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Abstract. In this tutorial, we present an ontology-driven business intel-
ligence approach for comparative data analysis which has been developed
in a joint research project, Semantic Cockpit (semCockpit), of academia,
industry, and prospective users from public health insurers. In order to
gain new insights into their businesses, companies perform comparative
data analysis by detecting striking differences between different, yet sim-
ilar, groups of data. These data groups consist of measure values which
quantify real-world facts. Scores compare the measure values of differ-
ent data groups. semCockpit employs techniques from knowledge-based
systems, ontology engineering, and data warehousing in order to support
business analysts in their analysis tasks. Concept definitions complement
dimensions and facts by capturing relevant business terms which are used
in the definition of measures and scores. Furthermore, domain ontologies
serve as semantic dimensions and judgement rules externalize previous
insights. Finally, we sketch a vision of analysis graphs and associated
guidance rules to represent analysis processes.

Keywords: Business intelligence · OLAP · Data warehouses · Semantic
technologies

1 Introduction

For their analysis tasks, business analysts rely on a data warehouse which orga-
nizes data as multi-dimensional facts. Each fact represents a business event that
has been recorded in a transactional database. In the data warehouse, facts are
identified by dimensions and quantified by measures. For example, the recipient
patient, the issuing doctor, and the date of issuance identify a drug prescription.
The prescribed quantity and the incurred costs are measures which quantify the
drug prescription.

Business intelligence (BI) tools support interactive reporting over the cor-
porate data warehouse through online analytical processing (OLAP). OLAP
operations allow for the selection of different data groups and the aggregation
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of measures. Business analysts employ OLAP operations for different types of
analysis. First, is-reporting provides summary or detail information about a cur-
rent or past business situation. For example, a health insurance manager might
be interested in the total costs of drug prescriptions from last month. Second,
is-to-target comparison contrasts a current or past business situation with a
(hypothetical) target situation. For example, a health insurance company sets
out a target figure for the monthly costs of drug prescriptions which a business
analyst contrasts with the actually incurred costs from last month. Third, is-
to-is comparison contrasts different, yet similar, business situations in order to
gain insights into the analysis area. For example, a business analyst compares
the incurred costs of drug prescriptions for different groups of patients in various
months. In this tutorial, we focus on is-to-is comparison of data.

Whereas the tasks of is-reporting and is-to-target comparison tend to be
simple and structured, is-to-is comparison is fundamentally more complex and
often left to human intuition. The business analyst faces the challenge of defin-
ing meaningful comparisons. This definition demands knowledge about relevant
business terms as well as their semantics. The business analyst must select rele-
vant comparison groups, identify the subsets of facts to consider, and define the
relevant measures for the illustration of the differences between the comparison
groups. For example, a health insurance manager might be interested whether
there are any exceptional differences between any groups of diabetes mellitus
patients. The business analyst identifies patients from different insurance com-
panies, provinces, and of different age as meaningful comparison groups. The
business analyst considers only the facts that concern oral anti-diabetic drugs,
insulin, and metformin. For the illustration of the differences between groups,
the business analyst defines the average drug costs per patient and the drug
costs that are prescribed by general practitioners for regular patients.

Comparative data analysis is an interactive, exploratory, and iterative process
which employs OLAP for is-to-is comparison. Initially, relevant comparison
groups and the measures for the illustration of the differences between the com-
parison groups are unknown. As a first step, the business analyst determines
comparison groups and measures. Once comparison groups and measures are
determined, the business analyst repeatedly conducts the comparative analy-
sis with varying parameters. By varying the parameters of the analysis, the
business analyst discovers dependencies among the data. Thereby comparative
data analysis leads to the detection of exceptional differences between selected
groups of data, suggests plausible explanations as well as cause-and-effect rela-
tionships, and highlights paths for further investigation. In this sense, compara-
tive data analysis is not a replacement for data mining. Rather, comparative data
analysis precedes data mining, assisting business analysts in the formulation of
appropriate questions to statisticians.

Traditional BI tools fail to support the full process of comparative data analy-
sis. The definition of business terms is left to the business analyst rather than
providing a central repository which unambiguously defines the semantics of
business terms. The comparison of data is a simple enumeration of selected mea-
sures, their interpretation left to the business analyst. In traditional BI tools, e.g.,
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Tableau1 and Oracle BI2, business analysts conduct analysis in an ad-hoc manner
with each analysis task started from scratch. The Semantic Cockpit (semCock-
pit) approach as presented herein fully supports comparative data analysis.

In semCockpit, a multi-dimensional ontology (MDO) provides an unambigu-
ous definition of business terms for the specific needs of OLAP. Business terms
are hierarchically ordered and become first-class citizens, which allows analysts
to employ business terms in formulating OLAP queries. Furthermore, semantic
dimensions allow for the integration of existing domain ontologies in OLAP.

Ontology-based measures and scores use concepts of ontologies to specify the
data to be included in the calculation of derived measures and scores. Scores
make comparison a first-class citizen in semCockpit. They capture the results of
a comparison explicitly and free the business analyst from visual comparison by
diagram inspection. A generic definition facilitates the reuse of scores in various
analysis situations to avoid vast enumerations of similar measures.

Analysis graphs and rules capture otherwise tacit knowledge about how to
proceed in analysis and about possible explanations of analysis results. Analysis
graphs explicitly define the process of the analysis. Analysis rules recommend
the initiation of a specific analysis process to the business analyst when certain
conditions are met. Guidance rules lead the business analyst through the analysis
graph. Judgement rules provide explanations for exceptional values. Analysis,
guidance, and judgement rules externalize actionable knowledge otherwise tacit
to the business analyst.

Existing BI approaches employ ontologies complementary to the semCockpit
approach. Ontology-based data warehouse design [20,29,31,38] employs ontolo-
gies to automate tasks concerning construction of data warehouses and ETL
processes. Ontologies serve as foundation for open access semantic-aware busi-
ness intelligence [32]. Saggion and colleagues [34] employ ontologies for infor-
mation extraction for business intelligence. Combining reasoning over ontologies
and OLAP, Nebot and colleagues [24,25] build data warehouses for the analy-
sis of semantic web data. The potential of ontology-based querying in business
intelligence has been identified by Spahn and colleagues [40] but has not been
elaborated for OLAP and multi-dimensional data warehouses.

The remainder of this tutorial is organized as follows. In Sect. 2, we present
the semCockpit architecture and introduce a simplified real-world use case. In
Sect. 3, we present the fundamentals of an MDO, including semantic dimen-
sions. In Sect. 4, we investigate the definition of measures and scores based on
the concepts of the MDO. In Sect. 5, we describe how the MDO can be ben-
eficially applied for ontology-based comparative OLAP, thereby extending the
well-known OLAP operations dice, slice, drill-down and roll-up for compara-
tive analysis and making use of the MDO. In Sect. 6, we present a vision of BI
analysis graphs for the definition of analysis processes. In Sect. 7, we introduce
corresponding judgement and analysis rules for representing knowledge of the
analyst.
1 http://www.tableausoftware.com
2 http://www.oracle.com

http://www.tableausoftware.com
http://www.oracle.com
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2 The semCockpit Approach

In this section, we describe the data warehouse behind a comparative data analy-
sis project, introduce a case study, and identify the steps in a comparative data
analysis project.

2.1 Data Warehouse

A data warehouse (DWH) typically organizes data as multi-dimensional facts,
where each fact represents a business event that has been recorded in a trans-
actional database, is identified by a node for each dimension, and described by
one or several measures. Each dimension is given by a leveled hierarchy of nodes,
whereby each node is described by a set of non-dimensional attributes and all
nodes of the same level have the same attributes with different attribute values.
The “base facts” of a data warehouse refer in each dimension to a leaf node of
the dimension.

More specifically, a data warehouse consists of a set of dimensions and a set of
fact classes. Each dimension has a dimension schema and a dimension instance.
A dimension schema consists of a set of levels and a set of attributes for each
level. Roll-up relationships organize the levels in a lattice. A dimension instance
consists of a set of nodes where each node belongs to exactly one level and is
described by a value for each attribute of the level. The nodes of a dimension
are organized in a roll-up relationship that forms a semi-lattice such that each
node of some level rolls up to exactly one node of each level that is in roll-up
relationship to the level of the former node. Each dimension contains a single
top level with a single all node to which all levels and all nodes of the dimension
roll-up to. A base fact class consists of a fact schema and a set of facts. A base
fact schema is given by a set of dimension roles and a set of measures (referred to
as base measures). Each dimension role refers to a dimension schema (whereby
two different dimension roles can refer to the same dimension schema). A base
fact of a fact class refers for each dimension role to a leaf node in the respective
dimension and is described by a measure value for each measure of the fact
schema.

Example 1 (Existing Data Warehouse). Figure 1 illustrates a fragment of a sim-
plified data warehouse schema of Austrian public health insurers, represented in
a slight variation (explained later) of the Dimensional Fact Model (DFM) [12].
The dimensions are Insurant, Doctor, DrugATC (drug classification in accordance
with ATC), and Time. Top levels of dimensions are not depicted. Medical sec-
tions (level medSec in dimension Doctor) denote specialisms of doctors, e.g., gen-
eral practitioner (GP), internist, oculist. ATC is an abbreviation for Anatomical
Therapeutic Chemical Classification System, which is an international classi-
fication system of drugs with the hierarchy levels for anatomical main group
(atcAnatom), therapeutic main group (atcTherap), therapeutic/pharmacological
subgroup (atcPharm), chemical/therapeutic/pharmacological subgroup (atcChem-

SubGr), and chemical substance. We omit the level for chemical substance.
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Fig. 1. DWH schema for drug prescriptions

The dimension roles of fact class drugPrescription are ins (insurant), leadDoc (lead
doctor), actDoc (acting doctor), drugATC (drug classification according to ATC),
and time. Dimension roles leadDoc and actDoc refer to the same dimension (Doc-
tor). The fact class comprises measures quantity and costs of drug prescriptions.

In order to avoid redundant representations of attributes of levels the
semDWH data model does not represent attributes with levels but with entity
classes, where each level of a dimension schema refers to an entity class (and
each node of that level to an entity of the entity class) and two levels of different
dimensions (but not of the same dimension) can refer to the same entity class.

Example 2 (Entity Classes). Level district of dimension Doctor and level district of
dimension Insurant refer to entity class e district which specifies attributes district

(the name of the district which is used as external identifier) and inhPerSqkm

(the population density of the district).

As a means for specifying the domain of measures and multi-dimensional con-
cepts, the semCockpit data model introduces the notion of a dimension space.
A dimension space is defined by a set of dimension roles. A point in a dimension
space is identified by a set of coordinates, one coordinate for each dimension
role. Each coordinate of a point refers to a node of the dimension referred to by
the dimension role. A fact is a point described by measure values. A dimension
space comprises a point for each tuple in the cross product of the nodes in the
dimension roles of the dimension space. A granularity in a dimension space is
identified by a set of levels one for each dimension role. A lattice of granularities,
from finer to coarser, can be derived from the hierarchies of levels of the dimen-
sions referred to by the dimension roles. A dimension space may be restricted to
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points at a particular granularity or to points that fall between a “from” gran-
ularity and a “to” granularity (both inclusive). Each fact class is defined over a
dimension space restricted to a single granularity.

Example 3 (Dimension Space). In Fig. 1, the domain of measures quantity and
costs of fact class drugPrescription is given by a dimension space which is defined
by dimension roles time, ins, leadDoc, actDoc, and drugATC, restricted to the finest
granularity [time:day, ins:insurant, leadDoc:doctor, actDoc:doctor, drugATC:drug]. A
point in this dimension space, for example 〈time:20130708, ins:mrHuber, leadDoc:
drMaier, actDoc:drMueller, drugATC:paracetamol500mg〉, may be described by
base measures quantity and costs. Roll-up to coarser granularities together with
aggregation of measures (for example SUM(costs)) may be possible to all points in
the dimension space which is given by the same dimension roles but not restricted
to the finest granularity, for example also to points like 〈time:2013, ins:linz,
leadDoc:GP, actDoc:all, drugATC:all〉.

