
Chapter 7
High Order SFV and Mixed SDG/FV Methods
for the Uncertainty Quantification
in Multidimensional Conservation Laws

Svetlana Tokareva, Christoph Schwab, and Siddhartha Mishra

Abstract We analyze and apply the high order Stochastic Finite Volume (SFV) and
mixed Stochastic Discontinuous Galerkin/Finite Volume (SDG/FV) methods used
to quantify the uncertainty in hyperbolic conservation laws with random initial data
and flux coefficients. We describe incomplete information in the conservation law
mathematically as random fields. The SFVM is formulated to solve numerically the
system of conservation laws with sources of randomness in both flux coefficients
and initial data. We formulate the Stochastic Discontinuous Galerkin method which
we primarily use to solve the multidimensional stochastic conservation laws on
unstructured grids. Finally, we compare the efficiency of the SFV and SDG methods
with of Monte-Carlo type methods. Finally, we introduce an adaptation technique
based on the Karhunen-Loève expansion of the random flux and/or initial data and
apply it in order to reduce the computational cost of the SFVM.

7.1 Introduction

We analyze and apply the high order Stochastic Finite Volume method (SFVM)
[1–3, 20] and mixed Stochastic Discontinuous Galerkin/Finite Volume (SDG/FV)
methods used to quantify the uncertainty in hyperbolic conservation laws with
random initial data and flux coefficients. The direct application of these methods
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is the simulation of gas flows with uncertain physical parameters and/or initial
flow conditions. Many efficient numerical methods have been developed to approx-
imate the entropy solutions of systems of conservation laws [7], however, in many
practical applications it is not always possible to obtain exact physical data due to,
for example, measurement or modeling errors. We describe incomplete information
in the conservation law mathematically as random fields. Such data are described
in terms of statistical quantities of interest like the mean, variance, higher statistical
moments; in some cases the distribution law of the stochastic initial data is also
assumed to be known. There exist several techniques to quantify the uncertainty
(i.e. determine the mean flow and its statistical moments), such as the Monte-Carlo
(MC), the Multi-Level Monte Carlo (MLMC) and Stochastic Galerkin method (see
also [5,8–15,19,22–26]). The SFVM is formulated to solve numerically the system
of conservation laws with sources of randomness in both flux coefficients and
initial data. We generalize this approach and formulate the Stochastic Discontinuous
Galerkin method which we primarily use to solve the multidimensional stochastic
conservation laws on unstructured grids. Finally, we compare the efficiency of the
SFV and SDG methods with of Monte-Carlo type methods. Finally, we introduce
an adaptation technique based on the Karhunen-Loève expansion of the random
flux and/or initial data and apply it in order to reduce the computational cost of the
SFVM.

7.2 Conservation Laws with Random Flux and Initial Data

Consider the hyperbolic system of conservation laws with random flux coefficients

@tU Crx � F.U; !/ D 0; t > 0I (7.1)

x D .x1; x2; x3/ 2 Dx � R
3, U D Œu1; : : : ; up�T , F D ŒF1;F2;F3�, Fk D

Œf1; : : : ; fp�
T ; k D 1; 2; 3, and random initial data

U.x; 0; !/ D U0.x; !/; ! 2 ˝: (7.2)

A mathematical framework of random entropy solutions for scalar conservation
laws has been developed in [16]. There, existence and uniqueness of random entropy
solutions to (7.1)–(7.2) has been shown for scalar hyperbolic conservation laws, also
in multiple dimensions. Furthermore, the existence of the statistical quantities of the
random entropy solution such as the statistical mean and k-point spatio-temporal
correlation functions under suitable assumptions on the random initial data have
been proven.
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7.3 Stochastic FVM

We parametrize all the random inputs in the Eqs. (7.1)–(7.2) using the random
variable y D Y.!/ which takes values in Dy � R

q and rewrite the stochastic
conservation law in the parametric form:

@tU Crx � F.U; y/ D 0; x 2 Dx � R
3; y 2 Dy � R

q; t > 0I (7.3)

U.x; 0; y/ D U0.x; y/; x 2 Dx � R
3; y 2 Dy � R

q: (7.4)

Let TX D [Nx

iD1K
i
x be the triangulation of the computational domain Dx in the

physical space and Cy D [Ny

jD1K
j
y be the Cartesian grid in the domain Dy of the

parametrized probability space.
We further assume the existence of the probability density function �.y/ and

compute the expectation of the n-th solution component of the conservation law
(7.3)–(7.4) as follows:

EŒun� D
Z

Dy

un�.y/ dy; n D 1; : : : ; p

The scheme of the Stochastic Finite Volume method (SFVM) [1–3] can be
obtained from the integral form of the Eqs. (7.3)–(7.4):

“

K
j
y Ki

x

@tU�.y/ dxdy C
“

K
j
y Ki

x

rx � F.U; y/ �.y/ dxdy D 0:

Introducing the cell average

NUij.t/ D 1

jKi
xjjKj

y j
“

K
j
y Ki

x

U.x; t; y/�.y/ dxdy

with the cell volumes

jKi
xj D

Z

Ki
x

dx; jKj
y j D

Z

K
j
y

�.y/ dy

and performing the partial integration over Ki
x we get

d NUij

dt
C 1

jKi
xjjKj

y j
Z

K
j
y

� Z

K
i
x

F.U; y/ � n dS

�
�.y/ dy D 0

Next, we use any standard numerical flux approximation OF� QUL.x; t; y/; QUR.x; t;
y/; y

