
Bi-level Sensor Planning Optimization Process
with Calls to Costly Sub-processes

Frédéric Dambreville

Lab-STICC UMR CNRS 6285, ENSTA Bretagne,
2 rue François Verny, 29806 Brest Cedex 9, France

lcns@fredericdambreville.com
http://www.fredericdambreville.com

Abstract. While there is a variety of approaches and algorithms for
optimizing the mission of a sensor, there are much less works which deal
with the implementation of several sensors within a human organization.
In this case, the management of the sensors is done through at least one
human decision layer, and the sensors management as a whole arises as
a bi-level optimization process. The following hypotheses are considered
as realistic: Sensor handlers of first level plans their sensors by means
of elaborated algorithmic tools based on accurate modelling of the en-
vironment; Higher level plans the handled sensors according to a global
observation mission and on the basis of an approximated model of the
environment and submit its plan to a costly assessment by the first level.
This problem is related to the domain of experiment design. A gener-
alization of the Efficient Global Optimization method (Jones, Schonlau
and Welch) is proposed, based on a rare event simulation approach.

Keywords: sensor management, Efficient Global Optimization, rare
event simulation, non-Gaussian/non-linear models, experiment design.

1 Introduction

The main background of this paper is the optimal planning of sensors in the
context of an acquisition mission. Typically, the acquisition mission may result
in the localisation of a target, with the final purpose of intercepting this target.
In this work, we focus especially on dealing with the modelling errors of the sen-
sor planning problem. Then, the question of interest is: how to spend resources
optimally in order to reduce the model errors, and how does that affect the sensor
planning problem?

Sensor planning, especially in order to localize a target, has been thoroughly
studied in the literature. First works in this domain track back to the works of
Koopman during World War II [1, 2]. This seminal works has been extended
in various manner, so as to take into account motion models [3, 4], or reactive
behaviours of the target [5, 6]. Sensor planning now deals with the general do-
main of search and surveillance [7, 8]. The combination of multiple sensors with
their constraints is addressed by some works and in various application contexts:
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optimizing the performance of a sensor network [9, 10]; optimizing the tasks-to-
sensors affectation in the context of an intelligence collection process [11–14].
Another major issue in sensor planning is also to maximize the positive effect
of subsequent data processing in regards to mission objectives. For example,
entropic-based criterion is used in order to take into account optimal post-
processing (data fusion) of the collected information[15]. A more direct approach
has also been addressed by means of Partially Observable Markov Decision Pro-
cesses [16, 17]. From this last point of view, sensor planning is clearly related to
the domain of robotic.

Thus, a variety of approaches have been investigated for many contexts of the
sensor planning. Nevertheless, there is not as much works dedicated to the ques-
tion of modelling the sensor planning. In their inspiring work[18, 19], Koopman
addressed initially this formalisation, priorly to sensor planning problem. Le
Cadre studied various practical case of use of the model of Koopman, and de-
duced related parametrization of the models[20]. Whatever, it appears that a
minimal effort is necessary for acquiring a good estimation of the parameters
modelling our sensor planning. In the case of a reproducible scenario, it is pos-
sible to learn such parameters.

However, there are cases where a prior learning of the parameters is clearly im-
possible. Such cases hold typically when the planning team has a limited control
on the sensors, and relies on sub-processes or on sub-teams in order to imple-
ment the sensors or compute their performance parameters. Especially, military
organizations are characterized by a hierarchical structure, where decisions are
made through at least two human-driven levels. In practice, accurate models of
the sensors and mission contexts are only available to the first, close-to-sensor,
level. The coordination level only works on the basis of approximated models;
Accurate parameters learning or acquisition are generally not possible at this
level, since the request to sub-processes resources are costly and restricted.

The following hypotheses are thus considered as realistic:

– Sensor handlers of the first level plans their sensors by means of elaborated
algorithmic tools based on accurate modelling of the environment,

– Higher level plans globally a variety of sensors according to a global observa-
tion mission on the basis of an approximated model; at this stage, the global
plan has to be confirmed by the first level,

– In order to assess the global plans and to enhance their accuracy, higher level
may request the first level. Each request to the first level is costly: it implies
communication procedures, as well as the parametrization and execution of
the algorithmic tools by the sensors handlers.

