
The AdaBoost Algorithm with the Imprecision

Determine the Weights of the Observations

Robert Burduk

Department of Systems and Computer Networks,
Wroclaw University of Technology,

Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
robert.burduk@pwr.wroc.pl

Abstract. This paper presents the AdaBoost algorithm that provides
for the imprecision in the calculation of weights. In our approach the
obtained values of weights are changed within a certain range of values.
This range represents the uncertainty of the calculation of the weight of
each element of the learning set. In our study we use the boosting by the
reweighting method where each weak classifier is based on the recursive
partitioning method. A number of experiments have been carried out
on eight data sets available in the UCI repository and on two randomly
generated data sets. The obtained results are compared with the original
AdaBoost algorithm using appropriate statistical tests.

Keywords: AdaBoost algorithm, weight of the observation, machine
learning.

1 Introduction

Boosting is a machine learning effective method of producing a very accurate
classification rule by combining a weak classifiers [1]. The weak classifier is de-
fined to be a classifier which is only slightly correlated with the true classification
i.e. it can classify the object better than a random classifier. In boosting, the
weak classifier is learns on various training examples sampled from the original
learning set. The sampling procedure is based on the weight of each example. In
each iteration, the weights of examples are changing. The final decision of the
boosting algorithm is determined on the ensemble of classifiers derived from each
iteration of the algorithm. One of the fundamental problems of the development
of different boosting algorithms is choosing the weights and defining rules for an
ensemble of classifiers. In recent years, many authors presented various concepts
based on the boosting idea [2], [3], [4], [5]. There are also many studies showing
the application of this method in the medical diagnosis problem [6] or in the
multi-label classification problem [7].

In this article we present a new extension of the AdaBoost [8] algorithm. This
extension is for the weights used in samples of the training sets. The original
weights are the real number from the interval [0, 1]. We propose two approaches
to this problem. In one of them in the early iterations weights are larger than in

N.T. Nguyen et al. (Eds.): ACIIDS 2014, Part II, LNAI 8398, pp. 110–116, 2014.
c© Springer International Publishing Switzerland 2014

The AdaBoost Algorithm with the Imprecision 111

the original algorithm. In the second, in the early iterations weights are smaller
than in the original algorithm.

This paper is organized as follows: In section 2 the AdaBoost algorithm is
presented. In section 3 the our modification of the AdaBoost algorithm are pre-
sented. Section 4 presents the experiment results comparing AdaBoost with our
modification. Finally, some conclusions are presented.

2 AdaBoost Algorithm

The first algorithm utilising the idea of boosting was proposed by Schapire in
1990 [9]. It concerned the binary classification problem, for which a set of three
classifiers was proposed, and the final response of that set of classifiers was
determined at the basis of simple majority of votes. The first of the component
classifiers was a weak classifier, for the second one a half of the learning sample
was constituted by misclassified observations by the first classifier. The third one
used as the learning set those observations from the sample, which were placed
in various groups by the two earlier classifiers.

Later, modifications of the original boosting algorithm were proposed. The
first one concerned simultaneous combining of many weak classifiers [10]. In
1997, the AdaBoost algorithm was presented [8], which solved several practi-
cal difficulties noticed earlier. Its name is an acronym derived from Adaptive
Boosting concept. In this case, adaptation concerns readjustment to errors of
its component classifiers which result from their activity. Now, we are going to
discuss the AdaBoost algorithm action for a case of two classes with Ψb classi-
fier assuming values from the set {−1, 1}. For those assumptions steps of the
algorithm look as follows [13] (See Tab. 1):

Table 1. The AdaBoost algorithm

1. Let w1,1 = ... = w1,n = 1/n
2. For t = 1, 2, ...T do:

a. Fit ft using weights wt,1, ..., wt,n, and compute the error et
b. Compute ct = ln((1− et)/et).
c. Update the observations weights:

wt+1,i = wt,i exp(ct, It,i)/
∑n

j=1(wt,i exp(ct, It,i)), i = 1, ..n.

3. Output the final classifier:

ŷi = F (xi) = sign(
∑T

t=1 ctft(xi)).

Action of the AdaBoost algorithm begins with assigning all objects from a
learning set the corresponding weights reflecting the difficulty degree in correct
classifying of a given case. At the beginning, weights are equal and amount to
1/n, where n is the number of elements in a learning set. In the main loop of
the algorithm - point 2 - so many component classifiers is created how many
boosting iterations were foreseen. In the 2c step the level of error for Ψb quali-
fier is estimated, which takes into account weights of individual elements from a

112 R. Burduk

Table 2. Notation of the AdaBoost algorithm

i Observation number, i = 1, ..., n.
t Stage number, t = 1, ..., T .
xi A p-dimensional vector containing the quantitative variables

of the ith observation.
yi A scalar quantity representing the class membership

of the ith observation, yi = −1, 1.
ft The weak classifier at the tth stage.
ft(xi) The class estimate of the ith observation at the tth stage.
wt,i The weight of the ith observation at the tth stage,

∑
i wt,i = 1.