Each dimension is organized into one or more roll-up hierarchies (also referred
to as roll-up paths or simply hierarchies). Per default, these hierarchies are alter-
native hierarchies, that is, each point in the dimension space is identified by
exactly one coordinate per dimension role. The semDWH data model also allows
for parallel roll-up, that is, points may have separate coordinates for the different
roll-up paths of a dimension. Dimension spaces may then be defined over dimen-
sion roles and hierarchy-specific dimension roles. A hierarchy-specific dimension
role is defined over a named roll-up path of a dimension.

Example 4 (Roll-up Hierarchies). In Fig. 1, dimension Time has two alternative
hierarchies, one with a roll-up path along day, month, quarter, and year, and the
other one along day and week, which cannot be used simultaneously in one query.
Dimension Doctor has named roll-up paths Loc (location) and MedSec (medical
section). Hierarchy-specific dimension roles actDocMedSec and actDocLoc as well
as leadDocMedSec and leadDocLoc can be used to define dimension spaces that
allow for parallel roll-up.

To simplify the later definition of concepts and their use in measure and
score definitions and applications, we assume that dimension roles that are used
in multiple fact classes carry the same meaning in each of these fact classes.
This approach is akin to the unique role assumption for attributes in relational
database systems. To support the unique role assumption for dimension roles,
the semDWH data model provides for the definition of a universal dimension
space consisting of all dimension roles of a semDWH, where each dimension role
is identified by a unique name and described by the dimension it refers to. The
universal dimension space also comprises all hierarchy-specific dimension roles.
All other dimension spaces may not contain both, a dimension role and one of
its hierarchy-specific dimension roles.

Example 5 (Universal Dimension Space). Fact class ambTreatment (ambulant
treatments) has the same dimension roles as fact class drugPrescription but it
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possesses dimension role medServItem (medical service items) instead of dimen-
sion role drugATC. Examples of medical service items are doctor visits and blood
glucose examinations. The universal dimension space comprises the dimension
roles of both fact classes, drugPrescription and ambTreatment. The dimension spaces
DrugPrescriptionSpace and AmbTreatmentSpace only contain the dimension roles of
the fact classes drugPrescription and ambTreatment, respectively.

In general, OLAP operations allow to join facts over different dimension
spaces in drill-across operations. The result of such an operation is a fact over
a new dimension space, whereby the dimension roles of the drill-across fact
are mapped to the dimension roles of the joined facts. Accordingly, a drill-
across dimension space can be defined based on two other dimension spaces
(by mapping dimension roles based on common names like in natural joins for
relations, or explicitly, like in equi-joins). It comprises the union of dimension
roles.

The semCockpit data warehouse (semDWH) can be defined in two ways.
First, the semDWH can be defined from scratch using a simple data definition
language (DDL). Each DDL statement of a semDWH construct has a corre-
sponding relational representation (for dimensions and fact classes). Actual data
have to be provided thereafter as materialized or virtual views over the enter-
prise DWH according to this relational representation. We do not describe this
schema and instance mapping problem and refer to the relevant literature [4]
instead. Second, the semDWH can be defined by immediately generating the
appropriate relational representation (i.e., materialized or virtual views) of the
semDWH. The former approach is more appropriate for reuse in similar settings
(e.g., health insurers in different states of Austria), the latter for single in-house
projects.

2.2 Use Case

Effective and efficient medical care is an overall goal of public health insurance
companies. Comparative data analysis often focuses on diseases that are respon-
sible for high overall costs. For example, diabetes mellitus of type 2 (DM2) is
one specific example of a lifestyle disease with high prevalence that causes high
costs. Disease management programs (DMP) have been established to provide
effective and cost efficient treatment of DM2 patients.

In this context the managerial accounting department of a public health
insurer might recognize an above-average increase of total costs concerning the
treatment of DM2 patients. The management asks the business intelligence
department to analyze the issue by finding striking differences through compar-
ison. In the subsequent comparative data analysis processes, a business analyst
may compare different groups of patients (rural vs. urban districts, young vs. old,
DMP patients vs. non-DMP patients, etc.), different groups of doctors, different
drugs, different insurers, or different periods.

The analysis process is interactive, exploratory, and iterative. The analyst
starts with a vague analysis question and interacts with various domain experts
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to discuss what kinds of comparison might be relevant or should be chosen
next. The interesting comparisons develop over time. Once successful and rele-
vant sequences of analysis steps have been discovered, they can be described in
generalized form for later re-use in analogous situations (e.g., for other years,
insurers, or diseases).

2.3 Steps in a Comparative Data Analysis Project

Comparative data analysis focuses on the interactive comparison of various sets
of data. Such comparisons are based on measures and scores. A measure describes
a multi-dimensional point which consists of nodes from data warehouse dimen-
sions; a point and a measure together give a fact. A score describes a relationship
between a pair of points, the point of interest and the point of comparison; score,
point of interest (PoI) and point of comparison (PoC) together give a compar-
ative fact which explicitly expresses the result of a comparison that would oth-
erwise have been left to the human eye. Thus, relating our DWH model to the
Entity-Relationship model, points correspond to entities, measures to attributes
of entities, and scores to attributes of binary relationships between entities. Since
a comparative fact actually relates, via aggregation, sets of facts that are com-
pared, we speak also of group of interest (GoI) and group of comparison (GoC).

The typical steps in applying an ontology-driven business intelligence app-
roach for comparative data analysis are: (1) Model transformation, in which a
given DWH schema is transformed into a semDWH data warehouse schema as
introduced in Subsect. 2.1, (2) Semantic Enrichment, in which business terms
are expressed as concepts in a multi-dimensional ontology (MDO) or imported
from an external domain ontology, (3) Calculation Definition, in which measures
and scores are defined by calculations over other measures and scores, employ-
ing concepts of the MDO to select the data to be included in calculations, (4)
Explorative Measure and Score Application, in which measures and scores are
applied to different points of interest and comparison, (5) Analysis Design, in
which promising sequences of measure and score applications are modeled as
BI analysis graphs for later re-use, (6) Rule Design, in which different kinds
of rules are designed to complement analysis: (a) guidance rules that provide
context-sensitive semantic guidance on which path to follow in an instantiation
of an analysis graph, (b) judgement rules that provide background information
about possible reasons for a striking score, and (c) analysis rules that express
how to react on specific measures and scores detected (action rules) or provide
a concise analysis report (reporting rules), (7) Proper comparative data analysis,
in which BI analysis graphs are instantiated and traversed for particular analysis
problems, thereby possibly backtracking to any of the previous steps. – Steps 1
to 4 and 6 (b,c) have been investigated in the semCockpit project and imple-
mented in our semCockpit prototype. Steps 5, 6 (a), and 7 have been identified
during the project as beneficial future extensions to capture and exploit – next
to “static” knowledge – knowledge about analysis processes.
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Fig. 2. The semCockpit stack

The semCockpit stack (Fig. 2) reflects the typical steps in the application of
an ontology-driven BI approach for comparative data analysis. Its starting point
(bottom of Fig. 2) is founded on the DWH schema as described in example 1.

MDO concepts are defined by logical expressions over nodes of a dimension.
MDO concepts are organised in subsumption hierarchies through reasoning over
concept expressions. Furthermore terms of an external domain ontology such as
SNOMED CT3 can be used as semantic dimensions in the way that leaf concepts
of the external ontology classify facts.

Example 6 (MDO concepts and semantic dimensions). The MDO concepts
ruralDistrict and urbanDistrict in Fig. 2 are defined over nodes of a location dimen-
sion (logical definitions are omitted), organized in a subsumption hierarchy. The
semantic dimension disease incorporates an OWL representation of a subset of
SNOMED CT.

Measures describe by measurement instructions how a particular measure
value is calculated from facts in the DHW for a point. Measures are ontology-
based in the sense that measurement instructions refer to MDO-concepts to iden-
tify facts to be included in (parts of) calculations. Similarly, scoring instructions
describe for scores how a score value is calculated for a pair of points.

Example 7 (Measures and Scores). Figure 2 shows two measures, DrugCostsIn-

RuralDistricts and DrugCostsInUrbanDistricts, that calculate the total costs for drugs
in rural and urban districts, respectively. The measurement instructions (omit-
ted) refer to the respective ontology concepts, ruralDistrict and urbanDistrict.

3 Systematized Nomenclature Of Medicine Clinical Terms.
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The score RatioOfDrugCostsRuralVsUrbanDistricts compares the total costs for drugs
in rural districts against urban districts (by using the appropriate measures in
the scoring instructions, not shown).

Generic measures and scores avoid the need of repeated definitions of instruc-
tions that are identical apart from a particular MDO-concept. They are defined
with parameters for concepts. We refer to these parameters also as (generic)
qualifiers as they are used to select facts.

Example 8 (Generic Measures and Scores). Generic measure DrugCosts has a
qualifier, which can be instantiated for example by a location concept. If instan-
tiated, e.g., with ins:urbanDistrict, the instantiation gives a non-generic measure,
e.g., DrugCostsInUrbanDistricts. Similarly, generic score RatioOfDrugCosts has two
qualifiers, one for the group of interest, one for the group of comparison.

Once defined, measure and scores can be applied to multi-dimensional points
(shown in the next stage of the semCockpit stack). Additionally, they can be
qualified by MDO concepts.

Example 9 (Measure and Score Application). Figure 2 shows an application of
generic measure DrugCosts to multi-dimensional point 〈time:2012, ins:UpperAustria,
leadDoc:all, actDoc:all, drugATC:all〉 with actual qualifier ins:ruralDistrict giving the
total drug costs prescribed in rural districts in Upper Austria in the year 2012.
The application of generic score RatioOfDrugCosts to group of interest 〈time:2012,
ins:UpperAustria, leadDoc:all, actDoc:all, drugATC:all〉 with qualifier ins:ruralDistrict

and group of comparison 〈time:2012, ins:UpperAustria, leadDoc:all, actDoc:all, drug
ATC:all〉 with qualifier ins:urbanDistrict returns the ratio of drug costs of Upper
Austrian patients of rural versus urban districts in year 2012.

An analysis graph has analysis situations as nodes and analysis steps as
arcs and describes promising analysis processes. Analysis situations are para-
meterized cubes, analysis steps are parameterized navigation operations, e.g.,
drill-down. The instantiation of the parameters leads to a specific BI analysis.

Depending on measure and score values, guidance rules open or close analysis
paths. Judgement rules provide background information on striking score values,
and analysis rules describe how to react upon (action rules) or which specific
comparative facts to report (reporting rules) from a set of comparative facts
provided (e.g., those loaded in the last ETL cycles).

Example 10 (Analysis Graphs and Rules). The top compartment of Fig. 2 depicts
a simple analysis graph consisting of two analysis situations, A1 and A2, and two
guidance rules. For example, A1 may represent the ratio of ambulant treatment
costs for some selected comparison. If the result is greater than 1.1, the asso-
ciated guidance rule disadvises to drill down in the insurant hierarchy. If the
result is greater than 1.0, the associated guidance rule suggests to refocus in A2

the analysis on the ratio of drug costs. The figure assumes that for the currently
selected comparison A1 the first rule does not apply and the second rule applies.
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Figure 3 gives an overview of the semCockpit architecture. The left-hand side
illustrates conventional comparative data analysis in which a business analyst
uses OLAP tools on an operative level and domain knowledge is not represented.
The right-hand side illustrates the semCockpit approach in which domain knowl-
edge is captured by a multi-dimensional ontology (MDO) that describes relevant
business terms in the context of business analysis and which may relate to a
domain ontology. Measures and scores are defined based on the ontology. Previ-
ous insights and analysis experience are captured by judgement rules. In order
to implement these features, semCockpit comprises several components. The
MDO-DWH Mapper accesses DWH data that is used by other components. The
MDO Engine administers concepts, measures and scores, and organizes them by
reasoning. The management and evaluation of judgement rules is carried out by
the Rule Engine. Finally the semCockpit Frontend provides an appropriate user
interface. – The planned future extensions, analysis graphs and guidance rules,
are not shown.