This bi-level problem is formalized very generally as the maximization of a func-
tion, defined with a prior model noise. Each actual evaluation of the function
increases the knowledge about the function, and subsequently the efficiency of
the maximization. The issue is to optimize the sequence of value to be evalu-
ated, in regards to the evaluation costs: this problem is related to the domain of
experiment design. Jones, Schonlau and Welch proposed a general method, the
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Efficient Global Optimization (EGO) [21, 22], for solving this problem in the
case of additive functional Gaussian law. In this work, a generalization of the
EGO is proposed, based on a rare event simulation approach. This simulated
approach makes possible the implementation of non-Gaussian functional law,
and even of simulated functional law. It is applied to the aforementioned bi-level
sensor planning.

In the first section 2 of this paper, we propose a general formalisation of the sen-
sor planning with experiment sub-processes, and its description as an abstract
problem. In section 3, a rare-event simulation approach is proposed for solving
this bi-level sensor planning. Section 4 presents a scenario and numerical results.
Section 5 concludes.

2 Sensor Planning with Experiment Sub-processes

2.1 A Model-Noised Sensor Planning

The purpose of this paper is to solve the planning of a set of sensors in order to
answer to a set of requests and on the basis of a noisy prior knowledge of the
environment. More precisely, the problem is characterized as follows:

– M requests characterized by their locations z[m] with m = 1 : M ,
– K sensors with indices k = 1 : K :

• Starting/ending location of sensor k is s[k] ,
• Maximum autonomy of sensor k (maximum cumulative cost performed

by k) is γ[k],
– A noisy map μ, which describes the difficulty of the ground: from this map is

computed the minimum cost c[z1, z2;μ] for moving from z1 to z2 . The exact
map is not known from the planner: only the prior law pμ on μ is known,

– A true map μ̂ which is unknown to the planner and only known by the
monitoring teams which process the sensors,

– Moving constraints: a sensor travels from starting/ending point through
some request locations and back to starting/ending point. The trip of sensor
k is denoted τ [k] = s[k]z[mk

1 ] · · · z[mk
ik
]s[k]. Moreover the cumulative cost for

a trip is smaller than the sensor autonomy:

If τ [k] is a valid trip, then C(τ [k];μ) ≤ γ[k] , (1)

where:

C(τ [k];μ) = c[s[k], z[m1];μ] + c[z[m1], z[m2];μ] + · · ·+ c[z[mk
ik ], s[k];μ] .

(2)

– Criterion to maximize:

Priority 1: Maximize the number of requests performed by the sensors:

G[τ ;μ] = card ({m = 1 : M /∃k = 1 : K, m ∈ τ [k] and τ [k] is valid}) ,
(3)
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Priority 2: Minimize the global cost:

C[τ ;μ] =
∑

k=1:K

C(τ [k];μ) . (4)

Since the environment is known with noise, the global plan τ does not always fit
the actual constraints, and has to be evaluated by the first planning level. It is
assumed that the proposed plan is truncated by the first planning level, in order
to fit the accurate models:

τ [k] is truncated to: τ̂ [k] = s[k]z[mk
1 ] · · · z[mk

nk
]s[k] , (5)

where:

nk = argmax
{

n = 1 : ik
/

C(s[k]z[mk
1 ] · · · z[mk

n]s[k]; μ̂) ≤ γ[k]
}

. (6)

The first planning level also provides an actual evaluation of the (truncated)
plan in regards to the true map:

̂G[τ ] = G[τ̂ ; μ̂] and ̂C[τ ] = C[τ̂ ; μ̂] . (7)

These information imply an improvement of the knowledge of the map, but it
is costly. In order to optimize the plan, the global planner has to tune between
the optimization of the plan and the actual evaluation requests.

