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Abstract. Motif discovery is the problem of finding unknown patterns
that appear frequently in real valued timeseries. Several approaches have
been proposed to solve this problem with no a-priori knowledge of the
timeseries or motif characteristics. MK algorithm is the de facto standard
exact motif discovery algorithm but it can discover a single motif of a
known length. In this paper, we argue that it is not trivial to extend this
algorithm to handle multiple motifs of variable lengths when constraints
of maximum overlap are to be satisfied which is the case in many real
world applications. The paper proposes an extension of the MK algorithm
called MK++ to handle these conditions. We compare this extensions
with a recently proposed approximate solution and show that it is not
only guaranteed to find the exact top pair-motifs but that it is also faster.
The proposed algorithm is then applied to several real-world time series.

1 Introduction

Discovering recurrent unknown patterns in time series data is known in data
mining literature as motif discovery problem. Since the definition of the problem
in [6], motif discovery became an active area of research in Data Mining. A time
series motif is a pattern that consists of two or more similar subsequences based
on some distance threshold. Several algorithms have been proposed for solving
the motif discovery problem [9], [7], [6], [3].

These algorithms can be divided into two broad categories. The first category
includes algorithms that discretize the input stream then apply a discrete version
of motif discovery to the discretized data and finally localize the recovered motifs
in the original time series. Many algorithms in this category are based on the
PROJECTIONS algorithm that reduces the computational power required to
calculate distances between candidate subsequences [1]. Members of this category
include the algorithms proposed in [3] and [7]. The second category discovers the
motifs in the real valued time-series directly. Example algorithms in this category
can be found in [9] and [2]. For example, Minnen et al. [7] used a discretizing motif
discovery (MD) algorithm based on PROJECTIONS for basic action discovery
of exercises in activity logs and reported an accuracy of 78.2% with a precision
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of 65% and recall of around 92%. The dataset used contained six exercises with
roughly 144 examples of each exercises in a total of 20711 frames [7].

The second category tries to discover motifs in the original continuous time-
series directly. Example algorithms in this category can be found in [2] and [9].
For example, Mohammad and Nishida [8] proposed an algorithm called MC-
Full based on comparison of short subsequences of candidates sampled from the
distribution defined by a change point discovery algorithm. Most of these algo-
rithms are approximate in the sense that discovered motif occurrences may not
have the shortest possible distance of all subsequences of the same length in the
timeseries.

Mueen et al. [12] proposed the MK algorithm for solving the exact motif dis-
covery problem. This algorithms can efficiently find the pair-motif with smallest
Euclidean distance (or any other metric) and can be extended to find top k
motifs or motifs within a predefined distance range. Mohammad and Nishida
[10] proposed an extension of the MK algorithm (called MK+) to discover top
k pair-motifs efficiently. The proposed algorithm in this paper, builds upon the
MK+ algorithm and extends it further to discover top k pair-motifs at different
time lengths.

The main contribution of the paper is a proof that mean-normalized Euclidean
distance satisfies a simple inequality for different motif lengths which allows us
to use a simple extension of MK+ to achieve higher speeds without sacrificing
the exactness of discovered motifs.

2 Problem Statement

A time series x (t) is an ordered set of T real values. A subsequence xi,j = [x (i) :
x (j)] is a continguous part of a time series x. In most cases, the distance between
overlapping subsequences is considered to be infinitely high to avoid assuming
that two sequences are matching just because they are shifted versions of each
other (these are called trivial motifs [5]). There are many definitions in literature
for motifs [13], [3] that are not always compatible. In this paper we utilize the
following definitions:

Definition 1. Motif: Given a timeseries x of length T , a motif length L, a
range R, and a distance function D(., .); a motif is a set M of n subsequences
({m1,m2, ...,mn}) of length L where D (mi,mjk) < R, for any pairs mi,mk ∈
M . Each mi ∈ M is called an occurrence.

Definition 2. Pair-Motif: A pair-motif is a motif with exactly 2 occurrences.
We call the distance between these two occurrences, the motif distance.