3 Multi-Dimensional Ontology

In this section, we present the representation of business terms as concepts of
a multi-dimensional ontology (MDO), the handling of context-specific concepts,
the seamless import of a domain ontology into the MDO as semantic dimen-
sion, and the translation of concepts into SQL for querying and into OWL for
determining subsumption hierarchies by OWL reasoners.

In the semCockpit approach, a multi-dimensional ontology is managed as a
central repository of business terms that are defined and maintained collabo-
ratively by business analysts. Business terms can be translated automatically
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to SQL and simplify the formulation of otherwise complex multi-dimensional
queries. Automatically-derived subsumption hierarchies simplify the organiza-
tion of business terms and the detection of similar or redundant concepts. In
analysis sessions, subsumption hierarchies allow to move up or down the hierar-
chy to ‘broaden’ or to ‘narrow’ the selection predicate of a query.

With regard to querying, the semCockpit approach assumes that the data
in the underlying data warehouse is complete (closed world assumption). With
regard to subsumption reasoning, the approach does not consider the complete
data in the data warehouse but only the incomplete knowledge represented in
the ontology (open world assumption) because subsumption hierarchies should
not change due to changes in the data of the data warehouse.

Using ontologies with defined classes for querying data- or knowledge bases
has seen considerable attention in the literature. Staudt et al. [41] discuss the
definition of query classes in deductive databases. The partitioning of the ter-
minological box of an ontology into a schema part and a view part, with dis-
tinct language constructs for either part, as proposed by Buchheit et. al. [5],
is of particular importance for MDOs. The MASTRO system [6] for ontology-
based data access uses ontologies for querying incomplete (relational) databases.
Lim et al. [22] employ virtual views as a query interface for semantically-enriched
relational data.

3.1 Concepts: Signatures and Concept Expressions

The MDO enriches the underlying semDWH by a set of concepts representing
business terms and their meaning in the context of data analysis. A concept
may be defined over (a) entities of an entity class (entity concepts), (b) nodes
of a dimension (dimensional concept), (c) points of a dimension space (multi-
dimensional concept, md-concept), or (d) pairs of points, referred to as point of
interest (PoI) and point of comparison (PoC), (comparative concept).

Each concept has a signature and a membership condition, which may be
defined independently of each other. The separation of signature and membership
condition is a prerequisite for specializing membership conditions for different
contexts (see next subsection).

The signature of a concept is given by a name and an interpretation domain
for the concept. The interpretation domain is the set of individuals for which the
concept is defined. It is given by the sort of individuals over which the concept is
defined (entities of an entity class, nodes of a dimension, points of a dimension
space, point-pairs of a comparative space consisting of two dimension spaces) and
is possibly restricted to some subset of the sort. E.g., the interpretation domain
of a dimensional concept may be restricted to nodes of some level or nodes
that fall into a level range. A point satisfies a multi-dimensional concept, if the
point satisfies the concept for the dimension roles for which it is defined. (Notice
that this interpretation is consistent with classifying individuals in ontologies
where properties not referred to in a concept expression are ignored.) This holds
analogously for pairs of points and comparative concepts. The signature of a
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concept does not need be explicitly stated but may also be derived from its
membership condition, which is a concept expression.

Example 11 (Signature). Signature ruralDistrict(e district) describes an entity con-
cept called ruralDistrict with interpretation domain entity class e district. InOAD(
DrugATC[ drug .. atcPharm ] ) represents the signature of a dimensional concept. It
indicates that concept InOAD refers to dimension DrugATC and comprises nodes
between level drug and atcPharm (both inclusive). Signature PatInRuralDistrLead-

DocInUrbanDistr( ins[ insurant .. district ], leadDoc[ doctor .. district ] ) represents
the multi-dimensional concept PatInRuralDistrLeadDocInUrbanDistr that comprises
points over insurants (dimension role ins) and lead doctors (dimension role lead-

Doc) at granularity range from level insurant to district and from level doctor

to district, respectively. The signature PatWithRegularDocVisitsInYear( ins[insurant],

time[year] ) restricts the multi-dimensional concept PatWithRegularDocVisitsInYear

to level insurant for dimension role ins and to level year for dimension role time.

The membership condition (also often referred to as necessary & sufficient
condition) is given by a concept expression in a simple, high-level MDO language
(surveyed below) or by an SQL view over the underlying semDWH. SQL-defined
concepts provide for extensibility and are treated as primitive when determining
subsumption hierarchies between concepts (see Subsect. 3.4). The MDO language
has been designed to support the most important use cases and to provide for a
mapping [28] into OWL 2 DL.

Example 12 (Entity concepts on district). The concepts ruralDistrict, urbanDistrict,
highRuralDistrict, and highUrbanDistrict presented in Fig. 4 are defined over entity
e district. Membership conditions are denoted next to the box of the concept,
e.g., inhPerSqkm <= 400 represents the expression for concept ruralDistrict. As
discussed later, the reasoner will detect that concept highUrbanDistrict is sub-
sumed by concept urbanDistrict because expression inhPerSqkm > 1000 implies
inhPerSqkm > 400. In Fig. 4 inferred subsumption relationships between con-
cepts are denoted by arrows. Dotted lines link entity concepts to their entity
class. For better readability this type of lines are omitted for subsumed concepts
like highUrbanDistrict.

e_district

district
inhPerSqkm

ruralDistrict

inhPerSqkm <= 400

urbanDistrict

inhPerSqkm > 400

highRuralDistrict

inhPerSqkm <= 50

highUrbanDistrict

inhPerSqkm > 1000

defined for

subsumed by
(derived)

Fig. 4. Entity concepts on district
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The membership condition of a dimensional concept is given by one of the
following kinds of concepts expressions: (1) by a reference to an entity con-
cept (such that each node that refers to an entity satisfying the entity concept
is in the interpretation of the defined concept), (2) by hierarchy expansion of
some concept (such that each node of the dimension that is in the interpreta-
tion of the concept or some direct or indirect successor node thereof is in the
interpretation), (3) by level range restriction of some concept (such that only
nodes of that concept that fall in between an indicated top and bottom level,
inclusive, are in the interpretation), (4) by intersection, union, or complement
(open world interpretation) of concepts defined for the same level (with the usual
interpretation), (5) as 〈node〉concept[level-or-levelRange]-expression (such that
all nodes that satisfy the hierarchical expansion of the indicated concept, are
at the indicated level(s), and beneath the indicated node are in the interpre-
tation). Notice that the construct 〈node〉concept[level-or-levelRange]-expression
does not enhance the expressiveness of MDO, but assists in structuring concept
expressions in an OLAP setting along modeling elements of DWH dimensions:
hierarchy of nodes, properties of nodes (via entities), and levels.

Example 13 (Dimensional concepts). Figure 5 shows concepts for DM2 specific
drugs: InAD (to be read as “in antidiabetic drug group”), InOAD (to be read
as “in oral antidiabetic drug group”), InStarterOAD (comprises OAD drugs that
should be used first when diagnosis DM2 is determined). The concept expression
of InOAD denotes that at level atcPharm ATC code A10B is selected and the aster-
isk on the right of the expression denotes hierarchical expansion, i.e., all subnodes
below node A10B belong to concept InOAD. On the left hand side of Fig. 5 one
can see the level hierarchy and on the right hand side a selection of the node hier-
archy of the dimension. Items bordered by continuous lines (InAD, InOAD, and
InStarterOAD) represent hierarchical concepts, which comprise nodes of multiple

DrugATC

drug

atcChem
-SubGr

atcPharm

atcTherap

atcAnatom

InStarterOAD

starterOAD*

cheapDrug

price < 50

A10B

A10BA A10BB

... ... ... ...

A10

defined for
subsumed by
(derived)

InAD

(atcTherap = A10)*

InOAD

(atcPharm = A10B)*

starterOADDrug

InStarterOAD[drug]

A10BC

... ...

starterOAD

InStarterOAD

InOAD

InAD

starterOADDrug

Fig. 5. Dimensional concepts over drugs
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district

province

top all

Vorarlberg Tyrol Styria

Kufstein

Huber Meier Bauer Fischer

<Tyrol>UrbanDistrict[doctor] UrbanDistrict = 
urbanDistrict*

urbanDistrict = 
inhPerSqkm > 400

GrazInnsbruck

Fig. 6. 〈point〉concept[granularity]-expression

levels. Items bordered by dotted lines (starterOAD, starterOADDrug, and cheapOAD)
denote flat concepts, which only comprise nodes of one level. Additionally derived
subsumption relations are shown, e.g., cheap drugs subsume starter OAD drugs.
Figure 6 illustrates the interpretation of a 〈node〉concept[level]-expression. Con-
cept 〈Tyrol〉UrbanDistrict[doctor] comprises nodes of dimension Doctor at level
doctor who live in an urban district in province Tyrol. Concept UrbanDistrict is the
hierarchical expansion of concept urbanDistrict, comprising districts with more
than 400 inhabitants per square km.

The membership condition of a multi-dimensional concept (md-concept) is
given in one of the following ways: (1) by reference to a dimensional concept for
some dimension role (in which case all points that satisfy the dimensional con-
cept in the indicated dimension role are in the interpretation), (2) by hierarchy
expansion of a md-concept (such that each point that is in the interpretation of
the md-concept or a descendent thereof is in the interpretation), (3) by gran-
ularity restriction of some md-concept (such that only points of the indicated
md-concept that are between a given top and bottom granularity are in the inter-
pretation), (4) by intersection, union, or complement (open world interpretation)
of md-concepts defined over the same dimension roles and the same granularity
(usual interpretation), (5) as 〈point〉concept[granularity-or-granularityRange]-
expression (such that all points that satisfy the hierarchial expansion of the
indicated concept, are at the indicated granularity, and beneath the indicated
point are in the interpretation), or (6) by a boolean expression over measure-
value comparisons of measures applied to a point (fact-based concept). Further,
each dimension space is also a md-concept.

Example 14 (Multi-dimensional concepts). The concept expression of multi-di-
mensional concept InsInRuralDistrLeadDocInUrbanDistr indicates that points that
refer in the dimension role ins to urban districts and in the dimension role leadDoc

to urban districts are interpretation as well as points that roll up to such points
(Fig. 7). The expression uses concepts ins:ruralDistrict and leadDoc:urbanDistrict.
Multi-dimensional concept InsInHighRuralDistrLeadDocInUrbanDistr is defined in a
similar way. As discussed later, the subsumption relationship between both con-
cepts can be detected by reasoning.
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Insurant
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district

province

day

month

quarter

PatWithRegular-
DocVisitsInYear

NumOfDocVisits >= 7

PatWithFrequent-
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NumOfDocVisits >= 14

year

time

TimeDoctor

doctor

district

province

leadDoc

InsInRuralDistr-
LeadDocInUrbanDistr

= (ins:ruralDistrict AND 
leadDoc:urbanDistrict)*

= (ins:highRuralDistrict AND 
leadDoc:urbanDistrict)*

InsInHighRuralDistr-
LeadDocInUrbanDistr

Fig. 7. Multi-dimensional concepts

Example 15 (Fact-based multi-dimensional concepts). PatWithRegularDocVisitsIn-

Year is a fact-based multi-dimensional concept (Fig. 7). It comprises points of
patients and years, for (patient, year)-pairs such that the patient had at least
seven doctor visits in the year. The restriction to levels insurant and year is nec-
essary because the concept as such is meaningful only for a single patient and
a given year. The second fact-based multi-dimensional concept PatWithFrequent-

DocVisitsInYear comprises patients having at least fourteen doctor visits a year, a
corresponding subsumption relationship will be inferred (as mentioned already
before). The concept expressions assume that an aggregate measure NumOf-

DocVisits (number of doctor visits) over patients and years has been defined
(Measure definition is described later).

The membership condition of a comparative concept is given like multi-di-
mensional concepts, with the addition that it may be also given by (a) two
md-concepts, (b) a join condition relating nodes of the PoI and the PoC by
a conjunction of pre-defined comparison predicates such as equality or prede-
cessor/successor-relationships, and (c) by a boolean expression over score-value
comparisons of scores applied to PoI and PoC.