2.2 The Theoretical Problem

A refined theoretical formulation of the planning problem of section 2.1 is now
made with the following meaning: f is the evaluation of the plan, x is a plan, ν
is the noisy map. Then, the optimization problem is characterized by means of
a noisy criterion function:

f : (x, ν) ∈ X ×N �→ f(x, ν) , (8)
where:

x ∈ X is a parameter to be optimized , (9)
ν ∈ N is a model noise , (10)
pν ∈ P (N) is a known probabilistic noise prior . (11)

and by an unknown actual model noise:

ν̂ ∈ N is the actual value of the model noise . (12)

The noise on f is a model noise and it is always possible to evaluate the actual
criterion f(·, ν̂) for any specific actual parameter x̂. Then the purpose is not to
optimize a mean criterion, but rather to choose a good sequence of actual pa-
rameters x̂ so as to approximate an optimum for the actual criterion f(·, ν̂). It
comes that each evaluation of the actual criterion is costly, while, in comparison,
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the evaluation of the modelled criterion f(·, ν) is considered free for any noise
hypothesis ν. Since each evaluation of the actual criterion provide also some
knowledge about the actual model noise ν̂, the issue is to balance optimally
between actual evaluation and model-based optimization, so as to find a near
optimal solution to the actual criterion.

So as to deal with this problem, Welch proposed[21] the famous Efficient Global
Optimization method, which is based on an iterative optimization maximiz-
ing the Expected Improvement. More precisely, Welch considered the case of a
(spatial) Gaussian noise combined with a linear model, and derived exact com-
putation of the sequence. Our main contribution is to extend Welch algorithm
to any cases by means of simulation approaches. Rare event simulation methods
are quite instrumental here.

From a general point of view, Welch approach takes the form of the following
recursive computation:

[Expected Improvement Maximization (EIM)]
1. Set n = 0 ,
2. Repeat:

(a) Compute x̂n+1, the next candidate for an actual evaluation:

x̂n+1 ∈ argmax
x∈X

∫

ν∈N

pν [n](ν)f [n](x, ν) dν , (13)

where: pν [n](ν) = pν
(

ν
∣

∣ ∀k = 1 : n, f(x̂k, ν) = ŷk
)

, (14)

f [n](x, ν) = max

{

f(x, ν), max
k=1:n

ŷk

}

. (15)

(b) Request the actual evaluation of x̂n+1 ŷn+1 = f(x̂n+1, ν̂) ,
(c) Set n ← n+ 1 ,
until the convergence of (x̂1:n, ŷ1:n) is sufficient.
[Output:] The sequence (x̂1:n, ŷ1:n) and model noise estimation pν [n] .

The function f [n]−maxk=1:n ŷk evaluates the improvement of f at step n. The
conditional probability pν [n] is the posterior knowledge of ν obtained after the
n first measurements.

From these considerations, it appears that we need to:

– Evaluate the conditional probability pν [n],
– Compute the optimal parameter x̂n+1.

We will see that both tasks are performed by rare event simulations. We will
also propose a combined approach for performing these tasks at same time.

3 Rare Event Simulation

A rare event is an event with very small probability. In this section, the following
notations are considered:
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– Ω is a probabilistic space,
– pω ∈ P (Ω) is a probabilistic distribution on Ω,
– φ : ω ∈ Ω �→ IR is a measurable function,

We are considering events the form φ−1([γ,+∞[). Then φ−1([γ,+∞[) is a rare
event, if

∫

ω∈Ω I[φ(ω) ≥ γ]pω(ω) dω � 1 , where I[true] = 1 − I[false] = 1 . The
two following subsection explain how conditional sampling and optimization may
be solved by simulating a rare event. Third section explains the cross-entropy
method as a general process for rare event simulation.

3.1 Conditional Sampling and Rare Event Simulation

It is possible to sample the conditional law pω(ω|φ(ω) ≥ γ) by sampling the law
pω and rejecting all samples such that φ(ω) < γ. In the case where φ−1([γ,+∞[)
is a rare event, a direct Monte-Carlo approach is not feasible, but dedicated rare
event simulation approaches may be used.