Definition 3. Exact Motif : An Exact Motif is a pair-motif with lowest range for
which a motif exists. That is a pair of subsequences xi,i+l−1, xj,j+l−1 of a time
series x that are most similar. More formally, ∀a,b,i,j the pair {xi,i+l−1, xj,j+l−1}
is the exact motif iff D (xi,i+l−1, xj,j+l−1) ≤ D (xa,a+l−1, xb,b+l−1), |i− j| ≥ w
and |a− b| ≥ w for w > 0. This definition of an exact motif is the same as the
one used in [12].
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Using these definitions, the problem statement of this paper can be stated
as: Given a time series x, minimum and maximum motif lengths (Lmin and
Lmax), a maximum allowed within-motif overlap (wMO), and a maximum al-
lowed between-motifs overlap (bMO), find the top k pair-motifs with smallest
motif distance among all possible pairs of subsequences with the following con-
straints:

1. The overlap between the two occurrences of any pair-motif is less than or
equal to wMO. Formally, ∀Mk∀m1 ∈ Mk,m2 ∈ Mk : overlap(m1,m2) ≤
wMO where Mk is one of the top k motifs at length l, and overlap(., .) is
a function that returns the number of points common to two subsequences
divided by their length (l).

2. The overlap between any two pair-motifs is less than or equal to bMO.
Formally, ∀1 ≤ i, j ≤ K∀1 ≤ l, n ≤ 2 : min(overlap(mi

l,m
j
n)) ≤ bMO,

where mx
y is the occurrence number y in motif number x and overlap(., .) is

defined as in the previous point.

This paper will provide an exact algorithm for solving this problem in the
sense that there are no possible pair-motifs that can be found in the time series
with motif distance lower than the motif distance of the Kth motif at every
length. Given this solution, it is easy to find motifs that satisfy Definition 1 and
in the same time find a data-driven meaningful range value by simply combining
pair-motifs that share a common (or sufficiently overlapping) occurrences. Our
solution is based on the MK algorithm of Mueen et al. in [12] and for this reason
we start by introducing this algorithm and its previous extension in the following
section.

3 MK and MK+ Algorithms

The MK algorithm finds the top pair-motif in a time series. The main idea
behind MK algorithm [12] is to use the triangular inequality to prune large
distances without the need for calculating them. For metrics D (., .) (including
the Euclidean distance), the triangular inequality can be stated as:

D(A,B)−D(C,B) ≤ D(A,C) (1)

Assume that we have an upper limit on the distance between the two occurrences
of the motif we are after (th) and we have the distance between two subsequences
A and C and some reference point B. If subtracting the two distances leads
a value greater than th, we know that A and C cannot be the motif we are
after without ever calculating their distance. By careful selection of the order
of distance calculations, MK algorithm can prune away most of the distance
calculations required by a brute-force quadratic motif discovery algorithm. The
availability of the upper limit on motif distance (th), is also used to stop the
calculation of any Euclidean distance once it exceeds this limit. Combining these
two factors, 60 folds speedup was reported in [12] compared with the brute-force
approach.
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The inputs to the algorithm are the time series x, its total length T , motif
length L, and the number of reference points Nr.

The algorithm starts by selecting a random set of Nr reference points. The
algorithm works in two phases:

The first phase (called hereafter referencing phase) is used to calculate both
the upper limit on best motif distance and a lower limit on distances of all
possible pairs. During this phase, distances between the subsequences of length
L starting at the Nr reference points and all other T − L+ 1 points in the time
series are calculated resulting in a distance matrix of dimensions Nr×(T−L+1).
The smallest distance encountered (Dbest) and the corresponding subsequence
locations are updated at every distance calculation.

The final phase of the algorithm (called scanning step hereafter) scans all
pairs of subsequences in the order calculated in the referencing phase to ensure
pruning most of the calculations. The scan progressed by comparing sequences
that are k steps from each other in this ordered list and use the triangular
inequality to calculate distances only if needed updating Dbest. The value of k
is increased from 1 to T −L+1. Once a complete pass over the list is done with
no update to dbest, it is safe to ignore all remaining pairs of subsequences and
announce the pair corresponding to Dbest to be the exact motif.

A naive way to extend the MK algorithm to discover top k pair-motifs rather
than only the first is to apply the algorithm K times making sure in each step (i)
to ignore the (i− 1) pair-motifs discovered in the previous calls. To resist trivial
motif matches, a maximum allowable overlap between any two motifs can be
provided and all candidates overlapping with an already discovered motif with
more than this allowed maximum are also ignored. A major problem with this
approach is that even though we require K ∗ (lmax − lmin + 1) pair-motifs, the
number of times MK must be ran can be much higher because it is likely that
the motif discovered in run i+ 1 will be a trivial match of the motif discovered
in run i. This is more likely to happen the longer and smoother motifs are. To
extend the algorithm to discover motifs of multiple lengths, we simply apply the
algorithm for every length sequentially. This algorithm will be called NaiveMK
in the rest of this paper.