It,i The indicator function, I(ft(xi) �= yi).
et The classification error at the tth stage,

∑
i wt,iIt,i.

ct The weight of ft.
sign(x) = 1 if x ≥ 0 and = −1 otherwise.

learning set. Thus, it is a weighted sum and not a fraction of misqualified obser-
vations. Further, the cb factor is being determined, used for weights updating.
New values of weights are normalised to a unit. The cb coefficient is selected
so that the observation weights misclassified by Ψb are increased, and instead,
the correctly classified are decreased. Due to this, in subsequent algorithm iter-
ations increases the probability with which an object misclassified in b iteration
will be drawn to bootstrap sample LSb+1

n . In subsequent iterations a component
classifier is focused on more difficult samples. It result form the fact, that sub-
sequent bootstrap sample is drawn from a distribution depending on weights of
individual samples - point 2a.

The final decision of combined classifier is also dependant on the cb coefficient.
It can be said that each classifier receives its weight which is equal to that
coefficient, and a classifier with higher prediction correctness has greater share
in final decision of the combined classifier.

It should be also noted, that AdaBoost algorithm, in opposite to the bagging
algorithm, can not be implemented at many machines simultaneously. This is
caused by the fact that each subsequent component classifier is depending on
results of its predecessor.

The AdaBoost algorithm presented above may be used for classifiers return-
ing their response in a form of class label. In the work [11] a general form of
the algorithm was proposed for the binary classification problem called the real
version of AdaBoost. In this case a response of the component classifiers are
estimators of a posteriori probability p̂(1|x), p̂(−1|x) = 1− p̂(1|x).

The boosting algorithms presented above are based at resampling proce-
dure [12]. In each of the B iterations n observations is being drawn with re-
placement with probability proportional to their current weights (step 2a). As
earlier mentioned, weights are updated so, as to increase a share of misclassified
samples in the learning set.

In case the component classifiers are able to benefit directly from weights of
individual observations, than we talk of a boosting variation by reweighting [12].

The AdaBoost Algorithm with the Imprecision 113

In this approach, each of the component classifiers receives weighted information
on each element of a learning set. Thus, there are no various learning sets, in
understanding of the appearance of individual observations, for subsequent iter-
ations of the algorithm. Each learning set LSb

n contains the same observations,
and instead, their weights are changing. An algorithm utilising the reweighted
version is fully deterministic, as sampling is not present in this case.

3 AdaBoost Algorithm with the Imprecision Determine
the Weights of the Observations

As we have previously described one of the main problems of the development of
different boosting algorithms is the choice of weights. They concern the weights
of the observation wt,i and are needed to determine the weighted error et of
each learned classifier. Now we present two cases of changes in the obtained
weights (step 2a in algorithm 1). In one of them in the early iterations weights
are larger than in the original algorithm, but in the final iterations smaller than
in the original algorithm. In order to change the received weights in the original
AdaBoost algorithm the λ parameter is introduced. It defines uncertainty as it
received the original weights. The algorithm in this case labeled as lsw-AdaBoost
and it is as follows:

Table 3. The lsw-AdaBoost algorithm

1. Determine the value of λ
2. Let w1,1 = ... = w1,n = 1/n
3. For t = 1, 2, ...T do:

a. Fit ft using weights wt,1, ..., wt,n, and compute the error et
b. Fit et = et ∗ ((1 + (T/2− t)) ∗ λ)
c. Compute ct = ln((1− et)/et).
d. Update the observations weights:

wt+1,i = wt,i exp(ct, It,i)/
∑n

j=1(wt,i exp(ct, It,i)), i = 1, ..n.

3. Output the final classifier:

ŷi = F (xi) = sign(
∑T

t=1 ctft(xi)).

In the second case in the finaly iterations weights are larger than in the original
algorithm, but in the early iterations smaller than in the original algorithm. In
this case, we change the step 3b of the algorithm 3. It is labeled now as slw-
AdaBoost and it is as follows: In both of these cases, only in the middle iteration
weights are the same as in the original AdaBoost algorithm.