As a specific case, the simulation of conditional law pν [n] may be approximated
by pω(ω|φ(ω) ≤ ε), where ω = ν and:

φ(ν) =
∑

k=1:n

(

f(x̂k, ν)− ŷk
)2

. (16)

In such approach, the threshold ε is a measure of the quality of the conditional
sampling.

3.2 Optimization and Rare Event Simulation

Actually, the set of maximizers of a function could be defined as a limit of rare
events. More precisely:

argmax
ω∈Ω

φ(ω) =
⋂

γ<maxφ(Ω)

φ−1([γ,+∞[) . (17)

Then, it comes naturally that the optimization of a function may be obtained
by simulating an arbitrarily rare event. Especially, the Cross-Entropy simula-
tion method presented subsequently has been applied to the optimization of
functions. Such approaches may be compared to population-based metaheuris-
tics (eg. genetic algorithm).

3.3 The Cross-Entropy Method

The cross-entropy method (CE) has been pioneered by Rubinstein [23], and
was initially settled for the simulation of rare event. It is based on a recursive
importance sampling driven by a family of sampling densities:

π(·|Θ) =
(

π(·|θ))
θ∈Θ

(18)
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Without loss of generality, it is assumed that there is θo ∈ Θ such that pω =
π(·|θo) . By denoting Nt the number of samples ωi

t generated at step t, Rt : ϕ ∈
IR �→ Rt(ϕ) ∈ [0, 1] a selective function for the samples (typically, a quantile-
based selection) and αt ∈]0, 1] a smoothing parameter, the CE simulation may
be defined as follows:

[CE simulation]
1. Set t = 0 and θ0 = θo ,
2. Repeat until the convergence is sufficient:

(a) Generate the samples ωi
t ∈ Ω, for i ∈ {1 : Nt}, according to the proba-

bilistic density function (pdf) π(·|θt) ,
(b) Compute the evaluations φ(ωi

t) of the samples for i ∈ {1 : Nt} ,
(c) Compute the selective parameters:

ρt[0] = 1− αt , (19)

ρt[i] = αt
Rt(φ(ω

i
t))

∑

i=1:Nt
Rt(φ(ωi

t))
× π(ωi

t|θo)
π(ωi

t|θt)
, for all i ∈ {1 : Nt} , (20)

(d) [Update] Update the importance sampler by maximizing the cross-
entropy with the selected samples:

θt+1 ∈ argmax
θ∈Θ

∫

Ω

(

ρt[0]π(ω|θt) +
∑

i=1:Nt

ρt[i]δ[ω = ωi
t]

)

log (π(ω|θ)) dω ,

where: δ[ω = ωi
t] is the Dirac distribution on ωi

t , (21)

(e) Set t ← t+ 1 ,

[Output:] The importance sampler π(·|θt) and likelihood ratio
pω

π(·|θt) .

The criterion for convergence may be, as in the classical CE [23], achieved when
a sufficient ratio of samples is within the rare event φ−1([γ,+∞[).

4 Practical Implementation and Numerical Results

4.1 Definition of the Maps, Costs and Plans

The map is defined by mapping from a vector parameter to a matrix of practica-
bility level: Z ∈ IRp �→ μ[Z] ∈ IR

[0,1]×[0,1]
+ . In practice, Z combines the positions

of threats and μ[Z] is computed as distances from these threats. The practicabil-
ity level μ[Z](x) infers a local cost to any sensor which moves on position z: the
cost c[z, z′] of a trajectory z → z′ is obtained by integrating the local cost. The
threat vector Z is known with a Gaussian noise, the model noise of our problem.
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4.2 Generating Laws for Conditional Sampling and Optimization

The map is sampled as a real-valued vector. The plan is obtained by sampling
mission to sensor mapping and a priority order between the mission. Both are
easily derived from a real-valued vector by mean of a surjective discrete mapping.
Gaussian laws are thus considered for both conditional sampling and optimiza-
tion. The update step (21) is quite easy for such laws family and is typically
derived from the empirical mean and covariance.