3.1 MK+

Mohammad and Nishida proposed an extension to the MK algorithm for dis-
covering top k pair-motifs of the same length efficiently (MK+) [10] that keeps
an ordered list of K candidate motifs (Lbests) and their corresponding motif dis-
tances (Dbests) rather than a single candidate motif during both the referencing
and scanning phases. This allows MK+ to discover the top k motifs exactly
in a single run. This algorithm was reported to provide an order of magnitude
improvement in speed compared to rerunning MK [10].

MK+ though works with a single length. A possible extension of this algorithm
to multiple lengths is by simply re-running it for each length. This is called
NMK+ in the rest of this paper. As will be shown in section 5, this approach is
suboptimal in terms of speed and a faster approach is proposed in this paper.
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4 Proposed Extension

The main idea behind the proposed extension is to use the fact that distance
calculations at one length provide an upper bound on possible distances of lower
lengths and a lower limit on distances of longer lengths. This fact can be utilized
(in a similar way to the triangular inequality in the original MK algorithm)
to speed up the calculations by removing the need to compare pairs that are
obviously not candidates for being pair-motifs according to these bounds.

For this approach to work the distance function used to compare subsequences
must be a metric (as is the case with the original MK algorithm). We also need
to be sure that for any positive number s the following property is true:

Dl(i, j)Dl+1(i, j) ∀l > 0 ∧ 1 � i; j � T − l + 1 (2)

where xa:b is the subsequence of the time series x starting at index a and ending
at index b and all indices do not exceed the length of the time series andDl(i, j) =
D (xi:i+l−1, xj:j+l−1). If the condition in Eq. 2 is not satisfied then distances at
different lengths cannot be used to infer any bounds about distances of either
larger or lower lengths and the best that could be done is NMK+. This puts
a limitation on the types of distance functions that can be used. For example,
Mueen et al. normalized all subsequences by subtracting the mean and dividing
by the standard deviation prior to distance calculation [12]. This cannot be done
in our case because this distance function does not respect the condition in Eq.
2. For this reason we normalize all subsequences only by subtracting the mean.

The effect of division by the standard deviation before distance calculation is
to reduce the effect of variability in scale. In some applications; this is not needed
or even desirable. For example, one of our primary goal domains is discovery of
recurring motions in human motion and gesture datasets. A small change in scale
between two occurrences of the same action can be handled with the Euclidean
distance while a large scale difference corresponds in many cases to a quantitative
difference in the action.

If subsequences are not normalized and the distance measure used is the Eu-
clidean is used for D(., .), it is trivial to show that equation 2 holds. Subtracting
the mean of the whole timeseries does not change this result. It is not immedi-
ately obvious that normalizing each subsequences by subtracting its own mean
will result in a distance function that respects Equation 2.

Theorem 1. Given that the distance function D(., .) in Definition 1 is defined
for subsequences of length l as:

Dl(i, j) =

l−1∑

k=0

[(
xi+k − μl

i

)− (
xj+k − μl

j

)]2
(3)

and μn
i = 1

n

n−1∑
k=0

xi+k; then

Dl(i, j)Dl+1(i, j) ∀l > 0 ∧ 1 � i; j � T − l + 1
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A sketch of the proof for Theorem 1 is given below: Let Δk ≡ Δi+k
j+l ≡ xi+k −

xj+k and μl
ij ≡ μl

j − μl
j , then the definition of Dl(i, j) can be written as:

Dl(i, j) =

l−1∑

k=0

(
Δk − μl

ij

)2
=

l−1∑

k=0

(Δk)
2 − 2

l−1∑

k=0

(
Δkμ

l
ij

)
+

l−1∑

k=0

(
μl
ij

)2

Dl(i, j) = −l
(
μl
ij

)2
+

l−1∑

k=0

(Δk)
2

We used the definition of μl
ij in arriving at the last result. Using the same steps

with Dl+1(i, j), subtracting and with few manipulations we arrive at:

Dl+1(i, j)−Dl(i, j) = Δ2
l + l

(
μl
ij

)2 − (l + 1)
(
μl+1
ij

)2
(4)

Using the definition of μl
ij , it is straight forward to show that:

(l+ 1)μl+1
ij = lμl

ij +Δl (5)

Substituting in Equation 4 and rearranging terms we get:

Dl+1(i, j)−Dl(i, j) = Δ2
l +

(
μl
ij

)2 − 2μl
ijΔl =

(
Δl − μl

ij

)2 � 0

This proves Theorem 1.

