
 123

LN
BI

P
17

2

Third European Summer School, eBISS 2013
Dagstuhl Castle, Germany, July 7–12, 2013
Tutorial Lectures

Business
Intelligence

Esteban Zimányi (Ed.)
Tu

to
ria

l

Lecture Notes
in Business Information Processing 172

Series Editors

Wil van der Aalst
Eindhoven Technical University, Eindhoven, The Netherlands

John Mylopoulos
University of Trento, Povo, Italy

Michael Rosemann
Queensland University of Technology, Brisbane, Qld, Australia

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

For further volumes:
http://www.springer.com/series/7911

http://www.springer.com/series/7911

Esteban Zimányi (Ed.)

Business
Intelligence

Third European Summer School, eBISS 2013
Dagstuhl Castle, Germany, July 7–12, 2013
Tutorial Lectures

123

Editor
Esteban Zimányi
Universite Libre de Bruxelles
Brussels
Belgium

ISSN 1865-1348 ISSN 1865-1356 (electronic)
ISBN 978-3-319-05460-5 ISBN 978-3-319-05461-2 (eBook)
DOI 10.1007/978-3-319-05461-2
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014934656

� Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The Third European Business Intelligence Summer School (eBISS 2013) took place in
the Dagstuhl Schloss, Wadern, Germany, during July 2013. Tutorials were given by
renowned experts and covered several recent topics in business intelligence. This
volume contains the lecture notes of the summer school.

The first chapter presents an overview of pattern mining techniques for extracting
knowledge from large databases. Two main strategies for mining frequent itemsets are
discussed, namely, the Apriori and the FP Growth algorithms. The chapter then delves
into the pattern explosion problem and presents some recent techniques to reduce the
redundancy in pattern collections. These techniques use, on the one hand, statistical
methods to model user expectations given background knowledge, and on the other,
the minimal description length principle.

The second chapter introduces process mining, a new scientific discipline on the
interface between process models and event data. Process mining aims at bridging the
gap between business process management and data mining. The challenge is to turn
huge amounts of event data into valuable insights related to process performance and
compliance. The chapter introduces basic process mining techniques that can be used
for process discovery and conformance checking. Then, the chapter discusses
decomposition techniques, which enable process mining in the large.

The third chapter presents an ontology-driven business intelligence approach for
comparative data analysis. This approach has been developed in a joint research
project that involves academia, industry, and prospective users from public health
insurers. This approach employs techniques from knowledge-based systems, ontology
engineering, and data warehousing in order to support business analysts in their
analysis tasks.

The fourth chapter explores how to integrate traditional business intelligence
systems with the Linked Open Data paradigm. This paradigm enables the sharing of
freely available data on the Web through the use of open standards and formalisms,
such as RDF and ontology languages. Business intelligence systems must meet new
requirements for integrating the Linked Open Data paradigm. This includes, in par-
ticular, to provide on-demand analysis tasks over any relevant data source in right-
time. This chapter discusses the technical challenges behind such requirements, and
describes a new kind of business intelligence system to support this scenario.

The fifth chapter presents an overview of forecasting techniques in database
management systems. Time series forecasting estimates future, not yet available, data
of a time series. After discussing possible application areas for time series forecasting,
the chapter outlines various general strategies of integrating time series forecasting
inside a database and discusses some individual techniques from the database com-
munity. The chapter concludes by introducing a novel forecasting-enabled database
management architecture that natively and transparently integrates forecast models.

The sixth chapter addresses the issue of optimizing analytical queries by means of
indexes. The chapter starts with an overview of the basic index structures for data
warehouses, namely, bitmap indexes, join indexes, and bitmap join indexes. Then, the
chapter presents a new index, called Time-HOBI, which can be used for optimizing
queries that address the time dimension and compute aggregates along dimension
hierarchies. Furthermore, the paper shows how the index can be used for answering
queries, and presents experimental results about the performance of the proposed
index.

Finally, the seventh chapter presents a novel extension to TARGIT’s patented
meta-morphing called ‘‘The Intelligent Wizard’’. After presenting the relevant state-
of-the-art, the chapter describes the Intelligent Wizard as implemented in a real-world
industrial Business Intelligence (BI) application. The paper shows how the Intelligent
Wizard allows a user to navigate a real-world data warehouse using only human
language and knowledge of business terms, thus significantly simplifying the gener-
ation of analytics and reports.

We would like to thank the attendees of the summer school for their active par-
ticipation, as well as the speakers and their co-authors for the high quality of their
contribution in a constant evolving and highly competitive domain. Finally, the lec-
tures in this volume greatly benefit from the comments of the external reviewers.

January 2014 Esteban Zimányi

VI Preface

Organization

The Third European Business Intelligence Summer School (eBISS 2013) was
organized by the Department of Computer and Decision Engineering (CoDE) of the
Université Libre de Bruxelles.

Program Commitee

Alberto Abelló Universitat Politécnica de Catalunya, BarcelonaTech, Spain
Marie-Aude Aufaure Ecole Centrale de Paris, France
Ralf-Detlef Kutsche Technische Universität Berlin, Germany
Patrick Marcel Université François Rabelais de Tours, France
Esteban Zimányi Université Libre de Bruxelles, Belgique

External Referees

Rafael Berlanga Universitat Jaume I, Castellón, Spain
Stefan Conrad Heinrich-Heine-Universität, Germany
Benoit Depaire Hasselt University, Belgium
Cristina Dutra de Aguiar University of São Paulo at São Carlos, Brazil
Matteo Golfarelli University of Bologna, Italy
Katja Hose Aalborg University, Denmark
Mykola Pechenizkiy Technical University Eindhoven, The Netherlands
Kai-Uwe Sattler Technische Universität Ilmenau, Germany
Jim Warren The University of Auckland, New Zealand
Hans Weigand Tilburg University, The Netherlands

Contents

Introduction to Pattern Mining . 1
Toon Calders

Process Mining in the Large: A Tutorial . 33
Wil M.P. van der Aalst

Ontology-Driven Business Intelligence for Comparative Data Analysis 77
Thomas Neuböck, Bernd Neumayr, Michael Schrefl, and Christoph Schütz

Open Access Semantic Aware Business Intelligence 121
Oscar Romero and Alberto Abelló

Transparent Forecasting Strategies in Database Management Systems. 150
Ulrike Fischer and Wolfgang Lehner

On Index Structures for Star Query Processing in Data Warehouses 182
Artur Wojciechowski and Robert Wrembel

Intelligent Wizard for Human Language Interaction in Business Intelligence . . . 218
Morten Middelfart

Author Index . 243

http://dx.doi.org/10.1007/978-3-319-05461-2_1
http://dx.doi.org/10.1007/978-3-319-05461-2_2
http://dx.doi.org/10.1007/978-3-319-05461-2_3
http://dx.doi.org/10.1007/978-3-319-05461-2_4
http://dx.doi.org/10.1007/978-3-319-05461-2_5
http://dx.doi.org/10.1007/978-3-319-05461-2_6
http://dx.doi.org/10.1007/978-3-319-05461-2_7

Introduction to Pattern Mining

Toon Calders(B)

Université Libre de Bruxelles, Bruxelles, Belgium
tcalders@ulb.ac.be

Abstract. We present an overview of data mining techniques for
extracting knowledge from large databases with a special emphasis on the
unsupervised technique pattern mining. Pattern mining is often defined
as the automatic search for interesting patterns and regularities in large
databases. In practise this definition most often comes down to listing all
patterns that exceed a user-defined threshold for a fixed interestingness
measure. The simplest such problem is that of listing all frequent item-
sets: given a database of sets, called transactions, list all sets of items
that are subset of at least a given number of the transactions. We revisit
the two main strategies for mining all frequent itemsets: the breadth-first
Apriori algorithm and the depth-first FPGrowth, after which we show
what are the main issues when extending to more complex patterns such
as listing all frequent subsequences or subgraphs. In the second part
of the paper we then look into the pattern explosion problem. Due to
redundancy among patterns, most often the list of all patterns satisfy-
ing the frequency thresholds is so large that post-processing is required
to extract useful information from them. We give an overview of some
recent techniques to reduce the redundancy in pattern collections using
statistical methods to model the expectation of a user given background
knowledge on the one hand, and the minimal description length principle
on the other.

1 Introduction

In the last decades the amount of information that is generated and stored has
increased exponentially. Illustrative for the magnitude of the overload problem
is the quote of Eric Schmidt, CEO of Google inc. on the data explosion problem:
“There was 5 exabytes of information created between the dawn of civilization
through 2003, but that much information is now created every 2 days, and the
pace is increasing.” His claim is supported by other researchers: “As computa-
tional resources, sensor networks and other large-scale instruments and experi-
ments grow, the quantity of data generated from these sources is also growing.
A 2010 study by IDC (sponsored by data storage company EMC) estimates that
the world generated 800,000 petabytes of digital information in 2009, and that
we are on track to generate 1.2 million petabytes (or 1.2 zettabytes) in 2010.”
[26]. Companies all over the world are becoming more and more aware that the
huge amount of data they collect about their operations, customers, products,

E. Zimányi (Ed.): eBISS 2013, LNBIP 172, pp. 1–32, 2014.
DOI: 10.1007/978-3-319-05461-2 1, c© Springer International Publishing Switzerland 2014

2 T. Calders

suppliers, and so on, can help them better understand their business. The ability
to analyze and make sense out of the data can be of strategic importance and
give a competitive advantage.

For instance, insurance companies can increase their market share by offering
more competitive rates and banks decrease their losses due to loan defaulting
if they are able to better understand the risk profiles of their customers, tele-
phone companies can decrease customer churn and service providers could offer
more personalized services if they better understand their customers’ needs.
Also in the public domain there are numerous examples of benefits that data
can bring: based on nation-wide statistics we may be able to identify factors
that are correlated to kids dropping out of schools, sensory data of thousands
of patients may uncover hidden correlations that enable less costly or earlier
recognition of certain diseases, and the systematic analysis of police reports
may lead to the detection of criminality patterns that can be exploited to fight
crime. These are just a few promises held by the shear amount of data gathered
nowadays.

In the whole process of making sense out of the available data, we identify
several steps: (1) data needs to be collected. (2) Collected data needs to be stored,
for instance in data warehouses, in a format that allows for efficient analysis. (3)
For the analysis itself efficient techniques such as Online Analytical Processing
(OLAP), and data mining need to be present in order to turn the enormous
amounts of data into predictive models, trends, regularities. (4) Finally, based
on the models generated by data mining, business decisions need to be taken.

For instance, in the example of the insurance company intending to improve
the risk assessment, data gathering implies that the company needs to carefully
record the multiple factors that can be used to assess the risk of a customer.
Furthermore, for every existing customer, the insurance claims and the awarded
insurance amounts need to be recorded. All this information needs to be central-
ized and stored in a data warehouse. For this purpose it is important that the
company uses uniform processes and records all relevant business data. This data
needs to be cleaned and stored in a way that allows analysis to be performed
on the data, such as in a data warehouse. Then, based on the collected busi-
ness data, models can be built correlating the features of the customers with
the actual risk they presented as computed from the insurance claims. These
models could then be used to assess the risk of new clients that come to the
company. Based on the company strategy, the risk models could for instance be
used to target and attract specific groups with low risk profiles by offering more
competitive rates, or to deny insurance to high-risk customers. The ability to
collect and analyze huge amounts of data hence helps the company to better
understand and recognize risk factors leading to a competitive advantage.

In this article we will concentrate on a specific set of techniques for analyzing
data, called data mining. Han and Kamber [39] define data mining as “ . . . the
use of sophisticated data analysis tools to discover previously unknown, valid
patterns and relationships in large data sets.” Most data mining methods can
be divided into one of the following three categories.

Introduction to Pattern Mining 3

1. Classification and regression [39, Ch. 6] [68, Ch. 4]: Predicting respectively a
categorical or a numerical target based on some input attributes. Models are
inferred from labelled training data.

2. Clustering [39, Ch. 7] [68, Ch. 8]: Dividing a given dataset into logically
coherent groups. In contrast to classification, no training set with labels is
given, but the algorithm is supposed to find a logical division of the data into
clusters.

3. Pattern Mining [39, Ch. 5] [68, Ch. 6]: Discovering regularities, trends, or
patterns in large datasets. This includes, among others, finding associations
in transactional data [2] and sequences [55], frequent subgraphs in graph
data [1], and spatio-temporal patterns describing for instance trends in mobil-
ity data [30].

Next to these three main techniques we also identify outlier detection [68, Chap.
10]; i.e., finding data instances that are “different” as compared to the other
instances, semi-supervised clustering [81]; i.e., clustering in which some instances
have already be divided into clusters, and active learning [64], where we need
to learn classes with only few labeled instances, but with an interactive user
that can be asked to label some instances. Outlier detection can be seen as a
by-product of clustering, although some fully-fledged solutions exits that do not
require building a model for the complete dataset. Semi-supervised clustering is
at the intersection of clustering and classification, whereas active learning can
be considered as a particular approach towards classification.

Clustering and pattern mining are often referred to as unsupervised methods
as they require only data, whereas supervised methods, such as classification,
require annotated or labeled data. In this paper we will mainly concentrate on the
unsupervised pattern mining techniques. Pattern mining has several interesting
applications, including:

1. The patterns themselves can provide interesting information for the data
miner; similarly as visualization tools, the output itself of the data mining
operation might reveal interesting patterns to the user that would otherwise
remain unnoticed due to the high dimensionality of the dataset. For instance,
using pattern mining it may be observed that a certain combination of genes
are always over-expressed together under certain conditions. Clearly, iterating
manually over all possible combinations is impossible and therefore pattern
mining techniques can be very useful to highlight strong patterns.

2. Patterns are often used as input for other data mining operations. For instance,
frequent patterns could be used as features in classification tasks. Often classi-
fication algorithms require tabular data as input. It may, however, not always
be straightforward to transform graphs, sequences, strings, sets of items, etc.
into a tabular format. Pattern mining can be particularly helpful in such appli-
cations to identify potentially interesting features. For instance, in graph data,
a frequently occurring subgraph pattern may be a good candidate to generate
a feature that represents presence or absence of this particular structure.

3. Also for clustering frequent patterns may be useful as input. Frequent patterns
represent common behavior encountered in the dataset and as such define

4 T. Calders

Pattern Support Pattern Support

algorithm algorithm
learn learn
learn algorithm
algorithm learn
data data
learn data
model model
problem problem
learn result
problem algorithm

0.376
0.362
0.356
0.288
0.284
0.263
0.260
0.258
0.255
0.251

method method
algorithm result
Data set
learn learn learn
learn problem
learn method
algorithm data
learn set
problem learn
algorithm algorithm algorithm

0.250
0.247
0.244
0.241
0.239
0.229
0.229
0.228
0.227
0.222

Fig. 1. The subsequences with the highest frequency in the JLMR dataset. The pat-
terns have already been filtered to only include the so-called closed sequences.

a subgroup of the data. By combining the information given by multiple
frequent patterns, a similarity measure between instances can be constructed
based on how many patterns they share.

Most of the earlier work on pattern mining focussed on algorithmic tech-
niques for quickly finding all patterns that satisfy a certain frequency criterium.
Therefore, we will first give an overview of the main algorithmic techniques for
mining frequent itemsets, the simplest of all patterns. We present the well-known
breadth-first Apriori algorithm [3] and the main characteristics of depth-first
algorithms such as FPGrowth [40] and Eclat [80]. All algorithms rely heavily on
the monotonicity principle of support; that is, the observation that enlarging a
pattern cannot make it more frequent. This important property of a good inter-
estingness measure is the cornerstone of all frequent pattern mining algorithms.

The methods aimed at finding all frequent patterns, however, suffer greatly
from the so-called pattern explosion problem: when the threshold on the interest-
ingness measure is set too low, this may result in an enormous amount of often
uninteresting and redundant patterns, while setting the threshold too high may
cause important patterns to be missed. Therefore, in the second part of the paper
we will concentrate on the pattern explosion problem and propose some solutions
to reduce or even avoid the problem. The first solution is the so-called Condensed
Representation [18]. A condensed representation of the collection of patterns is
a subset of all patterns that still contains enough information to reproduce the
other patterns and their frequency information. As such they represent a lossless
subset of the complete pattern set.

In many cases, however, even the number of patterns in the condensed rep-
resentation is still too large. For instance, consider Fig. 1 from [49]; in this figure
the most frequent closed subsequences in the JLMR dataset are shown. The
JLMR dataset is a modestly-sized dataset containing 787 abstracts of papers
that appeared in the Journal of Machine Learning and Research. These patterns
have already been filtered to only include the so-called closed patterns, one of
the best known condensed representations. Even though the collection of terms

Introduction to Pattern Mining 5

is already reduced with this filtering step, we still see an extremely high redun-
dancy in the collection: many patterns with very similar meaning are shown to
the user. Beside redundancy issues, the set of frequent patterns also contains
trivial and meaningless patterns. For example, the set of frequent closed sequen-
tial patterns in Fig. 1 contains random combinations or repetitions of frequent
terms in the JMLR abstracts such as algorithm, result, learn, data and problem.

Because the condensed representation approach does not completely remove
all redundancy, the second solution will be based on surprisingness of patterns
given statistical models of expectation and the Minimal Description Length.
These methods have as property that they discourage overlapping and unin-
formative patterns. For the statistical model, redundant patterns are avoided by
removing “non-surprising” patterns, where non-surprising depends on a statis-
tical model built for the expectation of the patterns. The minimal-description
length principle, on the other hand, avoids overlapping patterns by selecting
them based on their ability to compress the database. Highly overlapping pat-
terns will be poor at compressing the database as they tend to target the same
parts.

The structure of the paper is as follows: in the first part of the paper (Sect. 2
till 5) we will concentrate on the traditional frequent pattern mining problem;
that is, techniques for listing all patterns that satisfy a certain minimal sup-
port threshold: Sect. 2 defines the frequent itemset mining problem, and Sect. 3
sketches the main algorithmic techniques. Section 4 shows several extensions of
the frequent itemset mining problem to more complex pattern types and Sect. 5
presents applications. The second part of the paper, Sect. 6 will then concen-
trate on the pattern explosion problem and solutions for it based on statistical
methods and the minimal description length. Section 7 concludes the paper.

2 Pattern Mining: Definition

We will start with an illustrative example of frequent pattern mining that will
serve as a running example to illustrate the concepts throughout the paper.
Figure 2 contains a part of a much larger dataset of 3.5 million sets of tags
assigned by users of the photo website www.flickr.com to their pictures1. When
confronted with this dataset, one may wonder if there are certain subsets of tags
that frequently co-occur in the dataset. Such frequent groups may represent
important concepts among the pictures. Unfortunately, the enormous amount of
pictures and tags makes it very difficult to manually identify the frequent sets of
tags in the dataset. This task is exactly what frequent pattern mining tackles.

In frequent itemset mining [2], we assume that a database of sets, called
transactions, is given. The task is to find all sets of items that are subset of at
least a user-given number of transactions. This number of transactions of which
the itemset is a subset is called the support, and the user-given threshold, the
minimal support. That is, let I be a set of items. A transaction T is a pair
1 A dataset with 3.5 million tag sets is made available by Xirong Li and can be accessed

on his website http://staff.science.uva.nl/∼xirong/index.php?n=DataSet.Flickr3m

www.flickr.com
http://staff.science.uva.nl/~xirong/index.php?n=DataSet.Flickr3m

6 T. Calders

1000376015 7928333@N03 SHIP FERRY SEA BOAT BLUE

1007199160 56445078@N00 Black and White Australia

1011677092 10730206@N02 Emergency Vehicle Show Boat

1028308843 80642895@N00 hawaii tender boat ship ocean cruise

1031991872 44124297297@N01 Greece Mykonos cruise ship blue boat lens

flare Louis

120120111 25203555@N00 2006 police sheriff communications

dispatch vehicle truck emergency

1212917111 21651009@N00 sydney harbour harbour bridge opera house

long exposure circular quay train station

night ferry

1229907742 79038663@N00 Thomas Aylett Australia Sydney Harbour

Bridge Canon 30D 70 200 themoulinrouge

Canon EF 70 200mm f 2 8L IS USM 70 200L

1263045627 47054297@N00 Police COP Emergency Vehicle PD

1306918395 10615477@N04 Military War Heavy Duty Police Truck

Emergency Response Auto Vehicle

Fig. 2. Tag sets assigned by users of the Flickr website. The first and second column
represents respectively the picture and user identifier, followed by the tags assigned by
the user. Every line represents a tag set of a real photo, but for educational purposes
a convenient subset of photos was selected and slightly modified.

(TID , J) with TID the transaction identifier and J a subset of I. A transaction
database is a set of transactions. The support of an itemset I ⊆ I in a transaction
database D is defined as:

support(I,D) := |{(TID , J) ∈ D | I ⊆ J}| .

Given a minimal threshold minsup, the outcome of the frequent itemset mining
problem is the following set of frequent patterns:

F(D,minsup) := {I ⊆ I | support(I,D) ≥ minsup}
Hence, if we want to apply itemset mining to the data in Fig. 2, we first need

to transform the data into transactions. We can do that by grouping the tags by
photo, or by user. If we group by photo, we get the transaction database depicted
in Fig. 3. To reduce the total number of items we removed all tags that appear
in less than 2 photos in the example. Every line represents one transaction and
consists of the set of words that appear on that line.

For a threshold of 3, the frequent itemsets have been listed in Fig. 4. For
example, the support of {emergency,vehicle} is 4 as there are 4 transactions (3,
6, 9, 10) in which both items of this itemset appear. As the support of the itemset
{cruise, ship} is 2 (there are exactly two transactions—the 4th and 5th—in which
both items appear), this itemset is not in the list of frequent itemsets.

In its original formulation [2], the frequent itemset mining problem was only
part of the larger association rule mining problem. In the association rule mining
problem, itemsets are combined into rules of the form X ⇒ Y , indicating that

Introduction to Pattern Mining 7

TID Set of items

1 {blue, boat, ferry, ship}
2 {australia}
3 {boat, emergency, vehicle}
4 {boat, cruise, ship}
5 {blue, boat, cruise, ship}
6 {emergency, police, truck, vehicle}
7 {bridge, ferry, harbour, sydney}
8 {australia, bridge, harbour, sydney}
9 {emergency, police, vehicle}
10 {emergency, police, truck, vehicle}

Fig. 3. Transaction database constructed for the data in Fig. 2. Every photo became a
transaction and the de-duplicated tags the items. Tags were transformed to lower case
and for readability of our running example only tags that appear in 2 or more photos
were kept.

Frequent Itemset support

{} 10
{ship} 3
{boat} 4

{vehicle} 4
{emergency} 4

{police} 3
{boat, ship} 3

{emergency, vehicle} 4
{police, vehicle} 3

{emergency, police} 3
{emergency, police, vehicle} 3

Fig. 4. Frequent itemsets in the database given in Fig. 3 for a minimal frequency
threshold of 3

X in a transaction implies the presence of Y as well. The quality of such rules is
measured using support and confidence of the rule. These measures are defined
as follows:

support(X ⇒ Y,D) := support(X ∪ Y,D)

confidence(X ⇒ Y,D) :=
support(X ∪ Y,D)
support(X,D)

D is omitted when the database is clear from the context. Hence, the support of
the rule corresponds to the number of transactions that support the rule in the
sense that both antecedent and consequent, while the confidence estimates the
conditional probability of observing the consequent in a transaction given that
the antecedent is present. Another popular rule quality measure is the lift of a

8 T. Calders

rule. The lift of rule X ⇒ Y in a database D is defined as follows:

lift(X ⇒ Y,D) := |D|confidence(X ⇒ Y,D)
support(Y,D)

Lift hence expresses how much more probably it is that a transaction containing
itemset X contains itemset Y ; indeed: support(Y,D)

|D| is the probability that a ran-
domly selected transaction from D contains itemset Y , whereas confidence(X ⇒
Y,D) is the probability that a randomly selected itemset that contains itemset X,
also contains itemset Y . Lift is especially interesting when comparing rules with
different consequents. For instance, even though the rule drinker ⇒ brown hear
may have a higher confidence than the rule drinking ⇒ liver problems, the latter
one is more interesting as there are far less people with liver problems than there
are people with brown hear.

From a computational perspective, however, the step from itemsets to associ-
ation rules is not significant; almost all association rule mining algorithms start
by mining frequent itemsets which, in a second phase, are split in every possible
way into antecedent and consequent to form rules. The main computational bot-
tleneck in this combined operation is heavily skewed towards the computation of
all frequent itemsets. Furthermore, association rules are often considered to be
misleading since they seem to imply causal dependencies between the head and
the consequent of the rule. It is however impossible to derive such causal relation-
ships from an observational dataset. Therefore, in this chapter we concentrate
on the frequent itemset mining problem.

3 Algorithms for Mining Frequent Itemsets

All algorithms for mining frequent itemsets rely heavily on the following
monotonicity principle:

if X ⊆ Y , then support(X) ≥ support(Y)

That is, adding items to a set will never increase its support. The monotonic-
ity principle can be used to prune large parts of the search space; whenever we
encounter an infrequent itemset X, there is no need to explore any of its super-
sets, as they have to be infrequent as well due to the monotonicity principle.
This principle plays a key role both in breadth-first and depth-first algorithms.

3.1 Breadth-First Algorithm Apriori

The Apriori algorithm [3], depicted in Algorithm 1, maximizes the pruning capa-
bility of the monotonicity principle by traversing the search-space in a breadth-
first fashion. It first starts with counting the singleton itemsets in a single scan
over the dataset, then it counts all candidates of length 2 in one scan, and so on.
When generating the candidates of length k to be counted in the kth step, only
those itemsets are considered of which all subsets were observed to be frequent

Introduction to Pattern Mining 9

Algorithm 1. Apriori
Input: Database D, minsup
Output: Set F of frequent itemsets

k ← 1
C1 ← {{i} | i item occurring in D}
while Ck �= {} do

Fk ← {I ∈ Ck | I is frequent}; α Count itemsets in Ck in 1 scan over D;
Ck+1 ← {I | |I| = k + 1 and all J ⊂ I with |J | = k are in Fk};

α Generate new candidates
k ← k + 1

end while
F ← ⋃i=1...k−1 Fi;
return F

Step k = 1

Itemset Support

{boat} 4
{emergency} 4

{police} 3
{ship} 3

{vehicle} 4

{australia} 2
{blue} 2

{bridge} 2
{cruise} 2
{ferry} 2

{harbour} 2
{sydney} 2
{truck} 2

−→

Step k = 2

Itemset Support

{boat, ship} 3
{emergency, police} 3
{emergency, vehicle} 4

{police, vehicle} 3

{boat, emergency} 1
{boat, vehicle} 1
{boat, police} 0

{emergency, ship} 0
{ship, vehicle} 0
{police, ship} 0

−→
Step k = 3

Itemset Support

{emergency, police, vehicle} 3

Fig. 5. Candidate itemsets generated by the Apriori-algorithm together with their
support. The minimal support threshold is 3

in the previous iterations. In Fig. 5 the sets that are tested with their support for
the dataset of Fig. 3 is given. In the first step all singletons are counted. In the
second step only those pairs that are composed of frequent items are counted.
In the third and last step, only one itemset of length 3 is counted: {emergency,
vehicle, police}, since it is the only set of length 3 of which all subsets are fre-
quent. For instance, the set {boat, emergency, vehicle} is not counted since the
subset {boat,emergency} was found to be infrequent in the second step.

10 T. Calders

3.2 Depth-First Algorithms

Algorithm 2. Depth-First Itemset Mining
Input: Database D, minsup
Output: Set F of frequent itemsets

function MineFrequent(D)
F ← {a | {a} is frequent in D}
F ← {{a} | a ∈ F}
if |F | < 2 then

return F α Base Case
end if
D ← {(TID , J ∩ F) | (TID , J) ∈ D and J ∩ F �= ∅}

α Remove infrequent items from D; keep only nonempty transactions
while |F | > 1 do

Pick an item a from F
F ← F \ {a}
D[a] ← {(TID , J \ {a}) | (TID , J) ∈ D and a ∈ J}

α Construct conditional Database
F [a] ← MineFrequent(D[a]) α Recursion
F ← {I ∪ {a} | I ∈ F [a]}
D ← {(T, J \ {a}) | (TID , J) ∈ D} α Remove a from D

end while
return F

end function

F ← MineFrequent(D)
return F

Although the breadth-first algorithms are provable optimal with respect to
the exploitation of the monotonicity principle [54], they have the disadvantage
that due to the simultaneous counting of all candidates of the same length, the
counting procedure cannot exploit the fact that all transactions that support
a certain itemset {a, b, c}, also contain its subsets, for instance {a, b}. Hence,
instead of scanning the whole database in order to find and count those trans-
actions that support {a, b, c} as we have to do in a breadth-first algorithm, we
could count {a, b, c} directly after counting {a, b}. If we “remember” one way or
another which transactions contained {a, b}, we could hence restrict our scan to
only those transactions containing {a, b}. In a depth-first algorithm, this obser-
vation is key for improving the counting procedure. We illustrate the improved
counting procedure with an example. Before counting the support of the super-
sets of the frequent itemset {emergency}, we copy all transactions containing
{emergency} to form the conditional database for the itemset {emergency}. If
there are only few transactions containing the itemset {emergency}, this can
significantly reduce the time required for counting, since we do no longer need
to scan the complete database, but only the smaller conditional database. In
Algorithm 2, this principle is systematically and recursively exploited to form

Introduction to Pattern Mining 11

D
TID Set of items

1 {blue, boat, ferry, ship}
2 {australia}
3 {boat, emergency, vehicle}
4 {boat, cruise, ship}
5 {blue, boat, cruise, ship}
6 {emergency, police, truck, vehicle}
7 {bridge, ferry, harbour, sydney}
8 {australia, bridge, harbour, sydney}
9 {emergency, police, vehicle}
10 {emergency, police, truck, vehicle}

−→

D[ship]

TID Set of items

1 {boat}
4 {boat}
5 {boat}

−→

D[boat]

TID Set of items

1 {}
3 {emergency,vehicle}
4 {}
5 {}

. . .

−→

D[emergency]

TID Set of items

3 {vehicle}
6 {police, vehicle}
9 {police, vehicle}
10 {police, vehicle}

−→

D[emergency, vehicle]

TID Set of items

3 {}
6 {police}
9 {police}
10 {police}

−→

D[vehicle]

TID Set of items

3 {}
6 {police}
9 {police}
10 {police}

Fig. 6. Depth-First algorithm applied to the dataset depicted in Fig. 3

12 T. Calders

the framework of most depth-first frequent itemset mining algorithms, includ-
ing FPGrowth [40] and Eclat [80]. These algorithms follow a divide-and-conquer
strategy:

1. Select a frequent item a;
2. Make the conditional database D[a] containing only those transactions that

contain item a and generate all frequent itemsets containing item a from D[a];
3. Remove item a from D and repeat.

Figure 6 illustrates the depth-first algorithm on the dataset of Fig. 3. In every
recursive step we generate the associated conditional database. Initially we start
with the database D[] containing only the frequent items.

The main source of variation between the depth-first pattern mining algo-
rithms lies in the internal data structure they use. As can be derived from the list
of operations to be performed by the depth-first algorithms, the data structure
should allow to quickly (a) identify the frequent items, (b) construct the condi-
tional database consisting of all transactions that contain a particular item, and
(c) remove (or ignore) infrequent and already processed items. FPGrowth uses
for this purpose a so-called FPTree, which is based on a double-linked prefix-
tree of the transactions extended with a header table connecting the same item
appearing in transactions with different prefixes. Eclat instead employs TID-
lists; for every item, the list of transaction-identifiers containing that item is
stored. In Fig. 7 both the FPTree and the Eclat representation of the database
in Fig. 3 have been depicted. The exact details of both algorithms are beyond the
scope of this tutorial. We refer the interested reader to [32] for further details.

FP-Tree Eclat representation

Item TID-list

ship 1, 4, 5
boat 1, 3, 4, 5
emergency 3, 6, 9, 10
vehicle 3, 6, 9, 10
police 6, 9, 10

Fig. 7. FPTree and Eclat-representation of the database in Fig. 3.

4 Alternative Pattern Types and Interestingness
Measures

There exist many extensions and variations to the original frequent itemset
mining problem. In general, the pattern mining problem is defined as follows.

Introduction to Pattern Mining 13

Given a class of patterns C, and a predicate q expressing if a pattern p is inter-
esting (q(p)), find the set of all interesting patterns: {p ∈ C | q(p)}. For example,
for frequent itemset mining, the class of patterns C consists of all itemsets, and
the predicate q is defined as follows:

q(I) ⇔ support(I,D) ≥ minsup.

For the purpose of the overview we divide them according to two orthogonal
dimensions: on the one hand, more complex pattern types by adding struc-
tural or temporal dimensions and on the other by introducing alternative, often
application-oriented interestingness measures. Nevertheless, despite the great
variety of measures it is fair to say that most commercial data mining suites
usually support only the most basic types, being: frequent itemset, association
rules, and sequence mining based on support and confidence.

4.1 More Complex Pattern Types

In the literature, among others, the following classes of patterns have been
studied:

1. Sequences [55]. Either a database of sequences or one large sequence is given.
A support measure can be defined as the number of sequences in the database
of which the pattern sequence is a subsequence. In the case of one large
sequence the largest number of non-overlapping embeddings of the sequence
can be chosen as support measure. For example, under the non-overlapping
embedding semantics, the support of abc in

aadbcbcadebadbeccaddbecaebc

would be 4. Many extensions, for instance to include control over the gap
length in an embedding, have been considered in the literature [78].

2. Graphs [1], Networks [62, Ch. 10] [67], and even hypergraphs [42]. Similar as
for the sequences, there are two main paradigms: either a database of graphs
is considered and the support represents in how many of the “transaction”
graphs in the database the pattern graph occurs [44,74], or the data consists
of one large graph and the support measure represents how common the
pattern is in the large graph [13,41,71]. Examples for the first setting would
be a database of molecules represented as graphs; a frequent pattern would
then correspond to a fragment common to many of the molecules. For the
latter case, a social web graph, such as for instance a friendship graph between
participants in a social network, would be a good example. A frequent pattern
would express a common structure in the social network. Special cases of
graphs have been studied as well, including trees [79], partial orders [19,60],
connected subgraphs in a graph with bounded tree-width [43], cliques [73],
bicliques [63], and quasi-cliques [70].

3. By combining the temporal aspect with graphs we arrive at dynamic or evolv-
ing graphs [7]. In many networks the temporal aspect is of great importance,

14 T. Calders

for instance if we want to study the evolution of the network. Therefore,
recently different research groups have started studying dynamic graph pat-
terns [7]. Such patterns may express common evolution patterns in a dynamic
graph.

4. Multi-relational patterns. A graph can be considered as an extension of trans-
action in which the set of items is replaced by a set of edges which are pairs
of items. In a similar fashion, we can extend sets of pairs of items to arbi-
trary relations over our universe of items to arrive at relational or even multi-
relational datasets in which we can define multi-relational patterns [28,33,65]
or subgroups [75].

5. Another popular class of patterns are the rules. A rule typically is an implica-
tion X ⇒ Y in which X and Y belong to one of the pattern classes mentioned
above. The semantics of such a rule is that an occurrence of a pattern X
implies the occurrence of pattern Y . The rules themselves can be considered
to be patterns themselves. Important classes of rules are association rules [2],
and quantitative association rules [66], functional and inclusion dependen-
cies [57], and embedded functional dependencies [24]. For rules, next to the
support which expresses the prevalence of the rule, usually also the strength
of the rule is expressed by a measure of confidence.

There is an incredibly wealth of different variations and extensions of associa-
tion rules. To illustrate the enormity of the domain, consider the fact that the
original papers [2,3] have been cited over 13 000 times, each2. For an overview
of this enormous domain, we refer the interested reader to the following survey
papers [32,38].

4.2 Alternative Measures of Interestingness

Depending on the need in different applications, also different interestingness
measures have been defined. In [29], an extensive overview of different interesting-
ness measures for the standard transaction database setting has been given. The
overview considers 39 common measures for rules and simple patterns, includ-
ing support, confidence, precision, conviction, lift, coverage, leverage, odds ratio,
prevalence, specificity, information gain and many others. In [29], the measures
are divided into three large classes: the objective measures, that measure a cer-
tain statistic of the data such as the number of occurrences, subjective measures
that try to quantify the interestingness of a pattern, and semantic measures
that capture for instance the utility or actionability of a pattern [52,76]. All 39
measures concern itemsets and association rules in normal transactional data.
Furthermore, depending on the type and properties of the data, support mea-
sures have been adapted. We list a couple of popular alternative formulations
that depend on the type and properties of data at hand:

1. Often the data can be split into two or more groups, for instance in a classifi-
cation task. In such a context it could be interesting to find patterns that are

2 Source: Google scholar http://scholar.google.be/, January 8th, 2014.

http://scholar.google.be/

Introduction to Pattern Mining 15

much more prevalent in one dataset/class than in the other. Emerging pat-
terns [22] are an example of pattern mined under such context, in which the
interestingness is defined as the support in one dataset divided by the support
in the other. Similar in nature are the so-called contrast sets [5,6]. Needless to
say, several other existing measures of correlation between class/dataset and
pattern could be used as alternative measure for contrast/emerging patterns
as well. Much similar in spirit is the field of subgroup discovery [4,34,75].
Although the type of patterns studied in subgroup discovery is in essence
the same as for emerging patterns and contrast sets, the communities study-
ing these patterns adhere different search strategies. Whereas the search for
emerging and contrast sets is usually exhaustive and Apriori-style, in the
subgroup discovery community the most popular search techniques include
branch-and-bound, and heuristic search strategies such as beam search.
For an unified overview of the emerging patterns, contrast sets, and subgroup
discovery, see [56].

2. Alternative measures have been defined for the case when the input data is
assumed to contain errors, hence requiring a support measure that accounts
for the influence of noise on the rigid exact measures that require every single
item in an itemset to be present in a transaction in order for the transaction
to support the itemset. Examples of the pattern types resulting from a more
relaxed support definition are fault-tolerant (FT) frequent itemsets [46,59],
weak and strong Error Tolerant Itemsets (ETIs) [77], Approximate Frequent
Itemsets (AFIs) [51], and extensions of these [20,61].

3. Sometimes it is assumed that we do not only know that there might be noise
present in the data, but we also have some level of certainty of correctness of
our data. This leads to a probability distribution over the possible data values
in the database entries. For such data, we can define probabilistic measures
such as the expected support [21], or the frequentness probability [8]. For
the case where independence between the uncertain entries in the database
is assumed, is has been shown that good approximations can be obtained
using simple techniques from statistics, such as sampling and the normal
approximation of the binomial distribution [14,15].

4. Mining numerical data: if the database contains numerical attributes it is no
longer possible to directly apply frequent itemset mining. The most popular
and prevalent solution in such case is to discretize the numerical values in
order to reduce the numerical data to the required itemset data; a record
would then be transformed to the set of attribute-bucket pairs listing in which
bucket a specific attribute can be classified. Nevertheless, there have been a
few extensions studied that directly work on the numerical data removing the
need for discretization [25,45].

4.3 Main Challenges for Mining Alternative Pattern Types

Mining more complex patterns comes at a price. There are two main challenges
when mining more complex pattern types which we will illustrate both with the
mining of frequent subgraphs in one large datagraph.

16 T. Calders

Fig. 8. Illustration of the fact that counting the number of embeddings of a pattern in
a single datagraph is not a monotonic measure. The triangle has 3 embeddings in the
given datagraph, whereas its extension has 10 unique embeddings.

Monotone Support Measures. It is important to have a monotone support
measure expressing the frequency of a pattern, because all algorithms rely heavily
on this property for efficient enumeration of all frequent patterns. Furthermore, a
non-monotone measure is counter-intuitive as intuitively it should not be possible
that a specialization of a pattern is more frequent than the pattern itself, which is
part of this specialization and hence occurs every time the specialization occurs.
In many cases, however, finding such a monotone measure is highly non-trivial.
Consider for instance Fig. 8. This figure shows one database graph together with
two patterns, one triangle, and its specialization consisting of one triangle with
a dangling edge attached to one of its corners. The most straightforward choice
for a support measure would be to count the number of embeddings of the
pattern. As we can see in the figure, however, this measure is not monotone as it
assigns a support of 3 to the triangle, and a support of 10 to the specialization
with the dangling edge. The reason is that the specialized pattern can have
many embeddings that correspond to one embedding for the triangle; i.e., the
embeddings only differ in the embedding of the dangling edge. Therefore multiple
other measures for mining subgraphs of a single large graph have been proposed,
most of which are based on the notion of an overlap graph [17,71].

Efficient Search Space Traversal. Most of the more complex pattern min-
ing algorithms apply a depth-first enumeration of all patterns, comparable to
the depth-first enumeration for the frequent itemsets described in the previous

Introduction to Pattern Mining 17

Fig. 9. Part of the search space of all graph patterns. The arrows represent the spe-
cialization relation.

section. The reason for the preference of depth-first over breadth-first algorithms
is because for most of the more complex pattern types, the number of patterns at
a certain level is much higher than for the frequent itemset mining problem. For

instance, there are
(
n
k

)
≈ nk

k! itemsets of length k for a set of n items, whereas

there are
(
n
k

)
2k(k−1) ≈ nk

k! 2
k(k−1) directed graphs with k nodes from a set of

n nodes. As the breadth-first algorithm implies dealing with a complete level
at once, this incurs a great memory footprint. Even more important is that for
more complex patterns counting support is an expensive operation. For graphs
it usually involves some sort of subgraph-isomorphism test, a notoriously hard
problem [27]. Therefore, depth-first enumeration is preferable as it more easily
allows reusing the computations of the support of one of the pattern’s parents.
For instance, finding all embedded subgraphs of a pattern can be done more
efficiently if all embeddings of one of its generalizations with one less edge have
been cached.

An important component of a depth-first algorithm is a procedure to generate
the children of a pattern, that is, the specializations of a pattern that are recur-
sively explored after it. Enumerating all candidate patterns to be counted against
the datagraph without duplicates, however, is not straightforward. Figure 9 shows
part of the search space of all subgraph patterns. The edges indicate the spe-
cialization relation between the different patterns. In order to avoid duplicates,
every pattern should be generated as a specialization of one single parent pattern
only. For itemsets such is easy to achieve: fix an order between the items and let

18 T. Calders

every itemset i1 . . . in only be generated by its prefix i1 . . . in−1. For graphs this
problem is much more difficult to solve. Indeed, an efficient way to generate all
graphs without duplicates would immediately lead to an efficient way to deter-
mine a canonical representation of a graph by tracking the path from the graph
to its ancestors and storing the edges of the graph in the order they are added on
this path. Obtaining a canonical form of a graph, however, is assumed not to be
in polynomial time, as it would allow to solve the graph homomorphism problem
efficiently. Graph homomorphism, however, is a well-known problem of which the
complexity is still open and expected not to be possible polynomial [27].

5 Pattern Mining Applied on Real Data

For an overview of different applications of pattern mining and more specifically
sequence mining, we refer to [36]. In that book chapter several examples of appli-
cations of pattern mining have been given in healthcare, education, web usage
mining, text mining, bioinformatics, telecommunication, and intrusion detection.
In this section we will concentrate of a few examples from our own work which
we divide into two categories.

5.1 Patterns as Input for Other Algorithms

Patterns can be used as input for other applications. Frequent itemsets could be
used as features in classification, where each frequent itemset is transformed into
a feature for a transaction expressing whether or not the itemset is present in the
transaction. In combination with feature selection techniques to reduce the total
number of features and retain the most promising features only, this can lead
to performant classifiers [37,50]. Similarly, frequent itemsets can be used as an
alternative description of the data and changes in the patterns can be monitored
to detect changes in continuous processes.

Figure 10 represents two experiments in which patterns are used to find anom-
alies in streams of events. In both cases it is monitored how well the patterns can

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500000 1e+006 1.5e+006 2e+006 2.5e+006 3e+006 3.5e+006 4e+006 4.5e+006 5e+006

C
om

pr
es

si
on

 R
at

io

Event Index

SeqZip
LZW

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 500000 1e+006 1.5e+006 2e+006 2.5e+006

C
om

pr
es

si
on

 R
at

io

Event Index

SeqZip
LZW

median
median

Fig. 10. Example of patterns being used to detect changes in a stream of events. By
monitoring how well the patterns can cover (compress) the data stream, exceptional
changes in the distribution of the stream can be detected. Figures are taken from [69]

Introduction to Pattern Mining 19

compress the data streams. This number expresses the regularity of the stream.
The more regular it is, the better the patterns will compress it. Figure 10(left)
represents an experiment with weblog data from the FIFA World Cup 1998 web-
site. The weblog contains 5 million accesses to the websites objects, being html
pages and images, by football fans before the opening date of the event. We
used two compression algorithms based on patterns, to compress sliding win-
dows of size 50 000 over the stream of events. The results are plotted in Fig. 10
(left). The interesting and suspicious points in the data are those where the
compression ratio suddenly drops. In order to figure out what happened at these
suspicious points we extracted the compressing patterns for the corresponding
windows. The obtained patterns always contain repetitions of an access to the
frontpage of the website. By looking further at the IP addresses of the users
who have accessed the frontpage at that time, we discovered that there are only
two IP addresses continuously sending requests for the websites frontpage. These
suspicious points might correspond to the website being under attack. This tech-
nique could be used in order to improve data security by automatic detection of
diverging behavior, leading to a more sensitive intrusion detection system than
the more common systems based on recognizing known attack patterns.

Figure 10(right) represents the results of similar experiments with log data
from a photolithography system for the semiconductor industry. The machine
log contains 2.7 million messages collected in a period of six months from May till
November 2011. We used again the same algorithms to compress sliding windows
of size 50 000 over the event stream and plotted the results in Fig. 10(right). The
obtained results show that two compression ratio curves change their medians
as the stream approaches 1.6 million events. We extracted the most compressing
pattern for the window with the lowest compression ratio right after the change
point (window number 1 750 000). We found a very long pattern consisting of
sixteen different warning messages:

fER-0FFF RY-2078 RY-5607 RY-5608 RY-5609 RY-560A RY-560B RY-560C
RY-560E RY-560F RY-5610 RY-5611 RY-5612 RY-5613 RY-5614g

All the warning messages are regarding out-of-range movements of a specific com-
ponent of the machine, i.e., the RY component. For example the warning message
RY-5607 is associated with X Force peak values during move, while the warning
message RY-560E is associated with First Touch during move. This information
may help experts to further analyze the machine operation changes. By system-
atically analyzing the systems behavior, we may be able to recognize patterns
correlated to future breakdowns of the machine. Such early detection of poten-
tial future malfunctioning of the machine allows for a more efficient scheduling
of repairs or maintenance and therefore result in a reduction of downtime.

5.2 Patterns for Summarization

Patterns can also be used for exploratory analysis by providing a summary of the
most important sets of items. For instance, in Fig. 11 a visualization of a twitter
stream is given that is based upon a carefully selected subset of the frequent

20 T. Calders

Fig. 11. Visualization of a twitter stream with the help of frequent patterns. Figure is
taken from [69]

patterns. Such visualizations could help in exploratory analysis by providing a
quick overview of the content of a dataset.

The ability to quickly analyze and visualize the most important topics in
social media has several applications. Many companies are very interested in
what the public opinion is about their products. For this they harvest social
media such as specialized blog, online reviews, and twitter. The textual data,
however, is hard to analyze using traditional methods that assume a struc-
tured format of the data. Here pattern mining techniques can help to auto-
matically identify important and orthogonal topics from the textual messages.
In this way the semi-structured textual messages are transformed to subsets of
topics.

5.3 Implementations of Pattern Mining

There are several implementations of pattern mining available. Virtually every
commercial data warehousing product contains data mining extensions for fre-
quent pattern and association rule mining, including MS SQL Server Analysis
Services, Oracle, SAP BW, Teradata Warehouse Miner, as well as virtually every
data mining and statistics package, including IBM SPSS, SAS enterprise miner,
MATLAB, etc. Furthermore, there are many free implementations available,
such as for instance the starter version of Rapid Miner3, Weka4, the R-extension
Rattle5, and KNime6. Many easy-to-use research prototypes can be found in
3 http://rapidminer.com/products/rapidminer-studio/
4 http://www.cs.waikato.ac.nz/ml/weka/
5 http://rattle.togaware.com/
6 http://www.knime.org/

http://rapidminer.com/products/rapidminer-studio/
http://www.cs.waikato.ac.nz/ml/weka/
http://rattle.togaware.com/
http://www.knime.org/

Introduction to Pattern Mining 21

the “Freqeunt Itemset Mining Implementations Repository”7. For a more com-
prehensive list of available tools, consult the software listing of the kdnuggets
community page.8

6 The Pattern Explosion Problem

One of the biggest problems in pattern mining is the so-called pattern explo-
sion problem. This means that listing all patterns that satisfy a certain minimal
support threshold often results in a huge amount of patterns. These patterns
are often very similar and contain a lot of redundancy. For example, due to the
monotonicity principle, if a pattern of size 10 is frequent, it means that all its
1024 subsets are frequent as well, and will be part of the output, too. In Fig. 12,
the longest frequent patterns for a subset of the tags dataset for a minimal
support threshold of 300 have been listed. As can be seen, this set of patterns
contains a lot of redundant patterns; many patterns are combinations of the
words aeroplane, airport, aircraft, aviation, flight. Once a few of these combina-
tions are known to be frequent, the other patterns that are subset of this list of
words add little to the understanding of the popular topics in the tags dataset.
In this section we will sketch some techniques to remove redundancy from the
set of all frequent itemsets. First we will introduce condensed representations
[18], which were studied mainly in the 90s and the 2000s. After that we describe
more recent techniques based on statistics on the one hand and the minimal
description length principle on the other.

6.1 Condensed Representations for Frequent Patterns

A condensed representation of the set of frequent itemsets is a subset of the
frequent itemsets that contains the same information. There are some excep-
tions in which the condensed representation may also contain a few infrequent
itemsets as well, such as the free sets representation. But the general princi-
ple remains: the goal of the condensed representation is to represent the same
information without the redundancies that normally occur in the collection of
frequent itemsets. Therefore, condensed representations are based upon reason-
ing about supports of itemsets. For instance: if the support of {a, b, c} is 3, and
the support of {a} is 3, there is no need to store the supports of {a, b} and
{a, c}, since they must be 3 as well, due to the monotonicity principle. The
closed itemset representation [58] which we will detail in the next paragraphs,
will in this particular case only store {a, b, c}. Other well-known representations
include the free sets representation [12] which is closely connected to the closed
itemsets representation, and the non-derivable itemsets representation [16] that
is based upon a complete set of deduction rules for support. For a survey about
condensed representations, we refer the interested reader to [18].

7 http://fimi.ua.ac.be/
8 http://www.kdnuggets.com/software/index.html

http://fimi.ua.ac.be/
http://www.kdnuggets.com/software/index.html

22 T. Calders

Itemset Support

{flight, aeroplane, travel, aircraft, plane} 304
{flight, aeroplane, aircraft, plane} 319
{aeroplane, travel, aircraft, plane } 308
{flight, travel, aircraft, plane } 305
{flight, aeroplane, travel, plane } 304
{flight, aeroplane, travel, aircraft} 304
{airport, aircraft, plane} 639
{and, black, white} 630
{war, protest, demonstration} 511
{aeroplane, aircraft, plane} 489
{ussmidway, sandiego, aircraftcarrier} 458
{aviation, aircraft, plane} 449
{protest, demonstration, of } 416
{boat, ship, water} 404
{aeroplane, airport, aircraft} 395
{flight, aeroplane, plane} 393
{aviation, airport, aircraft} 392
{flight, aircraft, plane} 388
{airplane, aircraft, plane} 372
{aviation, airport, plane} 371

Fig. 12. List of frequent patterns for a sample of the tags dataset. Only the 20 longest
frequent patterns have been depicted

Closed Itemsets. The closed itemset representation is based on the notion of
closed set used in formal concept analysis, a branch of lattice theory dedicated to
the study of the lattice structure induced by a binary relation (structure called
Galois lattice or concept lattice). The application of this theory to frequent
itemset mining has been proposed by Pasquier et al. in [58]. An itemset I is said
to be closed in D if and only if no proper superset of I has the same support
than I in D. Consider, for instance the example in Fig. 13. The itemset {police,
vehicle} is not closed because it has the same support as its proper superset
{emergency, police, vehicle}.

The closure of an itemset I in D, denoted cl(I), is the unique maximal super-
set of I having the same support than I. A closed itemset is hence equal to its
own closure. The closure of both {police} and {police, vehicle} is {emergency,
police, vehicle}. Notice that these three sets all appear in exactly the same set
of transactions, namely transactions 6, 9, and 10 (cfr. the database in Fig. 3).
This is not a coincidence, but actually forms the basis of an elegant alternative
definition: two itemsets are equivalent if they appear in exactly the same trans-
actions. The closed itemsets then correspond to the unique maximal elements of
these equivalence classes.

For a given support threshold, it is sufficient to know the collection of all
frequent closed itemsets and their supports, to be able to generate all the frequent
itemsets and their supports. For example, consider an itemset X. If X is frequent,

Introduction to Pattern Mining 23

Frequent Itemset support

{} 10
{ship} 3
{boat} 4

{vehicle} 4
{emergency} 4

{police} 3
{boat, ship} 3

{emergency, vehicle} 4
{police, vehicle} 3

{emergency, police} 3
{emergency, police, vehicle} 3

{boat, ship} {emergency, police, vehicle}

{boat} {emergency, vehicle}

{}

Fig. 13. Closed frequent itemsets in the database given in Fig. 3 for a frequency thresh-
old of 3. The stricken itemsets indicate frequent itemsets that are not closed. On the
right-hand side the Hasse-diagram of the frequent part of the concept lattice is given.

then either X is closed and we can derive its support from the closed itemset
representation, or X is not closed. In that case, the closure of X, cl(X) must be
in the collection of frequent closed itemsets, since its support is the same as the
support of X. Hence, for every itemset we can quickly derive if it is frequent or
not, based only upon the collection of frequent closed itemsets: only if a superset
of X is in the representation, X is frequent. Finally, the frequency of X itself
we can derive using the monotonicity principle. The closure of X must be in the
collection, and hence the support of X must be equal to the support of one of
its supersets. If there are multiple candidates, it has to be the maximal support
over all its supersets because otherwise the monotonicity principle is violated. For
instance, from the collection of frequent itemsets in Fig. 13, we can derive that
{police} is frequent, because its superset {emergency, police, vehicle} is frequent
and closed. Since it is the only superset of {police} in the representation, their
supports have to be the same.

The closed itemset representation, however, does not remove all redundan-
cies either. In Fig. 14, the list of longest frequent patterns in Fig. 12 has been
restricted to the closed itemsets only. The set still contains many redundancies.
The main reason is the strict requirement that the support of a frequent itemset
must be exactly equal to the support of one of its supersets before it is removed
from the output. Furthermore, the closed itemset representation does not remove
the problem of frequent but unrelated items that together form sets of unrelated
items that meet the support threshold. Consider for instance an imaginary case
of an item with a support of 99 % that is added to the database. Adding only one
such item would result in almost doubling the number of frequent (closed) item-
sets! Therefore in the next subsections we will look at more advanced techniques
based upon statistics and data encoding.

24 T. Calders

Itemset Support

{flight, aeroplane, travel, aircraft, plane} 304
{flight, aeroplane, aircraft, plane } 319
{aeroplane, travel, aircraft, plane } 308
{flight, travel, aircraft, plane } 305
{airport, aircraft, plane } 639
{and, black, white } 630
{war, protest, demonstration } 511
{aeroplane, aircraft, plane } 489
{ussmidway, sandiego, aircraftcarrier } 458
{aviation, aircraft, plane } 449
{protest, demonstration, of } 416
{boat, ship, water } 404
{aeroplane, airport, aircraft } 395
{flight, aeroplane, plane } 393
{aviation, airport, aircraft } 392
{flight, aircraft, plane } 388
{airplane, aircraft, plane } 372
{aviation, airport, plane } 371
{travel, aircraft, plane } 358
{flight, travel, plane } 346

Fig. 14. List of frequent closed patterns for a sample of the tags dataset. Only the 20
longest frequent closed patterns have been listed.

6.2 Statistical Methods for Modelling Expectation

The statistical method for mining non-redundant patterns is depicted in Fig. 15.
This method is based upon the notions of expectation and surprisingness. If a
user knows the support of certain patterns, this raises expectations about the
supports of other patterns. This expectation is modelled as a distribution over
the possible support values of the pattern. For instance, if in a dataset 50 %
of the transactions contains item a, and 50 % contains item b, without further
knowledge, one would expect that 25 % of the transactions contains the itemset
{a, b}. If the support of {a, b} in the dataset does not divert too much from 25 %
it is hence not necessary to report this support as it is according to expectation
and thus not surprising. The different approaches in this area [9,10,31,47,53]
vary mainly in the following aspects:

– How is the “expectation” modelled? Given information about the supports
of some itemsets, how do we derive distributions that express our expecta-
tions regarding the supports of the others? Due to its favorable mathematical
properties, often distributions based upon maximal entropy are chosen.

– Given a distribution over the supports of the itemsets, how do we quantify the
interestingness of an itemset not yet in the collection? There are approaches
based on information theory that assess how much information a certain sup-
port carries, and others that use p-values that express how extreme/unlikely a

Introduction to Pattern Mining 25

Fig. 15. Illustration of the statistical model to filter out redundant patterns

certain observed support is, given the knowledge that we already have about
the other patterns.

All methods then roughly work according to the following iterative pro-
cedure: start with an empty knowledge base. In every step the most surpris-
ing/informative itemset is selected given the current knowledge base, and added
to it. After adding the support information of the itemset, the model of the
expectation changes and patterns that may have been surprising before the lat-
est addition may suddenly become much less interesting or surprising. In the
end only those patterns that have been selected into the knowledge base are
reported to the user. In Fig. 16 the result of the MTV-algorithm [53] which is
based upon these principles has been depicted for the same dataset that was
used to produce the frequent itemsets of Fig. 12 and the closed frequent item-
sets of Fig. 14. Clearly the set of patterns produced by this method contains far
less redundancy and is much more informative with respect to summarizing the
actual content of the Flickr dataset.

6.3 Minimal Description Length Based Methods for Removing
Redundancy

Closely related to the statistical method is the method based on the minimal
description length (MDL). For more information on MDL and its many appli-
cations we refer the interested reader to [23,35]. In the MDL-based method not
statistical expectation is used to assess the interestingness of a pattern given
a set of background patterns, but rather how well the pattern can be used to

26 T. Calders

Itemset

{geo, geotagged, lat, lon}
{airplane, plane, flying, aircraft}
{boat, ship}
{city, nyc, new, york}
{two, people}
{and, white, black}
{night, exposure, long}
{b, w}
{protest, demonstration}
{airplane, flying, aviation}
{san, francisco}
{diamondclassphotographer, flickrdiamond}

Fig. 16. Output of the MTV algorithm based on the statistical approach

compress the database [48,49,72]. The relation between the interestingness of
a pattern and its ability to compress the dataset can best be illustrated with
an example. Suppose for instance that we know that the pattern {a, b} occurs
very frequently. In that case we could consider introducing a special code for the
itemset {a, b}, which is much shorter than the items a and b separately. In that
way, the database could be compressed considerably by replacing every occur-
rence of {a, b} with the code. As such, the usefulness of the pattern is quantified
by its ability to compress. The rationale of this measure can be seen as follows:
consider again the list of patterns in Fig. 12. Clearly any of the long patterns in
that figure would help reducing the size of the database enormously. However,
once we select one of these patterns, the benefit of the other patterns would drop.
For instance, if we select pattern {aircraft, plane}, almost all of the patterns in
Fig. 12 would see their benefit reduced. For example, the benefit of the pattern
{airport, aircraft, plane} per transaction that contains it is no longer the cost of
representing the three individual items (cost without any pattern) minus the cost
of one code for the pattern (cost with the pattern), but instead the difference
between the reduced cost of the item airport and the code for {aircraft, plane}
(cost with the pattern {aircraft, plane} but without {airport, aircraft, plane})
minus the cost for one code for the itemset {airport, aircraft, plane}. As such,
patterns that overlap with patterns that are added to the output will drop in
the ranking of most useful for compression.

Several new approaches use this minimal description length inspired model
for reducing the redundancy in many pattern mining problems. The advantage
of the MDL method over the statistical method is that overall it is easier to
come up with a good encoding for more complicated pattern types than it is to
come up with a good statistical model expressing the surprisingness of patterns.
For instance, think about the complexity of coming up with a statistical model
expressing the frequencies of certain subgraphs given the frequencies of some
other subgraphs. Another advantage is that usually the complexity of assessing

Introduction to Pattern Mining 27

the usefulness of a pattern is lower in the MDL case, although it comes at the
price of having less well-founded techniques; most of the MDL-based techniques
are highly heuristic in nature.

7 Conclusion

In this tutorial paper we started with an overview of the frequent itemset mining
problem, the main algorithmic techniques, extensions, and applications. Despite
its simple definition, the frequent itemset mining problem has a high compu-
tational complexity. We described the two main techniques for mining frequent
itemsets, namely the breadth-first and depth-first algorithms. There exist many
extensions to the frequent itemset mining problem and we have reviewed the
main difficulties when extending to the more complex pattern types.

Then, in the second part of the paper we discussed the pattern explosion
problem and some ways to deal with it. The first attempts to deal with this
problem, condensed representations, originate from the late 90s. Condensed rep-
resentations aim at reducing the redundancy by providing a lossless subset of
the complete collection of frequent itemsets. This combinatorial approach, based
upon exact reasoning with itemset supports, however, soon turned out to be
insufficient and new techniques based on statistical modeling and the minimal
description length emerged. These methods are based upon quantifying the inter-
estingness of patterns by measuring their surprisingness and/or their usefulness
in describing or compressing the database.

We expect that in the future we will see increasingly more techniques to
deal with the redundancy problem, and we expect advances in the following
directions:

– Theory behind the new statistical and MDL based methods. The new tech-
niques rely heavily on mathematically well-founded notions such as maximal-
entropy distributions and the MDL principle. Algorithmically, however, there
is a lot of ad-hocness in order to improve performance. These ad-hoc steps in
the algorithms form a threat for the validity of the techniques. More theoreti-
cal work is needed in order to be able to assess the impact of the ad-hoc steps
in the algorithms.

– Despite the appeal of automatic techniques for selecting and ranking non-
redundant patterns, it is inevitable that at a certain point the user needs
to be involved in the process of identifying the interesting patterns. What is
interesting to someone is highly subjective and depends on what this person
already knows. We can, however, not expect from the user to provide us with a
complete list of patterns describing in detail his or her background knowledge.
Therefore there will be a need for more interactive schemes involving the user
in the pattern selection process. A nice preliminary approach for automatic
incorporation of implicit user feedback in pattern mining is given in [11].

– Many of the techniques are aimed at mining frequent itemsets. Extending
these techniques to more complex pattern domains will be a challenging venue
for future work.

28 T. Calders

References

1. Aggarwal, C.C., Wang, H.: Managing and Mining Graph Data. Springer, New york
(2010)

2. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. ACM SIGMOD Rec. 22(2), 207–216 (1993)

3. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proced-
ings of 20th International Conference on Very Large Data Bases, VLDB, vol. 1215,
pp. 487–499 (1994)

4. Atzmüller, M., Puppe, F.: SD-Map–a fast algorithm for exhaustive subgroup dis-
covery. In: Proceedings of the European Conference on Machine Learning and
Knowledge Discovery in Databases - ECML PKDD, pp. 6–17. Springer (2006)

5. Bay, S.D., Pazzani, M.J.: Detecting change in categorical data: Mining contrast
sets. In: Proceedings of the 5th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pp. 302–306. ACM (1999)

6. Bay, S.D., Pazzani, M.J.: Detecting group differences: mining contrast sets. Data
Min. Knowl. Disc. 5(3), 213–246 (2001)

7. Berlingerio, M., Bonchi, F., Bringmann, B., Gionis, A.: Mining graph evolution
rules. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML
PKDD 2009, Part I. LNCS, vol. 5781, pp. 115–130. Springer, Heidelberg (2009)

8. Bernecker, T., Kriegel, H.-P., Renz, M., Verhein, F., Zuefle, A.: Probabilistic fre-
quent itemset mining in uncertain databases. In: Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
119–128. ACM, (2009)

9. De Bie, T.: Maximum entropy models and subjective interestingness: an application
to tiles in binary databases. Data Min. Knowl. Disc. 23(3), 407–446 (2011)

10. De Bie, T., Spyropoulou, E.: A theoretical framework for exploratory data mining:
recent insights and challenges ahead. In: Blockeel, H., Kersting, K., Nijssen, S.,
Železný, F. (eds.) ECML PKDD 2013, Part III. LNCS, vol. 8190, pp. 612–616.
Springer, Heidelberg (2013)

11. Boley, M., Mampaey, M., Kang, B., Tokmakov, P., Wrobel, S.: One click mining–
interactive local pattern discovery through implicit preference and performance
learning. In: KDD 2013 Workshop on Interactive Data Exploration and Analytics
(IDEA) (2013)

12. Boulicaut, J.-F., Bykowski, A., Rigotti, C.: Free-sets: a condensed representation of
boolean data for the approximation of frequency queries. Data Min. Knowl. Disc.
7(1), 5–22 (2003)

13. Bringmann, B., Nijssen, S.: What is frequent in a single graph? In: Washio, T.,
Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012,
pp. 858–863. Springer, Heidelberg (2008)

14. Calders, T., Garboni, C., Goethals, B.: Approximation of frequentness probability
of itemsets in uncertain data. In: Proceedings of the IEEE International Conference
on Data Mining (ICDM), pp. 749–754. IEEE (2010)

15. Calders, T., Garboni, C., Goethals, B.: Efficient pattern mining of uncertain data
with sampling. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD
2010, Part I. LNCS, vol. 6118, pp. 480–487. Springer, Heidelberg (2010)

16. Calders, T., Goethals, B.: Non-derivable itemset mining. Data Min. Knowl. Disc.
14(1), 171–206 (2007)

17. Calders, T., Ramon, J., Van Dyck, D.: All normalized anti-monotonic overlap graph
measures are bounded. Data Min. Knowl. Disc. 23(3), 503–548 (2011)

Introduction to Pattern Mining 29

18. Calders, T., Rigotti, v., Boulicaut, J.-F.: A survey on condensed representations
for frequent sets. In: Constraint-Based Mining and Inductive Databases, pp. 64–80.
Springer (2006)

19. Casas-Garriga, G.: Summarizing sequential data with closed partial orders. In:
Proceedings of the SIAM International Conference on Data Mining (SDM), pp.
380–391 (2005)

20. Cheng, H., Yu, P.S., Han, J.: AC-Close: efficiently mining approximate closed item-
sets by core pattern recovery. In: Proceedings of the IEEE International Conference
on Data Mining (ICDM), pp. 839–844 (2006)

21. Chui, C.-K., Kao, B., Hung, E.: A decremental approach for mining frequent item-
sets from uncertain data. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A.
(eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 64–75. Springer, Heidelberg
(2008)

22. Dong, G., Li, J.: Efficient mining of emerging patterns: discovering trends and
differences. In: Proceedings of the 5th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 43–52. ACM (1999)

23. Faloutsos, Ch., Megalooikonomou, V.: On data mining, compression, and kol-
mogorov complexity. Data Min. Knowl. Disc. 15(1), 3–20 (2007)

24. Fan, W., Geerts, F., Li, J., Xiong, M.: Discovering conditional functional depen-
dencies. IEEE Trans. Knowl. Data Eng. 23(5), 683–698 (2011)

25. Fukuda, T., Morimoto, Y., Morishita, S., Tokuyama, T.: Mining optimized asso-
ciation rules for numeric attributes. In: Proceedings of the 15th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 182–191.
ACM (1996)

26. Gantz, J., Reinsel, D.: The digital universe decade—are you ready?
IDC White Paper, May 2010. http://www.emc.com/collateral/analyst-reports/
idc-digital-universe-are-you-ready.pdf

27. Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 174. Freeman, New
York (1979)

28. Garriga, G.C., Khardon, R., De Raedt, L.: On mining closed sets in multi-relational
data. In: Proceedings of the International Joint Conferences on Artificial Intelli-
gence (IJCAI), vol. 7, pp. 804–809 (2007)

29. Geng, L., Hamilton, H.J.: Interestingness measures for data mining: a survey. ACM
Comput. Surv. (CSUR) 38(3):9 (2006)

30. Gianni, G., Fosca, G., Pedreschi, D.: Mobility, data mining and privacy: geographic
knowledge discovery. Springer, Heidelberg (2008)

31. Gionis, A., Mannila, H., Mielikäinen, T., Tsaparas, P.: Assessing data mining
results via swap randomization. ACM Trans. Knowl. Disc. Data (TKDD) 1(3),
14 (2007)

32. Goethals, B.: Survey on Frequent Pattern Mining. University of Helsinki, Finland
(2003)

33. Goethals, B., Le Page, W., Mampaey, M.: Mining interesting sets and rules in
relational databases. In: Proceedings of the 2010 ACM Symposium on Applied
Computing, pp. 997–1001. ACM (2010)

34. Grosskreutz, H., Rüping, S., Wrobel, S.: Tight optimistic estimates for fast sub-
group discovery. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD
2008, Part I. LNCS (LNAI), vol. 5211, pp. 440–456. Springer, Heidelberg (2008)

35. Grünwald, P.D.: The Minimum Description Length Principle. The MIT Press,
Cambridge (2007)

http://www.emc.com/collateral/analyst-reports/idc-digital-universe-are-you-ready.pdf
http://www.emc.com/collateral/analyst-reports/idc-digital-universe-are-you-ready.pdf

30 T. Calders

36. Gupta, M., Han, J.: Applications of pattern discovery using sequential data mining.
In: Kumar, P., Radha Krishna, P., Bapi Raju, S. (eds.) Pattern Discovery Using
Sequence Data Mining: Applications and Studies, chapter 1, pp. 1–23. IGI Global
(2012)

37. Han, J.: CPAR: Classification based on predictive association rules. Proceedings
of the Third SIAM International Conference on Data Mining, pp. 331–335. SIAM,
Philadelphia (2003)

38. Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: current status and
future directions. Data Min. Knowl. Disc. 15(1), 55–86 (2007)

39. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann,
San Francisco (2006)

40. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation.
ACM SIGMOD Rec. 29(2), 1–12 (2000)

41. Holder, L.B., Cook, D.J., Djoko, S.: Substucture discovery in the subdue system.
In: KDD Workshop AAAI, pp. 169–180 (1994)

42. Horváth, T., Bringmann, B., De Raedt, L.: Frequent hypergraph mining. In: Mug-
gleton, S.H., Otero, R., Tamaddoni-Nezhad, A. (eds.) ILP 2006. LNCS (LNAI),
vol. 4455, pp. 244–259. Springer, Heidelberg (2007)

43. Horváth, T., Otaki, K., Ramon, J.: Efficient frequent connected induced subgraph
mining in graphs of bounded tree-width. In: Blockeel, H., Kersting, K., Nijssen,
S., Železný, F. (eds.) ECML PKDD 2013, Part I. LNCS, vol. 8188, pp. 622–637.
Springer, Heidelberg (2013)

44. Huan, J., Wang, W., Prins, J., Yang, J.: Spin: mining maximal frequent subgraphs
from graph databases. In: Proceedings of the 10th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 581–586. ACM (2004)

45. Jaroszewicz, S.: Polynomial association rules with applications to logistic regres-
sion. In: Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 586–591. ACM (2006)

46. Koh, J.-L., Yo, P.-W.: An efficient approach for mining fault-tolerant frequent
patterns based on bit vector representations. In: Zhou, L., Ooi, B.-C., Meng, X.
(eds.) DASFAA 2005. LNCS, vol. 3453, pp. 568–575. Springer, Heidelberg (2005)

47. Kontonasios, K.-N., Vreeken, J., De Bie, T.: Maximum entropy modelling for
assessing results on real-valued data. In: Proceedings IEEE International Con-
ference on Data Mining (ICDM), pp. 350–359 (2011)

48. Lam, H.T., Mörchen, F., Fradkin, D., Calders, T.: Mining compressing sequential
patterns. In: Proceedings of the SIAM International Conference on Data Mining
(SDM) (2012)

49. Lam, H.T., Mörchen, F., Fradkin, D., Calders, T.: Mining compressing sequential
patterns. Stat. Anal. Data Min. (2013) doi:10.1002/sam.11192

50. Li, W., Han, J., Pei, J.: CMAR: Accurate and efficient classification based on
multiple class-association rules. In: Proceedings IEEE International Conference on
Data Mining (ICDM), pp. 369–376. IEEE (2001)

51. Liu, J., Paulsen, S., Sun, X., Wang, W., Nobel, A.B., Prins, J.: Mining approximate
frequent itemsets in the presence of noise: algorithm and analysis. In: Proceedings
of the SIAM International Conference on Data Mining (SDM), pp. 405–416 (2006)

52. Liu, J., Wang, K., Fung, B.C.M.: Direct discovery of high utility itemsets without
candidate generation. In: Proceedings of the IEEE International Conference on
Data Mining (ICDM), pp. 984–989. IEEE Computer Society (2012)

53. Mampaey, M., Vreeken, J., Tatti, N.: Summarizing data succinctly with the most
informative itemsets. ACM Trans. Knowl. Discovery Data (TKDD) 6(4), 16 (2012)

http://dx.doi.org/10.1002/sam.11192

Introduction to Pattern Mining 31

54. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge
discovery. Data Min. Knowl. Disc. 1(3), 241–258 (1997)

55. Mooney, C.H., Roddick, J.F.: Sequential pattern mining-approaches and algo-
rithms. ACM Comput. Surv. (CSUR), 45(2):19 (2013)

56. Novak, P.K., Lavrač, N., Webb, G.I.: Supervised descriptive rule discovery: a unify-
ing survey of contrast set, emerging pattern and subgroup mining. J. Mach. Learn.
Res. 10, 377–403 (2009)

57. Novelli, N., Cicchetti, R.: Fun: an efficient algorithm for mining functional and
embedded dependencies. In: Proceedings of the International Conference on Data-
base Theory (ICDT), pp. 189–203. Springer (2001)

58. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed item-
sets for association rules. In: Proceedings of the International Conference on Data-
base Theory (ICDT), pp. 398–416 (1999)

59. Kosch, H., Sampaio, P.R.F., Hameurlain, A., Brunie, L.: Topic 05 parallel and
distributed databases, data mining and knowledge discovery. In: Sakellariou, R.,
Keane, J.A., Gurd, J.R., Freeman, L. (eds.) Euro-Par 2001. LNCS, vol. 2150, p.
278. Springer, Heidelberg (2001)

60. Pei, J., Wang, H., Liu, J., Wang, K., Wang, J., Yu, P.S.: Discovering frequent
closed partial orders from strings. IEEE Trans. Knowl. Data Eng. 18(11), 1467–
1481 (2006)

61. Poernomo, A.K., Gopalkrishnan, V.: Mining statistical information of frequent
fault-tolerant patterns in transactional databases. In: Proceedings of the IEEE
International Conference on Data Mining (ICDM), pp. 272–281 (2007)

62. Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge University
Press, Cambridge (2012)

63. Ramon, J., Miettinen, P., Vreeken, J.: Detecting bicliques in GF[q]. In: Blockeel,
H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013, Part I. LNCS,
vol. 8188, pp. 509–524. Springer, Heidelberg (2013)

64. Settles, B.: Active Learning Literature Survey. University of Wisconsin, Madison
(2010)

65. Spyropoulou, E., De Bie, T.: Interesting multi-relational patterns. In: Proceedings
of the IEEE International Conference on Data Mining (ICDM), pp. 675–684. IEEE
(2011)

66. Srikant, R., Agrawal, R.: Mining quantitative association rules in large relational
tables. ACM SIGMOD Rec. 25(2), 1–12 (1996)

67. Sun, Y., Han, J.: Mining heterogeneous information networks: principles and
methodologies. Synth. Lect. Data Min. Knowl. Disc. 3(2), 1–159 (2012)

68. Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Pearson Edu-
cation India, Philipine (2007)

69. Lam, H.T.: Pattern mining in data streams. Ph.D. thesis, Eindhoven University of
Technology (2013)

70. Tsourakakis, C.E., Bonchi, F., Gionis, A., Gullo, F., Tsiarli, M.A.: Denser than
the densest subgraph: extracting optimal quasi-cliques with quality guarantees. In:
The 19th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD 2013, pp. 104–112. ACM (2013)

71. Vanetik, N., Shimony, S.E., Gudes, E.: Support measures for graph data. Data
Min. Knowl. Disc. 13(2), 243–260 (2006)

72. Vreeken, J., van Leeuwen, M., Siebes, A.: Krimp: mining itemsets that compress.
Data Min. Knowl. Disc. 23(1), 169–214 (2011)

32 T. Calders

73. Wang, J., Cheng, J., Fu, A.W.-C.: Redundancy-aware maximal cliques. In: The
19th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD 2013, pp. 122–130. ACM (2013)

74. Washio, T., Motoda, H.: State of the art of graph-based data mining. ACM
SIGKDD Explor. Newsl. 5(1), 59–68 (2003)

75. Wrobel, S.: An algorithm for multi-relational discovery of subgroups. In: Principles
of Data Mining and Knowledge Discovery, pp. 78–87. Springer (1997)

76. Wu, C.-W., Lin, Y.-F., Yu, P.S., Tseng, V.S.: Mining high utility episodes in com-
plex event sequences. In: The 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD 2013, pp. 536–544. ACM (2013)

77. Yang, C., Fayyad, U.M., Bradley, P.S.: Efficient discovery of error-tolerant frequent
itemsets in high dimensions. In: Proceedings of ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (KDD), pp. 194–203 (2001)

78. Zaki, M.J.: Sequence mining in categorical domains: incorporating constraints.
In: Proceedings of the International Conference on Information and Knowledge
Management (CIKM), pp. 422–429. ACM (2000)

79. Zaki, M.J.: Efficiently mining frequent trees in a forest. In: Proceedings of the
8th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 71–80. ACM (2002)

80. Zaki, M.J.: Scalable algorithms for association mining. IEEE Trans. Knowl. Data
Eng. 12(3), 372–390 (2000)

81. Zhu, X.: Semi-supervised learning literature survey. Technical report 1530, Com-
puter Science. University of Wisconsin-Madison (2005)

Process Mining in the Large: A Tutorial

Wil M.P. van der Aalst1,2,3(B)

1 Department of Mathematics and Computer Science,
Eindhoven University of Technology, Eindhoven, The Netherlands

2 Business Process Management Discipline, Queensland University of Technology,
Brisbane, Australia

3 International Laboratory of Process-Aware Information Systems,
National Research University Higher School of Economics, Moscow, Russia

w.m.p.v.d.aalst@tue.nl

Abstract. Recently, process mining emerged as a new scientific disci-
pline on the interface between process models and event data. On the
one hand, conventional Business Process Management (BPM) and Work-
flow Management (WfM) approaches and tools are mostly model-driven
with little consideration for event data. On the other hand, Data Min-
ing (DM), Business Intelligence (BI), and Machine Learning (ML) focus
on data without considering end-to-end process models. Process mining
aims to bridge the gap between BPM and WfM on the one hand and
DM, BI, and ML on the other hand. Here, the challenge is to turn tor-
rents of event data (“Big Data”) into valuable insights related to process
performance and compliance. Fortunately, process mining results can be
used to identify and understand bottlenecks, inefficiencies, deviations,
and risks. This tutorial paper introduces basic process mining techniques
that can be used for process discovery and conformance checking. More-
over, some very general decomposition results are discussed. These allow
for the decomposition and distribution of process discovery and confor-
mance checking problems, thus enabling process mining in the large.