3.2 Context-Specific and Contextualized Concepts

We present now a kind of specialization for concepts that is akin to specialization
in object-oriented systems employing the abstract superclass rule [17].

In object orientation, the signature or head of a method may be introduced
in an abstract superclass without providing an implementation of the method.
The implementation (also referred to as body) of the method is provided by each
concrete subclass of the abstract superclass. In an MDO, in analogy to object-
orientation, a concept may be regarded as a boolean method of its domain (a
concept may be applied on each node or point in its domain and returns either
true or false) where the domain of the concept is analogous to the class in which
the method is introduced and where the membership condition of the concept is
analogous to the implementation of the boolean method. A contextualized con-
cept is analogous to a boolean method introduced at some abstract superclass
(with the domain of the contextualized concept playing the role of the abstract
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superclass). Context-specific concepts are analogous to boolean methods at sub-
classes that implement the method introduced at the abstract superclass, with
the context of a context-specific concept, which is given by an MDO concept
expression, being analogous to the subclass at which the boolean method is
implemented.

Context-specific concepts are defined over a selected subset of nodes of a
dimension (dimensional concepts) or over a subset of points of a dimension space
(md-concepts) by indicating a context in the signature. Thereby a context is given
by 〈node〉concept[level-or-levelRange]-expression (for dimensional concepts) or a
〈point〉concept[granularity-or-GranularityRange]-expression (for md-concepts).

Contextualized concepts are defined by several context-specific concepts. The
contexts of these concepts must cover all points in the signature of the con-
textualized concepts such that each point belongs to exactly one most specific
context (i.e., the point does not belong also to another context subsumed by the
former).

Example 16 (Contextualized concepts). Different to concept PatWithRegularDocVis-

itsInYear in example 15, we now consider regular visits of a patient to a particular
doctor in a year. Regularity of visits depends on the medical section of a doctor.
We assume, for simplicity, that there are only two medical sections, namely gen-
eral practitioner and oculists. Suppose a regular patient of a general practitioner
(GP) must have at least four GP visits per year whereas for a regular patient of
an oculist it is sufficient to have at least two visit per year. Of course, one could
define two separate concepts, but we specify one contextualized concept PatWith-

RegularVisitsToDocInYear([time:year,ins:insurant,actDoc:doctor]) consisting of two
context-specific concept definitions: NumOfDocVisits ≥ 4 for context 〈time:all,
ins:all, actDoc:GP〉[time:year, ins:insurant, actDoc:doctor] and NumOfDocVisits ≥ 2
for context 〈time:all, ins:all, actDoc:oculist〉[time:year, ins:insurant, actDoc:doctor]

3.3 Semantic Dimensions

Transaction systems collect records that refer to concepts of domain ontologies
in semantic attributes. For example, medical treatment records may refer to
a diagnosis code of SNOMED CT. In order to exploit semantic attributes for
OLAP-style analysis, we wish to use the existing domain ontology to which
semantic attributes refer like a common dimension in data warehousing and call
a dimension based on a domain ontology in analogy to semantic attributes, a
semantic dimension. A semantic dimension will be usually expressed or mapped
to an ontology language such as OWL.

Querying over semantic attributes in relational databases is discussed by
Das et al. [8] and implemented in Oracle Database 11g Semantic Technolo-
gies. In addition to their approach, the semCockpit approach also allows to use
concept expressions as selection criteria (post-coordination) and provide for a
seamless integration in data warehousing and OLAP. The challenges tackled by
this approach are akin to the challenges of heterogeneous dimensions [18,21,27].
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Malinowski and Zimányi [23] give an overview of different kinds of dimension
hierarchies.

We briefly explain how domain ontologies can be used as semantic dimen-
sions, and refer to [1] for a more elaborate treatment: (1) The existing concepts
(usually called pre-coordinated concepts) are mapped to nodes of a dimension
hierarchy. (2) Facts may refer to leaf or inner nodes. The meaning of a fact refer-
ing to an inner node “c” is “c only”, e.g., “DM-2 without further information
on the subkind of DM-2”. The latter concept (“c only“) is not represented in
the original domain ontology, but would be a leaf node and a child of the for-
mer (“c”). (3) New concepts (usually called post-coordinated concepts) may be
defined upon existing ones in the external domain ontology language (e.g., by
OWL expressions) and are mapped to an MDO concept. An MDO concept C
corresponding to concept c in the external domain ontology comprises all nodes
that correspond to a concept subsumed by c. (4) While the domain ontology
is un-leveled, levels may be introduced explicitly by identifying the concepts
(nodes) that make up the members of a level. To provide for summarizability
(i.e., ensuring that the sum over all base facts of an additive measure is the
same than the sum of the aggregated measure over all roll-up facts at some
granularity), the member concepts (nodes) of such a level must be disjoint (i.e.,
have non-overlapping interpretations) and be complete with respect to the bot-
tom level (i.e., each leaf node must be a member of some member concept).
(5) Levels may be defined context-specific, i.e., local to a node. (6) Built that
way, precoordinated concepts can be used like native nodes and post-coordinated
concepts like MDO concepts over native dimensions for OLAP operations slice,
dice, and roll-up.

The treatment of native and semantic dimension becomes seamless by uni-
fying native dimensions and semantic dimensions. A node of a dimension may
relate to either an entity (entity node) or to an entity concept (concept node),
which may be given by an entity concept as introduced above or by a domain
ontology concept. Levels consist either of entity nodes (entity levels) or concept
nodes (concept levels), which may be introduced above an entity level.

Example 17 (Semantic Dimension – SNOMED CT). Figure 8 shows a small part
of the SNOMED CT hierarchy. It can be taken to implement a semantic dimen-
sion for disease which can be linked to fact classes (e.g., drugPrescription and
ambTreatment). In Fig. 8 we have already extended the SNOMED CT concepts
with “only”-concepts, i.e., each inner node has as an “only”-node as a subcon-
cept. E.g., the node Diabetes mellitus has the additional subnode Diabetes mellitus

only, which does not exist in the original SNOMED CT hierarchy. A fact can
refer all leaf nodes presented in our diagram, i.e., all original leaf nodes and
all “only”-leaf nodes (original inner nodes). The figure also illustrates how con-
ventional OLAP operations can be applied for semantic dimensions. The nodes
bordered by the continuous line represent the result of a DICE operation that
selects the subhierarchy under node Diabetes mellitus (analogously to conventional
OLAP operation DICE which selects a subcube). Nodes bordered by the coarse
dotted line represent the result of a SLICE operation with condition “all nodes
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Fig. 8. Semantic Dimension (SNOMED CT)

for which there exists finding site equal to Structure of nervous system”. Applied
to DICE node Diabetes mellitus the SLICE operation returns the grey filled area
that comprises the nodes Type I diabetes mellitus with hypoglycemic coma and Type

II diabetes mellitus with hypoglycemic coma. Finally one can ROLLUP to nodes Dia-

betes mellitus only, Diabetes mellitus type 1, and Diabetes mellitus type 2 (bordered by
the fine dotted line) that represent a virtual level local to Diabetes mellitus.

3.4 Relational and OWL Representations

MDO concepts are translated to SQL for querying the underlying closed world
data warehouse. MDO concepts are translated to OWL in order to delegate
subsumption checking to an off-the-shelf OWL reasoner. The mappings for each
kind of concept (apart from comparative concepts) are given in [28].

The relational representation of MDO concepts builds on the relational rep-
resentation of the semCockpit data warehouse where entity classes, dimensions
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and dimension spaces are directly available through SQL tables and views. Entity
concepts, dimensional concepts, and multi-dimensional concepts are translated
to views over this relational representations of entity classes, dimensions, and
dimension spaces as well as over views generated for previously defined concepts.

We now shortly explain the rationale of the representation of MDO con-
cepts in OWL and refer to [28] for a more elaborate treatment. We assume a
basic familiarity with OWL [16]. Using the OWL representation, the initially
unordered set of business terms represented by the MDO may be automatically
organized in subsumption hierarchies.

Example 18 (Concept organization). Figure 9 illustrates for a selection of our
use case, how business terms are organized in subsumption hierarchies along the
dimensions of a data warehouse.

Individuals of the ontology are MDO entities, nodes, levels, points, and point-
pairs. MDO entities are collected into disjoint OWL classes, one OWL class for
each MDO entity class. Attributes of MDO entities are represented in OWL as
object properties of MDO entities. Nodes are collected into disjoint OWL classes,
one OWL class for each dimension. Each node is associated with one level and
with one MDO entity, this is represented by object properties atLevel and roleOf,
respectively. Roll-up relationships between nodes as well as between levels are
represented as transitive and reflexive property rollsUpTo. Dimension roles are
represented as object properties of points, where the range of a dimension role
is a dimension. Dimension roles of point-pairs are distinguished into PoI- and
PoC-dimension roles. Also, an OWL class is defined for each dimension space
and each comparison space. Notice that MDO entities and nodes not explicitly
referred to in MDO concept expressions as well as points and point-pairs are not
represented as named individuals in the OWL ontology.

MDO concepts are translated to OWL classes according to the MDO concept
expression. To capture level-restrictions the level range is checked by a property
restriction on property atLevel indicating that node’s levels must drill-down to
the “from-level” and roll-up to the “to-level”.

One of the challenges of representing MDO concepts in OWL is to cope with
the following restriction of OWL 2 DL4: It is not allowed to express that a
transitive relationship such as rollsUpTo maps to exactly one object in a given
range (e.g., to one node of one level). But, the essential characteristics of roll-up
hierarchies of data warehouse dimensions are that (i) the rollsUpTo-relationship
between nodes is transitive, and (ii) each node of a level rolls up to exactly one
node of a higher level (to which the former level rolls up). Without this seman-
tics of roll-up hierarchies in data warehousing being captured, OWL reasoners
will not be able to recognize that certain concepts are disjoint. To cope with
this limitation of OWL, for each level X there is a functional object property
rollsUpTo X. For each named node nd at level X there is a subclass axiom stating
4 http://www.w3.org/TR/owl2-syntax/#Global Restrictions on Axioms in OWL 2

DL

http://www.w3.org/TR/owl2-syntax/#Global_Restrictions_on_Axioms_in_OWL_2_DL
http://www.w3.org/TR/owl2-syntax/#Global_Restrictions_on_Axioms_in_OWL_2_DL
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Fig. 9. Concept organization

that every descendant node of nd rolls up to nd via functional object property
rollsUpTo X.

Example 19 (Translation of MDO concepts to OWL). Multi-dimensional con-
cept InsInRuralDistrLeadDocDoctorInUrbanDistr[ins: insurant..district, leadDoc: doctor]

is interpreted by the set of points that each refer via dimension role ins to a
node that rolls up to a node which is a role of a rural district and refer via
dimension role leadDoc to a node at level doctor that rolls up to a node which is
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a role of an urban district. In OWL this is represented (using Description Logics
notation) as:

InsInRuralDistrLeadDocDoctorInUrbanDistr ≡
∃ins.∃rollsUpTo district.∃roleOf.ruralDistrict �
∃leadDoc.(∃atLevel.{doctor} �∃rollsUpTo district.∃roleOf.urbanDistrict)

4 Ontology-Based Measures and Scores

A measure is defined for points in a dimension space, which is also called the
domain of the measure. Measures are distinguished into base and derived. Base
measures are given as primitive and relate to a measure of a fact class (Note: To
provide for parallel analysis across multiple roll-up hierarchies of a dimension
role, several base measures may be defined for a measure of a fact class, each
of them defined for a different dimensions space that replaces selected dimen-
sion roles of the dimension space of the fact class by one or several hierarchy-
specific dimension roles). Derived measures have measurement instructions that
describes how a measure value is calculated for each point in the measure domain
from other measures.

A score is defined for pairs of points (PoI, PoC) in a comparison space. The
scoring instruction of a score describes for each pair of points (PoI, PoC) in the
score domain how a score value is calculated from measures.

