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Abstract. Propagation phenomenon is an important problem that has
been studied within varied research fields and application domains, lead-
ing to the development of propagation based models and techniques in
social informatics. These models are briefly surveyed in this paper. This
paper discusses common features and two selected scenarios of propaga-
tion mechanisms that frequently occur in social networks. In summary,
a list of the most recent open issues on social propagation is presented.
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1 Introduction

Propagation phenomena have become a pervasive and significant feature of con-
temporary complex networks. By studying these phenomena, we can better un-
derstand the behaviour cascading in a system. Social networks based on e-mail
contacts like Hotmail, Yahoo and social networking services like Facebook, Twit-
ter, YouTube, for example, are generally modelled as complex structures whose
nodes represent individuals, and whose links represent interaction, collabora-
tion, or influence between them. They are designed for information sharing and
above all for information spreading. As an obvious result, we can observe vari-
ous propagation effects. Here we ask, what are the practical consequences of this
day-to-day existence and interaction.

Propagation mechanisms could be very useful, depending on the different
types of communication networks and their purpose. For instance in online net-
works, there are several popular methods frequently built on ’positive’ spreading
mechanism such as: capturing structures [1], detecting local communities [2], pre-
dicting future network structure and user’s behaviours [3], discovering rumors [4],
tracking collective blogging and argumentations [5], monitoring opinions [6], rec-
ommending trust and measuring influence of authorities [7], and finally maxi-
mizing immunization of the network [8]. On the other hand, propagation in the
form of gossiping [9], misinformation [10], fraudulent reputation building or tar-
geted cyber-attacks [11] could have extremely serious ’negative’ effects. What
is more, the in-depth understanding of propagation phenomenon could enable
early identification of social crises, and provide methods to mitigate potential
catastrophes.
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From a scientific point of view a lot of paramount questions w.r.t. social propa-
gation have been raised and analysed. A few survey works on propagation mainly
in online social networks have already been done [12, 13]. However, important
questions about how to best fit a propagation model and efficiency indicators
are still relevant. Due to lack of other relevant analyses our work provides some
steps toward this direction. Though we do not present a full survey, the aim of
this paper is an attempt to respond to realistic features of propagation issues
that the social networks confront. The results aim to aid researchers and en-
gineers involved in the development of new technologies to better understand
propagation phenomena principles, its power and limitations.

From a business perspective, that might be useful for many services to aptly
adopt the propagation mechanism to make the information (action) spreading
faster and wider. Accurate pushing-pulling selected information to cooperators
and business partners can speed-up communication and significantly lower the
load costs. On the other hand, good knowledge of propagation phenomenon could
be helpful to stop diffusing the undesirable things which can threaten individuals
or organizations.

There are three major parts concerning modelling of social propagation: the
major principles, an appropriate model, and finally a generic algorithm and its
variants. In this paper, our goal is to find answer to the following problems:
what properties of social propagation are essential for efficiency and robustness,
and how a propagation process can directly correlate with time and underlaying
structure. To the best of our knowledge, these questions have not been addressed
by the research community at large.

2 Principles of Social Propagation Mechanisms

What are the major principles associated with propagation phenom-
ena in social informatics?

The general idea behind social propagation is that individuals interact re-
peatedly under the reciprocal influence of other individuals, modelled as a so-
cial influence score, which may often generate a flood of action across the
connections. Elementary social examples include rumor dissemination, forward-
ing memes, joining events or groups, hashtags re-tweeting, and purchasing prod-
ucts. We have investigated these situations in detail, and our main observations
are summarized in Table 1.

2.1 The Classical Approach to Propagation

Many propagation models, also called diffusion models [22], have been studied
to date. To describe social and biological propagation, for instance, for spread of
infectious diseases and computer viruses, the diffusion of innovations, political
upheavals, and the dissemination of religious doctrine, the generalized contagion
model was developed [23]. This non-graph based model exhibits behaviour that
falls into one of two basic classes called respectively: epidemic threshold, and
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Table 1. Principles of social propagation mechanisms

Topology-dependent. Propagation utilizes to the utmost the underlying structure
of a network. Most social networks are characterized, among other qualities, with the
’small-world’ phenomenon, triadic closure, assortative mixing and broad degree dis-
tributions. Recently, more fascinating properties have been discovered, like over time
shrinking diameters, homophily tendency, aging effect, temporal dynamics and the so-
called densification power law [14], including advanced graph theoretic measures [15].
In the vast majority these features can significantly speed up the diffusion process.