Keywords: Process mining · Big Data · Process discovery · Confor-
mance checking

1 Introduction

Like most IT-related phenomena, also the growth of event data complies with
Moore’s Law. Similar to the number of transistors on chips, the capacity of hard
disks, and the computing power of computers, the digital universe is growing
exponentially and roughly doubling every 2 years [55,64]. Although this is not a
new phenomenon, suddenly many organizations realize that increasing amounts
of “Big Data” (in the broadest sense of the word) need to be used intelligently
in order to compete with other organizations in terms of efficiency, speed and
service. However, the goal is not to collect as much data as possible. The real
challenge is to turn event data into valuable insights. Only process mining tech-
niques directly relate event data to end-to-end business processes [2]. Existing

E. Zimányi (Ed.): eBISS 2013, LNBIP 172, pp. 33–76, 2014.
DOI: 10.1007/978-3-319-05461-2 2, c© Springer International Publishing Switzerland 2014

34 W.M.P. van der Aalst

business process modeling approaches generating piles of process models are
typically disconnected from the real processes and information systems. Data-
oriented analysis techniques (e.g., data mining and machines learning) typically
focus on simple classification, clustering, regression, or rule-learning problems
(Fig. 1).

data-oriented analysis
(data mining, machine learning, business intelligence)

process model analysis
(simulation, verification, optimization, gaming, etc.)

performance-
oriented

questions,
problems and

solutions

compliance-
oriented

questions,
problems and

solutions

Fig. 1. Process mining provides the missing link between on the one hand process
model analysis and data-oriented analysis and on the other hand performance and
conformance.

Process mining aims to discover, monitor and improve real processes by
extracting knowledge from event logs readily available in today’s information
systems [2]. Starting point for any process mining task is an event log. Each
event in such a log refers to an activity (i.e., a well-defined step in some process)
and is related to a particular case (i.e., a process instance). The events belonging
to a case are ordered and can be seen as one “run” of the process. The sequence of
activities executed for a case is called a trace. Hence, an event log can be viewed
as a multiset of traces (multiple cases may have the same trace). It is important
to note that an event log contains only example behavior, i.e., we cannot assume
that all possible traces have been observed. In fact, an event log often contains
only a fraction of the possible behavior [2].

The growing interest in process mining is illustrated by the Process Mining
Manifesto [57] recently released by the IEEE Task Force on Process Mining.
This manifesto is supported by 53 organizations and 77 process mining experts
contributed to it.

The process mining spectrum is quite broad and includes techniques like
process discovery, conformance checking, model repair, role discovery, bottleneck
analysis, predicting the remaining flow time, and recommending next steps. In
this paper, we focus on the following two main process mining problems:

Process Mining in the Large: A Tutorial 35

a
start

a = register for exam
b = theoretical exam
c = practical exam
d = evaluate result
e = register for additional attempt
f = obtain degree

b

c

d fe
end

abcdf
abcdecbdf

acbdf
abcdebcdf

abcdf
acbdebcdf

acbdecbdebcdf
...

event log

process model

process
discovery

Fig. 2. Starting point for process discovery is an event log consisting of traces. In this
example each trace describes activities related to an exam candidate. Based on the
observed behavior a process model is inferred that is able to reproduce the event log.
For example, both the traces in the event log and the runs of the process model always
start with a (register for exam) and end with f (obtain degree). Moreover, a is always
directly followed by b or c, b and c always happen together (in any order), d can only
occur after both b and c have happened, d is always directly followed by e or f , etc.
There are various process discovery techniques to automatically learn a process model
from raw event data.

– Process discovery problem: Given an event log consisting of a collection of
traces (i.e., sequences of events), construct a Petri net that “adequately”
describes the observed behavior (see Fig. 2).1

– Conformance checking problem: Given an event log and a Petri net, diagnose
the differences between the observed behavior (i.e., traces in the event log)
and the modeled behavior (i.e., firing sequences of the Petri net). Figure 3
shows examples of deviations discovered through conformance checking.

Both problems are formulated in terms of Petri nets. However, any other process
notation can be used, e.g., BPMN models, BPEL specifications, UML activity
diagrams, Statecharts, C-nets, and heuristic nets.

The incredible growth of event data is also posing new challenges [84]. As
event logs grow, process mining techniques need to become more efficient and
highly scalable. Dozens of process discovery [2,19,21,26,28,32–34,50,52,65,85,
92,93] and conformance checking [9,22,23,25,31,35,52,68,69,79,90] approaches
have been proposed in literature. Despite the growing maturity of these
approaches, the quality and efficiency of existing techniques leave much to be
desired. State-of-the-art techniques still have problems dealing with large and/or

1 As will be shown later, there are different ways of measuring the quality of a process
discovery result. The term “adequately” is just an informal notion that will be
detailed later.

36 W.M.P. van der Aalst

a
start

b

c

d fe
end

acdf
abcdecbdf

acbdf
abcdebcdf

abcfd
acdecfd

acbdecbdebcdf
...

conformance
checking

a
start

c

fe
end

b is sometimes
skipped

d and f are
sometimes swapped

acdf
abcdecbdf

acbdf
abcdebcdf

abcfd
acdecfd

acbdecbdebcdf
...

b is skipped
in acdf

b is skipped
twice in
acdecfd

d and f are
swapped

d and f are
swapped

d

b

Fig. 3. Conformance checking starts with an event log and a process model. Ideally,
events in the event log correspond to occurrences of activities in the model. By replaying
the traces on the model one can find differences between log and model. The first trace
shown cannot be replayed because activity b is missing (although no theoretical exam
was made the result was evaluated). The fifth trace cannot be replayed because d
and f are swapped, i.e., the candidate obtained a degree before the formal decision
was made). The sixth trace has both problems. Conformance checking results can be
diagnosed using a log-based view (bottom left) or a model-based view (bottom right).

complex event logs and process models. Consider for example Philips Healthcare,
a provider of medical systems that are often connected to the Internet to enable
logging, maintenance, and remote diagnostics. More than 1500 Cardio Vascu-
lar (CV) systems (i.e., X-ray machines) are remotely monitored by Philips. On
average each CV system produces 15,000 events per day, resulting in 22.5 million
events per day for just their CV systems. The events are stored for many years
and have many attributes. The error logs of ASML’s lithography systems have
similar characteristics and also contain about 15,000 events per machine per day.
These numbers illustrate the fact that today’s organizations are already stor-
ing terabytes of event data. Process mining techniques aiming at very precise
results (e.g., guarantees with respect to the accuracy of the model or diagnostics),
quickly become intractable when dealing with such real-life event logs. Earlier
applications of process mining in organizations such as Philips and ASML, show
that there are various challenges with respect to performance (response times),
capacity (storage space), and interpretation (discovered process models may be
composed of thousands of activities) [29]. Therefore, we also describe the generic
divide and conquer approach presented in [7]:

– For conformance checking, we decompose the process model into smaller partly
overlapping model fragments. If the decomposition is done properly, then any
trace that fits into the overall model also fits all of the smaller model fragments

Process Mining in the Large: A Tutorial 37

and vice versa. Hence, metrics such as the fraction of fitting cases can be
computed by only analyzing the smaller model fragments.

– To decompose process discovery, we split the set of activities into a collection of
partly overlapping activity sets. For each activity set, we project the log onto
the relevant events and discover a model fragment. The different fragments
are glued together to create an overall process model. Again it is guaranteed
that all traces in the event log that fit into the overall model also fit into the
model fragments and vice versa.

This explains the title of this tutorial: “Process Mining in the Large”.
The remainder of this paper is organized as follows. Section 2 provides an

overview of the process mining spectrum. Some basic notions are introduced
in Sect. 3. Section 4 presents two process discovery algorithms: the α-algorithm
(Sect. 4.1) and region-based process discovery (Sect. 4.2). Section 5 introduces
two conformance checking techniques. Moreover, the different quality dimensions
are discussed and the importance of aligning observed and modeled behavior is
explained. Section 6 presents a very generic decomposition result showing that
most process discovery and conformance checking can be split into many smaller
problems. Section 7 concludes the paper.

2 Process Mining Spectrum

Figure 4 shows the process mining framework described in [2]. The top of the
diagram shows an external “world” consisting of business processes, people, and
organizations supported by some information system. The information system
records information about this “world” in such a way that events logs can be
extracted. The term provenance used in Fig. 4 emphasizes the systematic, reli-
able, and trustworthy recording of events. The term provenance originates from
scientific computing, where it refers to the data that is needed to be able to repro-
duce an experiment [39,61]. Business process provenance aims to systematically
collect the information needed to reconstruct what has actually happened in a
process or organization [37]. When organizations base their decisions on event
data it is essential to make sure that these describe history well. Moreover, from
an auditing point of view it is necessary to ensure that event logs cannot be tam-
pered with. Business process provenance refers to the set of activities needed to
ensure that history, as captured in event logs, “cannot be rewritten or obscured”
such that it can serve as a reliable basis for process improvement and auditing.

As shown in Fig. 4, event data can be partitioned into “pre mortem” and
“post mortem” event logs. “Post mortem” event data refer to information about
cases that have completed, i.e., these data can be used for process improvement
and auditing, but not for influencing the cases they refer to. “Pre mortem” event
data refer to cases that have not yet completed. If a case is still running, i.e.,
the case is still “alive” (pre mortem), then it may be possible that information
in the event log about this case (i.e., current data) can be exploited to ensure
the correct or efficient handling of this case.

38 W.M.P. van der Aalst

information system(s)

current
data

“world”people

machines

organizations
business

processes documents

historic
data

resources/
organization

data/rules

control-flow

de jure models

resources/
organization

data/rules

control-flow

de facto models

provenance

ex
pl

or
e

pr
ed

ic
t

re
co

m
m

en
d

de
te

ct

ch
ec

k

co
m

pa
re

pr
om

ot
e

di
sc

ov
er

en
ha

nc
e

di
ag

no
se

cartographynavigation auditing

event logs

models

“pre
mortem”

“post
mortem”

Fig. 4. Overview of the process mining spectrum [2].

“Post mortem” event data are most relevant for off-line process mining, e.g.,
discovering the control-flow of a process based on one year of event data. For
online process mining mixtures of “pre mortem” (current) and “post mortem”
(historic) data are needed. For example, historic information can be used to learn
a predictive model. Subsequently, information about a running case is combined
with the predictive model to provide an estimate for the remaining flow time of
the case.

The process mining framework described in [2] also distinguishes between
two types of models: “de jure models” and “de facto models”. A de jure model
is normative, i.e., it specifies how things should be done or handled. For exam-
ple, a process model used to configure a BPM system is normative and forces
people to work in a particular way. A de facto model is descriptive and its goal
is not to steer or control reality. Instead, de facto models aim to capture reality.

Process Mining in the Large: A Tutorial 39

As shown in Fig. 4 both de jure and de facto models may cover multiple
perspectives including the control-flow perspective (“How?”), the organizational
perspective (“Who?”), and the case perspective (“What?”). The control-flow
perspective describes the ordering of activities. The organizational perspective
describes resources (worker, machines, customers, services, etc.) and organiza-
tional entities (roles, departments, positions, etc.). The case perspective describes
data and rules.

In the middle of Fig. 4 ten process mining related activities are depicted.
These ten activities are grouped into three categories: cartography, auditing, and
navigation. The activities in the cartography category aim at making “process
maps”. The activities in the auditing category all involve a de jure model that is
confronted with reality in the form of event data or a de facto model. The activ-
ities in the navigation category aim at improving a process while it is running.

Activity discover in Fig. 4 aims to learn a process model from examples stored
in some event log. Lion’s share of process mining research has been devoted to
this activity [2,47]. A discovery technique takes an event log and produces a
model without using any additional a-priori information. An example is the
α-algorithm [21] that takes an event log and produces a Petri net explaining
the behavior recorded in the log. If the event log contains information about
resources, one can also discover resource-related models, e.g., a social network
showing how people work together in an organization.

Since the mid-nineties several groups have been working on techniques for
process discovery [18,21,26,34,38,44,45,92]. In [12] an overview is given of the
early work in this domain. The idea to apply process mining in the context of
workflow management systems was introduced in [26]. In parallel, Datta [38]
looked at the discovery of business process models. Cook et al. investigated sim-
ilar issues in the context of software engineering processes [34]. Herbst [54] was
one of the first to tackle more complicated processes, e.g., processes containing
duplicate tasks.

Most of the classical approaches have problems dealing with concurrency.
The α-algorithm [21] is an example of a simple technique that takes concurrency
as a starting point. However, this simple algorithm has problems dealing with
complicated routing constructs and noise (like most of the other approaches
described in literature). Process discovery is very challenging because techniques
need to balance four criteria: fitness (the discovered model should allow for
the behavior seen in the event log), precision (the discovered model should not
allow for behavior completely unrelated to what was seen in the event log),
generalization (the discovered model should generalize the example behavior
seen in the event log), and simplicity (the discovered model should be as simple
as possible). This makes process discovery a challenging and highly relevant
research topic.

Activity enhance in Fig. 4 corresponds any effort where event data are used
to repair a model (e.g., to better reflect reality) or to extend a model (e.g., to
show bottlenecks). When existing process models (either discovered or hand-
made) can be related to events logs, it is possible to enhance these models. The
connection can be used to repair models [49] or to extend them [78,80–82].

40 W.M.P. van der Aalst

Activity diagnose in Fig. 4 does not directly use event logs and focuses on
classical model-based process analysis, e.g., simulation or verification.

Activity detect compares de jure models with current “pre mortem” data
(events of running process instances) with the goal to detect deviations at run-
time. The moment a predefined rule is violated, an alert is generated [17,62,63].

Activity check in Fig. 4 analyzes conformance-related questions using event
data. Historic “post mortem” data can be cross-checked with de jure models. The
goal of this activity is to pinpoint deviations and quantify the level of compliance.
Various conformance checking techniques have been proposed in literature [9,22,
23,31,35,52,68,69,79,90]. For example, in [79] the fitness of a model is computed
by comparing the number of missing and remaining tokens with the number of
consumed and produced tokens during replay. The more sophisticated technique
described in [9,22,23] creates as so-called alignment which relates a trace in the
event log to an execution sequence of the model that is as similar as possible.
Ideally, the alignment consists of steps where log and model agree on the activity
to be executed. Steps where just the model “makes a move” or just the log
“makes a move” have a predefined penalty. This way the computation of fitness
can be turned into an optimization problem: for each trace in the event log an
alignment with the lowest costs is selected. The resulting alignments can be used
for all kinds of analysis since any trace in the event log is related to an execution
sequence of the model. For example, timestamps in the model can be used to
compute bottlenecks and extend the model with performance information (see
activity enhance in Fig. 4).

Activity compare highlights differences and commonalities between a de jure
model and a de facto model. Traditional equivalence notions such as trace
equivalence, bisimilarity, and branching bisimilarity [51,67] can only be used
to determine equivalence using a predefined equivalence notion, e.g., these tech-
niques cannot be used to distinguish between very similar and highly dissimilar
processes. Other notions such a graph-edit distance tend to focus on the syntax
rather than the behavior of models. Therefore, recent BPM research explored
various alternative similarity notions [42,43,58,59,66,91]. Also note the Greatest
Common Divisor (GCD) and Least Common Multiple (LCM) notions defined
for process models in [11]. The GCD captures the common parts of two or more
models. The LCM embeds all input models. We refer to [42] for a survey and
empirical evaluation of some similarity notions.

Activity promote takes (parts of) de facto models and converts these into
(parts of) de jure models, i.e., models used to control or support processes are
improved based on models learned from event data. By promoting proven “best
practices” to de jure models, existing processes can be improved.

The activities in the cartography and auditing categories in Fig. 4 can be
viewed as “backward-looking”. The last three activities forming the navigation
category are “forward-looking” and are sometimes referred to as operational
support [2]. For example, process mining techniques can be used to make predic-
tions about the future of a particular case and guide the user in selecting suitable
actions. When comparing this with a car navigation system from TomTom or

Process Mining in the Large: A Tutorial 41

Garmin, this corresponds to functionalities such as predicting the arrival time
and guiding the driver using spoken instructions.

Activity explore in Fig. 4 visualizes running cases and compares these cases
with similar cases that were handled earlier. The combination of event data and
models can be used to explore business processes at run-time and, if needed,
trigger appropriate actions.

By combining information about running cases with models (discovered or
hand-made), it is possible to make predictions about the future, e.g., predict-
ing the remaining flow time or the probability of success. Figure 4 shows that
activity predict uses current data and models (often learned over historic data).
Various techniques have been proposed in BPM literature [20,46,76]. Note that
already a decade ago Staffware provided a so-called “prediction engine” using
simulation [86].

Activity recommend in Fig. 4 aims to provide functionality similar to the
guidance given by car navigation systems. The information used for predicting
the future can also be used to recommend suitable actions (e.g. to minimize
costs or time) [17,83]. Given a set of possible next steps, the most promising
step is recommended. For each possible step, simply assume that the step is
made and predict the resulting performance (e.g., remaining flow time). The
resulting predictions can be compared and used to rank the possible next steps.

The ten activities in Fig. 4 illustrate that process mining extends far beyond
process discovery. The increasing availability and growing volume of event data
suggest that the importance of process mining will continue to grow in the coming
years.

It is impossible to cover the whole process mining spectrum in this tutorial
paper. The reader is referred to [2,6] for a more complete overview.

3 Preliminaries

This section introduces basic concepts related to Petri nets and event logs.

3.1 Multisets, Functions, and Sequences

Multisets are used to represent the state of a Petri net and to describe event
logs where the same trace may appear multiple times.

B(A) is the set of all multisets over some set A. For some multiset B ⊆ B(A),
B(a) denotes the number of times element a ⊆ A appears in B. Some examples:
B1 = [], B2 = [x, x, y], B3 = [x, y, z], B4 = [x, x, y, x, y, z], B5 = [x3, y2, z] are
multisets over A = {x, y, z}. B1 is the empty multiset, B2 and B3 both consist
of three elements, and B4 = B5, i.e., the ordering of elements is irrelevant and a
more compact notation may be used for repeating elements.

The standard set operators can be extended to multisets, e.g., x ⊆ B2, B2 ∈
B3 = B4, B5 \B2 = B3, |B5| = 6, etc. {a ⊆ B} denotes the set with all elements
a for which B(a) ≥ 1. [f(a) | a ⊆ B] denotes the multiset where element f(a)
appears

∑
x∈B|f(x)=f(a) B(x) times.

42 W.M.P. van der Aalst

A relation R ⇒ X×Y is a set of pairs. π1(R) = {x | (x, y) ⊆ R} is the domain
of R, π2(R) = {y | (x, y) ⊆ R} is the range of R, and ω(R) = π1(R) ∪ π2(R) are
the elements of R. For example, ω({(a, b), (b, c)}) = {a, b, c}.

To the (total) function f ⊆ X ⇔ Y maps elements from the set X onto
elements of the set Y , i.e., f(x) ⊆ Y for any x ⊆ X. f ⊆ X ≈⇔ Y is a partial
function with domain dom(f) ⇒ X and range rng(f) = {f(x) | x ⊆ X} ⇒ Y .
f ⊆ X ⇔ Y is a total function, i.e., dom(f) = X. A partial function f ⊆ X ≈⇔ Y
is injective if f(x1) = f(x2) implies x1 = x2 for all x1, x2 ⊆ dom(f).

Definition 1 (Function Projection). Let f ⊆ X ≈⇔ Y be a (partial) function
and Q ⇒ X. f �Q is the function projected on Q: dom(f �Q) = dom(f) ∩ Q
and f �Q (x) = f(x) for x ⊆ dom(f �Q).

The projection can also be used for multisets, e.g., [x3, y, z2] �{x,y}= [x3, y].
σ = 〈a1, a2, . . . , an〉 ⊆ X∗ denotes a sequence over X of length n. 〈 〉 is the

empty sequence. multsk(σ) = [a1, a2, . . . , ak] is the multiset composed of the
first k elements of σ. mults(σ) = mults |σ|(σ) converts a sequence into a multiset.
mults2(〈a, a, b, a, b〉) = [a2] and mults(〈a, a, b, a, b〉) = [a3, b2].

Sequences are used to represent paths in a graph and traces in an event
log. σ1 · σ2 is the concatenation of two sequences and σ �Q is the projection of
σ on Q.

Definition 2 (Sequence Projection). Let X be a set and Q ⇒ X one of its
subsets. �Q⊆ X∗ ⇔ Q∗ is a projection function and is defined recursively: (1)
〈 〉 �Q= 〈 〉 and (2) for σ ⊆ X∗ and x ⊆ X:

(〈x〉 · σ) �Q=

{
σ �Q if x ≈⊆ Q

〈x〉 · σ �Q if x ⊆ Q

So 〈y, z, y〉 �{x,y}= 〈y, y〉. Functions can also be applied to sequences: if dom(f) =
{x, y}, then f(〈y, z, y〉) = 〈f(y), f(y)〉.
Definition 3 (Applying Functions to Sequences). Let f ⊆ X ≈⇔ Y be a
partial function. f can be applied to sequences of X using the following recursive
definition (1) f(〈 〉) = 〈 〉 and (2) for σ ⊆ X∗ and x ⊆ X:

f(〈x〉 · σ) =

{
f(σ) if x ≈⊆ dom(f)
〈f(x)〉 · f(σ) if x ⊆ dom(f)

Summation is defined over multisets and sequences, e.g.,
∑

x∈〈a,a,b,a,b〉 f(x) =∑
x∈[a3,b2] f(x) = 3f(a) + 2f(b).

3.2 Petri Nets

We use Petri nets as the process modeling language used to introduce process
mining (in the large). However, as mentioned in Sect. 1 the results presented in
the paper can be adapted for various other process modeling notations (BPMN

Process Mining in the Large: A Tutorial 43

models, BPEL specifications, UML activity diagrams, Statecharts, C-nets, heuris-
tic nets, etc.). This does not imply that these notations are equivalent. There are
differences in expensiveness (e.g., classical Petri nets are not Turing complete,
but most extension of Petri nets are) and suitability (cf. research on the workflow
patterns [15]). Translations are often “lossy”, i.e., the model after translation
may allow for more or less behavior. However, in practice this is not a prob-
lem as the basic concepts are often the same. There is also a trade-off between
accuracy and simplicity. For example, inclusive OR-joins are not directly sup-
ported by Petri nets, because an OR-join may need to synchronize a variable (at
design-time unknown) number of inputs. Using a rather involved translation it is
possible to model this in terms of classical Petri nets using so-called “true” and
“false” tokens [15]. This only works if there are no arbitrary unstructured loops.
See for example the many translations proposed for the mapping from BPEL
to Petri nets [56,60,72]. There also exists a näıve much simpler translation that
includes the original behavior (but also more) [1,10]. Using Single-Entry Single-
Exit (SESE) components and the refined process structure tree (RPST) [74,87]
it is often possible to convert aan unstructured graph-based model into a struc-
tured model. Also see the approaches to convert Petri nets and BPMN models
into BPEL [16,73].

The above examples illustrate that many conversions are possible depend-
ing on the desired outcome (accuracy versus simplicity). It is also important to
stress that the representational bias used during process discovery may be dif-
ferent from the representational bias used to present the result to end-users. For
example, one may use Petri nets during discovery and convert the final result to
BPMN.

In this paper we would like to steer away from notational issues and conver-
sions and restrict ourselves to Petri nets as a representation for process models.
By using Petri nets we minimize the notational overhead allowing us the focus
on the key ideas.

Definition 4 (Petri Net). A Petri net is a tuple N = (P, T, F) with P the set
of places, T the set of transitions, P ∩ T = ∅, and F ⇒ (P × T) ∪ (T × P) the
flow relation.

Figure 5 shows a Petri net N = (P, T, F) with P = {start , c1, . . . , c9, end},
T = {t1, t2, . . . , t11}, and F = {(start , t1), (t1, c1), (t1, c2), . . . , (t11, end)}. The
state of a Petri net, called marking, is a multiset of places indicating how many
tokens each place contains. [start] is the initial marking shown in Fig. 5. Another
potential marking is [c110, c25, c45]. This is the state with ten tokens in c1, five
tokens in c2, and five tokens in c4.

Definition 5 (Marking). Let N = (P, T, F) be a Petri net. A marking M is
a multiset of places, i.e., M ⊆ B(P).

A Petri net N = (P, T, F) defines a directed graph with nodes P ∪ T and edges

F . For any x ⊆ P ∪T ,
N• x = {y | (y, x) ⊆ F} denotes the set of input nodes and

44 W.M.P. van der Aalst

a
start

a = register request
b = examine file
c = check ticket
d = decide
e = reinitiate request
f = send acceptance letter
g = pay compensation
h = send rejection letter

b

c

d

g

h

e

end

c1

c2

c3

c4

c5t1

f

t2

t3

t4

t5

t6

t7 t8

t9

t10

t11

c6

c7 c8

c9

Fig. 5. A labeled Petri net.

x
N• = {y | (x, y) ⊆ F} denotes the set of output nodes We drop the superscript

N if it is clear from the context.
A transition t ⊆ T is enabled in marking M of net N , denoted as (N,M)[t〉,

if each of its input places •t contains at least one token. Consider the Petri net
N in Fig. 5 with M = [c3, c4]: (N,M)[t5〉 because both input places of t5 are
marked.

An enabled transition t may fire, i.e., one token is removed from each of the
input places •t and one token is produced for each of the output places t• . For-
mally: M ′ = (M \ •t)∈ t• is the marking resulting from firing enabled transition
t in marking M of Petri net N . (N,M)[t〉(N,M ′) denotes that t is enabled in
M and firing t results in marking M ′. For example, (N, [start])[t1〉(N, [c1, c2])
and (N, [c3, c4])[t5〉(N, [c5]) for the net in Fig. 5.

Let σ = 〈t1, t2, . . . , tn〉 ⊆ T ∗ be a sequence of transitions. (N,M)[σ〉(N,M ′)
denotes that there is a set of markings M0,M1, . . . ,Mn such that M0 = M ,
Mn = M ′, and (N,Mi)[ti+1〉(N,Mi+1) for 0 ≤ i < n. A marking M ′ is reach-
able from M if there exists a σ such that (N,M)[σ〉(N,M ′). For example,
(N, [start])[σ〉(N, [end]) with σ = 〈t1, t3, t4, t5, t10〉 for the net in Fig. 5.

Definition 6 (Labeled Petri Net). A labeled Petri net N = (P, T, F, l) is
a Petri net (P, T, F) with labeling function l ⊆ T ≈⇔ UA where UA is some
universe of activity labels. Let σv = 〈a1, a2, . . . , an〉 ⊆ UA

∗ be a sequence of
activities. (N,M)[σv � (N,M ′) if and only if there is a sequence σ ⊆ T ∗ such
that (N,M)[σ〉(N,M ′) and l(σ) = σv (cf. Definition 3).

If t ≈⊆ dom(l), it is called invisible. An occurrence of visible transition t ⊆ dom(l)
corresponds to observable activity l(t). The Petri net in Fig. 5 is labeled. The

Process Mining in the Large: A Tutorial 45

labeling function is defined as follows: dom(l) = {t1, t3, t4, t5, t6, t8, t9, t10},
l(t1) = a (a is a shorthand for “register request”), l(t3) = b (“examine file”),
l(t4) = c (“check ticket”), l(t5) = d (“decide”), l(t6) = e (“reinitiate request”),
l(t8) = f (“send acceptance letter”), l(t9) = g (“pay compensation”), and
l(t10) = h (“send rejection letter”). Unlabeled transitions correspond to so-
called “silent actions”, i.e., transitions t2, t7, and t11 are unobservable.

Given the Petri net N in Fig. 5: (N, [start])[σv � (N, [end]) for σv = 〈a, c, d,
f, g〉 because (N, [start])[σ〉(N, [end]) with σ = 〈t1, t2, t4, t5, t7, t8, t9, t11〉 and
l(σ) = σv.

In the context of process mining, we always consider processes that start
in an initial state and end in a well-defined end state. For example, given the
net in Fig. 5 we are interested in so-called complete firing sequences starting in
Minit = [start] and ending in Mfinal = [end]. Therefore, we define the notion of
a system net.

Definition 7 (System Net). A system net is a triplet SN = (N,Minit ,Mfinal)
where N = (P, T, F, l) is a labeled Petri net, Minit ⊆ B(P) is the initial marking,
and Mfinal ⊆ B(P) is the final marking. USN is the universe of system nets.

Definition 8 (System Net Notations). Let SN = (N,Minit ,Mfinal) ⊆ USN

be a system net with N = (P, T, F, l).

– Tv(SN) = dom(l) is the set of visible transitions in SN ,
– Av(SN) = rng(l) is the set of corresponding observable activities in SN ,
– Tu

v (SN) = {t ⊆ Tv(SN) | ∀t′∈Tv(SN) l(t) = l(t′) ⇒ t = t′} is the set of
unique visible transitions in SN (i.e., there are no other transitions having
the same visible label), and

– Au
v (SN) = {l(t) | t ⊆ Tu

v (SN)} is the set of corresponding unique observable
activities in SN .

Given a system net, φ(SN) is the set of all possible visible traces, i.e., complete
firing sequences starting in Minit and ending in Mfinal projected onto the set of
observable activities.

Definition 9 (Traces). Let SN = (N,Minit ,Mfinal) ⊆ USN be a system net.
φ(SN) = {σv | (N,Minit)[σv � (N,Mfinal)} is the set of visible traces starting
in Minit and ending in Mfinal . φf (SN) = {σ | (N,Minit)[σ〉(N,Mfinal)} is the
corresponding set of complete firing sequences.

For Fig. 5: φ(SN) = {〈a, c, d, f, g〉, 〈a, c, b, d, f, g〉, 〈a, c, d, h〉, 〈a, b, c, d, e, c, d, h〉,
. . .} and φf (SN) = {〈t1, t2, t4, t5, t7, t8, t9, t11〉, 〈t1, t3, t4, t5, t10〉, . . .}. Because
of the loop involving transition t6 there are infinitely many visible traces and
complete firing sequences.

Traditionally, the bulk of Petri net research focused on model-based analysis.
Moreover, the largest proportion of model-based analysis techniques is limited to
functional properties. Generic techniques such as model checking can be used to
check whether a Petri net has particular properties, e.g., free of deadlocks. Petri-
net-specific notions such as traps, siphons, place invariants, transition invariants,

46 W.M.P. van der Aalst

and coverability graphs are often used to verify desired functional properties, e.g.,
liveness or safety properties [77]. Consider for example the notion of soundness
defined for WorkFlow nets (WF-nets) [13]. The Petri net shown in Fig. 5 is a
WF-net because there is a unique source place start , a unique sink place end ,
and all nodes are on a path from start to end . A WF-net is sound if and only
if the following three requirements are satisfied: (1) option to complete: it is
always still possible (i.e., from any reachable marking) to reach the state which
just marks place end , (2) proper completion: if place end is marked all other
places are empty, and (3) no dead transitions: it should be possible to execute
an arbitrary transition by following the appropriate route through the WF-net.
The WF-net in Fig. 5 is sound and as a result cases cannot get stuck before
reaching the end (termination is always possible) and all parts of the process
can be activated (no dead segments). Obviously, soundness is important in the
context of business processes and process mining. Fortunately, there exist nice
theorems connecting soundness to classical Petri-net properties. For example,
a WF-net is sound if and only if the corresponding short-circuited Petri net
is live and bounded. Hence, proven techniques and tools can be used to verify
soundness.

Although the results in this paper are more general and not limited of WF-
nets, all examples in this paper use indeed WF-nets. As indicated most of Petri
net literature and tools focuses on model-based analysis thereby ignoring actual
observed process behavior. Yet, the confrontation between modeled and observed
behavior is essential for understanding and improving real-life processes and
systems.

3.3 Event Log

As indicated earlier, event logs serve as the starting point for process mining. An
event log is a multiset of traces. Each trace describes the life-cycle of a particular
case (i.e., a process instance) in terms of the activities executed.

Definition 10 (Trace, Event Log). Let A ⇒ UA be a set of activities. A trace
σ ⊆ A∗ is a sequence of activities. L ⊆ B(A∗) is an event log, i.e., a multiset of
traces.

An event log is a multiset of traces because there can be multiple cases having
the same trace. In this simple definition of an event log, an event refers to just an
activity. Often event logs store additional information about events. For example,
many process mining techniques use extra information such as the resource (i.e.,
person or device) executing or initiating the activity, the timestamp of the event,
or data elements recorded with the event (e.g., the size of an order). In this paper,
we abstract from such information. However, the results presented can easily be
extended to event logs containing additional information.

An example log is L1 = [〈a, c, d, f, g〉10, 〈a, c, d, h〉5, 〈a, b, c, d, e, c, d, g, f〉5]. L1

contains information about 20 cases, e.g., 10 cases followed trace 〈a, c, d, f, g〉.
There are 10 × 5 + 5 × 4 + 5 × 9 = 115 events in total.

Process Mining in the Large: A Tutorial 47

The projection function �X (cf. Definition 2) is generalized to event logs,
i.e., for some event log L ⊆ B(A∗) and set X ⇒ A: L �X= [σ �X | σ ⊆ L]. For
example, L1 �{a,g,h}= [〈a, g〉15, 〈a, h〉5]. We will refer to these projected event
logs as sublogs.

4 Process Discovery

Process discovery is one of the most challenging process mining tasks. In this paper
we consider the basic setting where we want to learn a system net SN = (N,Minit ,
Mfinal) ⊆ USN from an event log L ⊆ B(A∗). We will present two process discovery
techniques: the α-algorithm and an approach based on language-based regions.
These techniques have many limitations (e.g., unable to deal with noise), but they
serve as a good starting point for better understanding this challenging topic.

4.1 Alpha Algorithm

First we describe the α-algorithm [21]. This was the first process discovery tech-
nique able to discover concurrency. Moreover, unlike most other techniques, the
α-algorithm was proven to be correct for a clearly defined class of processes
[21]. Nevertheless, we would like to stress that the basic algorithm has many
limitations including the inability to deal with noise, particular loops, and non-
free-choice behavior. Yet, it provides a good introduction into the topic. The
α-algorithm is simple and many of its ideas have been embedded in more com-
plex and robust techniques. We will use the algorithm as a baseline for discussing
the challenges related to process discovery.

The α-algorithm scans the event log for particular patterns. For example, if
activity a is followed by b but b is never followed by a, then it is assumed that
there is a causal dependency between a and b.

Definition 11 (Log-based ordering relations). Let L ⊆ B(A∗) be an event
log over A, i.e., L ⊆ B(A∗). Let a, b ⊆ A:

– a >L b if and only if there is a trace σ = 〈t1, t2, t3, . . . tn〉 and i ⊆ {1, . . . , n−1}
such that σ ⊆ L and ti = a and ti+1 = b;

– a ⇔L b if and only if a >L b and b ≈>L a;
– a#Lb if and only if a ≈>L b and b ≈>L a; and
– a‖Lb if and only if a >L b and b >L a.

Consider for instance event log L2 = [〈a, b, c, d〉3, 〈a, c, b, d〉2, 〈a, e, d〉]. For
this event log the following log-based ordering relations can be found.

>L2 = {(a, b), (a, c), (a, e), (b, c), (c, b), (b, d), (c, d), (e, d)}
⇔L2 = {(a, b), (a, c), (a, e), (b, d), (c, d), (e, d)}
#L2 = {(a, a), (a, d), (b, b), (b, e), (c, c), (c, e), (d, a), (d, d), (e, b), (e, c), (e, e)}
‖L2 = {(b, c), (c, b)}

48 W.M.P. van der Aalst

Relation >L2 contains all pairs of activities in a “directly follows” relation. c >L2

d because d directly follows c in trace 〈a, b, c, d〉. However, d ≈>L2 c because c
never directly follows d in any trace in the log. ⇔L2 contains all pairs of activities
in a “causality” relation, e.g., c ⇔L2 d because sometimes d directly follows c
and never the other way around (c >L2 d and d ≈>L2 c). b‖L2c because b >L2 c
and c >L2 b, i.e., sometimes c follows b and sometimes the other way around.
b#L2e because b ≈>L2 e and e ≈>L2 b.

For any log L over A and x, y ⊆ A: x ⇔L y, y ⇔L x, x#Ly, or x‖Ly, i.e.,
precisely one of these relations holds for any pair of activities. The log-based
ordering relations can be used to discover patterns in the corresponding process
model as is illustrated in Fig. 6. If a and b are in sequence, the log will show
a ⇔L b. If after a there is a choice between b and c, the log will show a ⇔L b,
a ⇔L c, and b#Lc because a can be followed by b and c, but b will not be followed
by c and vice versa. The logical counterpart of this so-called XOR-split pattern
is the XOR-join pattern as shown in Fig. 6(b-c). If a ⇔L c, b ⇔L c, and a#Lb,
then this suggests that after the occurrence of either a or b, c should happen.
Figure 6(d-e) shows the so-called AND-split and AND-join patterns. If a ⇔L b,
a ⇔L c, and b‖Lc, then it appears that after a both b and c can be executed in
parallel (AND-split pattern). If a ⇔L c, b ⇔L c, and a‖Lb, then the log suggests
that c needs to synchronize a and b (AND-join pattern).

a b

(a) sequence pattern: a→b

a

b

c

(b) XOR-split pattern:
a→b, a→c, and b#c

a

b

c

(c) XOR-join pattern:
a→c, b→c, and a#b

a

b

c

(d) AND-split pattern:
a→b, a→c, and b||c

a

b

c

(e) AND-join pattern:
a→c, b→c, and a||b

Fig. 6. Typical process patterns and the footprints they leave in the event log

Figure 6 only shows simple patterns and does not present the additional con-
ditions needed to extract the patterns. However, it provides some initial insights
useful when reading the formal definition of the α-algorithm [21].

Process Mining in the Large: A Tutorial 49

Definition 12. (α-algorithm). Let L ⊆ B(A∗) be an event log over A. α(L)
produces a system net and is defined as follows:

1. TL = {t ⊆ A | ∃σ∈L t ⊆ σ},
2. TI = {t ⊆ A | ∃σ∈L t = first(σ)},
3. TO = {t ⊆ A | ∃σ∈L t = last(σ)},
4. XL = {(A,B) | A ⇒ TL ∧ A ≈= ∅ ∧ B ⇒ TL ∧ B ≈= ∅ ∧ ∀a∈A∀b∈B a ⇔L

b ∧ ∀a1,a2∈A a1#La2 ∧ ∀b1,b2∈B b1#Lb2},
5. YL = {(A,B) ⊆ XL | ∀(A′,B′)∈XL

A ⇒ A′ ∧ B ⇒ B′ =⇒ (A,B) = (A′, B′)},
6. PL = {p(A,B) | (A,B) ⊆ YL} ∪ {iL, oL},
7. FL = {(a, p(A,B)) | (A,B) ⊆ YL ∧ a ⊆ A} ∪ {(p(A,B), b) | (A,B) ⊆ YL ∧ b ⊆

B} ∪ {(iL, t) | t ⊆ TI} ∪ {(t, oL) | t ⊆ TO},
8. lL ⊆ TL ⇔ A with l(t) = t for t ⊆ TL, and
9. α(L) = (N,Minit ,Mfinal) with N = (PL, TL, FL, lL), Minit = [iL],

Mfinal = [oL].

In Step 1 it is checked which activities do appear in the log (TL). These
are the observed activities and correspond to the transitions of the generated
system net. TI is the set of start activities, i.e., all activities that appear first in
some trace (Step 2). TO is the set of end activities, i.e., all activities that appear
last in some trace (Step 3). Steps 4 and 5 form the core of the α-algorithm.
The challenge is to determine the places of the Petri net and their connections.
We aim at constructing places named p(A,B) such that A is the set of input
transitions (•p(A,B) = A) and B is the set of output transitions (p(A,B)• = B)
of p(A,B).

a1

...

a2

am

b1

b2

bn

p(A,B) ...

A={a1,a2, … am} B={b1,b2, … bn}

ti1

TI={ti1,ti2, …}

...
ti2

to1

TO={to1,to2, …}

...
to2iL oL

Fig. 7. Place p(A,B) connects the transitions in set A to the transitions in set B, iL
is the input place of all start transition TI , and oL is the output place of all end
transition TO.

The basic motivation for finding p(A,B) is illustrated by Fig. 7. All elements
of A should have causal dependencies with all elements of B, i.e., for all (a, b) ⊆
A×B: a ⇔L b. Moreover, the elements of A should never follow one another, i.e.,
for all a1, a2 ⊆ A: a1#La2. A similar requirement holds for B. Let us consider
L2 = [〈a, b, c, d〉3, 〈a, c, b, d〉2, 〈a, e, d〉] again. Clearly, A = {a} and B = {b, e}
meet the requirements stated in Step 4. Also A′ = {a} and B′ = {b} meet the

50 W.M.P. van der Aalst

same requirements. XL is the set of all such pairs that meet the requirements
just mentioned. In this case:

XL2 = {({a}, {b}), ({a}, {c}), ({a}, {e}), ({a}, {b, e}), ({a}, {c, e}),
({b}, {d}), ({c}, {d}), ({e}, {d}), ({b, e}, {d}), ({c, e}, {d})}

If one would insert a place for any element in XL2 , there would be too many
places. Therefore, only the “maximal pairs” (A,B) should be included. Note that
for any pair (A,B) ⊆ XL, non-empty set A′ ⇒ A, and non-empty set B′ ⇒ B,
it is implied that (A′, B′) ⊆ XL. In Step 5, all non-maximal pairs are removed,
thus yielding:

YL2 = {({a}, {b, e}), ({a}, {c, e}), ({b, e}, {d}), ({c, e}, {d})}

Every element of (A,B) ⊆ YL corresponds to a place p(A,B) connecting tran-
sitions A to transitions B. In addition PL also contains a unique source place iL
and a unique sink place oL (cf. Step 6). In Step 7 the arcs of the Petri net are
generated. All start transitions in TI have iL as an input place and all end transi-
tions TO have oL as output place. All places p(A,B) have A as input nodes and B
as output nodes. Figure 8 shows the resulting system net. Since transition iden-
tifiers and labels coincide (l(t) = t for t ⊆ TL) we only show the labels. For any
event log L, α(L) = (N,Minit ,Mfinal) with N = (PL, TL, FL, lL), Minit = [iL],
Mfinal = [oL] aims to describe the behavior recorded in L.

a d

p({a},{b,e})

iL oL

b

c

e

p({b,e},{d})

p({a},{c,e}) p({c,e},{d})
2 2

Fig. 8. System net α(L2) = (N, [iL2], [oL2]) for event log L2 = [←a, b, c, d〉3, ←a, c, b, d〉2,
←a, e, d〉].

Next, we consider the following three events logs L3a = [〈a, c, d〉88, 〈a, c, e〉82,
〈b, c, d〉83, 〈b, c, e〉87], L3b = [〈a, c, d〉88, 〈b, c, e〉87], L3c = [〈a, c, d〉88, 〈a, c, e〉2,
〈b, c, d〉3, 〈b, c, e〉87]. α(L3a) = SN 3a, i.e., the system net depicted in Fig. 9 with-
out places p3 and p4 (modulo renaming of places). It is easy to check that
all traces in L3a are allowed by the discovered model SN 3a and that all firing
sequences of the SN 3a appear in the event log. Now consider L3b. Surprisingly,
α(L3b) = α(L3a) = SN 3a (modulo renaming of places). Note that event logs
L3a and L3b are identical with respect to the “directly follows” relation, i.e.,
>L3a = >L3b . The α-algorithm is unable to discover SN 3b because the depen-
dencies between on the one hand a and d and on the other hand c and e are

Process Mining in the Large: A Tutorial 51

non-local: a, d, c and e never directly follow one another. Still, α(L3a) allows
for all behavior in L3b (and more). Sometimes it is not so clear which model
is preferable. Consider for example L3c where two traces are infrequent. SN 3a

allows for all behavior in L3c, including the infrequent ones. However, SN 3b is
more precise as it only shows the “highways” in L3c. Often people are inter-
ested in the “80/20 model”, i.e., the process model that can describe 80 % of the
behavior seen in the log. This model is typically relatively simple because the
remaining 20 % of the log often account for 80% of the variability in the process.
Hence, people may prefer SN 3b over SN 3a for L3c.

b

c

a

e

d

p1 p2

p3

p4
iL oL

Fig. 9. SN 3a = (N3a, [iL], [oL]) is the system net depicted without places p3 and p4.
SN 3b = (N3b, [iL], [oL]) is the same net but now including places p3 and p4. (Only the
transition labels are shown.)

If we assume that all transitions in Fig. 5 have a visible label and we have
an event log L that is complete with respect to the “directly follows” relation
(i.e., x >L y if and only if y can be directly followed by x in the model), then
the α-algorithm is able to rediscover the original model. If t7 is invisible (not
recorded in event log), then a more compact, but correct, model is derived by the
α-algorithm. If t2 or t11 is invisible, the α-algorithm fails to discover a correct
model, e.g., skipping activity b (t2) does not leave a trail in the event log and
requires a more sophisticated discovery technique.

4.2 Region-Based Process Discovery

In the context of Petri nets, researchers have been looking at the so-called syn-
thesis problem, i.e., constructing a system model its desired behavior. State-
based regions can be used to construct a Petri net from a transition system
[36,48]. Language-based regions can be used to construct a Petri net from a
prefix-closed language. Synthesis approaches using language-based regions can
be applied directly to event logs. To apply state-based regions, one first needs
to create a transition system as shown in [19]. Here, we restrict ourselves to an
informal introduction to language-based regions.

Suppose, we have an event log L ⊆ B(A∗). For this log one could construct
a system net SN without any places and just transitions being continuously
enabled. Given a set of transitions with labels A this system net is able to
reproduce any event log L ⊆ B(A∗). Such a Petri net is called the “flower model”

52 W.M.P. van der Aalst

and adding places to this model can only limit the behavior. Language-based
regions aim at finding places such that behavior is restricted properly, i.e., allow
for the observed and likely behavior [27,28,32,93].

a1

a2

b1

b2

d
pR

e

c1

c

f

YX

Fig. 10. Region R = (X, Y, c) corresponding to place pR: X = {a1, a2, c1} = •pR,
Y = {b1, b2, c1} = pR• , and c is the initial marking of pR

Consider for example place pR in Fig. 10. Removing place pR will not remove
any behavior. However, adding pR may remove behavior possible in the Petri
net without this place. The behavior gets restricted when a place is empty while
one of its output transitions wants to consume a token from it. For example,
b1 is blocked if pR is unmarked while all other input places of b1 are marked.
Suppose now that we have a multiset of traces L. If these traces are possible in
the net with place pR, then they are also possible in the net without pR. The
reverse does not always hold. This triggers the question whether pR can be added
without disabling any of the traces in L. This is what regions are all about.

Definition 13 (Language-Based Region). Let L ⊆ B(A∗) be an event log.
R = (X,Y, c) is a region of L if and only if:

– X ⇒ A is the set of input transitions of R;
– Y ⇒ A is the set of output transitions of R;
– c ⊆ {0, 1} is the initial marking of R; and
– for any σ ⊆ L, k ⊆ {1, . . . , |σ|}:

c +
∑
t∈X

multsk−1(σ)(t) −
∑
t∈Y

multsk(σ)(t) ≥ 0.

R = (X,Y, c) is a region of L if and only if inserting a place pR with •pR = X,
pR• = Y , and initially c tokens does not disable the execution of any of the traces
in L. To check this, Definition 13 inspects all events in the event log. Let σ ⊆ L
be a trace in the log. a = σ(k) is the k-th event in this trace. This event should

Process Mining in the Large: A Tutorial 53

not be disabled by place pR. Therefore, we calculate the number of tokens M(pR)
that are in this place just before the occurrence of the k-th event.

M(pR) = c +
∑
t∈X

multsk−1(σ)(t) −
∑
t∈Y

multsk−1(σ)(t)

multsk−1(σ) is the multiset of events that occurred before the occurrence of
the k-th event.

∑
t∈X multsk−1(σ)(t) counts the number of tokens produced for

place pR,
∑

t∈Y multsk−1(σ)(t) counts the number of tokens consumed from this
place, and c is the initial number of tokens in pR. Therefore, M(pR) is indeed
the number of tokens in pR just before the occurrence of the k-th event. This
number should be positive. In fact, there should be at least one token in pR if
a ⊆ Y . In other words, M(pR) minus the number of tokens consumed from pR

by the k-th event should be non-negative. Hence:

M(pR) −
∑
t∈Y

[a](t) = c +
∑
t∈X

multsk−1(σ)(t) −
∑
t∈Y

multsk(σ)(t) ≥ 0.

This shows that a region R, according to Definition 13, indeed corresponds to a
so-called feasible place pR, i.e., a place that can be added without disabling any
of the traces in the event log.

The requirement stated in Definition 13 can also be formulated in terms of
an inequation system. To illustrate this we use the example log L3b = [〈a, c, d〉88,
〈b, c, e〉87] for which the α-algorithm was unable to find a suitable model. There
are five activities. For each activity t we introduce two variables: xt and yt. xt = 1
if transition t produces a token for pR and xt = 0 if not. yt = 1 if transition t
consumes a token from pR and yt = 0 if not. A potential region R = (X,Y, c)
corresponds to an assignment for all of these variables: xt = 1 if t ⊆ X, xt = 0 if
t ≈⊆ X, yt = 1 if t ⊆ Y , yt = 0 if t ≈⊆ Y . The requirement stated in Definition 13
can now be reformulated in terms of the variables xa, xb, xc, xd, xe, ya, yb, yc,
yd, ye, and c for event log L3b:

c − ya ≥ 0
c + xa − (ya + yc) ≥ 0

c + xa + xc − (ya + yc + yd) ≥ 0
c − yb ≥ 0

c + xb − (yb + yc) ≥ 0
c + xb + xc − (yb + yc + ye) ≥ 0

c, xa, . . . , xe, ya, . . . , ye ⊆ {0, 1}
Note that these inequations are based on all non-empty prefixes of 〈a, c, d〉 and
〈b, c, e〉. Any solution of this linear inequation system corresponds to a region.
Some example solutions are:

R1 = (∅, {a, b}, 1)
c = ya = yb = 1, xa = xb = xc = xd = xe = yc = yd = ye = 0

54 W.M.P. van der Aalst

R2 = ({a, b}, {c}, 0)
xa = xb = yc = 1, c = xc = xd = xe = ya = yb = yd = ye = 0

R3 = ({c}, {d, e}, 0)
xc = yd = ye = 1, c = xa = xb = xd = xe = ya = yb = yc = 0

R4 = ({d, e}, ∅, 0)
xd = xe = 1, c = xa = xb = xc = ya = yb = yc = yd = ye = 0

R5 = ({a}, {d}, 0)
xa = yd = 1, c = xb = xc = xd = xe = ya = yb = yc = ye = 0

R6 = ({b}, {e}, 0)
xb = ye = 1, c = xa = xc = xd = xe = ya = yb = yc = yd = 0

Consider for example R6 = ({b}, {e}, 0). This corresponds to the solution
xb = ye = 1 and c = xa = xc = xd = xe = ya = yb = yc = yd = 0. If we fill out
the values in the inequation system, we can see that this is indeed a solution.
If we construct a Petri net based on these six regions, we obtain SN 3b, i.e., the
system net depicted in Fig. 9 including places p3 and p4 (modulo renaming of
places).

Suppose that the trace 〈a, c, e〉 is added to event log L3b. This results in three
additional inequations:

c − ya ≥ 0
c + xa − (ya + yc) ≥ 0

c + xa + xc − (ya + yc + ye) ≥ 0

Only the last inequation is new. Because of this inequation, xb = ye = 1 and
c = xa = xc = xd = xe = ya = yb = yc = yd = 0 is no longer a solution. Hence,
R6 = ({b}, {e}, 0) is not a region anymore and place p4 needs to be removed
from the system net shown in Fig. 9. After removing this place, the resulting
system net indeed allows for 〈a, c, e〉.

One of the problems of directly applying language-based regions is that the
linear inequation system has many solutions. Few of these solutions correspond
to sensible places. For example, xa = xb = yd = ye = 1 and c = xc = xd =
xe = ya = yb = yc = 0 also defines a region: R7 = ({a, b}, {d, e}, 0). However,
adding this place to Fig. 9 would only clutter the diagram. Another example is
c = xa = xb = yc = 1 and xc = xd = xe = ya = yb = yd = ye = 0, i.e., region
R8 = ({a, b}, {c}, 1). This region is a weaker variant of R2 as the place is initially
marked.

Another problem is that classical techniques for language-based regions aim
at a Petri net that does not allow for any behavior not seen in the log [28].
This means that the log is considered to be complete. This is very unrealis-
tic and results in models that are complex and overfitting. To address these
problems dedicated techniques have been proposed. For instance, in [93] it is
shown how to avoid overfitting and how to ensure that the resulting model has

Process Mining in the Large: A Tutorial 55

desirable properties (WF-net, free-choice, etc.). Nevertheless, pure region-based
techniques tend to have problems handling noise and incompleteness.

4.3 Other Process Discovery Approaches

The α-algorithm and the region-based approach just presented have many limita-
tions. However, there are dozens of more advanced process discovery approaches.
For example, consider genetic process mining techniques [30,65]. The idea of
genetic process mining is to use evolution (“survival of the fittest”) when search-
ing for a process model. Like in any genetic algorithm there are four main steps:
(a) initialization, (b) selection, (c) reproduction, and (d) termination. In the
initialization step the initial population is created. This is the first generation
of individuals to be used. Here an individual is a process model (e.g., a Petri
net, transition system, Markov chain or process tree). Using the activity names
appearing in the log, process models are created randomly. In a generation there
may be hundreds or thousands of individuals (e.g., candidate Petri nets). In the
selection step, the fitness of each individual is computed. A fitness function deter-
mines the quality of the individual in relation to the log.2 Tournaments among
individuals and elitism are used to ensure that genetic material of the best
process models has the highest probability of being used for the next generation:
survival of the fittest. In the reproduction phase the selected parent individuals
are used to create new offspring. Here two genetic operators are used: crossover
(creating child models that share parts of the genetic material of their parents)
and mutation (e.g., randomly adding or deleting causal dependencies). Through
reproduction and elitism a new generation is created. For the models in the new
generation fitness is computed. Again the best individuals move on to the next
round (elitism) or are used to produce new offspring. This is repeated and the
expectation is that the “quality” of each generation gets better and better. The
evolution process terminates when a satisfactory solution is found, i.e., a model
having at least the desired fitness.

Next to genetic process mining techniques [30,65] there are many other dis-
covery techniques. For example, heuristic [92] and fuzzy [53] mining techniques
are particularly suitable for practical applications, but are outside the scope of
this tutorial paper (see [2] for a more comprehensive overview).

5 Conformance Checking

Conformance checking techniques investigate how well an event log L ⊆ B(A∗)
and a system net SN = (N,Minit ,Mfinal) fit together. Note that SN may have
been discovered through process mining or may have been made by hand. In any
case, it is interesting to compare the observed example behavior in L with the
potential behavior of SN .
2 Note that “fitness” in genetic mining has a different meaning than the (replay) fitness

at other places in this paper. Genetic fitness corresponds to the more general notion
of conformance including replay fitness, simplicity, precision, and generalization.

56 W.M.P. van der Aalst

5.1 Quality Dimensions

Conformance checking can be done for various reasons. First of all, it may be
used to audit processes to see whether reality conforms to some normative or
descriptive model [14,41]. Deviations may point to:

– fraud (deliberate non-conforming behavior),
– inefficiencies (carelessness or sloppiness causing unnecessary delays or costs),
– exceptions (selected cases are handled in an ad-hoc manner because of special

circumstances not covered by the model),
– poorly designed procedures (to get the work done people need to deviate from

the model continuously), or
– outdated procedures (the process description does not match reality anymore

because the process evolved over time).

Second, conformance checking can be used to evaluate the performance of a
process discovery technique. In fact, genetic process mining algorithms use con-
formance checking to select the candidate models used to create the next gener-
ation of models [30,65].

There are four quality dimensions for comparing model and log: (1) replay
fitness, (2) simplicity, (3) precision, and (4) generalization [2]. A model with
good replay fitness allows for most of the behavior seen in the event log. A model
has a perfect fitness if all traces in the log can be replayed by the model from
beginning to end. If there are two models explaining the behavior seen in the
log, we generally prefer the simplest model. This principle is known as Occam’s
Razor. Fitness and simplicity alone are not sufficient to judge the quality of a
discovered process model. For example, it is very easy to construct an extremely
simple Petri net (“flower model”) that is able to replay all traces in an event log
(but also any other event log referring to the same set of activities). Similarly,
it is undesirable to have a model that only allows for the exact behavior seen
in the event log. Remember that the log contains only example behavior and
that many traces that are possible may not have been seen yet. A model is
precise if it does not allow for “too much” behavior. Clearly, the “flower model”
lacks precision. A model that is not precise is “underfitting”. Underfitting is the
problem that the model over-generalizes the example behavior in the log (i.e.,
the model allows for behaviors very different from what was seen in the log). At
the same time, the model should generalize and not restrict behavior to just the
examples seen in the log. A model that does not generalize is “overfitting” [8,9].
Overfitting is the problem that a very specific model is generated whereas it is
obvious that the log only holds example behavior (i.e., the model explains the
particular sample log, but there is a high probability that the model is unable
to explain the next batch of cases). Process discovery techniques typically have
problems finding the appropriate balance between precision and generalization
because the event log only contains “positive examples”, i.e., the event log does
not indicate what could not happen.

In the remainder, we will focus on fitness. However, replay fitness is the
starting point to the other quality dimensions [8,9,30].

Process Mining in the Large: A Tutorial 57

5.2 Token-Based Replay

A simple fitness metric is the fraction of perfectly fitting traces. For exam-
ple, the system net shown in Fig. 8 has a fitness of 0.8 for event log L4 =
[〈a, b, c, d〉3, 〈a, c, b, d〉3, 〈a, e, d〉2, 〈a, d〉, 〈a, e, e, d〉] because 8 of the 10 traces fit
perfectly. Such a näıve fitness metric is less suitable for more realistic processes
because it cannot distinguish between “almost fitting” traces and traces that
are completely unrelated to the model. Therefore, we also need a more refined
fitness notion defined at the level of events rather than full traces. Rather than
aborting the replay of a trace once we encounter a problem we can also continue
replaying the trace on the model and record all situations where a transition is
forced to fire without being enabled, i.e., we count all missing tokens. Moreover,
we record the tokens that remain at the end.

a d

b

c

e
1:p 2:c

2:p

2:p

3:c 3:p

4:c 4:p

5:c

5:c

5:p 6:c

p=6
c=6
m=0
r=0

Fig. 11. Replaying trace σ1 = ←a, b, c, d〉 on the system net shown in Fig. 8:
fitness(σ1) = 1

2
(1 − 0

6
) + 1

2
(1 − 0

6
) = 1. (Place and transition identifiers are not

shown, only the transition labels are depicted.)

To explain the idea, we first replay σ1 = 〈a, b, c, d〉 on the system net shown
in Fig. 8. We use four counters: p (produced tokens), c (consumed tokens), m
(missing tokens), and r (remaining tokens). Initially, p = c = 0 and all places
are empty. Then the environment produces a token to create the initial marking.
Therefore, the p counter is incremented: p = 1 (Step 1 in Fig. 11). Now we need to
fire transition a first. This is possible. Since a consumes one token and produces
two tokens, the c counter is incremented by 1 and the p counter is incremented
by 2 (Step 2 in Fig. 11). Therefore, p = 3 and c = 1 after firing transition a.
Then we replay the second event (b). Firing transition b results in p = 4 and
c = 2 (Step 3 in Fig. 11). After replaying the third event (i.e. c) p = 5 and c = 3.
They we replay d. Since d consumes two tokens and produces one, the result is
p = 6 and c = 5 (Step 5 in Fig. 11). At the end, the environment consumes a
token from the sink place (Step 6 in Fig. 11). Hence the final result is p = c = 6
and m = r = 0. Clearly, there are no problems when replaying the σ1, i.e., there
are no missing or remaining tokens (m = r = 0).

The fitness of trace σ is defined as follows:

fitness(σ) =
1
2

(
1 − m

c

)
+

1
2

(
1 − r

p

)

58 W.M.P. van der Aalst

The first parts computes the fraction of missing tokens relative to the number of
consumed tokens. 1− m

c = 1 if there are no missing tokens (m = 0) and 1− m
c = 0

if all tokens to be consumed were missing (m = c). Similarly, 1 − r
p = 1 if there

are no remaining tokens and 1 − r
p = 0 if none of the produced tokens was

actually consumed. We use an equal penalty for missing and remaining tokens.
By definition: 0 ≤ fitness(σ) ≤ 1. In our example, fitness(σ1) = 1

2 (1 − 0
6) +

1
2 (1 − 0

6) = 1 because there are no missing or remaining tokens.

a d

b

c

e
1:p 2:c

2:p

2:p

3:m

3:m

3:c

3:c

3:p 4:c

p=4
c=4
m=2
r=2

4:r

4:r

Fig. 12. Replaying trace σ2 = ←a, d〉 on the system net shown in Fig. 8: fitness(σ2) =
1
2
(1 − 2

4
) + 1

2
(1 − 2

4
) = 0.5.

Let us now consider a trace that cannot be replayed properly. Figure 12 shows
the process of replaying σ2 = 〈a, d〉. Initially, p = c = 0 and all places are empty.
Then the environment produces a token for the initial marking and the p counter
is updated: p = 1. The first event (a) can be replayed (Step 2 in Fig. 12). After
firing a, we have p = 3, c = 1, m = 0, and r = 0. Now we try to replay the
second event. This is not possible, because transition d is not enabled. To fire d,
we need to add a token to each of the input places of d and record the two missing
tokens (Step 3 in Fig. 12) The m counter is incremented. The p and c counter
are updated as usual. Therefore, after firing d, we have p = 4, c = 3, m = 2,
and r = 0. At the end, the environment consumes a token from the sink place
(Step 4 in Fig. 12). Moreover, we note the two remaining tokens on the output
places of a. Hence the final result is p = c = 4 and m = r = 2. Figure 12 shows
diagnostic information that helps to understand the nature of non-conformance.
There was a situation in which d occurred but could not happen according
to the model (m-tags) and there was a situation in which b and c or e were
supposed to happen but did not occur according to the log (r-tags). Moreover,
we can compute the fitness of trace σ2 based on the values of p, c, m, and r:
fitness(σ2) = 1

2

(
1 − 2

4

)
+ 1

2

(
1 − 2

4

)
= 0.5.

Figures 11 and 12 illustrate how to analyze the fitness of a single case. The
same approach can be used to analyze the fitness of a log consisting of many
cases. Simply take the sums of all produced, consumed, missing, and remaining
tokens, and apply the same formula. Let pσ denote the number of produced
tokens when replaying σ on N . cσ, mσ, rσ are defined in a similar fashion, e.g.,
mσ is the number of missing tokens when replaying σ. Now we can define the

Process Mining in the Large: A Tutorial 59

fitness of an event log L on a given system net:

fitness(L) =
1
2

(
1 −

∑
σ∈L L(σ) × mσ∑
σ∈L L(σ) × cσ

)
+

1
2

(
1 −

∑
σ∈L L(σ) × rσ∑
σ∈L L(σ) × pσ

)

By replaying the entire event log, we can now compute the fitness of event log
L4 = [〈a, b, c, d〉3, 〈a, c, b, d〉3, 〈a, e, d〉2, 〈a, d〉, 〈a, e, e, d〉] for the system net shown
in Fig. 8. The total number of produced tokens is p = 3·6+3·6+2·6+1·4+1·8 =
60. There are also c = 60 consumed tokens. The number of missing tokens is
m = 3 · 0 + 3 · 0 + 2 · 0 + 1 · 2 + 1 · 2 = 4. There are also r = 4 remaining tokens.
Hence, fitness(L4) = 1

2

(
1 − 4

60

)
+ 1

2

(
1 − 4

60

)
= 0.933.

Typically, the event-based fitness is higher than the näıve case-based fitness.
This is also the case here. The system net in Fig. 8 can only replay 80 % of the
cases from start to end. However, about 93 % of the individual events can be
replayed. For more information on token-based replay we refer to [2,79].

An event log can be split into two sublogs: one event log containing only
fitting cases and one event log containing only non-fitting cases. Each of the
event logs can be used for further analysis. For example, one could construct
a process model for the event log containing only deviating cases. Also other
data and process mining techniques can be used, e.g., one can use classification
techniques to further investigate non-conformance.

5.3 Aligning Observed and Modeled Behavior

There are various ways to quantify fitness [2,9,22,52,65,68,69,79]. The simple
procedure of counting missing, remaining, produced, and consumed tokens has
several limitations. For example, in case of multiple transitions with the same label
or transitions that are invisible, there are all kinds of complications. Which path
to take if multiple transitions with the same label are enabled? Moreover, in case
of poor fitness the Petri net is flooded with tokens thus resulting in optimistic
estimates (many transitions are enabled). The notion of cost-based alignments [9,
22] provides a more robust and flexible approach for conformance checking.