A measure may be applied to a point for which it is defined, returning the
measure value; a measure applied to a set of points gives a set of measure values.
A measure may be applied to a point with more dimension roles for which the
measure is defined; in such a case the superfluous dimension roles are ignored.
We denote measure application by the ‘.’-operator.

Example 20 (Measure application). The following measure application returns
the drug costs of patients in Upper Austria in the year 2012:

〈time:2012, ins:UpperAustria, leadDoc:all, actDoc:all, drugATC:all〉.DrugCosts

Alike measure applications a score may be applied to a pair of points for which
it is defined, returning the score value; a score applied to a set of pairs of points
gives a set of scores. If a score is applied to a pair of points with more dimension
roles as for which the score is defined, the superfluous dimension roles are ignored.
As for measures we denote score application by the ‘.’-operator.

Example 21 (Score application). The following score application returns the ratio
of drug costs of patients in Upper Austria in year 2012 (as point of interest) to
the drug costs of patients in Upper Austria in 2011 (as point of comparison):

(〈time:2012, ins:UpperAustria, leadDoc:all, actDoc:all, drugATC:all〉,
〈time:2011, ins:UpperAustria, leadDoc:all, actDoc:all, drugATC:all〉)

.RatioOfDrugCosts
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A fact is a point of a dimension space together with values for one or several
measures; a comparative fact is a pair of points together with values for one or
several scores.

A cube (comparative cube) is a set of facts (comparative facts), possibly at
different granularities. Special kinds of cubes are (a) fact classes, which are mono-
granular and primitive (i.e., its facts are not calculated from other facts in the
DWH), (b) measure cubes and score cubes, which are cubes over the domain of
a measure or score and whose facts possess only this measure or score, and (c)
cuboids, which are mono-granular slices of another cube. Cubes - other than fact
classes and measure cubes - are defined by a cube space, given by a md-concept,
preferably in the form 〈point〉concept[granularity-or-granularity-range], and a
set of measures that may be applied to points in the cube space to construct
facts. This is indicated by applying a measure with the “..”-operator to the cube
space and optionally indicating after the measure by the “\”-operator whether
a null-value of the measure should be replaced by some other value.

Example 22 (Cube). A cube consisting of drug-costs facts for points at granular-
ity [time:month, ins:district, leadDoc:district, actDoc:top, drugATC:top] that satisfy con-
cept InsInRuralDistrLeadDocInUrbanDistr and roll-up to point 〈time:2012, ins:Austria,
leadDoc:Austria, actDoc:all, drugATC:all〉, is defined by:

〈time:2012, ins:Austria, leadDoc:Austria, actDoc:all, drugATC:all〉
InsInRuralDistrLeadDocInUrbanDistr
[time:month, ins:district, leadDoc:district, actDoc:top, drugATC:top]
..DrugCosts

Likewise, a comparative cube is defined for a comparative cube space, given
by a comparative concept, and a set of scores defined for the comparative cube
space.

Example 23 (Comparative cube). The following comparative cube lists for each
rural district of insurants in Upper Austria the ratio of drug costs in year 2012
to drug costs in year 2011, thereby comparison predicate SameDistrict is used
to relate facts where PoI and PoC of the fact refer to the same district in the
insurant dimension role.

(〈time:2012, ins:UpperAustria, leadDoc:all, actDoc:all, drugATC:all〉
ins:ruralDistrict[time:top, ins:district, leadDoc:top, actDoc:top, drugATC:top]
SameDistrict(PoI.ins,PoC.ins)
〈time:2011, ins:UpperAustria, leadDoc:all, actDoc:all, drugATC:all〉
ins:ruralDistrict[time:top, ins:district, leadDoc:top, actDoc:top, drugATC:top])
..RatioOfDrugCosts

Measure and score instructions are arithmetic or aggregation expressions over
measures of selected facts of measure cubes. The scoring instructions are either
given in native form by using artihmetic and aggregation operations with MDO-
query expressions (using ‘.’ and ‘..’-operators as described above) as operands,
or by SQL-built-ins. The measurement instruction of an arithmetic measure is
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defined natively in MDO in an object-oriented flavor by an arithmetic expression
over measures applied to a point self in the domain of the measure for which
the measure value is calculated. The measurement instruction of an aggregation
measure for point self is given in MDO by some kind of aggregation (such as
AVG or SUM) over measure values of selected facts of some cube (which is a
fact class for first-step aggregation measures). As the selection of facts is based on
using concepts of the MDO as qualifiers to selecting facts (using 〈self〉(concept)-
expressions for fact classes and 〈self〉(concept)[granularity]-expressions for other
cubes; note: self may be omitted), we speak of ontology-based measures and
scores.

Example 24 (Measure with one step aggregation). DrugCosts is a derived measure
of type float over dimension space DrugPrescriptionSpace

CREATE MEASURE DrugCosts
DATATYPE float FOR DrugPrescriptionSpace AS

SUM(〈self〉..drugPrescription.costs);
The measurement instruction indicates that the measure value is calculated for a
point self by the sum over base measure costs of all facts in factclass drugPrescrip-

tion that roll-up to self. If one restricts the dimension space DrugPrescriptionSpace

to oral antidiabetic drugs (InOAD), one can define another measure that returns
overall costs for oral antidiabetic drugs:

CREATE MEASURE OADDrugCosts
DATATYPE float FOR DrugPrescriptionSpace AS

SUM(〈self〉InOAD..drugPrescription.costs);

Example 25 (Measure with two step aggregation). AvgDrugCostsPerIns is defined
as a measure with two step aggregation that returns the average drug costs per
insurant:

CREATE MEASURE AvgDrugCostsPerIns
DATATYPE float FOR DrugPrescriptionSpace AS

AVG( 〈self〉[time:top, ins:insurant, leadDoc:top, actDoc:top, drugATC:top]
..DrugCosts );

The measure calculates, first, the total costs per insurant stated as cube 〈self〉
[time:top, ins:insurant, leadDoc:top, actDoc:top, drugATC:top]..DrugCosts (first agg-
regation step, cf. Ex. 24) and, second, the average of drug costs per insurant
(second aggregation step).

Example 26 (Drill across measure). TotalCosts are computed by adding Drug-

Costs, which has been defined over dimension space DrugPrescriptionSpace, and
AmbTreatmentCosts, which has been defined over dimension space AmbTreatment-

Space:

CREATE MEASURE TotalCosts
DATATYPE float FOR MedcareSpace AS

〈self〉.DrugCosts\0 + 〈self〉.AmbTreatmentCosts\0;
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This is an example where two fact classes (drugPrescription and ambTreatment) are
used, one providing measure DrugCosts and the other providing measure Amb-

TreatmentCosts. The dimension space MedcareSpace is defined as drill across space
of DrugPrescriptionSpace and AmbTreatmentSpace (not shown). The decoration \0
indicates that the default value 0 is to be used if a measure application returns
a null value.

Measurement and scoring instructions frequently have the same structure (or
pattern). To avoid the need to define measurement and scoring instructions of
similar kind, semCockpit provides a set of predefined measure and score tem-
plates, which can be extended. For example, the first-step aggregation template
defines an aggregate measure based on the template parameters base measure
m, slice-concept c, and aggregation function f , with underlying measurement
instruction f〈self〉(c).m The higher-step aggregation template defines an aggre-
gate measure based on: roll-up granularity g, derived measure m, and aggregation
function f with underling measurement instruction f〈self〉[g].m.

Scores are distinguished into arithmetic and analytic. Arithmetic scores relate
two measures of two points (PoI and PoC) of a cube by an arithmetic function
such as ratio or percentage difference.

Example 27 (Ratio score). Score RatioOfDrugCosts returns a ratio of drug costs:

CREATE SCORE RatioOfDrugCosts
DATATYPE float FOR (DrugPrescriptionSpace, DrugPrescriptionSpace) AS

RATIO( 〈PoI〉.DrugCosts, 〈PoC〉.DrugCosts );
The score is defined for comparison dimension space (DrugPrescriptionSpace, Drug-

PrescriptionSpace). The keyword RATIO is used to indicate that drug costs of the
group of interest represented as first parameter (PoI) are to be divided by the
drug costs of the group of comparison denoted as second parameter (PoC).

Analytic scores use an analytic scoring function (such as average-percentile
rank or mean-percentile rank) on two sets of points, GoI and GoC, each identified
by a 〈pnt〉(concept)[granularity]-expression.

Example 28 (Median percentile rank score). Score MPROfDrugCostsPerPatient has
median percentile rank as a scoring function. The score can be applied in the time

dimension roles on month or higher levels, and in dimension roles ins, leadDoc,
and actDoc from level district to top.

CREATE SCORE MPROfDrugCostsPerPatient
DATATYPE float FOR (DrugPrescriptionSpace, DrugPrescriptionSpace)
AT ([time:month..top, ins:district..top, leadDoc:district..top,

actDoc:district..top, drugATC:drug..top],
[time:month..top, ins:district..top, leadDoc:district..top,

actDoc:district..top, drugATC:drug..top]) AS
MEDIAN PERCENTILE RANK(

〈PoI〉[time:top, ins:insurant, leadDoc:top, actDoc:top, drugATC:top]
..DrugCosts,

〈PoC〉[time:top, ins:insurant, leadDoc:top, actDoc:top, drugATC:top]
..DrugCosts );
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Drug costs are computed per insurant for group of interest as well as group of
comparison. Based on both groupings the median percentile rank is calculated.

Generic measures and generic scores avoid the need of repeated definition
of measure and score instructions with different selection criteria (concepts) in
place. They provide for flexibility in measure and score use, and they enable
reasoning (about how measures relate) by providing common structures. Generic
measures and scores have generic parameters (denoted by %name) for concepts,
which we call qualifiers as they are used to qualify selection-expressions for facts
of some cube. The domain of a generic parameter may be restricted to a listed
set of concepts or to the set of concepts subsumed by a concept.

Example 29 (Generic measures and scores). We generalize the definition of mea-
sure DrugCosts of Example 24 and add a generic parameter %q. It is restricted to
multi-dimensional concepts which are subsumed by DrugPrescriptionSpace (denoted
by ↑):

CREATE MEASURE DrugCosts( %q ↑ DrugPrescriptionSpace )
DATATYPE float FOR DrugPrescriptionSpace AS

SUM(〈self〉(%q)..costs);

Analogously one can define generic scores like RatioOfDrugCosts:

CREATE SCORE RatioOfDrugCosts( %qoi ↑ DrugPrescriptionSpace,
%qoc ↑ DrugPrescriptionSpace )

DATATYPE float FOR (DrugPrescriptionSpace, DrugPrescriptionSpace) AS
RATIO( 〈PoI〉.DrugCosts(%qoi), 〈PoC〉.DrugCosts(%qoc) );

Generic parameters can be used in place of concepts of concept expressions
(e.g., oldPatient AND %q) in measurement or scoring instructions. A generic mea-
sure (score) is instantiated by binding the generic parameter to a concept, giving
a non-generic measure (score) by replacing the generic qualifiers accordingly in
measurement (scoring) instructions.

Example 30 (Use of generic measures and scores). Instantiation of generic mea-
sure DrugCosts with actual qualifier InOAD gives the previously defined measure
OADDrugCosts (Ex. 24):

〈time:2012, ins:UpperAustria, leadDoc:all, actDoc:all, drugATC:all〉
.DrugCosts( InOAD )

The following instantiation of generic score RatioOfDrugCosts binds %qoi to
InStarterOAD and %qoc to InOAD. It returns the ratio of starter oral antidiabetic
drug costs to oral antidiabetic drug costs:

(〈time:2012, ins:UpperAustria, leadDoc:all, actDoc:all, drugATC:all〉,
〈time:2012, ins:UpperAustria, leadDoc:all, actDoc:all, drugATC:all〉)

.RatioOfDrugCosts(InStarterOAD, InOAD)

Notice that in this special case of comparative data analysis point of interest
and point of comparison are equal and the only difference is in the qualifications
of the score.
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In order to provide for the definition of measures and scores which cannot
be directly expressed in the semCockpit language, built-in measures and scores
provide for an ad-hoc extension facility and for the possibility to define new
templates for defining measure or scores. A built-in measure or score is defined
by providing an SQL view that defines the function from point to measure value
(from pair of point to score value, respectively). This approach is not novel,
but common in Oracle where new cubes and measures can be derived from
multi-granular cubes of other measures. However, different to Oracle, all MDO-
concepts are available as SQL views as well and may be used in measure- and
score definitions. Thereby, rather than writing complex selection query predi-
cates for selecting tuples of some cube, these can be easily selected by a simple
(natural) join between the SQL view of the concept and the cube. This pro-
vides for a simple, natural definition of the measurement or scoring instructions.
Platform-dependent optimization (in consideration of the capabilities and lim-
itations of query optimizers) is a separate issue. Built-in generic measures and
generic scores are provided as macros with qualifiers (view names) as parameters.