Complexity. Social data are often interconnected, have overlapping communities and
are coupled across time through processes. This evolving idea has been successfully
implemented by Google+ circles and Facebook smart lists. When nodes in one network
depend on nodes in another, a small disturbance in one network can cascade through
the entire system often growing to sufficient size to collapse it [16].

Fast influence by ties. Propagation extends Granovetter’s hypothesis that the ma-
jority of influence is collectively generated by weak ties, although strong ties are indi-
vidually more influential [17]. Very often action spreads only partially overlapping the
network, but extremely fast (in sublogarithmic time [18]).

Push-pull activity. For social propagation mechanisms, not only the topology of
links, but also the communication activity is highly relevant [18]. The standard pro-
tocol is based on symmetric push-pull activity. It pushes the information in case it
has, and pulls the information in case the neighbor has. A common form of positive
and negative propagation is spreading of breaking news, rumors, fads, beliefs, senti-
ments and norms. While positive users’ opinions promote an action, negative opinions
suppress its adoption.

Survive or perish. Social informatics are ubiquitous and this applies also to propaga-
tion. Individuals tend to adopt the behavior of their peers, so first propagation happens
locally in their neighborhood. Then, this behaviour might become global and survive
or decay and finally perish as it crosses the network [19].

Epidemic-type and cascading-type. Propagation can be conceptualized either as
an epidemic-type dynamic, where a node in an infected state may infect a neighbor in-
dependently of the status of the other nodes [20], or as a cascading-type dynamic, where
the change may depend on the reinforcement caused by changes in other nodes [21].

critical mass. The first class is based on the idea of a threshold: an adoption
depends on the fraction of neighbors which exceed a specific critical value. In the
second class the population can be infected if the earliest outbreak size makes
up a ’critical mass’. This contagion model can be identified with two seminal
models for the spread of disease: the so-called susceptible� infective� recovered (SIR)
model and simplified susceptible� infective� susceptible (SIS) model [24]. As a rule, all
nodes in SIR model are in one of three states: susceptible (able to be infected),
infected, or recovered (no longer able to infect or be infected). These three classes
in specific rumor model correspond to ignorant, spreader, and stifler nodes. At
each time step, nodes infected in the last time step can infect any of its neighbors
who are in a susceptible state with a probability p. In this model, two transition
rates S � I (the contact rate) and I � R (the rate of recovery) determine the
cumulative number of infected nodes.
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Many others model variations have been studied for social informatics. How-
ever, the two most widely employed models are: the Independent Cascade Model
(ICM) and the Linear Threshold Model (LTM) [25]. In these graph-based mod-
els, each node is either active or inactive. An active node never becomes inactive
again. The propagation process repeats until no more activations are possible.
The spread represented in the ICM and LTM are very similar and proceeds in
discrete steps as follows.

In the ICM, a process starts with an initial set of active nodes A0, called later
seed nodes. It is assumed that nodes can switch their states only from inactive
to active, but not in the opposite direction. When a node i first becomes active
in step t, it has a single chance of influencing each inactive neighbor j with
probability p�i, j�. If node i succeeds, node j becomes active in step t � 1. If
node j has incoming links from a few newly activated nodes, every propagation
effort is randomly sequenced. When all the influence probabilities are equal to
one, the ICM becomes equivalent to the deterministic model, in which every
active node unconditionally activates all its neighbors.

In the LTM, each node i is described by a threshold θi from the range �0, 1�.
This threshold represents the fraction of i’s neighbors, denoted by deg��i�, that
must be active in order for node i to become active. Here ’active’ means that
the node adopts the action and ’inactive’ means otherwise. Given the thresholds
and seed nodes A0, the process unfolds deterministically in discrete steps. In
step t � 1, all nodes that were active in step t remain active, and we activate
any node j for which the total influence power of his active neighbors is at least
θj :

�
p�i, j� � θj . Thus, the threshold θj represents the trend of a node j to

adopt the action when his neighbors do.
Both models have parameter attached to each directional link, i.e., propaga-

tion probability in the ICM and weight in the LTM. In the ICM-based virus-
spreading model, the probability of being infected is proportional to the number
of neighbors infected. Although both models appeared to be comparative, there
are important differences. Intuitively, only a small number of nodes overlap for
these models. Furthermore, it is more difficult for the LTM to transmit action
to hub nodes than the ICM does.