4 Experiments

In the experiential research ten data sets were tested. Eight data sets come
from the UCI repository [14] and two are generated randomly. One of them is
called the banana distribution and has objects generated according to the proce-
dure [15], the second one, instead, has random objects drawn in accordance with

114 R. Burduk

Table 4. The slw-AdaBoost algorithm

1. Determine the value of λ
2. Let w1,1 = ... = w1,n = 1/n
3. For t = 1, 2, ...T do:

a. Fit ft using weights wt,1, ..., wt,n, and compute the error et
b. Fit et = et ∗ ((1 + (t− T/2)) ∗ λ)
c. Compute ct = ln((1− et)/et).
d. Update the observations weights:

wt+1,i = wt,i exp(ct, It,i)/
∑n

j=1(wt,i exp(ct, It,i)), i = 1, ..n.

3. Output the final classifier:

ŷi = F (xi) = sign(
∑T

t=1 ctft(xi)).

the procedure [16] – Higleyman distribution. In both cases the a priori proba-
bility for two classes equals 0.5, and for each class 200 elements were generated.
The numbers of attributes, classes and available examples of all the data sets
are presented in Tab. 5. The results are obtained via 10-fold-cross-validation
method. In the experiments, the value of the parameter λ was set at 0.004. The
value of this parameter determines how to change the weight of the observation.
In this case, they are increased by the value of 0.004. The same value of weight,
as in the original AdaBoost algorithm , is in the half of the assumed iterations,
it is on T/2. That is, in the initial iterations of the weight are smaller than in the
original AdaBoost algorithm, and after half iteration larger than in the original.

Table 5. Description of data sets selected for the experiments

Data set example attribute class

Banana 400 2 2

Breast Cancer Wis.(Original) 699 10(8) 2

Haberman’s Survival 306 3 2

Highleyman 400 2 2

ILPD (Indian Liver Patient) 583 10 2

Mammographic Mass 961 6 2

Parkinsons 197 22(23) 2

Pima Indians Diabetes 768 8 2

Sonar (Mines vs. Rocks) 208 60 2

Statlog (Heart) 270 13 2

Tab. 6 shows the results of classification for the AdaBoost algorithm and its
modifications proposed in the work. The results are for 30, 40 and 50 iterations
of the algorithms. Tab. 6 shows additionally the average ranks which were ob-
tained in accordance with the Friedman test [17], [18]. The resulting average

The AdaBoost Algorithm with the Imprecision 115

Table 6. Classification error for different number iterations of AdaBoost algorithms
and average rank produced by Friedman test

Algorithm

AB lsw-AB slw-AB AB lsw-AB slw-AB AB lsw-AB slw-AB

After 50 iter. After 40 iter. After 30 iter.

Banan 0.044 0.045 0.042 0.045 0.047 0.043 0.047 0.050 0.044

Cancer 0.061 0.060 0.057 0.063 0.058 0.057 0.063 0.061 0.056

Haber. 0.288 0.270 0.286 0.288 0.274 0.287 0.288 0.279 0.287

Hig. 0.082 0.071 0.083 0.079 0.073 0.083 0.077 0.068 0.082

Liver 0.325 0.301 0.309 0.321 0.304 0.308 0.326 0.304 0.311

Mam. 0.186 0.191 0.199 0.186 0.190 0.199 0.186 0.208 0.199

Park. 0.145 0.140 0.124 0.145 0.136 0.121 0.145 0.150 0.117

Pima 0.240 0.239 0.250 0.237 0.240 0.243 0.239 0.250 0.237

Sonar 0.197 0.189 0.211 0.203 0.197 0.206 0.195 0.194 0.208

Statlog 0.356 0.356 0.337 0.356 0.388 0.338 0.356 0.388 0.338

Av. rank 2.35 1.65 2.00 2.20 1.80 2.00 2.20 2.10 1.70

rank shows an improvement in classification obtained by the proposed in the
paper modification of the AdaBoost algorithm.

In order to determine whether the proposed modification method differs from
the orginal AdaBoost algorithm the post-hoc Bonferroni-Dunn test was per-
formed. The critical difference for the described experiments equals 0.87 at
p = 0.1. So, we can conclude that no statistically significant differences in classi-
fication error were observed between the proposed modifications of the AdaBoost
algorithms and the standard AdaBoost algorithm. However, the received mean
ranks of 50 iterations are close to the critical difference.

5 Conclusions

In this paper we presented modification of the AdaBoost algorithm. We consider
the situation where the weights are changed within a certain range of values. The
paper proposes two approaches. In one of them in the early iterations weights are
larger than in the original algorithm. In the second, in the early iteration weights
are smaller than in the original algorithm. In our study we use boosting by the
reweighting method where each weak classifier is based on the recursive partition-
ing method. The received results for ten data sets show improvement in classifica-
tionobtainedby theproposed in thepapermodificationof theAdaBoost algorithm.