4.3 Numerical Results

Settings. The considered scenario is characterized by 5 sensors and 20 missions:

– Sensor position: (1, 1), (1, 1), (9, 1), (9, 1), (5, 1)
– Sensor autonomy: 1, 2, 1, 2, 2
– Missions: 20 missions chosen uniformly on [1, 10]× [1, 10]

and by a map of threats characterized by 4 threats:

– Theoretical threat position, with noise νi ∼ N(0, diag(2, 2)) :

μ =
{

(2, 3) + ν1, (5, 4) + ν2, (4, 7) + ν3, (2, 3) + ν4}
– Actual threat position: μ̂ =

{

(1, 1), (4, 6), (3, 7), (1, 4)} .

The cost inferred by the map is computed as follows:

– The local cost c[z] = 1/(1 + d(z, T )2) decrease with the distance to the set
of threats,

– The cost of a path z → z′ is computed by integrating on the interval [z, z′],
ie. C[z, z′;μ] =

∫

ω∈[z,z′] c[ω] dω .

A Sequence of Run. First at all, a reference plan is optimized on the basis
on the true map:

iter 1 20 40 60 80 100 120 140 160 180 200
opt 11.6 13.3 14.3 14.8 15.1 15.5 16 16.6 17.3 17.7 17.9

∫

samp 100 2K 4K 6K 8K 10K 12K 14K 16K 18K 20K

In this table, iter is the number of iteration in the CE algorithm, opt is the
reached maximal value and

∫

samp is the cumulative number of generated sam-
ples. This optimization required 200 iteration and 20000 samples for convergence.
The following optimized plan is sampled be means of the sampler π(· · · |θ200) af-
ter the last iteration:

Sensor planned trajectory corrected trajectory
0 {3} {}
1 {2, 10, 12, 16} {2, 10, 12, 16}
2 {4, 0, 18} {4, 0}
3 {13, 6, 5, 15, 7, 8} {13, 6, 5, 15, 7, 8}
4 {17, 1, 9, 19, 14, 11} {17, 1, 9, 19, 14, 11}
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Now, the following sequence of actual evaluations is obtained by applying the
CE-based EIM algorithm:

ε NaN 0.07 0.96 0.72 0.8 2.6
y 15.7 17 17.7 17.7 17.1 NaN
ŷ 14.9 13.9 11.9 15.92 15.93 NaN

The quality of the conditional estimation is evaluated by means of the feasible
threshold ε, as defined in section 3.1, obtained after CE convergence. It is of
course undefined at step 0 (there is no conditioning). The estimation is good at
step 1, rather good from step 2 to step 4. The estimation is bad at step 5. The
optimized actual evaluation ŷ is 14.9 at step 0 and it is 15.93 at step 4, and only
4 evaluation is needed in order to reach 15.92. At step 5, the conditioning is bad,
and the CE-based EIM fails.

Obviously, the failure of CE-based EIM is related to the quality of the conditional
estimation. In fact, the conditional law is obtained from nonlinear constraints.
As a consequence, it is multi-modal and cannot be efficiently sampled by means
of Gaussian sampler. In order to enhance the algorithm, it will be necessary to
consider mixtures of laws, or multi-modal law by construction.

5 Conclusion

In this paper we considered the problem of planning a set of sensors in the
presence of model noises. The following hypotheses were considered: the planner
only knows the law of the model noise, but he can request an actual but costly
evaluation of a solution. In such case, each actual evaluation of the criterion
function increases the knowledge about the model, and subsequently the effi-
ciency of the plan optimization. The issue was to optimize the sequence of value
to be evaluated, in regards to the evaluation costs. In our work, we defined a
generalization of the Efficient Global Optimization (EGO) algorithm, based on
a rare event simulation approach. The results are promising, and the algorithm
produced good plans while requesting quite few sub-process calls. It appeared
that this optimization was limited by the Gaussian approximation of potentially
multi-modal conditional law. Future works will consider mixtures of laws for
approximating the conditional law.
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