2.2 Our Generic Approach

With respect to existing propagation models and aforementioned six principles,
this directs us to the following generic model definition. A propagation ℘��, G�
with action � over the network is described by a directed connected graph
G � �N,L� where N is the node set and L is the set of directed links containing
connected pairs of nodes �i, j� unfolds in discrete time-steps t � 0 and is defined
as an ordered sequence of triplets �i, j, t�. Each triplet corresponds to a single
interaction event at time-step t between a pair �i, j�, where i, j � 1..N . We
assume that no individual adopts the same action more than once. In Twitter,
for instance, user j adopts tweet posted by i at time t and re-tweets it, then
the tweet becomes available to his followers. The total number of triplets is
given by 	℘��, G�	. At the empirical level, propagation with action over the
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network is a set of interaction events recorded every δ (the sampling resolution)
during an interval Δt. This leads us to the notion of the propagation graph. The
corresponding static propagation graph GΔt

℘ is obtained by aggregating all the
same interactions events within Δt into a graph structure with links connecting
in the direction of propagation. This propagation graph is now a directed acyclic
graph (DAG) which may have disconnected components.

To facilitate the propagation dynamics, particularly its transitivity, in order to
merge propagations along each path, to select one out of multiple propagations,
or to combine propagations from all paths, a set of primitives based on path al-
gebra [26] that effectively operate on a given graph should be formalized. For in-
stance, for propagating trust presented as a triple �belief, distrust, uncertainty�
three associative operators: concatenation, selection, and aggregation are anal-
ysed. The description of these operators goes beyond the scope of this paper,
however, the interested reader is referred to [27] for details.

Note that our basic model fulfils the requirements of both models: ICM and
LTM. Contrary to the classic models, instead of considering sets of nodes, links
and probabilities separately, the proposed model focuses on time-stamped propa-
gation triplets, leading to a reduction of the complexity in propagation scenarios.
Our proposal seems to be adjusted to any action-propagation model, including
variations on compartmental models in epidemiology.

3 The Propagation Algorithm

How does the propagation process normally proceed?
Propagation ℘��, G� in the form of triplets shows pathways for the transmission
of infection, rumor, trust, or other quantities. Common algorithms for crawl-
ing or sampling social networks include, first of all, variants of breadth-first
search and depth-first search. Using only social ties and forward paths we do
not necessarily crawl an entire network. We only explore the connected com-
ponent reachable from the set of seed nodes. The random walk algorithm and
snowball sampling [19] for directed graph are the simplest implementations for
propagation process by passing action from one node to its neighbor. There are
numerous variations like following a randomly selected triadic node (friend, ca-
sual friend or grandparent). Another possible implementation is the preferential
walk to follow someone from whom or through whom they have adopted actions
using a back-propagation mechanism. It has been found in [22] that a combined
strategy with triadic closure and coincided traffic-based shortcuts yield the best
accuracy.

A general propagation algorithm has initialization including seed node(s)
selection, propagation loop with threshold condition, output update and termi-
nation condition(s). By applying different social-based loop and influence condi-
tions, we can consider various strategies. The choice of the strategy is generally
dependent on the communication flow schema like (1) push and (2) pull. The
first one accommodates the propagation along a sender-centered approach such
as ICM, the second, receiver-centered approach such as LTM, which combines
the propagation from different nodes.



232 D. Król

Recall that a threshold value is associated with each node (i.e., social entity
or person). This value represents the positive or negative influence of that indi-
vidual. To get a better understanding we illustrate the key parts of propagation
advancement with the aid of Algorithm 1. In the algorithm, the power to influ-
ence neighbors is modelled as a propagation probability denoted by p�i, j�. Note
that this probability p could be time-varying t and algorithm α dependent as
follows p�i, j� � αt�i, j�. In every step t, each node i belongs to one of the three
sets: waiting, active and inactive. For readability, we omit the inactive set from
our algorithm. The algorithm terminates, if the current time-step t reaches the
time limit T , or there are no more waiting nodes, which mean that no more
activations are possible.

Input: graph G, threshold θi for node, seed nodes A0, time limit T
Output: triplets

active, triplets
�;
waiting 
 A0;
t
 0;
while termination condition not satisfied do

foreach node i � waiting do
t
 t� 1, waiting 
 waiting
�i�, active
 active� �i�;
propagation loop with threshold condition

end

end
Algorithm 1. Generic propagation algorithm

In the algorithm, we use propagation loop with threshold condition, that
determines how to select next node to activate it in the process to maximize the
spread. In the push variant of propagation loop and condition (Algorithm 2),
propagator one-to-many using deg� operator is required, e.g., sending photo to
all my group members.