4.1 MK++

The following listing gives an overview of the proposed algorithm:
Function MK++(x,{L},K,R,wMO,bMO)

1.Find motifs at shortest length

Lbests ← ∅, Dbests ← ∅
For(r ∈ Rand(R)

∧
i = 1 : |x|)

IF(|i− r| ≥ wMo×min(L))
UpdateBests (min(L),K, bMO, r, i)

EndIf

EndFor

Zr(i) ← ordering of reference points by their distance variance

ref ← reference point with max. variance

Z(i) ← ordering of subsequences by distance to ref
Dist ← {D (ref, Z(i))}
ScanningPhase()
2.Find motifs at higher lengths

For(l ∈ {L})
Update Dbests then re-sort

IF(R)

recalculate ref
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EndIf

ScanningPhase()
EndFor

The MK++ algorithm starts by detecting 2-motifs at the shortest length
(Lmin) and progressively finds 2-motifs at higher lengths. The algorithm keeps
three lists: Dbests representing a sorted list of K best distances encountered so
far and Lbests representing the 2-occurrence motif corresponding to each member
of Dbests, and μbests keeping track of the means of the subsequences in Lbests.
The best-so-far variable of MK is always assigned to the maximum value in
Dbests. During the referencing phase, the distance between the current reference
subsequences and all other subsequences of length Lmin that do not overlap it
with more than wMO× Lmin points are calculated. For each of these distances
(d) we apply the following rules in order:

Rule1. If the new pair is overlapping the corresponding Lbests (i) pair with more
than wMO×L points, then this i is the index in Dbests to be considered

Rule2. If Rule1 applies and D < Dbests (i), then replace Lbests (i) with P .
Rule3. If Rule1 does not apply but D < Dbests (i), then we search Lbests for all

pairs Lbests (i) for which Rule1 applies and remove them from the list.
After that the new pair P is inserted in the current location of Lbests

and D in the corresponding location of Dbests

It is trivial to show that following these rules Dbests will always be a sorted
list of best-so-far distances encountered that satisfy both between and within
motif overlap constraints (wMO and bMO). The details of this calculation are
given in the program listing below:

Function updateBests(l,K,bMO,r,i)

done ← false, d ← D (xr:r+l−1, xi:i+l−1)
IF (d > max (Dbests) ∧ |Dbests| < K)

Lbests ← Lbests ∪ 〈r, i〉, Dbests ← Dbests ∪ d, done ← true
EndIf

For(j = 1 : K ∧ ¬done)
ζ ← OverlapBoth (Lbests [j] , 〈r, i〉)
IF(ζ > bMO)

IF(d < max(Dbests)

Lbests [j] ← 〈r, i〉, Dbests [j] ← d, done ← true
EndIf

Else

IF(d < max(Dbests)

o ← w : w ∈ Lbests∧, OverlapBoth (w, 〈r, i〉) > bMO
IF(o = ∅) o ← K EndIf

remove o from Lbests, Dbests, Lbests ← Lbests∪〈r, i〉
Dbests ← Dbests ∪ d

EndIf

EndIf

EndFor
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These steps are similar to MK+ [10] except that we carry along the means
of subsequences in the list μbests. Once the top K 2-motifs of the first length
are found, the algorithm progressively calculates the top K 2-motifs of longer
lengths. Since our distance function defined in Equation 3 satisfies the condition
of Equation 2 as Theorem 1 proves, we know that the distances in Dbest from
the previous length provide a lower bound on the distances at this length. This
allows us to directly update the Dbest array by appending the new distances
after using Equation 5 to calculate the new mean and distance.

Updating the distances in Dbests may take them out of order. We sort Lbests

(with corresponding sorting of Dbests and μbests) in ascending order and update
the best-so-far accordingly. This gives us a –usually– tight upper bound on the
possible distances for the top K 2-motifs at the current length. This is specially
true if the increment in motif length is small and the timeseries is smooth. This
is the source of the speedup achieved by MK++ over NMK+ which have to find
these lists from scratch at every length.

The referencing step can either be recalculated for the new length or the
older reference values can be used as lower bounds (again because of Theorem
1). Nevertheless, recalculating the reference distances can speedup the scanning
phase because it provides a tighter bound. Because this depends on the data, we
keep the choice for the algorithm user by providing a parameter R that controls
whether this recalculation is carried out. It is important to notice that either
choice will not affect the accuracy of the final results and in our experiments it
had a negligible effect on the speed as well. The scanning step is the same as
in MK and MK+ and for lack os space will not elaborated upon further. Please
refer to [12] for its details.