Measures and scores are organized in a measure & score drivers hierarchy.
The change of value of a measure may change the value of another measure or
score, the change of value of a score may change the value of another score. The
influence hierarchy known from definition of measures and scores or from back-
ground knowledge (e.g., relationships of base measures) is captured explicitly
and used later as background knowledge to guide analysis processes.

5 Ontology-Based Comparative OLAP

In online analytical processing, OLAP operations slice, dice, drill-down and roll-
up are applied to a data cube in order to navigate from one to another cuboid of
the data cube. We sketch a possible extension of semCockpit for modeling and
representing such analysis steps.

In the context of ontology-based comparative data analysis and in the pres-
ence of generic scores, a particular comparative cuboid, which we call comparative
analysis situation, is described in the form 〈pntGoI〉conceptGoI[granGoI]joinCond
〈pntGoC〉conceptGoC [granGoC]..score(qGoI,qGoC) with variables for nodes of points
(pntGoI, pntGoC), levels of granularities (granGoI, granGoC), concepts (conceptGoI,
conceptGoC, qGoI, qGoC), join condition (joinCond), and score. For simplicity, we
consider here only scores with two qualifiers, one for the group of interest and
one for the group of comparison.

The description of a non-comparative analysis situation is based on cube def-
inition of the form 〈point〉concept [granularity]..measure (qualifier1, . . . , qualifiern).

In the remainder, we speak for simplicity of analysis situations, if we refer to
comparative and non-comparative analysis situations.

An OLAP-operation between two analysis situations, which we refer to as
navigation, reflects the change of the bindings of the variables of the target analy-
sis situation with respect to the source analysis situation. An atomic navigation
changes the binding of a single variable. Atomic navigation can be classified in
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2nd STEP

4th STEP

1st STEP

3rd STEP

correlate( narrow(InsInUrbanDistrict) )
backtrack

correlate( moveDownToFirst(ins) )

instantiate

Ratio of drug costs of Upper Austrian insurants
in urban districts of year 2012 to year 2011

( time:2012, ins:UpperAustria ,
time:2011, ins:UpperAustria )

..RatioOfDrugCosts(
InsInUrbanDistrict, InsInUrbanDistrict)

A2

Ratio of drug costs of insurants of 
Linz-Stadt of year 2012 to year 2011

( time:2012, ins:Linz-Stadt ,
time:2011, ins:Linz-Stadt )

..RatioOfDrugCosts

A3

      General comparative analysis situation
( pntGoI conceptGoI [granGoI],

joinCond,
pntGoC conceptGoC [granGoC] )

..score( qGoI, qGoC )

A0

Ratio of drug costs of Upper Austrian
insurants of year 2012 to year 2011

( time:2012, ins:UpperAustria ,
time:2011, ins:UpperAustria )

..RatioOfDrugCosts

A1

Fig. 10. Ontologoy-based comparative OLAP

an OLAP-setting according to the kind of OLAP-step performed. Such a naviga-
tion step indicates a movement along some “semantic relationship” between two
cubes (such as drill-down one level in hierarchy x, move up to ancestor node in
hierarchy x) and is expressed by a navigation operator and possibly a navigation
variable. A variable may be for a node, a level, a concept, a join condition, or a
score. The binding may be indicated absolute (i.e., by a new value) or relative
to the binding of a source variable (e.g., drill-down one level from current level
in hierarchy x).

Example 31 (Ontology-based comparative OLAP). Figure 10 illustrates5 how a
business analyst applies ontology-based comparative OLAP operators. First,
A0 shows the general description of an analysis situation. She or he selects
the points 〈time:2012, ins:UpperAustria, leadDoc:all, actDoc:all, drugATC:all〉 and
〈time:2011, ins:UpperAustria, leadDoc:all, actDoc:all, drugATC:all〉 to compare drug
costs of Upper Austria in year 2012 with 2011 by calculating the ratio (resulting
in analysis situation A1). Next, the analyst considers that it is of interest to
restrict the comparison to patients of urban districts. He or she applies the nav-
igation operator correlate(narrow) with actual parameter InsInUrbanDistrict which
narrows the group of interest as well as the group of comparison to urban dis-
tricts. The navigation results in analysis situation A2 in which the generic score
RatioOfDrugCosts is qualified in the GoI and in the GoC by hierarchical concept
InsInUrbanDistrict. Afterwards the analyst backtracks to A1 and applies naviga-
tion operator correlate(moveDownToFirst) that results in moving down to the first
district of Upper Austria in GoI and GoC (analysis situation A3). We assume a
descending order by number of inhabitants, thus the user navigates to district
Linz-Stadt.

A composite analysis situation is a tree of analysis situations and navigation
steps. Composite analysis situations provide a global coherent picture of several
5 In this and subsequent figures we omit for brevity the representation of “all”-nodes

of points in dimension space DrugPrescription.



Ontology-Driven Business Intelligence 105

correlate( compose(
narrow(InsInRuralDistrict), 
drillDownTo(time:month) ) )

correlate( compose(
narrow(InsInUrbanDistrict), 
drillDownTo(time:month) ) )

A1
   ( leadDoc:UpperAustria [time:year],

SameYear(GoI.time, GoC.time),
leadDoc:all [time:year])

..RatioOfDrugCosts

A1.1

( leadDoc:UpperAustria [time:month],
SameMonth(GoI.time, GoC.time),

leadDoc:all [time:month])
..RatioOfDrugCosts( 

InsInUrbanDistrict, InsInUrbanDistrict )

A1.2    ( leadDoc:UpperAustria [time:month],
SameMonth(GoI.time, GoC.time),

leadDoc:all [time:month])
..RatioOfDrugCosts( 

InsInRuralDistrict, InsInRuralDistrict )

A1.3

Fig. 11. Composite analysis situation

related measures and scores, aggregated and detailed. Changing the variables
of the root analysis situation leads to coherent change of all dependent analysis
situations. A generic composite analysis situation with all variables unconstraint
and modifiable provides for a general, comprehensive multi-perspective browsing
facility similar as it is provided by “surf and save” BI tools like Tableau6, but with
enhanced flexibility and guidance support (as will be discussed in the subsequent
section). This mode of use is typical during phases of explorative search for
meaningful scores and comparison groups, as well as for developing analysis
processes (which are thereafter captured as more elaborated BI analysis graphs).

Example 32 (Composite analysis situation). By a composite analysis situation
one can synchronize various semantically related analysis situations. In Fig. 11
root situation A1.1 selects drug costs ratios of lead doctors of province Upper
Austria per year7. Correspondingly, A1.2 and A1.3 select the drug costs ratios
of urban and rural districts, respectively, of Upper Austria per month. Two
navigation operations denote these semantic relations. If the user changes lead
doctor location from Upper to Lower Austria in A1.1, also the situations A1.2

and A1.3 are adapted automatically to province Lower Austria.

One can capture the history of a particular analysis performed, in the form
of a graph, consisting of the analysis situations and navigation steps used to
navigate between them.

Example 33 (History of an analysis). The essence of a history of an analysis
can be depicted as a graph. Figure 12 presents the static view of the dynamic
process of example 31. There are navigation arcs from analysis situation A1 to
analysis situation A2 and A3. The graph only shows the semantic dependencies.
It omits the dynamic behaviour like the order in which analysis situations were
performed, or backtracking paths.
6 http://www.tableausoftware.com
7 In this and subsequent figures we omit for brevity the representation of “top”-levels

of a granularity in dimension space DrugPrescriptionSpace.

http://www.tableausoftware.com
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correlate( narrow(InsInUrbanDistrict) )

correlate( moveDownToFirst(ins) )

( time:2012, ins:UpperAustria ,
time:2011, ins:UpperAustria )

..RatioOfDrugCosts

A1

( time:2012, ins:UpperAustria ,
time:2011, ins:UpperAustria )

..RatioOfDrugCosts(
InsInUrbanDistrict, InsInUrbanDistrict)

A2

( time:2012, ins:Linz-Stadt ,
time:2011, ins:Linz-Stadt )

..RatioOfDrugCosts

A3

Fig. 12. History of an analysis (without backtracking steps)

6 BI Analysis Graphs

A typical BI analysis session in comparative data analysis is described by the
following process: (1) Determine an initial analysis situation (by setting parame-
ters of an OLAP query generating a cube or comparative cube, usually mono-
granular). (2) Visually inspect the result. (3) Modify parameters (usually based
on semantic relationships) to move to a new analysis situation. (4) Inspect the
result: (a) stop if satisfied, (b) continue with (3), or (c) backtrack to a previous
analysis situation.

We present a vision of BI analysis graphs to capture this “analysis process
knowledge” at the schema level for later analysis as reference. BI analysis graphs
may be compared to process schemas designed in BPMN [37] which reflect how
a particular kind of business process is handled, or to the navigation model of
WebML [7] in web engineering, which describes how data and their relationships
may be traversed.

BI analysis graphs are inspired by WebML: The navigation model of WebML
is a graph of units and links. A unit represents objects or set of objects that
are retrieved by a parameterized SQL query associated with the unit. Links
describe how objects of source and target units relate. Changing the parameters
of a source unit and, thus, the object(s) represented, is propagated to the tar-
get unit by information transported along the link (which binds parameters of
source to parameters of target units), leading to related changes of the objects
represented in the target unit. Such changes may be automatic or dependent on
user input. Similarly, in BI analysis graphs, analysis situations are parameter-
ized cube definitions (or MDO queries), and navigation steps between analysis
situations bind parameters of the target based on parameters of the source and,
optionally, dependent on user input. Different to BPMN and WebML, which
come with a clear distinction between schema and instance, BI analysis graphs
adhere to a Frame-inspired [9] approach in which generic and individual analysis
situations co-exist in one graph. This reflects the very nature of BI analysis in
which the BI analysis graph should on the one hand generalize from individual
analysis, but on the other hand is never complete and as such is continually
extended and refined based on known analysis process knowledge acquired in
subsequent analysis.
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Further related work concerns navigation modeling and query prediction [35],
describing analytical sessions [33], modeling OLAP behavior [44], modeling pref-
erences [13], personalization [2], query recommendations [3,11,19], and annota-
tions [10]. Heer et al. [14] focus on recording and visualizing interaction histo-
ries and propose a taxonomy of interactive dynamics for visual analysis [15].
Thollot [43] propose a graph-based approach for context-aware BI recommen-
dations. Unlike [14,15,43], BI analysis graphs are motivated for designing and
re-using general (non-personalized) analysis processes, and for modeling naviga-
tion knowledge as semantic relationships (‘Navigation is Knowledge’ ). Recording
the history of an analysis process is a side product of the BI analysis graph app-
roach. BI analysis graphs and the associated envisioned guidance rules (discussed
in Sect. 7) draw ideas from active data warehouses [42] and from OLAP query-
ing at a conceptual level [30]. A simple form of BI analysis graphs [26] has been
introduced for multi-dimensional navigation modeling.

We now give an overview of BI analysis graphs. A BI analysis graph is a
directed graph with generic or individual comparative analysis situations as ver-
tices and generic navigation steps as directed edges (we will extend this definition
later by specialization and instantiation edges).