To measure fitness, we align traces in the event log to traces of the process
model. Consider the following three alignments for the traces in L1 = [〈a, c,
d, f, g〉10, 〈a, c, d, h〉5, 〈a, b, c, d, e, c, d, g, f〉5] and the system net in Fig. 5:

γ1 =
a c � d � f g �
a c τ d τ f g τ
t1 t4 t2 t5 t7 t8 t9 t11

γ2 =
a c � d h
a c τ d h
t1 t4 t2 t5 t10

γ3 =
a b c d e c � d � g f �
a b c d e c τ d τ g f τ
t1 t3 t4 t5 t6 t4 t2 t5 t7 t9 t8 t11

The top row of each alignment corresponds to “moves in the log” and the bottom
two rows correspond to “moves in the model”. Moves in the model are repre-
sented by the transition and its label. This is needed because there could be

60 W.M.P. van der Aalst

multiple transitions with the same label. In alignment γ1 the first column refers
to a “move in both”, i.e., both the event log and the process model make an a
move. If a move in the model cannot be mimicked by a move in the log, then
a “�” (“no move”) appears in the top row. This situation is referred to as a
“move in model”. For example, in the third position of γ1 the log cannot mimic
the invisible transition t2. The τ above t2 indicates that t2 ≈⊆ dom(l). In the
remainder, we write l(t) = τ if t ≈⊆ dom(l). Note that all “no moves” (i.e., the
seven � symbols) in γ1 − γ3 are “caused” by invisible transitions.

Let us now consider some example alignments for the deviating event log
L′
1 = [〈a, c, d, f〉10, 〈a, c, d, c, h〉5, 〈a, b, d, e, c, d, g, f, h〉5] and system net SN in

Fig. 5:

γ4 =
a c � d � f � �
a c τ d τ f g τ
t1 t4 t2 t5 t7 t8 t9 t11

γ5 =
a c � d c h
a c τ d � h
t1 t4 t2 t5 t10

γ6 =
a b � d e c � d � g f � h
a b c d e c τ d τ g f τ �
t1 t3 t4 t5 t6 t4 t2 t5 t7 t9 t8 t11

Alignment γ4 shows a “�” (“no move”) in the top row that does not cor-
respond to an invisible transition. The model makes a g move (occurrence of
transition t9) that is not in the log. Alignment γ6 has a similar move in the
third position: the model makes a c move (occurrence of transition t4) that is
not in the log. If a move in the log cannot be mimicked by a move in the model,
then a “�” (“no move”) appears in the bottom row. This situation is referred
to as a “move in log”. For example, in γ5 the c move in the log is not mimicked
by a move in the model and in γ6 the h move in the log is not mimicked by
a move in the model. Note that the “no moves” not corresponding to invisible
transitions point to deviations between model and log.

A move is a pair (x, (y, t)) where the first element refers to the log and the
second element refers to the model. For example, (a, (a, t1)) means that both
log and model make an “a move” and the move in the model is caused by the
occurrence of transition t1. (�, (g, t9)) means that the occurrence of transition
t9 with label g is not mimicked by corresponding move of the log. (c,�) means
that the log makes an “c move” not followed by the model.

Definition 14 (Legal Moves). Let L ⊆ B(A∗) be an event log and let SN =
(N,Minit ,Mfinal) ⊆ USN be a system net with N = (P, T, F, l). ALM =
{(x, (x, t)) | x ⊆ A ∧ t ⊆ T ∧ l(t) = x} ∪ {(�, (x, t)) | t ⊆ T ∧ l(t) = x} ∪
{(x,�) | x ⊆ A} is the set of legal moves.

An alignment is a sequence of legal moves such that after removing all �
symbols, the top row corresponds to a trace in the log and the bottom row
corresponds to a firing sequence starting in Minit and ending Mfinal . Hence, the
middle row corresponds to a visible path when ignoring the τ steps.

Process Mining in the Large: A Tutorial 61

Definition 15 (Alignment). Let σL ⊆ L be a log trace and σM ⊆ φf (SN)
a complete firing sequence of system net SN . An alignment of σL and σM is
a sequence γ ⊆ ALM

∗ such that the projection on the first element (ignoring
�) yields σL and the projection on the last element (ignoring � and transition
labels) yields σM .

γ1–γ3 are examples of alignments for the traces in L1 and their corresponding fir-
ing sequences in the system net of Fig. 5. γ4–γ6 are examples of alignments for the
traces in L′

1 and complete firing sequences of the same system net. The projection
of γ6 on the first element (ignoring �) yields σL = 〈a, b, d, e, c, d, g, f, h〉 which
is indeed a trace in L′

1. The projection of γ6 on the last element (ignoring �
and transition labels) yields σM = 〈t1, t3, t4, t5, t6, t4, t2, t5, t7, t9, t8, t11〉 which
is indeed a complete firing sequence. The projection of γ6 on the middle element
(i.e., transition labels while ignoring � and τ) yields 〈a, b, c, d, e, c, d, g, f〉 which
is indeed a visible trace of the system net of Fig. 5.

Given a log trace and a process model there may be many (if not infinitely
many) alignments. Consider the following two alignments for 〈a, c, d, f〉 ⊆ L′

1:

γ4 =
a c � d � f � �
a c τ d τ f g τ
t1 t4 t2 t5 t7 t8 t9 t11

γ′
4 =

a c � d � f �
a c b d τ � h
t1 t4 t3 t5 t7 t10

γ4 seems to be better alignment than γ′
4 because it has only one deviation (move

in model only; (�, (g, t9))) whereas γ′
4 has three deviations: (�, (b, t3)), (f,�),

and (�, (h, t11)). To select the most appropriate one we associate costs to unde-
sirable moves and select an alignment with the lowest total costs. To quantify
the costs of misalignments we introduce a cost function δ.

Definition 16 (Cost of Alignment). Cost function δ ⊆ ALM ⇔ IN assigns
costs to legal moves. The cost of an alignment γ ⊆ ALM

∗ is the sum of all costs:
δ(γ) =

∑
(x,y)∈γ δ(x, y).

Moves where log and model agree have no costs, i.e., δ(x, (x, t)) = 0 for all
x ⊆ A. Moves in model only have no costs if the transition is invisible, i.e.,
δ(�, (τ, t)) = 0 if l(t) = τ . δ(�, (x, t)) > 0 is the cost when the model makes
an “x move” without a corresponding move of the log (assuming l(t) = x ≈= τ).
δ(x,�) > 0 is the cost for an “x move” in just the log. These costs may depend
on the nature of the activity, e.g., skipping a payment may be more severe than
sending too many letters. However, in this paper we often use a standard cost
function δS that assigns unit costs: δS(x, (x, t)) = 0, δS(�, (τ, t)) = 0, and
δS(�, (x, t)) = δS(x,�) = 1 for all x ⊆ A. For example, δS(γ1) = δS(γ2) =
δS(γ3) = 0, δS(γ4) = 1, δS(γ5) = 1, and δS(γ6) = 2 (simply count the number
of � symbols not corresponding to invisible transitions). Now we can compare
the two alignments for 〈a, c, d, f〉 ⊆ L′

1: δS(γ4) = 1 and δS(γ′
4) = 3. Hence, we

conclude that γ4 is “better” than γ′
4.

Definition 17 (Optimal Alignment). Let L ⊆ B(A∗) be an event log with
A ⇒ UA and let SN ⊆ USN be a system net with φ(SN) ≈= ∅.

62 W.M.P. van der Aalst

– For σL ⊆ L, we define: ΓσL,SN = {γ ⊆ ALM
∗ | ∃σM∈φf (SN) γ is an

aligment of σL and σM}.
– An alignment γ ⊆ ΓσL,SN is optimal for trace σL ⊆ L and system net SN if

for any γ′ ⊆ ΓσL,M : δ(γ′) ≥ δ(γ).
– λSN ⊆ A∗ ⇔ ALM

∗ is a deterministic mapping that assigns any log trace σL

to an optimal alignment, i.e., λSN (σL) ⊆ ΓσL,SN and λSN (σL) is optimal.
– costs(L,SN , δ) =

∑
σL∈L δ(λSN (σL)) are the misalignment costs of the whole

event log.

γ1−γ6 is are optimal alignments for the corresponding six possible traces in event
logs L1 and L′

1 and the system net in Fig. 5. γ′
4 is not an optimal alignment for

〈a, c, d, f〉. costs(L1,SN , δS) = 10×δS(γ1)+5×δS(γ2)+5×δS(γ3) = 10×0+5×
0 + 5 × 0 = 0. Hence, L1 is perfectly fitting system net SN . costs(L′

1,SN , δS) =
10 × δS(γ4) + 5 × δS(γ5) + 5 × δS(γ6) = 10 × 1 + 5 × 1 + 5 × 2 = 25.

It is possible to convert misalignment costs into a fitness value between 0
(poor fitness, i.e., maximal costs) and 1 (perfect fitness, zero costs). We refer to
[9,22] for details.

Only perfectly fitting traces have costs 0 (assuming φ(SN) ≈= ∅). Hence,
Event log L is perfectly fitting system net SN if and only if costs(L,SN , δ) = 0.

Once an optimal alignment has been established for every trace in the event
log, these alignments can also be used as a basis to quantify other conformance
notations such as precision and generalization [9]. For example, precision can
be computed by counting “escaping edges” as shown in [68,69]. Recent results
show that such computations should be based on alignments [24]. The same
holds for generalization [9]. Therefore, we focus on alignments when decomposing
conformance checking problems in Sect. 6.

5.4 Beyond Conformance Checking

The importance of alignments cannot be overstated. Alignments relate observed
behavior with modeled behavior. This is not only important for conformance
checking, but also for enriching and repairing models. For example, timestamps
in the event log can be used to analyze bottlenecks in the process model. In
fact, partial alignments can also be used to predict problems and to recommend
appropriate actions. This is illustrated by Fig. 13. See [2,9] for concrete examples.

6 Decomposing Process Mining Problems

The torrents of event data available are an important enabler for process min-
ing. However, the incredible growth of event data also provides computational
challenges. For example, conformance checking can be time consuming as poten-
tially many different traces need to be aligned with a model that may allow
for an exponential (or even infinite) number of traces. Event logs may contain
millions of events. Finding the best alignment may require solving many opti-
mization problems [22] or repeated state-space explorations [79]. In worst case

Process Mining in the Large: A Tutorial 63

modeled (normative or
descriptive) behavior

deviating behavior may be squeezed into model for analysis
(e.g., performance analysis, prediction, and decision mining)

deviating behavior can be
identified and subsequently used

for conformance checking

Fig. 13. The essence of process mining: relating modeled and observed behavior.

a state-space exploration of the model is needed per event. When using genetic
process mining, one needs to check the fitness of every individual model in every
generation [30,65]. As a result, thousands or even millions of conformance checks
need to be done. For each conformance check, the whole event log needs to be
traversed. Given these challenges, we are interested in reducing the time needed
for conformance checking by decomposing the associated Petri net and event log.
See [3,4,7] for an overview of various decomposition approaches. For example, in
[4] we discuss the vertical partitioning and horizontal partitioning of event logs.

Event logs are composed of cases. There may be thousands or even millions
of cases. In case of vertical partitioning these can be distributed over the nodes
in the network, i.e., each case is assigned to one computing node. All nodes work
on a subset of the whole log and in the end the results need to be merged.

Cases are composed of multiple events. We can also partition cases, i.e.,
part of a case is analyzed on one node whereas another part of the same case
is analyzed on another node. This corresponds to a horizontal partitioning of
the event log. In principle, each node needs to consider all cases. However, the
attention of one computing node is limited to a particular subset of events per
case.

Even when only one computing node is available, it may still be beneficial
to decompose process mining problems. Due to the exponential nature of most
conformance checking techniques, the time needed to solve “many smaller prob-
lems” is less than the time needed to solve “one big problem”. In the remainder,
we only consider the so-called horizontal partitioning of the event log.

6.1 Decomposing Conformance Checking

To decompose conformance checking problems we split a process model into
model fragments. In terms of Petri nets: the overall system net SN is decomposed
into a collection of subnets {SN 1,SN 2, . . . ,SN n} such that the union of these
subnets yields the original system net. The union of two system nets is defined
as follows.

64 W.M.P. van der Aalst

Definition 18 (Union of Nets). Let SN 1 = (N1,M1
init ,M

1
final) ⊆ USN with

N1 = (P 1, T 1, F 1, l1) and SN 2 = (N2,M2
init ,M

2
final) ⊆ USN with N2 = (P 2, T 2,

F 2, l2) be two system nets.
– l3 ⊆ (T 1 ∪ T 2) ≈⇔ UA with dom(l3) = dom(l1) ∪ dom(l2), l3(t) = l1(t) if

t ⊆ dom(l1), and l3(t) = l2(t) if t ⊆ dom(l2) \ dom(l1) is the union of l1
and l2,

– N1 ∪ N2 = (P 1 ∪ P 2, T 1 ∪ T 2, F 1 ∪ F 2, l3) is the union of N1 and N2, and
– SN 1 ∪ SN 2 = (N1 ∪ N2,M1

init ∈ M2
init ,M

1
final ∈ M2

final) is the union of system
nets SN 1 and SN 2.

Using Definition 18, we can check whether the union of a collection of sub-
nets {SN 1,SN 2, . . . ,SN n} indeed corresponds to the overall system net SN . It
suffices to check whether SN =

⋃
1≤i≤n SN i = SN 1 ∪ SN 2 ∪ . . . ∪ SN n. A

decomposition {SN 1,SN 2, . . . ,SN n} is valid if the subnets “agree” on the orig-
inal labeling function (i.e., the same transition always has the same label), each
place resides in just one subnet, and also each invisible transition resides in just
one subnet. Moreover, if there are multiple transitions with the same label, they
should reside in the same subnet. Only unique visible transitions (i.e., Tu

v (SN),
cf. Definition 8) can be shared among different subnets.

Definition 19 (Valid Decomposition). Let SN ⊆ USN be a system net with
labeling function l. D = {SN 1,SN 2, . . . ,SN n} ⇒ USN is a valid decomposition
if and only if
– SN i = (N i,M i

init ,M
i
final) is a system net with N i = (P i, T i, F i, li) for all

1 ≤ i ≤ n,
– li = l �T i for all 1 ≤ i ≤ n,
– P i ∩ P j = ∅ for 1 ≤ i < j ≤ n,
– T i ∩ T j ⇒ Tu

v (SN) for 1 ≤ i < j ≤ n, and
– SN =

⋃
1≤i≤n SN i.

D(SN) is the set of all valid decompositions of SN .

Every system net has a trivial decomposition consisting of only one subnet, i.e.,
{SN } ⊆ D(SN). However, we are often interested in a maximal decomposition
where the individual subnets are as small as possible. Figure 14 shows the max-
imal decomposition for the system net shown in Fig. 5.

In [7] it is shown that a unique maximal valid decomposition always exists.
Moreover, it is possible to decompose nets based on the notion of passages [3]
or using Single-Entry Single-Exit (SESE) components [70]. In the remainder, we
assume a valid decomposition without making any further assumptions.

Next, we show that conformance checking can be done by locally inspecting
the subnets using correspondingly projected event logs. To illustrate this, con-
sider the following alignment for trace 〈a, b, c, d, e, c, d, g, f〉 and the system net
in Fig. 5:

γ3 =

1 2 3 4 5 6 7 8 9 10 11 12
a b c d e c � d � g f �
a b c d e c τ d τ g f τ
t1 t3 t4 t5 t6 t4 t2 t5 t7 t9 t8 t11

Process Mining in the Large: A Tutorial 65

a
start t1

SN1

a

c

e

c2

t1

t4

t6SN3

a
b

d

e

c1 c3

t1

t2

t3
t5

t6

SN2

d

g

h

e

c5

f

t5

t6

t7 t8

t9

t10

c6

c7

SN5

c

d

c4
t4

t5

SN4

g

h
end

f

t8

t9

t10

t11c8

c9

SN6

Fig. 14. Maximal decomposition of the system net shown in Fig. 5 with Minit = [start]
and Mfinal = [end]. The initial and final markings are as follows: M1

init = [start] and
M i

init = [] for 2 ∈ i ∈ 6, M i
final = [] for 1 ∈ i ∈ 5, and M6

final = [end].

For convenience, the moves have been numbered. Now consider the following six
alignments:

γ1
3 =

1
a
a
t1

γ2
3 =

1 2 4 5 7 8
a b d e � d
a b d e τ d
t1 t3 t5 t6 t2 t5

γ3
3 =

1 3 5 6
a c e c
a c e c
t1 t4 t6 t4

γ4
3 =

3 4 6 8
c d c d
c d c d
t4 t5 t4 t5

γ5
3 =

4 5 8 9 10 11
d e d � g f
d e d τ g f
t5 t6 t5 t7 t9 t8

γ6
3 =

10 11 12
g f �
g f τ
t9 t8 t11

Each alignment corresponds to one of the six subnets SN 1,SN 2, . . .SN 6 in
Fig. 14. The numbers are used to relate the different alignments. For example
γ6
3 is an alignment for trace 〈a, b, c, d, e, c, d, g, f〉 and subnets SN 6 in

Fig. 14. As the numbers 10, 11 and 12 indicate, γ6
3 corresponds to the last three

moves of γ3.
To create sublogs for the different model fragments, we use the projec-

tion function introduced in Sect. 3. Consider for example the overall log L1 =
[〈a, c, d, f, g〉10, 〈a, c, d, h〉5, 〈a, b, c, d, e, c, d, g, f〉5]. L1

1 = L1 �{a}= [〈a〉20], L2
1 =

L1 �{a,b,d,e}= [〈a, d〉15, 〈a, b, d, e, d〉5], L3
1 = L1 �{a,c,e}= [〈a, c〉15, 〈a, c, e, c〉5],

etc. are the sublogs corresponding to the subnets in Fig. 14.
The following theorem shows that any trace that fits the overall process model

can be decomposed into smaller traces that fit the individual model fragments.
Moreover, if the smaller traces fit the individual model fragments, then they can
be composed into an overall trace that fits into the overall process model. This
result is the basis for decomposing a wide range of process mining problems.

66 W.M.P. van der Aalst

Theorem 1 (Conformance Checking Can be Decomposed). Let L ⊆
B(A∗) be an event log with A ⇒ UA and let SN ⊆ USN be a system net. For
any valid decomposition D = {SN 1,SN 2, . . . ,SN n} ⊆ D(SN): L is perfectly
fitting system net SN if and only if for all 1 ≤ i ≤ n: L �Av(SN i) is perfectly
fitting SN i.

Proof. See [7]. ��
Theorem 1 shows that any trace in the log fits the overall model if and only

if it fits each of the subnets.
Let us now consider trace 〈a, b, d, e, c, d, g, f, h〉 which is not perfectly fitting

the system net in Fig. 5. An optimal alignment is:

γ6 =

1 2 3 4 5 6 7 8 9 10 11 12 13
a b � d e c � d � g f � h
a b c d e c τ d τ g f τ �
t1 t3 t4 t5 t6 t4 t2 t5 t7 t9 t8 t11

The alignment shows the two problems: the model needs to execute c whereas
this event is not in the event log (position 3) and the event log contains g, f ,
and h whereas the model needs to choose between either g and f or h (position
13). The cost of this optimal alignment is 2. Optimal alignment γ6 for the overall
model can be decomposed into alignments γ1

6 − γ6
6 for the six subnets:

γ1
6 =

1
a
a
t1

γ2
6 =

1 2 4 5 7 8
a b d e � d
a b d e τ d
t1 t3 t5 t6 t2 t5

γ3
6 =

1 3 5 6
a � e c
a c e c
t1 t4 t6 t4

γ4
6 =

3 4 6 8
� d c d
c d c d
t4 t5 t4 t5

γ5
6 =

4 5 8 9 10 11 13
d e d � g f h
d e d τ g f �
t5 t6 t5 t7 t9 t8

γ6
6 =

10 11 12 13
g f � h
g f τ �
t9 t8 t11

Alignments γ1
6 and γ2

6 have costs 0. Alignments γ3
6 and γ4

6 have costs 1 (move in
model involving c). Alignments γ5

6 and γ6
6 have costs 1 (move in log involving h).

If we would add up all costs, we would get costs 4 whereas the costs of optimal
alignment γ6 is 2. However, we would like to compute an upper bound for the
degree of fitness in a distributed manner. Therefore, we introduce an adapted
cost function δQ.

Definition 20 (Adapted Cost Function). Let D = {SN 1,SN 2, . . . ,SN n} ⊆
D(SN) be a valid decomposition of some system net SN and δ ⊆ ALM ⇔ IN
a cost function (cf. Definition 16). cQ(a, (a, t)) = cQ(�, (a, t)) = cQ(a,�) =
|{1 ≤ i ≤ n | a ⊆ Ai}| counts the number of subnets having a as an observable
activity. The adapted cost function δQ is defined as follows: δQ(x, y) = δ(x,y)

cQ(x,y)

for (x, y) ⊆ ALM and cQ(x, y) ≈= 0.

Process Mining in the Large: A Tutorial 67

An observable activity may appear in multiple subnets. Therefore, we divide
its costs by the number of subnets in which it appears: δQ(x, y) = δ(x,y)

cQ(x,y) . This
way we avoid counting misalignments of the same activity multiple times. For our
example, cQ(�, (c, t4)) = |{3, 4}| = 2 and cQ(h,�) = |{5, 6}| = 2. Assuming
the standard cost function δS this implies δQ(�, (c, t4)) = 1

2 and δQ(h,�) = 1
2 .

Hence the aggregated costs of γ1
6 − γ6

6 are 2, i.e., identical to the costs of the
overall optimal alignment.

Theorem 2 (Lower Bound for Misalignment Costs). Let L ⊆ B(A∗) be
an event log with A ⇒ UA, SN ⊆ USN be a system net, and δ a cost function.
For any valid decomposition D = {SN 1,SN 2, . . . ,SN n} ⊆ D(SN):

costs(L,SN , δ) ≥
∑

1≤i≤n

costs(L �Av(SN i),SN i, δQ)

Proof. See [7]. ��
The sum of the costs associated to all selected optimal local alignments (using
δQ) can never exceed the cost of an optimal overall alignment using δ. Hence,
it can be used as an optimistic estimate, i.e., computing an upper bound for
the overall fitness and a lower bound for the overall costs. More important,
the fitness values of the different subnets provide valuable local diagnostics.
The subnets with the highest costs are the most problematic parts of the model.
The alignments for these “problem spots” help to understand the main problems
without having to look at very long overall alignments.

a b

c d

c1 c2
start

end

(a) original model

SN1

a b

c

c1
start

b

c d
c2

end

SN2

(b) decomposed model

t1 t1t2

t3 t4

t2 t2

t3 t3 t4

Fig. 15. Example showing that the total misalignment costs may be higher than the
costs associated to the two optimal local alignments.

Theorem 2 only provides a lower bound for the misalignment costs. The total
misalignment costs may be higher than the costs associated to the optimal local
alignments. To understand this, consider the following optimal alignments for
trace 〈a, b, c, d〉 and the (decomposed) process model shown in Fig. 15:

γ =
a b c d
a b � �
t1 t2

γ′ =
a b c d
� � c d

t3 t4
γ1 =

a b c
a b �
t1 t2

γ2 =
b c d
� c d

t3 t4

68 W.M.P. van der Aalst

There are two optimal alignments (γ and γ′) for 〈a, b, c, d〉 and the overall system
net shown in Fig. 15(a). Both optimal alignments (γ and γ′) have two moves in
log only (i.e., these events cannot be mimicked by the model). Hence, δS(γ) =
δS(γ′) = 2. Now consider the decomposition shown in Fig. 15(b). The cost of the
optimal alignment γ1 for subnet SN 1 is δQ(γ1) = 0 + 0 + δQ(c,�) = δS(c,)

cQ(c,) =
1
2 = 0.5. The cost of the optimal alignment γ2 for subnet SN 2 is δQ(γ2) =
δQ(b,�) + 0 + 0 = δS(b,)

cQ(b,) = 1
2 = 0.5. Since δQ(γ1) + δQ(γ2) = 1 and δS(γ) = 2,

we can observe the misalignment costs for γ are indeed higher than the costs
associated to the two optimal local alignments (γ1 and γ2). This is caused by the
fact that the two optimal local alignments don’t agree on the moves with respect
to activities b and c. γ1 suggests a move in both for activity b and a move in
model for c. γ2 makes a different choice and suggests a move in both for activity
c and a move in model for d. Therefore, γ1 and γ2 cannot be stitched back into
an overall alignment with costs 1. Practical experiences show that the difference
between costs(L,SN , δ) and sum1≤i≤ncosts(L �Av(SN i),SN i, δQ) increases when
the fragments are getting smaller. Hence, there is tradeoff between the accuracy
of the lower bound and the degree of decomposition. If the subnets are chosen
large enough, accuracy tends to be quite good.

Theorem 2 uses a rather sophisticated definition of fitness. We can also simply
count the fraction of fitting traces. In this case the problem can be decomposed
easily using the notion of valid decomposition.

Corollary 1 (Fraction of Perfectly Fitting Traces). Let L ⊆ B(A∗) be
an event log with A ⇒ UA and let SN ⊆ USN be a system net. For any valid
decomposition D = {SN 1,SN 2, . . . ,SN n} ⊆ D(SN):

|[σ ⊆ L | σ ⊆ φ(SN)]|
|L| =

|[σ ⊆ L | ∀1≤i≤n σ �Av(SN i) ⊆ φ(SN i)]|
|L|

The corollary follows directly from the construction used in Theorem 1. A trace is
fitting the overall model if and only if it fits all subnets. As Corollary 1 suggests,
traces in the event log can be marked as fitting or non-fitting per subnet. These
results can be merged easily and used to compute the fraction of traces fitting
the overall model. Note that Corollary 1 holds for any decomposition of SN .

6.2 Decomposing Process Discovery

Process discovery, i.e., discovering a process model from event data, is highly
related to conformance checking. This can be observed when considering genetic
process mining algorithms that basically “guess” models and recombine parts of
models that have good fitness to discover even better models [30,65]. The fitness
computation in genetic process mining is in essence a conformance check.

Using Theorem 1 we can distribute any process discovery algorithm by (1)
decomposing the overall event log into smaller sublogs, (2) discovering a model
fragment for each sublog, and (3) merging the discovered models into one overall
process model.

Process Mining in the Large: A Tutorial 69

Given an event log L containing events referring to a set of activities
A, we decompose discovery by distributing the activities over multiple sets
A1, A2, . . . , An. The same activity may appear in multiple sets as long as A =
A1 ∪ A2 ∪ . . . ∪ An. For each activity set Ai, we discover a system net SN

i
by

applying a discovery algorithm to sublog L �Ai , i.e., the overall event log pro-
jected onto a subset of activities. Subsequently, the discovered system nets are
massaged to avoid name clashes and to make sure that transitions with a visible
label are merged properly. By combining the resulting system nets we obtain an
overall system net SN = SN 1 ∪ SN 2 ∪ . . . ∪ SN n describing the behavior in the
overall event log L [7].

The quality of the system net obtained by merging the process models dis-
covered for the sublogs highly depends on the way the activities are decomposed
and the characteristics of the discovery algorithm used per sublog. However, the
system nets discovered for the sublogs are always a valid decomposition of the
overall model. This implies that we can apply Theorem 1 (Conformance Check-
ing Can be Decomposed), Theorem 2 (Lower Bound for Misalignment Costs),
and Corollary 1 (Fraction of Perfectly Fitting Traces). If the discovery algorithm
is able to create a perfectly fitting model for each sublog, then the overall model
is also perfectly fitting. Moreover, if the discovery algorithm has problems find-
ing a perfectly fitting model for a particular sublog, then the overall model will
also exhibit these problems. For example, the fraction of traces fitting the overall
model equals the fraction of traces fitting all individual models.

6.3 Decomposition Strategies

The decomposition results for conformance checking and process discovery are
not tailored towards a particular type of decomposition. Recently, several papers
have been published on different ways of decomposing process mining problems.
In [3,88,89] it is shown that so-called “passages” can be used to decompose both
process discovery and conformance checking problems. In [70,71] it is shown
that so-called SESE (Single-Exit-Single-Entry) components obtained through
the Refined Process Structure Tree (RPST) [74,87] can be used to decompose
conformance checking problems. These papers use a particular decomposition
strategy. However, as shown in [7], there are many ways to decompose process
mining problems.

The above papers are all using Petri nets as a representation. However, as
shown in [5] the essence of the decomposition results is not limited to Petri nets
at al.

Experimental results shows that significant speed-ups are possible through
decomposition [70,88]. Process mining algorithms are typically linear in the num-
ber of cases and exponential in the average length of traces or the number of
unique activities. Through a vertical partitioning [4] many process mining algo-
rithms can be decomposed trivially. Consider for example conformance checking
problems. These are solved per case. Hence, by distributing the cases over differ-
ent computing nodes it is easy to realize a linear speedup. Discovery algorithms

70 W.M.P. van der Aalst

often use some variant of the “directly follows” relation (>L) discussed in the
context of the α-algorithm. Obviously a vertical partitioning (e.g. using a Map-
Reduce [40,75] programming style) can be used to create such a relation in a
distributed fashion.

In this paper we focused on a horizontal partitioning of the event log because
process mining algorithms tend to be exponential in the average length of traces
or the number of unique activities. Hence, the potential gains of horizontal par-
titioning are much larger. Just like the state space of a Petri net may grow
exponentially in the number of transitions, the search space may grow rapidly
as the number of different activities increases. Hence, the time needed to solve
“many smaller problems” is often less than the time needed to solve “one big
problem”, even when this is done sequentially. In fact, horizontal partitioning
may lead to super linear speedups. Consider for example conformance checking
approaches that use state-space analysis (e.g., in [79] the shortest path enabling
a transition is computed) or optimization over all possible alignments (e.g., in
[22] the A∗ algorithm is used to find the best alignment). These techniques do
not scale linearly in the number of activities. Therefore, decomposition is often
useful even if the checks per subnet are done on a single computer. Moreover,
decomposing conformance checking is not just interesting from a performance
point of view: decompositions can also be used to pinpoint the most problematic
parts of the process and provide localized diagnostics [70]. Decompositions are
not just interesting for conformance diagnostics; also performance-related diag-
nostics (e.g., bottleneck analysis) benefit from a hierarchical structuring of the
whole process.

7 Conclusion

The torrents of event data available in most organizations enable evidence-
based Business Process Management (ebBPM). We predict that there will be
a remarkable shift from pure model-driven or questionnaire-driven approaches
to data-driven process analysis as we are able to monitor and reconstruct the real
business processes using event data. At the same time, we expect that machine
learning and data mining approaches will become more process-centric. Thus
far, the machine learning and data mining communities have not been focusing
on end-to-end processes that also exhibit concurrency. Hence, it is time to move
beyond decision trees, clustering, and (association) rules.

Process mining can be used to diagnose the actual processes. This is valuable
because in many organizations most stakeholders lack a correct, objective, and
accurate view on important operational processes. Process mining can subse-
quently be used to improve such processes. Conformance checking can be used
for auditing and compliance. By replaying the event log on a process model
it is possible to quantify and visualize deviations. Similar techniques can be
used to detect bottlenecks and build predictive models. Given the applicabil-
ity of process mining, we hope that this tutorial encourages the reader to start
using process mining today. The book [2] provides a comprehensive introduc-
tion into the process mining field. Moreover, the open source process mining

Process Mining in the Large: A Tutorial 71

tool ProM can be downloaded from www.processmining.org. Many of the ideas
developed in the context of ProM have been embedded in commercial tools
such as Fluxicon’s Disco (www.fluxicon.com), Perceptive Process Mining (www.
perceptivesoftware.com), Celonis (www.celonis.de), and QPR ProcessAnalyzer
(www.qpr.com). This illustrates the practical relevance of process mining.

In the last part of this tutorial we discussed some very general decomposition
results. Clearly, highly scalable analysis approaches are needed to deal with the
ever-growing amounts of event data. This requires additional research efforts.
Moreover, we refer to the Process Mining Manifesto by the IEEE Task Force on
Process Mining [57] for additional challenges in this exciting new research field.

Acknowledgements. This work was supported by the Basic Research Program of
the National Research University Higher School of Economics (HSE).

References

1. van der Aalst, W.M.P.: Formalization and verification of event-driven process
chains. Inf. Softw. Technol. 41(10), 639–650 (1999)

2. van der Aalst, W.M.P.: Process Mining: Discovery Conformance and Enhancement
of Business Processes. Springer, Berlin (2011)

3. van der Aalst, W.M.P.: Decomposing process mining problems using passages. In:
Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol. 7347, pp. 72–91.
Springer, Heidelberg (2012)

4. van der Aalst, W.M.P.: Distributed process discovery and conformance checking.
In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 1–25. Springer,
Heidelberg (2012)

5. van der Aalst, W.M.P.: A general divide and conquer approach for process min-
ing. In: Ganzha, M., Maciaszek, L., Paprzycki, M. (eds.) Federated Conference
on Computer Science and Information Systems (FedCSIS 2013), pp. 1–10. IEEE
Computer Society (2013)

6. van der Aalst, W.M.P.: Business process management: a comprehensive survey.
ISRN Softw. Eng. 1–37 (2013). doi:10.1155/2013/507984

7. van der Aalst, W.M.P.: Decomposing Petri nets for process mining: a generic app-
roach. Distrib. Parallel Databases 31(4), 471–507 (2013)

8. van der Aalst, W.M.P.: Mediating between modeled and observed behavior: the
quest for the “Right” process. In: IEEE International Conference on Research Chal-
lenges in Information Science (RCIS 2013), pp. 31–43. IEEE Computing Society
(2013)

9. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Replaying history on
process models for conformance checking and performance analysis. WIREs Data
Min. Knowl. Disc. 2(2), 182–192 (2012)

10. van der Aalst, W., Adriansyah, A., van Dongen, B.: Causal nets: a modeling lan-
guage tailored towards process discovery. In: Katoen, J.-P., König, B. (eds.) CON-
CUR 2011. LNCS, vol. 6901, pp. 28–42. Springer, Heidelberg (2011)

11. van der Aalst, W.M.P., Basten, T.: Identifying commonalities and differences in
object life cycles using behavioral inheritance. In: Colom, J.-M., Koutny, M. (eds.)
ICATPN 2001. LNCS, vol. 2075, pp. 32–52. Springer, Heidelberg (2001)

www.processmining.org
www.fluxicon.com
www.perceptivesoftware.com
www.perceptivesoftware.com
www.celonis.de
www.qpr.com
http://dx.doi.org/10.1155/2013/507984

72 W.M.P. van der Aalst

12. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G.,
Weijters, A.J.M.M.: Workflow mining: a survey of issues and approaches. Data
Knowl. Eng. 47(2), 237–267 (2003)

13. van der Aalst, W.M.P., van Hee, K.M., ter Hofstede, A.H.M., Sidorova, N., Verbeek,
H.M.W., Voorhoeve, M., Wynn, M.T.: Soundness of workflow nets: classification,
decidability, and analysis. Formal Aspects Comput. 23(3), 333–363 (2011)

14. van der Aalst, W.M.P., van Hee, K.M., van der Werf, J.M., Verdonk, M.: Auditing
2.0: using process mining to support tomorrow’s auditor. IEEE Comput. 43(3),
90–93 (2010)

15. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distribut. Parallel Databases 14(1), 5–51 (2003)

16. van der Aalst, W.M.P., Lassen, K.B.: Translating unstructured workflow processes
to readable BPEL: theory and implementation. Inf. Softw. Technol. 50(3), 131–159
(2008)

17. van der Aalst, W.M.P., Pesic, M., Song, M.: Beyond process mining: from the
past to present and future. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp.
38–52. Springer, Heidelberg (2010)

18. van der Aalst, W.M.P., Reijers, H.A., Weijters, A.J.M.M., van Dongen, B.F., Alves
de Medeiros, A.K., Song, M., Verbeek, H.M.W.: Business process mining: an indus-
trial application. Inf. Syst. 32(5), 713–732 (2007)

19. van der Aalst, W.M.P., Rubin, V., Verbeek, H.M.W., van Dongen, B.F., Kindler,
E., Günther, C.W.: Process mining: a two-step approach to balance between under-
fitting and overfitting. Softw. Syst. Model. 9(1), 87–111 (2010)

20. van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on
process mining. Inf. Syst. 36(2), 450–475 (2011)

21. van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow mining: dis-
covering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9),
1128–1142 (2004)

22. Adriansyah, A., van Dongen, B., van der Aalst, W.M.P.: Conformance checking
using cost-based fitness analysis. In: Chi, C.H., Johnson, P. (eds.) IEEE Interna-
tional Enterprise Computing Conference (EDOC 2011), pp. 55–64. IEEE Computer
Society (2011)

23. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Towards robust confor-
mance checking. In: zur Muehlen, M., Su, J. (eds.) BPM 2010 Workshops. LNBIP,
vol. 66, pp. 122–133. Springer, Heidelberg (2011)

24. Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst,
W.M.P.: Alignment based precision checking. In: La Rosa, M., Soffer, P. (eds.)
BPM Workshops 2012. LNBIP, vol. 132, pp. 137–149. Springer, Heidelberg (2013)

25. Adriansyah, A., Sidorova, N., van Dongen, B.F.: Cost-based fitness in conformance
checking. In: International Conference on Application of Concurrency to System
Design (ACSD 2011), pp. 57–66. IEEE Computer Society (2011)

26. Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow
logs. In: Schek, H.-J., Saltorè, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS,
vol. 1377, pp. 469–483. Springer, Heidelberg (1998)

27. Badouel, E., Darondeau, P.: Theory of regions. In: Reisig, W., Rozenberg, G. (eds.)
APN 1998. LNCS, vol. 1491, pp. 529–586. Springer, Heidelberg (1998)

28. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process mining based on regions
of languages. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS,
vol. 4714, pp. 375–383. Springer, Heidelberg (2007)

29. Chandra Bose, R.P.J.C.: Process mining in the large: preprocessing, discovery, and
diagnostics. Ph.D. thesis, Eindhoven University of Technology (2012)

Process Mining in the Large: A Tutorial 73

30. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: On the role of fitness,
precision, generalization and simplicity in process discovery. In: Meersman, R., et
al. (eds.) OTM 2012, Part I. LNCS, vol. 7565, pp. 305–322. Springer, Heidelberg
(2012)

31. Calders, T., Guenther, C., Pechenizkiy, M., Rozinat, A.: Using minimum descrip-
tion length for process mining. In: ACM Symposium on Applied Computing (SAC
2009), pp. 1451–1455. ACM Press (2009)

32. Carmona, J., Cortadella, J.: Process mining meets abstract interpretation. In:
Balcázar, J., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part
I. LNCS, vol. 6321, pp. 184–199. Springer, Heidelberg (2010)

33. Carmona, J., Cortadella, J., Kishinevsky, M.: A region-based algorithm for discov-
ering Petri nets from event logs. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.)
BPM 2008. LNCS, vol. 5240, pp. 358–373. Springer, Heidelberg (2008)

34. Cook, J.E., Wolf, A.L.: Discovering models of software processes from event-based
data. ACM Trans. Software Eng. Methodol. 7(3), 215–249 (1998)

35. Cook, J.E., Wolf, A.L.: Software process validation: quantitatively measuring the
correspondence of a process to a model. ACM Trans. Software Eng. Methodol.
8(2), 147–176 (1999)

36. Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving Petri nets
from finite transition systems. IEEE Trans. Comput. 47(8), 859–882 (1998)

37. Curbera, F., Doganata, Y., Martens, A., Mukhi, N.K., Slominski, A.: Business
provenance - a technology to increase traceability of end-to-end operations. In:
Meersman, R., Tari, Z. (eds.) OTM 2008, Part I. LNCS, vol. 5331, pp. 100–119.
Springer, Heidelberg (2008)

38. Datta, A.: Automating the discovery of As-Is business process models: probabilistic
and algorithmic approaches. Inf. Syst. Res. 9(3), 275–301 (1998)

39. Davidson, S., Cohen-Boulakia, S., Eyal, A., Ludaescher, B., McPhillips, T., Bowers,
S., Anand, M., Freire, J.: Provenance in scientific workflow systems. Data Eng. Bull.
30(4), 44–50 (2007)

40. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

41. Depaire, B., Swinnen, J., Jans, M., Vanhoof, K.: A process deviation analysis
framework. In: La Rosa, M., Soffer, P. (eds.) BPM 2012 Workshops. LNBIP, vol.
132, pp. 701–706. Springer, Heidelberg (2013)

42. Dijkman, R., Dumas, M., van Dongen, B., Käärik, R., Mendling, J.: Similarity of
business process models: metrics and evaluation. Inf. Syst. 36(2), 498–516 (2011)

43. Dijkman, R., Dumas, M., Garćıa-Bañuelos, L.: Graph matching algorithms for
business process model similarity search. In: Dayal, U., Eder, J., Koehler, J., Rei-
jers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 48–63. Springer, Heidelberg
(2009)

44. van Dongen, B.F., van der Aalst, W.M.P.: Multi-phase process mining: building
instance graphs. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W. (eds.) ER
2004. LNCS, vol. 3288, pp. 362–376. Springer, Heidelberg (2004)

45. van Dongen, B.F., van der Aalst, W.M.P.: Multi-phase mining: aggregating
instances graphs into EPCs and Petri nets. In: Marinescu, D. (ed.) Proceedings
of the Second International Workshop on Applications of Petri Nets to Coordina-
tion, Workflow and Business Process Management, pp. 35–58. Florida International
University, Miami (2005)

46. van Dongen, B.F., Crooy, R.A., van der Aalst, W.M.P.: Cycle time prediction:
When will this case finally be finished? In: Meersman, R., Tari, Z. (eds.) OTM
2008, Part I. LNCS, vol. 5331, pp. 319–336. Springer, Heidelberg (2008)

74 W.M.P. van der Aalst

47. van Dongen, B.F., Alves de Medeiros, A.K., Wen, L.: Process mining: overview and
outlook of Petri net discovery algorithms. In: Jensen, K., van der Aalst, W.M.P.
(eds.) ToPNoC II. LNCS, vol. 5460, pp. 225–242. Springer, Heidelberg (2009)

48. Ehrenfeucht, A., Rozenberg, G.: Partial (Set) 2-Structures - Part 1 and Part 2.
Acta Inf. 27(4), 315–368 (1989)

49. Fahland, D., van der Aalst, W.M.P.: Repairing process models to reflect reality. In:
Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 229–245.
Springer, Heidelberg (2012)

50. Gaaloul, W., Gaaloul, K., Bhiri, S., Haller, A., Hauswirth, M.: Log-based transac-
tional workflow mining. Distrib. Parallel Databases 25(3), 193–240 (2009)

51. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimula-
tion semantics. J. ACM 43(3), 555–600 (1996)

52. Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust process discovery
with artificial negative events. J. Mach. Learn. Res. 10, 1305–1340 (2009)

53. Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining - adaptive process simplifi-
cation based on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007)

54. Herbst, J.: A machine learning approach to workflow management. In: Lopez de
Mantaras, R., Plaza, E. (eds.) ECML 2000. LNCS (LNAI), vol. 1810, pp. 183–194.
Springer, Heidelberg (2000)

55. Hilbert, M., Lopez, P.: The world’s technological capacity to store, communicate,
and compute information. Science 332(6025), 60–65 (2011)

56. Hinz, S., Schmidt, K., Stahl, C.: Transforming BPEL to Petri nets. In: van der
Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS,
vol. 3649, pp. 220–235. Springer, Heidelberg (2005)

57. van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K.,
Dustdar, S. (eds.) BPM 2011 Workshops, Part I. LNBIP, vol. 99, pp. 169–194.
Springer, Heidelberg (2012)

58. Jin, T., Wang, J., Wen, L.: Efficient retrieval of similar business process models
based on structure. In: Meersman, R., et al. (eds.) OTM 2011, Part I. LNCS, vol.
7044, pp. 56–63. Springer, Heidelberg (2011)

59. Jin, T., Wang, J., Wen, L.: Efficient retrieval of similar workflow models based on
behavior. In: Sheng, Q.Z., Wang, G., Jensen, C.S., Xu, G. (eds.) APWeb 2012.
LNCS, vol. 7235, pp. 677–684. Springer, Heidelberg (2012)

60. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing interacting BPEL
processes. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol.
4102, pp. 17–32. Springer, Heidelberg (2006)

61. Ludaescher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger-Frank, E., Jones, M.,
Lee, E., Tao, J., Zhao, Y.: Scientific workflow management and the Kepler system.
Concurrency Comput. Pract. Experience 18(10), 1039–1065 (2006)

62. Maggi, F.M., Montali, M., van der Aalst, W.M.P.: An operational decision support
framework for monitoring business constraints. In: de Lara, J., Zisman, A. (eds.)
FASE 2012. LNCS, vol. 7212, pp. 146–162. Springer, Heidelberg (2012)

63. Maggi, F.M., Westergaard, M., Montali, M., van der Aalst, W.M.P.: Runtime ver-
ification of LTL-based declarative process models. In: Khurshid, S., Sen, K. (eds.)
RV 2011. LNCS, vol. 7186, pp. 131–146. Springer, Heidelberg (2012)

64. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers, A.:
Big data: the next frontier for innovation, competition, and productivity. McKinsey
Global Institute (2011)

Process Mining in the Large: A Tutorial 75

65. Alves de Medeiros, A.K., Weijters, A.J.M.M., van der Aalst, W.M.P.: Genetic
process mining: an experimental evaluation. Data Min. Knowl. Disc. 14(2), 245–
304 (2007)

66. Mendling, J., van Dongen, B.F., van der Aalst, W.M.P.: On the degree of behav-
ioral similarity between business process models. In: Nuettgens, M., Rump, F.J.,
Gadatsch, A. (eds.) Proceedings of Sixth Workshop on Event-Driven Process
Chains (WI-EPK 2007), St. Augustin, November 2007, pp. 39–58. Gesellschaft
für Informatik, Bonn (2007)

67. Milner, R.: Communication and Concurrency. Prentice-Hall Inc., Upper Saddle
River (1989)

68. Munoz-Gama, J., Carmona, J.: A fresh look at precision in process conformance.
In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 211–226.
Springer, Heidelberg (2010)

69. Munoz-Gama, J., Carmona, J.: Enhancing precision in process conformance: sta-
bility, confidence and severity. In: Chawla, N., King, I., Sperduti, A. (eds.) IEEE
Symposium on Computational Intelligence and Data Mining (CIDM 2011), Paris,
France, April 2011, pp. 184–191. IEEE (2011)

70. Munoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Conformance checking in
the large: partitioning and topology. In: Daniel, F., Wang, J., Weber, B. (eds.)
BPM 2013. LNCS, vol. 8094, pp. 130–145. Springer, Heidelberg (2013)

71. Munoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Hierarchical conformance
checking of process models based on event logs. In: Colom, J.-M., Desel, J. (eds.)
PETRI NETS 2013. LNCS, vol. 7927, pp. 291–310. Springer, Heidelberg (2013)

72. Ouyang, C., van der Aalst, W.M.P., Breutel, S., Dumas, M., ter Hofstede, A.H.M.,
Verbeek, H.M.W.: Formal semantics and analysis of control flow in WS-BPEL. Sci.
Comput. Program. 67(2–3), 162–198 (2007)

73. Ouyang, C., Dumas, M., ter Hofstede, A.H.M., van der Aalst, W.M.P.: Pattern-
based translation of BPMN process models to BPEL web services. Int. J. Web
Serv. Res. 5(1), 42–62 (2007)

74. Polyvyanyy, A., Vanhatalo, J., Völzer, H.: Simplified computation and general-
ization of the refined process structure tree. In: Bravetti, M., Bultan, T. (eds.)
WS-FM 2010. LNCS, vol. 6551, pp. 25–41. Springer, Heidelberg (2011)

75. Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge University
Press, Cambridge (2011)

76. Reijers, H.A.: Case prediction in BPM systems: a research challenge. J. Korean
Inst. Ind. Eng. 33, 1–10 (2006)

77. Reisig, W.: Petri Nets: Modeling Techniques, Analysis, Methods, Case Studies.
Springer, Heidelberg (2013)

78. Rozinat, A., van der Aalst, W.M.P.: Decision mining in ProM. In: Dustdar, S.,
Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 420–425.
Springer, Heidelberg (2006)

79. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)

80. Rozinat, A., Mans, R.S., Song, M., van der Aalst, W.M.P.: Discovering colored
Petri nets from event logs. Int. J. Softw. Tools Technol. Transfer 10(1), 57–74
(2008)

81. Rozinat, A., Mans, R.S., Song, M., van der Aalst, W.M.P.: Discovering simulation
models. Inf. Syst. 34(3), 305–327 (2009)

82. Rozinat, A., Wynn, M., van der Aalst, W.M.P., ter Hofstede, A.H.M., Fidge, C.:
Workflow simulation for operational decision support. Data Knowl. Eng. 68(9),
834–850 (2009)

76 W.M.P. van der Aalst

83. Schonenberg, H., Weber, B., van Dongen, B.F., van der Aalst, W.M.P.: Support-
ing flexible processes through recommendations based on history. In: Dumas, M.,
Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 51–66. Springer,
Heidelberg (2008)

84. Sheth, A.: A new landscape for distributed and parallel data management. Distrib.
Parallel Databases 30(2), 101–103 (2012)

85. Solé, M., Carmona, J.: Process mining from a basis of state regions. In: Lilius, J.,
Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 226–245. Springer,
Heidelberg (2010)

86. Staffware. Staffware Process Suite Version 2 - White Paper. Staffware PLC, Maid-
enhead, UK (2003)

87. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. Data
Knowl. Eng. 68(9), 793–818 (2009)

88. Verbeek, H.M.W., van der Aalst, W.M.P.: An experimental evaluation of passage-
based process discovery. In: La Rosa, M., Soffer, P. (eds.) BPM 2012 Workshops.
LNBIP, vol. 132, pp. 205–210. Springer, Heidelberg (2013)

89. Verbeek, H.M.W., van der Aalst, W.M.P.: Decomposing replay problems: a case
study. BPM Center Report BPM-13-09. www.bpmcenter.org (2013)

90. De Weerdt, J., De Backer, M., Vanthienen, J., Baesens, B.: A robust F-measure for
evaluating discovered process models. In: Chawla, N., King, I., Sperduti, A. (eds.)
IEEE Symposium on Computational Intelligence and Data Mining (CIDM 2011),
Paris, France, pp. 148–155. IEEE (2011)

91. Weidlich, M., Dijkman, R.M., Weske, M.: Behavior equivalence and compatibility
of business process models with complex correspondences. Comput. J. 55(11),
1398–1418 (2012)

92. Weijters, A.J.M.M., van der Aalst, W.M.P.: Rediscovering workflow models from
event-based data using little thumb. Integr. Comput. Aided Eng. 10(2), 151–162
(2003)

93. van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.:
Process discovery using integer linear programming. Fundamenta Inf. 94, 387–412
(2010)

www.bpmcenter.org

Ontology-Driven Business Intelligence
for Comparative Data Analysis

Thomas Neuböck1, Bernd Neumayr2, Michael Schrefl2(B),
and Christoph Schütz2

1 Solvistas GmbH, Graben 18, 4020 Linz, Austria
thomas.neuboeck@solvistas.at

2 Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
{neumayr,schrefl,schuetz}@dke.uni-linz.ac.at

Abstract. In this tutorial, we present an ontology-driven business intel-
ligence approach for comparative data analysis which has been developed
in a joint research project, Semantic Cockpit (semCockpit), of academia,
industry, and prospective users from public health insurers. In order to
gain new insights into their businesses, companies perform comparative
data analysis by detecting striking differences between different, yet sim-
ilar, groups of data. These data groups consist of measure values which
quantify real-world facts. Scores compare the measure values of differ-
ent data groups. semCockpit employs techniques from knowledge-based
systems, ontology engineering, and data warehousing in order to support
business analysts in their analysis tasks. Concept definitions complement
dimensions and facts by capturing relevant business terms which are used
in the definition of measures and scores. Furthermore, domain ontologies
serve as semantic dimensions and judgement rules externalize previous
insights. Finally, we sketch a vision of analysis graphs and associated
guidance rules to represent analysis processes.

Keywords: Business intelligence · OLAP · Data warehouses · Semantic
technologies

1 Introduction

For their analysis tasks, business analysts rely on a data warehouse which orga-
nizes data as multi-dimensional facts. Each fact represents a business event that
has been recorded in a transactional database. In the data warehouse, facts are
identified by dimensions and quantified by measures. For example, the recipient
patient, the issuing doctor, and the date of issuance identify a drug prescription.
The prescribed quantity and the incurred costs are measures which quantify the
drug prescription.

Business intelligence (BI) tools support interactive reporting over the cor-
porate data warehouse through online analytical processing (OLAP). OLAP
operations allow for the selection of different data groups and the aggregation

E. Zimányi (Ed.): eBISS 2013, LNBIP 172, pp. 77–120, 2014.
DOI: 10.1007/978-3-319-05461-2 3, c© Springer International Publishing Switzerland 2014

78 T. Neuböck et al.

of measures. Business analysts employ OLAP operations for different types of
analysis. First, is-reporting provides summary or detail information about a cur-
rent or past business situation. For example, a health insurance manager might
be interested in the total costs of drug prescriptions from last month. Second,
is-to-target comparison contrasts a current or past business situation with a
(hypothetical) target situation. For example, a health insurance company sets
out a target figure for the monthly costs of drug prescriptions which a business
analyst contrasts with the actually incurred costs from last month. Third, is-
to-is comparison contrasts different, yet similar, business situations in order to
gain insights into the analysis area. For example, a business analyst compares
the incurred costs of drug prescriptions for different groups of patients in various
months. In this tutorial, we focus on is-to-is comparison of data.

Whereas the tasks of is-reporting and is-to-target comparison tend to be
simple and structured, is-to-is comparison is fundamentally more complex and
often left to human intuition. The business analyst faces the challenge of defin-
ing meaningful comparisons. This definition demands knowledge about relevant
business terms as well as their semantics. The business analyst must select rele-
vant comparison groups, identify the subsets of facts to consider, and define the
relevant measures for the illustration of the differences between the comparison
groups. For example, a health insurance manager might be interested whether
there are any exceptional differences between any groups of diabetes mellitus
patients. The business analyst identifies patients from different insurance com-
panies, provinces, and of different age as meaningful comparison groups. The
business analyst considers only the facts that concern oral anti-diabetic drugs,
insulin, and metformin. For the illustration of the differences between groups,
the business analyst defines the average drug costs per patient and the drug
costs that are prescribed by general practitioners for regular patients.

Comparative data analysis is an interactive, exploratory, and iterative process
which employs OLAP for is-to-is comparison. Initially, relevant comparison
groups and the measures for the illustration of the differences between the com-
parison groups are unknown. As a first step, the business analyst determines
comparison groups and measures. Once comparison groups and measures are
determined, the business analyst repeatedly conducts the comparative analy-
sis with varying parameters. By varying the parameters of the analysis, the
business analyst discovers dependencies among the data. Thereby comparative
data analysis leads to the detection of exceptional differences between selected
groups of data, suggests plausible explanations as well as cause-and-effect rela-
tionships, and highlights paths for further investigation. In this sense, compara-
tive data analysis is not a replacement for data mining. Rather, comparative data
analysis precedes data mining, assisting business analysts in the formulation of
appropriate questions to statisticians.

Traditional BI tools fail to support the full process of comparative data analy-
sis. The definition of business terms is left to the business analyst rather than
providing a central repository which unambiguously defines the semantics of
business terms. The comparison of data is a simple enumeration of selected mea-
sures, their interpretation left to the business analyst. In traditional BI tools, e.g.,

Ontology-Driven Business Intelligence 79

Tableau1 and Oracle BI2, business analysts conduct analysis in an ad-hoc manner
with each analysis task started from scratch. The Semantic Cockpit (semCock-
pit) approach as presented herein fully supports comparative data analysis.

In semCockpit, a multi-dimensional ontology (MDO) provides an unambigu-
ous definition of business terms for the specific needs of OLAP. Business terms
are hierarchically ordered and become first-class citizens, which allows analysts
to employ business terms in formulating OLAP queries. Furthermore, semantic
dimensions allow for the integration of existing domain ontologies in OLAP.

Ontology-based measures and scores use concepts of ontologies to specify the
data to be included in the calculation of derived measures and scores. Scores
make comparison a first-class citizen in semCockpit. They capture the results of
a comparison explicitly and free the business analyst from visual comparison by
diagram inspection. A generic definition facilitates the reuse of scores in various
analysis situations to avoid vast enumerations of similar measures.

Analysis graphs and rules capture otherwise tacit knowledge about how to
proceed in analysis and about possible explanations of analysis results. Analysis
graphs explicitly define the process of the analysis. Analysis rules recommend
the initiation of a specific analysis process to the business analyst when certain
conditions are met. Guidance rules lead the business analyst through the analysis
graph. Judgement rules provide explanations for exceptional values. Analysis,
guidance, and judgement rules externalize actionable knowledge otherwise tacit
to the business analyst.

Existing BI approaches employ ontologies complementary to the semCockpit
approach. Ontology-based data warehouse design [20,29,31,38] employs ontolo-
gies to automate tasks concerning construction of data warehouses and ETL
processes. Ontologies serve as foundation for open access semantic-aware busi-
ness intelligence [32]. Saggion and colleagues [34] employ ontologies for infor-
mation extraction for business intelligence. Combining reasoning over ontologies
and OLAP, Nebot and colleagues [24,25] build data warehouses for the analy-
sis of semantic web data. The potential of ontology-based querying in business
intelligence has been identified by Spahn and colleagues [40] but has not been
elaborated for OLAP and multi-dimensional data warehouses.

The remainder of this tutorial is organized as follows. In Sect. 2, we present
the semCockpit architecture and introduce a simplified real-world use case. In
Sect. 3, we present the fundamentals of an MDO, including semantic dimen-
sions. In Sect. 4, we investigate the definition of measures and scores based on
the concepts of the MDO. In Sect. 5, we describe how the MDO can be ben-
eficially applied for ontology-based comparative OLAP, thereby extending the
well-known OLAP operations dice, slice, drill-down and roll-up for compara-
tive analysis and making use of the MDO. In Sect. 6, we present a vision of BI
analysis graphs for the definition of analysis processes. In Sect. 7, we introduce
corresponding judgement and analysis rules for representing knowledge of the
analyst.
1 http://www.tableausoftware.com
2 http://www.oracle.com

http://www.tableausoftware.com
http://www.oracle.com

80 T. Neuböck et al.

2 The semCockpit Approach

In this section, we describe the data warehouse behind a comparative data analy-
sis project, introduce a case study, and identify the steps in a comparative data
analysis project.

2.1 Data Warehouse

A data warehouse (DWH) typically organizes data as multi-dimensional facts,
where each fact represents a business event that has been recorded in a trans-
actional database, is identified by a node for each dimension, and described by
one or several measures. Each dimension is given by a leveled hierarchy of nodes,
whereby each node is described by a set of non-dimensional attributes and all
nodes of the same level have the same attributes with different attribute values.
The “base facts” of a data warehouse refer in each dimension to a leaf node of
the dimension.

More specifically, a data warehouse consists of a set of dimensions and a set of
fact classes. Each dimension has a dimension schema and a dimension instance.
A dimension schema consists of a set of levels and a set of attributes for each
level. Roll-up relationships organize the levels in a lattice. A dimension instance
consists of a set of nodes where each node belongs to exactly one level and is
described by a value for each attribute of the level. The nodes of a dimension
are organized in a roll-up relationship that forms a semi-lattice such that each
node of some level rolls up to exactly one node of each level that is in roll-up
relationship to the level of the former node. Each dimension contains a single
top level with a single all node to which all levels and all nodes of the dimension
roll-up to. A base fact class consists of a fact schema and a set of facts. A base
fact schema is given by a set of dimension roles and a set of measures (referred to
as base measures). Each dimension role refers to a dimension schema (whereby
two different dimension roles can refer to the same dimension schema). A base
fact of a fact class refers for each dimension role to a leaf node in the respective
dimension and is described by a measure value for each measure of the fact
schema.

Example 1 (Existing Data Warehouse). Figure 1 illustrates a fragment of a sim-
plified data warehouse schema of Austrian public health insurers, represented in
a slight variation (explained later) of the Dimensional Fact Model (DFM) [12].
The dimensions are Insurant, Doctor, DrugATC (drug classification in accordance
with ATC), and Time. Top levels of dimensions are not depicted. Medical sec-
tions (level medSec in dimension Doctor) denote specialisms of doctors, e.g., gen-
eral practitioner (GP), internist, oculist. ATC is an abbreviation for Anatomical
Therapeutic Chemical Classification System, which is an international classi-
fication system of drugs with the hierarchy levels for anatomical main group
(atcAnatom), therapeutic main group (atcTherap), therapeutic/pharmacological
subgroup (atcPharm), chemical/therapeutic/pharmacological subgroup (atcChem-

SubGr), and chemical substance. We omit the level for chemical substance.

Ontology-Driven Business Intelligence 81

drugATC

ins

leadDoc

time

doctor

drugPrescription

quantity
costs

district

province

insurant
district

province

month
quarter

year

drug
atcChemSubGr

atcPharm

atcTherap

atcAnatomweek

day

e_district

district
inhPerSqkm

e_doctor

doctor
age

e_drug

drug
price

e_insurant

insurant
age
income

medSec

actDoc

Doctor
Loc

MedSec

Insurant

Time

DrugATC

Fig. 1. DWH schema for drug prescriptions

The dimension roles of fact class drugPrescription are ins (insurant), leadDoc (lead
doctor), actDoc (acting doctor), drugATC (drug classification according to ATC),
and time. Dimension roles leadDoc and actDoc refer to the same dimension (Doc-
tor). The fact class comprises measures quantity and costs of drug prescriptions.

In order to avoid redundant representations of attributes of levels the
semDWH data model does not represent attributes with levels but with entity
classes, where each level of a dimension schema refers to an entity class (and
each node of that level to an entity of the entity class) and two levels of different
dimensions (but not of the same dimension) can refer to the same entity class.

Example 2 (Entity Classes). Level district of dimension Doctor and level district of
dimension Insurant refer to entity class e district which specifies attributes district

(the name of the district which is used as external identifier) and inhPerSqkm

(the population density of the district).

As a means for specifying the domain of measures and multi-dimensional con-
cepts, the semCockpit data model introduces the notion of a dimension space.
A dimension space is defined by a set of dimension roles. A point in a dimension
space is identified by a set of coordinates, one coordinate for each dimension
role. Each coordinate of a point refers to a node of the dimension referred to by
the dimension role. A fact is a point described by measure values. A dimension
space comprises a point for each tuple in the cross product of the nodes in the
dimension roles of the dimension space. A granularity in a dimension space is
identified by a set of levels one for each dimension role. A lattice of granularities,
from finer to coarser, can be derived from the hierarchies of levels of the dimen-
sions referred to by the dimension roles. A dimension space may be restricted to

82 T. Neuböck et al.

points at a particular granularity or to points that fall between a “from” gran-
ularity and a “to” granularity (both inclusive). Each fact class is defined over a
dimension space restricted to a single granularity.

Example 3 (Dimension Space). In Fig. 1, the domain of measures quantity and
costs of fact class drugPrescription is given by a dimension space which is defined
by dimension roles time, ins, leadDoc, actDoc, and drugATC, restricted to the finest
granularity [time:day, ins:insurant, leadDoc:doctor, actDoc:doctor, drugATC:drug]. A
point in this dimension space, for example ⊆time:20130708, ins:mrHuber, leadDoc:
drMaier, actDoc:drMueller, drugATC:paracetamol500mg∈, may be described by
base measures quantity and costs. Roll-up to coarser granularities together with
aggregation of measures (for example SUM(costs)) may be possible to all points in
the dimension space which is given by the same dimension roles but not restricted
to the finest granularity, for example also to points like ⊆time:2013, ins:linz,
leadDoc:GP, actDoc:all, drugATC:all∈.

Each dimension is organized into one or more roll-up hierarchies (also referred
to as roll-up paths or simply hierarchies). Per default, these hierarchies are alter-
native hierarchies, that is, each point in the dimension space is identified by
exactly one coordinate per dimension role. The semDWH data model also allows
for parallel roll-up, that is, points may have separate coordinates for the different
roll-up paths of a dimension. Dimension spaces may then be defined over dimen-
sion roles and hierarchy-specific dimension roles. A hierarchy-specific dimension
role is defined over a named roll-up path of a dimension.

Example 4 (Roll-up Hierarchies). In Fig. 1, dimension Time has two alternative
hierarchies, one with a roll-up path along day, month, quarter, and year, and the
other one along day and week, which cannot be used simultaneously in one query.
Dimension Doctor has named roll-up paths Loc (location) and MedSec (medical
section). Hierarchy-specific dimension roles actDocMedSec and actDocLoc as well
as leadDocMedSec and leadDocLoc can be used to define dimension spaces that
allow for parallel roll-up.

To simplify the later definition of concepts and their use in measure and
score definitions and applications, we assume that dimension roles that are used
in multiple fact classes carry the same meaning in each of these fact classes.
This approach is akin to the unique role assumption for attributes in relational
database systems. To support the unique role assumption for dimension roles,
the semDWH data model provides for the definition of a universal dimension
space consisting of all dimension roles of a semDWH, where each dimension role
is identified by a unique name and described by the dimension it refers to. The
universal dimension space also comprises all hierarchy-specific dimension roles.
All other dimension spaces may not contain both, a dimension role and one of
its hierarchy-specific dimension roles.

Example 5 (Universal Dimension Space). Fact class ambTreatment (ambulant
treatments) has the same dimension roles as fact class drugPrescription but it

Ontology-Driven Business Intelligence 83

possesses dimension role medServItem (medical service items) instead of dimen-
sion role drugATC. Examples of medical service items are doctor visits and blood
glucose examinations. The universal dimension space comprises the dimension
roles of both fact classes, drugPrescription and ambTreatment. The dimension spaces
DrugPrescriptionSpace and AmbTreatmentSpace only contain the dimension roles of
the fact classes drugPrescription and ambTreatment, respectively.

In general, OLAP operations allow to join facts over different dimension
spaces in drill-across operations. The result of such an operation is a fact over
a new dimension space, whereby the dimension roles of the drill-across fact
are mapped to the dimension roles of the joined facts. Accordingly, a drill-
across dimension space can be defined based on two other dimension spaces
(by mapping dimension roles based on common names like in natural joins for
relations, or explicitly, like in equi-joins). It comprises the union of dimension
roles.

The semCockpit data warehouse (semDWH) can be defined in two ways.
First, the semDWH can be defined from scratch using a simple data definition
language (DDL). Each DDL statement of a semDWH construct has a corre-
sponding relational representation (for dimensions and fact classes). Actual data
have to be provided thereafter as materialized or virtual views over the enter-
prise DWH according to this relational representation. We do not describe this
schema and instance mapping problem and refer to the relevant literature [4]
instead. Second, the semDWH can be defined by immediately generating the
appropriate relational representation (i.e., materialized or virtual views) of the
semDWH. The former approach is more appropriate for reuse in similar settings
(e.g., health insurers in different states of Austria), the latter for single in-house
projects.

2.2 Use Case

Effective and efficient medical care is an overall goal of public health insurance
companies. Comparative data analysis often focuses on diseases that are respon-
sible for high overall costs. For example, diabetes mellitus of type 2 (DM2) is
one specific example of a lifestyle disease with high prevalence that causes high
costs. Disease management programs (DMP) have been established to provide
effective and cost efficient treatment of DM2 patients.

In this context the managerial accounting department of a public health
insurer might recognize an above-average increase of total costs concerning the
treatment of DM2 patients. The management asks the business intelligence
department to analyze the issue by finding striking differences through compar-
ison. In the subsequent comparative data analysis processes, a business analyst
may compare different groups of patients (rural vs. urban districts, young vs. old,
DMP patients vs. non-DMP patients, etc.), different groups of doctors, different
drugs, different insurers, or different periods.

The analysis process is interactive, exploratory, and iterative. The analyst
starts with a vague analysis question and interacts with various domain experts

84 T. Neuböck et al.

to discuss what kinds of comparison might be relevant or should be chosen
next. The interesting comparisons develop over time. Once successful and rele-
vant sequences of analysis steps have been discovered, they can be described in
generalized form for later re-use in analogous situations (e.g., for other years,
insurers, or diseases).

2.3 Steps in a Comparative Data Analysis Project

Comparative data analysis focuses on the interactive comparison of various sets
of data. Such comparisons are based on measures and scores. A measure describes
a multi-dimensional point which consists of nodes from data warehouse dimen-
sions; a point and a measure together give a fact. A score describes a relationship
between a pair of points, the point of interest and the point of comparison; score,
point of interest (PoI) and point of comparison (PoC) together give a compar-
ative fact which explicitly expresses the result of a comparison that would oth-
erwise have been left to the human eye. Thus, relating our DWH model to the
Entity-Relationship model, points correspond to entities, measures to attributes
of entities, and scores to attributes of binary relationships between entities. Since
a comparative fact actually relates, via aggregation, sets of facts that are com-
pared, we speak also of group of interest (GoI) and group of comparison (GoC).

The typical steps in applying an ontology-driven business intelligence app-
roach for comparative data analysis are: (1) Model transformation, in which a
given DWH schema is transformed into a semDWH data warehouse schema as
introduced in Subsect. 2.1, (2) Semantic Enrichment, in which business terms
are expressed as concepts in a multi-dimensional ontology (MDO) or imported
from an external domain ontology, (3) Calculation Definition, in which measures
and scores are defined by calculations over other measures and scores, employ-
ing concepts of the MDO to select the data to be included in calculations, (4)
Explorative Measure and Score Application, in which measures and scores are
applied to different points of interest and comparison, (5) Analysis Design, in
which promising sequences of measure and score applications are modeled as
BI analysis graphs for later re-use, (6) Rule Design, in which different kinds
of rules are designed to complement analysis: (a) guidance rules that provide
context-sensitive semantic guidance on which path to follow in an instantiation
of an analysis graph, (b) judgement rules that provide background information
about possible reasons for a striking score, and (c) analysis rules that express
how to react on specific measures and scores detected (action rules) or provide
a concise analysis report (reporting rules), (7) Proper comparative data analysis,
in which BI analysis graphs are instantiated and traversed for particular analysis
problems, thereby possibly backtracking to any of the previous steps. – Steps 1
to 4 and 6 (b,c) have been investigated in the semCockpit project and imple-
mented in our semCockpit prototype. Steps 5, 6 (a), and 7 have been identified
during the project as beneficial future extensions to capture and exploit – next
to “static” knowledge – knowledge about analysis processes.

Ontology-Driven Business Intelligence 85

DWH Schema

MDO Concepts Semantic Dimensionsdistrict

ruralDistrict urbanDistrict

highRuralDistrict highUrbanDistrict

Diabetes

DM1 DM2

Measures & Scores Generic Measures & Scores
RatioOfDrugCosts(%q1, %q2) =

DrugCosts(%q1) / DrugCosts(%q2)

time:2012, ins:UpperAustria, leadDoc:all, actDoc:all, drugATC:all .DrugCosts(ins:ruralDistrict)

(time:2012, ins:UpperAustria, leadDoc:all, actDoc:all, drugATC:all ,
time:2012, ins:UpperAustria, leadDoc:all, actDoc:all, drugATC:all)

.RatioOfDrugCosts(ins:ruralDistrict, ins:urbanDistrict)

disease

Analysis Graphs & Guidance Rules (future work)

A1

A2

FOR A1
IF val > 1.1
DISADVISE correlate(drillDownInHier(ins))

Measure & Score Application

FOR A1
IF val > 1.0
RECOMMEND refocusScore(RatioOfDrugCosts)

refocusScore(RatioOfDrugCosts)

(see Fig. 1)

RatioOfDrugCostsRuralVsUrbanDistricts =
DrugCostsInRuralDistricts / DrugCostsInUrbanDistricts

Fig. 2. The semCockpit stack

The semCockpit stack (Fig. 2) reflects the typical steps in the application of
an ontology-driven BI approach for comparative data analysis. Its starting point
(bottom of Fig. 2) is founded on the DWH schema as described in example 1.

MDO concepts are defined by logical expressions over nodes of a dimension.
MDO concepts are organised in subsumption hierarchies through reasoning over
concept expressions. Furthermore terms of an external domain ontology such as
SNOMED CT3 can be used as semantic dimensions in the way that leaf concepts
of the external ontology classify facts.

Example 6 (MDO concepts and semantic dimensions). The MDO concepts
ruralDistrict and urbanDistrict in Fig. 2 are defined over nodes of a location dimen-
sion (logical definitions are omitted), organized in a subsumption hierarchy. The
semantic dimension disease incorporates an OWL representation of a subset of
SNOMED CT.

Measures describe by measurement instructions how a particular measure
value is calculated from facts in the DHW for a point. Measures are ontology-
based in the sense that measurement instructions refer to MDO-concepts to iden-
tify facts to be included in (parts of) calculations. Similarly, scoring instructions
describe for scores how a score value is calculated for a pair of points.