5 Evaluation

The first evaluation considered comparing MK++ with NMK+. A set of 40 time
series of lengths between 1000 and 10000 points each where generated using a
random walk. This kind of random timeseries is the most challenging input for
any exact motif discovery algorithm because distances between subsequences
are similar which reduces the advantage of using lower and upper bounds. Both
MK++ and NMK+ where used to find 10 pair-motifs of each length in the range
10 to 100. The average execution time for NMK+ was 3.8ms/point while the av-
erage execution of MK++ was 0.77ms/point achieving a speedup of more than
500%. Both algorithms returned the same motifs at all lengths. For completion
we also applied NaiveMK to the same dataset which required an average execu-
tion time of 73.5ms/point (more than 60 times the proposed MK++ algorithm).
Again both algorithms returned exactly the same motifs at all lengths.

5.1 Real World Data

To test MK++ on a real world dataset we used CMU Motion Capture Dataset
available online from [4]. We used the time series corresponding to basketball
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Fig. 1. Forward dribbling motion: discovered by the proposed algorithm

category. The occurrences of each recurring motion pattern in the time series of
the fifteen available in this collection (21 different motions in total) were marked
by hand from the videos using ANVIL [14] to get ground-truth motif locations.

In this paper, we report the results using AMC files only. The total number
of frames in the fifteen time series was 8155. There were seven different motion
patterns in the time series with an average of 8 occurrences each after removing
motions that appeared only once or twice. Fig. 1 shows an example pattern.

The data from all sessions were concatenated to form a single timeseries and
random data was added to it to make its length 10000 points. Before applying
motif discovery algorithms, we reduced the dimensionality of the aggregated time
series using Principal Component Analysis (PCA).

We applied MK++, shift-density based motif discovery (sdCMD) [15], two
stem extension algorithms (GSteXS, GSteXB) [11], MCFull [9] and the recently
proposed MOEN algorithm [13] with a motif length between 50 and 250 to
the concatenated timeseries and calculated the fractions of discovered motifs
that cover ground-truth patterns completely, and the fractions that cover partial
patterns or multiple patterns. We also calculated the fraction of true patterns
that were discovered by every algorithm (covered-fraction) and the extra parts
appended to it (extra-motif). This data is summarized in Table 1.

Table 1. Evaluation of MD for CMU MoCap Dataset with the best and worst perfor-
mance highlighted (worst in italics and best in bold font)

Algorithm Correct Partial Multiple Covered-fraction Extra-motif Accuracy

Proposed 0.3169 0.3761 0.1089 0.2543 3.7496 0.6931
sdCMD [15] 0.1594 0.4783 0.2899 0.1847 0.5264 0.6377
GSteXS [11] 0.1111 0.1296 0.6852 0.9796 8.8143 0.2407
GSteXB [11] 0.0323 0.2742 0.6129 0.8562 2.5713 0.3065
MCFull [9] 0 0 1.0000 1.0000 115.8188 0.0
MOEN [13] 0.3333 0 0.3333 0.1299 0.2001 0.3333

As Table 1 shows, the proposed algorithm provides a good balance between
specificity (extra-motif=3.74) and sensitivity (covered-fraction=0.25) and pro-
vides the second best correct discovery rate (0.3169 compared with 0.3333
for MOEN) with best boundary separation between discovered motifs (multi-
ple=0.1089). To get a sense of the accuracy of each algorithm we defined the
total discovery rate as the summation of correct discovery rate and partial dis-
coveries as it is always easy to use a motif-extension algorithm to extend partially
discovered motifs. The proposed algorithm provides the highest total discovery
rate of 69.31% compared with 63.77% for sdCMD, 33.33% for MOEN, 30.65%
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for GSteXB, 24.07% for GSteXS and 0% for MCFull. Even though this result is
based on a limited dataset, it provides a proof-of-applicability of the proposed
algorithm for solving real world motif discovery problems. In the future, more
extensive analysis with larger datasets will be conducted.

6 Conclusions

This paper presents an extension of the MK exact motif discovery algorithm
called MK++ that can discover multiple motifs at multiple motif lengths simul-
taneously achieving a speed up of over 500% compared with repeated applica-
tions of the MK+ algorithm. The paper provides a proof that MK++ is still an
exact algorithm for the mean-shifted Euclidean distance function. In the future,
the proposed approach will be extended to zscore normalization.
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