Acknowledgments. The work was supported in part by the statutory funds
of the Department of Systems and Computer Networks, Wroclaw University of
Technology and by the by The Polish National Science Centre under the grant
N N519 650440 which is being realized in years 2011–2014.

116 R. Burduk

References

1. Kearns, M., Valiant, L.: Cryptographic limitations on learning boolean formulae
and finite automata. J. Assoc. Comput. Mach. 41(1), 67–95 (1994)

2. Chunhua, S., Hanxi, L.: On the Dual Formulation of Boosting Algorithms. IEEE
Transactions on Pattern Analysis and Machine Intelligence 32(12), 2216–2231
(2010)

3. Oza, N.C.: Boosting with Averaged Weight Vectors. In: Windeatt, T., Roli, F.
(eds.) MCS 2003. LNCS, vol. 2709, pp. 15–24. Springer, Heidelberg (2003)

4. Freund, Y., Schapire, R.: Experiments with a new boosting algorithm. In: Proceed-
ings of the Thirteenth International Conference on Machine Learning, Bari, Italy,
pp. 148–156 (1996)

5. Wozniak, M.: Proposition of Boosting Algorithm for Probabilistic Decision Support
System. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS
2004. LNCS, vol. 3036, pp. 675–678. Springer, Heidelberg (2004)

6. Wozniak, M.: Boosted decision trees for diagnosis type of hypertension. In: Oliveira,
J.L., Maojo, V., Mart́ın-Sánchez, F., Pereira, A.S. (eds.) ISBMDA 2005. LNCS
(LNBI), vol. 3745, pp. 223–230. Springer, Heidelberg (2005)

7. Kajdanowicz, T., Kazienko, P.: Boosting-based Multi-label Classification. Journal
of Universal Computer Science 19(4), 502–520 (2013)

8. Freund, Y., Schapire, R.: A decision-theoretic generalization of on-line learning
and an application to boostin. Journal of Computer and System Scienses 55(1),
119–139 (1997)

9. Schapire, R.E.: The Strenght of Weak Learnability. Machine Learning 5, 197–227
(1990)

10. Freund, Y.: Boosting a Weak Learning Algorithm by Majority. Information and
Computation 121, 256–285 (1995)

11. Friedman, J., Hastie, T., Tibshirani, R.: Additive Logistic Regression: A Statistical
View of Boosting. The Annals of Statistics 38, 337–374 (2000)

12. Seiffert, C., Khoshgoftaar, T.M., Hulse, J.V., Napolitano, A.: Resampling or
Reweighting: A Comparison of Boosting Implementations. In: 2008 20th IEEE
International Conference on Tools with Artificial Intelligence, pp. 445–451 (2008)

13. Dmitrienko, A., Chuang-Stein, C.: Pharmaceutical Statistics Using SAS: A Prac-
tical Guide. SAS Press (2007)

14. Murphy, P.M., Aha, D.W.: UCI repository for machine learning databases. Tech-
nical Report, Department of Information and Computer Science, University of
California, Irvine (1994), http://www.ics.uci.edu/~mlearn/databases/

15. Duin, R.P.W., Juszczak, P., Paclik, P., Pekalska, E., de Ridder, D., Tax, D., Verza-
kov, S.: PR-Tools4.1, A Matlab Toolbox for Pattern Recognition. Delft University
of Technology (2007)

16. Highleyman, W.H.: The design and analysis of pattern recognition experiments.
Bell System Technical Journal 41, 723–744 (1962)

17. Derrac, J., Garcia, S., Molina, D., Herrera, F.: A practical tutorial on the use of
nonparametric statistical tests as a methodology for comparing evolutionary and
swarm intelligence algorithms. Swarm and Evolutionary Computation 1(1), 3–18
(2011)

18. Trawinski, B., Smetek, M., Telec, Z., Lasota, T.: Nonparametric statistical analysis
for multiple comparison of machine learning regression algorithms. International
Journal of Applied Mathematics and Computer Science 22(4), 867–881 (2012)

http://www.ics.uci.edu/~mlearn/databases/

	The AdaBoost Algorithm with the ImprecisionDetermine the Weights of the Observations
	1 Introduction
	2 AdaBoost Algorithm
	3 AdaBoost Algorithm with the Imprecision Determine the Weights of the Observations
	4 Experiments
	5 Conclusions
	References