Example 7 (Measures and Scores). Figure 2 shows two measures, DrugCostsIn-

RuralDistricts and DrugCostsInUrbanDistricts, that calculate the total costs for drugs
in rural and urban districts, respectively. The measurement instructions (omit-
ted) refer to the respective ontology concepts, ruralDistrict and urbanDistrict.

3 Systematized Nomenclature Of Medicine Clinical Terms.

86 T. Neuböck et al.

The score RatioOfDrugCostsRuralVsUrbanDistricts compares the total costs for drugs
in rural districts against urban districts (by using the appropriate measures in
the scoring instructions, not shown).

Generic measures and scores avoid the need of repeated definitions of instruc-
tions that are identical apart from a particular MDO-concept. They are defined
with parameters for concepts. We refer to these parameters also as (generic)
qualifiers as they are used to select facts.

Example 8 (Generic Measures and Scores). Generic measure DrugCosts has a
qualifier, which can be instantiated for example by a location concept. If instan-
tiated, e.g., with ins:urbanDistrict, the instantiation gives a non-generic measure,
e.g., DrugCostsInUrbanDistricts. Similarly, generic score RatioOfDrugCosts has two
qualifiers, one for the group of interest, one for the group of comparison.

Once defined, measure and scores can be applied to multi-dimensional points
(shown in the next stage of the semCockpit stack). Additionally, they can be
qualified by MDO concepts.

Example 9 (Measure and Score Application). Figure 2 shows an application of
generic measure DrugCosts to multi-dimensional point ⊆time:2012, ins:UpperAustria,
leadDoc:all, actDoc:all, drugATC:all∈ with actual qualifier ins:ruralDistrict giving the
total drug costs prescribed in rural districts in Upper Austria in the year 2012.
The application of generic score RatioOfDrugCosts to group of interest ⊆time:2012,
ins:UpperAustria, leadDoc:all, actDoc:all, drugATC:all∈ with qualifier ins:ruralDistrict

and group of comparison ⊆time:2012, ins:UpperAustria, leadDoc:all, actDoc:all, drug
ATC:all∈ with qualifier ins:urbanDistrict returns the ratio of drug costs of Upper
Austrian patients of rural versus urban districts in year 2012.

An analysis graph has analysis situations as nodes and analysis steps as
arcs and describes promising analysis processes. Analysis situations are para-
meterized cubes, analysis steps are parameterized navigation operations, e.g.,
drill-down. The instantiation of the parameters leads to a specific BI analysis.

Depending on measure and score values, guidance rules open or close analysis
paths. Judgement rules provide background information on striking score values,
and analysis rules describe how to react upon (action rules) or which specific
comparative facts to report (reporting rules) from a set of comparative facts
provided (e.g., those loaded in the last ETL cycles).

Example 10 (Analysis Graphs and Rules). The top compartment of Fig. 2 depicts
a simple analysis graph consisting of two analysis situations, A1 and A2, and two
guidance rules. For example, A1 may represent the ratio of ambulant treatment
costs for some selected comparison. If the result is greater than 1.1, the asso-
ciated guidance rule disadvises to drill down in the insurant hierarchy. If the
result is greater than 1.0, the associated guidance rule suggests to refocus in A2

the analysis on the ratio of drug costs. The figure assumes that for the currently
selected comparison A1 the first rule does not apply and the second rule applies.

Ontology-Driven Business Intelligence 87

Business Analyst

General Expertise
Previous Insights

Judgement Knowledge

D
om

ai
n-

Kn
ow

le
dg

e

Query-
Templates

Manager

OLAP Tool

?

DWH

Business Analyst

General Expertise

?

DWH

Domain
Ontology

Judgement
Rules

Manager

+ asdf asdf
- dfdse sdf

+ asdf asdf
- dfdse sdf

+ asdf asdf
- dfdse sdf
+ ujuki kkk
+ jkili jkklj
- asd ddd d
+ asdf ddd
- öp d öööö

new
insights

Semantic Cockpit Frontend

MDO-DWH Mapper

Multi-Dimensional Ontology (MDO)
Engine

Ontology
Manager

Ontology
Reasoner

Rule Engine

Measure &
Score Ontology

Fig. 3. Conventional Comparative Data Analysis (left) vs. Semantic Cockpit: Setting
& Components (right)

Figure 3 gives an overview of the semCockpit architecture. The left-hand side
illustrates conventional comparative data analysis in which a business analyst
uses OLAP tools on an operative level and domain knowledge is not represented.
The right-hand side illustrates the semCockpit approach in which domain knowl-
edge is captured by a multi-dimensional ontology (MDO) that describes relevant
business terms in the context of business analysis and which may relate to a
domain ontology. Measures and scores are defined based on the ontology. Previ-
ous insights and analysis experience are captured by judgement rules. In order
to implement these features, semCockpit comprises several components. The
MDO-DWH Mapper accesses DWH data that is used by other components. The
MDO Engine administers concepts, measures and scores, and organizes them by
reasoning. The management and evaluation of judgement rules is carried out by
the Rule Engine. Finally the semCockpit Frontend provides an appropriate user
interface. – The planned future extensions, analysis graphs and guidance rules,
are not shown.

3 Multi-Dimensional Ontology

In this section, we present the representation of business terms as concepts of
a multi-dimensional ontology (MDO), the handling of context-specific concepts,
the seamless import of a domain ontology into the MDO as semantic dimen-
sion, and the translation of concepts into SQL for querying and into OWL for
determining subsumption hierarchies by OWL reasoners.

In the semCockpit approach, a multi-dimensional ontology is managed as a
central repository of business terms that are defined and maintained collabo-
ratively by business analysts. Business terms can be translated automatically

88 T. Neuböck et al.

to SQL and simplify the formulation of otherwise complex multi-dimensional
queries. Automatically-derived subsumption hierarchies simplify the organiza-
tion of business terms and the detection of similar or redundant concepts. In
analysis sessions, subsumption hierarchies allow to move up or down the hierar-
chy to ‘broaden’ or to ‘narrow’ the selection predicate of a query.

With regard to querying, the semCockpit approach assumes that the data
in the underlying data warehouse is complete (closed world assumption). With
regard to subsumption reasoning, the approach does not consider the complete
data in the data warehouse but only the incomplete knowledge represented in
the ontology (open world assumption) because subsumption hierarchies should
not change due to changes in the data of the data warehouse.

Using ontologies with defined classes for querying data- or knowledge bases
has seen considerable attention in the literature. Staudt et al. [41] discuss the
definition of query classes in deductive databases. The partitioning of the ter-
minological box of an ontology into a schema part and a view part, with dis-
tinct language constructs for either part, as proposed by Buchheit et. al. [5],
is of particular importance for MDOs. The MASTRO system [6] for ontology-
based data access uses ontologies for querying incomplete (relational) databases.
Lim et al. [22] employ virtual views as a query interface for semantically-enriched
relational data.

3.1 Concepts: Signatures and Concept Expressions

The MDO enriches the underlying semDWH by a set of concepts representing
business terms and their meaning in the context of data analysis. A concept
may be defined over (a) entities of an entity class (entity concepts), (b) nodes
of a dimension (dimensional concept), (c) points of a dimension space (multi-
dimensional concept, md-concept), or (d) pairs of points, referred to as point of
interest (PoI) and point of comparison (PoC), (comparative concept).

Each concept has a signature and a membership condition, which may be
defined independently of each other. The separation of signature and membership
condition is a prerequisite for specializing membership conditions for different
contexts (see next subsection).

The signature of a concept is given by a name and an interpretation domain
for the concept. The interpretation domain is the set of individuals for which the
concept is defined. It is given by the sort of individuals over which the concept is
defined (entities of an entity class, nodes of a dimension, points of a dimension
space, point-pairs of a comparative space consisting of two dimension spaces) and
is possibly restricted to some subset of the sort. E.g., the interpretation domain
of a dimensional concept may be restricted to nodes of some level or nodes
that fall into a level range. A point satisfies a multi-dimensional concept, if the
point satisfies the concept for the dimension roles for which it is defined. (Notice
that this interpretation is consistent with classifying individuals in ontologies
where properties not referred to in a concept expression are ignored.) This holds
analogously for pairs of points and comparative concepts. The signature of a

Ontology-Driven Business Intelligence 89

concept does not need be explicitly stated but may also be derived from its
membership condition, which is a concept expression.

Example 11 (Signature). Signature ruralDistrict(e district) describes an entity con-
cept called ruralDistrict with interpretation domain entity class e district. InOAD(
DrugATC[drug .. atcPharm]) represents the signature of a dimensional concept. It
indicates that concept InOAD refers to dimension DrugATC and comprises nodes
between level drug and atcPharm (both inclusive). Signature PatInRuralDistrLead-

DocInUrbanDistr(ins[insurant .. district], leadDoc[doctor .. district]) represents
the multi-dimensional concept PatInRuralDistrLeadDocInUrbanDistr that comprises
points over insurants (dimension role ins) and lead doctors (dimension role lead-

Doc) at granularity range from level insurant to district and from level doctor

to district, respectively. The signature PatWithRegularDocVisitsInYear(ins[insurant],

time[year]) restricts the multi-dimensional concept PatWithRegularDocVisitsInYear

to level insurant for dimension role ins and to level year for dimension role time.

The membership condition (also often referred to as necessary & sufficient
condition) is given by a concept expression in a simple, high-level MDO language
(surveyed below) or by an SQL view over the underlying semDWH. SQL-defined
concepts provide for extensibility and are treated as primitive when determining
subsumption hierarchies between concepts (see Subsect. 3.4). The MDO language
has been designed to support the most important use cases and to provide for a
mapping [28] into OWL 2 DL.

Example 12 (Entity concepts on district). The concepts ruralDistrict, urbanDistrict,
highRuralDistrict, and highUrbanDistrict presented in Fig. 4 are defined over entity
e district. Membership conditions are denoted next to the box of the concept,
e.g., inhPerSqkm <= 400 represents the expression for concept ruralDistrict. As
discussed later, the reasoner will detect that concept highUrbanDistrict is sub-
sumed by concept urbanDistrict because expression inhPerSqkm > 1000 implies
inhPerSqkm > 400. In Fig. 4 inferred subsumption relationships between con-
cepts are denoted by arrows. Dotted lines link entity concepts to their entity
class. For better readability this type of lines are omitted for subsumed concepts
like highUrbanDistrict.

e_district

district
inhPerSqkm

ruralDistrict

inhPerSqkm <= 400

urbanDistrict

inhPerSqkm > 400

highRuralDistrict

inhPerSqkm <= 50

highUrbanDistrict

inhPerSqkm > 1000

defined for

subsumed by
(derived)

Fig. 4. Entity concepts on district

90 T. Neuböck et al.

The membership condition of a dimensional concept is given by one of the
following kinds of concepts expressions: (1) by a reference to an entity con-
cept (such that each node that refers to an entity satisfying the entity concept
is in the interpretation of the defined concept), (2) by hierarchy expansion of
some concept (such that each node of the dimension that is in the interpreta-
tion of the concept or some direct or indirect successor node thereof is in the
interpretation), (3) by level range restriction of some concept (such that only
nodes of that concept that fall in between an indicated top and bottom level,
inclusive, are in the interpretation), (4) by intersection, union, or complement
(open world interpretation) of concepts defined for the same level (with the usual
interpretation), (5) as ⊆node∈concept[level-or-levelRange]-expression (such that
all nodes that satisfy the hierarchical expansion of the indicated concept, are
at the indicated level(s), and beneath the indicated node are in the interpre-
tation). Notice that the construct ⊆node∈concept[level-or-levelRange]-expression
does not enhance the expressiveness of MDO, but assists in structuring concept
expressions in an OLAP setting along modeling elements of DWH dimensions:
hierarchy of nodes, properties of nodes (via entities), and levels.

Example 13 (Dimensional concepts). Figure 5 shows concepts for DM2 specific
drugs: InAD (to be read as “in antidiabetic drug group”), InOAD (to be read
as “in oral antidiabetic drug group”), InStarterOAD (comprises OAD drugs that
should be used first when diagnosis DM2 is determined). The concept expression
of InOAD denotes that at level atcPharm ATC code A10B is selected and the aster-
isk on the right of the expression denotes hierarchical expansion, i.e., all subnodes
below node A10B belong to concept InOAD. On the left hand side of Fig. 5 one
can see the level hierarchy and on the right hand side a selection of the node hier-
archy of the dimension. Items bordered by continuous lines (InAD, InOAD, and
InStarterOAD) represent hierarchical concepts, which comprise nodes of multiple

DrugATC

drug

atcChem
-SubGr

atcPharm

atcTherap

atcAnatom

InStarterOAD

starterOAD*

cheapDrug

price < 50

A10B

A10BA A10BB

...

A10

defined for
subsumed by
(derived)

InAD

(atcTherap = A10)*

InOAD

(atcPharm = A10B)*

starterOADDrug

InStarterOAD[drug]

A10BC

... ...

starterOAD

InStarterOAD

InOAD

InAD

starterOADDrug

Fig. 5. Dimensional concepts over drugs

Ontology-Driven Business Intelligence 91

doctor

district

province

top all

Vorarlberg Tyrol Styria

Kufstein

Huber Meier Bauer Fischer

<Tyrol>UrbanDistrict[doctor] UrbanDistrict =
urbanDistrict*

urbanDistrict =
inhPerSqkm > 400

GrazInnsbruck

Fig. 6. ←point〉concept[granularity]-expression

levels. Items bordered by dotted lines (starterOAD, starterOADDrug, and cheapOAD)
denote flat concepts, which only comprise nodes of one level. Additionally derived
subsumption relations are shown, e.g., cheap drugs subsume starter OAD drugs.
Figure 6 illustrates the interpretation of a ⊆node∈concept[level]-expression. Con-
cept ⊆Tyrol∈UrbanDistrict[doctor] comprises nodes of dimension Doctor at level
doctor who live in an urban district in province Tyrol. Concept UrbanDistrict is the
hierarchical expansion of concept urbanDistrict, comprising districts with more
than 400 inhabitants per square km.

The membership condition of a multi-dimensional concept (md-concept) is
given in one of the following ways: (1) by reference to a dimensional concept for
some dimension role (in which case all points that satisfy the dimensional con-
cept in the indicated dimension role are in the interpretation), (2) by hierarchy
expansion of a md-concept (such that each point that is in the interpretation of
the md-concept or a descendent thereof is in the interpretation), (3) by gran-
ularity restriction of some md-concept (such that only points of the indicated
md-concept that are between a given top and bottom granularity are in the inter-
pretation), (4) by intersection, union, or complement (open world interpretation)
of md-concepts defined over the same dimension roles and the same granularity
(usual interpretation), (5) as ⊆point∈concept[granularity-or-granularityRange]-
expression (such that all points that satisfy the hierarchial expansion of the
indicated concept, are at the indicated granularity, and beneath the indicated
point are in the interpretation), or (6) by a boolean expression over measure-
value comparisons of measures applied to a point (fact-based concept). Further,
each dimension space is also a md-concept.

Example 14 (Multi-dimensional concepts). The concept expression of multi-di-
mensional concept InsInRuralDistrLeadDocInUrbanDistr indicates that points that
refer in the dimension role ins to urban districts and in the dimension role leadDoc

to urban districts are interpretation as well as points that roll up to such points
(Fig. 7). The expression uses concepts ins:ruralDistrict and leadDoc:urbanDistrict.
Multi-dimensional concept InsInHighRuralDistrLeadDocInUrbanDistr is defined in a
similar way. As discussed later, the subsumption relationship between both con-
cepts can be detected by reasoning.

92 T. Neuböck et al.

Insurant

ins

insurant

district

province

day

month

quarter

PatWithRegular-
DocVisitsInYear

NumOfDocVisits >= 7

PatWithFrequent-
DocVisitsInYear

NumOfDocVisits >= 14

year

time

TimeDoctor

doctor

district

province

leadDoc

InsInRuralDistr-
LeadDocInUrbanDistr

= (ins:ruralDistrict AND
leadDoc:urbanDistrict)*

= (ins:highRuralDistrict AND
leadDoc:urbanDistrict)*

InsInHighRuralDistr-
LeadDocInUrbanDistr

Fig. 7. Multi-dimensional concepts

Example 15 (Fact-based multi-dimensional concepts). PatWithRegularDocVisitsIn-

Year is a fact-based multi-dimensional concept (Fig. 7). It comprises points of
patients and years, for (patient, year)-pairs such that the patient had at least
seven doctor visits in the year. The restriction to levels insurant and year is nec-
essary because the concept as such is meaningful only for a single patient and
a given year. The second fact-based multi-dimensional concept PatWithFrequent-

DocVisitsInYear comprises patients having at least fourteen doctor visits a year, a
corresponding subsumption relationship will be inferred (as mentioned already
before). The concept expressions assume that an aggregate measure NumOf-

DocVisits (number of doctor visits) over patients and years has been defined
(Measure definition is described later).

The membership condition of a comparative concept is given like multi-di-
mensional concepts, with the addition that it may be also given by (a) two
md-concepts, (b) a join condition relating nodes of the PoI and the PoC by
a conjunction of pre-defined comparison predicates such as equality or prede-
cessor/successor-relationships, and (c) by a boolean expression over score-value
comparisons of scores applied to PoI and PoC.

3.2 Context-Specific and Contextualized Concepts

We present now a kind of specialization for concepts that is akin to specialization
in object-oriented systems employing the abstract superclass rule [17].

In object orientation, the signature or head of a method may be introduced
in an abstract superclass without providing an implementation of the method.
The implementation (also referred to as body) of the method is provided by each
concrete subclass of the abstract superclass. In an MDO, in analogy to object-
orientation, a concept may be regarded as a boolean method of its domain (a
concept may be applied on each node or point in its domain and returns either
true or false) where the domain of the concept is analogous to the class in which
the method is introduced and where the membership condition of the concept is
analogous to the implementation of the boolean method. A contextualized con-
cept is analogous to a boolean method introduced at some abstract superclass
(with the domain of the contextualized concept playing the role of the abstract

Ontology-Driven Business Intelligence 93

superclass). Context-specific concepts are analogous to boolean methods at sub-
classes that implement the method introduced at the abstract superclass, with
the context of a context-specific concept, which is given by an MDO concept
expression, being analogous to the subclass at which the boolean method is
implemented.

Context-specific concepts are defined over a selected subset of nodes of a
dimension (dimensional concepts) or over a subset of points of a dimension space
(md-concepts) by indicating a context in the signature. Thereby a context is given
by ⊆node∈concept[level-or-levelRange]-expression (for dimensional concepts) or a
⊆point∈concept[granularity-or-GranularityRange]-expression (for md-concepts).

Contextualized concepts are defined by several context-specific concepts. The
contexts of these concepts must cover all points in the signature of the con-
textualized concepts such that each point belongs to exactly one most specific
context (i.e., the point does not belong also to another context subsumed by the
former).

Example 16 (Contextualized concepts). Different to concept PatWithRegularDocVis-

itsInYear in example 15, we now consider regular visits of a patient to a particular
doctor in a year. Regularity of visits depends on the medical section of a doctor.
We assume, for simplicity, that there are only two medical sections, namely gen-
eral practitioner and oculists. Suppose a regular patient of a general practitioner
(GP) must have at least four GP visits per year whereas for a regular patient of
an oculist it is sufficient to have at least two visit per year. Of course, one could
define two separate concepts, but we specify one contextualized concept PatWith-

RegularVisitsToDocInYear([time:year,ins:insurant,actDoc:doctor]) consisting of two
context-specific concept definitions: NumOfDocVisits ≥ 4 for context ⊆time:all,
ins:all, actDoc:GP∈[time:year, ins:insurant, actDoc:doctor] and NumOfDocVisits ≥ 2
for context ⊆time:all, ins:all, actDoc:oculist∈[time:year, ins:insurant, actDoc:doctor]

3.3 Semantic Dimensions

Transaction systems collect records that refer to concepts of domain ontologies
in semantic attributes. For example, medical treatment records may refer to
a diagnosis code of SNOMED CT. In order to exploit semantic attributes for
OLAP-style analysis, we wish to use the existing domain ontology to which
semantic attributes refer like a common dimension in data warehousing and call
a dimension based on a domain ontology in analogy to semantic attributes, a
semantic dimension. A semantic dimension will be usually expressed or mapped
to an ontology language such as OWL.

Querying over semantic attributes in relational databases is discussed by
Das et al. [8] and implemented in Oracle Database 11g Semantic Technolo-
gies. In addition to their approach, the semCockpit approach also allows to use
concept expressions as selection criteria (post-coordination) and provide for a
seamless integration in data warehousing and OLAP. The challenges tackled by
this approach are akin to the challenges of heterogeneous dimensions [18,21,27].

94 T. Neuböck et al.

Malinowski and Zimányi [23] give an overview of different kinds of dimension
hierarchies.

We briefly explain how domain ontologies can be used as semantic dimen-
sions, and refer to [1] for a more elaborate treatment: (1) The existing concepts
(usually called pre-coordinated concepts) are mapped to nodes of a dimension
hierarchy. (2) Facts may refer to leaf or inner nodes. The meaning of a fact refer-
ing to an inner node “c” is “c only”, e.g., “DM-2 without further information
on the subkind of DM-2”. The latter concept (“c only“) is not represented in
the original domain ontology, but would be a leaf node and a child of the for-
mer (“c”). (3) New concepts (usually called post-coordinated concepts) may be
defined upon existing ones in the external domain ontology language (e.g., by
OWL expressions) and are mapped to an MDO concept. An MDO concept C
corresponding to concept c in the external domain ontology comprises all nodes
that correspond to a concept subsumed by c. (4) While the domain ontology
is un-leveled, levels may be introduced explicitly by identifying the concepts
(nodes) that make up the members of a level. To provide for summarizability
(i.e., ensuring that the sum over all base facts of an additive measure is the
same than the sum of the aggregated measure over all roll-up facts at some
granularity), the member concepts (nodes) of such a level must be disjoint (i.e.,
have non-overlapping interpretations) and be complete with respect to the bot-
tom level (i.e., each leaf node must be a member of some member concept).
(5) Levels may be defined context-specific, i.e., local to a node. (6) Built that
way, precoordinated concepts can be used like native nodes and post-coordinated
concepts like MDO concepts over native dimensions for OLAP operations slice,
dice, and roll-up.

The treatment of native and semantic dimension becomes seamless by uni-
fying native dimensions and semantic dimensions. A node of a dimension may
relate to either an entity (entity node) or to an entity concept (concept node),
which may be given by an entity concept as introduced above or by a domain
ontology concept. Levels consist either of entity nodes (entity levels) or concept
nodes (concept levels), which may be introduced above an entity level.

Example 17 (Semantic Dimension – SNOMED CT). Figure 8 shows a small part
of the SNOMED CT hierarchy. It can be taken to implement a semantic dimen-
sion for disease which can be linked to fact classes (e.g., drugPrescription and
ambTreatment). In Fig. 8 we have already extended the SNOMED CT concepts
with “only”-concepts, i.e., each inner node has as an “only”-node as a subcon-
cept. E.g., the node Diabetes mellitus has the additional subnode Diabetes mellitus

only, which does not exist in the original SNOMED CT hierarchy. A fact can
refer all leaf nodes presented in our diagram, i.e., all original leaf nodes and
all “only”-leaf nodes (original inner nodes). The figure also illustrates how con-
ventional OLAP operations can be applied for semantic dimensions. The nodes
bordered by the continuous line represent the result of a DICE operation that
selects the subhierarchy under node Diabetes mellitus (analogously to conventional
OLAP operation DICE which selects a subcube). Nodes bordered by the coarse
dotted line represent the result of a SLICE operation with condition “all nodes

Ontology-Driven Business Intelligence 95

Chronic nervous
system disorder

only

Disorder of
endoctrine

system only

SNOMED CT Concept

Clinical Finding

Disease

Metabolic
disease

Disease by
body site

Disorder of carbohydrate
metabolism

Disorder of
body system

Disorder of glucose
metabolism Disorder of

nervous system

Disorder of
endocrine system

Diabetes
mellitus

Diabetes
mellitus type 1

Diabetes
mellitus type 2

Chronic nervous
system disorder

Chronic
progressive
paraparesis Type I diabetes mellitus

with hypoglycemic coma

Type II diabetes mellitus
with hypoglycemic coma

Disease
only

Metabolic
disease only

Disorder of
body

system only

Disorder of
carbohydrate

metabolism only

Disorder of
body

system only

Disorder of glucose
metabolism only

Disorder of
nervous

system only

Diabetes
mellitus only

Diabetes mellitus
type 1 only

Diabetes mellitus
type 2 only

DICE

SLICE

ROLLUP

Structure of
nervous system

Body system
structure

Anatomical
structure

Anatomical or
aquired body

structure

Body structure

Finding site

Finding site

Finding site

Fig. 8. Semantic Dimension (SNOMED CT)

for which there exists finding site equal to Structure of nervous system”. Applied
to DICE node Diabetes mellitus the SLICE operation returns the grey filled area
that comprises the nodes Type I diabetes mellitus with hypoglycemic coma and Type

II diabetes mellitus with hypoglycemic coma. Finally one can ROLLUP to nodes Dia-

betes mellitus only, Diabetes mellitus type 1, and Diabetes mellitus type 2 (bordered by
the fine dotted line) that represent a virtual level local to Diabetes mellitus.

3.4 Relational and OWL Representations

MDO concepts are translated to SQL for querying the underlying closed world
data warehouse. MDO concepts are translated to OWL in order to delegate
subsumption checking to an off-the-shelf OWL reasoner. The mappings for each
kind of concept (apart from comparative concepts) are given in [28].

The relational representation of MDO concepts builds on the relational rep-
resentation of the semCockpit data warehouse where entity classes, dimensions

96 T. Neuböck et al.

and dimension spaces are directly available through SQL tables and views. Entity
concepts, dimensional concepts, and multi-dimensional concepts are translated
to views over this relational representations of entity classes, dimensions, and
dimension spaces as well as over views generated for previously defined concepts.

We now shortly explain the rationale of the representation of MDO con-
cepts in OWL and refer to [28] for a more elaborate treatment. We assume a
basic familiarity with OWL [16]. Using the OWL representation, the initially
unordered set of business terms represented by the MDO may be automatically
organized in subsumption hierarchies.

Example 18 (Concept organization). Figure 9 illustrates for a selection of our
use case, how business terms are organized in subsumption hierarchies along the
dimensions of a data warehouse.

Individuals of the ontology are MDO entities, nodes, levels, points, and point-
pairs. MDO entities are collected into disjoint OWL classes, one OWL class for
each MDO entity class. Attributes of MDO entities are represented in OWL as
object properties of MDO entities. Nodes are collected into disjoint OWL classes,
one OWL class for each dimension. Each node is associated with one level and
with one MDO entity, this is represented by object properties atLevel and roleOf,
respectively. Roll-up relationships between nodes as well as between levels are
represented as transitive and reflexive property rollsUpTo. Dimension roles are
represented as object properties of points, where the range of a dimension role
is a dimension. Dimension roles of point-pairs are distinguished into PoI- and
PoC-dimension roles. Also, an OWL class is defined for each dimension space
and each comparison space. Notice that MDO entities and nodes not explicitly
referred to in MDO concept expressions as well as points and point-pairs are not
represented as named individuals in the OWL ontology.

MDO concepts are translated to OWL classes according to the MDO concept
expression. To capture level-restrictions the level range is checked by a property
restriction on property atLevel indicating that node’s levels must drill-down to
the “from-level” and roll-up to the “to-level”.

One of the challenges of representing MDO concepts in OWL is to cope with
the following restriction of OWL 2 DL4: It is not allowed to express that a
transitive relationship such as rollsUpTo maps to exactly one object in a given
range (e.g., to one node of one level). But, the essential characteristics of roll-up
hierarchies of data warehouse dimensions are that (i) the rollsUpTo-relationship
between nodes is transitive, and (ii) each node of a level rolls up to exactly one
node of a higher level (to which the former level rolls up). Without this seman-
tics of roll-up hierarchies in data warehousing being captured, OWL reasoners
will not be able to recognize that certain concepts are disjoint. To cope with
this limitation of OWL, for each level X there is a functional object property
rollsUpTo X. For each named node nd at level X there is a subclass axiom stating
4 http://www.w3.org/TR/owl2-syntax/#Global Restrictions on Axioms in OWL 2

DL

http://www.w3.org/TR/owl2-syntax/#Global_Restrictions_on_Axioms_in_OWL_2_DL
http://www.w3.org/TR/owl2-syntax/#Global_Restrictions_on_Axioms_in_OWL_2_DL

Ontology-Driven Business Intelligence 97

drugATC

ins

leadDoc

doctor

drugPrescription

quantity
costs

district

province

insurantdistrictprovince

drug

atcChem-
SubGr

atcPharm

atcTherap

InOAD

InStarterOAD

InAD

starterOADDrug

cheapDrug

drug

ruralDistrict urbanDistrict

highRuralDistrict highUrbanDistrict

district

youngInsurant

oldInsurant

insurant

middleAgedInsurant

baby
child

youth
richInsurant

richAndOldInsurant

Organized
MDO Concepts

ruralDistrict urbanDistrict

highRuralDistrict highUrbanDistrict

district

urbanProvince ruralProvince

province

PatInHighRuralDistrLeadDocInUrbanDistr

 PatInRuralDistrLeadDocInUrbanDistr

urbanProvince ruralProvince

province

time

Unorganized
Business Terms

actDoc

InsInUrbanDistrict

InsInRuralDistrict

PatInRuralDistrLeadDocInUrbanDistr

PatInHighRuralDistrLeadDocInUrbanDistr

InOAD
InStarterOAD

InAD

starterOADDrug

cheapDrug

drug
urbanProvince

ruralProvince

province

ruralDistrict

urbanDistrict

highRuralDistrict

highUrbanDistrict

district

youngInsurant

oldInsurant typicalDM2AgedInsurant

insurant

middleAgedInsurant

baby

child

youth

richInsurant
richAndOldInsurant

InsInRuralDistrict

InsInUrbanDistrict

Fo
rm

al
 D

ef
in

iti
on

an

d
R

ea
so

ni
ng

Fig. 9. Concept organization

that every descendant node of nd rolls up to nd via functional object property
rollsUpTo X.

Example 19 (Translation of MDO concepts to OWL). Multi-dimensional con-
cept InsInRuralDistrLeadDocDoctorInUrbanDistr[ins: insurant..district, leadDoc: doctor]

is interpreted by the set of points that each refer via dimension role ins to a
node that rolls up to a node which is a role of a rural district and refer via
dimension role leadDoc to a node at level doctor that rolls up to a node which is

98 T. Neuböck et al.

a role of an urban district. In OWL this is represented (using Description Logics
notation) as:

InsInRuralDistrLeadDocDoctorInUrbanDistr ∈
⊂ins.⊂rollsUpTo district.⊂roleOf.ruralDistrict →
⊂leadDoc.(⊂atLevel.{doctor} →⊂rollsUpTo district.⊂roleOf.urbanDistrict)

4 Ontology-Based Measures and Scores

A measure is defined for points in a dimension space, which is also called the
domain of the measure. Measures are distinguished into base and derived. Base
measures are given as primitive and relate to a measure of a fact class (Note: To
provide for parallel analysis across multiple roll-up hierarchies of a dimension
role, several base measures may be defined for a measure of a fact class, each
of them defined for a different dimensions space that replaces selected dimen-
sion roles of the dimension space of the fact class by one or several hierarchy-
specific dimension roles). Derived measures have measurement instructions that
describes how a measure value is calculated for each point in the measure domain
from other measures.

A score is defined for pairs of points (PoI, PoC) in a comparison space. The
scoring instruction of a score describes for each pair of points (PoI, PoC) in the
score domain how a score value is calculated from measures.

A measure may be applied to a point for which it is defined, returning the
measure value; a measure applied to a set of points gives a set of measure values.
A measure may be applied to a point with more dimension roles for which the
measure is defined; in such a case the superfluous dimension roles are ignored.
We denote measure application by the ‘.’-operator.

Example 20 (Measure application). The following measure application returns
the drug costs of patients in Upper Austria in the year 2012:

←time:2012, ins:UpperAustria, leadDoc:all, actDoc:all, drugATC:all〉.DrugCosts

Alike measure applications a score may be applied to a pair of points for which
it is defined, returning the score value; a score applied to a set of pairs of points
gives a set of scores. If a score is applied to a pair of points with more dimension
roles as for which the score is defined, the superfluous dimension roles are ignored.
As for measures we denote score application by the ‘.’-operator.

Example 21 (Score application). The following score application returns the ratio
of drug costs of patients in Upper Austria in year 2012 (as point of interest) to
the drug costs of patients in Upper Austria in 2011 (as point of comparison):

(←time:2012, ins:UpperAustria, leadDoc:all, actDoc:all, drugATC:all〉,
←time:2011, ins:UpperAustria, leadDoc:all, actDoc:all, drugATC:all〉)

.RatioOfDrugCosts

Ontology-Driven Business Intelligence 99

A fact is a point of a dimension space together with values for one or several
measures; a comparative fact is a pair of points together with values for one or
several scores.

A cube (comparative cube) is a set of facts (comparative facts), possibly at
different granularities. Special kinds of cubes are (a) fact classes, which are mono-
granular and primitive (i.e., its facts are not calculated from other facts in the
DWH), (b) measure cubes and score cubes, which are cubes over the domain of
a measure or score and whose facts possess only this measure or score, and (c)
cuboids, which are mono-granular slices of another cube. Cubes - other than fact
classes and measure cubes - are defined by a cube space, given by a md-concept,
preferably in the form ⊆point∈concept[granularity-or-granularity-range], and a
set of measures that may be applied to points in the cube space to construct
facts. This is indicated by applying a measure with the “..”-operator to the cube
space and optionally indicating after the measure by the “\”-operator whether
a null-value of the measure should be replaced by some other value.

Example 22 (Cube). A cube consisting of drug-costs facts for points at granular-
ity [time:month, ins:district, leadDoc:district, actDoc:top, drugATC:top] that satisfy con-
cept InsInRuralDistrLeadDocInUrbanDistr and roll-up to point ⊆time:2012, ins:Austria,
leadDoc:Austria, actDoc:all, drugATC:all∈, is defined by:

←time:2012, ins:Austria, leadDoc:Austria, actDoc:all, drugATC:all〉
InsInRuralDistrLeadDocInUrbanDistr
[time:month, ins:district, leadDoc:district, actDoc:top, drugATC:top]
..DrugCosts

Likewise, a comparative cube is defined for a comparative cube space, given
by a comparative concept, and a set of scores defined for the comparative cube
space.

Example 23 (Comparative cube). The following comparative cube lists for each
rural district of insurants in Upper Austria the ratio of drug costs in year 2012
to drug costs in year 2011, thereby comparison predicate SameDistrict is used
to relate facts where PoI and PoC of the fact refer to the same district in the
insurant dimension role.

(←time:2012, ins:UpperAustria, leadDoc:all, actDoc:all, drugATC:all〉
ins:ruralDistrict[time:top, ins:district, leadDoc:top, actDoc:top, drugATC:top]
SameDistrict(PoI.ins,PoC.ins)
←time:2011, ins:UpperAustria, leadDoc:all, actDoc:all, drugATC:all〉
ins:ruralDistrict[time:top, ins:district, leadDoc:top, actDoc:top, drugATC:top])
..RatioOfDrugCosts

Measure and score instructions are arithmetic or aggregation expressions over
measures of selected facts of measure cubes. The scoring instructions are either
given in native form by using artihmetic and aggregation operations with MDO-
query expressions (using ‘.’ and ‘..’-operators as described above) as operands,
or by SQL-built-ins. The measurement instruction of an arithmetic measure is

100 T. Neuböck et al.

defined natively in MDO in an object-oriented flavor by an arithmetic expression
over measures applied to a point self in the domain of the measure for which
the measure value is calculated. The measurement instruction of an aggregation
measure for point self is given in MDO by some kind of aggregation (such as
AVG or SUM) over measure values of selected facts of some cube (which is a
fact class for first-step aggregation measures). As the selection of facts is based on
using concepts of the MDO as qualifiers to selecting facts (using ⊆self∈(concept)-
expressions for fact classes and ⊆self∈(concept)[granularity]-expressions for other
cubes; note: self may be omitted), we speak of ontology-based measures and
scores.

Example 24 (Measure with one step aggregation). DrugCosts is a derived measure
of type float over dimension space DrugPrescriptionSpace

CREATE MEASURE DrugCosts
DATATYPE float FOR DrugPrescriptionSpace AS

SUM(←self〉..drugPrescription.costs);
The measurement instruction indicates that the measure value is calculated for a
point self by the sum over base measure costs of all facts in factclass drugPrescrip-

tion that roll-up to self. If one restricts the dimension space DrugPrescriptionSpace

to oral antidiabetic drugs (InOAD), one can define another measure that returns
overall costs for oral antidiabetic drugs:

CREATE MEASURE OADDrugCosts
DATATYPE float FOR DrugPrescriptionSpace AS

SUM(←self〉InOAD..drugPrescription.costs);

Example 25 (Measure with two step aggregation). AvgDrugCostsPerIns is defined
as a measure with two step aggregation that returns the average drug costs per
insurant:

CREATE MEASURE AvgDrugCostsPerIns
DATATYPE float FOR DrugPrescriptionSpace AS

AVG(←self〉[time:top, ins:insurant, leadDoc:top, actDoc:top, drugATC:top]
..DrugCosts);

The measure calculates, first, the total costs per insurant stated as cube ⊆self∈
[time:top, ins:insurant, leadDoc:top, actDoc:top, drugATC:top]..DrugCosts (first agg-
regation step, cf. Ex. 24) and, second, the average of drug costs per insurant
(second aggregation step).

Example 26 (Drill across measure). TotalCosts are computed by adding Drug-

Costs, which has been defined over dimension space DrugPrescriptionSpace, and
AmbTreatmentCosts, which has been defined over dimension space AmbTreatment-

Space:

CREATE MEASURE TotalCosts
DATATYPE float FOR MedcareSpace AS

←self〉.DrugCosts\0 + ←self〉.AmbTreatmentCosts\0;

Ontology-Driven Business Intelligence 101

This is an example where two fact classes (drugPrescription and ambTreatment) are
used, one providing measure DrugCosts and the other providing measure Amb-

TreatmentCosts. The dimension space MedcareSpace is defined as drill across space
of DrugPrescriptionSpace and AmbTreatmentSpace (not shown). The decoration \0
indicates that the default value 0 is to be used if a measure application returns
a null value.

Measurement and scoring instructions frequently have the same structure (or
pattern). To avoid the need to define measurement and scoring instructions of
similar kind, semCockpit provides a set of predefined measure and score tem-
plates, which can be extended. For example, the first-step aggregation template
defines an aggregate measure based on the template parameters base measure
m, slice-concept c, and aggregation function f , with underlying measurement
instruction f⊆self∈(c).m The higher-step aggregation template defines an aggre-
gate measure based on: roll-up granularity g, derived measure m, and aggregation
function f with underling measurement instruction f⊆self∈[g].m.

Scores are distinguished into arithmetic and analytic. Arithmetic scores relate
two measures of two points (PoI and PoC) of a cube by an arithmetic function
such as ratio or percentage difference.

Example 27 (Ratio score). Score RatioOfDrugCosts returns a ratio of drug costs:

CREATE SCORE RatioOfDrugCosts
DATATYPE float FOR (DrugPrescriptionSpace, DrugPrescriptionSpace) AS

RATIO(←PoI〉.DrugCosts, ←PoC〉.DrugCosts);
The score is defined for comparison dimension space (DrugPrescriptionSpace, Drug-

PrescriptionSpace). The keyword RATIO is used to indicate that drug costs of the
group of interest represented as first parameter (PoI) are to be divided by the
drug costs of the group of comparison denoted as second parameter (PoC).

Analytic scores use an analytic scoring function (such as average-percentile
rank or mean-percentile rank) on two sets of points, GoI and GoC, each identified
by a ⊆pnt∈(concept)[granularity]-expression.

Example 28 (Median percentile rank score). Score MPROfDrugCostsPerPatient has
median percentile rank as a scoring function. The score can be applied in the time

dimension roles on month or higher levels, and in dimension roles ins, leadDoc,
and actDoc from level district to top.

CREATE SCORE MPROfDrugCostsPerPatient
DATATYPE float FOR (DrugPrescriptionSpace, DrugPrescriptionSpace)
AT ([time:month..top, ins:district..top, leadDoc:district..top,

actDoc:district..top, drugATC:drug..top],
[time:month..top, ins:district..top, leadDoc:district..top,

actDoc:district..top, drugATC:drug..top]) AS
MEDIAN PERCENTILE RANK(

←PoI〉[time:top, ins:insurant, leadDoc:top, actDoc:top, drugATC:top]
..DrugCosts,

←PoC〉[time:top, ins:insurant, leadDoc:top, actDoc:top, drugATC:top]
..DrugCosts);

102 T. Neuböck et al.

Drug costs are computed per insurant for group of interest as well as group of
comparison. Based on both groupings the median percentile rank is calculated.

Generic measures and generic scores avoid the need of repeated definition
of measure and score instructions with different selection criteria (concepts) in
place. They provide for flexibility in measure and score use, and they enable
reasoning (about how measures relate) by providing common structures. Generic
measures and scores have generic parameters (denoted by %name) for concepts,
which we call qualifiers as they are used to qualify selection-expressions for facts
of some cube. The domain of a generic parameter may be restricted to a listed
set of concepts or to the set of concepts subsumed by a concept.

Example 29 (Generic measures and scores). We generalize the definition of mea-
sure DrugCosts of Example 24 and add a generic parameter %q. It is restricted to
multi-dimensional concepts which are subsumed by DrugPrescriptionSpace (denoted
by ⇒):

CREATE MEASURE DrugCosts(%q ∩ DrugPrescriptionSpace)
DATATYPE float FOR DrugPrescriptionSpace AS

SUM(←self〉(%q)..costs);

Analogously one can define generic scores like RatioOfDrugCosts:

CREATE SCORE RatioOfDrugCosts(%qoi ∩ DrugPrescriptionSpace,
%qoc ∩ DrugPrescriptionSpace)

DATATYPE float FOR (DrugPrescriptionSpace, DrugPrescriptionSpace) AS
RATIO(←PoI〉.DrugCosts(%qoi), ←PoC〉.DrugCosts(%qoc));

Generic parameters can be used in place of concepts of concept expressions
(e.g., oldPatient AND %q) in measurement or scoring instructions. A generic mea-
sure (score) is instantiated by binding the generic parameter to a concept, giving
a non-generic measure (score) by replacing the generic qualifiers accordingly in
measurement (scoring) instructions.

Example 30 (Use of generic measures and scores). Instantiation of generic mea-
sure DrugCosts with actual qualifier InOAD gives the previously defined measure
OADDrugCosts (Ex. 24):

←time:2012, ins:UpperAustria, leadDoc:all, actDoc:all, drugATC:all〉
.DrugCosts(InOAD)

The following instantiation of generic score RatioOfDrugCosts binds %qoi to
InStarterOAD and %qoc to InOAD. It returns the ratio of starter oral antidiabetic
drug costs to oral antidiabetic drug costs:

(←time:2012, ins:UpperAustria, leadDoc:all, actDoc:all, drugATC:all〉,
←time:2012, ins:UpperAustria, leadDoc:all, actDoc:all, drugATC:all〉)

.RatioOfDrugCosts(InStarterOAD, InOAD)

Notice that in this special case of comparative data analysis point of interest
and point of comparison are equal and the only difference is in the qualifications
of the score.

Ontology-Driven Business Intelligence 103

In order to provide for the definition of measures and scores which cannot
be directly expressed in the semCockpit language, built-in measures and scores
provide for an ad-hoc extension facility and for the possibility to define new
templates for defining measure or scores. A built-in measure or score is defined
by providing an SQL view that defines the function from point to measure value
(from pair of point to score value, respectively). This approach is not novel,
but common in Oracle where new cubes and measures can be derived from
multi-granular cubes of other measures. However, different to Oracle, all MDO-
concepts are available as SQL views as well and may be used in measure- and
score definitions. Thereby, rather than writing complex selection query predi-
cates for selecting tuples of some cube, these can be easily selected by a simple
(natural) join between the SQL view of the concept and the cube. This pro-
vides for a simple, natural definition of the measurement or scoring instructions.
Platform-dependent optimization (in consideration of the capabilities and lim-
itations of query optimizers) is a separate issue. Built-in generic measures and
generic scores are provided as macros with qualifiers (view names) as parameters.

Measures and scores are organized in a measure & score drivers hierarchy.
The change of value of a measure may change the value of another measure or
score, the change of value of a score may change the value of another score. The
influence hierarchy known from definition of measures and scores or from back-
ground knowledge (e.g., relationships of base measures) is captured explicitly
and used later as background knowledge to guide analysis processes.

5 Ontology-Based Comparative OLAP

In online analytical processing, OLAP operations slice, dice, drill-down and roll-
up are applied to a data cube in order to navigate from one to another cuboid of
the data cube. We sketch a possible extension of semCockpit for modeling and
representing such analysis steps.

In the context of ontology-based comparative data analysis and in the pres-
ence of generic scores, a particular comparative cuboid, which we call comparative
analysis situation, is described in the form ⊆pntGoI∈conceptGoI[granGoI]joinCond
⊆pntGoC∈conceptGoC [granGoC]..score(qGoI,qGoC) with variables for nodes of points
(pntGoI, pntGoC), levels of granularities (granGoI, granGoC), concepts (conceptGoI,
conceptGoC, qGoI, qGoC), join condition (joinCond), and score. For simplicity, we
consider here only scores with two qualifiers, one for the group of interest and
one for the group of comparison.

The description of a non-comparative analysis situation is based on cube def-
inition of the form ⊆point∈concept [granularity]..measure (qualifier1, . . . , qualifiern).

In the remainder, we speak for simplicity of analysis situations, if we refer to
comparative and non-comparative analysis situations.

An OLAP-operation between two analysis situations, which we refer to as
navigation, reflects the change of the bindings of the variables of the target analy-
sis situation with respect to the source analysis situation. An atomic navigation
changes the binding of a single variable. Atomic navigation can be classified in

104 T. Neuböck et al.

2nd STEP

4th STEP

1st STEP

3rd STEP

correlate(narrow(InsInUrbanDistrict))
backtrack

correlate(moveDownToFirst(ins))

instantiate

Ratio of drug costs of Upper Austrian insurants
in urban districts of year 2012 to year 2011

(time:2012, ins:UpperAustria ,
time:2011, ins:UpperAustria)

..RatioOfDrugCosts(
InsInUrbanDistrict, InsInUrbanDistrict)

A2

Ratio of drug costs of insurants of
Linz-Stadt of year 2012 to year 2011

(time:2012, ins:Linz-Stadt ,
time:2011, ins:Linz-Stadt)

..RatioOfDrugCosts

A3

 General comparative analysis situation
(pntGoI conceptGoI [granGoI],

joinCond,
pntGoC conceptGoC [granGoC])

..score(qGoI, qGoC)

A0

Ratio of drug costs of Upper Austrian
insurants of year 2012 to year 2011

(time:2012, ins:UpperAustria ,
time:2011, ins:UpperAustria)

..RatioOfDrugCosts

A1

Fig. 10. Ontologoy-based comparative OLAP

an OLAP-setting according to the kind of OLAP-step performed. Such a naviga-
tion step indicates a movement along some “semantic relationship” between two
cubes (such as drill-down one level in hierarchy x, move up to ancestor node in
hierarchy x) and is expressed by a navigation operator and possibly a navigation
variable. A variable may be for a node, a level, a concept, a join condition, or a
score. The binding may be indicated absolute (i.e., by a new value) or relative
to the binding of a source variable (e.g., drill-down one level from current level
in hierarchy x).

Example 31 (Ontology-based comparative OLAP). Figure 10 illustrates5 how a
business analyst applies ontology-based comparative OLAP operators. First,
A0 shows the general description of an analysis situation. She or he selects
the points ⊆time:2012, ins:UpperAustria, leadDoc:all, actDoc:all, drugATC:all∈ and
⊆time:2011, ins:UpperAustria, leadDoc:all, actDoc:all, drugATC:all∈ to compare drug
costs of Upper Austria in year 2012 with 2011 by calculating the ratio (resulting
in analysis situation A1). Next, the analyst considers that it is of interest to
restrict the comparison to patients of urban districts. He or she applies the nav-
igation operator correlate(narrow) with actual parameter InsInUrbanDistrict which
narrows the group of interest as well as the group of comparison to urban dis-
tricts. The navigation results in analysis situation A2 in which the generic score
RatioOfDrugCosts is qualified in the GoI and in the GoC by hierarchical concept
InsInUrbanDistrict. Afterwards the analyst backtracks to A1 and applies naviga-
tion operator correlate(moveDownToFirst) that results in moving down to the first
district of Upper Austria in GoI and GoC (analysis situation A3). We assume a
descending order by number of inhabitants, thus the user navigates to district
Linz-Stadt.

A composite analysis situation is a tree of analysis situations and navigation
steps. Composite analysis situations provide a global coherent picture of several
5 In this and subsequent figures we omit for brevity the representation of “all”-nodes

of points in dimension space DrugPrescription.

Ontology-Driven Business Intelligence 105

correlate(compose(
narrow(InsInRuralDistrict),
drillDownTo(time:month)))

correlate(compose(
narrow(InsInUrbanDistrict),
drillDownTo(time:month)))

A1
 (leadDoc:UpperAustria [time:year],

SameYear(GoI.time, GoC.time),
leadDoc:all [time:year])

..RatioOfDrugCosts

A1.1

(leadDoc:UpperAustria [time:month],
SameMonth(GoI.time, GoC.time),

leadDoc:all [time:month])
..RatioOfDrugCosts(

InsInUrbanDistrict, InsInUrbanDistrict)

A1.2 (leadDoc:UpperAustria [time:month],
SameMonth(GoI.time, GoC.time),

leadDoc:all [time:month])
..RatioOfDrugCosts(

InsInRuralDistrict, InsInRuralDistrict)

A1.3

Fig. 11. Composite analysis situation

related measures and scores, aggregated and detailed. Changing the variables
of the root analysis situation leads to coherent change of all dependent analysis
situations. A generic composite analysis situation with all variables unconstraint
and modifiable provides for a general, comprehensive multi-perspective browsing
facility similar as it is provided by “surf and save” BI tools like Tableau6, but with
enhanced flexibility and guidance support (as will be discussed in the subsequent
section). This mode of use is typical during phases of explorative search for
meaningful scores and comparison groups, as well as for developing analysis
processes (which are thereafter captured as more elaborated BI analysis graphs).

Example 32 (Composite analysis situation). By a composite analysis situation
one can synchronize various semantically related analysis situations. In Fig. 11
root situation A1.1 selects drug costs ratios of lead doctors of province Upper
Austria per year7. Correspondingly, A1.2 and A1.3 select the drug costs ratios
of urban and rural districts, respectively, of Upper Austria per month. Two
navigation operations denote these semantic relations. If the user changes lead
doctor location from Upper to Lower Austria in A1.1, also the situations A1.2

and A1.3 are adapted automatically to province Lower Austria.

One can capture the history of a particular analysis performed, in the form
of a graph, consisting of the analysis situations and navigation steps used to
navigate between them.

Example 33 (History of an analysis). The essence of a history of an analysis
can be depicted as a graph. Figure 12 presents the static view of the dynamic
process of example 31. There are navigation arcs from analysis situation A1 to
analysis situation A2 and A3. The graph only shows the semantic dependencies.
It omits the dynamic behaviour like the order in which analysis situations were
performed, or backtracking paths.
6 http://www.tableausoftware.com
7 In this and subsequent figures we omit for brevity the representation of “top”-levels

of a granularity in dimension space DrugPrescriptionSpace.

http://www.tableausoftware.com

106 T. Neuböck et al.

correlate(narrow(InsInUrbanDistrict))

correlate(moveDownToFirst(ins))

(time:2012, ins:UpperAustria ,
time:2011, ins:UpperAustria)

..RatioOfDrugCosts

A1

(time:2012, ins:UpperAustria ,
time:2011, ins:UpperAustria)

..RatioOfDrugCosts(
InsInUrbanDistrict, InsInUrbanDistrict)

A2

(time:2012, ins:Linz-Stadt ,
time:2011, ins:Linz-Stadt)

..RatioOfDrugCosts

A3

Fig. 12. History of an analysis (without backtracking steps)

6 BI Analysis Graphs

A typical BI analysis session in comparative data analysis is described by the
following process: (1) Determine an initial analysis situation (by setting parame-
ters of an OLAP query generating a cube or comparative cube, usually mono-
granular). (2) Visually inspect the result. (3) Modify parameters (usually based
on semantic relationships) to move to a new analysis situation. (4) Inspect the
result: (a) stop if satisfied, (b) continue with (3), or (c) backtrack to a previous
analysis situation.

We present a vision of BI analysis graphs to capture this “analysis process
knowledge” at the schema level for later analysis as reference. BI analysis graphs
may be compared to process schemas designed in BPMN [37] which reflect how
a particular kind of business process is handled, or to the navigation model of
WebML [7] in web engineering, which describes how data and their relationships
may be traversed.

BI analysis graphs are inspired by WebML: The navigation model of WebML
is a graph of units and links. A unit represents objects or set of objects that
are retrieved by a parameterized SQL query associated with the unit. Links
describe how objects of source and target units relate. Changing the parameters
of a source unit and, thus, the object(s) represented, is propagated to the tar-
get unit by information transported along the link (which binds parameters of
source to parameters of target units), leading to related changes of the objects
represented in the target unit. Such changes may be automatic or dependent on
user input. Similarly, in BI analysis graphs, analysis situations are parameter-
ized cube definitions (or MDO queries), and navigation steps between analysis
situations bind parameters of the target based on parameters of the source and,
optionally, dependent on user input. Different to BPMN and WebML, which
come with a clear distinction between schema and instance, BI analysis graphs
adhere to a Frame-inspired [9] approach in which generic and individual analysis
situations co-exist in one graph. This reflects the very nature of BI analysis in
which the BI analysis graph should on the one hand generalize from individual
analysis, but on the other hand is never complete and as such is continually
extended and refined based on known analysis process knowledge acquired in
subsequent analysis.

Ontology-Driven Business Intelligence 107

Further related work concerns navigation modeling and query prediction [35],
describing analytical sessions [33], modeling OLAP behavior [44], modeling pref-
erences [13], personalization [2], query recommendations [3,11,19], and annota-
tions [10]. Heer et al. [14] focus on recording and visualizing interaction histo-
ries and propose a taxonomy of interactive dynamics for visual analysis [15].
Thollot [43] propose a graph-based approach for context-aware BI recommen-
dations. Unlike [14,15,43], BI analysis graphs are motivated for designing and
re-using general (non-personalized) analysis processes, and for modeling naviga-
tion knowledge as semantic relationships (‘Navigation is Knowledge’). Recording
the history of an analysis process is a side product of the BI analysis graph app-
roach. BI analysis graphs and the associated envisioned guidance rules (discussed
in Sect. 7) draw ideas from active data warehouses [42] and from OLAP query-
ing at a conceptual level [30]. A simple form of BI analysis graphs [26] has been
introduced for multi-dimensional navigation modeling.

We now give an overview of BI analysis graphs. A BI analysis graph is a
directed graph with generic or individual comparative analysis situations as ver-
tices and generic navigation steps as directed edges (we will extend this definition
later by specialization and instantiation edges).

A generic comparative analysis situation is a comparative analysis situation
in which some or all variables are unbound and in which unbound variables
are restricted by domain indications. The domain of a variable is given by a
dimensional concept for node variables of points (and, optionally, by a multi-
dimensional concept for a point or a comparative concept for the point pair),
a set of concepts for concept variables (expressed by enumeration or as ⇒ c for
the set consisting of concept c and all subsumed concepts), a set of levels for
level variables, a set of join conditions for join-condition variables, and a set of
scores for score variables (where ⇒ s denotes score s and any score that directly
or indirectly drives s in the score drivers hierarchy). If a domain is not explicitly
indicated for a variable, the domain is any value possible for the variable’s kind.
A variable that is bound to a value or has only one permissive value is said to be
closed, otherwise it is said to be open. The notion of a generic non-comparative
analysis situation is analogously defined.

Example 34 (Generic analysis situation). The top left corner of Fig. 13 shows a
generic comparative analysis situation A0 where all variables for nodes of points
(pntGoI, pntGoC), concepts of external slice conditions (conceptGoI, conceptGoC),
levels of granularities (granGoI, granGoC), join condition (joinCond), score (score),
and qualifiers (qGoI, qGoC) are open.

An individual (comparative or non-comparative) analysis situation is an analy-
sis situation in which variables are bound. In a short hand notation, variables
may not be used. In such a case, they are bound to default values (e.g., a missing
granularity is bound to the granularity of the point). It is an instance of any
generic (comparative or non-comparative, resp.) analysis situation for which all
variable values are from the respective domains defined by the generic analysis
situation.

108 T. Neuböck et al.

Fig. 13. BI Analysis Graph with use & design steps

Ontology-Driven Business Intelligence 109

In the remainder, we speak for simplicity of analysis situations, if we refer to
comparative and non-comparative analysis situations, generic or individual.

Example 35 (Individual analysis situation). In Fig. 13 individual analysis situa-
tions are depicted on the right hand side. A business analyst uses the generic
situation A0 and instantiates, e.g., the individual analysis situation A0(1).

A generic navigation step is defined by a navigation operator and, if it has a
navigation variable, a domain for the navigation variable. An individual naviga-
tion step is given by applying the generic navigation step to an individual analy-
sis situation and by binding any navigation variable of the navigation operator.
The application yields an individual target analysis situations that is identical
to the individual source analysis situation apart from the changes induced by
the navigation operator.

Navigation operators express (a) movements in the nodes of a dimension hier-
archy (like moveDownToNodeInDimension, moveUpInHierarchy, moveToPrev(ious sib-
ling)), (b) changes of the granularity of a cube (like drillDownToLevel, drillDown-

InHierarchy, (c) strengthening (narrow), weakening (broaden), or resetting (quali-
fyAside) a qualifier of a score, (d) strengthening (filter), weakening (extend), or
resetting (shift) the slice condition (i.e., conceptGoI or conceptGoC), or (e) the
change of a score (refocus). Navigation operators may either change the group
of interest (rerelate), the group of comparison (retarget), or both (correlate). Sev-
eral navigation operators may also be composed into one (compose)). We omit a
complete list for brevity.

Example 36 (Navigation step). Figure 13 shows a general navigation operation
correlate(moveToPrev(time)) from A0 to itself. The instantiation of A0 to A0(1)

and the application of the navigation step leads to A0(3).

We now revise the definition of BI analysis graphs to include modeled special-
ization relationships. A BI analysis graph is a directed graph whose vertices are
analysis situations and whose directed edges are either navigation steps or mod-
eled specialization relationships between analysis situations. Navigation steps
may be specialized, too, in that a generic navigation step with a more restricted
variable domain connects more specific analysis situations than the specialized
navigation step. The specialization hierarchy is not inferred, but explicitly mod-
eled similar to the conceptual modeling of business processes. It acts as con-
straint for the definition of analysis situations and allows to capture alternative
navigation paths that apply to different specializations of a generic analysis sit-
uation. An analysis situation that specializes another analysis situation has for
each variable the same or a more restrictive domain.

Navigation steps may be proper OLAP steps as introduced above or back-
tracking-steps. A backtracking step indicates that in a particular analysis the
analyst moves back to a previously encountered analysis situation but chooses
thereafter a different analysis situation to continue.

Example 37 (BI analysis graph). The left side of Fig. 13 shows analysis graphs
AG0, AG1, and AG2. Each graph consists of vertices (analysis situations) and

110 T. Neuböck et al.

directed edges (navigation steps). Backtracking-steps are not shown. Analysis
situations A1, A2, and A3 are specializations of A0. Thus they are linked by
inheritance arrows. Figure 13 is explained in more detail later.

A BI analysis is an alternate sequence of individual analysis situations and
navigation steps that represent a sequential trace of the analysis steps performed
by an analyst in a particular analysis. A particular BI analysis can be carried
out by traversing an analysis graph and, if necessary, by extending the traversal.

A schema traversal T = (A1, S1, . . . , Sk−1, Ak) of a BI analysis graph G is
an alternate sequence of analysis situations and navigation steps where for each
i = 1..k−1 either (a) there exists an analysis situation A∈

i such that Si is an
arc in G from A∈

i to Ai+1, whereby A∈
i = Ai, or A∈

i is directly or indirectly
connected to Ai by modelled specialisation relationships (or vice versa), or (b)
Si is a backtracking step to Ai+1 = Aj with j < i.

A BI analysis t = (a1, s1, . . . , sk−1, ak) is a traversal of a given BI analysis
graph G if there exists a schema traversal T = (A1, S1, . . . , Sk−1, Ak) of G such
that a1 is an instance of A1 and for i = 1..k−1, a navigation step Si of G
such that ai is an instance of Ai, si is an individual navigation step of generic
navigation step Si, and ai+1 is an instance of Ai+1.

A traversal of a given BI analysis graph is specified by binding the open
variables of some analysis situation of the BI analysis graph and by subsequent
bindings of all open navigation variables of navigation steps followed. Notice
that the definition of a traversal of a BI analysis graph permits to initially jump
to any node of the graph and, once some analysis situation is reached, it does
not require to continue with the most specific navigation step defined in the BI
analysis graph. The graph acts as guidance and is not prescription, it can be
incomplete. A traversal of a navigation step that has been already specialized
may lead later to an inclusion of a different specialization in the BI analysis
graph.

Example 38 (BI analysis). The right side of Fig. 13 demonstrates the use of
analysis graphs AG0, AG1, and AG2, leading to BI analyses AG0’, AG1’, and AG2’.
All open variables of analysis situations and navigation steps are bound. The
sequence (A1(1), refocusScore (RatioOfDrugCosts), A3(1), . . ., A3(5)) of analysis AG1’

is a traversal of AG1.

Once an initial analysis graph has been defined, proper repeated analysis
proceeds as follows: (1) Jump to a predefined initial analysis situation (2) Set
open parameters for this analysis situation. (3) Evaluate the analysis situation
and inspect the result. (4) Choose an outgoing arc to move to another analysis
situation. (5) Set an open parameter for this arc, if any. (6) Evaluate and inspect,
the result; stop if satisfied or continue with 4.

If the business analyst is not satisfied with the options provided by the BI
analysis graph, he or she may add new edges and vertices that move to new ter-
rain or specialize given edges or vertices (in that more parameters are bound and
thus closed, or choices of bindings of open parameters are restricted). semCockpit
provides reasoning support to determine applicable values for open parameters

Ontology-Driven Business Intelligence 111

and to check consistency of BI analysis graphs, especially with respect to node
and link specialization. The whole analysis process can be described in alter-
nating use- and design-phases, i.e., an analyst applies an existing analysis graph
(use-phase) and, if necessary, extends or modifies it (design-phase), afterwards
she uses the new graph, etc.

Example 39 (Analysis process). Figure 13 demonstrates the explorative, itera-
tive, and incremental characteristics of an analysis process. A business analyst
alternates between design and use of analysis graphs. When she or he uses the
graph the analyst also performs individual explorations:

(1) Initial analysis graph: AG0 comprises a generic analysis situation A0. The
navigation step from A0 to itself with navigation operation correlate(moveTo-

Prev(time)) represents the rule of thumb that if some analysis situation is relevant
then the similar analysis situation for the previous time period is also relevant.
(2) Use phase: A business analyst instantiates analysis graph AG0 by binding
variables pntGoI.time and pntGoC.time to 2012 and 2011, respectively, resulting
in analysis graph AG0’ with individual analysis situation A0(1). Following the
navigation step proposed in AG0, the business analyst moves to analysis situation
A0(3). Further, the business analyst makes exploratory individual navigation
steps, which are not proposed as such in AG0, leading to analysis situations A0(2),
A0(4), and A0(5). Some of these comparisons are deemed relevant, A0(4) and
A0(5), others are not, A0(2). In Fig. 13 relevant analysis situations are decorated
by a hooklet and others are decorated by a cross. Analysis situations instantiated
from generic ones, such as A0(1) and A0(3), are depicted as boxes with solid
border. Analysis situations reached through exploratory navigation steps, such
as A0(2), A0(4), and A0(5), are depicted as boxes with dotted border.
(3) Design phase: The business analysts wants to re-use analysis situations A0(1),
A0(4), and A0(5) in later similar analysis sessions and generalizes them, in analysis
graph AG1, to A1, A2, and A3, respectively. Variable pntGoI.time with domain
year takes the place of constant 2012 and variable pntGoC.time takes the place of
constant 2011. The relation between 2012 and 2011 is represented by constraining
pntGoI and pntGoC to comparative concept PreviousYear. Analysis situations A1,
A2, and A3 are specializations of A0, which is depicted by specialization links.
(4) Continuation of alternating use and design phases: The business analyst in-
crementally designs a BI analysis graph, from analysis graph AG1 to analysis
AG1’ to analysis graph AG2, and so forth. Resulting BI analysis graphs can be
re-used in various related analyses, for example, to reiterate the analysis in the
next year in order to reassess the conclusions made by the analyst or in order to
monitor the effects of actions taken in reaction to the analysis.

7 Guidance, Judgement, and Analysis Rules

Guidance, judgement, and analysis rules provide actionable knowledge about
comparative analysis that otherwise is tacit knowledge of a business analyst or
captured and processed in some other form, usually outside BI analysis tools.

112 T. Neuböck et al.

A simple form of actionable knowledge is supported in many BI systems by the
possibility of setting alerters that fire if some measure exceeds a certain thresh-
old. Guidance rules are defined over analysis situations and provide guidance on
how to proceed best in analysis, by suggesting a generic or individual navigation
step to follow or advising that a particular navigation is not deemed relevant.
Judgement rules are defined over facts of a comparative cube and represent static
knowledge about possible explanations of a striking low or high score. Analysis
rules are defined over facts of a comparative cube as well and decide based on
the score of a fact, whether a specific action, e.g., starting a specific analysis,
should be taken (action rules), or whether a fact should be reported (reporting
rules). Analysis rules are evaluated for specific set of point pairs explicitly iden-
tified (e.g. after an ETL cycle), and we will see later that they require different
evaluation strategies in the context of inheritance and overriding.

A guidance rule is given by (a) a name, (b) an analysis situation (generic or
individual), (c) a rule condition which is either (c1) a condition over all facts
of the analysis situation (set-oriented rule) or (c2) a condition over a fact of
the analysis situation (fact-oriented rule), and (d) a recommended or disad-
vised generic or individual navigation operation, whose variable domain may be
restricted or its variable set (d1) absolute or (d2) relative to variables of the indi-
vidual analysis situation (for set-oriented rules) or also of coordinates of the fact
(for fact-oriented rules) for which the rule fires. In case of a composite analysis
situation the guidance rule is defined for the root analysis situation and the rule
conditions may also consider the component analysis situations and their facts.
Rule conditions are expressed as SQL queries (set- or tuple-oriented) over the
(comparative) cubes of the analysis situations. A set-oriented rule (FOR analysis
situation ONCE) fires once for an individual analysis situation, if the set-oriented
query is not null. A tuple-oriented rule (FOR analysis situation) fires for each fact
that is retrieved by the SQL query.

Guidance rules of the same name are organized in an inheritance hierar-
chy based on specialization relationships between generic analysis situations for
which they are defined.

A guidance rule applies to an analysis situation if it is an instance of the
generic analysis situation for which the rule is defined and there is no more
specific generic analysis situation with this property. If applicable, a set-oriented
rule fires for an individual analysis situation if the rule-condition is satisfied;
a fact-oriented rule fires for every fact of the individual analysis situation for
which the rule-condition is satisfied, and, depending on the rule, the navigation
is recommended (RECOMMEND) or disadvised (DISADVISE). Guidance rules
are evaluated after every individual navigation step of a BI analysis.

Several guidance rules may apply to a given individual analysis situation.
Since guidance rules suggest potentially promising navigation steps to follow
in subsequent analysis, a unique choice is not required but rather it may be
worthwhile to explore all options suggested to gain further insight about the
data at hand. Inheritance as described above can be used to specialize guidance
rules by providing more specific suggestions for more specific analysis situations.

Ontology-Driven Business Intelligence 113

More specific guidance rules override more general ones and, thus, exclude the
more general suggestions from the suggestions list. Initially, very general guid-
ance rules may be defined that are extended and specialized over time.

Example 40 (Guidance Rules). Figure 14 shows guidance, judgement, and analy-
sis rules (action and reporting rules). The guidance rules refer to the analysis
situation in Fig. 13, but guidance rules may be also defined for generic analysis
situations independent of analysis graphs (not shown). GR0 for analysis situ-
ation A0 recommends navigation operation correlate(moveToPrev(time)), if the
score value is less than 0.8 or greater than 1.2. For analysis situation A3, which
is a specialization of A0, guidance rule GR0 for A0 is overridden.

A judgement rule is specified by (a) a name, (b) a comparative cube with a
single score (defining the facts over which the judgement rule is defined), and
(c) a score-value comparison over such a fact, and (d) an informative judgement.
Judgement rules are evaluated any time a fact over which the judgement rule is
defined is retrieved and fires if the condition is met. Judgement rules of the same
name are organized in an inheritance hierarchy along the subset relationships
of the set of point-pairs of comparative cubes over which they are defined. A
generic judgement rule may be defined for a comparative cube with a generic
score whereby the score qualifiers may be constrained in the join condition. A
generic judgement rule inherits from another judgement rule if the set of point
pairs of the former is a subset of the set of point pairs of the latter, both are for
the same score with the same qualifiers, and the domains of the qualifiers are
in subset relationships. A generic judgement rule is defined for each fact with
point pairs in the comparative cube and with instantiations of the generic score
whose actual qualifiers are in the qualifier domains.

Example 41 (Judgement Rules). Judgement rule AR1 for cube C1 in Fig. 14 indi-
cates, once a fact of cube C1 is accessed, that one has to take into account an
increase of drug costs of about 5 % per year. The rule is overridden for facts of
cube C2, which specializes cube C1 (for year 2012), and justifies an exceptional
increase for oral antidiabetic drugs in year 2012.

An analysis rule is specified like a judgement rule, but different to judgement
rules its action is a recommended action or report and analysis rules need to be
explicitly triggered (for example after an ETL-cycle has been completed for
the set of new facts just loaded into the DWH) and analysis rules have two
conditions (explained later). In its basic form, application and triggering, as
well as inheritance is defined as for judgement rules. But, rather than guidance
and judgement, which concern an individual analysis situation or fact at hand
during a BI analysis, actions and reports are compiled for a bulk of facts where
some additional form of abstraction and accompanying rule evaluation strategy
is required to reduce repetition and information overload. Moreover, analysis
rules with the same name will frequently be for the same action or report, and
vice versa.

114 T. Neuböck et al.

Fig. 14. Guidance, Judgement, and Analysis Rules

It is common in organizational contexts and in law to apply a decision-
scope approach [36] to decision making. Higher organization levels set a decision
scope within which lower organization levels may operate. In case of conflict the

Ontology-Driven Business Intelligence 115

regulations and rules of a higher level (e.g., European Union) take precedence
over those of a lower level (e.g., a member state). Such rules define under which
conditions certain actions may, must not, or need to be taken. This approach
can also be applied to action and reporting rules with two conditions, one (IF
condition or positive activation condition) stating when the rule should fire and
the other one (UNLESS condition or negative activation condition) when the rule
should not fire. If both conditions are not complementary, a decision scope for
more specific rules is left.

Applying the decision scope approach to analysis rules in BI analysis requires
to consider two alternative hierarchies: (1) hierarchies of sets of points at the
same granularity and (2) the roll-up hierarchy of points in multi-dimensional
space.

Specialization along subset relationships between sets of point at the same
granularity is governed by the same rules for inheritance and overriding as
introduced before. Specialization along a roll-up hierarchy of points in multi-
dimensional space actually concerns entities of different kinds, yet connected
by some form of part-of relationship. This gives rise to two alternative rule
evaluation strategies, both meaningful in practice, but with a different area of
application, actioning and reporting in mind.

We first consider the roll-up hierarchy of points (or pairs of points) and we will
then discuss the interplay between specialization along subset relationships of
points and the roll-up hierarchy of points. We discuss two evaluation strategies.
The prerogative strategy which is more appropriate for action rules and the
presumed strategy which is more appropriate for reporting rules.