A generic comparative analysis situation is a comparative analysis situation
in which some or all variables are unbound and in which unbound variables
are restricted by domain indications. The domain of a variable is given by a
dimensional concept for node variables of points (and, optionally, by a multi-
dimensional concept for a point or a comparative concept for the point pair),
a set of concepts for concept variables (expressed by enumeration or as ↑ c for
the set consisting of concept c and all subsumed concepts), a set of levels for
level variables, a set of join conditions for join-condition variables, and a set of
scores for score variables (where ↑ s denotes score s and any score that directly
or indirectly drives s in the score drivers hierarchy). If a domain is not explicitly
indicated for a variable, the domain is any value possible for the variable’s kind.
A variable that is bound to a value or has only one permissive value is said to be
closed, otherwise it is said to be open. The notion of a generic non-comparative
analysis situation is analogously defined.

Example 34 (Generic analysis situation). The top left corner of Fig. 13 shows a
generic comparative analysis situation A0 where all variables for nodes of points
(pntGoI, pntGoC), concepts of external slice conditions (conceptGoI, conceptGoC),
levels of granularities (granGoI, granGoC), join condition (joinCond), score (score),
and qualifiers (qGoI, qGoC) are open.

An individual (comparative or non-comparative) analysis situation is an analy-
sis situation in which variables are bound. In a short hand notation, variables
may not be used. In such a case, they are bound to default values (e.g., a missing
granularity is bound to the granularity of the point). It is an instance of any
generic (comparative or non-comparative, resp.) analysis situation for which all
variable values are from the respective domains defined by the generic analysis
situation.
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Fig. 13. BI Analysis Graph with use & design steps
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In the remainder, we speak for simplicity of analysis situations, if we refer to
comparative and non-comparative analysis situations, generic or individual.

Example 35 (Individual analysis situation). In Fig. 13 individual analysis situa-
tions are depicted on the right hand side. A business analyst uses the generic
situation A0 and instantiates, e.g., the individual analysis situation A0(1).

A generic navigation step is defined by a navigation operator and, if it has a
navigation variable, a domain for the navigation variable. An individual naviga-
tion step is given by applying the generic navigation step to an individual analy-
sis situation and by binding any navigation variable of the navigation operator.
The application yields an individual target analysis situations that is identical
to the individual source analysis situation apart from the changes induced by
the navigation operator.

Navigation operators express (a) movements in the nodes of a dimension hier-
archy (like moveDownToNodeInDimension, moveUpInHierarchy, moveToPrev(ious sib-
ling)), (b) changes of the granularity of a cube (like drillDownToLevel, drillDown-

InHierarchy, (c) strengthening (narrow), weakening (broaden), or resetting (quali-
fyAside) a qualifier of a score, (d) strengthening (filter), weakening (extend), or
resetting (shift) the slice condition (i.e., conceptGoI or conceptGoC), or (e) the
change of a score (refocus). Navigation operators may either change the group
of interest (rerelate), the group of comparison (retarget), or both (correlate). Sev-
eral navigation operators may also be composed into one (compose)). We omit a
complete list for brevity.

Example 36 (Navigation step). Figure 13 shows a general navigation operation
correlate( moveToPrev(time) ) from A0 to itself. The instantiation of A0 to A0(1)

and the application of the navigation step leads to A0(3).

We now revise the definition of BI analysis graphs to include modeled special-
ization relationships. A BI analysis graph is a directed graph whose vertices are
analysis situations and whose directed edges are either navigation steps or mod-
eled specialization relationships between analysis situations. Navigation steps
may be specialized, too, in that a generic navigation step with a more restricted
variable domain connects more specific analysis situations than the specialized
navigation step. The specialization hierarchy is not inferred, but explicitly mod-
eled similar to the conceptual modeling of business processes. It acts as con-
straint for the definition of analysis situations and allows to capture alternative
navigation paths that apply to different specializations of a generic analysis sit-
uation. An analysis situation that specializes another analysis situation has for
each variable the same or a more restrictive domain.

Navigation steps may be proper OLAP steps as introduced above or back-
tracking-steps. A backtracking step indicates that in a particular analysis the
analyst moves back to a previously encountered analysis situation but chooses
thereafter a different analysis situation to continue.

Example 37 (BI analysis graph). The left side of Fig. 13 shows analysis graphs
AG0, AG1, and AG2. Each graph consists of vertices (analysis situations) and
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directed edges (navigation steps). Backtracking-steps are not shown. Analysis
situations A1, A2, and A3 are specializations of A0. Thus they are linked by
inheritance arrows. Figure 13 is explained in more detail later.

A BI analysis is an alternate sequence of individual analysis situations and
navigation steps that represent a sequential trace of the analysis steps performed
by an analyst in a particular analysis. A particular BI analysis can be carried
out by traversing an analysis graph and, if necessary, by extending the traversal.

A schema traversal T = (A1, S1, . . . , Sk−1, Ak) of a BI analysis graph G is
an alternate sequence of analysis situations and navigation steps where for each
i = 1..k−1 either (a) there exists an analysis situation A′

i such that Si is an
arc in G from A′

i to Ai+1, whereby A′
i = Ai, or A′

i is directly or indirectly
connected to Ai by modelled specialisation relationships (or vice versa), or (b)
Si is a backtracking step to Ai+1 = Aj with j < i.

A BI analysis t = (a1, s1, . . . , sk−1, ak) is a traversal of a given BI analysis
graph G if there exists a schema traversal T = (A1, S1, . . . , Sk−1, Ak) of G such
that a1 is an instance of A1 and for i = 1..k−1, a navigation step Si of G
such that ai is an instance of Ai, si is an individual navigation step of generic
navigation step Si, and ai+1 is an instance of Ai+1.

A traversal of a given BI analysis graph is specified by binding the open
variables of some analysis situation of the BI analysis graph and by subsequent
bindings of all open navigation variables of navigation steps followed. Notice
that the definition of a traversal of a BI analysis graph permits to initially jump
to any node of the graph and, once some analysis situation is reached, it does
not require to continue with the most specific navigation step defined in the BI
analysis graph. The graph acts as guidance and is not prescription, it can be
incomplete. A traversal of a navigation step that has been already specialized
may lead later to an inclusion of a different specialization in the BI analysis
graph.

Example 38 (BI analysis). The right side of Fig. 13 demonstrates the use of
analysis graphs AG0, AG1, and AG2, leading to BI analyses AG0’, AG1’, and AG2’.
All open variables of analysis situations and navigation steps are bound. The
sequence (A1(1), refocusScore (RatioOfDrugCosts), A3(1), . . ., A3(5)) of analysis AG1’

is a traversal of AG1.

Once an initial analysis graph has been defined, proper repeated analysis
proceeds as follows: (1) Jump to a predefined initial analysis situation (2) Set
open parameters for this analysis situation. (3) Evaluate the analysis situation
and inspect the result. (4) Choose an outgoing arc to move to another analysis
situation. (5) Set an open parameter for this arc, if any. (6) Evaluate and inspect,
the result; stop if satisfied or continue with 4.

If the business analyst is not satisfied with the options provided by the BI
analysis graph, he or she may add new edges and vertices that move to new ter-
rain or specialize given edges or vertices (in that more parameters are bound and
thus closed, or choices of bindings of open parameters are restricted). semCockpit
provides reasoning support to determine applicable values for open parameters
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and to check consistency of BI analysis graphs, especially with respect to node
and link specialization. The whole analysis process can be described in alter-
nating use- and design-phases, i.e., an analyst applies an existing analysis graph
(use-phase) and, if necessary, extends or modifies it (design-phase), afterwards
she uses the new graph, etc.

Example 39 (Analysis process). Figure 13 demonstrates the explorative, itera-
tive, and incremental characteristics of an analysis process. A business analyst
alternates between design and use of analysis graphs. When she or he uses the
graph the analyst also performs individual explorations:

(1) Initial analysis graph: AG0 comprises a generic analysis situation A0. The
navigation step from A0 to itself with navigation operation correlate( moveTo-

Prev(time) ) represents the rule of thumb that if some analysis situation is relevant
then the similar analysis situation for the previous time period is also relevant.
(2) Use phase: A business analyst instantiates analysis graph AG0 by binding
variables pntGoI.time and pntGoC.time to 2012 and 2011, respectively, resulting
in analysis graph AG0’ with individual analysis situation A0(1). Following the
navigation step proposed in AG0, the business analyst moves to analysis situation
A0(3). Further, the business analyst makes exploratory individual navigation
steps, which are not proposed as such in AG0, leading to analysis situations A0(2),
A0(4), and A0(5). Some of these comparisons are deemed relevant, A0(4) and
A0(5), others are not, A0(2). In Fig. 13 relevant analysis situations are decorated
by a hooklet and others are decorated by a cross. Analysis situations instantiated
from generic ones, such as A0(1) and A0(3), are depicted as boxes with solid
border. Analysis situations reached through exploratory navigation steps, such
as A0(2), A0(4), and A0(5), are depicted as boxes with dotted border.
(3) Design phase: The business analysts wants to re-use analysis situations A0(1),
A0(4), and A0(5) in later similar analysis sessions and generalizes them, in analysis
graph AG1, to A1, A2, and A3, respectively. Variable pntGoI.time with domain
year takes the place of constant 2012 and variable pntGoC.time takes the place of
constant 2011. The relation between 2012 and 2011 is represented by constraining
pntGoI and pntGoC to comparative concept PreviousYear. Analysis situations A1,
A2, and A3 are specializations of A0, which is depicted by specialization links.
(4) Continuation of alternating use and design phases: The business analyst in-
crementally designs a BI analysis graph, from analysis graph AG1 to analysis
AG1’ to analysis graph AG2, and so forth. Resulting BI analysis graphs can be
re-used in various related analyses, for example, to reiterate the analysis in the
next year in order to reassess the conclusions made by the analyst or in order to
monitor the effects of actions taken in reaction to the analysis.

7 Guidance, Judgement, and Analysis Rules

Guidance, judgement, and analysis rules provide actionable knowledge about
comparative analysis that otherwise is tacit knowledge of a business analyst or
captured and processed in some other form, usually outside BI analysis tools.
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A simple form of actionable knowledge is supported in many BI systems by the
possibility of setting alerters that fire if some measure exceeds a certain thresh-
old. Guidance rules are defined over analysis situations and provide guidance on
how to proceed best in analysis, by suggesting a generic or individual navigation
step to follow or advising that a particular navigation is not deemed relevant.
Judgement rules are defined over facts of a comparative cube and represent static
knowledge about possible explanations of a striking low or high score. Analysis
rules are defined over facts of a comparative cube as well and decide based on
the score of a fact, whether a specific action, e.g., starting a specific analysis,
should be taken (action rules), or whether a fact should be reported (reporting
rules). Analysis rules are evaluated for specific set of point pairs explicitly iden-
tified (e.g. after an ETL cycle), and we will see later that they require different
evaluation strategies in the context of inheritance and overriding.

A guidance rule is given by (a) a name, (b) an analysis situation (generic or
individual), (c) a rule condition which is either (c1) a condition over all facts
of the analysis situation (set-oriented rule) or (c2) a condition over a fact of
the analysis situation (fact-oriented rule), and (d) a recommended or disad-
vised generic or individual navigation operation, whose variable domain may be
restricted or its variable set (d1) absolute or (d2) relative to variables of the indi-
vidual analysis situation (for set-oriented rules) or also of coordinates of the fact
(for fact-oriented rules) for which the rule fires. In case of a composite analysis
situation the guidance rule is defined for the root analysis situation and the rule
conditions may also consider the component analysis situations and their facts.
Rule conditions are expressed as SQL queries (set- or tuple-oriented) over the
(comparative) cubes of the analysis situations. A set-oriented rule (FOR analysis
situation ONCE) fires once for an individual analysis situation, if the set-oriented
query is not null. A tuple-oriented rule (FOR analysis situation) fires for each fact
that is retrieved by the SQL query.

Guidance rules of the same name are organized in an inheritance hierar-
chy based on specialization relationships between generic analysis situations for
which they are defined.

