat, S., Grant, J. (eds.) SUM 2011. LNCS, vol. 6929, pp. 373–386.
Springer, Heidelberg (2011)

70. PostgreSQL (2012). http://www.postgresql.org/
71. R Development Core Team. R: A language and environment for statistical com-

puting, reference index version 2.1.1. R Foundation for Statistical Computing
(2012). http://www.r-project.org

72. Ramanathan, R., Engle, R., Granger, C.W.J., Vahid-Araghi, F., Brace, C.: Short-
run forecasts of electricity loads and peaks. Int. J. Forecast. 13(2), 161–174 (1997)

73. Rosenthal, F., Lehner, W.: Efficient in-database maintenance of ARIMA models.
In: Bayard Cushing, J., French, J., Bowers, S. (eds.) SSDBM 2011. LNCS, vol.
6809, pp. 537–545. Springer, Heidelberg (2011)

74. Sadri, R., Zaniolo, C., Zarkesh, A.M., Adibi, J.: A sequential pattern query lan-
guage for supporting instant data mining for e-services. In: Proceedings of the
27th International Conference on Very Large Data Bases, pp. 653–656 (2001)

75. SAS. Business intelligence software (2012). http://www.sas.com
76. Schmidberger, M., Morgan, M., Eddelbuettel, D., Yu, H., Tierney, L., Mansmann,

U.: State-of-the-art in parallel computing with R. J. Stat. Softw. 31, 1–27 (2009)
77. Shalev-Shwartz, S., Srebro, N.: SVM optimization: inverse dependence on train-

ing set size. In: Proceedings of the 25th International Conference on Machine
Learning, pp. 928–935 (2008)

78. SPSS. IBM SPSS Statistics (2012). http://www-01.ibm.com/software/analytics/
spss/

http://docs.oracle.com/cd/B28359_01/olap.111/b28126/dml_commands_1052.htm
http://docs.oracle.com/cd/B28359_01/olap.111/b28126/dml_commands_1052.htm
http://docs.oracle.com/cd/E27988_01/doc/doc.112/e26499.pdf
http://docs.oracle.com/cd/E27988_01/doc/doc.112/e26499.pdf
http://www.postgresql.org/
http://www.r-project.org
http://www.sas.com
http://www-01.ibm.com/software/analytics/spss/
http://www-01.ibm.com/software/analytics/spss/

Transparent Forecasting Strategies in Database Management Systems 181

79. SQL Server. Data Mining Algorithms - Books Online for SQL Server 2012 (2012).
http://msdn.microsoft.com/en-us/library/ms175595.aspx

80. Thiagarajan, A., Madden, S.: Querying continuous functions in a database sys-
tem. In: Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data, pp. 791–804 (2008)

81. Tulone, D., Madden, S.: PAQ: time series forecasting for approximate query
answering in sensor networks. In: Römer, K., Karl, H., Mattern, F. (eds.) EWSN
2006. LNCS, vol. 3868, pp. 21–37. Springer, Heidelberg (2006)

82. Turner, J.: The planning of guaranteed targeted display advertising. Oper. Res.
60, 18–33 (2012)

83. Wagner, N., Michalewicz, Z., Khouja, M., McGregor, R.: Time series forecasting
for dynamic environments: the dyfor genetic program model. IEEE Trans. Evol.
Comput. 11, 433–452 (2007)

84. Wang, H., Zaniolo, C., Luo, C.R.: ATLAS: a small but complete sql extension for
data mining and data streams. In: Proceedings of the 29th International Confer-
ence on Very Large Data Bases, pp. 1113–1116 (2003)

85. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden
contexts. Mach. Learn. 23, 69–101 (1996)

86. Yi, B., Sidiropoulos, N.D., Johnson, T., Jagadish, H.V., Faloutsos, C., Biliris, A.:
Online data mining for co-evolving time sequences. In: Proceedings of the 16th
International Conference on Data Engineering, pp. 13–22 (2000)

87. Zhang, C., Sun, S., Yu, G.: A bayesian network approach to time series fore-
casting of short-term traffic flows. In: Proceedings of the 7th International IEEE
Conference on Intelligent Transportation Systems, pp. 216–221 (2004)

88. Zhang, G., Eddy-Patuwo, B., Hu, M.Y.: Forecasting with artificial neural net-
works: the state of the art. Int. J. Forecast. 14, 35–62 (1998)

89. Zhang, Y., Zhang, W., Yang, J.: I/O-efficient statistical computing with RIOT.
In: Proceedings of the 26th International Conference on Data Engineering, pp.
1157–1160 (2010)

90. Zinkevich, M.: Online convex programming and generalized infinitesimal gradient
ascent. In: Proceedings of the 20th International Conference on Machine Learning,
pp. 928–936 (2003)

http://msdn.microsoft.com/en-us/library/ms175595.aspx

	Transparent Forecasting Strategies in Database Management Systems
	1 Introduction
	2 Forecasting Applications
	2.1 Production Planning
	2.2 Energy Load Balancing
	2.3 Online Display Advertisement

	3 Mathematical Foundations of Time Series Forecasting
	3.1 Basic Idea and Terminology
	3.2 Overview Forecasting Methods
	3.3 Model Creation
	3.4 Model Usage
	3.5 Model Maintenance

	4 Architectural Integration
	4.1 No Database Integration
	4.2 Partial Database Integration
	4.3 Full Database Integration

	5 In-DBMS Time Series Forecasting Techniques
	6 A Flash-Forward Database System
	6.1 ANSI/SPARC Architecture
	6.2 DBMS Architecture

	7 Conclusions and Future Work
	References