In the prerogative strategy, an action triggered for a higher-level point (or
pairs of points) implicitly implies the same action for each lower level point (or
pairs of points). E.g., if a company decides to abandon a product line (such
as mobile phones) this decision is implied for every product (i.e., every phone
model in our example) of this product line. In the prerogative evaluation strategy,
analysis rules for the same action are evaluated top-down along a user-specified
roll-up path of granularities. We assume at first that for points of one granularity
at most one analysis rule is defined with a positive and negative activation con-
dition. If one of the two condition applies for a roll-up fact, analysis is completed,
whereby the indicated action is triggered, if the positive activation condition is
satisfied. Only if both conditions are not satisfied, i.e., for the situation that a
fact falls into the open space of the condition scope, the analysis rules for drill-
down granularities and drill-down facts at these granularities are considered in
further rule evaluation.

Example 42 (Action rules – prerogative evaluation strategy). In Fig. 14 action
rule AR1 is defined for facts in cube C1. Remember that action rules need to
be explicitly evaluated for a specific set of facts (e.g., those just loaded into
the data warehouse), identified by multi-granular cube and for a roll-up path
of granularities. This roll-up path needs not to be indicated, if the analysis rule
is only over multi-granular cubes with granularities along a single roll-up path,
which is the case for AR1. If rule AR1 fires, it starts a traversal of analysis graph

116 T. Neuböck et al.

AG2 at situation A3 of Fig. 13. For AR1 we have a prerogative evaluation strategy.
If the positive activation condition (val ≥ 1.1) is true for a province, AG2 is
started for that province. If neither the positive (val ≥ 1.1) nor the negative
(val < 1.05) activation condition is true, the rule evaluates the conditions for
districts to decide whether an analysis graph traversal is triggered.

In the presumed strategy, a report triggered for a higher-level point is pre-
sumed to cover also lower-level points and is thus not reported again for lower-
level points (to avoid unnecessary information overload, the basic motivation
behind performing roll-up analysis in data warehousing), unless a lower-level
point fulfills the negative activation condition of a more specific rule. E.g., if a
reporting rule triggers the report that average treatment costs for patients with
diabetes mellitus of type 2 patients in Austria are twice as high than in Germany
last year, it is presumed that this will hold in general for each province in Aus-
tria. Minor deviations are generally not of interest in comparative data analysis,
but major ones are. The knowledge what kind of exceptions should be reported
can be expressed by a negative activation condition of a more specific rule. In our
example such a rule may state that for comparing treatment costs for patients
in a province of Austria with patients in Germany, a percentage difference of
less than 20 % should not be reported. Assume a positive activation condition of
a more general rule has led to report a striking difference of average treatment
costs per patient in Austria versus Germany. Based on deviating observation for
comparing Tyrol (a province of Austria) with Germany the more specific rule
will report (if the difference is less than 20 %) that contrary to Austria as a
whole, average treatment costs per patient have been similar when comparing
Tyrol with Germany.

Example 43 (Reporting rules – presumed evaluation strategy). AR2 of Fig. 14 rep-
resents a reporting rule, which is evaluated in a presumed manner. If the positive
activation condition (val ≥ 1.1) is true for a province, the province is reported,
but districts of the province are only reported, if the evaluation of the negative
activation condition (val < 1.05) is true for a district of that province. In this
case the district is reported as an exception.

Prerogative and presumed evaluation of analysis rules along roll-up hierar-
chies in top-down manner can be combined with evaluation along hierarchies
of sets points at the same granularity according to the specialization principle
described above for guidance rules. Again we assume for simplicity, that analy-
sis rules are triggered for points along a single-drill-down path of granularities.
At each granularity all analysis rules defined for points at that granularity are
considered, and for each fact the most specific one is chosen (It is assumed here,
as that the specialization hierarchy is consistent such that a single most specific
rule exists). We also expect that the rules have been specialized in a consistent
way according to the decision scope approach such that the positive activation
condition of a more general rule implies the activation condition of a more spe-
cific rule, and the same holds for negative activation rules. In the prerogative

Ontology-Driven Business Intelligence 117

strategy, once a decision has been determined for a fact at a given granular-
ity, analysis stops; if no decision could be made due to an open decision scope,
analysis continues with drill-down facts at a lower-level granularity for which an
analysis rule is defined. In the presumed evaluation strategy, a reporting rule
that once fired for a fact, is not triggered again for drill-down facts to avoid
information overload, unless reporting an exception is justified by a negative
activation condition.

Example 44 (Specialization of an action rule). In Fig. 14 action rule AR1 for cube
C1 is overridden by the same named action rule AR1 for cube C2. If the rule is
applied to a multi-dimensional point with year 2012, the specialized rule AR1 for
cube C2 is evaluated.

8 Conclusion

Existing BI tools are well-suited for reporting and for performing complex analy-
sis tasks but lack an explicit formalization of knowledge about business terms,
comparison, and analysis processes. Commonly, business analysts define business
terms in an ad-hoc manner rather than explicitly capturing business terms and
their meaning in a central, shared repository. An unambiguous formalization of
business terms can be used for the definition of measures, which facilitates the
analysis task of a business analyst. Furthermore, the definition of meaningful
comparisons should not be left to human intuition but captured as a first-class
citizen. Similarly, the analysis process itself could be formalized. The experi-
ence of business analysts should be made explicit in order to benefit all business
analysts within a company.

Rather than solving each issue separately, we presented an integrated and
coherent approach for ontology-driven comparative data analysis.

The centerpiece of the Semantic Cockpit approach is the multi-dimensional
ontology (MDO) which enriches a data warehouse with a set of concepts. These
MDO concepts unambiguously define business terms and their meaning in the
context of data analysis. Existing domain ontologies can be integrated as seman-
tic dimensions. Analysts use MDO concepts for the definition of measures and
scores. Measures quantify real-world facts of interest. Scores contrast measure
values of a group of interest with a comparison group. Generic measures and
scores reduce the number of measures that have to be defined. Judgement rules
provide possible explanations for striking results that are encountered during an
analysis process. Analysis rules trigger particular analysis processes or report
facts.

The semCockpit project extends the enterprise data warehouse by a sta-
tic semantic layer which assists analysts in formulating analytical queries in
high-level business terms. During the project we identified the need to also cap-
ture knowledge about analysis processes. Future research concerns modeling and
sharing of such knowledge in a semantic BI process layer based on the ideas of
analysis graphs and guidance rules sketched herein.

118 T. Neuböck et al.

Acknowledgments. This work is funded by the Austrian Ministry of Transport,
Innovation, and Technology in program FIT-IT Semantic Systems and Services under
grant FFG-829594 (Semantic Cockpit: an ontology-driven, interactive business intelli-
gence tool for comparative data analysis).

References

1. Anderlik, S., Neumayr, B., Schrefl, M.: Using domain ontologies as semantic dimen-
sions in data warehouses. In: Atzeni, P., Cheung, D., Ram, S. (eds.) ER 2012.
LNCS, vol. 7532, pp. 88–101. Springer, Heidelberg (2012)

2. Bellatreche, L., Giacometti, A., Marcel, P., Mouloudi, H., Laurent, D.: A person-
alization framework for OLAP queries. In: Song, I.-Y., Trujillo, J. (eds.) DOLAP,
pp. 9–18. ACM, New York (2005)

3. Bentayeb, F., Favre, C.: RoK: roll-up with the K-means clustering method for
recommending olap queries. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA
2009. LNCS, vol. 5690, pp. 501–515. Springer, Heidelberg (2009)

4. Berger, S., Schrefl, M.: Feddw: A tool for querying federations of data warehouses -
architecture, use case and implementation. In: Cordeiro, J., Filipe, J. (eds.) ICEIS
(1), pp. 113–122 (2009)

5. Buchheit, M., Nutt, W., Donini, F.M., Schaerf, A.: Refining the structure of termi-
nological systems: Terminology = schema + views. In: Hayes-Roth, B., Korf, R.E.
(eds.) AAAI, pp. 199–204. AAAI Press/The MIT Press (1994)

6. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-
Muro, M., Rosati, R., Ruzzi, M., Savo, D.F.: The mastro system for ontology-based
data access. Semant. Web 2(1), 43–53 (2011)

7. Ceri, S., Brambilla, M., Fraternali, P.: The history of webML lessons learned
from 10 years of model-driven development of web applications. In: Borgida, A.T.,
Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Conceptual Modeling: Foundations
and Applications. LNCS, vol. 5600, pp. 273–292. Springer, Heidelberg (2009)

8. Das, S., Chong, E.I., Eadon, G., Srinivasan, J.: Supporting ontology-based semantic
matching in rdbms. In: Nascimento, M.A., Özsu, M.T., Kossmann, D., Miller, R.J.,
Blakeley, J.A., Schiefer, K.B. (eds.) VLDB, pp. 1054–1065. Morgan Kaufmann
(2004)

9. Fikes, R., Kehler, T.: The role of frame-based representation in reasoning. Com-
mun. ACM 28(9), 904–920 (1985)

10. Geerts, F., Kementsietsidis, A., Milano, D., et al.: iMONDRIAN: a visual tool to
annotate and query scientific databases. In: Böhm, C. (ed.) EDBT 2006. LNCS,
vol. 3896, pp. 1168–1171. Springer, Heidelberg (2006)

11. Giacometti, A., Marcel, P., Negre, E., Soulet, A.: Query recommendations for
OLAP discovery driven analysis. In: Song, I.-Y., Zimányi, E. (eds.) DOLAP, pp.
81–88. ACM (2009)

12. Golfarelli, M., Maio, D., Rizzi, S.: The dimensional fact model: a conceptual model
for data warehouses. Int. J. Coop. Inf. Syst. 7(2–3), 215–247 (1998)

13. Golfarelli, M., Rizzi, S., Biondi, P.: myOLAP: an approach to express and evaluate
OLAP preferences. IEEE Trans. Knowl. Data Eng. 23(7), 1050–1064 (2011)

14. Heer, J., Mackinlay, J.D., Stolte, C., Agrawala, M.: Graphical histories for visu-
alization: supporting analysis, communication, and evaluation. IEEE Trans. Vis.
Comput. Graph. 14(6), 1189–1196 (2008)

15. Heer, J., Shneiderman, B.: Interactive dynamics for visual analysis. Commun. ACM
55(4), 45–54 (2012)

Ontology-Driven Business Intelligence 119

16. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S. (eds.):
OWL 2 Web Ontology Language: Primer. W3C Recommendation, 27 October
2009. http://www.w3.org/TR/owl2-primer/

17. Hürsch, W.L.: Should superclasses be abstract? In: Pareschi, R. (ed.) ECOOP
1994. LNCS, vol. 821, pp. 12–31. Springer, Heidelberg (1994)

18. Hurtado, C.A., Mendelzon, A.O.: Reasoning about summarizability in heteroge-
neous multidimensional schemas. In: Van den Bussche, J., Vianu, V. (eds.) ICDT
2001. LNCS, vol. 1973, p. 375. Springer, Heidelberg (2001)

19. Jerbi, H., Ravat, F., Teste, O., Zurfluh, G.: Preference-based recommendations for
OLAP analysis. In: Pedersen, T.B., Mohania, M.K., Tjoa, A.M. (eds.) DaWaK
2009. LNCS, vol. 5691, pp. 467–478. Springer, Heidelberg (2009)

20. Khouri, S., Bellatreche, L.: A methodology and tool for conceptual designing a
data warehouse from ontology-based sources. In: Song, I.-Y., Ordonez, C. (eds.)
DOLAP, pp. 19–24. ACM (2010)

21. Lehner, W., Albrecht, J., Wedekin, H.: Normal forms for multidimensional data-
bases. In: Rafanelli, M., Jarke, M. (eds.) SSDBM, pp. 63–72. IEEE Computer
Society (1998)

22. Lim, L., Wang, H., Wang, M.: Unifying data and domain knowledge using vir-
tual views. In: Koch, C., Gehrke, J., Garofalakis, M.N., Srivastava, D., Aberer,
K., Deshpande, A., Florescu, D., Chan, C.Y., Ganti, V., Kanne, C.-C., Klas, W.,
Neuhold, E.J. (eds.) VLDB, pp. 255–266. ACM (2007)

23. Malinowski, E., Zimányi, E.: Hierarchies in a multidimensional model: from concep-
tual modeling to logical representation. Data Knowl. Eng. 59(2), 348–377 (2006)

24. Nebot, V., Llavori, R.B.: Building data warehouses with semantic web data. Decis.
Support Syst. 52(4), 853–868 (2012)

25. Nebot, V., Berlanga, R., Pérez, J.M., Aramburu, M., Pedersen, T.B.: Multidimen-
sional integrated ontologies: a framework for designing semantic data warehouses.
In: Spaccapietra, S., Zimányi, E., Song, I.-Y. (eds.) Journal on Data Semantics
XIII. LNCS, vol. 5530, pp. 1–36. Springer, Heidelberg (2009)

26. Neuböck, T., Neumayr, B., Rossgatterer, T., Anderlik, S., Schrefl, M.: Multi-
dimensional navigation modeling using BI analysis graphs. In: Castano, S., Vassil-
iadis, P., Lakshmanan, L.V.S., Lee, M.L. (eds.) ER Workshops 2012. LNCS, vol.
7518, pp. 162–171. Springer, Heidelberg (2012)

27. Neumayr, B., Schrefl, M., Thalheim, B.: Hetero-homogeneous hierarchies in data
warehouses. In: Link, S., Ghose, A. (eds.) APCCM. CRPIT, vol. 110, pp. 61–70.
Australian Computer Society (2010)

28. Neumayr, B., Schütz, Ch., Schrefl, M.: Semantic enrichment of OLAP cubes: multi-
dimensional ontologies and their representation in SQL and OWL. In: Meersman,
R., Panetto, H., Dillon, T., Eder, J., Bellahsene, Z., Ritter, N., De Leenheer, P.,
Dou, D. (eds.) OTM 2013. LNCS, vol. 8185, pp. 624–641. Springer, Heidelberg
(2013)

29. Niinimäki, M., Niemi, T.: An etl process for olap using rdf/owl ontologies. In: J.
Data Semantics [39], pp. 97–119

30. Pardillo, J., Mazón, J.-N., Trujillo, J.: Extending OCL for OLAP querying on
conceptual multidimensional models of data warehouses. Inf. Sci. 180(5), 584–601
(2010)

31. Romero, O., Abelló, A.: Automating multidimensional design from ontologies. In:
Song, I.-Y., Pedersen, T.B. (eds.) DOLAP, pp 1–8. ACM (2007)

32. Romero, O., Abelló, A.: Open access semantic aware business intelligence. In:
Zimányi, E. (ed.) eBISS 2013. LNCS, vol. 7911, pp. xx–yy. Springer, Heidelberg
(2014)

http://www.w3.org/TR/owl2-primer/

120 T. Neuböck et al.

33. Romero, O., Marcel, P., Abelló, A., Peralta, V., Bellatreche, L.: Describing analyt-
ical sessions using a multidimensional algebra. In: Cuzzocrea, A., Dayal, U. (eds.)
DaWaK 2011. LNCS, vol. 6862, pp. 224–239. Springer, Heidelberg (2011)

34. Saggion, H., Funk, A., Maynard, D., Bontcheva, K.: Ontology-based information
extraction for business intelligence. In: Aberer, K. (ed.) ASWC 2007 and ISWC
2007. LNCS, vol. 4825, pp. 843–856. Springer, Heidelberg (2007)

35. Sapia, C.: On modeling and predicting query behavior in OLAP systems. In:
Gatziu, S., Jeusfeld, M.A., Staudt, M., Vassiliou, Y. (eds.) DMDW. CEUR Work-
shop Proceedings, vol. 19, pp. 1–10. CEUR-WS.org (1999)

36. Schrefl, M., Neumayr, B., Stumptner, M.: The decision-scope approach to spe-
cialization of business rules: Application in business process modeling and data
warehousing. In: Proceedings of the Ninth Asia-Pacific Conference on Conceptual
Modelling (APCCM 2013) (2013)

37. Silver, B.: BPMN Method and Style, 2nd edn., with BPMN Implementer’s Guide:
A Structured Approach for Business Process Modeling and Implementation Using
BPMN 2.0. Cody-Cassidy Press (2011)

38. Skoutas, D., Simitsis, A., Sellis, T.K.: Ontology-driven conceptual design of etl
processes using graph transformations. In: J. Data Semantics [39], pp. 120–146

39. Spaccapietra, S., Zimányi, E., Song, I.-Y. (eds.): Journal on Data Semantics XIII.
LNCS, vol. 5530. Springer, Heidelberg (2009)

40. Spahn, M., Kleb, J., Grimm, S., Scheidl, S.: Supporting business intelligence by
providing ontology-based end-user information self-service. In: Duke, A., Hepp, M.,
Bontcheva, K., Vilain, M.B. (eds) OBI. ACM International Conference Proceeding
Series, vol. 308, p. 10. ACM (2008)

41. Staudt, M., Jarke, M., Jeusfeld, M.A., Nissen, H.W.: Query classes. In: DOOD,
pp. 283–295 (1993)

42. Thalhammer, T., Schrefl, M., Mohania, M.K.: Active data warehouses: comple-
menting OLAP with analysis rules. Data Knowl. Eng. 39(3), 241–269 (2001)

43. Thollot, R.: Dynamic Situation Monitoring and Context-Aware BI Recommenda-
tions. PhD thesis, Ecole Centrale Paris (2012)

44. Trujillo, J., Gómez, J., Palomar, M.S.: Modeling the behavior of OLAP applications
using an UML compliant approach. In: Yakhno, T. (ed.) ADVIS 2000. LNCS, vol.
1909, pp. 14–23. Springer, Heidelberg (2000)

Open Access Semantic Aware Business
Intelligence

Oscar Romero(B) and Alberto Abelló

Universitat Politècnica de Catalunya, BarcelonaTech, Barcelona, Spain
{oromero,aabello}@essi.upc.edu

Abstract. The vision of an interconnected and open Web of data is,
still, a chimera far from being accomplished. Fortunately, though, one
can find several evidences in this direction and despite the technical
challenges behind such approach recent advances have shown its feasibil-
ity. Semantic-aware formalisms (such as RDF and ontology languages)
have been successfully put in practice in approaches such as Linked Data,
whereas movements like Open Data have stressed the need of a new open
access paradigm to guarantee free access to Web data.

In front of such promising scenario, traditional business intelligence
(BI) techniques and methods have been shown not to be appropriate.
BI was born to support decision making within the organizations and
the data warehouse, the most popular IT construct to support BI, has
been typically nurtured with data either owned or accessible within the
organization. With the new linked open data paradigm BI systems must
meet new requirements such as providing on-demand analysis tasks over
any relevant (either internal or external) data source in right-time. In
this paper we discuss the technical challenges behind such requirements,
which we refer to as exploratory BI, and envision a new kind of BI system
to support this scenario.

Keywords: Semantic web · Business intelligence · Data warehousing ·
ETL · Multidimensional modeling · Exploratory business intelligence ·
Data modeling · Data provisioning

1 Introduction

The Internet empowered the interconnection of different systems and contributed
to the bloom of massive and heterogeneous distributed systems that brought
new challenges of data integration. The data integration problem [1] aims at
providing users with a single unified view of different and interconnected data
repositories. This is an old and recurrent topic for the database community and
as such it has been thoroughly studied in the past. As discussed in [2], data
integration must overcome a number of heterogeneities present in the systems to
be interconnected that can be classified in two categories: system and semantic
heterogeneities. On the one hand, system heterogeneities include differences in

E. Zimányi (Ed.): eBISS 2013, LNBIP 172, pp. 121–149, 2014.
DOI: 10.1007/978-3-319-05461-2 4, c© Springer International Publishing Switzerland 2014

122 O. Romero and A. Abelló

hardware, operating systems, database management systems (DBMS) and so on.
On the other hand, semantic heterogeneities include differences in the way the
real-world is modeled in terms of the database schema.

In the recent past, when the database world was mostly relational, different
architectures were developed for data integration, such as federated databases,
multidatabase systems and wrappers and mediators [3]. However, semantic het-
erogeneities are still an open issue for relational systems. Data semantics gath-
ered (as metadata1 in the database catalog) by relational systems (RDBMS)
are not enough as to enable automatic design decisions to overcome semantic
heterogeneities and most of the burden to get rid of such heterogeneities still
relies on the designer’s shoulders.

The arrival of the Internet did nothing but worsen the problem. Massive dis-
tributed scalable Web-systems put the traditional relational systems under stress
and nowadays relational systems co-exist with non-relational systems, commonly
known as NOSQL (to be read Not Only SQL and never as ¬SQL). The first sys-
tems that coined the NOSQL term were born on the Web but soon the idea
spread to many other areas and currently it claims for specialized database solu-
tions for specific problems. Although NOSQL is mainly a buzzword referring
to a way of doing (perfectly captured in the “one size does not fit all” motto)
rather than new technical solutions, there have been some attempts to classify
and find common aspects of these systems. One of the most spread features
among NOSQL systems is being schemaless. A schemaless database does not
have a explicit schema created by the user (e.g., by means of the CREATE TABLE
statement for RDBMS). Nevertheless, an implicit schema remains. In general,
this situation is not desirable at all, as semantics are lost. In terms of the ANSI
/ SPARC architecture, schemaless databases do not define external and concep-
tual schemas and query languages must access the DBMS internal data struc-
tures, which violates the logical and physical independence principle. Therefore,
data is a black-box with no meaning for the DBMS and, for example, in some
extreme cases such as key-value stores, the value becomes a meaningless chunk of
bytes. As consequence, one gains in flexibility but misses even more semantics as
metadata gathered by most NOSQL systems is almost non-existent.

As consequence, the current picture is that of massive (independent) systems
gathering few metadata, known as data silos, which ideally should intercommu-
nicate in order to solve bigger problems. However, data integration becomes
even tougher as a wider range of system and semantic heterogeneities must be
considered.

Far away from this scenario stands Tim-Berners Lee’s vision of an intercon-
nected and open Web of data [4]. The Semantic Web envisioned by Berners Lee
considered linking data in such a way a machine could process the links and auto-
matically explore the data without human intervention. Relating data opens the
data silos and allows navigating, crossing, exploring and analysing data in order to
1 Metadata, or data about data, keeps track of any relevant information regarding

data. For example, a value of 4 means nothing by itself. But if the system knew it
refers to the number of children of a certain person as of 2013 it becomes information.

Open Access Semantic Aware Business Intelligence 123

produce unexpected results and relevant (hidden) knowledge. Berners Lee referred
to this feature as data fusion [5], and its most popular implementation is by means
of linked open data. On the one hand, enriching data with machine processable
metadata so that machines can understand (i.e., manipulate) data is known as
linked data [5]. On the other hand, similar to the open source concept, open data
describes data that is freely available and can be used as well as republished by
everyone without restrictions from copyright or patents [6].

From the database point of view, the linked open data wave demands new
systems able to store linked data (thus, semantically rich metadata must be
stored together with data) and support the open data initiative (these systems
should be easily identified and accessed by anyone). Such systems would pro-
vide foundations for more elaborated applications such as mashups, linkeable
browsers and semantic-aware search engines. In this paper, we focus on the need
for new generation decision support systems built on top of that, which can also
be used as foundation for any traditional data fusion application on the Web.

2 Business Intelligence: Past, Present and Future

Decision support systems play a key role in many organizations. These systems
provide accurate information (understood as the result of processing, manipu-
lating and organizing data in a way that adds new knowledge to the person or
organization receiving it) that leads to better decisions and gives competitive
advantages. In the past, the ability of decision makers for foreseeing upcom-
ing trends was crucial for any organization but this largely subjective scenario
changed when the world became digital. Actually, any event can be recorded and
stored for later analysis, which provides new and objective business perspectives
to support managers in the decision making process. Hence, (digital) informa-
tion is a valuable asset to organizations and gathering, transforming and exploit-
ing such information is nowadays a technological challenge commonly known as
Business Intelligence (BI). Thus, BI embraces many different disciplines (e.g.,
from databases to data mining) and solutions meant to support decision making
based on (digitally recorded) evidences.

Among all architectural solutions proposed for BI, data warehousing is possi-
bly the most popular one. According to [7], Data Warehousing is a collection of
methods, techniques and tools used to support knowledge workers -senior man-
agers, directors, managers and analysts- to conduct data analyses that help with
performing decision making processes and improving information resources.

Data warehousing mainly focus on decision making and data analysis, and at
the same time, these systems abstract technical challenges like data heterogene-
ity or data sources implementation. This is a key factor in data warehousing in
particular, and business intelligence in general. Nowadays, many events can be
recorded within organizations but the way each event is stored differs in every
organization and it depends on several factors such as relevant attributes for the
organization (i.e., their business needs), technology used (i.e., implementation),
analysis task performed (i.e., data relevant for decision making), etc. These sys-
tems gather and assemble relevant data available within the organization from

124 O. Romero and A. Abelló

various and probably heterogeneous sources in order to produce a single, detailed
view of the organization that can be used for enabling better strategic manage-
ment. In other words, data warehousing overcomes the data integration problem
by means of data consolidation.

Although data warehousing ecosystems are highly complex systems, one can
say that data warehousing is mature enough (even if data warehousing projects
are still far away from being well-controlled). After 20 years, several methods
and tools to support the design, deployment and maintenance of such systems
have been introduced (e.g., [8–11]) as long as methodologies and good practices
(e.g., [12,13]). As result, there exist data warehousing experts who have been
working and mastering these problem for several years.

Building a data warehouse system consists of designing the data warehouse
and creating the ETL (Extract-Transform-Load) processes to populate the data
warehouse from the sources. Ideally, the data warehouse schema should sub-
sume any analytical requirement that end-users may pose to the system. Past
experience has highlighted three main challenges that complicate designing and
deploying data warehousing systems [7,8]:

1. Like in any other information system, the design process starts by eliciting
and gathering the end-user requirements. The burden of such process relies
on the DW designer and the end-user does not actively participate in this
task. However, it has been shown that IT people (i.e., the DW designer) and
non-IT people (i.e., the DW end-user) do not understand each other easily
and it is rather common that this step fails to meet the end-user requirements
and, in turn, the whole DW ecosystem fails.

2. After gathering the end-user requirements, the designer proceeds to design
and create the DW. Next, the ETL processes to populate the DW from the
available sources are designed and implemented. In this step, the DW designer
is meant to understand the available data sources, identify the data with
which the requirements gathered can be meet and construct the ETL flows.
This step may take up to 70 % of the whole DW project span of time and they
entail complex and time-consuming transformations. Accordingly, the update
window of a data warehouse (the time it takes to load data into the data
warehouse) can be of hours, and executed daily or even weekly. Also, ETL
constructs are several times directly implemented at the logical or physical
level, which troubles its maintenance.

3. Finally, once the DW ecosystem is running, intuitive and non-technical means
to query the DW are mandatory. End-users tend to be non-IT people and
require ad hoc formalisms to understand and exploit the data warehouse.
For example, one cannot assume that the company CEO masters the SQL
language as to query a database on his / her own.

For all these reasons data warehousing projects are traversal and people from
different areas must work together in order to produce a flexible, powerful, and
successful system. Ideally, the construction of the DW and ETL designs must
undergo several rounds of reconciliation and redesigning, until all business needs –
even some that are not described from the beginning of the project– are satisfied.

Open Access Semantic Aware Business Intelligence 125

Thus, a DW project is rarely completed. Typically, a DW is an alive ecosystem
and thus, maintainability and evolution aspects should be considered too [14].

Beyond its complexity, a successful DW project is a valuable asset for any
organization that can effectively exploit the objective evidences stored in its data
sources. However, traditional data warehousing techniques have shown not to be
adequate for the next generation of BI systems. In terms of the previous section,
traditional data warehousing techniques are meant to create independent data
silos, whereas current trends claim for interconnecting different data sources
(including external sources) and provide a global unified view. This evolution
of the data warehousing systems is referred to as DW 2.0, new generation BI
and similar concepts [6,15–20] that have bloomed recently. According to them,
ideally, (i) the end-user should dynamically explore any data source of poten-
tial interest (no matter if it is internal or external to the organization) that is
available and (ii) any desired analysis task should be made in right-time (i.e.,
according to the user needs, which usually means near real-time). A thorough
analysis of these requirements elicit new needs for the next generation BI sys-
tems. Specifically:

1. Any desired task in right-time implies:
– The analysis must be conducted over fresh data and ideally, get rid of

the update window concept.
– The end-user must be able to state his / her analysis requirements in a

non-technical language. Ideally, the end-user must state what data want
to analyze and from which perspectives without the intervention of the
DW designer.

2. Analyze any source means to reconsider how ETL processes should work:
– Extraction: If any source can be considered, flexible extraction tech-

niques must be able to extract data from structured, semi-structured
and non-structured data.

– Transformation: According to the end-user analytical needs, the extracted
data must undergo different transformation rounds to meet the desired
quality threshold to be agreed with the end-user.

– Load: Loading data into the data warehousing can be costly. For this
reason, and honouring the right-time requirement, next generation sys-
tems may decide not to materialize the consolidated data into a data
warehouse but dynamically consume it.

Of course, all these requirements must be put into perspective and they will
be rarely met. A graphical representation of traditional and new BI flows is
depicted in Fig. 1, and a discussion follows.

As shown in Fig. 1, data sources can be globally divided into two groups:
internal and external data. Internal data is that owned by the company and it
traditionally consisted of relational databases and tabular data (e.g., Excel or
CVS files). With the time, semi-structured data (such as XML) or non-structured
data (e.g., plain text files, pdf files, videos or images) were also incorporated
and, nowadays, NOSQL sources (e.g., graph databases or key-value / document

126 O. Romero and A. Abelló

Fig. 1. BI Elements and Data Flows

stores) may need to be considered. External data mainly refers to open and
/ or linked data (ideally, open linked data). Open data normally consists of
semi-structured data. Its structure typically depends on who delivers the data.
For example, governmental institutions2 usually open tabular data or PDF files,
while social networks such as Facebook or Twitter usually deliver XML or JSON
files3. As special case, external data coming from other organizations after sub-
scribing an agreement may also be considered. This is a typical case in e-science
scenarios where research institutes tend to collaborate and share their data. In
these cases, an agreement is signed and external access to any kind of source
may follow. In any case, a vast amount of heterogeneous data sources may need
to be considered.

Next, after undergoing several transformations, the extracted consolidated
data might be materialized in a DW. In such scenario, smaller, specific data
marts might be modeled. Analytical tools (i.e., data mining, OLAP or query &
reporting) are available on top of the DW (or data marts) to allow non-technical
end-users to query, navigate and exploit the data. This suits traditional data
warehousing techniques. However, next BI systems claim for a more flexible
architecture where the end-user can define a query (what data to be analyzed
and how) and the system would dynamically decide what sources should be con-
sidered, extract data (maybe also from the available DW), do the corresponding
transformations and visualize the results. To stress that this approach is query-
oriented, we refer to it as ETQ (Extract-Transform-Query). Furthermore, given
that the data warehouse could not even exist, it is sometimes meaningless to use
the data warehousing term to refer to this new kind of systems, which are better
defined as Business Intelligence systems. From here on, we will refer to tradi-
tional data warehousing systems as traditional BI and next generation systems
as exploratory BI. Thus, we stress the fact that in these systems the aim is at
exploring data sources to perform right-time analytical tasks.
2 For example: http://data.gov.uk/ and http://www.data.gov/
3 See http://www.w3.org/DesignIssues/LinkedData.html for a detailed description of

the 5-stars of linked data.

http://data.gov.uk/
http://www.data.gov/
http://www.w3.org/DesignIssues/LinkedData.html

Open Access Semantic Aware Business Intelligence 127

Importantly, note that exploratory BI requires a huge degree of automa-
tion in both design and implementation of the query and ETQ tasks. In tra-
ditional BI systems the designer is responsible for properly understanding the
business requirements, look for the proper data in the sources needed to answer
requirements and produce correct data warehouse / ETL models meeting all
requirements. Similarly, the designer is responsible for a correct integration of
new requirements that may appear. This scenario must change and exploratory
BI systems must support the designer as much as possible, and automate the
most possible tasks. Of course, the designer (ideally, the end-user) will need
to supervise the process and, eventually, accept or disregard different model-
ing options automatically produced. However, automation requires machine-
processable metadata.

2.1 Challenges of Exploratory BI

In the previous section we have just discussed the characteristics of next gen-
eration exploratory BI systems. In this section we further elaborate on the IT
challenges behind exploratory BI and focus on the technical challenges to over-
come in order to (i) allow the end-user dynamically explore any data source of
potential interest (either internal or external to the company) and (ii) perform
any analysis task in right-time. More specifically, we divide the technological
challenges in three, according to the typical life-cycle of IT systems: requirement
engineering, modeling and physical deployment.

Requirement Elicitation and Specification. Exploratory BI systems are
goal-oriented (one may consider the analysis needs stated by the end-user as the
system goals). Thus, the end-user must express his / her needs without the help
of IT people (requirement elicitation) and should be internally translated into
a machine processable formal specification (requirement specification). By needs
we either refer to information needs (that roughly speaking can be mapped to
a query retrieving data) and quality needs (some quality criteria that the infor-
mation retrieved must fulfill and typically expressed in terms of non-functional
requirements).

In a truly exploratory system, requirements gathered must be used to lead
the next stages (design and implementation of the system) and consequently,
the language used to express the user needs (ideally, close to the domain vocab-
ulary used by end-users) must be also understood by computers (i.e., it must
have precise associated semantics). As later discussed in Sect. 3, semantic-aware
formalisms are the most promising means to describe such reference domain
language.

All in all, these systems must be user-centric and semantic-aware. On the one
hand, the end-user must express analysis needs using his / her own words. On
the other hand, the system must also talk the user language and automatically
process the requirements, which will lead the next two stages. A comprehensive
list of challenges related to this area follows:

128 O. Romero and A. Abelló

– End-users must state their information and quality analysis needs in terms of
a high-level language close to their own vocabulary (i.e., the reference domain
language).

– The reference domain language must be computer understandable in order to
enable the desired automation described in the next two stages.

Automatic Design. From the end-user requirements gathered in the previous
stage, exploratory systems must automatically design the system and make this
inherent complex task transparent to the end-user. Assuming a data warehousing
architecture, it entails to design the integration layer schema (if any) and the
ETL (ETQ) processes. More specifically, the system must be able to explore the
available (or potential) data sources and, according to the end-user requirements
expressed in terms of the reference domain language and some design quality
criteria, re-arrange the data source schemas in the shape of an integration layer
(which can be thought as a view over the data sources) meeting the analysis needs
at hand. Once the integration schema is available, the schema transformations
identified must be lowered to the instance level and produce the ETL (ETQ)
design needed to populate (answer) end-user analysis needs.

Relevantly, note that this entails that the system must be able to understand
what data and how is stored at each potential data source. Thus, the system
must track the potential data sources and, in order to allow automatic processing,
understand what data and how is stored at each source. Thus, it must be able
to map the data sources to the reference domain language used by the system.
Ideally, such map should follow a local-as-view (LAV) approach (similar to that
followed by linked data) and thus, concepts in the data sources must point to
the reference domain language. In order to automatically consider the end-user
quality needs the data sources should also declare what quality criteria they
might meet.

As consequence, an exploratory system should keep track of potential sources
and understand what data and how is stored in the data sources. In other words,
to open the black box. To achieve such goal, the data sources schema should
be mapped to the reference domain language used by the system. Then, by
considering the end-user needs gathered in the previous stage, the exploratory
system should be able to design the integration layer and ETL (ETQ) flows
needed to answer the analysis needs at hand. A comprehensive list of challenges
related to this area follows:

– Potential data sources must be tracked into the system by mapping to the
reference domain language both their schematas and the quality criteria they
might meet. Ideally, a LAV approach is needed.

– Automatic algorithms for the design of the integration layer and the ETL
(ETQ) processes are needed.

– Means to express some design quality criteria to lead the automatic creation
of potential designs are mandatory.

Open Access Semantic Aware Business Intelligence 129

Automatic Deployment. The physical deployment of such systems should
also be transparent to the end-user. Such deployment should consider the design
created in the previous stage and according to some quality needs (either those
explicitly stated by the end-user or introduced by the system administrator)
choose the execution engine to compute the answer to the analysis needs posed
to the system. On the one hand, exploratory systems should explore self-tuning
systems to the limit and dynamically choose the best storage option as well as
auxiliary storage techniques (such as indexing or materialized views) in order to
improve performance. On the other hand, an optimizer should be available to
optimize ETL (ETQ) executions (similar to the query optimizer of a database).
Both issues can drastically benefit from the reference domain language and use
the semantic-aware metadata gathered during the whole process in order to
determine the best design / execution strategies.

Thus, the system should be able to trigger self-tuning tasks in accordance
with the metadata gathered during the whole process, as well as implement an
optimizer to improve the ETL (ETQ) internal processes. A comprehensive list
of challenges related to this area follows:

– Advanced self-tuning techniques are needed.
– ETL (ETQ) optimizers need to be developed.
– Means to express some quality criteria to guide the system self-tuning and

ETL (ETQ) optimization techniques internally carried out are mandatory.

As the reader may note, exploratory systems are user-centered and thus, the
ultimate goal of such systems is to allow the end-user state his / her analysis
needs (both from the point of view of the information needed and the associated
quality metrics associated to it) and accordingly produce the design and physical
implementation of the needed constructs in an automatic fashion. As discussed,
this must be achieved by means of semantic-aware systems that, by means of
a reference domain language, are able to map the end-user requirements and
the data source schemas to a common reference domain language. All in all, the
database expert role may seem to dilute in this new approach. However, nothing
further from the truth. Exploratory systems place the focus on the end-user, who
is the real domain expert, and makes him / her play an active role when building
the system. The database expert, however, is still essential in this approach. The
automatic stages carried out by exploratory systems are responsible for designing
and deploying the system. As discussed, some general quality metrics to guide
the design and deployment are mandatory. Such guidance must be continuously
monitored by a database expert who is expected to react in front of unexpected
changes or system misbehaviour (e.g., by changing the design or deployment
quality criteria to be met by the automatic created solutions). As consequence,
although moved away from the focus, the database expert is still needed to
monitor and tune the system.

130 O. Romero and A. Abelló

3 An Introduction to Semantic Web Formalisms

Nowadays, we can find several formalisms to capture semantics in a machine-
processable format. Typically, these formalisms come from the Semantic Web
(SW), which is aimed at providing the necessary representation languages and
tools to express semantic-based metadata. Prior to the SW, there were several
efforts to provide metadata formats to the web contents, such as Dublin-Core4,
whose main purpose was to improve information discovery and retrieval. How-
ever, these formats were shown very limited mainly due to their poor expressivity
and little Web-awareness. As result, the W3C proposed new representation for-
mats, all relying on XML5, to overcome the limitations of existing metadata
formats. The main idea behind these formats is that any concept or instance
used for describing a Web object must be referred through a unique resource
identifier (URI). Thus, the most basic way to describe an object consists of cre-
ating a link to the URI that represents the intended semantics. With the resource
description framework (RDF)6, we can create more complex metadata elements
allowing the representation of relationships between descriptors (i.e., triples).
Additionally, the RDFS7 extension allows users to define a schema for RDF
descriptions. More expressive semantic descriptions have been also proposed by
adopting logic-based frameworks: DAML+OIL8 and the Ontology Web Lan-
guage (OWL)9. Contrary to RDFS, all these languages rely on description logics,
which are tractable subsets of the first order logic (FOL). In this context, meta-
data is governed by logic axioms over both classes and instances (assertions).
Like in RDFS, logic axioms in these formats must be defined over Web-based
references (i.e. URIs).

In the next sections we further elaborate in the most popular SW formalisms:
RDF and ontology languages.

3.1 RDF(S)

In RDF there are three kinds of elements: resources, literals, and properties.
Resources are web objects (entities) that are identified through a URI, liter-
als are atomic values such as strings, dates, numbers, etc., and properties are
binary relationships between resources and literals. Properties are also identified
through URIs. The basic building block of RDF is the triple: a binary relation-
ship between two resources or between a resource and a literal. For example,
consider the following triples depicted in Fig. 2.

In this example, the concept (object) eBISS 2013 is represented by the
http://uri-repository/eBISS2013 URI and it is related through the http://

4 http://dublincore.org/
5 http://www.w3.org/XML/
6 http://www.w3.org/RDF/
7 http://www.w3.org/TR/rdf-schema/
8 http://www.w3.org/TR/daml+oil-reference/
9 http://www.w3.org/TR/owl2-overview/

http://dublincore.org/
http://www.w3.org/XML/
http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/daml+oil-reference/
http://www.w3.org/TR/owl2-overview/

Open Access Semantic Aware Business Intelligence 131

Fig. 2. A graph representing RDF triples

uri-repository/type property to another resource representing the summer
school concept http://uri-repository/summer-school. Similarly, it is related
to the literal Dagstuhl by the http://uri-repository/venueproperty. The
resulting metadata can be seen as a graph where nodes are resources and liter-
als, and edges are properties connecting them. RDFS extends RDF by allowing
triples to be defined over classes and properties. In this way, we can describe
the schema that rules our metadata within the same description framework. It
is worth mentioning that the semantics of RDFS are based on type systems,
similar to object-oriented formalisms and, for example, we can specify classes,
subclasses and typed properties.

3.2 Ontology Languages

Two main families of logic-based languages currently underlie most of the research
done in this direction: Description Logics (DL) and datalog-related logics (see [21]
and [22], respectively). For example, OWL is founded in DL.

Both, DL and datalog, seek the same objective, but from different points
of view. While DL focuses on representing knowledge, datalog is more focused
on capturing the instances (and, in this sense, closer to the database field). As
discussed in [23], both paradigms can be used to establish ontologies.

On the one hand, DL (or DL-based languages) assume a decentralized app-
roach and information is stored separate from data. Thus, one talks about termi-
nology and instances asserted (in terms of the terminology). DL also follow the
open-world assumption and, accordingly, a DL ontology can have many differ-
ent interpretations. On the other hand, datalog follows a centralized viewpoint,
the closed-world assumption (there is a single interpretation which corresponds
to the current database state) and the unique name assumption (two instances
differing in their identifier are automatically assumed to be different).

A direct consequence is that DL ontologies are more difficult to model (as
“unexpected information” could be inferred from the asserted instances) but
they better deal with incomplete data (such as Web data), whereas datalog
ontologies are more intuitive for the database community but might not be that
interesting for integration cases with missing or partial information.

Modeling in DL and datalog deserve further discussion and basic knowl-
edge on FOL. We address the interested reader to [24] for a discussion on the

132 O. Romero and A. Abelló

expressivity of two popular ontology languages for data modeling: DL-Lite and
Datalog±.

All in all, the open-world assumption in DL and the fact that these logics
do not follow the unique name assumption suits the essence of Web data (by
definition incomplete and where different repositories could identify the same
real-world instance by means of different identifiers). From the point of view of
BI, DL suits what-if analysis and scenarios with lack of information. In turn,
scenarios where the data gathered is known to be complete (to some extent,
what is stored in a DW) may be better captured in a datalog ontology.

Need vs. Feasibility Besides being very expressive, ontology language pro-
vide reasoning techniques to infer non-explicit knowledge from already asserted
knowledge. Although logic-based languages are very appealing for their semantic-
awareness and reasoning features, it is also true that reasoning is known to be
computationally hard. Nowadays, it is well established that we must balance
the language expressiveness and reasoning services provided according to each
scenario.

The main reasoning services provided by DL are concept satisfiability, sub-
sumption and query answering [21]. Concept satisfiability checks if a concept
is non-contradictory (regarding the ontology terminology) and it may have, at
least, one instance. For example, concept satisfiability (or unsatisfiability) is use-
ful for validating the correctness of the ontology concepts. Subsumption checks
if an ontology concept C is subsumed by another concept D (i.e., if D is more
general than C). For example, subsumption can be used to identify concept tax-
onomies and equivalence (if two concepts subsume each other). Finally, query
answering finds all the asserted instances that satisfy a concept description and
thus, it is extremely useful to pose arbitrary queries over the ontology.

Concept satisfiability and subsumption sit at the terminological level, whereas
query answering also deals with instances. Relevantly, very few DL languages
(e.g., DL-Lite in [25] and the OWL2 QL profile, based on DL-Lite) properly
support query answering which means that, in practice, query answering is pro-
hibitively costly for large data sets, such as those in BI scenarios. Thus, most
DL languages are typically used at the terminological level.

Regarding datalog, since terminology and instances are not separated, its
reasoning services are query-oriented and its most typical inference is query
answering.

4 One Step towards Exploratory BI

Exploratory BI is, by nature, challenging. However, the current state of the
art on BI systems envision a promising future. In this section, we present a
functional architecture based on existing approaches towards the creation of a
truly exploratory BI. Nonetheless, several challenges remain open but our aim
is to show that exploratory BI is no longer a chimera but a feasible challenge.

Open Access Semantic Aware Business Intelligence 133

In the recent past, we have been working on bringing new flexible and power-
ful BI capabilities to the end-user. Our focus has been set on accessing different
data sources (inter / intra organizations / open linked data sources) in a flexible
manner: the end-user poses his / her analytical needs and the system is able
to produce data cubes on-demand. Ideally, the end-user should state his /her
analytical needs and some quality criteria and receive the required data, while
the inherent internal complexity of such system should be transparent to him /
her. As consequence, the system would be responsible for identifying the data
sources, extract and transform the data prior to show it to the user. Performing
such tasks on the fly would be extremely costly and therefore, we propose here
our vision of a self-tunable architecture that automatically performs optimiza-
tion tasks to guarantee the feasibility of exploratory BI.

4.1 Narrowing the Focus: Assumptions Made

Before introducing our vision in detail, we need to narrow the focus and prop-
erly define what kind of BI systems we do tackle in this architecture. As the
reader will note we talk about cubes, which is a multidimensional (MD) concept.
The multidimensional model was introduced by Kimball [8]. Specifically, multi-
dimensionality is based on the fact / dimension dichotomy. The fact, or subject
of analysis is placed in the n-dimensional space produced by the analysis dimen-
sions. We consider a dimension to contain an aggregation hierarchy of levels
representing different granularities (or levels of detail) to study data, and a level
to contain descriptors (i.e., level attributes). We differentiate between identifier
descriptors (univocally identifying each instance of a level) and non-identifier.
In turn, a fact contains analysis indicators known as measures (which, in turn,
can be regarded as fact attributes). One fact and several dimensions conform
a star-schema. Several star-schemas conform a constellation. A specific level of
detail for each dimension produces a certain data granularity or data cube, in
which place the measures. Thus, one can think of a cube as a query over a
star-schema.

Despite its simplicity, the multidimensional schema has been shown to suit
analytical tasks [26] and for this reason, we consider the multidimensional model
as the de facto standard for BI data modeling. For modeling data flows, such
as ETL processes, we do not use the multidimensional model (data-oriented)
but BPMN (process-oriented). BPMN (Business Process Model and Notation)10

is an OMG standard that has already been successfully applied to model BI
processes in general, and ETL processes in particular [27]. BPMN is a graphical
notation that provides constructs to control and manage data flows with enough
detail as to be easily translated into an executable flow (for example, using
BPEL, Business Process Execution Language).

All in all, the assumptions made in this architecture are as follows:

– A new generation data warehousing system is considered (i.e., we will talk
about the integration layer and the ETL/ETQ layer).

10 See http://www.bpmn.org/

http://www.bpmn.org/

134 O. Romero and A. Abelló

– We consider the multidimensional model as the de facto data model for data
analysis.

– We consider BPMN as the de facto data model for data workflows.

Obviously, other similar assumptions could be made for alternative solutions.

4.2 Functional Architecture

Figure 3 sketchs our proposal for an open-access semantic-aware platform for
exploratory business intelligence.

First, note that our system is built following two principles previously dis-
cussed and motivated in this paper: open data and semantic-aware systems.
We say our system is open-access because we aim at providing foundations for
exploratory BI on top of freely available and accessible data sources, whereas it
must be semantic-aware to enable automation. In our case, the common semantic
framework is provided by a reference ontology.

In this system, the user is meant to interact by providing a seed or key
concept for his / her analysis needs. This concept reaches the first module,
AMDO (Automating Muldimensional Design from Ontologies) that looks for this
concept in the reference ontology. Next, AMDO exploits the knowledge captured
in the ontology to propose a list of potential facts, dimensions, measures and
descriptors of interest related to the seed concept. This information is shown to
the user in a comprehensive way. In short, most relevant concepts (according
to some internal rules) are properly ranked and shown to the user, who selects
those of his / her interest in a dynamic, interactive manner.

The choices made by the user out of AMDO’s suggestions (from now on,
the end-user requirement) are forwarded to the GEM module (Generating ETL
and Multidimensional Models), which is responsible for producing the data cube
design (both the conceptual data cube schema and the conceptual design of ETL

Fig. 3. An open access semantic-aware architecture for business intelligence

Open Access Semantic Aware Business Intelligence 135

flows to provision the cube with data). As consequence, GEM needs to be aware
of the end-user non-functional requirements (such as freshness or quality thresh-
olds for the data retrieved) and the candidate sources from where to extract
data. Non-functional requirements are expressed in terms of SLAs (service-level
agreements), whereas data sources are identified from the registry module. In
our system, any data source to be federated into the system must be properly
registered. In our vision, we should follow a local-as-view (LAV) approach (sim-
ilar to that followed by linked data) and thus, concepts in the data sources must
point to the reference ontology (thus we also assume semantic-aware sources).
Accordingly, when registering, the sources must declare what ontology concepts
they refer to. From now on, we will refer to these ontology concepts as linked
concepts (as, at least, one source is linking them). Furthermore, some quality
criteria about the data source (again, as SLAs) must be provided and finally,
the registry also must keep trace of the source technical capabilities (such as
underlying technology -e.g., relational, triple-store, key-value-, query language,
etc.), which will be needed to later query the source. GEM queries the registry
to know what sources may provide the required data and the available sources
are presented to the end-user together with the quality metrics (extracted from
the SLAs) gathered for each of them.

As output, GEM designs a data cube schema and the corresponding ETL
flows, as well as SLAs for the query at hand. Note, however, that some non-
functional requirements may not be met and at this point the user would be
prompted to relax, reinforce or disregard them. Next, the data cube schema is
forwarded to the ORE module and the ETL flow to the COAL module. Now,
COAL could query the sources and retrieve the needed data according to the
ETL flow received. On the contrary, our system performs some optimizations to
avoid data shipping (from the sources) whenever possible by materializing some
queries in order to improve performance. The ORE module selects relevant pieces
of information worth to materialize (e.g., if they are queried regularly) and iter-
atively consolidates them to produce a complete MD star-schema11 (potentially,
a constellation) subsuming all the cube schemas to be materialized so far. ORE’s
goal is to create the minimal MD design (e.g., by fusing adjacent facts and /or
dimensions, hiding irrelevant concepts, etc.) meeting some tuneable quality cri-
teria. Similarly, COAL is an incremental cost-based method for consolidating
individual ETL designs into a unified ETL flow (from now on, the reference
ETL) minimizing the execution cost. As result, ORE and COAL generate and
maintain a data warehouse.

The system control flow goes to COAL once GEM has generated its outputs.
There, COAL is responsible for deciding either to query the data sources or
the data warehouse. Whenever possible, the latter will be prioritized. To do
so, COAL checks if the new ETL at hand is subsumed by the data warehouse
ETL flows. We say the new ETL is subsumed by the reference ETL if after
11 Note we clearly differentiate between a data cube schema and a star-schema. The

first one describes the schema of a query, whereas the second one describes a data
warehouse schema that can answer many different queries.

136 O. Romero and A. Abelló

Fig. 4. TPC-H diagrammatic representation

consolidating both of them the output exactly coincides with the reference ETL.
In other words, if no changes must be made in order to incorporate the new ETL.
In practice, COAL does not look for a full matching but also partial matchings
to identify what parts of the new ETL flow can be answered from the data
warehouse and what parts must be queried from the sources (in the figure, this
has been represented as a set of cubeIDs and sourceIDs). Intuitively, one may
say that COAL tries to rewrite the new ETL in terms of the already available
ETL flows.

Finally, the cube builder module can be thought as a query executor. It
gathers the data retrieved from the sources and the data warehouse and, accord-
ing to the ETL conceptual schema produced by GEM, builds the cube. If a
source must be queried, the source connector triggers a query to retrieve the
data according to the registered data source capabilities and capability-based
optimization techniques [28]. Note the data sources are black-boxes for our sys-
tem and, beyond ORE and COAL, we pass the responsibility for optimizing the
query to the underlying system. To some extent, one may say ORE and COAL
are responsible for the global optimization, whereas data sources are responsible
for the local optimization of queries.

Open Access Semantic Aware Business Intelligence 137

Once the cube has been shown to the user, the system (or the user) might
decide to materialize it. Then ORE and COAL come into action to integrate
the data cube at hand into the data warehouse. Obviously, any visualization or
analytical tool might be used to further analyze the produced data cube from
the end-user point of view.

Last, but not least, note some relevant features of our approach. According
to Fig. 1, our ultimate goal essentially corresponds to an ETQ scenario, but the
internal optimization techniques enable other data flows besides ETQ. Specifi-
cally, COAL and ORE correspond to the ETL arrow and the data warehouse
repository respectively, whereas the ETL rewriting technique (i.e., the CubeID
list produced by COAL) corresponds to the materialized data arrow. From the
point of view of use cases, the user is meant to interact with AMDO and GEM,
whereas the system administrator (the former DW designer) is meant to interact
with ORE and COAL (for example, tuning the internal metrics used by ORE
and COAL to consolidate the designs). Furthermore, both ORE and COAL gen-
erate and store valuable metadata of interest for the end user. For example, the
data warehouse MD schema and ETL processes can be retrieved and visualized.
This feature has many applications and, for example, the ETL flows can be used
to tackle traceability and show what sources were considered, what transforma-
tions applied and how it was combined and visualized as a data cube, whereas the
star-schemas can be used to tackle collaborative BI and query recommendation
(based on past evidences).

4.3 A (Toy) Usage Example

Prior to detailing each of the modules contained in our system (see next sections),
we introduce an example to show how such a system would work from the point
of view of the end-user. For this example we will consider the TPC-H benchmark
[29]. In our approach, we need an ontology (our common semantic framework)
whose diagrammatic representation is depicted in Fig. 4. Suppose now an end-
user interested in orders lineitems. It may start dropping a query by writing
the word lineitem in the GUI. Immediately, AMDO looks for this word in the
system reference ontology and proposes a set of dimensions, facts and measures
of potential interest. For example, let assume the output shown in Table 1 (in
brackets, the relevance computed by AMDO).

Table 1. An Example of AMDO’s outputs

Proposed fact: lineItem (100 %)

Measures Dimensions

ExtendedPrice (100 %) Orderdate (93 %)
Quantity (95 %) Shipdate (90 %)
Discount (80 %) Nation (of the customer) (87 %)
. . . Supplier (83 %)

. . .

138 O. Romero and A. Abelló

Usually, AMDO will propose different facts (not only one) ranked by rele-
vance (see Sect. 5.1 for further details) and for each fact it will propose different
measures and dimensions. Similarly to most BI dashboards, the user may drag
and drop the concepts to build the desired cube schema. For example, sup-
pose the user chooses extendedPrice and discount as measures and the customer
nation as single dimension. At this point, AMDO will allow the user to add
slicers (e.g., nation = ‘Serbia’) and specify derivation functions (e.g., price =
extendedPrice*(1−discount)) and aggregation functions (e.g., compute the aver-
age price). Once done, GEM creates the data cube schema. For example, consider
the example depicted in Fig. 5. GEM identifies the ontology subset (bolded in
colours) needed to satisfy the end-user requirement forwarded from AMDO (in
words, the average price paid (measure) by Serbian customers (dimension)). For
further information on GEM see Sect. 5.2 but note that additional ontology con-
cepts (e.g., orders in our running example, which is bolded in green), not chosen
by the end-user, may be needed to properly relate the concepts at hand (bolded
in orange) and produce a single data cube. Once the schema has been created,
GEM looks for those registered sources linked to the ontology concepts partic-
ipating in the cube. These sources are presented to the user together with the
data source quality evidences registered as SLAs. Suppose now three sources:
A, B and C, but B presents some quality issues: its servers are frequently down
and data provided is generated by a small community that cannot guarantee
its correctness. For this reason, the user decides not to consider B and proceed
with the other two sources. Next, GEM designs the needed ETL processes to
provision the data cube schema with data from the selected sources.

Next, COAL is launched to check what parts of the new ETL flow can
be rewritten in terms of the data warehouse ETL flows and what others need
to query the data sources. Suppose we need to query a source. Then, accord-
ing to the metadata regarding A and C it asks the source connector to wrap
a query to obtain the needed data. For example, if A is a relational data-
base that contains a table M(orderkey, partkey, suppkey, extendedPrice,
discount, ...) (like the one provided in the TPC-H schema for lineitem) and
we want to obtain the measures needed from it, it would trigger an SQL query
such as SELECT orderkey, partkey, suppkey, extendedPrice, discount FROM
M (where the set {orderkey, partkey, suppkey} is considered to be the table
primary key). Data gathered from the data warehouse and the data sources is
properly assembled according to the ETL flow created by GEM.

Once the data cube is ready any visualization or analytical tool can be used
to show it to the user. If the user eventually decides to integrate this data cube
into the data warehouse, our system would launch first ORE and then COAL
to perform the needed evolution tasks in the data warehouse (further details in
the next section).

Finally, suppose now that we decided to materialize the current query and,
in the future, the user is interested in the discount (measure) obtained for
each customer (dimension). Clearly, this query can be rewritten in terms of the
inputs needed for the query discussed above. Thus, the COAL module will use

Open Access Semantic Aware Business Intelligence 139

Fig. 5. GEM example

equivalence rules to rearrange the ETL operations in both flows (always pre-
serving the semantics) and maximize the overlapping area. In this case, the new
ETL is completely subsumed by the reference one and therefore, COAL will find
a full match (i.e., complete overlapping). See Sect. 5.4 for further details.

5 An Open-Access Semantic-Aware System

Our system sets a common semantic framework by means of an ontology. Note
that, up to now, we have assumed a single reference ontology. However, in prac-
tice, several ontologies may co-exist. Ontology matching techniques can be used
to combine such ontologies and, in the end, the more inter and intra-relationships
captured, the better. Regarding the sources, by now, we only assume semantic-
aware repositories (e.g., linked data). Nevertheless, it might be possible to wrap
other sources with additional semantics and enable their integration into our
system. For example, tools like Triplify12 can be used to semi-automate such
task. This opens the door for a polyglot system consisting of heterogeneous data
sources.
12 See http://triplify.org/Overview

http://triplify.org/Overview

140 O. Romero and A. Abelló

In the rest of this section we will focus on the main modules of our proposal
(i.e., AMDO, GEM, ORE and COAL) and we present them in more detail.

5.1 The AMDO Module

AMDO [30] looks for ontology concepts that together with the seed concept
(provided by the end-user) may produce meaningful data cubes. In practice, it
looks for concepts likely to play a valid multidimensional role (with regard to
the seed concept). Specifically, dimensions arrange the multidimensional space
where the fact of study is depicted. Each instance of data is identified (i.e., placed
in the multidimensional space) by a point in each of its analysis dimensions.
Conceptually, it implies that a fact must be related to each analysis dimension
(and by extension, to any dimensional concept) by a many-to-one relationship.
That is, every instance of the fact is related to, at least and at most, one instance
of an analysis dimension, and every dimension instance may be related to many
instances of the fact.

AMDO looks for potential facts, dimensions, measures and descriptors by
means of topological patterns guaranteeing the MD constraints above discussed.
Importantly, AMDO does not perform a blind search but a guided search from
the seed concept. Furthermore, some internal metrics are used to rank concepts
found. For example, a fact containing many measures and dimensions, closeness
to the seed concept, etc.

Internally, AMDO exploits standard reasoning services to compute the topo-
logical patterns.

5.2 The GEM Module

GEM [31] receives the facts, dimensions, measures and descriptors identified by
AMDO, which we will refer to as the input requirement from now on.

The process of creating the MD and ETL designs for the input requirement
is a semi-automatic process comprising four main stages (see Fig. 6). The out-
come of each stage is validated and then, either it is propagated to the next
stage or undergoes a correction process. The correction process may be done
automatically, it may suggest changes, or it may require user feedback.

Stage 1: Requirement verification. First, the system checks if there is a
mismatch among the input requirement and the ontology linked concepts. For
each concept in the input requirement, GEM checks if, at least, there is a source
linked to it. In case of mismatch, it may suggest relaxation of the requirement
or alternatives (e.g., choosing subclasses).

Stage 2: Requirement completion. After mapping the input requirement
onto the ontology and verifying it, the system complements it with needed
additional information. This stage identifies intermediate concepts that are not
explicitly stated in the business requirement, but are needed in order to retrieve
data. Intuitively, it identifies all the ontology concepts needed to eventually build

Open Access Semantic Aware Business Intelligence 141

Fig. 6. GEM in a Nutshell

a query (or access plan) to answer the requirement. User feedback is welcomed for
ensuring correctness and compliance to the end-user needs in case of ambiguity.

Stage 3: Multidimensional verification. Next, we look for a MD interpreta-
tion of the ontology subset identified in the previous stage. To do so, we check the
MD integrity constraints and verify the correctness of the requirement according
to MD design principles. Hence, we check two issues: (i) whether the factual data
is arranged in a MD space (i.e., it forms a data cube and thus, if each instance of
factual data is identified by a point in each of the analysis dimensions [32]); and
(ii) whether data summarization performed is correct by examining whether the
following conditions hold [33]: (a) disjointness (the sets of objects to be aggre-
gated must be disjoint); (b) completeness (the union of subsets must constitute
the entire set); and (c) compatibility of the dimension, the type of measure being
aggregated and the aggregation function.

Stage 4: Operator identification. The ETL operations are identified in three
phases. First, we use the annotations generated by the previous steps for extract-
ing schema modification operations. Then, the cubes are built. And finally, we
complement the design with additional information that might be found in the
sources and with typical ETL operations such as surrogate key and slowly chang-
ing dimensions. Similar to Stage 1, once the sources have been identified, this
step looks for mismatches between the end-user and data source SLAs and may
suggest alternatives or relaxation of some non-functional requirements.

5.3 The ORE Module

ORE [34] is responsible for integrating new data cube schemas into the data
warehouse. It comprises four stages, namely matching facts, matching dimen-
sions, complementing the MD design, and integration (see Fig. 7). The first three

142 O. Romero and A. Abelló

Fig. 7. ORE in a Nutshell

stages gradually match different MD concepts and explore new design alterna-
tives. The last stage considers these matchings and designer’s feedback to gen-
erate the final MD schema that accommodates a new information requirement.

In all stages, we keep and maintain a structure, namely traceability metadata
(TM), for systematically tracing everything we know about the MD design inte-
grated so far, like candidate improvements and alternatives. With TM , we avoid
overloading the produced MD schema itself.

Stage 1: Matching facts. We first search for different possibilities of how to
incorporate the data cube schema at hand (i.e., the MD interpretation produced
by GEM) to TM . The matching between factual concepts is considered –i.e., the
system searches the fact(s) of TM producing an equivalent set of points in the
MD space– as the one in the given MD interpretation. Different possibilities to
match the factual concepts results with the appropriate sets of integration oper-
ations. The costs of these integration possibilities are weighted and prioritized.

Stage 2: Matching dimensions. After matching facts, we then conform the
dimensions of the paired facts. Different matchings between levels are considered
(i.e., “=”, “1 - 1”, “1 - *” and “* - 1”) and thus, the different valid conformation
possibilities are obtained. With each possibility, a different set of integration
operations for conforming these dimensions is considered and weighted.

Stage 3: Complementing the MD Design. We further explore the reference
ontology and search for new analytical perspectives related to the new concepts.
Different options may be identified to extend the current schema with new levels,
descriptors, and measures). The user is then asked to (dis)approve the integration
of the discovered concepts into the final MD schema.

Stage 4: Integration. The MD schema is finally obtained in two phases of this
stage. First, possible groupings of the adjacent concepts containing equivalent
MD knowledge is identified to minimize the MD design. Finally, the final MD
schema is produced by folding and collapsing grouped concepts to capture only
the minimal information relevant to the user. Nevertheless, the complete TM
is still preserved in the background to assists further integration steps (e.g., to
handle future evolution events).

Open Access Semantic Aware Business Intelligence 143

Fig. 8. ORE example

Example: The general idea behind ORE can be visualized in the example
depicted in Fig. 8. This figure shows two outputs produced by GEM for two
given requirements (IR1 and IR2) over the TPC-H example. As output, ORE
will produce an integrated schema meeting the two cube-schemas of the require-
ments at hand.

5.4 COAL

COAL [35] is responsible for integrating the new ETL flow at hand with the data
warehouse ETL flows. Typically, an ETL design is modeled as a directed acyclic
graph. The nodes of the graph are data stores and operations, and the graph
edges represent the data flow among the nodes. Intuitively, for consolidating
two ETL designs, a referent G1 and a new G2 designs, we need to identify the
maximal overlapping area in G1 and G2. However, this is not a typical graph-
matching problem, as the MD interpretation of the ETL flow must be preserved.
Therefore, we proceed as follows. First, we identify the common source nodes
between G1 and G2. For each source node, we consider all paths up to a target
node and search for common operations in both designs. In these paths, we
search for common operations that could be consolidated into a single operation
in the resulting design.

Deciding what operations can be consolidated and how is not an easy task.
If two operations, each placed in a different design, can be matched, then we
have a full match (e.g., the very same or equivalent operations). If two oper-
ations, one in the reference design and the other in the new design, partially
overlap, then we have a partial match (e.g., one operation subsuming the other).

144 O. Romero and A. Abelló

Fig. 9. COAL example

To detect the maximum number of full and partial matchings, we should also
look at the operations performed before the ones considered for the matching;
i.e., COAL must consider restructuring both designs by moving operations to
maximize the number of overlapping operations. Restructuring the ETL designs
must be performed by guaranteeing the same semantics as result and this is
achieved by means of a set of predefined equivalence rules between operations
(e.g., selections can always be pushed down a join operation, but a selection
cannot be pushed down a projection if the selection attribute coincides with the
projected attributed).

Example: The general idea behind COAL can be visualized in the example
depicted in Fig. 9. There, a new and a reference ETL flow are presented. In
general, these two designs may have a number of common operations. COAL’s
internal algorithms look for a minimal resulting integrated ETL such that com-
mon operations are executed once and the semantics of both flows are preserved
by means of the above discussed equivalence rules. What minimal exactly means
depends on the quality criteria determined by the system administrator.

5.5 Open Questions

In our functional architecture we have shown the feasibility of some of the chal-
lenges behind exploratory BI (see Sect. 2.1). However, several challenges still
remain open for exploratory BI and deserve further attention. More specifically,
the most important ones can be summarized as follows:

– Integration of schemas: In practice, it is unfeasible to assume that a single
common semantic framework (where any potential data source of interest
is mapped) does exist. Indeed, several reference languages may co-exist and
automatic mappings should be discovered (ideally, by means of reasoning).

– LAV vs. GAV: Clearly, a LAV approach is desired for mapping the data
sources to the semantic framework but nowadays most approaches follow a
GAV approach (i.e., the mappings are in the ontology concepts). Further
research on semantic-aware formalisms to allow LAV is desirable.

Open Access Semantic Aware Business Intelligence 145

– Reasoning: Tightly related to the previous item, computationally feasible
reasoning techniques are needed in order to infer knowledge not explicitly
stated in the reference layer. In our work, we used the DL-Lite family [25],
which provides a good trade-off between expressivity (similar to that of UML)
and computational complexity. However, only basic inference algorithms (such
as subsumption) were feasible in practice. Others, like computing the tran-
sitive functional closure, needed ad-hoc algorithms to be computed. Thus,
creating reasoning facilities over DL / datalog families especially designed to
capture the multidimensional model is a must. In this sense, how to exploit
parallelism and benefit from distributed computation when computing rea-
soning is also an open challenge.

– ETL Operators: The ETL flows automatically generated in our approach
mainly consider the relational algebra and a bunch of additional operations
(create surrogates, dictionary look-ups, etc.). Ideally, any transformation
should be able to be specified and automatically considered by our frame-
work in an automatic way (right now, the ETLs produced need to be manually
enriched).

– Non-Functional Requirements: How to specify non-functional require-
ments in a machine readable format and include them all over the
process is still also an open challenge. Traditionally, non-functional require-
ments are considered and the database is correspondingly tuned by database
administrators.

6 Semantic Aware Business Intelligence: State of the Art

In the recent past there has been a bloom of new techniques and methods for
BI relying on semantic-aware formalisms. Semantic-aware data warehouses are
nowadays hot topics of research (e.g., among many others [36–39]). These works
can be understood as the cog wheels forming the exploratory BI machine and
they span from requirement engineering, conceptual design to physical design
in many and disparate areas. Surveying all these works is completely unfeasible
and, for this reason, in this section, we will focus on those approaches present-
ing similar systems to what we have called exploratory BI (i.e., the big picture)
and how they propose to combine different techniques to produce similar sys-
tems. Indeed, in the literature we can find several equivalent or similar terms to
exploratory BI. For example, “live BI” [15], “on-demand BI” [16], “ad-hoc BI”
[17], “open BI” [18], “situational BI” [19], or “fusion cubes” in [20].

Mazón et al. [18] presents a platform to analyze linked open data and, sim-
ilar to our approach, they assume semantic-aware sources. Data modeling and
provisioning are achieved by means of a traditional data warehouse architecture
(which is loaded with data from the sources) following model-driven techniques
and their focus is on providing advanced support to non-technical users to trigger
data mining algorithms over the gathered data. To support non-expert data min-
ing users, a knowledge base conforming quality criteria of the sources is created
and used as main source to recommend the user data explorations.

146 O. Romero and A. Abelló

Essaidi [16] presents on-demand BI services and adopt models related to
Software-as-a-Service (SaaS) as technical solution. Their approach consists of
a multi-layered architecture to support different business intelligence needs,
namely: the designer tasks (designing the environment, perform data integra-
tion and manage metadata) based on a model-driven approach and the end-user
analytical needs. They add a third tier of services related to security (which
includes authorities, roles, users, groups and grants). From the point of view of
BI, this solution embeds and supports traditional BI into a SaaS architecture.

Berthold et al. [17] focuses on the technical challenges of ad-hoc BI, namely,
a global business data model, data source integration and enrichment (in which
they distinguish between business configuration at design time, and data provi-
sioning at run time) and finally, support for ad-hoc (self-oriented) and collabo-
rative BI.

Castellanos et al. [15] presents a unified data management and analytics
platform for live BI. This paper presents a flexible architecture that allows to
specify and define ETL flows from highly heterogeneous sources. They introduce
the concept of extraction operators so that unstructured or semi-structured data
can be extracted and integrated with structured data. In this paper, the data flow
is defined in terms of a pipeline transforming input streams into analytics results.
It is presented in terms of an event discovery stage (based on historical evidences)
from the input stream and a second stage of further analysis of the events to
detect and predict non-explicit patterns. Special emphasis is put on the need
of a powerful physical design and optimizer that could deal with heterogeneous
and mixed data flows.

Löser et al. [19] presents a platform to correlate data from an organization
data warehouse with external sources. This platform is database-inspired and
enables traditional BI queries (ad-hoc and aggregate queries) over cloud archi-
tectures. Their approach consists of a common algebraic core to describe, plan,
optimize and execute queries, and similar to the previous approach, they focus
on unstructured sources and how to extract and integrate data from them. Also,
an optimizer and a parallel executor engine are introduced.

Finally, [20] envisions a highly heterogeneous BI system where a query is for-
mulated, then relevant sources are discovered and selected and data provisioning
and integration flows are triggered before presenting the resulting data to the
user. An abstract architecture is also presented and data from external and inter-
nal sources is ETL-ed into stationary (i.e., pre-defined cubes) and fusion cubes
(similar to the ETQ term in this paper) before querying them. Different from
the rest of approaches, this is a visionary paper presenting future research trends
and priorities for data modeling and provisioning for BI processes but no specific
solution is discussed.

All in all, these approaches present a similar ultimate goal and some common
trends can be identified. For example, they agree on the need to make transparent
to the end-user all the technical complexity behind advanced BI solutions and
provide flexible and intuitive conceptual formalisms in order to allow end-users
specify and design their queries. These solutions mainly differ though in the

Open Access Semantic Aware Business Intelligence 147

assumptions made. We can identify a key assumption that conditions the solution
presented: loosely coupled - tightly coupled data sources. In this aspect, we can
find a very wide range of solutions but the consequences are clear: the more tight
the data sources are the better internal optimizations can be made.

Regarding our approach, we present an instance of the abstract architecture
envisioned in [20] and use a reference ontology to relate loosely coupled sources
and, at the same time, enable some global optimizations. Furthermore, special
emphasis is put on automatic MD discovery, design and deployment.

7 Conclusions

In this paper we have motivated the need for new generation BI systems and
coined the exploratory BI term, which should enable end-users to trigger right-
time analytical tasks over disparate and heterogeneous sources. The challenges
behind exploratory BI are manifold, but we have focused on two key aspects:
open-access (following the open data movement) and semantic-aware repositories
to enable automation.