A guidance rule applies to an analysis situation if it is an instance of the
generic analysis situation for which the rule is defined and there is no more
specific generic analysis situation with this property. If applicable, a set-oriented
rule fires for an individual analysis situation if the rule-condition is satisfied;
a fact-oriented rule fires for every fact of the individual analysis situation for
which the rule-condition is satisfied, and, depending on the rule, the navigation
is recommended (RECOMMEND) or disadvised (DISADVISE). Guidance rules
are evaluated after every individual navigation step of a BI analysis.

Several guidance rules may apply to a given individual analysis situation.
Since guidance rules suggest potentially promising navigation steps to follow
in subsequent analysis, a unique choice is not required but rather it may be
worthwhile to explore all options suggested to gain further insight about the
data at hand. Inheritance as described above can be used to specialize guidance
rules by providing more specific suggestions for more specific analysis situations.
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More specific guidance rules override more general ones and, thus, exclude the
more general suggestions from the suggestions list. Initially, very general guid-
ance rules may be defined that are extended and specialized over time.

Example 40 (Guidance Rules). Figure 14 shows guidance, judgement, and analy-
sis rules (action and reporting rules). The guidance rules refer to the analysis
situation in Fig. 13, but guidance rules may be also defined for generic analysis
situations independent of analysis graphs (not shown). GR0 for analysis situ-
ation A0 recommends navigation operation correlate( moveToPrev(time) ), if the
score value is less than 0.8 or greater than 1.2. For analysis situation A3, which
is a specialization of A0, guidance rule GR0 for A0 is overridden.

A judgement rule is specified by (a) a name, (b) a comparative cube with a
single score (defining the facts over which the judgement rule is defined), and
(c) a score-value comparison over such a fact, and (d) an informative judgement.
Judgement rules are evaluated any time a fact over which the judgement rule is
defined is retrieved and fires if the condition is met. Judgement rules of the same
name are organized in an inheritance hierarchy along the subset relationships
of the set of point-pairs of comparative cubes over which they are defined. A
generic judgement rule may be defined for a comparative cube with a generic
score whereby the score qualifiers may be constrained in the join condition. A
generic judgement rule inherits from another judgement rule if the set of point
pairs of the former is a subset of the set of point pairs of the latter, both are for
the same score with the same qualifiers, and the domains of the qualifiers are
in subset relationships. A generic judgement rule is defined for each fact with
point pairs in the comparative cube and with instantiations of the generic score
whose actual qualifiers are in the qualifier domains.

Example 41 (Judgement Rules). Judgement rule AR1 for cube C1 in Fig. 14 indi-
cates, once a fact of cube C1 is accessed, that one has to take into account an
increase of drug costs of about 5 % per year. The rule is overridden for facts of
cube C2, which specializes cube C1 (for year 2012), and justifies an exceptional
increase for oral antidiabetic drugs in year 2012.

An analysis rule is specified like a judgement rule, but different to judgement
rules its action is a recommended action or report and analysis rules need to be
explicitly triggered (for example after an ETL-cycle has been completed for
the set of new facts just loaded into the DWH) and analysis rules have two
conditions (explained later). In its basic form, application and triggering, as
well as inheritance is defined as for judgement rules. But, rather than guidance
and judgement, which concern an individual analysis situation or fact at hand
during a BI analysis, actions and reports are compiled for a bulk of facts where
some additional form of abstraction and accompanying rule evaluation strategy
is required to reduce repetition and information overload. Moreover, analysis
rules with the same name will frequently be for the same action or report, and
vice versa.
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Fig. 14. Guidance, Judgement, and Analysis Rules

It is common in organizational contexts and in law to apply a decision-
scope approach [36] to decision making. Higher organization levels set a decision
scope within which lower organization levels may operate. In case of conflict the
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regulations and rules of a higher level (e.g., European Union) take precedence
over those of a lower level (e.g., a member state). Such rules define under which
conditions certain actions may, must not, or need to be taken. This approach
can also be applied to action and reporting rules with two conditions, one (IF
condition or positive activation condition) stating when the rule should fire and
the other one (UNLESS condition or negative activation condition) when the rule
should not fire. If both conditions are not complementary, a decision scope for
more specific rules is left.

Applying the decision scope approach to analysis rules in BI analysis requires
to consider two alternative hierarchies: (1) hierarchies of sets of points at the
same granularity and (2) the roll-up hierarchy of points in multi-dimensional
space.

Specialization along subset relationships between sets of point at the same
granularity is governed by the same rules for inheritance and overriding as
introduced before. Specialization along a roll-up hierarchy of points in multi-
dimensional space actually concerns entities of different kinds, yet connected
by some form of part-of relationship. This gives rise to two alternative rule
evaluation strategies, both meaningful in practice, but with a different area of
application, actioning and reporting in mind.

We first consider the roll-up hierarchy of points (or pairs of points) and we will
then discuss the interplay between specialization along subset relationships of
points and the roll-up hierarchy of points. We discuss two evaluation strategies.
The prerogative strategy which is more appropriate for action rules and the
presumed strategy which is more appropriate for reporting rules.

In the prerogative strategy, an action triggered for a higher-level point (or
pairs of points) implicitly implies the same action for each lower level point (or
pairs of points). E.g., if a company decides to abandon a product line (such
as mobile phones) this decision is implied for every product (i.e., every phone
model in our example) of this product line. In the prerogative evaluation strategy,
analysis rules for the same action are evaluated top-down along a user-specified
roll-up path of granularities. We assume at first that for points of one granularity
at most one analysis rule is defined with a positive and negative activation con-
dition. If one of the two condition applies for a roll-up fact, analysis is completed,
whereby the indicated action is triggered, if the positive activation condition is
satisfied. Only if both conditions are not satisfied, i.e., for the situation that a
fact falls into the open space of the condition scope, the analysis rules for drill-
down granularities and drill-down facts at these granularities are considered in
further rule evaluation.

Example 42 (Action rules – prerogative evaluation strategy). In Fig. 14 action
rule AR1 is defined for facts in cube C1. Remember that action rules need to
be explicitly evaluated for a specific set of facts (e.g., those just loaded into
the data warehouse), identified by multi-granular cube and for a roll-up path
of granularities. This roll-up path needs not to be indicated, if the analysis rule
is only over multi-granular cubes with granularities along a single roll-up path,
which is the case for AR1. If rule AR1 fires, it starts a traversal of analysis graph
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AG2 at situation A3 of Fig. 13. For AR1 we have a prerogative evaluation strategy.
If the positive activation condition (val ≥ 1.1) is true for a province, AG2 is
started for that province. If neither the positive (val ≥ 1.1) nor the negative
(val < 1.05) activation condition is true, the rule evaluates the conditions for
districts to decide whether an analysis graph traversal is triggered.

In the presumed strategy, a report triggered for a higher-level point is pre-
sumed to cover also lower-level points and is thus not reported again for lower-
level points (to avoid unnecessary information overload, the basic motivation
behind performing roll-up analysis in data warehousing), unless a lower-level
point fulfills the negative activation condition of a more specific rule. E.g., if a
reporting rule triggers the report that average treatment costs for patients with
diabetes mellitus of type 2 patients in Austria are twice as high than in Germany
last year, it is presumed that this will hold in general for each province in Aus-
tria. Minor deviations are generally not of interest in comparative data analysis,
but major ones are. The knowledge what kind of exceptions should be reported
can be expressed by a negative activation condition of a more specific rule. In our
example such a rule may state that for comparing treatment costs for patients
in a province of Austria with patients in Germany, a percentage difference of
less than 20 % should not be reported. Assume a positive activation condition of
a more general rule has led to report a striking difference of average treatment
costs per patient in Austria versus Germany. Based on deviating observation for
comparing Tyrol (a province of Austria) with Germany the more specific rule
will report (if the difference is less than 20 %) that contrary to Austria as a
whole, average treatment costs per patient have been similar when comparing
Tyrol with Germany.

Example 43 (Reporting rules – presumed evaluation strategy). AR2 of Fig. 14 rep-
resents a reporting rule, which is evaluated in a presumed manner. If the positive
activation condition (val ≥ 1.1) is true for a province, the province is reported,
but districts of the province are only reported, if the evaluation of the negative
activation condition (val < 1.05) is true for a district of that province. In this
case the district is reported as an exception.

Prerogative and presumed evaluation of analysis rules along roll-up hierar-
chies in top-down manner can be combined with evaluation along hierarchies
of sets points at the same granularity according to the specialization principle
described above for guidance rules. Again we assume for simplicity, that analy-
sis rules are triggered for points along a single-drill-down path of granularities.
At each granularity all analysis rules defined for points at that granularity are
considered, and for each fact the most specific one is chosen (It is assumed here,
as that the specialization hierarchy is consistent such that a single most specific
rule exists). We also expect that the rules have been specialized in a consistent
way according to the decision scope approach such that the positive activation
condition of a more general rule implies the activation condition of a more spe-
cific rule, and the same holds for negative activation rules. In the prerogative
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strategy, once a decision has been determined for a fact at a given granular-
ity, analysis stops; if no decision could be made due to an open decision scope,
analysis continues with drill-down facts at a lower-level granularity for which an
analysis rule is defined. In the presumed evaluation strategy, a reporting rule
that once fired for a fact, is not triggered again for drill-down facts to avoid
information overload, unless reporting an exception is justified by a negative
activation condition.

Example 44 (Specialization of an action rule). In Fig. 14 action rule AR1 for cube
C1 is overridden by the same named action rule AR1 for cube C2. If the rule is
applied to a multi-dimensional point with year 2012, the specialized rule AR1 for
cube C2 is evaluated.

8 Conclusion

Existing BI tools are well-suited for reporting and for performing complex analy-
sis tasks but lack an explicit formalization of knowledge about business terms,
comparison, and analysis processes. Commonly, business analysts define business
terms in an ad-hoc manner rather than explicitly capturing business terms and
their meaning in a central, shared repository. An unambiguous formalization of
business terms can be used for the definition of measures, which facilitates the
analysis task of a business analyst. Furthermore, the definition of meaningful
comparisons should not be left to human intuition but captured as a first-class
citizen. Similarly, the analysis process itself could be formalized. The experi-
ence of business analysts should be made explicit in order to benefit all business
analysts within a company.

Rather than solving each issue separately, we presented an integrated and
coherent approach for ontology-driven comparative data analysis.

The centerpiece of the Semantic Cockpit approach is the multi-dimensional
ontology (MDO) which enriches a data warehouse with a set of concepts. These
MDO concepts unambiguously define business terms and their meaning in the
context of data analysis. Existing domain ontologies can be integrated as seman-
tic dimensions. Analysts use MDO concepts for the definition of measures and
scores. Measures quantify real-world facts of interest. Scores contrast measure
values of a group of interest with a comparison group. Generic measures and
scores reduce the number of measures that have to be defined. Judgement rules
provide possible explanations for striking results that are encountered during an
analysis process. Analysis rules trigger particular analysis processes or report
facts.

The semCockpit project extends the enterprise data warehouse by a sta-
tic semantic layer which assists analysts in formulating analytical queries in
high-level business terms. During the project we identified the need to also cap-
ture knowledge about analysis processes. Future research concerns modeling and
sharing of such knowledge in a semantic BI process layer based on the ideas of
analysis graphs and guidance rules sketched herein.
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81–88. ACM (2009)

12. Golfarelli, M., Maio, D., Rizzi, S.: The dimensional fact model: a conceptual model
for data warehouses. Int. J. Coop. Inf. Syst. 7(2–3), 215–247 (1998)

13. Golfarelli, M., Rizzi, S., Biondi, P.: myOLAP: an approach to express and evaluate
OLAP preferences. IEEE Trans. Knowl. Data Eng. 23(7), 1050–1064 (2011)

14. Heer, J., Mackinlay, J.D., Stolte, C., Agrawala, M.: Graphical histories for visu-
alization: supporting analysis, communication, and evaluation. IEEE Trans. Vis.
Comput. Graph. 14(6), 1189–1196 (2008)

15. Heer, J., Shneiderman, B.: Interactive dynamics for visual analysis. Commun. ACM
55(4), 45–54 (2012)



Ontology-Driven Business Intelligence 119
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