foreach node j � deg��i� do
if αt�i, j� � θj � j � active, waiting then

waiting 
 waiting � �j�;
triplets
 triplets� �i, j, t�;

end

end
Algorithm 2. Push variant of propagation loop with threshold condition

In the pull variant, see Algorithm 3, each node’s tendency to become active
increases monotonically as more of its neighbors become active. This time the
propagator requires a many-to-one operator using deg� which corresponds to a
decision taken by an expert committee.
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foreach node j � deg��i� do
if
�

k�deg��j��k�active α
t�k, j� � θj � j � active, waiting then

waiting 
 waiting � �j�;
triplets
 triplets� �i, j, t�;

end

end
Algorithm 3. Pull variant of propagation loop with threshold condition

(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

Fig. 1. Preference-pull variant of propagation algorithm

In order to show the diversity of threshold conditions we employ one more
example. The preference variant of condition could incorporate the factor pos-
itive/negative influence f�i,m� of node i corresponding to propagated item m,
where f�i,m� � ��1, 1�. This idea of using preferences is motivating by bundling
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multiple items in viral marketing. Then, in the pull case, a node i is activated
when the sum of the preference scores on the propagated items

�k
m�1 f�j,m� and

the influence scores from a non-empty set of neighbour active nodes, is greater
or equal to the threshold θi. In addition, the influence factor f can be changed
by using a temporal decay function as in [19]. Additionally, we can immunize
selected nodes by adding them to inactive set.

In order to have a better understanding of the propagation algorithm, we
capture the dynamics of it’s pull variant with preference in a step-by-step fashion.
As shown in Figure 1(a), the seed node 1 propagates action to all neighbours 2, 3
and 4. Since the sum of influence p�1, 2� � 0.3 and preference value f�2, item� �
0.3 exceeds the threshold value θ2 � 0.5, according to the associated rectangle
[0.3/0.5], node 2 becomes an active node. Similarly, node 3 becomes active. In
contrast, node 4 remains inactive because its reference value gains f�4, item� �
�0.3, see Figure 1(b). In this particular case, the sum of influence and preference
values does not meet the threshold value for node 4. Afterwards, in the next time
step, see Figure 1(c), nodes 2 and 3 (which are active) propagate action to their
neighbours 4 and 5. As a result, node 4 receives the accumulated influences
of three nodes and now despite a negative preference value f�4, item� � �0.3
meets the threshold value θ4 � 0.1. For the last node 5 the activation from node
3 was sufficient, see Figure 1(d). Since all available nodes became active, the
propagation process terminates.

4 Summary

We have touched upon a few topics of social propagation, briefly explaining
the model, and the algorithm, while referring to articles in parts where more
details can be found. Thanks to its simplicity, our generic model is potentially
useful in a wide range of scenarios. For a model and an algorithm, not only a
theoretical analysis but also numerical simulations are required to demonstrate
how accurate they are in fitting real issues, but these are beyond the scope of
this paper, and will be addressed in future research.

Social propagation constitutes a large area of research that is rather young but
rapidly evolving. Therefore, our analysis is by no means complete. Despite the
considerable amount of ongoing research, we are still far from a satisfactory ad-
herence to reality and proper utilization of propagation in the majority of cases.
Multiple important questions are still open, like understanding the tipping point
of epidemics, predicting who-wins among competing viruses/products, develop-
ing effective algorithms for immunization, and building more realistic propaga-
tions models while analyzing numerous real datasets. In this regard, the vast
number of propagation techniques, which still remain unexplored, need to be
thoroughly investigated in order to improve propagation capabilities and en-
hance system’s efficiency.

One interesting but to date unsolved problem is how to learn on the fly the
time-varying elements of propagation by mining the present and archived log
of past propagations. The simple and insufficient algorithm for capturing the
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influence probabilities among the nodes and the prediction time by which an
influenced node will perform an action after its neighbors have performed the
action is presented in [28].

Another open issue is the low efficiency of greedy algorithms to compute the
influence maximization problem to large networks. Even with recent optimiza-
tions, it still takes several hours. Improving the greedy algorithm is difficult, so
this leads to a second possibility - the quest for appropriate heuristic.

Social propagation occurs in various forms. Some of them, like social influence
mining, community detection, locating and repairing faults, finding effectors and
maximizing influence, constitute the key components that enable useful insights
into network behaviour and developing future services.

We hope that this paper provides several advanced points for engineers and
scientists to use the propagation methods in more effective manner. However,
it is possible to exploit appropriately this potential only after making further
investigations on real data what we plan soon.
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