As a proof of concept, we have sketched the architecture of an open-access
semantic-aware system to support exploratory BI and highlighted the main areas
of research for enabling exploratory BI.

References

1. Lenzerini, M.: Data integration: a theoretical perspective. In: Popa, L., Abiteboul,
S., Kolaitis, P.G., (eds.) PODS, pp. 233–246. ACM (2002).

2. Bukhres, O.A., Elmagarmid, A.K. (eds.): Object-Oriented Multidatabase Systems:
A Solution for Advanced Applications. Prentice-Hall, Engle- wood Cliffs (1996)

3. Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems, 3rd edn.
Springer, New York (2011)

4. Shadbolt, N., Berners-Lee, T., Hall, W.: The semantic web revisited. IEEE Intell.
Syst. 21(3), 96–101 (2006)

5. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semant.
Web Inf. Syst. 5(3), 1–22 (2009)

6. Eberius, J., Thiele, M., Braunschweig, K., Lehner, W.: Drillbeyond: enabling busi-
ness analysts to explore the web of open data. PVLDB 5(12), 1978–1981 (2012)

7. Golfarelli, M., Rizzi, S.: Data Warehouse Design: Modern Principles and Method-
ologies, 1st edn. McGraw-Hill, New York (2009)

8. Kimball, R., Reeves, L., Thornthwaite, W., Ross, M.: The Data Warehouse Lifecy-
cle Toolkit: Expert Methods for Designing. Developing and Deploying Data Ware-
houses. Wiley, New York (1998)

9. Giorgini, P., Rizzi, S., Garzetti, M.: Grand: a goal-oriented approach to requirement
analysis in data warehouses. Decis. Support Syst. 45(1), 4–21 (2008)

10. Mazon, J.N., Trujillo, J., Lechtenborger, J.: Reconciling requirement-driven data
warehouses with data sources via multidimensional normal forms. Data Knowl.
Eng. 23(3), 725–751 (2007)

148 O. Romero and A. Abelló

11. Jensen, C.S., Pedersen, T.B., Thomsen, C.: Multidimensional Databases and Data
Warehousing. Synthesis Lectures on Data Management. Morgan & Claypool Pub-
lishers, San Rafeal (2010)

12. Winter, R., Strauch, B.: A method for demand-driven information requirements
analysis in DW projects. In: Proceedings of 36th Annual Hawaii International
Conference on System Sciences, pp. 231–239. IEEE (2003).

13. Golfarelli, M., Rizzi, S., Turricchia, E.: Modern software engineering methodologies
meet data warehouse design: 4WD. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK
2011. LNCS, vol. 6862, pp. 66–79. Springer, Heidelberg (2011)

14. Wrembel, R.: A survey of managing the evolution of data warehouses. IJDWM
5(2), 24–56 (2009)

15. Castellanos, M., Dayal, U., Hsu, M.: Live business intelligence for the real-time
enterprise. In: Sachs, K., Petrov, I., Guerrero, P. (eds.) From Active Data Manage-
ment to Event-Based Systems and More. LNCS, vol. 6462, pp. 325–336. Springer,
Heidelberg (2010)

16. Essaidi, M.: ODBIS: towards a platform for on-demand business intelligence ser-
vices. In: Proceedings of the ACM International Conference on EDBT/ICDT
Workshops. ACM (2010).

17. Berthold, H., Rösch, P., Zöller, S., Wortmann, F., Carenini, A., Campbell, S.,
Bisson, P., Strohmaier, F.: An architecture for ad-hoc and collaborative business
intelligence. In: EDBT/ICDT Workshops (2010).

18. Mazón, J.N., Zubcoff, J.J., Garrigós, I., Espinosa, R., Rodŕıguez, R.: Open business
intelligence: on the importance of data quality awareness in user-friendly data
mining. In: EDBT/ICDT Workshops, pp. 144–147. ACM (2012).

19. Löser, A., Hueske, F., Markl, V.: Situational business intelligence. In: Castellanos,
M., Dayal, U., Sellis, T. (eds.) Business Intelligence for the Real-Time Enterprise.
Lecture Notes in Business Information Processing, vol. 27, pp. 1–11. Springer,
Berlin Heidelberg (2009)

20. Abelló, A., Darmont, J., Etcheverry, L., Golfarelli, M., Mazón, J.N., Naumann,
F., Pedersen, T.B., Rizzi, S., Trujillo, J., Vassiliadis, P., Vossen, G.: Fusion cubes:
towards self-service business intelligence. Int. J. Data Warehouse. Min. 9(2), 66–88
(2013)

21. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, New York (2003)

22. Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about datalog
(and never dared to ask). IEEE Trans. Knowl. Data Eng. 1(1), 146–166 (1989)

23. Patel-Schneider, P.F., Horrocks, I.: Position paper: a comparison of two modelling
paradigms in the semantic web. In: 15th International Conference on World Wide
Web (WWW), pp. 3–12. ACM (2006).

24. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: Datalog±: a unified approach to ontologies
and integrity constraints. In: Fagin, R. (ed.) ICDT. ACM International Conference
Proceeding Series, vol. 361, pp. 14–30. ACM, New York (2009)

25. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-lite family
and relations. J. Artif. Intell. Res. 36, 1–69 (2009)

26. Romero, O., Marcel, P., Abelló, A., Peralta, V., Bellatreche, L.: Describing analyt-
ical sessions using a multidimensional algebra. In: Cuzzocrea, A., Dayal, U. (eds.)
DaWaK 2011. LNCS, vol. 6862, pp. 224–239. Springer, Heidelberg (2011)

Open Access Semantic Aware Business Intelligence 149

27. El Akkaoui, Z., Mazón, J.-N., Vaisman, A., Zimányi, E.: BPMN-based conceptual
modeling of ETL processes. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2012.
LNCS, vol. 7448, pp. 1–14. Springer, Heidelberg (2012)

28. Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems: The Complete
Book. Pearson Prentice Hall, Upper Saddle River (2008)

29. TPC: TPC-H specification (2012). http://www.tpc.org/tpch/
30. Romero, O., Abelló, A.: A framework for multidimensional design of data ware-

houses from ontologies. Data Knowl. Eng. 69(11), 1138–1157 (2010)
31. Romero, O., Simitsis, A., Abelló, A.: GEM: requirement-driven generation of

ETL and multidimensional conceptual designs. In: Cuzzocrea, A., Dayal, U. (eds.)
DaWaK 2011. LNCS, vol. 6862, pp. 80–95. Springer, Heidelberg (2011)

32. Mazón, J., Lechtenbörger, J., Trujillo, J.: A survey on summarizability issues in
multidimensional modeling. In: DKE, pp. 1452–1469 (2009).

33. Lenz, H., Shoshani, A.: Summarizabilty in OLAP and Statistical Data Bases. In:
SSDBM, pp. 132–143 (1997)

34. Jovanovic, P., Romero, O., Simitsis, A., Abelló, A.: ORE: an iterative approach to
the design and evolution of multi-dimensional schemas. In: Song, I.Y., Golfarelli,
M., (eds.) DOLAP, pp. 1–8. ACM (2012).

35. Jovanovic, P., Romero, O., Simitsis, A., Abelló, A.: Integrating ETL processes from
information requirements. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2012. LNCS,
vol. 7448, pp. 65–80. Springer, Heidelberg (2012)

36. Pérez, J.M., Llavori, R.B., Aramburu, M.J., Pedersen, T.B.: Integrating data ware-
houses with web data: a survey. IEEE Trans. Knowl. Data Eng. 20(7), 940–955
(2008)

37. Nebot, V., Llavori, R.B.: Building data warehouses with semantic web data. Decis.
Support Syst. 52(4), 853–868 (2012)

38. Spaccapietra, S. (ed.): Journal on Data Semantics XII. LNCS, vol. 5480. Springer,
Heidelberg (2009)

39. Gallinucci, E., Golfarelli, M., Rizzi, S.: Meta-stars: multidimensional modeling for
social business intelligence. In: Proceedings of DOLAP 2013, pp. 11–18. ACM
(2013).

http://www.tpc.org/tpch/

Transparent Forecasting Strategies
in Database Management Systems

Ulrike Fischer(B) and Wolfgang Lehner

Technische Universität Dresden, Database Technology Group, Dresden, Germany
{ulrike.fischer,wolfgang.lehner}@tu-dresden.de

Abstract. Whereas traditional data warehouse systems assume that
data is complete or has been carefully preprocessed, increasingly more
data is imprecise, incomplete, and inconsistent. This is especially true in
the context of big data, where massive amount of data arrives contin-
uously in real-time from vast data sources. Nevertheless, modern data
analysis involves sophisticated statistical algorithm that go well beyond
traditional BI and, additionally, is increasingly performed by non-expert
users. Both trends require transparent data mining techniques that effi-
ciently handle missing data and present a complete view of the database
to the user. Time series forecasting estimates future, not yet available,
data of a time series and represents one way of dealing with missing
data. Moreover, it enables queries that retrieve a view of the database
at any point in time — past, present, and future. This article presents
an overview of forecasting techniques in database management systems.
After discussing possible application areas for time series forecasting, we
give a short mathematical background of the main forecasting concepts.
We then outline various general strategies of integrating time series fore-
casting inside a database and discuss some individual techniques from
the database community. We conclude this article by introducing a novel
forecasting-enabled database management architecture that natively and
transparently integrates forecast models.

1 Introduction

We can observe the transition of traditional data warehouse systems to big data
stores where massive amount of data arrives continuously in real-time from vast
data sources. Whereas traditional systems assume that data is complete or has
been carefully preprocessed using ETL tools, this is not true any more in the
context of big data and real-time requirements. Nowadays, data is increasingly
characterized by incompleteness, inconsistency, and imprecision. Nevertheless,
we can observe the requirements for sophisticated adhoc queries that extract
higher-level information out of the vast and incomplete data sets. This leads to
tremendous challenges of dealing with missing (past, present, and future) data
that arrives at a later point in time or might even never be available.

In fact, we require data mining techniques that fill in such non-existent data.
Various techniques from the statistical field aim at dealing with different kinds
of incomplete data, for example:

E. Zimányi (Ed.): eBISS 2013, LNBIP 172, pp. 150–181, 2014.
DOI: 10.1007/978-3-319-05461-2 5, c© Springer International Publishing Switzerland 2014

Transparent Forecasting Strategies in Database Management Systems 151

– Forecasting estimates future, not yet available, data of a time series.
– Imputation replaces missing data with substituted values based on similar

values observed in the same data set.
– Interpolation estimates a function between known data points to construct

new data points.
– Extrapolation estimates the characteristics of a whole population based on

the selection of a subset of individuals.
– Recommendation provides user ratings of items that have not been rated yet.

In the past, these techniques were often performed by highly qualified statisti-
cal experts, with long experience in the company, who manually experiment with
different algorithms and parametrization. Such manual approaches are infeasible
or even impossible for large data sets that grow and evolve at a rapid pace. More-
over, the non-expert user does not care about advanced data mining techniques.
The user expects a complete view of the data set at any point in time, inde-
pendent of its actual characteristics. Along with the traditional ANSI/SPARC
architecture of a DBMS, which has the goal to separate a users’ view of the data
from its physical representation, incomplete data should be handled transpar-
ently to the user by the underlying database system. As a consequence, data
mining techniques dealing with incomplete data should be seamlessly integrated
into the existing infrastructure of a database management system, maintaining
the declarative interface of a DBMS.

For example, assume a market research company that collects sales data
according to various retailers and product lines. Retailers communicate their
data to the market research company in regular time intervals. In this context,
it happens quite regularly that retailers fail to deliver data, provide incomplete
data or delay data delivery. Suppose a decision manager wants to create an
aggregated report of products sold between yesterday and tomorrow:

SELECT pname , time , SUM (s a l e s u n i t s)
FROM f a c t s f , products p
WHERE f . p roduct id = p . product id
AND time in (yes terday () , tomorrow ())
GROUP BY pname , time

Within this time interval, some stores might have failed to deliver their sales
data, so here an interpolation model could fill in such missing data. Alterna-
tively or additionally, an imputation model can be used to derive missing data
from similar stores. Finally, the data for tomorrow is not available at all, there-
fore, forecast models can be used to estimate future data. All these models are
created and transparently processed by the query engine, the user just receives
a traditional relational table containing the complete result set.

In fact, as most mining techniques are based on some kind of statistical model,
this will lead to a model-based database system, where incomplete, inconsistent
or imprecise data is represented trough statistical models. New query process-
ing, optimization, and execution techniques are required that work with models
instead of real data. Besides query processing, such a model-based database sys-
tem also impacts the design of a database to select and parametrize models that

152 U. Fischer and W. Lehner

allow efficient query processing as well as accurate query results. Finally, new
data has to be efficiently incorporated into the existing model configuration.

The design of such a model-based database system opens up many chal-
lenges. We have to deal with large amount of data incorporating real-time data
streams from many data sources. There are loads of existing statistical models,
ranging from very simple to rather complex ones with many parameter and tun-
ing opportunities. Both aspects, data size and parameter possibilities, pose high
challenges to the design of such a model-based database system. In addition,
data characteristics as well as query workloads are rapidly changing requiring a
self-adaptive and self-tuning approach.

Along with this overall goal of designing a model-based database system, in
this article, we turn our attention to one specific statistical technique, which is
time series forecasting. Hence, we are only interested in providing future, not yet
available data of a time series. Hereby, we focus on integrating forecast models
into a database management system in order to transparently support queries
on a future time interval, i.e., forecast queries.

The remainder of this article is organized as follows: We first outline the main
challenges of time series forecasting using three application examples (Sect. 2).
We continue by discussing the mathematical foundations of forecasting, includ-
ing frequently used statistical methods in this area (Sect. 3). We then dive into
technical aspects of extending database systems and give first of all a high level
overview of integrating statistical methods, but not necessarily time series fore-
casting, into database management systems (Sect. 4). Subsequently, in Sect. 5,
we review specific database techniques that explicitly address forecasting of time
series data. Based on the discussion of existing work, in Sect. 6, we introduce
a novel forecasting-enabled database management system that aims to fully
and transparently integrate time series forecasting within a DBMS. We finally
conclude in Sect. 7 and outline some further research challenges.

2 Forecasting Applications

Time series data appears in numerous domains and often forecasting of such
data is required for planning and decision making processes. In this section, we
discuss the characteristics of time series forecasting on three selected application
areas, namely production planning, energy load balancing, and online display
advertisement.

2.1 Production Planning

Typically, large volumes of historical sales data is stored in data warehouse sys-
tems and collected according to various characteristics of products, stores, and
customers. Often a multidimensional data model is used for such kind of appli-
cations where different facts (often called measures) are organized along several
dimensions [23]. The measures within a dimension are further divided into hier-
archies to support multiple granularities. In this context, analytical database

Transparent Forecasting Strategies in Database Management Systems 153

queries are not interested in single measures but in some form of summarized
data (e.g., sales in a certain area). The dimension hierarchies provide the key nav-
igation paths for interactive OLAP (Online Analytical Processing) on the data,
allowing for meaningful query formulation via drill-down, roll-up, or slice-and-
dice operations [47]. Besides querying historical data, forecasts of sales figures
form the basis for planning in many commercial decision-making-processes in
logistics and supply chain management.

According to Mentzer and Bienstock [57], a sales forecasting system should
follow several principles. First, sales forecasts should be provided in a central sys-
tem and tightly coupled with the database management system, allowing fast
access by various departments, such as production, distribution, and marketing.
Second, forecasts have to be available for various horizons (short-, mid-, and
long-term) and hierarchical levels, depending on the company’s needs. For exam-
ple, supply chain managers require long-term sales forecast to plan production
and storage facilities, whereas short-term forecasts are required for timely trans-
portation decisions. Third, the complexity of forecasting should be hidden from
a decision manager, who is usually not an expert in the statistical area. Forecast
results need to be provided in an easy-to-use format. Fourth, a sales forecasting
system should include a suite of time series techniques and provide a combination
of different techniques to benefit from their specific advantages, where Mentzer
and Bienstock see time series, regression and qualitative techniques (see Sect. 3)
as the most important approaches in sales forecasting. Finally, the best fore-
casting techniques for a time series should be selected automatically, by trying
a number of different techniques and selecting the technique that provides the
best forecast accuracy.

2.2 Energy Load Balancing

As another example, consider the energy market domain. One major challenge
is the constantly increasing capacities of renewable energy sources (RES) due
to governmental regulation efforts (e.g., climate saving propositions) and exces-
sive funding policies [21]. Renewable energy sources pose the challenge that
production depends on external factors (wind speed, amount of sunlight, etc.).
Hence, available power can only be predicted but not planned, which makes it
rather difficult for energy distributors to efficiently include RES into their daily
schedules.

The key to balance an energy distribution network successfully is to predict as
many of the most influencing (correlated) parameters for operations as possible.
Such forecasts are often made by domain-specific forecasting techniques specif-
ically designed for energy demand or supply. To forecast energy demand, for
example, Ramanathan et al. [72] propose a multi-equation forecasting technique
that creates a different statistical model for each hour of a day and includes
various variables that capture the seasonality of the data as well as external
influences (e.g., temperature).

In the past, energy balancing was typically done once per day at a specific
time and, accordingly, one-day ahead demand forecasts were calculated only on

154 U. Fischer and W. Lehner

a daily basis. The need for fast response times to react to new market situa-
tions (e.g., weather changes) as well as the continuous streams of new demand
and supply measurements poses additional real-time demands on the forecasting
process [26]. Thus, the runtime of forecasting is very critical and, more impor-
tantly, forecast models have to be continuously adapted to changes in the time
series behavior. Moreover, the hierarchical organization of the energy market
requires a careful selection of the forecasting granularity (e.g., single wind instal-
lation vs. complete regions), the efficient handling of real-time mass prediction
processes and the guarantee of consistency between hierarchy levels.

2.3 Online Display Advertisement

As a third example, online display advertisement allows advertisers to promote
products to users by having publishers display their graphical ads on web pages.
For example, a brokerage firm may wish to target males from California who visit
a Finance web site, and show an ad promoting its special offers to those users.
Such kind of targeted ads are channeled to users via ad networks — intermediates
that package and sell ad space from multiple publishers’ websites [82]. In order
to be able to accept contracts and allocate inventory, an ad network has to
have access to reliable forecasts of user visits. Overestimating user visit volumes
may result in penalties for the publisher if guarantees are not met, whereas
underestimating user visits may leave unsold user visits that often result in
substantial revenue loss.

The forecasting problem in online display advertisement has several chal-
lenges [1]. First, the data to be forecasted is very high-dimensional. Specifically,
each user visit is characterized by hundreds of attributes, including the demo-
graphics of the user (e.g., age, gender, location), explicitly stated interests of
the user (e.g., travel, spots), implicitly inferred interests of the user (e.g, plan-
ning a vacation), characteristics of the web page being visits (e.g., sports page,
travel page), and characteristics of the system being used by the user (e.g., PC vs.
mobile, IP address location). Second, as a consequence of the high-dimensionality
of the data, the number of combinations that needs to be forecasted is of the
order of trillions. A forecast can be requested for any combination of the hun-
dreds of attributes using arbitrary forecasting methods, ranging from traditional
time-series forecasting techniques up to latent class models [12]. Nevertheless,
forecasts have to be returned in real-time, of the order of a few hundred millisec-
onds. Several queries are issued to the forecasting system within a short span of
time to decide if an advertisers’ contract should be acceptable.

3 Mathematical Foundations of Time Series Forecasting

All three application areas are based on the traditional model-based time series
forecasting process, which we outline in this section. After introducing the basic
idea and terminology of forecasting (Subsect. 3.1), we detail the three main steps
of forecasting, namely model creation (Subsect. 3.3), model usage (Subsect. 3.4),

Transparent Forecasting Strategies in Database Management Systems 155

and model maintenance (Subsect. 3.5). For further readings we refer to standard
literature about time series analysis and forecasting [9,10,13].

3.1 Basic Idea and Terminology

A time series is sequence of observations taken sequentially in time, spaced at
equidistant time intervals. A time series up to the current time t is denoted as:

X = (x1, x2, ..., xt). (1)

In general, each point in time might be associated with multiple observations,
where we distinguished dependent and independent observations or variables.
Dependent variables, also known as measure or output variables, are those vari-
ables we actually want to forecast (e.g., product sales, solar energy production).
In contrast, those variables that we believe influence the value of the dependent
variables are referred to as independent or explanatory variables (e.g., product
price, sun radiation).

Forecasting refers to the estimation of values of a time series at some future
point in time. These future values are called forecast values or short forecasts
x̂t+k. The forecasts x̂[t+1;t+h] in the interval from the next point in time t+1 up
to time t+h are usually of most interest. The length of the interval is denoted as
forecast horizon h. Note that the term prediction is often used in a more general
sense and covers different problem types, e.g., classification, recommendation or
moving object prediction. In contrast, the term forecasting is only concerned
with estimating the next and future values of a sequence, i.e., a time series.

The quality of forecast values can be expressed by calculating prediction
intervals, which, for a certain probability, give an estimate of the interval in
which forecast values will fall. If new real data is available, the error of the
forecasts can be calculated by comparing forecasts with real time series data
using an error metric, e.g., the mean squared error (MSE).

A forecasting method is a procedure for computing forecasts from present
and past values. Most forecasting methods are based on a forecast model, which
is learned over historical training data and used to compute the forecast values
(model-based forecasting). Examples of approaches that do not belong to this
class of methods are judgmental or similarity-based forecasting methods.

A forecast model consists of the following parts:

– definition of input and output time series,
– definition of the forecasting method, which determines how forecast values are

calculated,
– model parameters of the forecasting method that have to be determined in

the model estimation step, and
– model state, representing internal variables of the forecasting method that

change with time.

The input of a model consists of n dependent and m independent variables,
whereas the output yields from the associated forecasts of the n dependent vari-
ables. The model parameters and model state directly depend on the used fore-
casting method.

156 U. Fischer and W. Lehner

1.1. Model Specification 1.2. Model Estimation 2. Model Usage

3.1. Model Evaluation

Selected
Model

Model
Parameters

Forecast
Values

Historical Time Series

3.2. Model Adaptation

New Real
Values

1. Model Creation

3. Model Maintenance

Forecasted Time Series

Fig. 1. General forecasting process

Finally, the different steps of forecasting can be summarized into a general
model-based time series forecasting process (Fig. 1):

1. Model Creation: A forecast model is created by defining input, output as well
as the forecasting method (model specification), and by estimating the model
parameters (model estimation).

2. Model Usage: Forecast values based on the created forecast model are calcu-
lated.

3. Model Maintenance: The forecast model is evaluated by comparing real time
series data with forecast values (model evaluation) and, optionally, model
adaption is triggered by recalculating the model parameters or choosing a
new model.

In what follows, we first discuss the characteristics of different forecasting
methods and describe two of them in more detail. We then have a closer look at
the three main steps of the forecasting process.

3.2 Overview Forecasting Methods

Numerous forecasting methods have been proposed in the literature, e.g., Gooi-
jera and Hyndman [36] summarized over 940 papers in the period 1982–2005.
Forecasting methods are often classified into time series methods (or univariate
methods) and causal methods (or multivariate methods) [13]. Time series meth-
ods assume that forecasts depend only on present and past values of the single
series being forecasted, possibly augmented by a function of time such as linear
trend. In contrast, in causal methods forecasts depend, at least partly, on one or
more additional (independent) variables (e.g., price, weather). Finally, forecast-
ing can also be implemented by machine learning approaches that exploit artifi-
cial intelligence techniques, e.g., neural networks [8]. Machine learning approaches
are not specifically designed for time series data and might be applied for

Transparent Forecasting Strategies in Database Management Systems 157

Table 1. Classification of forecasting methods

Time series methods Causal methods Machine learning

ARIMA [9] Multivariate linear Neural networks [88]
Exponential Regression [86] Support vector
Smoothing [40] ARMAX [9] Machines [60]
Multiple linear Bayesian networks [87]
Regression [34] Decision trees [56]

arbitrary predictive tasks, e.g., classification. Table 1 summarizes the different
forecasting methods and gives some literature examples where these methods
have been applied for time series forecasting. Many extensions to the basic for-
mulation of those forecasting methods have been developed, including domain
specific methods that are specifically designed to solve a prediction task in a
certain domain.

Various studies have compared the accuracy of the different forecastingar-
bitrary methods with varying results depending on the domain and forecasting
target. Exponential smoothing and ARIMA models have shown empirically to be
able to model a wide range of real world time series [54], and are usually compu-
tationally more efficient than elaborate machine learning approaches. The main
idea of both approaches is sketched in the following.

Exponential Smoothing. Exponential Smoothing is a popular scheme to pro-
duce smoothed time series, where past observations are weighted with exponen-
tially decreasing weights [33]. In other words, recent observations are given more
weight in forecasting than older observations. Different variants of exponential
smoothing have been proposed, varying in the number and characteristics of the
smoothing weights. The most common variants are called single, double, and
triple exponential smoothing.

For example, single exponential smoothing has only one weight parameter,
also known as the smoothing constant α:

at = αxt + (1 − α)at−1 with a0 = x0. (2)

The forecast of single exponential smoothing is a constant value based on the
last smoothed value at, independent of the forecast horizon h:

x̂t+h = at. (3)

This method is mainly used for stationary time series fluctuating around a
constant mean. In contrast, double exponential smoothing introduces an addi-
tional trend component, whereas triple exponential smoothing (also known as
Holt-Winters [40]) further applies a seasonal component.

158 U. Fischer and W. Lehner

ARIMA Models. ARIMA models describe the behavior of time series using
an auto-regression process [9] and consist of three main parts; the autoregression
part (AR), the integration part (I) and the moving average part (MA).

The autoregressive part AR(p) is computed by a linear combination of pre-
vious values up to a defined maximum lag (denoted p) combined with a random
error term πt:

xt =
p∑
i

ωixt−i + πt. (4)

In contrast, the moving average part MA(q) describes a time series as a random
error term plus some linear combination of previous random error terms up to
a defined maximum lag (denoted q):

xt =
q∑
i

ωiπt−i + πt. (5)

Hereby, the random error terms result from a white noise process, i.e., a set
of uncorrelated, normal-distributed, random variables with an assumed equal
variance. Most time series can not be described solely by an AR or MA forecast
model, as they show behavior of both models at the same time. For this reason, a
combination of both models is useful. Additionally, an integrated part I adjusts
the model for non-stationary time series, leading to so called ARIMA(p, d, q)
models. This basic formulation of ARIMA models can be extended to include
seasonality (SARIMA) or exogenous data (ARIMAX).

A variety of research has studied the relationship between exponential smooth-
ing and ARIMA models [33,59]. In general, all linear exponential smoothing meth-
ods have equivalent ARIMA models. However, exponential smoothing is often
preferred over ARIMA due to its simplicity, robustness and the surprising accu-
racy that can be obtained with minimal effort in model selection.

3.3 Model Creation

Model creation is the process of defining (model specification) and training
(model estimation) a forecast model for given time series data. In this section,
we discuss each of these steps separately. However, in automatic model identi-
fication approaches these two steps are often combined as models are built and
evaluated iteratively.

Model Specification. Model specification requires the definition of the input
and output time series as well as the definition of the forecasting method.

Input and Output Selection. The output time series (i.e., the dependent variables)
depends on the aim of forecasting and has to be specified by the application,
whereas the input time series (i.e., the independent variables) might be manually
or automatically selected. Hereby, the goal is to find those variables (often called
features) that are highly correlated and significantly contribute to the time series

Transparent Forecasting Strategies in Database Management Systems 159

to be forecasted. Statistical techniques, such as principal component analysis,
are often applied to find relationships between different features and to reduce
the number of features [32]. Another issue in input selection is given by the
time series history, e.g., how much history should be used for model estimation.
Hereby, existing research has studied the minimal historical length required for
specific forecasting methods [43] as well as the influence of the history length on
the forecast accuracy [5] and the runtime of the parameter estimator [77].

Forecasting Method Selection. For a given data set, we need to select the fore-
casting method with the highest accuracy, which can be done manually or auto-
matically. The manual approach requires knowledge of statistical theory and
uses diagnostic tools such as the correlogram. Choosing a model manually is not
possible if a large number of time series is involved or if the forecast is done by
non-experts in the statistical area. In the automatic approach, the best model
is selected empirically according to the in-sample error or a model selection cri-
teria such as the Akaike’s Information Criterion (AIC). AIC chooses the model
that maximizes the so-called likelihood function and includes a regularization
term, which basically avoids overfitting by increasing the training error with the
number of parameters fitted in the model. Hyndman et al. [42] developed a state
space framework for the class of exponential smoothing methods, where the best
method is chosen automatically based on AIC. Heuristic model identification
approaches for the class of ARIMA models have also been developed [41]. All
automatic approaches still have the drawback that they select a single model
that has to be best at all times. Ensemble approaches increase robustness by
combining forecasts of several models using weighted linear combinations [36].

Model Estimation. In model estimation, the parameters of the forecasting
method (called model parameters) are fitted to a given training time series. Thus,
model estimation tries to find the best parameter combination for the training
data. This process involves two main components — an optimization function (to
specify which parameter combination is best) and an optimization approach (to
control the search strategy). Most common optimization approaches follow an
iterative search process based on the steepest descent or hill climbing technique.
In each iteration one or several parameter combinations are evaluated using the
optimization function and subsequently, based on the outcome of the evaluation,
a new parameter combination is chosen for the next iteration. After termina-
tion, the best parameter combination according to the optimization function is
outputted (Fig. 2).

The optimization function is composed of the forecasting method and the
error metric used to evaluate the forecast values. Commonly used error metrics
are least squares or maximum likelihood approaches.

Optimization approaches are mainly distinguished into derivative-based and
derivative-free algorithms. Derivative-based methods (e.g., gradient descent,
quasi-newton) exploit the optimization function’s first or second derivations to
move directly into the direction of the steepest descent. If the optimization
function is not derivable gradient approximation techniques can be applied.

160 U. Fischer and W. Lehner

Parameter Evaluation

Parameter Selection

Optimization Function
(forecast method + error metric)

Best Parameter Combination

Time Series
Data

Estimation
Parameters

(max. iterations,
max. stepsize, …)

Fig. 2. Parameter estimation process

In contrast, derivative-free algorithms (e.g., simulated annealing, nelder-mead)
make only direct evaluations of the optimization function, i.e., treat it as black-
box. Finally, the optimization approach can be configured with various parame-
ters, such as the maximum number of iterations or the maximum step size for
selecting the next parameter combination.

3.4 Model Usage

Model usage applies the created model to forecast future values of the time series
for a given forecast horizon h. In model-based forecasting, the time-consuming
part is given by the model creation step, whereas model usage requires only the
application of a function (with the trained parameters).

A more complex aspect of model usage concerns the aggregation of time
series data. Time series data may be aggregated either across time, called tem-
poral aggregation, or across several time series, called contemporaneous aggrega-
tion [13]. For example, suppose we have sales figures for different brand sizes of
different products in successive weeks. Such data may be quite volatile and dif-
ficult to forecast without some form of aggregation, either across time (e.g. over
successive 4-week periods) or across products (e.g. sum all brand sizes for the
same brand). A common problem in inventory control is whether to develop a
summary forecast for the aggregate of a particular group of items and then allo-
cate this forecast to individual items based on their historical relative frequency,
called the top-down approach, or make individual forecasts for each item, called
a bottom-up approach. This line of research is called hierarchical forecasting [31].

3.5 Model Maintenance

As time proceeds, new values of the time series are observable, which impact the
forecast model. First, the state of the model has to be updated to the current
time series values, which we refer to as model update. Second, the parameters
of the model or even the forecasting method might change, which is meant by

Transparent Forecasting Strategies in Database Management Systems 161

the term model maintenance. Complex seasonal patterns or unexpected changes
in time series’ characteristics (also called concept drift) like customers’ buying
preferences or the influence of weather predictions usually require such an adap-
tion of the model. Model maintenance exhibits two major challenges: (1) when to
trigger forecast model maintenance (model evaluation) and (2) how to efficiently
adapt the forecast model parameters (model adaption).

Model Evaluation. If new real data is available, the model can be evaluated
by calculating the forecast error using a specified error metric. Commonly known
error metrics are the mean absolute error (MAE) and mean squared error (MSE).
Such error metrics, however, depend on the scale of the time series values, are
hard to judge and do not allow comparisons between time series of different scale
or mean. In contrast, percentage error metrics evaluate the error’s magnitude
instead of its size. One example is the symmetric mean absolute percentage error
(SMAPE) [53], which was also used in the M3-competition — a mayor time series
competitions in the business forecasting domain [54].

Simple model evaluation approaches trigger model adaption independently
of the actual time series data and might be time-based (after a time interval),
update-based (after a fixed number of new values) or event-based (after updating
an exogenous variable or on request). More advanced approaches monitor the
temporal development of the time series. For example, error-based approaches
evaluate the forecast error after each new real value and trigger adaption when-
ever the error surpasses a predefined threshold [16]. Other approaches use statis-
tical information about the time series like minimum and maximum values [39]
or statistical tests [51].

Model Adaption. A simple way to realize model adaption is by starting from
scratch and by re-executing the model estimation and, optionally, the model
identification step as done in the initialization. This can easily be improved by
reusing previous information, e.g., by providing the last parameters of the model
as starting parameters to the model estimation step. A more advanced app-
roach stores previous model parameters in a decision tree according to specific
context information (e.g., type of day, temperature) and uses them as starting
point in the estimation step if the same context reoccurs [17]. Another approach
extends genetic algorithms with dynamical features, where previously good mod-
els are given an advantage in future selection rounds [83]. Orthogonal approaches
adapt the training set of the models and include only recent observations in
the model creating step, either employing fixed-size or dynamic windows [85].
All these approaches use offline parameter estimation approaches, where the
parameters are fully reestimated using any of the previously discussed optimiza-
tion approaches. As an alternative, approximate online optimization algorithms
[90] may be applied, which evaluate the objective function after each new time
series value and alter the parameter estimate made so far accordingly. However,
the parameters by this approach are only approximative and will deviate from
parameter estimates produced by full optimization. Finally, the forecast model

162 U. Fischer and W. Lehner

itself might be designed in an adaptive way, which aims at completely avoid-
ing the need for recalculating the model parameters. Self-adaptive forecasting
methods extend existing forecasting methods with time-dependent parameters
(e.g., [72]). Ensemble methods combine forecasts of several models and adapt
the weights of the ensemble members over time.

4 Architectural Integration

Recall our vision of a model-based database system outlined in the introduc-
tion. In terms of time series forecasting, our overall objective is the transparent
integration of forecast models inside a database management system. We dis-
cussed the main challenges of typical forecasting applications in Sect. 2, such
as high-dimensional data, real-time requirements, complex and domain-specific
forecasting methods, diverse workloads, non-expert users, and fast evolving data
sets. Moreover, in Sect. 3, we highlighted the most important steps of the fore-
casting process and outlined challenges in this context, such as the selection
of the best forecasting method, long parameter (re-)estimation times, and the
importance of a smart maintenance strategy.

We now turn our attention to the actual integration of forecasting inside a
database management systems. First of all, in this section, we review general
solutions to the integration of any kind of statistical method, not necessarily
time series forecasting, into a DBMS and outline to what extent they support
our overall objective as well as the discussed challenges. We classify existing
methods into (1) no integration approaches (Subsect. 4.1), (2) partial integra-
tion approaches that try to keep changes to the database as small as possi-
ble (Subsect. 4.2), and (3) full integration approaches that actually extend the
functionality of a database system (Subsect. 4.3).

4.1 No Database Integration

No database integration approaches refer to the use or integration of statistical
approaches in other system categories, such as external software or Map-Reduce
environments.

Statistical Software Environments. Traditionally, statistical computations
have been performed outside the database system by specialized software, which
uses the DBMS primarily as backend data server. Ganesan and Shenoy [50]
provide a survey of forecasting software up to the year 2006. Probably the most
well-known commercial software environments are Matlab [55], SAS [75] and
SPSS [78]. All include a large variety of specific forecasting methods including
approaches for automatic and ensemble forecasting.

A popular open-source statistical software package is the R framework [71].
With over 2,000 add-on packages, it is comparable to the big commercial pack-
ages SAS and SPSS. In the context of time series forecasting, it contains a wide

Transparent Forecasting Strategies in Database Management Systems 163

variety of model types and parameter estimators. Model types range from lin-
ear models, exponential smoothing, ARIMA up to machine learning approaches.
Additionally, automatic model identification approaches for ARIMA and expo-
nential smoothing models are available [41]. A general-purpose optimization
functions including five different optimization approaches (e.g., Nelder-Mead,
Simulated Annealing) is used to estimate the parameters of the various model
types. As R is open-source it can be easily extended with new, domain-specific,
forecasting methods. A number of approaches aim at improving the handling of
large amount of data in R [76]. The proposed techniques range from simple ones
that require rewriting and adapting of existing scripts and functions up to more
complex ones that try to adapt the R environment in a transparent manner. For
example, an approach called RIOT [89] focuses on storing and querying arrays,
and tries to make R more I/O efficient by introducing a new expression algebra.

Map-Reduce Environments. Massive data sets and and large clusters of
machines have led to an increased interest in implementing statistical algorithms
on Map-Reduce environments. Several research has investigated the implement-
ing of scalable versions of machine learning algorithms on Map-Reduce, ranging
from proprietary (e.g., [67]) to open source implementations [6]. In contrast,
declarative machine learning approaches try to avoid the low-level implementa-
tions of specific algorithms on Map-Reduce. For example, SystemML [35] pro-
vides a declarative high-level language for writing machine learning algorithms,
which is automatically compiled and optimized into a set of Map-Reduce jobs.
Another declarative approach is MLbase [49], which proposes an optimizer that
selects and dynamically adapts the choice of the learning algorithm.

All discussed approaches exhibit the general problem of being outside the
database system. This might be valid in application scenarios where data is
stored in external files or fits into main memory, and database characteristics
such as transaction management are not required. However, if data is managed in

Fig. 3. Exploiting SQL and UDFs

164 U. Fischer and W. Lehner

a traditional database management system those approaches have several draw-
backs. They require data transfer from the database to the statistical software
system and vice versa, might lead to inconsistencies between data and models
and miss optimization potential such as the reuse of models by multiple queries.
Surely, some or all of this functionality could be implemented in the external
system. This, however, requires the re-implementation of existing concepts of the
DBMS and will eventually lead to the design of a new database system outside
of the actual database system.

4.2 Partial Database Integration

Partial database integration approaches try to leave the database system itself
unchanged or include advanced analytical functionality by keeping the changes
to the databases as small as possible. We distinguish three approaches in this
area: SQL extensions and UDFs, customized functions, and bi-directional com-
munication approaches.

Exploiting SQL and UDFs. The first set of approaches uses database query
languages to express linear algebra functions or even higher-level algorithms and,
thus, try to get a database system to act like a statistical software environment.
Such approaches either (1) use directly SQL to implement data mining algo-
rithms, (2) hide mining functionality behind user defined functions and provide
high-level SQL extensions to interact with mining models and results, or (3) sup-
port the implementation of mining algorithms by providing low-level language
extensions (Fig. 3).

First, SQL can be used to directly implement data mining algorithms, such
as Bayesian classifiers [65] and clustering approaches [64]. Figure 3(a) shows an
excerpt of the k-means clustering algorithm in SQL, namely the computation of
the Euclidean distance between the data points and the centroids.

Second, high level language constructs for specific mining tasks have been
proposed. The MAD approach [15] consists of a hierarchy of mathematical con-
cepts in SQL that enable vector and matrix operations, simple functions as well
as sophisticated analytical methods such as ordinary least squares, conjugate
gradient, or support vector machines (Fig. 3(b)). The Splash system [22] views
statistical models, such as probability density functions, as SQL aggregation
operations and proposes extensions to the relational data model and SQL query
language for interaction with such models. Ordonez and Pitchaimalai [66] pro-
pose a general system that integrates statistical models such as correlation, linear
regression, principal component analysis, and clustering into a database using
SQL queries and UDFs. Besides these general approaches, a large number of
research papers has addressed specific data mining methods. Examples include
association rule mining [45] and sequential patterns [74]. All approaches provide
a high-level query language that hide statistical details from less sophisticated
users.

Transparent Forecasting Strategies in Database Management Systems 165

In contrast, the ATLaS system [84] introduces a lower-level language, where
the user can integrate simple data mining algorithms with user-defined aggre-
gates by implementing three standard functions in SQL — initialize, iterate, and
terminate. The ATLaS language processor optimizes and translates ATLaS SQL
programs (e.g., decision tree classifier, apriori) into C++ code. In another work,
Feng et al. [24] propose a unified architecture (called BISMARCK) for convex
programming problems, such as support vector machines, where local solutions
are always globally optimal. Their main component is an in-RDBMS implemen-
tation of the incremental gradient descent optimization approach that allows
to solve a number of convex programming tasks in a unified way. Analogue to
ATLaS, a developer can integrate analytic tasks by implementing three stan-
dard functions using user-defined aggregates, using any language supported by
the DBMS (Fig. 3(c)). Additionally, performance optimizations, namely parti-
tioning and parallelization schemes, are studied.

Exploiting SQL and UDFs for data mining algorithms has the advantage of
being flexible: the analyst is able to develop algorithms independently on top
of the database and nevertheless is able to profit from performance gains by
running analytical methods inside the database [15,66]. However, SQL itself is
not designed to express statistical computations. SQL follows a declarative logic
(e.g., it lacks a convenient syntax for iteration), whereas statistical computing
requires imperative and functional programming logic. This leads to a high over-
head of statistical computations and makes it impossible to express sophisticated
time series methods in SQL. In contrast, UDFs allow arbitrary programming lan-
guages supported by the DBMS and might be used to implement advanced time
series methods. However, within all approaches models are explicitly queried and
not transparently processed as first class citizens inside the database. Further-
more, within an UDF, all decision have to be made locally, whereas a DBMS
exhibits a global view over all queries and operators, allowing joint optimization
techniques such as model reuse and maintenance in multidimensional data sets.

Customized Functions with Proprietary Languages. Instead of devel-
oping SQL extensions, another possible approach is to implement data mining
functionality internally as customized black box functions and offer proprietary
languages to the corresponding methods. This approach has been used by most
commercial database management systems, which provide advanced time series
forecasting methods to some extend.

Microsoft SQL Server offers a Data Mining Extension (DMX) for creating
models for various mining tasks such as association rule mining, clustering, and
also time series forecasting [79]. Two explicit time series forecasting methods
are included, autoregressive trees and ARIMA models, which are by default
combined to a hybrid forecasting method. DMX supports a set of functions
that allow to query a forecast model for predictions and additional statistical
information (Fig. 4 (a)). Chaudhuri et al. [14] propose optimizations for queries
on classification and clustering models in SQL Server. Using model-specific

166 U. Fischer and W. Lehner

Fig. 4. Comparison of forecast functionalities in SQLServer and Oracle

algorithms, predicates on data mining models are transformed to simple selection
predicates, which can then be exploited for access path selection.

Oracle Data Mining (ODM) provides twelve data mining algorithms that
address classification, regression, association rules, clustering, attribute impor-
tance, and feature selection problems [63]. ODM provides PL/SQL and Java
application programming interfaces for model building and model scoring func-
tions as well as a Oracle Data Miner graphical user interface for data analysts
who want to use a GUI. Additionally, Oracles offers a FORECAST command as
part of its OLAP DML (Fig. 4 (b)), which supports linear as well as non-linear
regression methods or exponential smoothing [61].

The IBM DB2 Warehouse data mining capabilities provide algorithms for
mining tasks such as clustering, classification, association rule mining and regres-
sion [7], but no specific time series forecasting methods are supported. Data
mining models are represented using the Predictive Model Markup Language
(PMML) and stored in relational tables.

Commercial database systems increase the efficiency by pushing statistical
computation closer to the database and also offer some advanced time series fore-
casting methods. However, due to the usage of proprietary languages, forecast-
ing is not integrated within the relational processing and optimization of SQL
queries. Additionally, the black box approach makes it difficult to customize,
extend and optimize data mining functionality, including the whole forecasting
life cycle. Subsequently, models are not handled as first class citizens leading to
same drawbacks as discussed for UDFs.

Bi-directional Communication. Finally, a third possibility is to reuse exist-
ing statistical tools like R and improve the cooperation between the database
and the statistical software system.

Ricardo [18] focuses on large-scale data management systems such as Hadoop
and proposes a system where large-scale computations are expressed in JAQL,
a high level query interface on top of Hadoop, while R is called for smaller-scale
single-node statistical tasks. This requires the programmer to identify scalabil-
ity of different components of an algorithm, and re-express large-scale matrix
operations in terms of JAQL queries.

Transparent Forecasting Strategies in Database Management Systems 167

A second example is the integration of R into the SAP in-memory comput-
ing engine. Große et al. [37] developed a shared memory-based data exchange
to reduce the communication overhead between R and the database, and, addi-
tionally, included R scripts as part of the database execution plan. The latter
approach allows multiple R runtimes in parallel processing advanced analytic
functionality.

On the commercial side, Oracle R Enterprise [62] embeds the functionality
of R inside the Oracle database. A transparency layer supports mapping of R
data types to Oracle Database objects and generates SQL transparently from R
expressions. Additionally, R scripts can be executed inside the database and the
Oracle R Connector for Hadoop enables R users to work with a Hadoop cluster.

Bi-directional communication approaches avoid the re-implementation of sta-
tistical functionality and reuse well established statistical software environments,
which usually provide advanced time series forecasting functionality. As proposed
by Große et al. [37], R scripts can be encapsulated into a native database opera-
tor, allowing the processing and optimization of statistical computations within
the traditional query execution plan. However, again, the whole statistical com-
putation is treated as black box within the R operator and statistical models
are hidden within R scripts. Therefore, models can not be transparently precom-
puted, materialized and managed within the database system, and optimization
possibilities on the forecasting process itself are limited.

4.3 Full Database Integration

In contrast to partial integration approaches, full integration approaches either
design a completely new special-purpose database system or extend the core
functionality of a traditional database system.

Special-Purpose Database System. A representative of a special-purpose
database system is SciDB [11], which targets application domains that involve
very large array data such as scientific applications. The SciDB database is orga-
nized as collections of n-dimensional arrays and addresses challenges like array
storage and partitioning as well as parallel processing of array operations. SciDB
supports query patterns such as array slicing and dicing, array scans, and binary

time x y temp
0 1 1 20
0 15 10 18
1 10 8 15

time x y temp
0 10 10 19.5
0 10 20 20.5
1 10 10 16

Fig. 5. Model-based views in MauveDB

168 U. Fischer and W. Lehner

array operations, but no advanced statistical methods like time series forecasting.
The approach of SciDB adapts and optimizes the database system specifically
to the target use case and goes far beyond the idea of integrating statistical
methods inside a database system. Our goal is to provide time series forecasting
within traditional database processing for various use cases and to benefit from
existing database technologies, requiring a more general full database integration
approach.

Traditional Database System. The MauveDB project [19] integrates statis-
tical modeling inside a DBMS using so-called model-base views. Model-based
views generalize the view concept and allow the definition of views as statistical
models using extensions to SQL (Fig. 5). Such views can be queried like tra-
ditional view leading to new classes of view access operators inside the DBMS.
Additionally, MauveDB provides different maintenance strategies that keep mod-
els consistent with changes to the data, e.g., no, partial, or full materialization.
A similar motivation follows FunctionDB [80], where mathematical functions are
treated as first-class citizens inside a DBMS. Queries are answered with discrete
points that are computed from piecewise polynomial functions, where the data
is discretized as late as possible. These leads to various new relational operations
that operate directly on the symbolic representations of the functions.

Akdere et al. [3] expand the idea of MauveDB and propose a Predictive Data-
base Management System (PDBMS), called Longview, that enables declarative
predictive queries as well as automatic model training and selection. Longview
provides two interfaces for access to its predictive functionality. A direct inter-
face offers direct access to the functionality of the prediction models (regression
and classification), whereas a declarative interface is used for high-level access by
non-expert users. Prediction models can be built using the CREATE PREDICTOR
command and then directly queried or referenced in traditional views. Internally,
a model manager is responsible for creating materialized models or selecting
models in an ad-hoc fashion. However, Akdere et al. [3] provide only a high-
level overview over such a system and identify several open research aspects,
including automatic selection of materialized models for given cost and accuracy
constraints as well as execution and optimization of predictive queries.

Both projects, MauveDB and Longview, integrate statistical methods within
a database by viewing models as first class citizens. However, they target statis-
tical methods such as interpolation or classification, and not time series forecast-
ing. Forecasting requires specific time series forecasting methods as well specific
model identification, model evaluation, and model maintenance strategies. Fur-
thermore, both approaches require the explicit selection of a model in a query
and do not realize declarative and transparent forecast queries.

Besides these general approaches, a number of papers has addressed database
aspects of specific mining models. For example, the HAZY project [48] builds
upon the work of MauveDB [19] and addresses the incremental maintenance of
classification views. The Monte Carlo Database System [46] allows the creation
of arbitrary stochastic models for uncertain data and focuses on Monte Carlo

Transparent Forecasting Strategies in Database Management Systems 169

analysis of such models. Simple regression methods have been natively supported
by relational database systems for about a decade, and have been incorporated
into the SQL language [4]. Other approaches focus on support vector machines
[58] and interpolation functions [38].

Additionally, specific time series approaches have been proposed, which we
discuss in more detail in the next section.

5 In-DBMS Time Series Forecasting Techniques

We now review dedicated time series forecasting techniques in the database con-
text. Such approaches usually address a specific forecasting method or scenario
and discuss individual aspects of the forecasting process in this context.

The processing of declarative forecast queries in traditional databases was
first introduced within the Fa System [20]. The main contribution of Duan and
Babu [20] is an automatic feature selection approach for forecasting multidi-
mensional time series. A query execution plan in Fa consists of a sequence of
transformers, which shift or remove attributes from the input data set; a builder,
which computes a forecast model from the transformed data set; and a predictor
to make the forecast itself. Fa’s plan search is based on an iterative algorithm.
Each iteration selects a set of attributes using several heuristics and empirically
evaluates five different forecasting methods (regression and machine learning
approaches) for the selected attributes, leading to more and more accurate plans
over time. Furthermore, an adaptive version of the plan search algorithm for
continuous forecast queries is proposed.

Later, Ge and Zdonik [34] proposed an automatic model selection approach
for multivariate regression models. Their approach is based on the observation
that the best history length of the time series, in terms of accuracy and effi-
ciency, varies according to the requested forecast horizon. An empirical approach
iteratively increases the history as well as the number of data points and uses
statistical tests of hypotheses to build a single regression model. A skip-list data
structure supports the efficient selection of the data at a certain granularity.
Additionally, a randomized algorithm is provided that chooses a set of forecast
models for a given query workload and maintenance constraints. Maintenance
either involves rebuilding the regression model or choosing new properties of the
models, i.e., history length and data granularity, where the latter is done after
a fixed number of new time series values. Ge and Zdonik also introduce query
optimization techniques for range, aggregation, and join queries exploiting the
properties of regression models. To compute a join over a future time range,
for example, a simple approach would generate all future data points using the
regression models and then perform a traditional join on the raw data. In con-
trast, the second relation could simply use the regression functions of the first
relation and solve an equality condition to retrieve the matching tuples. How-
ever, such optimization techniques can only be exploited by simple regression
function and are not applicable to more sophisticated time series methods, which
require additional input data to compute the forecast values (e.g., auto-regressive
models).

170 U. Fischer and W. Lehner

A formal definition of a forecast operator was developed by Parisi et al. [69]
Also, the integration of forecast operators with standard relational operators
was explored by identifying simple plan restructuring rules for three relational
operators; selection, projection, and union.

In another work, Akdere et al. [2] present optimization techniques for contin-
uous prediction queries using Bayesian Networks as forecasting method. They
propose to model point and range-based prediction queries as query plans and
introduce different materialization options within a plan. A selection approach
finds an execution plan with minimum computation costs for given memory
constraints.

The challenge of forecasting high-dimensional data was addressed in the
area of online display advertisement [1]. Hundreds of attributes and trillions
of attribute combinations have to be forecasted, making it impossible to build a
forecast model for each single time series in the database. To solve this issue, only
forecast models for a small subset of attribute combinations are built, which are
selected manually for seasonality and historical importance. Forecasts for remain-
ing attributes are obtained by exploiting correlations between the attributes.
Specifically, three different correlation approaches are evaluated: a Naive Bayes
approach that assumes attribute independence, a partwise independence app-
roach that infers combinations of correlated attributes, and a sampling-based
approach that computes correlations for a sample of the data.

In the area of data stream management, research has investigated the joint
forecasting of multiple data streams. The MUSCLES method [86] uses multi-
variate linear regression to forecast values of one stream based on the previous
values of all streams. MUSCLE is able to adapt to changing correlations among
time sequences. SPIRIT [68] finds correlations among data streams by comput-
ing the principal components. An auto-regressive model is built directly over the
principal components and used for the estimation of missing values.

In terms of model maintenance, Rosenthal and Lehner [73] developed an
incremental model adaption approach for simple auto-regressive models and pro-
pose a generic approach, called on-demand estimation, for more complex ARIMA
models. The parameters of ARIMA models can be estimated using the maximum
likelihood approach, which tries to maximizes the probability of reproducing the
training data from the given parameters. On-demand estimation incrementally
maintains the so called likelihood function and triggers model adaption if new
time series values lead to significant changes in the function’s optimum.

Maintenance issues have also been discussed in the context of streaming
databases and sensor networks. Tulone and Madden [81] propose an error-based
model evaluation strategy for auto-regressive models. Model adaption is trig-
gered based on two thresholds, which distinguish outlier values and distribution
changes in the data. The latter suggest that re-learning the model might be
necessary. In contrast, the sensor data management architecture PRESTO [52]
retrains models periodically. Ikonomovska et al. [44] propose an incremental

Transparent Forecasting Strategies in Database Management Systems 171

stream mining algorithm for regression and model trees, including drift detec-
tion and model adaptation to maintain accurate and updated regression models
at any time.

To sum up, the need for integrating analytical methods into traditional data-
bases has been identified by many existing research projects, addressing general
approaches as well as specific forecasting methods. However, non of the exist-
ing approaches provide a complete solution for in-DBMS forecasting, includ-
ing declarative forecast queries, arbitrary forecasting methods, relational query
processing, query optimization, forecast model maintenance, transparent model
reuse, and automatic model selection. Following the discussion of the general
forecasting process from Sect. 3.1, we now introduce an architecture that inte-
grates the whole forecasting life cycle natively into an existing DBMS and, addi-
tionally, benefits from existing work on in-DBMS forecasting techniques.

6 A Flash-Forward Database System

In contrast to flash back queries that allow a view on the data in the past, we
developed a Flash-Foreward Database System. We explain the necessary exten-
sions to a traditional DBMS from two angles. First, in Subsect. 6.1, we investigate
changes to the different types of schemas of a DBMS, which are usually described
by the ANSI/SPARC architecture. Subsequently, in Subsect. 6.2, we discuss the
actual implementation of a forecast-enabled database management system.

6.1 ANSI/SPARC Architecture

The ANSI/SPARC architecture forms an abstract design standard for a data-
base management systems and gives a general architecture for database func-
tions, interfaces, and usages. The objective of the three-level architecture is to
separate the users’ view of the data from the way that it is physically repre-
sented. Specifically, the use of the data is described in the external schema, the
meaning of the data in the conceptual schema, and the data storage in the inter-
nal schema. Time series forecasting consists of two major data entities — time
series and forecast models — that have to be arranged within the ANSI-SPARC
architecture. We now systematically study each of the three levels of the archi-
tecture and discuss where we have to add new concepts and where we can reuse
existing concepts from the ANSI-SPARC architecture (see Fig. 6) [25].

External Schema. The external schema in the traditional ANSI/SPARC archi-
tecture consists of user-defined data views, which can be seen as virtual tables
storing the results of specific queries. Time series can just be seen as a special
view that ensure the representation of the data as time series. A time series view
requires at least a time attribute containing discrete points in time and another
attribute exhibiting the measurements at these specified moments, for example:

172 U. Fischer and W. Lehner

Conceptual
Schema

Internal
Schema

Par��oning

Materializa�on

Index Structures Model Index Structures

Logical
Access Path

facts

date
quan�ty
price
l_id

loca�on

l_id
city

Physical
Access Path

Time Series View

date
salesunits

�me
value

External
Schema

Rela�onal
Data

Forecast
Models

CM Output

future_date
forecast_value

Tradi�onal View

city
quan�ty

Composite
Forecast
Model

Atomic
Forecast
Model

Materializa�on

Data Storage

AM
Output

Fig. 6. Integration of forecasting within the ANSI/SPARC architecture

CREATE VIEW t imeSer iesView AS
SELECT MONTH (date) AS month , SUM (s a l e s u n i t s) as s a l e s
FROM f a c t s f , products p
WHERE f . p roduct id = p . product id
AND p . pname = ’ audio ’
AND month in (now() − 3 months , now() + 3 months)
GROUP BY month

A time series view can represent historical values, forecast values, or both. If
forecast values are involved, the time series view has to be defined by a query
requesting future values. It might contain further information such as standard
deviation or prediction intervals, which clearly distinguish future from historical
values. Once real values are available, they replace the forecast values.

Conceptual Schema. The conceptual level includes a data schema that
describes available entities, their relationship and contained attributes and can
be seen as an abstraction from the internal data representation. Likewise, a
composite forecast model is defined as a conceptual abstraction from a concrete
atomic forecast model. A composite model might directly refer to a single atomic
forecast model from the internal schema, representing a simple forecast of a time
series, e.g., sales units of audio devices. However, composite forecast models can
also describe a (hierarchical) forecast model composition. When forecasting sales
units of audio devices in Germany, for example, the forecasting can be decom-
posed into forecasts of the sales units for all German states, or further down in
the hierarchy, sales units of all German cities. The composite forecast model can
define a hierarchical forecast composition referring further composite models on
multiple hierarchy levels and, on the leaf level, ultimately refer to atomic forecast

Transparent Forecasting Strategies in Database Management Systems 173

CM123

CM1

AM11 AM12

CM2

AM21

CM3

CM31 CM32

AM311 AM321

Munich

Holt
Winters

 = 0.8
 = 0
 = 0.5

Method Parameter State
a = 30.4
b = 20.5
 ...

Bavaria

Germany

Fig. 7. Example model composition

models defined in the internal schema (see Example in Fig. 7). Multiple atomic
forecast models, with different forecasting methods or parameter combinations,
might be referenced by one composite model on the leaf level, enabling ensemble
forecasting.

With respect to the external layer, each composite forecast model is linked
with a single time series view from the external schema. It further defines a
single output, the composite model output (CM output), which is a special table
complying to the same rules as the time series view and exhibits the same hier-
archical forecast model composition as defined for the associated composite fore-
cast model. The forecast values, i.e., the composite forecast model output, are
computed by a weighted linear combination of the referenced forecast models
according to the defined forecast model composition.

Internal Schema. The logical and the physical data access paths are defined
in the internal schema of the ANSI-SPARC architecture. Logical access paths
refer to data organization aspects like partitioning and materialization, whereas
the physical access paths define low level access structures like indexes. Likewise,
atomic forecast models are defined that represent a non-decomposable forecast
model. A single atomic forecast model is represented by input and output defi-
nitions, the forecasting method, model parameters, and the current model state
(see Subsect. 3.1). Here, the input is the data as defined in the associated time
series view, referenced through the connected composite forecast model. The
forecasting method is chosen from a forecast model catalog that represents all
forecasting methods available in the DBMS and is predefined with respect to
the application domain (similar to the approach of Longview [3]). The output of
atomic forecast models is represented by a special data structure called atomic
forecast model output (AM Output). Optionally, additional attributes might be
included in the model output (e.g., prediction intervals).

Traditionally, materialization is performed to precompute complex database
queries. Similarly, composite and atomic models can be materialized for faster
query response times. Materialized models might store composition rules, model
parameters, model states, or even the model output, i.e., forecast results. On
the physical access paths, specific model specific index structures might be

174 U. Fischer and W. Lehner

applied [27,34]. Additionally, traditional or customized time series index struc-
tures ensure efficient processing of time series data and access of time series
values in a subsequent order.

6.2 DBMS Architecture

In contrast to the ANSI/SPARC architecture, which mainly describes interfaces,
we now discuss the actual realization of a flash-forward database system [28].
Figure 8 shows the main components of a database management systems, exem-
plary on the open-source DBMS PostgreSQL [70]. Our extensions to traditional
database components are shown by grey boxes. In what follows, we shortly out-
line the core idea of the main components, more details can be found in [27–30].

First of all, declarative forecast queries require the extension of the parser
so that forecast-specific keywords (e.g., forecast horizon, forecasting attributes,
forecasting method) are recognized. After parsing, the statement is identified
as complex (e.g., select, insert, delete) or simple (e.g., create table) by the
traffic cop. Simple utility commands are processed by a dedicated component,
which contains forecast model specific utility commands (e.g., create model, drop
model). This enables a database administrator to explicitly create and delete
models. Complex statements are planned by the optimizer. Hereby, the existing
optimizer is extended with (1) new forecast-specific physical operators, (2) new
cost models for those operators as well as (3) new optimizer rules.

Following the general forecasting process, forecast operators decouple model
creation and model usage functionality. The CreateModel operator is responsi-
ble for model creation. It receives a time series view as input and outputs a set
of forecast models. Subsequently, the Forecast operator receives as input a set
of forecast models and outputs a time series relation containing corresponding
forecast values. In case of ad hoc forecast queries, these two operators appear
jointly, with the Forecast operator sitting on top of the CreateModel opera-
tor. However, the separation of both operators enables the transparent reuse of
materialized models.

Materialized models are handled by two new components —model matching
and model maintenance [27]. Model matching is responsible for finding suitable
models for a given forecast query, including atomic forecast models and poten-
tial model compositions. Depending on the query type, model matching can be
accessed by either the optimizer or executor. In contrast, model maintenance is
performed after insert statements. It is responsible for finding models that are
based on those inserts. Model maintenance includes a model update step, an
evaluation step and, optionally, a parameter re-estimation step.

Besides, the transparent reuse of materialized models, the optimizer is also
responsible for processing ad hoc forecast queries that require the creation of
a model at query runtime. Hereby, we exploit traditional database sampling
techniques to reduce the amount of processed data by the CreateModel operator
[29]. For example, one optimization techniques reduces the time series length for
parameter estimation.

Transparent Forecasting Strategies in Database Management Systems 175

Parser

Traffic Cop

Rewriter

Optimizer

Executor

Utility Commands

Forecast Query
Parser

Forecast Query
Optimizer

Forecast
Operators

Catalog

Access Methods

Storage Manager

Model
Index

Nodes/Lists
Forecast
Nodes

Utilities

Query Processor

User / Application

Model
Maintenance

Model
Commands

Model
Matching

Forecast
Methods

Model Configuration Advisor

DBMS

Fig. 8. Architecture of a flash-forward database system

The discussed query processing components are supported by other modules.
The catalog stores meta data about atomic and composite forecast models as
well as the previously mentioned forecasting method catalog. As discussed in
Subsect. 6.1 access methods are extended with model-specific access structures,
supporting the model matching and model maintenance components [27]. Infor-
mation about internal query structures and query plans are stored in nodes and
lists in PostgreSQL. Thus, new nodes for forecast queries have to be added. The
remaining two components, the storage manager and utilities, containing sup-
port functions, are currently not touched by our extensions. Traditional tables
are used to store time series data as well as models, which enables the direct
reuse of the different functionalities of a storage manager.

Besides the extension of internal components, one additional external com-
ponent, the model configuration advisor, is available [30]. Similar to a traditional
index or materialized view advisor, which proposes a physical design of indexes
and materialized views to the database system, the model configuration advi-
sor recommends a physical design of forecast models. In contrast to traditional
advisers, which usually focus on minimizing the runtime of a given workload
(optionally giving some storage constraints), the optimization objective of the
model configuration advisor is twofold — minimize the query runtime and max-
imize the forecast accuracy. The technical challenge of the advisor comes from
the fact that there are no known ways to estimate the accuracy of a physical
design of forecast models without actually deploying and querying it. Hence, the

176 U. Fischer and W. Lehner

model advisor is based on an iterative process that, based on heuristics, selects
a set of candidate time series in each iteration for which a model should be built
and analyzed. Parameters of the advisor like the number of candidate models
are automatically tuned in a control phase.

7 Conclusions and Future Work

The need for integrating statistical methods into databases has been identified
by many existing research projects, addressing general approaches as well as
specific statistical methods. In this article, we provided a review of existing
work and discussed its applicability for supporting a transparent model-based
database system, where we specifically focused on forecast models. Based on the
traditional ANSI/SPARC architecture, we introduced a novel forecast-enabled
database management system, the flash-forward database system. Our approach
belongs to the class of full database integration approaches and integrates the
whole forecasting life cycle.

Recall the application scenarios and associated requirements presented in
Sect. 2. The proposed flash-forward database systems enables forecasting by non-
expert users (e.g., supply chain managers) and hides the complexity of the fore-
casting process. It allows the integration of a suite of forecasting techniques
and domain-specific forecasting methods (e.g., for energy demand and supply
forecasting). The reuse of materialized forecast models enables the processing of
forecast queries in real-time as required, for example, in energy load balancing or
display advertisement. The maintenance component continuously and efficiently
adapts models to changes in the time series behavior (e.g., weather changes in
the energy domain). Finally, the model configuration advisor selects a physical
design of forecast models for large multi-dimensional data sets (e.g., in product-
ing planning), balancing query efficiency and forecast accuracy.

Although we specifically focused on forecast models in this article, many
of the discussed challenges, foundations, and concepts can be applied to other
statistical models. We have taken a first step towards a model-based database
system and opened up interesting opportunities for further research. We conclude
by mentioning a few of them:

– Configuration Maintenance: How can we maintain a configuration of forecast
models in an online fashion? Can we develop incremental algorithms that
avoid the complete re-execution of the forecast model advisor?

– Parallelized Query Execution: How can we improve the execution of adhoc
forecast queries that require the creation of a new model? Can we develop
efficient operators that exploit parallelization opportunities of modern (het-
erogeneous) hardware environments?

– Lineage: Can we provide the user with information about the origin as well
as reliability of the query result?

Transparent Forecasting Strategies in Database Management Systems 177

References

1. Agarwal, D., Chen, D., Lin, L., Shanmugasundaram, J., Vee, E.: Forecasting high-
dimensional data. In: Proceedings of the 2010 ACM SIGMOD International Con-
ference on Management of Data, pp. 1003–1012 (2010)

2. Akdere, M., Çetintemel, U., Upfal, E.: Database-support for continuous prediction
queries over streaming data. Proc. VLDB Endowment 3, 1291–1301 (2010)

3. Akdere, M., Cetintemel, U., Riondato, M., Upfal, E., Zdonik, S.B.: The case
for predictive database systems: opportunities and challenges. In: Fifth Biennial
Conference on Innovative Data Systems Research, pp. 167–174 (2011)

4. Alur, N., Haas, P., Momiroska, D., Read, P., Summers, N., Totanes, V., Zuzarte,
C.: DB2 UDB’s High Function Business Intelligence in e-Business. IBM Redbook
Series (2002)

5. Andersen, T.G., Bollerslev, T., Lange, S.: Forecasting financial market volatility:
sample frequency vis-a-vis forecast horizon. J. Empirical Finan. 6, 457–477 (1999)

6. Apache. Apache Mahout (2013). http://mahout.apache.org/
7. Ballard, C., Rollins, J., Ramos, J., Perkins, A., Hale, R., Doerneich, A., Mil-

ner, E.C., Chodagam, J.: Dynamic Warehousing: Data Mining Made Easy.
IBM Redbooks Series (2007). http://www.redbooks.ibm.com/redbooks/pdfs/
sg247418.pdf

8. Bontempi, G., Ben Taieb, S., Le Borgne, Y.-A.: Machine learning strategies for
time series forecasting. In: Aufaure, M.-A., Zimányi, E. (eds.) eBISS 2012. LNBIP,
vol. 138, pp. 62–77. Springer, Heidelberg (2013)

9. Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis: Forecasting and
Control, 4th edn. Wiley, New York (2008)

10. Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting. Pren-
tice Hall, Englewood Clifs (2002)

11. Brown, P.G.: Overview of sciDB: large scale array storage, processing and analysis.
In: Proceedings of the 2010 ACM SIGMOD International Conference on Manage-
ment of Data, pp. 963–968 (2010)

12. Cetintas, S., Chen, D., Si, L., Shen, B., Datbayev, Z.: Forecasting counts of user
visits for online display advertising with probabilistic latent class models. In:
International Conference on Research and Development in Information Retrieval,
pp. 1217–1218 (2011)

13. Chatfield, C.: Time-Series Forecasting. Chapman & Hall, Boca Raton (2000)
14. Chaudhuri, S., Narasayya, V., Sarawagi, S.: Efficient evaluation of queries with

mining predicates. In: Proceedings of the 18th International Conference on Data
Engineering, pp. 529–540 (2002)

15. Cohen, J., Dolan, B., Dunlap, M., Hellerstein, J.M., Welton, C.: MAD skills: new
analysis practices for big data. Proc. VLDB Endowment 2, 1481–1492 (2009)

16. Dannecker, L., Böhm, M., Lehner, W., Hackenbroich, G.: Forcasting evolving time
series of energy demand and supply. In: Eder, J., Bielikova, M., Tjoa, A.M. (eds.)
ADBIS 2011. LNCS, vol. 6909, pp. 302–315. Springer, Heidelberg (2011)

17. Dannecker, L., Schulze, R., Böhm, M., Lehner, W., Hackenbroich, G.: Context-
aware parameter estimation for forecast models in the energy domain. In: Bayard
Cushing, J., French, J., Bowers, S. (eds.) SSDBM 2011. LNCS, vol. 6809, pp.
491–508. Springer, Heidelberg (2011)

18. Das, S., Sismanis, Y., Beyer, K.S., Gemulla, R., Haas, P.J., McPherson, J.:
Ricardo: integrating r and hadoop. In: Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data, pp. 987–998 (2010)

http://mahout.apache.org/
http://www.redbooks.ibm.com/redbooks/pdfs/sg247418.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247418.pdf

178 U. Fischer and W. Lehner

19. Deshpande, A., Madden, S.: MauveDB: supporting model-based user views in
database systems. In: Proceedings of the 2006 ACM SIGMOD International Con-
ference on Management of Data, pp. 73–84 (2006)

20. Duan, S., Babu, S.: Processing forecasting queries. In: Proceedings of the VLDB
Endowment, pp. 711–722 (2007)

21. European Commission. Energy Roadmap 2050. Brussels (2011)
22. Fang, L., LeFevre, K.: Splash: ad-hoc querying of data and statistical models. In:

Proceedings of the 13th International Conference on Extending Database Tech-
nology, pp. 275–286 (2010)

23. Feng, H.: Performance problems of forecasting systems. In: 15th East-European
Conference on Advances in Databases and Information Systems, pp. 254–261
(2011)

24. Feng, X., Kumar, A., Recht, B., Ré, C.: Towards a unified architecture for in-
rdbms analytics. In: Proceedings of the 2012 ACM SIGMOD International Con-
ference on Management of Data, pp. 325–336 (2012)

25. Fischer, U., Dannecker, L., Siksnys, L., Rosenthal, F., Boehm, M., Lehner, W.:
Towards integrated data analytics: time series forecasting in dbms. Datenbank-
Spektrum, 1–9 (2012)

26. Fischer, U., Kaulakienė, D., Khalefa, M.E., Lehner, W., Pedersen, T.B., Šikšnys,
L., Thomsen, C.: Real-time business intelligence in the MIRABEL smart grid
system. In: Castellanos, M., Dayal, U., Rundensteiner, E.A. (eds.) BIRTE 2012.
LNBIP, vol. 154, pp. 1–22. Springer, Heidelberg (2013)

27. Fischer, U., Rosenthal, F., Böhm, M., Lehner, W.: Indexing forecast models for
matching and maintenance. In: IDEAS, pp. 26–31 (2010)

28. Fischer, U., Rosenthal, F., Lehner, W.: F2DB: the flash-forward database system.
In: Proceedings of the 28th International Conference on Data Engineering, pp.
1245–1248 (2012)

29. Fischer, U., Rosenthal, F., Lehner, W.: Sample-based forecasting exploiting hier-
archical time series. In: Proceedings of the 16th International Database Engineer-
ing and Applications Sysmposium, pp. 120–129 (2012)

30. Fischer, U., Schildt, C., Hartmann, C., Lehner, W.: Forecasting the data cube:
a model configuration advisor for multi-dimensional data sets. In: Proceedings of
the 29th International Conference on Data Engineering (2013)

31. Fliedner, G.: Hierarichal forecasting issues and use guidelines. Ind. Manage. Data
Syst. 101, 5–12 (2001)

32. Ganapathi, A., Kuno, H., Dayal, U., Wiener, J.L., Fox, A., Jordan, M., Patterson,
D.: Predicting multiple metrics for queries: better decisions enabled by machine
learning. In: Proceedings of the 25th International Conference on Data Engineer-
ing, pp. 592–603 (2009)

33. Gardner Jr, E.S.: Exponential smoothing: the state of the art. Int. J. Forecast. 4,
1–28 (1985)

34. Ge, T., Zdonik, S.B.: A skip-list approach for efficiently processing forecasting
queries. Proc. VLDB Endowment 1, 984–995 (2008)

35. Ghoting, A., Krishnamurthy, R., Pednault, E., Reinwald, B., Sindhwani, V.,
Tatikonda, S., Tian, Y., Vaithyanathan, S.: SystemML: declarative machine learn-
ing on mapreduce. In: Proceedings of the 2011 IEEE 27th International Confer-
ence on Data Engineering, pp. 231–242 (2011)

36. Gooijera, J.G.D., Hyndman, R.J.: 25 years of time series forecasting. Int. J. Fore-
cast. 22, 443–473 (2006)

Transparent Forecasting Strategies in Database Management Systems 179

37. Große, P., Lehner, W., Weichert, T., Färber, F., Li, W.-S.: Bridging two worlds
with rice integrating r into the sap in-memory computing engine. Proc. VLDB
Endowment 4, 1307–1317 (2011)

38. Grumbach, S., Rigaux, P., Segoufin, L.: Manipulating interpolated data is easier
than you thought. In: Proceedings of the 26th International Conference on Very
Large Data Bases, pp. 156–165 (2000)

39. Harries, M., Horn, K.: Detecting concept drift in financial time series prediction
using symbolic machine learning. In: Proceedings of the 8th Australian Joint
Conference on Artificial Intelligence, pp. 91–98 (1995)

40. Holt, C.C.: Forecasting seasonals and trends by exponentially weighted moving
averages. Int. J. Forecast. 20, 5–10 (2004)

41. Hyndman, R.J., Khandakar, Y.: Automatic time series forecasting: the forecast
package for R. J. Stat. Softw. 27, 1–22 (2008)

42. Hyndman, R.J., Koehler, A.B., Snyder, R.D., Grose, S.: A state space framework
for automatic forecasting using exponential smoothing methods. Int. J. Forecast.
18, 439–454 (2002)

43. Hyndman, R.J., Kostenko, A.V.: Minimum sample size requirements for seasonal
forecasting models. Foresight: the Int. J. Appl Forecast. 6, 12–15 (2007)

44. Ikonomovska, E., Gama, J., Džeroski, S.: Learning model trees from evolving data
streams. Data Min. Knowl. Discov. 23, 128–168 (2011)

45. Imieliński, T., Virmani, A.: Msql: a query language for database mining. Data
Min. Knowl. Discov. 3, 373–408 (1999)

46. Jampani, R., Xu, F., Wu, M., Perez, L.L., Jermaine, C., Haas, P.J.: Mcdb: a
monte carlo approach to managing uncertain data. In: Proceedings of the 2008
ACM SIGMOD International Conference on Management of Data, pp. 687–700
(2008)

47. Kimball, R., Ross, M.: The Data Warehouse Toolkit. Wiley, New York (2002)
48. Koc, M.L., Ré, C.: Incrementally maintaining classification using an rdbms. Proc.

VLDB Endowment 4, 302–313 (2011)
49. Kraska, T., Talwalkar, A., Duchi, J., Griffith, R., Franklin, M.J., Jordan, M.:

Mlbase:a distributed machine learning system. In: 6th Biennial Conference on
Innovative Data Systems Research (2013)

50. Kusters, U., McCullough, B., Bell, M.: Forecasting software: past, present and
future. Int. J. Forecast. 22, 599–615 (2006)

51. Lazarescu, M.M., Venkatesh, S., Bui, H.H.: Using multiple windows to track con-
cept drift. Intell. Data Anal. J., 1–28 (2003)

52. Li, M., Ganesan, D., Shenoy, P.: Presto: feedback-driven data management in
sensor networks. In: Proceedings of the 3rd Conference on Networked Systems
Design & Implementation, pp. 23–23 (2006)

53. Makridakis, S.: Accuracy measures: theoretical and practical concerns. Int. J.
Forecast. 9, 527–529 (1993)

54. Makridakis, S., Hibon, M.: The M3-Competition: results, conclusions and impli-
cations. Int. J. Forecast. 16, 451–476 (2000)

55. Matlab. The language of technical computing (2012). http://www.mathworks.
com/products/matlab/

56. Meek, C., Chickering, D.M., Heckerman, D.: Autoregressive tree models for time-
series analysis. In: SIAM International Conference on Data Mining (2002)

57. Mentzer, J.T., Bienstock, C.C.: The seven principles of sales-forecasting systems.
Supply Chain, Manage. Rev. 11, 76–83 (1998)

http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/

180 U. Fischer and W. Lehner

58. Milenova, B.L., Yarmus, J.S., Campos, M.M.: Svm in oracle database 10g: remov-
ing the barriers to widespread adoption of support vector machines. In: Proceed-
ings of the VLDB Endowment, pp. 1152–1163 (2005)

59. Mills, T.C.: Time Series Techniques for Economists. Business & Economics (1991)
60. Müller, K.-R., Smola, A.J., Rätsch, G., Schölkopf, B., Kohlmorgen, J., Vapnik, V.:

Predicting time series with support vector machines. In: Gerstner, W., Hasler, M.,
Germond, A., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 999–1004.
Springer, Heidelberg (1997)

61. Oracle OLAP DML Reference 11g. Forecast - dml statement (2012). http://docs.
oracle.com/cd/B28359 01/olap.111/b28126/dml commands 1052.htm

62. Oracle R. Enterprise user’s guide (2012). http://docs.oracle.com/cd/E27988 01/
doc/doc.112/e26499.pdf

63. Oracle White Paper. Oracle data mining 11g release 2 - competing on in-database
analytics (2012)

64. Ordonez, C.: Programming the k-means clustering algorithm in sql. In: Proceed-
ings of the Tenth ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, pp. 823–828 (2004)

65. Ordonez, C., Pitchaimalai, S.K.: Bayesian classifiers programmed in sql. IEEE
Trans. Knowl. Data Eng. 22, 139–144 (2010)

66. Ordonez, C., Pitchaimalai, S.K.: One-pass data mining algorithms in a dbms
with udfs. In: Proceedings of the 2011 ACM SIGMOD International Conference
on Management of Data, pp. 1217–1220 (2011)

67. Panda, B., Herbach, J.S., Basu, S., Bayardo, R.J.: Planet: massively parallel learn-
ing of tree ensembles with mapreduce. Proc. VLDB Endowment 2, 1426–1437
(2009)

68. Papadimitriou, S., Sun, J., Faloutsos, C.: Streaming pattern discovery in multiple
time-series. In: Proceedings of the 31st International Conference on Very Large
Data Bases, pp. 697–708 (2005)

69. Parisi, F., Sliva, A., Subrahmanian, V.S.: Embedding forecast operators in data-
bases. In: Benferhat, S., Grant, J. (eds.) SUM 2011. LNCS, vol. 6929, pp. 373–386.
Springer, Heidelberg (2011)

70. PostgreSQL (2012). http://www.postgresql.org/
71. R Development Core Team. R: A language and environment for statistical com-

puting, reference index version 2.1.1. R Foundation for Statistical Computing
(2012). http://www.r-project.org

72. Ramanathan, R., Engle, R., Granger, C.W.J., Vahid-Araghi, F., Brace, C.: Short-
run forecasts of electricity loads and peaks. Int. J. Forecast. 13(2), 161–174 (1997)

73. Rosenthal, F., Lehner, W.: Efficient in-database maintenance of ARIMA models.
In: Bayard Cushing, J., French, J., Bowers, S. (eds.) SSDBM 2011. LNCS, vol.
6809, pp. 537–545. Springer, Heidelberg (2011)

74. Sadri, R., Zaniolo, C., Zarkesh, A.M., Adibi, J.: A sequential pattern query lan-
guage for supporting instant data mining for e-services. In: Proceedings of the
27th International Conference on Very Large Data Bases, pp. 653–656 (2001)

75. SAS. Business intelligence software (2012). http://www.sas.com
76. Schmidberger, M., Morgan, M., Eddelbuettel, D., Yu, H., Tierney, L., Mansmann,

U.: State-of-the-art in parallel computing with R. J. Stat. Softw. 31, 1–27 (2009)
77. Shalev-Shwartz, S., Srebro, N.: SVM optimization: inverse dependence on train-

ing set size. In: Proceedings of the 25th International Conference on Machine
Learning, pp. 928–935 (2008)

78. SPSS. IBM SPSS Statistics (2012). http://www-01.ibm.com/software/analytics/
spss/

http://docs.oracle.com/cd/B28359_01/olap.111/b28126/dml_commands_1052.htm
http://docs.oracle.com/cd/B28359_01/olap.111/b28126/dml_commands_1052.htm
http://docs.oracle.com/cd/E27988_01/doc/doc.112/e26499.pdf
http://docs.oracle.com/cd/E27988_01/doc/doc.112/e26499.pdf
http://www.postgresql.org/
http://www.r-project.org
http://www.sas.com
http://www-01.ibm.com/software/analytics/spss/
http://www-01.ibm.com/software/analytics/spss/

Transparent Forecasting Strategies in Database Management Systems 181

79. SQL Server. Data Mining Algorithms - Books Online for SQL Server 2012 (2012).
http://msdn.microsoft.com/en-us/library/ms175595.aspx

80. Thiagarajan, A., Madden, S.: Querying continuous functions in a database sys-
tem. In: Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data, pp. 791–804 (2008)

81. Tulone, D., Madden, S.: PAQ: time series forecasting for approximate query
answering in sensor networks. In: Römer, K., Karl, H., Mattern, F. (eds.) EWSN
2006. LNCS, vol. 3868, pp. 21–37. Springer, Heidelberg (2006)

82. Turner, J.: The planning of guaranteed targeted display advertising. Oper. Res.
60, 18–33 (2012)

83. Wagner, N., Michalewicz, Z., Khouja, M., McGregor, R.: Time series forecasting
for dynamic environments: the dyfor genetic program model. IEEE Trans. Evol.
Comput. 11, 433–452 (2007)

84. Wang, H., Zaniolo, C., Luo, C.R.: ATLAS: a small but complete sql extension for
data mining and data streams. In: Proceedings of the 29th International Confer-
ence on Very Large Data Bases, pp. 1113–1116 (2003)

85. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden
contexts. Mach. Learn. 23, 69–101 (1996)

86. Yi, B., Sidiropoulos, N.D., Johnson, T., Jagadish, H.V., Faloutsos, C., Biliris, A.:
Online data mining for co-evolving time sequences. In: Proceedings of the 16th
International Conference on Data Engineering, pp. 13–22 (2000)

87. Zhang, C., Sun, S., Yu, G.: A bayesian network approach to time series fore-
casting of short-term traffic flows. In: Proceedings of the 7th International IEEE
Conference on Intelligent Transportation Systems, pp. 216–221 (2004)

88. Zhang, G., Eddy-Patuwo, B., Hu, M.Y.: Forecasting with artificial neural net-
works: the state of the art. Int. J. Forecast. 14, 35–62 (1998)

89. Zhang, Y., Zhang, W., Yang, J.: I/O-efficient statistical computing with RIOT.
In: Proceedings of the 26th International Conference on Data Engineering, pp.
1157–1160 (2010)

90. Zinkevich, M.: Online convex programming and generalized infinitesimal gradient
ascent. In: Proceedings of the 20th International Conference on Machine Learning,
pp. 928–936 (2003)

http://msdn.microsoft.com/en-us/library/ms175595.aspx

On Index Structures for Star Query Processing
in Data Warehouses

Artur Wojciechowski and Robert Wrembel(B)

Institute of Computing Science, Poznan University of Technology, Poznań, Poland
{Artur.Wojciechowski,Robert.Wrembel}@cs.put.poznan.pl

Abstract. One of the important research and technological issues in
data warehouse performance is the optimization of analytical queries.
Most of the research have been focusing on optimizing such queries by
means of materialized views, data and index partitioning, as well as var-
ious index structures including: join indexes, bitmap join indexes, mul-
tidimensional indexes or index-based multidimensional clusters. These
structures neither well support navigation along dimension hierarchies
nor optimize joins with the Time dimension, which in practice is used in
the majority of analytical queries. In this chapter we overview the basic
index structures, namely: a bitmap index, a join index, and a bitmap join
index. Based on these indexes, we show how to build another index, called
Time-HOBI, for optimizing queries that address the Time dimension and
compute aggregates along dimension hierarchies. We further discuss the
extension of the index with additional data structure for storing aggre-
gate values along the hierarchical structure of the index. The aggregates
are used for speeding up aggregate queries along dimension hierarchies.
Furthermore, we show how the index is used for answering queries in
an example data warehouse. Finally, we discuss its performance-related
characteristics, based on experiments.

Keywords: Data warehouse · Query optimization · Star query · Hier-
archical index · Bitmap index · Join index · Bitmap join index · Time-
HOBI

1 Introduction

A traditional data warehouse architecture has been developed in order to analyze
heterogeneous and distributed data managed by an enterprise. A core component
of this architecture is a database, called a data warehouse (DW) that stores
the integrated data, both current and historical ones. The content of a DW is
analyzed by various analytical queries for the purpose of discovering trends (e.g.,
demand and sales of products), discovering patterns of behavior (e.g., customer
habits, credit repayment history) and anomalies (e.g., credit card usage) as well
as for finding dependencies between data (e.g., market basket analysis, suggested
buying, insurance fee assessment). These techniques are commonly referred to
as On-Line Analytical Processing (OLAP).

E. Zimányi (Ed.): eBISS 2013, LNBIP 172, pp. 182–217, 2014.
DOI: 10.1007/978-3-319-05461-2 6, c© Springer International Publishing Switzerland 2014

On Index Structures for Star Query Processing in Data Warehouses 183

Analytical queries, commonly known as star queries process large volumes
of data. The queries join a central table with multiple reference tables (called
dimension tables) that define the context of the analyses. The queries next aggre-
gate data at various levels of granularity, from fine grained to coarse - by means
of roll-up operations and from coarse to fine grained - by means of drill-down
operations. Since a query response time is one of the key factors of a DW per-
formance, providing means for reducing the time is one of the research and
technological challenges. In this area, different mechanisms have been proposed
in the research literature, e.g., [27] and applied in commercial data warehouse
management systems (DWMSs), i.e., materialized views and query rewriting,
e.g., [20], data partitioning and parallel processing, e.g., [17,45,55] as well as
advanced indexing, e.g, [6]. The research on indexing resulted in multiple index
structures. From these structures, the successfully applied ones in commercial
DWMSs include: join indexes, e.g., [57], bitmap indexes, e.g., [38,53], bitmap join
indexes, e.g., [9,39], various multidimensional indexes, like for example R-tree
[21], Quad-tree [15], and K-d-b-tree [46], as well as index-based multidimensional
clusters [42].

We argue that the flat structure of a bitmap index can still be better opti-
mized to match a hierarchical structure of dimensions, in order to facilitate the
roll-up and drill-down operations. Moreover, the existing implementations of the
aforementioned indexes do not exploit the fact that most of the analytical queries
analyze data in time and thus require costly operations of joining a central table
with a dimension table, which stores time data.

Although bitmap indexes, join indexes, and bitmap join indexes substantially
decrease execution times of analytical queries, not all commercially available
database management systems support them. For example, Oracle implements
the bitmap index and the bitmap join index. IBM DB2 and SQL Server support
implicitly created temporary bitmap indexes only, which are used to optimize
joins.

Chapter contribution. In this chapter we overview the basic index structures,
namely: a bitmap index, a join index, and a bitmap join index. Based on these
indexes, we show how to build another index, called Time-HOBI, for optimizing
queries that compute aggregates along dimension hierarchies and that analyze
data in time. The index was originally presented in [12,36]. In this chapter, we
introduce the following additional contributions:

– the extension of Time-HOBI with additional data structure for storing aggre-
gate values along the index hierarchy (the aggregates are used for speeding
up aggregate queries along dimension hierarchies),

– the analysis of how the index is used for answering queries in an example data
warehouse,

– the experimental evaluation of the extended Time-HOBI.

Chapter content. This chapter is organized as follows. Section 2 presents basic
concepts on data warehousing used in this chapter. Section 3 outlines basic index

184 A. Wojciechowski and R. Wrembel

structures applied in data warehouses. Section 4 discusses the components of the
Time-HOBI index and shows how the index is used in a query execution plan.
Section 5 discusses performance characteristics of Time-HOBI obtained from
multiple experimental evaluations. Section 6 presents related work in the area of
indexing DW data. Finally, Sect. 7 summarizes the chapter.

2 Data Warehouse Basics

In this section we present the basic concepts and definitions in the area of data
warehousing, i.e., a multidimensional data model and its relational implementa-
tions, as well as star queries.

2.1 DW Model and Schema

In order to support various analyses, data stored in a DW are represented in the
multidimensional data model [22,24]. In this model an elementary information
being the subject of analysis is called a fact. It contains numerical features,
called measures that quantify the fact. Values of measures are analyzed in the
context of dimensions. Dimensions often have a hierarchical structure composed
of levels, such that Li ⊆ Lj , where ⊆ denotes hierarchical assignment between a
lower level Li and upper level Lj , also known as a roll-up or an aggregation path
[32]. Following the aggregation path, data can be aggregated along a dimension
hierarchy. Level data are called level instances. Hierarchically connected level
instances form a dimension instance.

The multidimensional model is often implemented in relational databases
(ROLAP) [11], where fact data are stored in a fact table, and level instances are
stored in dimension level tables. In a ROLAP implementation two basic types of
conceptual schemas are used, i.e. a star schema and a snowflake schema [11]. In
the star schema, each dimension is composed of only one (typically denormal-
ized) level table. In the snowflake schema, a dimension is composed of multiple
normalized level tables connected by foreign key - primary key relationships. The
two basic DW conceptual schemas can be used for creating a starflake schema
[25]. In this schema some dimensions are composed of normalized and some of
denormalized level tables. Star schemas store redundant data and are generally
more efficient for queries that join upper levels of dimensions with a fact table.
Conversely, for such queries snowflake schemas offer worse performance but there
is no data redundancy.

The example “Auctions” DW snowflake schema is shown in Fig. 1. It includes
the fact table Auctions that stores data about finished Internet auctions. The
schema allows to analyze auctions and to aggregate values of measures price
and quantity, with respect to three dimensions, namely: Time, Location, and
Product. To this end, the Auctions fact table is connected to the dimensions
via foreign keys: dateID, cityID, and prodID, respectively. The dimensions have
hierarchical structures. For example, dimension Product is composed of two

On Index Structures for Star Query Processing in Data Warehouses 185

noisne
mid

L
o

c
a

ti
o

n

dimension Time

Products

prodID
prodName

....
categID

Categories

categID
categName
....

Cities

cityID
cityName

....

Days

dateID
dayName

....
monthID

Months

monthID

....
yearID

Years

yearID

....

Auctions

dateID

....

cityID

price
quantity

Regions

regionID
regionName

....

regionID

Countries

countryID
countryName
....

countryID

dimension Product

monthNr nbDaysOff
nbDaysprodID

Q1

Q21

Q31

Q2

Q3

Fig. 1. The example data warehouse snowflake schema

level tables, namely Products and Categories, such that Products ⊆ Categories.
For simplicity reasons only the most important tables’ attributes are shown.
Notice that the price measure represents the current price that was paid for the
set of identical items in a given auction, whereas quantity is the number of the
sold items.

The example “Auctions” DW star schema is shown in Fig. 2. The Product,
Location, and Time dimensions were denormalized. Thus, each of them is imple-
mented as a single table.

Figure 3 shows the instance of dimension Product. It includes the instances
of level Categories and level Products. Level Categories include 2 instances,
namely ‘Ultrabook’ and ‘Tablet’. Level Products include 7 instances, namely
‘Asus Zenbook’, ‘Dell XPS Duo’, ‘Toshiba Portege Z930-14T’, etc. ‘iPad mini’,
‘Samsung Galaxy Note’, and ‘Asus Vivio Tab’ belong to category ‘Tablet’ and
the others belong to category ‘Ultrabook’.

Notice that throughout the paper we use the snowflake schema for illustration
purposes only. The Time-HOBI index, discussed in Sect. 4 is applicable to the
star, snowflake, and starflake schemas. Moreover, in Sect. 5 we evaluated the
index for both the star and snowflake schemas.

186 A. Wojciechowski and R. Wrembel

dn
oi

sn
em

i L
n

o
it

a
c

o

dimension Time

Products

prodID
prodName

....
categName

Cities

cityID
cityName

....

Days

dateID
dayName

....

monthNr

Auctions

dateID

....

cityID

price
quantity

regionName
countryName

dimension Product

nbDaysOff
nbDays

prodID

Fig. 2. The example data warehouse star schema

Asus
Zenbook

Dell
XPS Duo

Toshiba Portege
Z930-14T

Sony VAIO
SVT1313S1E

Ultrabook

Asus Vivio
Tab

Samsung
Galaxy Note

iPad mini

Tablet

le
v

e
l

s t
c

u
d

or
P

le
v

e
l

s
ei r

o
g

et
a

C

Fig. 3. The example of the Product dimension instance

2.2 Star Queries

Star queries, executed on any of the aforementioned DW schemas, join a fact
table with multiple level tables. In Fig. 1, we marked (by means of dashed lines)
the tables joined by various star queries. For example, Q1 joins tables Auctions,
Cities, and Days, whereas Q3 joins Auctions, Cities, Regions, Countries, Days,
Months, and Years. As an example let us consider the star query Q2 that com-
putes monthly auction sales per region, as shown in Fig. 4.

3 Index Data Structures

Star queries can profit from applying some indexes in the process of retrieving
data. In this section we outline three indexes that inspired us while developing
Time-HOBI. They include: a join index, a bitmap index, and a bitmap join
index. We also outline how the oracle implementation of the bitmap join index
supports star queries exemplified by query pattern Q3.

On Index Structures for Star Query Processing in Data Warehouses 187

SELECT r.regionName, m.monthID, m.yearID, sum(a.price), sum(a.quantity)
FROM

Auctions a,
Days d, Months m,
Cities c, Regions r

WHERE
a.dateID=d.dateID
AND d.monthID=m.monthID
AND a.cityID=c.cityID
AND c.regionID=r.regionID

GROUP BY
r.regionName, m.monthID, m.yearID

Fig. 4. The example query Q2

3.1 Join Index

A join index represent the materialized join of two tables, say R and S. As
defined in [31,57], a join index is a table composed of two attributes. It stores
the set of pairs (ri, sj) where ri and sj denote identifiers of tuples from R and
S, respectively, that join on a given predicate. For the purpose of searching the
join index faster, it is physically ordered (clustered) by one of the attributes.
Alternatively, the access to the join index can be organized by means of a B-tree
or a hash index [39]. Typically, in a DW the index joins a dimension table and
a fact table. The index is created either on a join attribute (typically a primary
key) or on another attribute (typically storing unique values) of a dimension
level table. In order to illustrate the idea behind the join index let us consider
the Example 1.

Example 1. Let us consider the Products and Auctions tables from the DW
schema shown in Fig. 1. Their content is shown in Table 1. For explanatory
reasons, both tables include also explicit column ROWID that stores physical
addresses of records. ROWIDs also play the role of row identifiers. The join
index defined on column ProdID is shown in Table 2.

As one can observe from the above example, the join index stores a material-
ized (precomputed) join of tables Products and Auctions. Thus, it will optimize
queries like:

select ...
from Auctions a, Products p
where a.prodID=p.prodID ...

Table 1. Example tables in the “Auctions” data warehouse (from Fig. 1)

table Auctions table Products
ROWID price cityID prodID ROWID prodID prodName categID
0AA0 ... POZ 100 BFF1 100 HP Pavilion ELE
0AA1 ... WRO 230 BFF2 230 Dell Inspiron ELE
0AA2 ... POZ 100 BFF3 300 Acer Ferrari ELE
0AA3 ... WAW 300
0AA4 ... WAW 300
0AA5 ... WRO 230

188 A. Wojciechowski and R. Wrembel

Table 2. Example join index on Products.prodID

Products.ROWID Auctions.ROWID

BFF1 0AA0
BFF1 0AA2
BFF2 0AA1
BFF2 0AA5
BFF3 0AA3
BFF3 0AA4

3.2 Bitmap Index

Analytical queries not only join data, but also filter data by means of query
predicates. Efficient filtering of large data volumes may be supported by bitmap
indexes [13,38,53,60]. Conceptually, a bitmap index created on an attribute am

of table T is organized as the collection of bitmaps. For each value vali in the
domain of am a separate bitmap is created. A bitmap is a vector of bits, where
the number of bits is equal to the number of records in table T . The values of
bits in bitmap for vali are set as follows. The n-th bit is set to 1 if the value of
attribute am for the n-th record is equal to vali. Otherwise the bit is set to 0.
At the implementation level, access to bitmaps can be realized either by means
of a B-tree whose leaves store pointers to bitmaps [38] or as simple arrays in a
binary file [48].

Example 2. In order to illustrate the idea behind the bitmap index let us review
the fact table Auctions, shown in Table 3. The table contains attribute prodID,
whose values are from the set {100, 230, 300}. A bitmap index created on this
attribute will be composed of three bitmaps, denoted as Bm100, Bm230, and
Bm300, as shown in Table 3.

Bitmap Bm100 describes rows whose value of attribute prodID is equal to
100, i.e., the first bit in this bitmap is equal to 1 since the value of prodID
of the first row in table Auctions is equal to 100. The second bit in Bm100
is equal to 0 since the value of prodID of the second row in Auctions does
not equal 100, etc. In exactly the same way the bits are set in Bm230 and
Bm300. Such a bitmap index will offer a good response time for a query selecting
for example data on auctions concerning products identified by 100 or by 300.

Table 3. The example table Auctions and the bitmap index created on attribute
Auctions.prodID

table Auctions bitmap index on Auctions.prodID
Bm100 Bm230 Bm300

price prodID ... prodID=100 prodID=230 prodID=300
... 100 ... ∈− 1 0 0
... 230 ... ∈− 0 1 0
... 100 ... ∈− 1 0 0
... 300 ... ∈− 0 0 1
... 300 ... ∈− 0 0 1
... 230 ... ∈− 0 1 0

On Index Structures for Star Query Processing in Data Warehouses 189

In order to find auction rows fulfilling this criterion, it is sufficient to OR bitmaps
Bm100 and Bm300 to construct the final result bitmap. Then, records pointed
to by bits equal to ‘1’ in the result bitmap are fetched from the Auctions table.

Bitmap indexes allow to answer queries with the count function without
accessing tables, since answers to such queries can be computed by simply count-
ing bits equal to ‘1’ in a result bitmap.

The size of a bitmap index strongly depends on the cardinality (domain
width) of an indexed attribute, i.e., the index size increases when the cardinal-
ity of an indexed attribute increases. Thus, for attributes of high cardinalities
(wide domains) bitmap indexes become very large. In order to reduce the size
of bitmap indexes defined on attributes of high cardinalities, the two following
approaches have been proposed in the research literature, namely: (1) exten-
sions to the structure of the basic bitmap index, e.g., [10,29,41,54,62,63], and
(2) bitmap index compression techniques, e.g., [4,14,37,52,59,61]. Discussing
these techniques is out of scope of this chapter and their overviews can be found
in [53,58].

3.3 Bitmap Join Index

A bitmap join index [5,39,41] combines concepts of the join index and the bitmap
index. Thus, the bitmap join index takes the advantage of the join index since it
allows to materialize a join of tables. It also takes the advantage of the bitmap
index with respect to efficient data filtering by means of AND, OR, and NOT
operations on bitmaps. Conceptually, this index is organized as the join index,
but instead of ROWIDs of a fact table’s rows the index stores bitmaps that
point to the appropriate fact table’s rows. A lookup entry to the bitmap is by
the ROWID of a row from a dimension level table (or an attribute uniquely
identifying a row in that table). Similarly as for the ordinary join index, the
access to the bitmap join index lookup column can be organized by means of a
B-tree or a hash index. In order to illustrate the idea behind the bitmap join
index let us consider the Example 3.

Example 3. Let us return to Example 1 and let us define the bitmap join index on
attribute prodID of level table Products. Conceptually, the entries of this index
are shown in Table 4. The lookup attribute of the index is prodID. A bitmap
is associated with every value of this attribute. For example, the bitmap for
prodID=100 points to the rows from table Auctions that concern this product,
i.e., the 1st and 3rd row in table Auctions concern a product of prodID=100.

3.4 Indexes in Star Query Processing

In order to asses how star queries utilize the indexes discussed above, we exe-
cuted in Oracle11g queries Q1, Q2, Q21, Q3, and Q31, as shown in Fig. 1. We
selected Oracle as it supports user-managed both bitmap indexes and bitmap join
indexes, whereas other systems, including IBM DB2 and Microsoft SQL Server,

190 A. Wojciechowski and R. Wrembel

Table 4. Example bitmap join index organized as a lookup by attribute Prod-
ucts.prodID

Products.prodID bitmap

100 1
0
1
0
0
0

230 0
1
0
0
0
1

300 0
0
0
1
1
0

support only system defined temporal bitmap indexes [58]. In this section we
outline the execution of query Q3, expressed by means of the SQL code shown
in Fig. 5. Notice that Q3 allows to parameterize its selectivity by means of the
WHERE clause. We run the query for selectivities from 5 to 60 %.

In order to provide a query optimizer the means for optimizing the query,
we defined the following indexes: (1) the bitmap index on attribute year, (2) the
bitmap index on attribute countryName, (3) the concatenated bitmap join index
on year and countryName, using the SQL command shown in Fig. 6.

SELECT y.yearID, co.countryName, sum(a.price), sum(a.quantity)
FROM

Auctions a,
Days d, Months m, Years y,
Cities ci, Regions r, Countries co

WHERE
y.yearID in (year1, ..., yearN)
AND co.countryName in (country1, ..., countryN)
AND a.cityID=ci.cityID
AND ci.regionID=r.regionID
AND r.countryID=co.countryID
AND a.dateID=d.dateID
AND d.monthID=m.monthID
AND m.yearID=y.yearID

GROUP BY
y.yearID, co.countryName

Fig. 5. The example query Q3

On Index Structures for Star Query Processing in Data Warehouses 191

CREATE BITMAP INDEX bmi_a_years_countries
ON auctions(y.yearID, co.countryName)
FROM

Auctions a,
Days d, Months m, Years y,
Cities ci, Regions r, Countries co

WHERE
a.cityID=ci.cityID
AND r.regionID=ci.regionID
AND r.countryID=co.countryID
AND a.dateID=d.dateID
AND d.monthID=m.monthID
AND m.yearID=y.yearID

Fig. 6. The example concatenated bitmap join index

The query execution plan for selectivity equal 7 % is shown in Fig. 7. It was
constructed by the Oracle11g (Enterprise Edition Release 11.2.0.1.0 - 64bit Pro-
duction) cost query optimizer with full statistics available. We can notice that
the plan is quite complex. Even with the defined bitmap join index, 6 joins were
executed. For other tested query selectivities, their respective execution plans
were complex and expensive as well.

The analysis of execution plans of other star queries, including Q1, Q2, Q21,
and Q31 reveals that also these queries could be better optimized, i.e., the
costly join operations with hierarchical dimensions, including Time, could be

Fig. 7. Execution plan obtained from Oracle for star query Q3 with the selectivity
equal 7 %

192 A. Wojciechowski and R. Wrembel

eliminated or minimized. This observation led us to the development of the
index called Time-HOBI, originally proposed in [36].

4 Index Time-HOBI

The Time-HOBI index is build of three components, namely:

– Hierarchically Organized Bitmap Index (HOBI), where one bitmap index is
maintained for one dimension level [12],

– Time Index (TI) that implicitly encodes time in every dimension [36],
– Partial Aggregates (PA) - that store precomputed aggregates along dimension

hierarchies that is a new contribution introduced in this chapter.

In this section we present the three aforementioned components of Time-
HOBI, show how a star query can be executed based on the Time-HOBI index,
relate our index to a materialized view, and finally, we outline some alternative
implementations of HOBI, TI, and PA.

4.1 Hierarchically Organized Bitmap Index

HOBI belongs to the class of bitmap join indexes as the index is defined on
a dimension attribute and its bitmaps point to fact rows. HOBI is composed
of bitmaps organized in a hierarchy that reflects the hierarchy of a dimension.
Bitmaps on a lower level of a hierarchy are aggregated at an upper level.

Example 4. In order to illustrate the concept of HOBI let us consider dimension
Product, such that Products ⊆ Categories and the dimension instance, as shown
in Fig. 3. For this dimension, HOBI consists of two levels. At the lower level
- Products there exist 7 bitmaps, each of which describes auction sales of one
product, i.e., ‘Asus Zenbook’, ‘Dell XPS Duo’, etc. At the upper level - Categories
there exist 2 bitmaps, i.e., ‘Ultrabook’ and ‘Tablet’, one bitmap for one category
of sold products. The bitmaps are illustrated in Fig. reffig:TimeHobiExample in
the box entitled “HOBI for dimension Product”.

The upper level bitmap for ‘Ultrabook’, at level Categories, is computed by
OR-ing the four bitmaps from level Products, i.e., ‘Asus Zenbook’, ‘Dell XPS
Duo’, ‘Toshiba Portege Z930-14T’, and ‘Sony VAIO SVT1313S1E’. Similarly,
the ‘Tablet’ bitmap describes auction sales of products from this category and it
is constructed by OR-ing bitmaps for ‘iPad mini’, ‘Samsung Galaxy Note’, and
‘Asus Vivio Tab’.

4.2 Time Index

The Time dimension plays a special role as it is used in most of the star queries.
In order to eliminate the frequent join operation of a fact table with the Time
dimension, in [36] we proposed to implicitly encode the Time dimension in other
dimensions. Similarly as in [1,19,33] we assume that data stored in a fact table

On Index Structures for Star Query Processing in Data Warehouses 193

are sorted by a selected attribute, typically storing time. This assumption is
realistic since a DW is loaded incrementally in time intervals. Moreover, data
can be easily sorted by time in the ETL layer before being loaded into a DW.
The Time Index (TI) takes advantage of data ordering by time. It is created on
an attribute used to join a fact table with the Time dimension. TI stores ranges
of bit numbers belonging to a given time interval. The time intervals in TI are
identical as in the Time dimension.

The concept of TI is illustrated in Fig. 8. We assume that the Time dimen-
sion is composed of the following implicit hierarchy Days ⊆ Months ⊆ Y ears.
Dimension Di has only one denormalized level L with k instances. Thus, HOBI
defined for Di is composed of k bitmaps (denoted as B1, . . . , Bk) and they
describe rows in a fact table. Let us assume that there are z such rows in the
fact table. Therefore, every bitmap in HOBI is composed of z bits.

TI organizes bits in the bitmaps into intervals (segments) defined in the Time
dimension. Thus, bits b1, . . . , bi point to fact rows that come from day1, bits
bi+1, . . . , bi+x point to fact rows that come from day2, etc. Moreover, day1, . . . ,
dayn aggregate to month1. For this reason, bits b1, . . . , bj+x point to fact rows
that come from month1. Similarly, month1,month2, . . . ,month12 aggregate to
year1 and bits b1 to bo+x point to fact rows that come from year1.

Notice that: (1) all the bitmaps point to the same number of rows in a fact
table, i.e., the length of every bitmap is identical, and (2) all the bitmaps in HOBI
are divided into identical time intervals. For these reasons, TI is shared by all
bitmaps in HOBI. Time Index eliminates the joins of a fact table with dimension
Time as bit numbers representing fact rows that fulfill selection criteria on time
may be easily retrieved with the support of TI.

Example 5. In order to illustrate the concept of Time Index let us consider
10 auctions (stored in the table Auctions) held on some days in months from
February until July in the year 2010, as shown in Fig. 9. The TI maps the 9
distinct dates in the Time dimension into bit numbers. As the Auctions fact
table stores 10 rows, every bitmap in HOBI includes 10 bits. Thus, the date
‘25-Feb-2010’ maps to bit b1, ‘2-Mar-2010’ maps to the range of bits b2–b3, etc.
At the level Months, ‘February’ maps to bit b1, ‘March’ maps to the range of
bits b2–b4, ‘April’ maps to b5–b6, etc. At the level Year, ‘2010’ maps to b1–b10.

4.3 Partial Aggregates

Inspired by the concepts of Small Materialized Aggregates [33], Zone Maps [1],
and Zone Filters [19] (Sect. 6), we augmented HOBI and TI with sets of aggre-
gates that we call Partial Aggregates (PA). PA are computed for: (1) selected
measures, (2) selected aggregation functions, (3) a given dimension, (4) a given
dimension level, (5) a given dimension level instances, (6) a given time inter-
val. The aggregates are associated with HOBI and they also have a hierarchical
structure, which is identical to the structure of HOBI.

194 A. Wojciechowski and R. Wrembel

day 1

day 2

day n

month 1

month 2 year 1

bitmap
Bk

bitmap
B1

.............

.............

dimension Di

time index

b
...

...

...

...

...

...

1

b
b

b

b

b
b

b
...
b

b
b
...
b
...
b
...
b

b
...
b
...
b
...

b
...
b
...
b

i

i+1

i+x

j

j+x

k

k+x

l

l+x

m

m+x

n

n+x

o

o+x

p

p+x

w+x

z

...

...

...

month 12

b
...

...

...

...

...

...

1

b
b

b

b

b
b

b
...
b

b
b
...
b
...
b
...
b
...
b
...
b
...
b
...
...
...
b
...
b
...
b

i

i+1

i+x

j

j+x

k

k+x

l

l+x

m

m+x

n

n+x

o

o+x

p

p+x

w+x

z

year n

Fig. 8. The concept of Time Index

Let, in a given data warehouse schema:

– M denote the set of measures (e.g., price, quantity) and mi ∈ M,
– AF denote the set of aggregate functions (e.g., min, max, avg, sum, count)

and aggFi ∈ AF,
– D denote the set of dimensions (e.g., Time, Product, Location) and di ∈ D,
– DL denote the set of dimension levels (e.g., Products, Categories, Cities,
Regions, Countries) and dli ∈ DL,

– LI denote the set of dimension level instances (e.g., ‘Ultrabook’, ‘Asus Zen-
book’, ‘iTablet’, ‘iPad mini’, ‘Poznan’, ‘Warsaw’) and lii ∈ LI,

– TI denote the set of time intervals in the Time dimension (e.g., 01-JAN-2013,
JAN-2013, 2013) and ti ∈ TI.

Then, formally PA is a function F : (mi, aggFi, di, dli, lii, ti) ≥⊆ v (v ∈ R).

On Index Structures for Star Query Processing in Data Warehouses 195

For example, F : (price, sum, Location, Cities, Warsaw, MAR−2013) maps
to the aggregate - sum of sales prices in ‘Warsaw’ (in dimension Location, level
Cities) in March 2013.

Partial Aggregates may be used:

– for selecting these segments of bitmaps that fulfill selection criteria based
on aggregates and intersect the segments with segments selected by selection
criteria defined by the intervals from the Time dimension, e.g.,
SELECT ...
WHERE sum(price) > 5000 AND yearID=2013
GROUP BY monthNr

– for computing aggregates on an upper level based on aggregates from a lower
level of a dimension hierarchy (for distributive and algebraic aggregate func-
tions), e.g., based on aggregate sales price per product in JAN 2013 computing
aggregate sales per product category in the same time interval,

– in aggregate queries without selection predicates, e.g.,
SELECT sum(price), c.countryName
FROM Auctions a, Countries c, ...
GROUP BY c.countryName

– in aggregate queries with multiple selection predicates defined by means of
dimensions, like for example Q3.

The application of Time-HOBI to index the tables in our example schema
(Fig. 1) is shown in Fig. 9. We assume that fact table Auctions stores 10 rows.
HOBI for dimension Product is composed of 7 bitmaps stored on level Prod-
ucts and 2 bitmaps on level Categories, as explained in Sect. 4.1. Since every
bitmap is composed of 10 bits, Time Index points to 10 rows. Auction row from
25-FEB-2010 is represented by bit b1, auction rows from 02-MAR-2010 are rep-
resented by bits b2 and b3. Auction rows from March 2010 are represented by
bits b2, . . . , b4, etc.

Following the definition of Partial Aggregates, they are stored for every bitmap
and for every time interval in Time Index, i.e., day, month, and year. For exam-
ple, at the level of bitmap ‘Asus Vivio Tab’, for 13-MAY-2010 there exist the
following partial aggregate: (price, sum, Product, Products, Asus Vivio Tab,13-
MAY-2010) ⊆ 100, for MAY-2010 there exist the following partial aggregate:
(price, sum, Product, Products, Asus Vivio Tab,MAY-2010) ⊆ 100, and for the
whole year 2010 there exist the following partial aggregate: (price, sum, Product,
Products, Asus Vivio Tab, 2010) ⊆ 205. For simplicity reasons we assumed that
only the price measure is aggregated by the SUM aggregate function.

Notice that HOBI (being the part of Time-HOBI) is applicable to any dimen-
sion but Time, since the Time dimension is used to organize bits in HOBI.

4.4 Star Query Optimization with the Support of Time-HOBI

As we have shown in Sect. 3.4, the optimization of a simple star query Q3 requires
a complex execution plan with 6 joins. While applying Time-HOBI, we could
optimize the query more efficiently since Time-HOBI :

196 A. Wojciechowski and R. Wrembel

(price,sum,Product,Categories,Ultrabook,2010)->
(price,sum,Product,Categories,Ultrabook,FEB-2010)->100

(price

1150

,sum,Product,Categories,Ultrabook,25-FEB-2010)->100
...

(price,sum,Product,Categories,Ultrabook,MAR-2010)->230
...
(price,sum,Product,Categories,Ultrabook,JUL-2010)->400

(price,sum,Product,Categories,Ultrabook,17-JUL-2010)->400

Asus
Zenbook

1
1
0
0
0
0
0
0
0
0

0
0
1
0
1
0
0
1
0
0

Dell
XPS
Duo

0
0
0
0
0
0
0
0
0
0

Toshiba
Portege
Z930-14T

0
0
0
0
0
0
0
0
0
1

Sony
VAIO
SVT1313S1E

bitmap: Ultrabook

1
1
1
0
1
0
0
1
0
1

Asus
Vivio
Tab

0
0
0
0
0
1
1
0
0
0

0
0
0
0
0
0
0
0
0
0

Samsung
Galaxy
Note

0
0
0
1
0
0
0
0
1
0

iPad
mini

bitmap: Tablet

0
0
0
1
0
1
1
0
1
0

OR OR

HOBI for dimension Product

Time Index

fact table Auctions

2
MAR

25

13

APR

FEB

MAY

JUN
JUL

2010

b 1
b
b
b
b
b
b
b
b
b

2

3

4

5

6

7

8

9

10

b 1
b
b
b
b
b
b
b
b
b

2

3

4

5

6

7

8

9

10

prodID cityID dateID price quantity ...
Asus Zenbook POZ 25-FEB-2010 100 3 ...
Asus Zenbook WAW 02-MAR-2010 140 1 ...
Dell XPS Duo WAW 02-MAR-2010 90 2 ...
iPad mini WRO 13-MAR-2010 110 1 ...
Dell XPS Duo GDA 14-APR-2010 120 4 ...
Asus Vivio Tab KRA 15-APR-2010 105 2 ...
Asus Vivio Tab KRA 13-MAY-2010 100 1 ...
Dell XPS Duo POZ 25-MAY-2010 300 1 ...
iPad mini POZ 14-JUN-2010 320 2 ...
Sony VAIO SVT1313S1E WRO 17-JUL-2010 400 1 ...

stcudor
Plevel

seiroge ta
Clevel

b 1
b
b
b
b
b
b
b
b
b

2

3

4

5

6

7

8

9

10

14
15
13
25
14
17

(price,sum,Product,Categories,Tablet,2010)->635
(price,sum,Product,Categories,Tablet,MAR-2010)->110
...
(price,sum,Product,Categories,Tablet,13-MAR-2010)->110
...
(price,sum,Product,Categories,Tablet,14-JUN-2010)->320

Partial Aggregates Partial Aggregates

(price, sum, Product, Products, Asus Vivio Tab, 2010) -> 205
(price, sum, Product, Products, Asus Vivio Tab, APR-2010) -> 105

...
(price, sum, Product, Products, Asus Vivio Tab, 13-MAY-2010) -> 100

(price, sum, Product, Products, Asus Vivio Tab, MAY-2010) -> 100

(price, sum, Product, Products, iPad mini, 2010)
(price, sum, Product, Products, Asus Zenbook, 2010)
(price, sum, Product, Products, Dell XPS Duo, 2010)
...

Partial Aggregates

Fig. 9. Time-HOBI for the Product dimension

On Index Structures for Star Query Processing in Data Warehouses 197

– eliminates joins of a fact table with the Time by applying TI ;
– allows efficient processing of bitmaps in HOBI ;
– allows to fetch only the segments of bitmaps that are relevant to a time period

selected in a query, by applying TI to HOBI ;
– eliminates joins of a fact table with other dimensions by applying HOBI ;
– eliminates or reduces the costs of computing aggregates of measures at various

levels of a dimension hierarchy by applying PA.

The theoretical execution plan of Q3 with the support of Time-HOBI is
shown in Fig. 10. The WHERE clause included the following selection criteria,
resulting in 7 % query selectivity:

WHERE
y.yearID in (2010, 2011)
AND countryName in (‘Poland’, ‘Germany’)

As it can be noticed, no joins are needed in this plan. The query can be
answered by accessing the following PA:

– (price, sum,Location,Countries, Poland, 2010),
– (price, sum,Location,Countries, Poland, 2011),
– (price, sum,Location,Countries,Germany, 2010),
– (price, sum,Location,Countries,Germany, 2011).

Addressing the partial aggregates is symbolized by:

– PA-Address(SUM)Y EARS
year=2010 or year=2011,

– PA-Address(SUM)COUNTRIES
countryName=′Poland′ or countryName=′Germany′ ,

whereas fetching the aggregates is symbolized by PA-Fetch.

4.5 Time-HOBI vs. Materialized View

Time-HOBI takes advantage of materialized partial aggregates. With this respect,
our index is similar to a materialized view as it can be applied to answering queries

COUNTRIES

countryName= 'Poland'
or countryName=’Germany’

year=2010
or year=2011

yearID, countryName, sum(price*quantity)

PA-Fetch

PA-Address(SUM)
YEARS

PA-Address(SUM)

Fig. 10. Query execution plan for query Q3 constructed with the support of Time-
HOBI

198 A. Wojciechowski and R. Wrembel

computing the aggregates being materialized in PA. It also associates the aggre-
gates with their proper dimension levels and organizes the access to these aggre-
gates by means of PA. Unlike a materialized view, Time-HOBI additionally can
facilitate the execution of queries that filter fact data based on restrictions defined
at various levels of dimensions. It is done by means of HOBI - being a kind of
bitmap join index. In such cases, queries can be executed more efficiently with
the support of Time-HOBI than with the support of bitmap, join, or bitmap join
indexes, as it was shown in [36] and in Sect. 5. Finally, Time-HOBI eliminates the
need to join a fact table with theTime dimension, especially in snowflake schemas.
Such queries take advantage of Time Index in their execution plans. To this end,
the following star query processing algorithm is applied.

Star query processing with the support of Time-HOBI

1. By means of the Time Index find the bit numbers that correspond to the
given time interval < tk, tk+m >; let [bk : bk+m] denote the corresponding
range of bit numbers.

2. ⇒i = (j, . . . , j + m) fetch fragments of bitmaps di pointed to by bit numbers
[bk : bk+m]; let the fetched fragments be denoted as f(dj) for dimension
instance dj and f(dj+m) for dimension instance dj+m.

3. Compute the final bitmap fragment F from f(di) (i = (j, . . . , j + m)) by
applying logical operators that were defined in the where clause of the star
query.

4. ⇒bi ∈ [bk : bk+m]: if the bit value is equal to 1, then transform bi into the
physical addresses of the corresponding row and fetch the row.

To sum up, we believe that Time-HOBI offers slightly more flexibility than
materialized views as it combines materialized aggregates at multiple levels of
dimension hierarchies, bitmap join indexes, and encodes time on other dimen-
sions.

4.6 Implementation Issues

There are three major implementation issues that impact query performance
with the support of Time-HOBI, namely: (1) organizing access to bitmaps in
HOBI, (2) implementing Time Index, and (3) organizing access to Partial
Aggregates.

In the simplest case, when the domain of an indexed attribute is narrow,
HOBI bitmaps can be accessed by means of an array or list sorted by the bitmap
name (i.e., the value of the indexed attribute). In either of these implementations,
an element of an array cell or a list stores: (1) the value of an indexed attribute
and (2) a pointer to an appropriate bitmap. For wide domains, an access to the
bitmaps may be organized either as a B-tree-like index or hash function.

Regarding Time Index, a crucial implementation issue is to organize ranges
of bits for every time interval defined in the Time dimension. There are two
straightforward methods of implementing TI. The first one is based on a record

On Index Structures for Star Query Processing in Data Warehouses 199

structure and the second one is based on a tree structure. In a record-based
implementation every instance of the Time dimension is stored as a record in a
table. The record-based implementation can be altered in order to use a nested
table (in the spirit of Oracle), where the days records are nested in months,
which in turn are nested in a year record. A record-based and a nested table-
based implementations can be further indexed in order to reduce access time
to data. In the tree-based implementation, ranges of bits in the Time Index
are organized in n trees, where n is equal to the number of years in the Time
dimension. Each tree has a root that stores the year. A root points to the lower
level time intervals, e.g., months, that in turn point to the lower level time
intervals, e.g., days. This implementation is visualized in Fig. 9.

A straightforward storage implementation of Partial Aggregates is a table
with columns mi, aggFi, di, dli, lii, ti, v (Sect. 4.3). The access to the aggregates
may be organized by an index either on all the columns but v or on the lead-
ing columns. Alternatively, PA may be accessed by a hash function on the same
columns. PA may be implemented also as a n-dimensional array, dimensioned by
mi, aggFi, di, dli, lii, ti, with the cells storing v. Thus, the values of the dimen-
sions are used as indexes to the cells of interest.

4.7 Time-HOBI Limitations

As already mention, we assumed that data in a fact table must be sorted by the
value of an attribute storing time. The values of the ordering time attribute are
used to construct Time Index. For this reason, Time-HOBI can only be created
on the ordering time attribute.

For fine grained instances of the Time dimension, like seconds, milliseconds,
etc., Time Index would include millions or billions of items, resulting in a huge
and inefficient size. Moreover, the number of PA would also contributed to the
size of the whole Time-HOBI. These issues needs further investigation in the
future.

5 Experimental Evaluation

Time-HOBI was implemented as an application layer in Oracle11g that stored
all the data structures discussed in Sect. 4. In the experiments we use a sorted
list for HOBI, the record-based storage for TI, and table storage for PA.

The Oracle instance used 3.4 GB of SGA (i.e., the main memory allocated
to handle various instance buffers), 1.7 GB of which was allocated to a data
cache. The experiments were conducted on a computer equipped with: processor
- Intel Core i7-820QM 1.7 GHz, disk - Seagate ST9320423AS, and 8 GB RAM,
under Windows7 Server. The DW schemas for the experimental evaluation are
shown in Figs. 1 and 2. In the snowflake schema, the tables included the following
number of rows: Years: 6, Months: 72, Days: 2190, Cities: 10 000, Regions: 200,
Countries: 10, Categories: 230, Products: 48 000, and Auctions: 500 000 000, of
the total size equal 30 GB. In the star schema, the tables included the following

200 A. Wojciechowski and R. Wrembel

SELECT ci.cityName, d.dayName, d.dayNr,
sum(a.price), sum(a.quantity)

FROM
Auctions a, Cities ci, Days d

WHERE
ci.cityName like ’pattern’
AND a.cityID=ci.cityID
AND a.dateID=d.dateID

GROUP BY
ci.cityName, d.dayName, d.dayNr

Fig. 11. The example query Q1 used in the experiments for the snowflake and star
schemas

number of rows: Days: 2190, Cities: 10 000, Products: 48 000, and Auctions:
500 000 000, of the total size slightly over 30 GB, due to the redundancy in the
dimension tables. The data used in the experiments were artificially generated
but data distributions reflected real data that we used in [12].

In this schema we run five different query patterns, as shown in Fig. 1 and
mentioned in Sect. 2.2 as well as the equivalents of the query patterns in the
star schema. For example, the pattern of Q1 is shown in Fig. 11. Its selectivity
is parameterized in the WHERE clause by means of attribute Cities.cityName.
Notice that Q1 is identical for the snowflake and the star schema.

The patterns of Q3 for the snowflake and the star schema are shown in
Figs. 12 and 13, respectively. Their selectivities are parameterized in the WHERE
clause by means of attributes countryName and yearID. Since the filtering pred-
icates are defined by means of the highest levels (i.e., Countries, and Years) of
the Location and Time dimensions, the lowest possible selectivity for Q3 is 1.6 %.

In the snowflake schema, the Q2 query pattern computes the aggregates
sum(a.price) and sum(a.quantity) at the levels of Months and Regions (cf. Fig. 1.
It is parameterized by means of attributes Regions.regionName and Months.

SELECT y.yearID, co.countryName,
sum(a.price), sum(a.quantity)

FROM
Auctions a,
Days d, Months m, Years r,
Cities ci, Regions r, Countries co

WHERE
NOT (co.countryName like ’pattern’)
AND (y.yearID > v_year)
AND a.cityID=ci.cityID
AND ci.regionID=r.regionID
AND r.countryID=co.countryID
AND a.dateID=d.dateID
AND d.monthID=m.monthID
AND m.yearID=y.yearID

GROUP BY
y.yearID, co.countryName

Fig. 12. The pattern Q3 in the
snowflake schema

SELECT d.yearID, ci.countryName,
sum(a.price), sum(a.quantity)

FROM
Auctions a, Days d, Cities ci

WHERE
NOT (ci.countryName like ’pattern’)
AND (d.yearID > v_year)
AND a.cityID=ci.cityID
AND a.dateID=d.dateID

GROUP BY
d.yearID, ci.countryName

Fig. 13. The pattern Q3 in the star
schema

On Index Structures for Star Query Processing in Data Warehouses 201

monthNr. Pattern Q21 computes the same aggregates at the levels of Days and
Regions and it is parameterized by means of attributes Regions.regionName
and Days.dayNr. Pattern Q31 computes the same aggregates as Q2 but at the
levels of Days and Countries. It is parameterized by Countries.countryName and
Days.dayNo.

In the star schema, the query patterns Q2, Q21, and Q3 compute the same
aggregates as their equivalents in the snowflake schema, however, Auctions is
joined with the denormalized dimension tables Days and Cities.

In the experiments we decided no to use any of the standard benchmarks
like TPC-H, TPC-DS [3], SSB [40], and [2] for two reasons. First, because the
benchmarks are typically designed to measure an overall system’s response time
and query processing efficiency for given query workloads. We found that it
is inadequate to our setting where we aimed at comparing the performance of
particular indexes with respect to parameterized selectivities of the queries and
parameterized number of joins. Second, the patterns of queries that we applied
in our experiments reflect real queries that were run in a real system [12] that
we modeled with the snowflake and the star schema.

The experiments that we conducted aimed at comparing the following char-
acteristics of Time-HOBI with respect to:

1. the performance of the aggregate query patterns Q1, Q2, Q21, Q3, and Q31,
2. index sizes,
3. index creation times.

We related the three characteristics to the competitors being:

– Oracle indexes in the snowflake schema,
– Oracle indexes in the star schema,
– Oracle materialized views in the snowflake schema,
– Oracle materialized views in the star schema.

In each of the experiments described below, for comparison, we defined the
following Oracle indexes:

– the bitmap index on attribute yearID in both the snowflake and the star
schema,

– the bitmap index on attribute countryName in both the snowflake and the
star schema,

– the concatenated bitmap join index on year and countryName that joined
tables Years, Months, Days, Countries, Regions, Cities, and Auctions in the
snowflake schema,

– the bitmap index on attribute monthNr in both the snowflake and the star
schema,

– the bitmap index on attribute regionName in both the snowflake and the star
schema,

– the concatenated bitmap join index on monthNr and regionName that joined
tables Months, Days, Regions, Cities, and Auctions in the snowflake schema,

202 A. Wojciechowski and R. Wrembel

– the bitmap index on attribute dayNr in both the snowflake and the star
schema,

– the bitmap index on attribute cityName in both the snowflake and the star
schema,

– the concatenated bitmap join index on dayNr and cityName that joined tables
Days, Cities, and Auctions in the snowflake schema,

– the concatenated bitmap join index on yearID, monthNr, dayNr, country-
Name, regionName and cityName that joined tables Locations, Time and
Auctions in the star schema.

Additionally, we created the set of materialized views in the snowflake schema.
Their structures are shown in Fig. 14. The corresponding views in the star schema
computed the same aggregates.

CREATE MATERIALIZED VIEW MV_A_CITY_DAY ... AS
SELECT ci.cityId, d.dateId, ci.cityName, d.dayName, d.dayNr,

sum(a.price) as pricesum, sum(a.quantity) as quantitysum, count(*) as count
FROM Auctions a, Cities ci, Days d
WHERE a.cityId=ci.cityId AND a.dateId=d.dateId
GROUP BY ci.cityId, d.dateId, ci.cityName, d.dayName, d.dayNr

CREATE MATERIALIZED VIEW MV_A_REGION_MONTH ... AS
SELECT r.regionID, m.monthID, r.regionName, m.monthNr,

sum(a.pricesum) as pricesum, sum(a.quantitysum) as quantitysum, sum(a.count) as count
FROM MV_A_CITY_DAY a, Cities ci, Regions r, Says d, Months m
WHERE a.cityID=ci.cityID AND a.dateID=d.dateID AND ci.regionID=r.regionID

AND d.monthID=m.monthID
GROUP BY r.regionID, m.monthID, r.regionName, m.monthNr

CREATE MATERIALIZED VIEW MV_A_COUNTRY_YEAR ... AS
SELECT c.countryID, y.yearID, c.countryName,

sum(a.pricesum) as pricesum, sum(a.quantitysum) as quantitysum, sum(a.count) as count
FROM MV_A_REGION_MONTH a, Regions r, Months m, Countries c, Years r
WHERE a.regionID=r.regionID AND a.monthID=m.monthID AND r.coutnryID=c.coutnryID

AND m.yearID=y.yearID
GROUP BY c.coutnryID, y.yearID, c.countryName

CREATE MATERIALIZED VIEW MV_A_LOCATION_TIME ... AS
SELECT l.countryName, l.regionName, l.cityName, locationID,

t.year, t.monthNr, t.dayNr, timeID,
sum(a.price) as pricesum, sum(a.quantity) as quantitysum, count(*) as count

FROM Auctions a, Time t, Locations l
WHERE a.timeid=t.timeid AND a.locationID=l.locationID
GROUP BY l.countryName, l.regionName, l.cityName, locationID,

t.year, t.monthNr, t.dayNr, timeID

CREATE MATERIALIZED VIEW MV_A_LOCATION_TIME_R2 ... AS
SELECT countryName, regionName, yearID, monthNr,

sum(pricesum) as pricesum, sum(quantitysum) as quantitysum, sum(count) as count
FROM MV_A_LOCATION_TIME
GROUP BY countryName, regionName, yearID, monthNr

CREATE MATERIALIZED VIEW MV_A_LOCATION_TIME_R3 ... AS
SELECT countryName, yearID, sum(pricesum) as pricesum,

sum(quantitysum) as quantitysum, sum(count) as count
FROM MV_A_LOCATION_TIME_R2
GROUP BY countryName, yearID

Fig. 14. The materialized views created in the snowflake schema

On Index Structures for Star Query Processing in Data Warehouses 203

20 s

30 s

1 min

2 min

5 min

10 min

30 min

1 h

2 h

0.001 0.01 0.1 1 10 100

e
x
e
c
u
t
i
o
n

t
i
m
e

% of rows

Time-HOBI
Oracle IND Snow
Oracle IND Star
Oracle MV Snow
Oracle MV Star

Fig. 15. Elapsed execution times of query pattern Q1 with the parameterized query
selectivity

5.1 Query Performance

In these experiments we measured the performance characteristics of the indexes
for query patterns Q1, Q2, Q21, Q3, and Q31. The selectivities of these queries
were parameterized and ranged from 0.001 % to 100 % of rows in the Auction fact
table. Time-HOBI indexes were defined in every dimension used in the queries,
thus the indexes included the Partial Aggregates by (Product, Time) as well as
(Location, Time), for all the levels in these dimensions. PA were created in the
snowflake and the star schema.

The obtained results for query pattern Q1 are shown in Fig. 15. Notice that
the query performance with the support of Time-HOBI is the same in the
snowflake and star schema. It is because, the structure of the index is the same
for both of the schemas. This observation is true also for the rest of the test
queries.

From Fig. 15 we can observe that the elapsed execution times of the queries
are much lower with the support of Time-HOBI than with the support of the
set of Oracle indexes, for the whole range of the query selectivity. Moreover,
the execution times of the queries are almost the same for Time-HOBI and the
materialized views, for the same range of the selectivity.

The performance characteristics of query patterns Q2, Q21, Q3, and Q31
are shown in Figs. 16, 17, 18, and 19. From the figures we can observe that
Time-HOBI also offers better performance than the Oracle indexes in both DW
schemas and offers similar performance to the Oracle materialized views.

For the above characteristics we computed ratio γ = tIND
Oracle

tTime−HOBI
, where

tIND
Oracle and tTime−HOBI denote elapsed query execution times with the support

of the set of Oracle indexes and Time-HOBI, respectively. Similarly, we computed

204 A. Wojciechowski and R. Wrembel

500 ms
1 s
2 s

5 s
10 s

30 s
1 min

3 min

10 min

30 min

0.01 0.1 1 10 100

e
x
e
c
u
t
i
o
n

t
i
m
e

% of rows

Time-HOBI
Oracle IND Snow
Oracle IND Star
Oracle MV Snow
Oracle MV Star

Fig. 16. Elapsed execution times of query pattern Q2 with the parameterized query
selectivity

20 s

30 s

1 min

2 min

5 min

10 min

30 min

 0.01 0.1 1 10 100

e
x
e
c
u
t
i
o
n

t
i
m
e

% of rows

Time-HOBI
Oracle IND Snow
Oracle IND Star
Oracle MV Snow
Oracle MV Star

Fig. 17. Elapsed execution times of query pattern Q21 with the parameterized query
selectivity

ratio λ
tMV
Oracle

tTime−HOBI
, where tMV

Oracle denotes elapsed query execution times with the
support of the set of Oracle materialized views.

The minimum and maximum values of the ratios γ and λ obtained for query
patterns Q1, Q2, Q21, Q3, and Q31 are shown in Table 5. For every minimum
and maximum value we indicated the query selectivity.

From the performance characteristics shown above we conclude that:

– Time-HOBI outperforms the Oracle indexes for aggregate queries, for the
whole tested range of selectivities. As the experiments confirmed, this state-
ment is true for the snowflake and the star schema.

On Index Structures for Star Query Processing in Data Warehouses 205

500 ms
1 s
2 s

5 s
10 s

30 s
1 min

3 min

10 min

30 min

1 10 100

e
x
e
c
u
t
i
o
n

t
i
m
e

% of rows

Time-HOBI
Oracle IND Snow
Oracle IND Star
Oracle MV Snow
Oracle MV Star

Fig. 18. Elapsed execution times of query pattern Q3 with the parameterized query
selectivity

10 s

30 s

1 min

3 min

10 min

30 min

0.01 0.1 1 10 100

e
x
e
c
u
t
i
o
n

t
i
m
e

% of rows

Time-HOBI
Oracle IND Snow
Oracle IND Star
Oracle MV Snow
Oracle MV Star

Fig. 19. Elapsed execution times of query pattern Q31 with the parameterized query
selectivity

– Time-HOBI offers similar performance characteristics as the Oracle materi-
alized views for aggregate queries, for the whole tested range of selectivities.
As the experiments confirmed, this statement is true for the snowflake and
the star schema.

– Time-HOBI offers the same query performance for the snowflake and the
star DW schema as the structure of the index is the same for both of the
schemas.

206 A. Wojciechowski and R. Wrembel

Table 5. The minimum and maximum values of the γ and λ ratios obtained for the
test queries

γ snow sch. γ star sch. λ snow sch. λ star sch.

min max min max min max min max

Q1 4.09 10.35 5.11 10.29 0.81 0.99 0.95 1.32

sel.75–100% sel.0.01% sel.0.01% sel.0.01% sel.0.01% sel.0.005–0.05% sel.5% sel.0.05%

Q2 283 1997 282 721 0.73 1.27 0.79 1.60

sel.0.5% sel.0.01% sel.0.2% sel.75% sel.0.125% sel.20% sel.5% sel.0.02%

Q21 5.29 32.37 5.71 31.90 0.92 3.14 0.41 4.37

sel.100% sel.0.01% sel.50% sel.0.01% sel.5% sel.0.01% sel.100% sel.0.01%

Q3 450 1292 417 853 0.84 1.09 0.87 1.07

sel.50% sel.100% sel.10% sel.75% sel.10% sel.1.6% sel.100% sel.1.6%

Q31 8.37 27.36 8.32 27.13 0.86 2.65 1.02 3.47

sel.10% sel.0.005% sel.10% sel.0.005% sel.10% sel.0.005% sel.100% sel.0.005%

5.2 Index Sizes

In these experiments we measured the sizes of Time-HOBI and compared them
to the sizes of Oracle indexes and Oracle materialized views, for various data vol-
umes being indexed (from 1 GB to 18 GB). The results are visualized in Fig. 20.
As it can be observed from the figure, the size of Time-HOBI is larger than the
size of the materialized views for the whole range of the fact table sizes and for
both DW schema implementations. It is not surprising as Time-HOBI stores
not only aggregates but also bitmaps. As compared to the Oracle indexes, in
the snowflake schema our index is about 2.1 times larger in the whole tested
range of DW size. In the star schema our index is about 1.5 times larger in the
whole tested range of DW size. Table 6 shows the exact sizes of the tested data
structures.

0

1000

2000

3000

4000

5000

1 5 10 15 18.2

i
n
d
e
x

s
i
z
e

[
M
B
]

fact table size [GB]

Time-HOBI
Oracle IND Snow
Oracle IND Star
Oracle MV Snow
Oracle MV Star

Fig. 20. The sizes of Time-HOBI, Oracle indexes, and Oracle materialized views for,
a parameterized data volume

On Index Structures for Star Query Processing in Data Warehouses 207

Table 6. The sizes of Time-HOBI, the Oracle indexes, and the Oracle materialized
views, for the snowflake and the star schema

PA HOBI Time-HOBI Oracle IND Oracle IND Oracle MV Oracle MV
Data volume [MB] [MB] [MB] snow [MB] star [MB] snow [MB] star [MB]

1 [GB] 980 1105 2085 435 216 597 1412
5 [GB] 1310 1479 2789 1997 991 1644 1871
10 [GB] 1310 1505 2815 3638 1809 2508 1902
14 [GB] 1380 1458 2838 5324 2694 3356 1923
18 [GB] 1380 1472 2852 6644 3319 4026 1009

Recall that Time-HOBI stores three sets of data, i.e., time in Time Index,
bitmaps in HOBI, and precomputed aggregated values of selected measures in
Partial Aggregates. Table 6 shows the sizes of the aforementioned data structures,
the Oracle indexes and materialized views, for five data volumes in the snowflake
schema. The size of TI for 10 years time period is about 85 kB and it can be
neglected, [36]. The size of PA should be constant for a given constant number
of rows in dimension level tables. In our experiments, the size of PA changes
slightly with the increase of the data volume, cf. Table 6. In our opinion it may
be caused by a data allocation in database blocks (with different percentage
free for different data volume sizes). Thus with the almost constant size of PA
w.r.t. a data volume, for data volume sizes greater than 18 GB Time-HOBI
will be smaller than the Oracle indexes, for both the snowflake and the star
schema. Since the number of PA and the number of bitmaps in HOBI depends
on the number of levels in dimensions and does not depend on the schema
implementation, the size of Time-HOBI remains the same for the snowflake and
star schema.

5.3 Index Creation Times

In these experiments we measured the creation times of Time-HOBI and com-
pared them to creation times of Oracle indexes and Oracle materialized views,
for various data volumes being indexed (from 1 GB to 18 GB). The results are
shown in Fig. 21. The creation time characteristics are consistent with the index
size characteristics, i.e., the larger the index is the longer it takes to create it.
However, for data volumes larger than 5GB, Time-HOBI is created faster than
the Oracle indexes. Moreover, its creation time is comparable to the creation
time of the materialized views in the whole range of the test data volume.

As our index was implemented at an application layer, the procedure for
creating Time-HOBI was not optimized and data volumes processed for creating
HOBI were not shared while creating PA. In fact, the procedure executed joins
on Auctions and its dimensions (Time and Location) twice (two independent
queries). We believe that this procedure can be optimized at some extent, thus
reducing the index creation time.

208 A. Wojciechowski and R. Wrembel

5 min

15 min

30 min

1 h

2 h

5 h

1 5 10 15 18.2

c
r
e
a
t
i
o
n

t
i
m
e

fact table size [GB]

Time-HOBI
Oracle IND Snow
Oracle IND Star
Oracle MV Snow
Oracle MV Star

Fig. 21. Creation times of Time-HOBI, Oracle indexes, and Oracle materialized views,
for a parameterized data volume

5.4 Experiments Summary

Query performance comparison of Time-HOBI to the Oracle indexes reveals
that:

– the star queries that we tested in the snowflake DW schema were executed
from 4 to 1292 times faster (depending on a query) with the support of Time-
HOBI,

– the queries in the star DW schema were executed from 5 to 853 times faster
with the support of our index.

Query performance comparison of Time-HOBI to the Oracle materialized
views reveals that:

– the queries in the snowflake schema were executed in comparable times (λ
ranges from 0.81 to 2.65),

– the queries in the star schema were executed also in comparable times (λ
ranges from 0.79 to 4.37).

Size comparison of Time-HOBI to the Oracle indexes reveals that:

– in the snowflake schema our index is up to 4.8 times larger for a DW volume
1–7.5 GB, and it is up to 2.3 times smaller for a DW data volume 8–18 GB,

– in the star schema our index is up to 9.6 times larger for a DW volume 1–
16 GB, and it is up to 1.2 times smaller for a DW data volume over 16 GB.

Size comparison of Time-HOBI to the Oracle materialized views reveals that:

– in the snowflake schema our index is about 2.1 times larger in the whole tested
range of DW size,

On Index Structures for Star Query Processing in Data Warehouses 209

– in the star schema our index is about 1.5 times larger in the whole tested
range of DW size.

Creation time comparison of Time-HOBI to the Oracle indexes reveals that:

– in the snowflake schema our index is created from 1.18 to 3.37 times faster in
the whole tested range of DW size,

– in the star schema our index is created from 1.17 to 2 times faster for a DW
data volume greater than 5 GB.

Creation time comparison of Time-HOBI to the Oracle materialized views
reveals that:

– in the snowflake schema our index is created from 1.2 to 1.4 times slower in
the whole tested range of DW size,

– in the star schema our index is created from 1.1 to 1.5 times slower in the
whole tested range of DW size.

6 Related Work

Assuring an efficient access to large volumes of data is an important research
problem. Various physical structures have been proposed in the research liter-
ature to solve the problem. In this section we outline the physical structures
that inspired the development of Time-HOBI. The structures include indexes
and materialized aggregates.

6.1 Traditional Indexes

Various indexes have been proposed for different application domains. In rela-
tional databases and data warehouses, most widely applied index structures
in practice include: B-tree like indexes, bitmap indexes, and join indexes. They
gained popularity due to their relatively simple structures and maintenance algo-
rithms. In geographical databases, various multi-dimensional indexes have been
developed. For advanced data analysis in statistical databases, for data mining,
as well as for object databases hierarchical indexes have been developed.

The indexes from the B-tree family [26] are efficient only in indexing data
of high cardinalities (i.e., wide domains) and they well support queries of high
selectivities (i.e., when few records fulfill query criteria). However, for OLAP
queries that are often expressed on attributes of low cardinalities (i.e., narrow
domains), B-tree indexes do not provide an acceptable performance. For this
reason, for indexing data of low cardinalities, for efficient filtering large data
volumes, and for supporting OLAP queries of low cardinalities, bitmap indexes
have been developed (Sect. 3.2). A drawback of a bitmap index is that its size
increases when the cardinality of an indexed attribute increases. As a conse-
quence, bitmap indexes defined on attributes of high cardinalities become very
large or too large to be efficiently processed in main memory [63]. In order
to improve the efficiency of accessing data with the support of bitmap indexes

210 A. Wojciechowski and R. Wrembel

defined on attributes of high cardinalities, either different kinds of bitmap encod-
ings have been proposed, e.g., [10,29,47,54,62] or compression techniques have
been developed, e.g., [4,52,53,61].

For efficient executions of star queries, a join index was developed [31,39,57].
It can be perceived as the materialized join of a level table and a fact table.
The index is created on a join attribute of a level table. The index is typically
organized as a B-tree. It differs from a traditional B-tree with respect to the
content of its leaves. The leaves of the join index store physical addresses of
records from all the joined tables. An extension to the join index was proposed in
[39] where the authors represented precomputed joins by means of bitmaps. The
join index whose leaves store bitmaps rather than ROWIDs is called a bitmap
join index. Bitmap join indexes provide an efficient optimization mechanism for
star queries not only in traditional data warehouses but also in spatial data
warehouses [8,51].

6.2 Multi-level Indexes

Concepts similar to the join index were developed for object databases for the
purpose of optimizing queries that follow the chain of references from one object
to another (oi ⊆ oi+1 ⊆ . . . oi+n). Persistent (precomputed) chains of object
references are stored either in an access support relation [28] or in a join index
hierarchy [23]. In [66] two index structures for indexing hierarchies of classes
were described. Both of them are based on tree-like structures.

In [34,35,49,50] indexes of multi-level structures have been proposed. A
multi-resolution bitmap index was presented in [49,50] for the purpose of index-
ing scientific data. The index is composed of multiple levels. Lower levels are
implemented as standard bitmap indexes offering exact data look-ups, while
upper levels, are implemented as binned bitmaps, offering data look-ups with
false positives. An upper level index (the binned one) is used for retrieving a
dataset that totally fulfills query search criteria. A lower level index is used for
fetching data from boundary ranges in the case when only some data from bins
fulfill query criteria.

In [34,35], a hierarchical bitmap index was proposed for set-valued attributes
for the purpose of optimizing subset, superset, and similarity queries. The index,
being defined on a given attribute, consists of the set of index keys, where every
key represents a single set of values. Every index key comprises signature S. The
length of the signature, i.e. the number of bits, is equal to the size of the domain
of the indexed attribute. S is divided into n-bit chunks (called index key leaves)
and the set of inner nodes. Index key leaves and inner nodes are organized into
a tree structure. Every element from the indexed set is represented once in the
signature by assigning value ‘1’ to an appropriate bit in an appropriate index
key leaf. The next level of the index key stores information only about these
index key leaves that contain ‘1’ on at least one position. A single bit in an
inner node represents a single index key leaf. If the bit is set to ‘1’ then the
corresponding index key leaf contains at least one bit set to ‘1’. The i-th index
key leaf is represented by j-th position in the k-th inner node, where k = ∪i/l⇔

On Index Structures for Star Query Processing in Data Warehouses 211

and j = i − (∪i/l⇔ − 1) ≈ l. Every upper level of the inner nodes represents the
lower level in an analogous way. This procedure repeats recursively up to the
root of the tree.

6.3 Multidimensional Indexes

Since more than 40 years of research in this domain a few dozens of multidi-
mensional indexes have been proposed, including the most frequently applied
families of R-trees [43,44,64] grid files, and K-D-trees. Excellent overviews of
existing multidimensional indexes have been proposed in [7,18]. Most of the
indexes have been designed for the support of access methods to spatial data
in geographical databases, mostly in a two dimensional space. Multidimensional
indexes are also applied to supporting top-k (e.g., [65]), k-NN queries (e.g., [67]),
and data mining (e.g., [30]).

Most of the multi-dimensional indexes are very complex data structures.
They are difficult to implement and to maintain and sometimes their complexity
penalizes the performance. For these reasons, some research efforts focus on
mapping the multidimensional indexes into relational DBMSs [7,16].

6.4 Materialized Aggregates

The second data storage structure that inspired our work on Time-HOBI are
materialized aggregates. Two types of such aggregates can be distinguished,
namely: (1) materialized views and (2) summary data. A materialized view is a
precomputed query whose result is stored in a database. Typically, various data
warehouse queries take advantage of materialized views in the process of query
rewriting. An overview of multiple research problems on materialized views can
be found in [20].

Summary data are materialized sets of aggregates, typically associated with
storage units of data, e.g., segments, extents (like in Oracle), buckets [33], or
zones [1,19]. The first concept, called Small Materialized Aggregates (SMA) was
proposed in [33]. The concept of SMA assumes that data are ordered on disk
by the value of a selected attribute, typically date. Physically, a disk is divided
into logical storage units called buckets. Every bucket stores at most n rows.
SMA is associated with each bucket. For each bucket, SMA typically include
aggregates like minimum and maximum value of the ordering attribute as well
as the number of rows in the bucket. The min and max values allow to check
whether the bucket fulfills selection criteria on an ordering attribute. If so, the
bucket is fetched from disk, otherwise it is skipped.

A concept similar to SMA, called Zone Maps, was implemented in Netezza
[1]. Netezza organizes disk space in zones, each of which has its own zone map.
The zone map includes minimum and maximum values of every attribute of a
table stored in the zone. Zone maps are used for verifying whether a given zone
qualifies to be accessed by a query.

Finally, [19] extends the two aforementioned concepts by means of zone filters
and zone indexes. The first mechanism generalize SMA and zone maps. It is

212 A. Wojciechowski and R. Wrembel

similar to zone maps but it stores n minimum and n maximum values of every
attribute in a zone (where n>2). An separate index - a zone index is dedicated
to every zone to facilitate searching data within the zone. All the aforementioned
structures assume that the summary data are maintained within by a process
that loads a data warehouse.

Although SMA, zone maps, and [19] inspired the development of PA, it dif-
fers from these three concept as PA store aggregated values of measures at all
levels of dimension hierarchies, whereas in the three concepts minimum and max-
imum values of attribute values are stored for every bucket/zone. Moreover, PA
organizes the aggregates in hierarchies, whereas the three concepts not.

6.5 The Missing Functionality

From the index structures discussed above none was proposed for indexing hier-
archical dimensional data in a data warehouse. Moreover, none of them reflects
the hierarchy of dimensions. Such a feature may be useful for computing aggre-
gates in an upper level of a dimension based on data computed for a lower level.
Furthermore, none of them exploits the fact that the Time dimension is used in
most of the star queries in predicates and is used for aggregating measures.

From commercial DBMSs, IBM DB2 supports a cluster index and a multidi-
mensional cluster. Both data structures use B-tree based indexes to order data
by the values of selected attributes. Oracle11g supports a sorted hash cluster
used for the same purpose. Nonetheless, none of these data structures support
indexing hierarchical dimensions.

7 Summary

In this chapter we gave an overview of the indexes typically applied to the opti-
mization of star queries in a data warehouse, i.e., the bitmap, join, and bitmap
join indexes. We showed how an example star query is executed in Oracle, which
motivated us to develop an alternative index structure. We also presented the
previously developed Time-HOBI index. This chapter introduced as additional
contributions: (1) an extension to Time-HOBI by means of Partial Aggregates
and (2) experimental evaluation of the extended Time-HOBI. The performance
of the extended Time-HOBI was compared to the Oracle bitmap and bitmap
join indexes as well as to materialized views, for the snowflake and the star DW
schema.

In summary, Time-HOBI offers the following functionality:

– it eliminates joins of a fact table with the Time dimension as Time Index
stores bit ranges for all the time intervals in the Time dimension;

– it eliminates joins of a fact table with other dimensions as HOBI stores
bitmaps at all levels of a given dimension and the bitmaps point to rows
in a fact table;

On Index Structures for Star Query Processing in Data Warehouses 213

– it eliminates or reduces the costs of computing aggregates of measures at
various levels of a dimension hierarchy as Partial Aggregates provide access
to precomputed aggregates;

– it offers the same query performance for the snowflake and the star schema
as the structure of Time-HOBI is the same for both of the schemas.

The experimental evaluation of Time-HOBI shows that:

– the index outperforms the Oracle indexes for aggregate queries, for the whole
tested range of selectivities, which is true for the snowflake and the star
schema;

– the index offers similar performance characteristics as the Oracle materialized
views for aggregate queries, for the whole tested range of selectivities, which
is true for the snowflake and the star schema;

– for the DW data volume over 7.5 GB - for the snowflake and over 16 GB - for
the star schema the size of our index is smaller than the size of the Oracle
indexes;

– Time-HOBI is larger from 2 to 3.4 times than the set of materialized views;
– our index was created from 1.1 to 1.5 times slower than the set of material-

ized views (as the size impacts the creation time), however, Time-HOBI was
created from 1.17 to 3.37 times faster than the Oracle indexes.

Notice that for the experiments Time-HOBI was implemented as an applica-
tion on top of DBMS Oracle, resulting in some additional time overheads. One
may expect yet better performance while building the index in the DBMS so
that it could be efficiently managed by a system and used by a query optimizer.
Our ongoing work is focused on developing efficient algorithms for maintaining
all the components of Time-HOBI as well as on embedding the index and the
maintenance algorithms in the Oracle DBMS by means of the data cartridge
technology [56]. Next, we plan to evaluate the performance of the implementa-
tion w.r.t. query processing and maintenance. Our research in the future will
concentrate also on analyzing the impact of fine grained Time dimensions on
the size and performance of the index.

Acknowledgment. This work was supported from the Polish National Science Center
(NCN), grant No. 2011/01/B/ST6/05169. The authors express their gratitude to the
anonymous Reviewers whose very thorough comments greatly improved the quality of
this paper.

References

1. Netezza underground: zone maps and data power. www.ibm.com/developerworks/
community/blogs/Netezza/entry/zone maps and data power20?lang=en.
Accessed 27 June 2013

2. OLAP council APB-1 OLAP benchmark release 2. www.olapcouncil.org/research/
APB1R2 spec.pdf. Accessed 20 Dec 2012

www.ibm.com/developerworks/community/blogs/Netezza/ entry/zone_maps_and_data_power20?lang=en
www.ibm.com/developerworks/community/blogs/Netezza/ entry/zone_maps_and_data_power20?lang=en
www.olapcouncil.org/research/APB1R2_spec.pdf
www.olapcouncil.org/research/APB1R2_spec.pdf

214 A. Wojciechowski and R. Wrembel

3. Transaction processing performance council. www.tpc.org/information/
benchmarks.asp

4. Antoshenkov, G., Ziauddin, M.: Query processing and optimization in Oracle RDB.
Int. J. Very Larg. Data Bases 5(4), 229–237 (1996)

5. Aouiche, K., Darmont, J., Boussäıd, O., Bentayeb, F.: Automatic selection of
bitmap join indexes in data warehouses. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK
2005. LNCS, vol. 3589, pp. 64–73. Springer, Heidelberg (2005)

6. Bellatreche, L., Missaoui, R., Necir, H., Drias, H.: A data mining approach for
selecting bitmap join indices. J. Comput. Sci. Eng. 1(2), 177–194 (2007)

7. Böhm, C., Berchtold, S., Kriegel, H., Urs, M.: Multidimensional index structures
in relational databases. J. Intell. Inf. Syst. 15(1), 51–70 (2000)

8. Brito, J.J., Siqueira, T.L.L., Times, V.C., Ciferri, R.R., de Ciferri, C.D.: Efficient
processing of drill-across queries over geographic data warehouses. In: Cuzzocrea,
A., Dayal, U. (eds.) DaWaK 2011. LNCS, vol. 6862, pp. 152–166. Springer, Hei-
delberg (2011)

9. Bryla, B., Loney, K.: Oracle Database 11g DBA Handbook. McGraw-Hill Osborne
Media, New York (2007). ISBN 0071496637

10. Chan, C., Ioannidis, Y.: Bitmap index design and evaluation. In: Proceedings of
ACM SIGMOD International Conference on Management of Data, pp. 355–366
(1998)

11. Chaudhuri, S., Dayal, U.: An overview of data warehousing and OLAP technology.
SIGMOD Rec. 26(1), 65–74 (1997)

12. Chmiel, J., Morzy, T., Wrembel, R.: Time-HOBI: indexing dimension hierarchies by
means of hierarchically organized bitmaps. In: Proceedings of ACM International
Workshop on Data Warehousing and OLAP (DOLAP), pp. 69–76 (2010)

13. Davis, K.C., Gupta, A.: Indexing in data warehouses: bitmaps and beyond. In:
Wrembel, R., Koncilia, C. (eds.) Data Warehouses and OLAP: Concepts, Archi-
tectures and Solutions, pp. 179–202. Idea Group Inc., London (2007). ISBN 1-
59904-364-5

14. Deliège, F., Pedersen, T.B.: Position list word aligned hybrid: optimizing space and
performance for compressed bitmaps. In: Proceedings of International Conference
on Extending Database Technology (EDBT), pp. 228–239. ACM (2010)

15. Finkel, R.A., Bentley, J.L.: Quad trees: a data structure for retrieval on composite
keys. Acta Informatica 4, 1–9 (1974)

16. Fonseca, M.J., Jorge, J.A.: Indexing high-dimensional data for content-based
retrieval in large databases. In: Proceedings of International Conference on Data-
base Systems for Advanced Applications (DASFAA) (2003)

17. Furtado, P.: Workload-based placement and join processing in node-partitioned
data warehouses. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2004.
LNCS, vol. 3181, pp. 38–47. Springer, Heidelberg (2004)

18. Gaede, V., Günther, O.: Multidimensional access methods. ACM Comput. Surv.
30(2), 170–231 (1998)

19. Graefe, G.: Fast loads and fast queries. In: Pedersen, T.B., Mohania, M.K., Tjoa,
A.M. (eds.) DaWaK 2009. LNCS, vol. 5691, pp. 111–124. Springer, Heidelberg
(2009)

20. Gupta, A., Mumick, I.S. (eds.): Materialized Views: Techniques, Implementations,
and Applications. MIT Press, Cambridge (1999)

21. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Pro-
ceedings of ACM SIGMOD International Conference on Management of Data, pp.
47–57. ACM (1984)

www.tpc.org/information/benchmarks.asp
www.tpc.org/information/benchmarks.asp

On Index Structures for Star Query Processing in Data Warehouses 215

22. Gyssens, M., Lakshmanan, L.V.S.: A foundation for multi-dimensional databases.
In: Proceedings of International Conference on Very Large Data Bases (VLDB),
pp. 106–115 (1997)

23. Han, J., Xie, Z., Fu, Y.: Join index hierarchy: an indexing structure for efficient
navigation in object-oriented databases. IEEE Trans. Knowl. Data Eng. 11(2),
321–337 (1999)

24. Jarke, M., Lenzerini, M., Vassiliou, Y., Vassiliadis, P.: Fundamentals of Data Ware-
houses. Springer, Heidelberg (2003). ISBN 3-540-42089-4

25. Jensen, C.S., Pedersen, T.B., Tomsen, C.: Multidimensional Databases and Data
Warehousing. Morgan & Claypool Publishers, San Rafael (2010). ISBN 978-1-
60845-537-9

26. Johnson, T., Sasha, D.: The performance of current B-tree algorithms. ACM Trans.
Database Syst. (TODS) 18(1), 51–101 (1993)

27. Karayannidis, N., Tsois, A., Sellis, T.: Advanced ad hoc star query processing. In:
Wrembel, R., Koncilia, C. (eds.) Data Warehouses and OLAP: Concepts, Architec-
tures and Solutions, pp. 136–156. Idea Group Inc., London (2007). ISBN 1-59904-
364-5

28. Kemper, A., Moerkotte, G.: Access support in object bases. In: Proceedings of
ACM SIGMOD International Conference on Management of Data, pp. 364–374
(1989)

29. Koudas, N.: Space efficient bitmap indexing. In: Proceedings of ACM Conference
on Information and Knowledge Management (CIKM), pp. 194–201 (2000)

30. Li, C., Tang, C., Yu, Z., Liu, Y., Zhang, T., Liu, Q., Zhu, M., Jiang, Y.: Mining
multi-dimensional frequent patterns without data cube construction. In: Yang, Q.,
Webb, G. (eds.) PRICAI 2006. LNCS (LNAI), vol. 4099, pp. 251–260. Springer,
Heidelberg (2006)

31. Li, K.A., Ross, Z.: Fast joins using join indices. Int. J. Very Larg. Data Bases 8(1),
1–24 (1999)

32. Malinowski, E., Zimányi, E.: Advanced Data Warehouse Design: From Conven-
tional to Spatial and Temporal Applications. Springer, Heidelberg (2008). ISBN
9783540744047

33. Moerkotte, G.: Small materialized aggregates: a light weight index structure for
data warehousing. In: Proceedings of International Conference on Very Large Data
Bases (VLDB), pp. 476–487 (1998)

34. Morzy, M.: Advanced database structure for efficient association rule mining. Ph.D.
thesis, Poznan University of Technology, Institute of Computing Science (2004)

35. Morzy, M., Morzy, T., Nanopoulos, A., Manolopoulos, Y.: Hierarchical bitmap
index: an efficient and scalable indexing technique for set-valued attributes. In:
Kalinichenko, L.A., Manthey, R., Thalheim, B., Wloka, U. (eds.) ADBIS 2003.
LNCS, vol. 2798, pp. 236–252. Springer, Heidelberg (2003)

36. Morzy, T., Wrembel, R., Chmiel, J., Wojciechowski, A.: Time-HOBI: index for
optimizing star queries. Inf. Syst. 37(5), 412–429 (2012)

37. Nourani, M., Tehranipour, M.H.: RL-Huffman encoding for test compression and
power reduction in scan applications. ACM Trans. Des. Autom. Electron. Syst.
(TODAES) 10(1), 91–115 (2005)

38. O’Neil, P.E.: Model 204 architecture and performance. HPTS 1989. LNCS, vol.
359, pp. 39–59. Springer, Heidelberg (1989)

39. O’Neil, P., Graefe, G.: Multi-table joins through bitmapped join indices. SIGMOD
Rec. 24(3), 8–11 (1995)

216 A. Wojciechowski and R. Wrembel

40. O’Neil, P., O’Neil, E., Chen, X., Revilak, S.: The star schema benchmark and
augmented fact table indexing. In: Nambiar, R., Poess, M. (eds.) TPCTC 2009.
LNCS, vol. 5895, pp. 237–252. Springer, Heidelberg (2009)

41. O’Neil, P., Quass, D.: Improved query performance with variant indexes. In: Pro-
ceedings of ACM SIGMOD International Conference on Management of Data, pp.
38–49 (1997)

42. Padmanabhan, S., Bhattacharjee, B., Malkemus, T., Cranston, L., Huras, M.:
Multi-dimensional clustering: a new data layout scheme in DB2. In: Proceedings
of ACM SIGMOD International Conference on Management of Data, pp. 637–641
(2003)

43. Papadias, D., Kalnis, P., Zhang, J., Tao, Y.: Efficient OLAP operations in spatial
data warehouses. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.)
SSTD 2001. LNCS, vol. 2121, pp. 443–459. Springer, Heidelberg (2001)

44. Papadias, D., Tao, Y., Kalnis, P., Zhang, J.: Indexing spatio-temporal data ware-
houses. In: Proceedings of International Conference on Data Engineering (ICDE),
pp. 166–175. IEEE Computer Society (2002)

45. Rao, J., Zhang, C., Megiddo, N., Lohman, G.: Automating physical database design
in a parallel database. In: Proceedings of ACM SIGMOD International Conference
on Management of Data, pp. 558–569 (2002)

46. Robinson, J.T.: The K-D-B-tree: a search structure for large multidimensional
dynamic indexes. In: Proceedings of ACM SIGMOD International Conference on
Management of Data, pp. 10–18. ACM (1981)

47. Rotem, D., Stockinger, K., Wu, K.: Optimizing candidate check costs for bitmap
indices. In: Proceedings of ACM Conference on Information and Knowledge Man-
agement (CIKM), pp. 648–655 (2005)

48. Scientific Data Management Research Group: FastBit: an efficient compressed
bitmap index technology. http://sdm.lbl.gov/fastbit/. Accessed 10 Nov 2006

49. Sinha, R.R., Mitra, S., Winslett, M.: Bitmap indexes for large scientific data sets:
a case study. In: Proceedings of Parallel and Distributed Processing Symposium.
IEEE (2006)

50. Sinha, R.R., Winslett, M.: Multi-resolution bitmap indexes for scientific data. ACM
Trans. Database Syst. (TODS) 32(3), 1–38 (2007)

51. Siqueira, T.L., Ciferri, C.D.D., Times, V.C., Ciferri, R.R.: The sb-index and the
hsb-index: efficient indices for spatial data warehouses. Geoinformatica 16(1), 165–
205 (2012)

52. Stabno, M., Wrembel, R.: RLH: bitmap compression technique based on run-length
and Huffman encoding. Inf. Syst. 34(4–5), 400–414 (2009)

53. Stockinger, K., Wu, K.: Bitmap indices for data warehouses. In: Wrembel, R.,
Koncilia, C. (eds.) Data Warehouses and OLAP: Concepts, Architectures and Solu-
tions, pp. 157–178. Idea Group Inc., London (2007). ISBN 1-59904-364-5

54. Stockinger, K., Wu, K., Shoshani, A.: Evaluation strategies for bitmap indices with
binning. In: Galindo, F., Takizawa, M., Traunmüller, R. (eds.) DEXA 2004. LNCS,
vol. 3180, pp. 120–129. Springer, Heidelberg (2004)

55. Stöhr, T., Rahm, E.: Warlock: a data allocation tool for parallel warehouses. In:
Proceedings of International Conference on Very Large Data Bases (VLDB), pp.
721–722 (2001)

56. Technical Documentation. Oracle Database Data Cartridge Developer’s Guide 11g
Release 1(11.1)

57. Valduriez, P.: Join indices. ACM Trans. Database Syst. (TODS) 12(2), 218–246
(1987)

http://sdm.lbl.gov/fastbit/

On Index Structures for Star Query Processing in Data Warehouses 217

58. Wrembel, R.: Data warehouse performance: selected techniques and data struc-
tures. In: Aufaure, M.-A., Zimányi, E. (eds.) eBISS 2011. LNBIP, vol. 96, pp.
27–62. Springer, Heidelberg (2012)

59. Wu, K., Otoo, E.J., Shoshani, A.: An efficient compression scheme for bitmap
indices. Research report, Lawrence Berkeley National Laboratory (2004)

60. Wu, K., Otoo, E.J., Shoshani, A.: On the performance of bitmap indices for high
cardinality attributes. In: Proceedings of International Conference on Very Large
Data Bases (VLDB), pp. 24–35 (2004)

61. Wu, K., Otoo, E.J., Shoshani, A.: Optimizing bitmap indices with efficient com-
pression. ACM Trans. Database Syst. (TODS) 31(1), 1–38 (2006)

62. Wu, K., Yu, P.: Range-based bitmap indexing for high cardinality attributes with
skew. In: International Computer Software and Applications Conference (COMP-
SAC), pp. 61–67 (1998)

63. Wu, M., Buchmann, A.: Encoded bitmap indexing for data warehouses. In: Pro-
ceedings of International Conference on Data Engineering (ICDE), pp. 220–230
(1998)

64. Xu, X., Han, J., Lu, W.: RT-tree: an improved R-tree index structure for spa-
tiotemporal databases. In: International Symposium on Spatial Data Handling,
pp. 1040–1049 (1990)

65. Yiu, M.L., Mamoulis, N.: Efficient processing of top-k dominating queries on multi-
dimensional data. In: Proceedings of International Conference on Very Large Data
Bases (VLDB), pp. 483–494 (2007)

66. Yu, T.C., Meng, W.: Principles of Database Query Processing for Advanced Appli-
cations. Morgan Kaufmann, San Francisco (1998). ISBN 1-55860-434-0

67. Zhuang, Y., Zhuang, Y., Li, Q., Chen, L., Yu, Y.: Indexing high-dimensional data in
dual distance spaces: a symmetrical encoding approach. In: Proceedings of Interna-
tional Conference on Extending Database Technology (EDBT), pp. 241–251 (2008)

Intelligent Wizard for Human Language
Interaction in Business Intelligence

Morten Middelfart(B)

TARGIT, Tampa, FL, USA
morton@targit.com

Abstract. This chapter presents a novel extension to TARGIT’s
patented meta-morphing called “The Intelligent Wizard”. Firstly, we
compare the currently patent-pending Intelligent Wizard to prior art.
Secondly, we present the Intelligent Wizard as implemented in a real-
world industrial Business Intelligence (BI) application. Finally, we
demonstrate by concrete examples that the Intelligent Wizard allows
a user to navigate a real-world data warehouse using only human lan-
guage and knowledge of business terms, thus significantly simplifying the
generation of analytics and reports.

1 Introduction

Organizations that learn from their information pose a challenge to the task of
successfully deploying Business Intelligence, since by definition, it’s a project that
never ends. In fact, the problem grows exponentially throughout the implemen-
tation process as user functional requirements multiply as deployment advances
from strategic to operational levels, and as the requirements generated multiply
through the very learning that the deployment enables. The pace of learning
(and the number of questions) is higher at the operational level due in large
part to the accelerated decision cycle as compared to the strategic level. Fail-
ure to recognize the dynamics of learning and the nature of decision cycles at
both the strategic and operational levels will make implementation of Business
Intelligence unsuccessful.

From personal experience, implementations fail most often when participa-
tion in output creation is limited. If a project starts at the strategic level, it
will appear to be successful at the outset, but the (limited) report builders
will inevitably feel that report and analysis requests pile up as an increasing
number of members of the organization see the value in their work. Unless the
group of report-builders is unrealistically close to the number of decision-makers,
requests for new information will snowball into a workload that prevents the
report-builders from ever fully meeting the expectations the rest of the orga-
nization will set. Report-builders will spend eons making changes to ground
they’ve already covered as strategic decision-makers will demand revisions upon
revisions. Operational users will feel they don’t get the information they need
and their world will remain virtually unchanged despite Business Intelligence.

E. Zimnyi (Ed.): eBISS 2013, LNBIP 172, pp. 218–242, 2014.
DOI: 10.1007/978-3-319-05461-2 7, c© Springer International Publishing Switzerland 2014

Intelligent Wizard for Human Language Interaction in Business Intelligence 219

The way to avoid this “Create/Maintain Equilibrium” is to recognize that
implementation is all about users’ decision cycles, rather than individual reports
and chart. In principle, if we think about anything we do as supporting a better
and faster decision (as opposed to responding to a specific report), then an
entirely new type of system emerges. For example, in an organization that learns,
there cannot be a report without the need to analyze. Whenever something goes
wrong or an opportunity presents itself, it will be something new to learn from.
Therefore, prefabricated reports will not accommodate changes occurring in the
real world, but analytics provides that flexibility. On the other hand, reports
and dashboards are excellent tools for creating a frame of reference that aligns
the organization’s efforts and keep focus on its goals. Recognizing that all these
disciplines are tightly interlinked is the key to a successful Business Intelligence
implementation that renders an organization informed, powerful, and agile. If
users can move freely between predefined goals using reports, dashboards, and
analytics that copes with problems and opportunities, any user will be able to
travel a decision cycle end-to-end.

Further evidence of the need to re-think traditional delivery of analytics,
dashboards, and reports can be found with leading industry analyst, Gartner.
Gartner identifies “ease of use” as the dominant Business Intelligence platform
buying criterion in 2011, surpassing “functionality” for the first time [6]. This
change represents a shift from prioritizing the IT department’s need for stan-
dardization to prioritizing the ability for casual users to conduct analysis and
reporting.

Ease of use in the decision processes that managers and employees work
through has been the focal point in the development of TARGIT Decision Suite
since its early version in 1995. However, distinguishing from other solutions with
the same objective, TARGIT has applied the CALM philosophy [2], which seeks
to create synergy between humans and computers as opposed to using comput-
ers simply as a tool to create efficiency. An organization following the CALM
philosophy is divided into multiple observe-orient-decide-act (OODA) loops, and
computing is applied to enable users to cycle these loops as fast as possible (i.e.,
with as few interactions as possible). TARGIT’s patented meta-morphing [3,4]
allows users to analyze data by stating their goal, and thus facilitates users
cycling OODA loops with few interactions.

Chapter contribution. This chapter presents a novel extension to TARGIT’s
patented meta-morphing called “The Intelligent Wizard”. Firstly, we motivate
the need for the Intelligent Wizard. Secondly, we present the Intelligent Wizard
as implemented in a real-world industrial Business Intelligence (BI) application.
Third, we show in detail how a “free-text” string in human language is converted
into specific actions with metadata as parameters. Finally, we demonstrate by
concrete examples that the Intelligent Wizard allows a user to navigate a real-
world data warehouse using only human language and knowledge of business
terms, thus significantly simplifying the generation of analytics and reports. We
conduct the presentation using the industry proven software TARGIT Decision
Suite.

220 M. Middelfart

Chapter content. This chapter is organized as follows. Section 2 motivates the
Intelligent Wizard and presents related work. Section 3 presents the implemen-
tation of the Intelligent Wizard. Section 4 demonstrates human interaction with
the Intelligent Wizard. Finally, Sect. 5 summarizes the chapter.

2 Motivation

In traditional Business Intelligence software, users perform two tasks to create
the report desired. First, the user defines a query to examine a subset of data
stored within the organization’s data warehouse. And second, the user defines
a graphical representation of the data that was retrieved. Typically, the pre-
sentation means are selected from a report generator or “chart wizard”, from
which default layout properties (or user-specified layout properties) are identified
before making the presentation.

Conventional Business Intelligence software requires users to adhere closely to
formal syntax, as the underlying databases require syntactically correct queries
to properly retrieve information. Conventional Business Intelligence solutions
are frequently configured with user interfaces that guide a user directly to a
presentation of retrieved data, often through a wizard. US Patent 7,783,628 [4]
discloses such a method and a user interface for making a presentation of data
using meta-morphing. The technology allows to enter various business questions
via the user interface, e.g.:

1. I would like to see ‘cost’ grouped by ‘time, month’
2. I would like to see ‘revenue’ grouped by ‘time, month’, ‘customer, group’

and ‘product, name’
3. I would like to see ‘revenue’
4. I would like to see ‘country’

Questions are forwarded to a data determination unit, which is configured
to identify metadata items by parsing the question. Based on the identified
metadata items, the data determination unit is able to look up a storage memory
of previously used combinations of metadata, which is used as an entry to retrieve
previously used presentation properties that fit the identified metadata items
from an earlier use.

This allows some flexibility in the way a user could request a presentation of
data. However, the options provided to a user in phrasing a question like the ones
above were basically limited to possible combinations of measures, dimensions
and criteria (where “I would like to see” was part of a rigid syntax).

US Patent 8,468,444 [5] introduces so-called Hyper Related OLAP which
leverages the meta-morphing functionality, and thus allows a user to apply meta-
morphing in one interaction (typically mouse click) on any report or dashboard
in a Business Intelligence implementation. This functionality adds a lot of ana-
lytical freedom to a decision process since it essentially moves the user from the

Intelligent Wizard for Human Language Interaction in Business Intelligence 221

observation to the orientation phase in one interaction. However, the freedom is
not complete since the analytics is limited to the dashboard or reporting context
from which the Hyper Relation was initiated.

Today, there is a greater demand for new freedom in phrasing what a user
wants to do with requested data. In particular, there is a subordinate but impor-
tant demand that this greater freedom in phrasing requires as few user inter-
actions as at all possible. In fact, if a user perceives a user interface to be too
rigid in its way of accepting input, it may be a reason for discarding a Business
Intelligence application.

Conventionally, a user compared different Business Intelligence applications
based on what features or functions the application provided. Today, even if all
the functions that a user needs are present, the user increasingly considers how
smoothly and quickly the application gets to a desired result.

3 The Intelligent Wizard

3.1 Overview

There is an unmet demand for providing more data analysis functions in Business
Intelligence applications while, on the other hand, enabling more direct access
to a desired end-result for users looking to rapidly create Business Intelligence
items such as analyses, dashboards, and reports.

The Intelligent Wizard processes a natural-language user query and trans-
lating it into a graphical representation of desired data presented in a format
identified as preferred by the user and in harmony with the nature of the data.
Broken into software-driven tasks, the Intelligent Wizard:

– “listens for a user’s input and process said input to identify input elements
thereof (said input elements comprising at least a first and second input ele-
ment)”

– “searches among predefined named executable functions for a matching exe-
cutable function that match the first identified input element”

– “searches in a predefined set of named metadata items for a matching meta-
data item that match the second identified input element”

– “eliminates, from a set of syntax patterns with syntactically valid combina-
tions of named executable functions and types of metadata, patterns that do
not comprise the matching executable function and the matching metadata
item”

– “wherein a first set of patterns remains, assigns a matching metadata item to
one or more of the patterns in the first set”

– “selects a pattern among first set of patterns and execute the function named
in the selected predefined pattern with assigned metadata”

As a result, the user is given an option of taking different actions on data at a
point in time where the data have not yet been retrieved. The Intelligent Wizard
accepts both different executable functions and different metadata as input in

222 M. Middelfart

the same user dialogue. The Intelligent Wizard thereby supports different actions
that may be taken on data the very first time the data are requested. This saves
the user from dealing with prolonged step-by-step dialogues with the application.
Thus the user can directly, in a very first user dialogue, obtain the result (s)he
is after. For instance, in connection with user interfaces on a mobile device, it is
expedient in this way to avoid many steps in a user dialogue.

3.2 Prerequisites

Users have a greater freedom in phrasing their desired end-result. On a first
interaction, users can request not only analyses or reports, but early warnings
of conditions met in the data, scheduled deliveries of reports, or video sequences
of different data views. The application responds by identifying and running
respective executable functions, incorporating identified metadata as input. This
flexible way of interpreting and intuiting what a user is looking for can save the
user valuable time. In this context, we simply use whatever metadata is already
stored in (or in conjunction with) a given database; if none is provided we use
actual field names from the databases available to the system.

The predefined patterns of named executable functions with their parameters
and type of metadata (i.e. their formal syntax), define a paradigm for capturing a
user’s possibly disarrayed input elements into an ordered structure. This relieves
the user from recalling a specific syntax and gives the user a smooth and quick
way to get to a desired end-result.

Named executable functions are programmed functions configured to receive
a metadata item as its input, retrieve data defined by the metadata item from a
database, and output a result of processing the data. The functions are respec-
tively programmed to process the data by preparing an analysis, a report, a
warning of some alarming condition being met in the data, a scheduled deliv-
ery of a report or a video sequence of different data views. These functions are
selectively invoked by the user right from the first point of a user’s interaction
with the application to request data.

As examples, the functions could be named ‘report’, ‘analysis’, ‘storyboard’,
‘notify’ and ‘schedule’, respectively. The functions take one or more parameters
as input in the form of a named metadata item, which could be a metadata item
in the form of a measure denoted ‘Sales’ and a dimension denoted ‘time’ and/or
it could be a criterion stating that time is limited to year 2013. The functions
retrieve data defined by said named metadata item from a database and outputs
a visual presentation of said data.

In general, metadata are data that describes other data. In the context of
multidimensional databases, ‘measures’ are a class of data containing measured
values, whereas so-called dimensions are a class of data containing divisions of
typically time or some predefined structure. Criteria defining a limit or a range
of data or data values are also metadata. Formatting properties for visual pre-
sentations are also metadata. Thus, metadata can define which data to retrieve
and how to present them. Metadata may thus remain unchanged while the data
are updated on a running basis.

Intelligent Wizard for Human Language Interaction in Business Intelligence 223

The set of predefined patterns of named executable functions and formal syn-
tax can be represented in software in various ways, e.g. by expanding all combi-
nations of executable functions in formal syntax, wherein metadata parameters
are represented by parameter names. For instance, a single function named ‘ana-
lyze’ may be expanded to the following predefined patterns:

– “analyze mmm”
– “analyze mmm ddd”
– “analyze mmm ddd ccc”
– “analyze mmm ccc”

Where ‘mmm’ designates a metadata item of the measures type, ‘ddd’ desig-
nates a metadata item of the dimensions type, and ‘ccc’ designates a metadata
item that is a criterion. ‘fff’ designates an array of items that can be either
‘mmm’ or ‘ddd’. Once the name and type of the identified metadata items is
determined, it can be assigned to a best matching pattern. This pattern may be
selected and executed by executing the function named in the selected predefined
pattern with assigned metadata.

Listening for a user’s input is conducted either through the operating system’s
innate keyboard software or through speech recognition systems. Sometimes,
metadata will be assigned immediately (and follow-up tasks begun) following
the termination of user input, which can prove troublesome if a user pauses
during input.

3.3 Walkthrough

The step of assigning a matching metadata item to one or more matching exe-
cutable functions assigns a matching metadata item, of an identified type, firstly
mentioned in the input to a firstly selected field requiring the identified type of
metadata item. However, other predefined ways of assigning metadata may be
feasible.

As a result, users can present input in any order desired and with an informal
syntax, and the Intelligent Wizard will reorganize the data to properly fit formal
syntax. Superfluous input elements are ignored (chiefly those elements that are
not recognized as executable functions or metadata).

The first selected field corresponds to the first type that occurs in the tra-
ditional syntax. In other configurations, there is an additional step of searching
among the input for matching metadata items, first for named metadata items
unique in the complete set, and second for metadata items comprising at least
a measure, dimension, and formatting item.

The first step searches for individual metadata items and enables the user to
combine metadata items freely. This search is convenient since metadata can be
correctly recognized and their types determined before a formal query is formed
and submitted to a database.

The second step searches for a collection of metadata items in documents.
In other words, documents in this context means pre-defined analyses, reports,

224 M. Middelfart

dashboards, and other ways of combining and presenting metadata in a business
intelligence context. Documents may be stored, for instance, when a user has
defined it such. Documents may be defined according to the eXtendend Markup
Language (XML). The application is configured to provide the user with graph-
ical user interface tools for defining the metadata stored in a document. In this
configuration, a document comprising multiple sets of metadata items must be
rendered to provide visualization of multiple sets of data.

In this way, a metadata item input can be as a key to collections of metadata
items comprising the metadata item. If for instance a metadata item ‘sales’ is
searched for, a document may be found comprising the metadata item ‘sales’ in
combination with the dimension ‘time’ and another measure, ‘costs’, in combina-
tion with the dimension ‘country’. Firstly, the measure ‘sales’ is combined with
a dimension which makes it possible to complete an association of a measure
and a dimension and then in turn to retrieve data for a first graph or other type
of presentation. Secondly, a further association is found with the measure ‘costs’
and the dimension ‘country’. Thus, inputting only a single measure reveals a
document comprising four measures defined in combination in a document. The
metadata item reveals a document defining two presentations along the two
dimensions ‘time’ and ‘country’. The document may also comprise formatting
metadata and criteria.

The step of executing the function named in the selected predefined pattern
with its assigned metadata is performed: in a first manner, wherein metadata are
retrieved from the input and from documents, or in a second manner, wherein
metadata are determined from the input and where content in documents is
disregarded. In the second manner, the Intelligent Wizard presents the user a
selectable choice between the first option or the second option.

In this way the user can intervene and decide whether to use a stored docu-
ment or not, allowing the user to freely define a new combination of metadata.
The first option may be implemented by showing a list of stored documents
uncovered by a search to the user. The list of documents is set up with links to
the documents.

However, the method comprises determining at least one association, of a
dimension and a measure, by combination of a measure and dimension identified
in the user’s input, or by addition of a dimension or measure to an identified
measure or dimension, respectively.

The association thus comprises a measure and a dimension which is sufficient
for retrieving a set of data. In case the user fails to input both a measure and
a dimension, but inputs only one of them, the application performs a search to
identify a stored association (stored perhaps in a document which comprises the
missing input measure or dimension). The other portion of the association can
then be determined by selecting the dimension or measure most frequently used
in combination with the respective measure or dimension that was given in the
input. It is therefore convenient when a document or an association is stored with
a usage counter, and that this counter is updated when this association is used

Intelligent Wizard for Human Language Interaction in Business Intelligence 225

in connection with an action or when a document containing this association is
loaded or stored.

A document may comprise multiple associations. The above step of deter-
mining an association may also comprise determining other associations that are
stored in a document.

The Intelligent Wizard may also compute a linguistic distance between an
input element and an executable function or a named metadata item and com-
pare the linguistic distance to a threshold to decide whether there is a match. The
linguistic distance is computed as the “Levenstein distance”. Experiments have
shown that a threshold of about 60-70 % match allows a good trade-off between
matching what the user is after and avoiding catching another executable func-
tion or another metadata item. As an example, this threshold makes it possi-
ble to match the executable function ‘analyze’ despite the user’s input element
‘analysis’. Other algorithms for computing the linguistic distance may be used.

The application comprises a data structure with a group of synonyms for a
respective, named metadata item or a named executable function. The processing
of said input comprises identifying an input element by looking up the group of
synonyms and identifying the input element as the respective, named metadata
item or a named executable function.

The group of synonyms comprises a list of synonyms or alternative names for
a named metadata item or a named executable function. The Intelligent Wizard
receives a user’s input, looks up the group of synonyms, and if the user’s input
is found among the synonyms, takes the appropriate, named metadata item or
named executable function as an identified input element. This expands the
likelihood of capturing the user’s input accurately and provide an appropriate
response, which greatly enhances the user experience. The user is more likely to
get a desired result, despite being less experienced with databases.

The method needs to compute a linguistic distance between an input element
and at least one of the synonyms, compare the linguistic distance to a threshold
to decide whether there is a match, and if so, identify the input element as the
respective, named metadata item or a named executable function.

The steps of computing a linguistic distance and comparing to a threshold
make the application more tolerant to typographical errors and spelling mis-
takes in the user’s input. Combining these steps with a list of synonyms further
improves the likelihood of catching the user’s input.

The method comprises the step of identifying which types of metadata items
in the syntax pattern remain unassigned and providing input elements for an
unassigned fields by assigning a default value to the parameter or type of meta-
data or prompting a user to input a value for an unassigned field.

The application comprises: a user interface configured to receive a user’s
input in sequential form; named executable functions that are configured to:
receive a parameter in the form of a named metadata item, retrieve data defined
by said named metadata item from a database, output a result of processing
the data, a set of predefined patterns of named executable functions and their
formal syntax; and a set of named metadata items.

226 M. Middelfart

Fig. 1. Flowchart for processing an input via a user interface

Figure 1 shows a flowchart for processing input through a user interface of
a Business Intelligence application. The application comprises a user interface
configured to receive a user’s input in sequential form; a collection of named
executable functions and denoted actions, a set of predefined syntax patterns

Intelligent Wizard for Human Language Interaction in Business Intelligence 227

of named executable functions with respective parameters, and a set of named
metadata items.

The user’s input can be received through textbox input, in which the user
types input via a keyboard or via a speech processor configured to receive a user’s
spoken input. In general, the user’s input is given in form of one or more input
elements, which may be letters (characters), words (commands or items), terms,
numbers or fractions thereof. Input element is the general term. The phrase ‘in
sequential form’ means that input elements are received one after another.

3.4 Matching Executable Functions (Actions) with Parameters

The Business Intelligence application offers a multitude of executable functions
or actions which the user may execute via the user interface by giving his input
as described above. The Business Intelligence application has those executable
functions embedded in program code or has an interface for accessing the exe-
cutable functions remotely through a web service. The executable functions are
configured to receive a parameter in the form of a named metadata item, retrieve
data defined by said named metadata item from a database, and output a result
of processing the data. Thereby the user is given an option of taking differ-
ent actions on data at a point in time where the data are yet not retrieved.
This option saves the user from making many tedious user interactions. The
executable functions are configured to create:

– an on-screen analysis showing one or more graphs or other data presentations
for graphical user interaction,

– a report for a printed media,
– a so-called dashboard,
– a so-called storyboard with a video rendering of data presentations;
– a scheduled delivery of a report, a dashboard, or a storyboard, or
– a warning, triggering any of the above functions in case a predefined criterion

is met.

The different executable functions process the data defined by metadata
input by the user in respective ways. The different executable functions pro-
vide their output at respective destinations, for example, in a data structure of
a graphical user interface, in a report, in a video, in a message object (email
object), or to a data transport interface for a remote data system. Processing of
the data may comprise graphical rendering, statistical signal processing or other
types of processing.

In step 101, the method listens for a user’s input and processes the input as
it is received to identify input elements. This is performed by parsing the user’s
natural input and translating it into proper syntax. As an example a user may
enter the text: “give me a revenue analysis”. This input is parsed and output is
given in multiple input elements: “give”, “me”, “a”, “revenue”, and “analysis”.
Input elements are separated by a space-character or a temporal pause. A filter
may remove input elements such as “give”, “me”, and “a”. Such words may be

228 M. Middelfart

removed or ignored if they are comprised by a predefined set of so-called stop-
words. Stop-words may also be defined as words that are not included by a list of
accepted words that comprises predefined names of metadata, names of actions,
and other commands or instructions for the application.

Then in step 102, a search for actions or executable functions is performed.
The search is performed in storage memory (114) wherein a set of syntax patterns
is stored. An exemplary set of syntax patterns is shown in Table 1 below:

Table 1. Syntax patterns

Pattern

1 analyze mmm
2 analyze mmm grouped by ddd
3 analyze mmm grouped by ddd selected by ccc
4 analyze mmm selected by ccc
5 report fff
6 report fff grouped by ddd
7 report fff grouped by ddd selected by ccc
8 report fff selected by ccc
9 dashboard showing mmm
10 dashboard mmm ddd
11 dashboard mmm ddd selected by ccc
12 storyboard fff

The syntax patterns comprise syntactically valid combinations of named exe-
cutable functions and parameters comprising different types of metadata. The
executable functions named ‘analyze’ and ‘report’ are included in four respec-
tive syntax patterns. The functions ‘dashboard’ and ‘storyboard’ are included in
three and one syntax patterns, respectively. Some actions may accept more para-
meters than shown above; the action ‘analyze’ may accept multiple parameters
of the measures type. For an implementation of the method, such a complete set
of syntax patterns is stored.

Continuing the above example, revenue and analysis remain as input items
after removal of stop-words. The search for actions in step 102 then reveals that
revenue was not identified as an action, but that analysis is identified as a action.
The input element revenue was not identified in step 102, but it is then subject for
a search for metadata in step 103. The search is performed in metadata storage
memory (113), which comprises a list of metadata items with an indication of
their metadata type. Metadata storage memory (113) may comprise the items
revenue, cost, and profit of the measures type and the items time, countries
of the dimension type. Additionally, the metadata storage memory (113) may
comprise metadata items with formatting properties for graphs or other types of
presentations. Thereby, the input element revenue can be identified as a measure
by the code ‘mmm’. By means of step 112, a current assessment of identified
metadata items and actions may be shown to the user via the user interface,

Intelligent Wizard for Human Language Interaction in Business Intelligence 229

e.g., by listing the items analyze and revenue with a checkmark. Thereby the
user is notified that the elements are identified or recognized.

In the following step 104, those syntax patterns that do not comprise the
matching executable function and the matching metadata item are eliminated
from a full set of syntax patterns. Once the action ‘analyze’ is recognized, pat-
terns 5 through 12 of the above 12 patterns can be eliminated from further search
on the input element given by the user. Patterns 1 through 4 remain since they
contain the action ‘analyze’. The result of the search for metadata is then taken
into account, and the identified metadata item revenue is assigned as a parame-
ter for the function analyze in step 105. The step of assigning a metadata item
to one or more matching executable functions assigns a matching metadata item
(of an identified type) from step 103, firstly mentioned in the input to a firstly
selected field requiring the identified type of metadata item.

In connection with step 104, those patterns that are not eliminated may
be shown to the user by step 118 (i.e. patterns 1 through 4 above). The user
interface shows to the user that the action ‘analyze’ can be executed since at
least one of the patterns (pattern 1 above) is completely assigned with metadata.

The method identifies that a user has stopped entering or giving input and a
pattern with all parameters assigned to a value is automatically selected for being
executed. Alternatively, in step 107, the method assigns default values to para-
meters that remained unassigned. Some actions may have parameters assigned
to them that are hidden from the user (at least at this stage of user interaction)
and that a default is assigned with default parameters. Default parameters may
be retrieved in a context-sensitive manner and/or according to a frequency of
use. This is described in more detail below in connection with Fig. 4.

Action and metadata items are stored in documents, which are searched
in step 109. Step 109 may be entered once the search for actions in step 102
has revealed that at least one action is identified or that a predefined category
of an action is identified. Documents are stored in document storage memory
(117). Typically, documents comprise collections of metadata items comprising
one or more associations of a dimension type metadata item and a measure type
metadata item and formatting type metadata e.g. specifying a graph type and
properties thereof. Typically, a document contains the information that would
have been applied in step 107 in case the user (or the application) selected an
action. A document can comprise a collection of graph objects or other types of
presentations with its data content specified by means of metadata.

Documents revealed by the search may be listed for the user to select; a
selected document is loaded in step 111 and executed in step 108. Execution
of actions or documents comprises querying a database to retrieve and render
a presentation of the data defined by the metadata items. This is described in
more detail below in connection with Fig. 5.

In the event the user inputs either a measure or a dimension, but fails to input
both a measure and a dimension, the step of applying defaults may comprise a
step of creating an association comprising both a measure and a dimension. This
is explained in greater detail in the below in connection with Fig. 4.

230 M. Middelfart

Fig. 2. First portion of user interface

Fig. 3. Second portion of user interface

Figure 2 shows a first portion of a user interface of a Business Intelligence
application. The user interface is shown in a simple form with a user interface
window 201 comprising a textbox input 202.

The user can give an input in a textual form phrasing what (s)he would
like the Business Intelligence application to do for her/him, for example, writ-
ing: “give me a revenue analysis” or “I would like to analyze sales and costs”.
Processing of the input is performed as described above.

The textbox 203 shows metadata items of the measures type or dimensions
type as they are identified in the user’s input. The metadata items in textbox
203 are shown by means of step 112 as described above.

3.5 Retrieving and Presenting Data

Once an action is identified in the user’s input, a button 205 is enabled or shown
on the user interface. Pressing the button causes the method to proceed to
execute the designated action with the measures listed in the textbox 203 as its
parameters. In this way, the user selects a predefined syntax pattern comprising
the action and the identified measures.

The result of the search for documents may be shown by graphical but-
tons 204 designating titles of the documents revealed by the search, perhaps
designated “D1”, “D2” and “D3”. By pressing a button, the user can select a
respective document for execution.

Figure 3 shows a second portion of a user interface of a Business Intelligence
application. The first portion of the user interface, shown in Fig. 2, is configured

Intelligent Wizard for Human Language Interaction in Business Intelligence 231

to receive a user’s input and to give the user feedback on identified metadata
items and documents. The second portion, shown in Fig. 3, is configured to
display the result of executing an action outputting a visual presentation output
from an action.

In the shown example, the user interface displays three presentation objects
in the form of a so-called piechart 301, a bar chart 302 and a table 303. The
second portion 304 of the user interface is displayed as a result of executing a
document or executing an action in connection with step 108 described above.
The presentation objects or the user interface may comprise controls (not shown)
configured to adjust or change properties of the presentation objects, for exam-
ple, to change the type of the presentation object, its color properties, font type
for text matter with the object, etc., as it is known in the art. For textual pre-
sentations the objects may comprise text sections, headings, tables with columns
and rows, etc. The formatting metadata and denoted properties may comprise
font size, line spacing, etc. For graphical presentations, the means may com-
prise different types of charts and diagrams such as bar charts, line charts, pie
charts, scatter charts, radar diagrams and other known diagrams or charts based
on graphical elements. The properties may comprise tick marker spacing on an
axis, legend font size, etc.

The user interface can handle different situations. In a first situation, a user
can give his input by means of the first portion of the user interface as described
above, whereas in a second situation a user can request further data by an action
directed directly to a presentation object to thereby explore data by further
analysis.

The processing of metadata in Fig. 4 comprises determining an association
and determining a presentation. The method of processing metadata may be per-
formed in connection with step 107 wherein defaults are applied. Defaults are
parameter values that the user has not explicitly specified in a present input,
but that may be retrieved by some type of expert system as exemplified by the
flowchart. Default values may be predefined values comprised of values program-
matically entered in the application or values previously selected by a user. The
first time a user gives a certain input, values programmatically entered in the

Table 2. Metadata and presentation properties

Data Presentation Frequency

Time, Level 1 type=Barchart; legend=off; 3
Revenue labels=off;

3D-effects=Orthogonal
Country; type=map; legend=off; 3
Contribution Margin labels=on; 3D-effects=None
Customer, Level 0; Type=Crosstab; legend=off; 2
Revenue; labels=off; 3D-effects=None
Cost;
Contribution Margin
...

232 M. Middelfart

application are applied. Then (s)he adjusts metadata as necessary and stores
the result in a document. A second time the user gives the same certain or a
similar input, default values may be retrieved from such a document. Default
values are stored in a dedicated storage memory of previously used combinations
of metadata and presentation properties and/or other parameters.

The contents of such a storage memory with previously used combinations
of metadata and presentation properties can have the following form as shown
in Table 2.

By searching the storage memory, with contents e.g. as shown in Table 2 for
default values, it is possible to determine whether a previous action has been
used. Thereby a user’s preferred presentation properties can be found. If, for
instance, it is determined that a question involves the data item ‘time, level 1’
and ‘revenue’, it can be deduced that the preferred presentation of these data
items is a bar chart with properties as shown in Table 2 above.

The flowchart in Fig. 4 is divided into a data determining section 408, a
presentation determining section 410 and a step 415 of making a presentation
based on determined data and presentation properties. In the event an action
does not provide a graphical presentation output, the method may skip the
presentation determining section 410, and may terminate when steps of the data
determining section 408 have been performed.

In the data determining section 408, metadata 401 identified in step 103 are
input. That is, the metadata and their category and associations of data items
(if any) are input. Optionally, the metadata 401 can comprise an identification
of dimension levels, criteria (if any), and combinations of associations. In step
402 it is determined whether any associations were identified. In the positive
event (Y) it can be deduced that sufficient data were present in the question
and that a search for presentation properties can be initiated in step 411. In
the negative event (N), however, it can be deduced no association is found in
the representation of the input metadata the method continues in section 409
of the flowchart to create an association. In section 409, it is examined in step
403 whether an identified data item is a dimension. In the positive event (Y) of
step 403, a data item measure is selected in step 405. In the negative event (N)
of step 403, it is examined in step 404 whether an identified data item is of the
measures type; and in the positive event (Y) thereof a data item dimension is
selected in step 406. If no measure is identified, and consequently no dimension
is identified, it can be decided that the input metadata has not even incomplete
information, but is lacking information. In this case the situation can be handled
by prompting the user to enter valid input metadata with at least one data item,
or alternatively, by applying the most frequently used metadata and applied
presentation properties.

In step 405 and step 406 a previously used association (if any) involving
the identified data item may be detected. However, in the event no previously
used association involving the data item is found, a most frequently used data
item can be selected or all data items of the respective type can be selected.
An association based on the identified data items and determined data items

Intelligent Wizard for Human Language Interaction in Business Intelligence 233

Fig. 4. Flowchart for presentation of metadata

is created in step 407. This step can involve creating a memory object for each
data item of the dimensions type.

If a data item measure or dimension has been selected in either step 405 or
step 406, respectively, a search for presentation properties can be initiated in step
411. In step 412, the system examines whether a previously used presentation is
found. If so (Y), presentation properties of a previously stored, like association is
found, the presentation properties are applied in step 413 to make a presentation
of the data specified by the association in step 415. Alternatively (N), if no like
association is found, presentation properties are created either by selecting the
association that is most like an existing association and/or by using an expert
system. As a result, even a question with incomplete data identification can
lead to retrieval and application of preferred presentation properties to make a
presentation.

234 M. Middelfart

Fig. 5. Flowchart for retrieving data based on metadata

The method can simply parse the input metadata to identify associations
and proceed directly to step 411 to search for presentation properties. Presen-
tation properties can be retrieved based on associations identified in the input
metadata. Thus the steps 402 and steps in section 409 can be omitted.

A dimension or measure as the case may be can be selected to create a
complete association. Also, an identified association, dimension or measure can
be expanded to multiple associations.

The expanding can be based on user preferences. User preferences can be
determined by maintaining a list of combinations of associations that are used
concurrently or in the same data report. Thus, when an association is determined
it can be expanded by looking up other associations which have previously been
used in combination with the identified association.

Alternatively, the list can include a number which for an identified association
reflects the likelihood that a user will apply another identified association. This
number can be a relative or absolute number of times the identified association
has previously been used in combination with the other identified association.
Thus, when an association is determined, it can be expanded by looking up other
associations which, with a given likelihood, have been used in combination with
the identified association. For instance, the given likelihood can be expressed as
a threshold value of, say, 50 %; for an association A1 it is stated that in 10 % of
its uses association A2 is also used, whereas in 90 % of its uses, association A3 is
also used. Thus it can be deduced that A1 should be expanded to be combined
with A3.

When a measure is identified, firstly, a complete association is created by
selecting a dimension. Secondly, this created association can be expanded as set
forth above. This also applies to dimensions.

The aspect of expanding an association from an identified association and/or
measure and/or dimension can be embodied as an individual step between

Intelligent Wizard for Human Language Interaction in Business Intelligence 235

section 408 and 410. Alternatively, the aspect can be embodied by means of
section 410. In any event, when an association is expanded, presentation prop-
erties should be applied to make a presentation of the multiple associations
obtained by expanding an identified association.

It should be noted that step 402 can be applied iteratively to identify multiple
associations and/or measures and/or dimensions in the metadata.

Figure 5 shows a flowchart for a method of retrieving data from metadata. As
mentioned above, the executable functions or actions are configured to receive a
parameter in the form of a named metadata item; retrieve data defined by said
named metadata item from a database; and output a result of processing the
data.

As a result of assigning metadata in step 105 and applying defaults in step
107, or as a result of loading a document in step 111, the action(s) can be
executed in step 108. As a step thereof, data are retrieved from a database using
the metadata. Sometimes data are also denoted underlying data to more clearly
distinguish the data that are retrieved from metadata.

As a step of executing the action in step 108, an action and assigned metadata
501, are converted to a query to retrieve data from a database in step 502. In
step 503, the data are retrieved from the database, and in step 504, the data are
processed according to program steps defined in a selected action.

For example, if the database contains the following data items, wherein the
date items are categorized as measures or dimensions and wherein a dimension
exists at different levels such as day, month, and year.

In Table 3, the measures ‘revenue’ and ‘cost’ contain data along the different
dimensions. A data set is defined by specifying both a measure and a dimension.
For instance, the association of the measure ‘revenue’ and ‘country’ defines a
data set where ‘revenue’ is represented by means of data values per ‘country’ as
they may be defined in the database.

Generally, and in connection with the present invention, it should be noted
that a dimension is a collection of data of the same type: it allows one to structure
a multidimensional database. A multidimensional database is typically defined
as a database with at least three independent dimensions. Measures are data
structured by dimensions. In a measure, each cell of data is associated with one
single position in a dimension.

Table 3. Syntax patterns

Measures Dimensions

‘revenue’ ‘time’ (level 0: Year; level 1: Month; level 2: Day)
‘cost’ ‘Customer’ (level 0: Group; level 1: Name)

‘Product’ (level 0: group; level 1: Name)
‘Country’

236 M. Middelfart

4 Demonstration

Having defined the workings of the Intelligent Wizard in theory in previous
section, this demonstration shows it in a real-world scenario running on a
Microsoft SQL/Analysis Server 2012 data warehouse. The fields and relation-
ships in the data warehouse staging area are shown in Fig. 6, and these load into
6 cubes with a total of 37 dimensions and 52 measures.

Analytics: In Fig. 7 we see a screenshot of TARGIT Decision Suite version 2013,
with the Intelligent Wizard shown on the entire screen below the top menu. The
interaction with the Intelligent Wizard is arranged around the OODA loop, as
described in Sect. 1, and thus the options will emerge as we type a sentence in the
field labeled “Decision Search”. However, we note that when the search string
is blank, the various Business Intelligence disciplines supported by TARGIT

Fig. 6. Datamodel used in demonstration

Intelligent Wizard for Human Language Interaction in Business Intelligence 237

Fig. 7. TARGIT decision suite with intelligent wizard

Decision Suite are displayed in accordance with their role in the OODA loop. We
also note that if some existing objects (such as analysis, reports, and dashboards)
exist, these will be shown as snapshots in accordance with their role in the OODA
loop.

In Fig. 8 we have entered the sentence “show me an analysis with revenue
managers and items” in the Decision Search. We note that now only the options
under the “Orientation” phase in the OODA loop are shown. This is due the
Intelligent Wizard identifying the word “analysis”. We also note that a list of
metadata appears under the search field. This list allows the user to manually
select metadata of particular interest to focus the Intelligent Wizard on these
metadata. In this demonstration we do not make use of this option.

In Fig. 9 we see the resulting screen from clicking the “Analyze” icon in
Fig. 8. Observe that the metadata have been organized in two objects, in which
the measure Revenue is displayed over Sales Managers as well as over Items
(products). The Intelligent Wizard automatically selected the most appropriate
visualization in both objects, including selection between chart and type hereof,
maps (not limited to geographical), and tables with sorting. Selection of visual-
ization is done to as large extent as possible in accordance with “best practices
in presentation of data”, as described by Stephen Few [1].

Note that getting to the presentation in Fig. 9 took only the writing of the
sentence “show me an analysis with revenue managers and items” and one click
(or touch depending on device). The intent is that Fig. 9 represents a fast and
pretty good “initial visualization”, from which the user can now start analyz-
ing further, either by adding more objects for visualization, or by interacting

238 M. Middelfart

Fig. 8. Analytics selection

Fig. 9. Analytics visualization output

with the ones that are already present. In Fig. 10 we click in the “Paviaz Brad-
shaw” member of the Salesperson Manager dimension, and by doing so, we see
the object below reflect only the Items (Products) generating revenue for this
particular manager. We have now effectively enabled a user with no knowledge

Intelligent Wizard for Human Language Interaction in Business Intelligence 239

Fig. 10. Analytics interaction

about the complicated data structures in Fig. 6 to interact with the data to
create business insights, and to do so using only natural human language and
business terms used widely in the organization/company.

Reporting: Returning to the initial screen shown in Fig. 7, we now type “make a
report showing customers revenue and profit” as shown in Fig. 11. The Intelligent
Wizard recognizes the word “report”. However, in this case there are no pre-
defined reports that match the criteria, so only the option of creating a new
report is available in this example. Similar to the previous example, we note the
metadata available are displayed and further selection is possible.

We do not make an additional selection, but simply click the (create a)
“Report” icon under the “Observation” phase, and the report shown in Fig. 12
appears. In other words, using human language we have requested a report and
created it from scratch in just a sentence and one click (or touch).

Demonstration Summary: In this demonstration, we have shown how the
Intelligent Wizard allows a user self-service within the two Business Intelligence
disciplines: analytics and reporting. The Intelligent Wizard successfully sup-
ported users in creating both an interactive analysis and a report using human
language with no predefined syntax. Furthermore, the Intelligent Wizard needed
only one interaction in addition to the initial input to create the intended output.

Download: The fully functional software used in this demonstration can be
downloaded at www.targit.com

www.targit.com

240 M. Middelfart

Fig. 11. Reporting selection

Fig. 12. Reporting output

Intelligent Wizard for Human Language Interaction in Business Intelligence 241

5 Summary

In this chapter, we presented a novel Intelligent Wizard that allowed users to
interact with a Business Intelligence system via natural human language and
very few interactions. We demonstrated how the Intelligent Wizard is different
from prior technologies in that it:

1. Covers all contemporary Business Intelligence disciplines: analytics, report-
ing, dashboards, and agents, and novel disciplines like storyboards.

2. Allows users to interact with a Business Intelligence system via natural lan-
guage.

We also demonstrated with concrete examples that a user is fully self-service
capable in a real-world Business Intelligence application, as the Intelligent Wiz-
ard allows the user to navigate with natural language, including organizationally-
known business terms. Furthermore, we demonstrated an implementation of the
Intelligent Wizard in a real-world industrial Business Intelligence application
with improved user-friendliness as the effect.

TARGIT Decision Suite 2013, which is the first product to have the Intelligent
Wizard, was launched on July 4th 2013. Therefore the feedback from the market
is still limited at the time of writing. However, one very skilled TARGIT partner
with deep industry knowledge about both TARGIT and competing platforms
have stated [7]:

TARGIT has always been known for its ease of use. In Decision Suite 2013
I can just ask TARGIT to find business answers for me by typing in “laymans
terms”. You dont have to be a technology wiz to find the answers you need. The
new Intelligent Wizard works just as I expect it. I type Analyze salesperson profit
over last five years and Im presented with a beautiful analysis of my sales. This
will definitely help more people and business users find valuable insights in their
data.

Given the feedback from the market and the demonstration in this chapter,
we will conclude that the Intelligent Wizard is indeed a useful step towards
allowing everyone self-service in Business Intelligent and Analytics. For future
work, we intend to further develop the interface to include more functionality
as well as capturing more parameters from a freely formulated user sentence.
In addition, we intend to combine the current interface with speech recognition,
thus supporting a use case where one can simply speak to, e.g., a mobile device
and ask for Business Intelligence. The speech use case can already be seen in
this video demonstration recorded in September 2013: youtu.be/32KE0rbGZ9c

Acknowledgments. This work was supported by TARGIT US inc.

242 M. Middelfart

References

1. Few, S.: Show Me the Numbers: Designing Tables and Graphs to Enlighten, 2nd
edn. Analytics Press (2012)

2. Middelfart, M.: CALM: Computer Aided Leadership & Management. iUniverse
(2005)

3. Middelfart, M.: Presentation of data using meta-morphing. United States Patent
7,779,018. Issued August 17, 2010

4. Middelfart, M.: Method and user interface for making a presentation of data using
meta-morphing. United States Patent 7,783,628. Issued August 24, 2010

5. Middelfart, M.: Hyper related OLAP. United States Patent 8,468,444. Issued June
18, 2013

6. Sallam, R.L., Richardson, J., Hagerty, J., Hostmann, B.: Magic Quadrant
for Business Intelligence Platforms. www.gartner.com/technology/media-products/
reprints/oracle/article180/article180.html April 28, 2011

7. The TARGIT Blog. Entry by Jens-Jacob Thuun Aarup, Sales & Marketing Director,
Inspari. http://www.targit.com/en/resources/targitcommunity/targit-blog July 31,
2013

www.gartner.com/technology/media-products/reprints/oracle/article180/article180.html
www.gartner.com/technology/media-products/reprints/oracle/article180/article180.html
http://www.targit.com/en/resources/targitcommunity/targit-blog

Author Index

Abelló, Alberto 121

Calders, Toon 1

Fischer, Ulrike 150

Lehner, Wolfgang 150

Middelfart, Morten 218

Neuböck, Thomas 77

Neumayr, Bernd 77

Romero, Oscar 121

Schrefl, Michael 77
Schütz, Christoph 77

van der Aalst, Wil M.P. 1

Wojciechowski, Artur 182
Wrembel, Robert 182

	Preface
	Organization
	Contents
	Introduction to Pattern Mining
	1 Introduction
	2 Pattern Mining: Definition
	3 Algorithms for Mining Frequent Itemsets
	3.1 Breadth-First Algorithm Apriori
	3.2 Depth-First Algorithms

	4 Alternative Pattern Types and Interestingness Measures
	4.1 More Complex Pattern Types
	4.2 Alternative Measures of Interestingness
	4.3 Main Challenges for Mining Alternative Pattern Types

	5 Pattern Mining Applied on Real Data
	5.1 Patterns as Input for Other Algorithms
	5.2 Patterns for Summarization
	5.3 Implementations of Pattern Mining

	6 The Pattern Explosion Problem
	6.1 Condensed Representations for Frequent Patterns
	6.2 Statistical Methods for Modelling Expectation
	6.3 Minimal Description Length Based Methods for Removing Redundancy

	7 Conclusion
	References

	Process Mining in the Large: A Tutorial
	1 Introduction
	2 Process Mining Spectrum
	3 Preliminaries
	3.1 Multisets, Functions, and Sequences
	3.2 Petri Nets
	3.3 Event Log

	4 Process Discovery
	4.1 Alpha Algorithm
	4.2 Region-Based Process Discovery
	4.3 Other Process Discovery Approaches

	5 Conformance Checking
	5.1 Quality Dimensions
	5.2 Token-Based Replay
	5.3 Aligning Observed and Modeled Behavior
	5.4 Beyond Conformance Checking

	6 Decomposing Process Mining Problems
	6.1 Decomposing Conformance Checking
	6.2 Decomposing Process Discovery
	6.3 Decomposition Strategies

	7 Conclusion
	References

	Ontology-Driven Business Intelligence for Comparative Data Analysis
	1 Introduction
	2 The semCockpit Approach
	2.1 Data Warehouse
	2.2 Use Case
	2.3 Steps in a Comparative Data Analysis Project

	3 Multi-Dimensional Ontology
	3.1 Concepts: Signatures and Concept Expressions
	3.2 Context-Specific and Contextualized Concepts
	3.3 Semantic Dimensions
	3.4 Relational and OWL Representations

	4 Ontology-Based Measures and Scores
	5 Ontology-Based Comparative OLAP
	6 BI Analysis Graphs
	7 Guidance, Judgement, and Analysis Rules
	8 Conclusion
	References

	Open Access Semantic Aware Business Intelligence
	1 Introduction
	2 Business Intelligence: Past, Present and Future
	2.1 Challenges of Exploratory BI

	3 An Introduction to Semantic Web Formalisms
	3.1 RDF(S)
	3.2 Ontology Languages

	4 One Step towards Exploratory BI
	4.1 Narrowing the Focus: Assumptions Made
	4.2 Functional Architecture
	4.3 A (Toy) Usage Example

	5 An Open-Access Semantic-Aware System
	5.1 The AMDO Module
	5.2 The GEM Module
	5.3 The ORE Module
	5.4 COAL
	5.5 Open Questions

	6 Semantic Aware Business Intelligence: State of the Art
	7 Conclusions
	References

	Transparent Forecasting Strategies in Database Management Systems
	1 Introduction
	2 Forecasting Applications
	2.1 Production Planning
	2.2 Energy Load Balancing
	2.3 Online Display Advertisement

	3 Mathematical Foundations of Time Series Forecasting
	3.1 Basic Idea and Terminology
	3.2 Overview Forecasting Methods
	3.3 Model Creation
	3.4 Model Usage
	3.5 Model Maintenance

	4 Architectural Integration
	4.1 No Database Integration
	4.2 Partial Database Integration
	4.3 Full Database Integration

	5 In-DBMS Time Series Forecasting Techniques
	6 A Flash-Forward Database System
	6.1 ANSI/SPARC Architecture
	6.2 DBMS Architecture

	7 Conclusions and Future Work
	References

	On Index Structures for Star Query Processing in Data Warehouses
	1 Introduction
	2 Data Warehouse Basics
	2.1 DW Model and Schema
	2.2 Star Queries

	3 Index Data Structures
	3.1 Join Index
	3.2 Bitmap Index
	3.3 Bitmap Join Index
	3.4 Indexes in Star Query Processing

	4 Index Time-HOBI
	4.1 Hierarchically Organized Bitmap Index
	4.2 Time Index
	4.3 Partial Aggregates
	4.4 Star Query Optimization with the Support of Time-HOBI
	4.5 Time-HOBI vs. Materialized View
	4.6 Implementation Issues
	4.7 Time-HOBI Limitations

	5 Experimental Evaluation
	5.1 Query Performance
	5.2 Index Sizes
	5.3 Index Creation Times
	5.4 Experiments Summary

	6 Related Work
	6.1 Traditional Indexes
	6.2 Multi-level Indexes
	6.3 Multidimensional Indexes
	6.4 Materialized Aggregates
	6.5 The Missing Functionality

	7 Summary
	References

	Intelligent Wizard for Human Language Interaction in Business Intelligence
	1 Introduction
	2 Motivation
	3 The Intelligent Wizard
	3.1 Overview
	3.2 Prerequisites
	3.3 Walkthrough
	3.4 Matching Executable Functions (Actions) with Parameters
	3.5 Retrieving and Presenting Data

	4 Demonstration
	5 Summary
	References

	Author Index