�
to replace the discontinuous flux through the element interface F.U; y/ � n.
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Here QUL;R denote the boundary extrapolated solution values at the edge of the cell
Ki

x , obtained by the high order reconstruction from the cell averages. The complete
numerical flux is then approximated by a suitable quadrature rule as

NFij.t/ D 1

jKj
y j
Z

K
j
y

� Z

K
i
x

OF. QUL; QUR; y/
�
�.y/ dy � 1

jKj
y j
X

m

OF .t; ym/�.ym/wm;

(7.5)

where we have denoted the flux integral over the physical cell as OF , m D
.m1; : : : ; mq/ is the multi-index, ym and wm are quadrature nodes and weights,
respectively.

The SFV method then results in the solution of the following ODE system:

d NUij

dt
C 1

jKi
xj

NFij.t/ D 0; (7.6)

for all i D 1; : : : ; Nx; j D 1; : : : ; Ny . Therefore, to obtain the high-order scheme
we first need to provide the high-order flux approximation based, for example, on the
ENO/WENO reconstruction in the physical space. Second, we have to guarantee the
high-order integration in (7.5) also by applying the ENO/WENO reconstruction in
the stochastic space and choosing the suitable quadrature rule. Finally, we need the
high-order time-stepping algorithm to solve the ODE system (7.6), such as Runge-
Kutta method.

7.4 Convergence and Efficiency Analysis for SFVM

In this section we present the results of the convergence and efficiency analysis of
the SFV method applied to the stochastic scalar conservation law in the parametric
form

@tu C @xf .uIy/ D 0; x 2 D; y 2 Y; t > 0; (7.7)

u.x; 0Iy/ D u0.xIy/: (7.8)

Let Y D
NyS
kD1

Yk , where Yk is the mesh cell in the stochastic variable y. Denote

the probability density function by �.y/.

7.4.1 Convergence of Statistical Moments in L1-Norm

Denote by u the exact solution of (7.7), by uyh the numerical solution which is
exact in x variable and discretized in y and by uxy

h the numerical discretized in both
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variables. Assume that the numerical solution converges with rate p in x variable
and rate r in y variable, that is

kuyh � uxy
h kL1.D/ � C1�xp 8y 2 Y: (7.9)

ku � uyhkL1.Y / � C2�yr 8x 2 D; (7.10)

The next estimate follows immediately from this assumption:

ku � uxy
h kL1.D�Y / � C1�xp C C2�yr : (7.11)

Convergence of EhŒu
xy
h
� in L1-norm The expected value of the exact solution is

a deterministic function

EŒu�.xi ; t
n/ D

Z

Y

u.xi ; t
nIy/�.y/ dy; (7.12)

and the approximation of the expectation of the numerical solution is, as before,
equal to

EhŒu
xy
h �

n
i D

NyX
kD1

unik!k D
NyX
kD1

unik

Z

Yk

�.y/ dy D
NyX
kD1

Z

Yk

unik �.y/ dy D EŒuxy
h �.xi ; t

n/:

(7.13)

Then

��EŒu� � EŒuxy
h �
��
L1.D/

D ��EŒu� � EŒuyh�C EŒuyh� � EŒuxy
h �
��
L1.D/

�
� ��EŒu� � EŒuyh�

��
L1.D/

C ��EŒuyh� � EŒuxy
h �
��
L1.D/

D

D
Z

D

ˇ̌
EŒu� � EŒuyh�

ˇ̌
dx C

Z

D

ˇ̌
EŒuyh� � EŒuxy

h �
ˇ̌
dx D

D
Z

D

ˇ̌
ˇ̌
Z

Y

.u � uyh/�.y/ dy

ˇ̌
ˇ̌ dx C

Z

D

ˇ̌
ˇ̌
Z

Y

.uyh � uxy
h /�.y/ dy

ˇ̌
ˇ̌ dx �

�
Z

D

Z

Y

ju � uyh j�.y/ dydx C
Z

D

Z

Y

juyh � uxy
h j�.y/ dydx: (7.14)

The first integral in (7.14) can be estimated as follows:

Z

D

Z

Y

ju�uyh j�.y/ dydx �
Z

D

sup
Y

�.y/

Z

Y

ju�uyh j dydx D Cku�uyhkL1.Y / � C�yr ;

(7.15)
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and for the second integral we have

Z

D

Z

Y

juyh � uxy
h j�.y/ dydx D

Z

Y

h Z

D

juyh � uxy
h j dx

i
�.y/ dy D

D kuyh � uxy
h kL1.D/

Z

Y

�.y/ dy D kuyh � uxy
h kL1.D/ � C�xp: (7.16)

Hence, the convergence rate of the expectation in L1-norm can be estimated as

��EŒu� � EŒuxy
h �
��
L1.D/

� C1�xp C C2�yr : (7.17)

Convergence of VhŒu
xy
h
� in L1-norm The variance of the exact solution at .xi ; tn/

is equal to

VŒu�.xi ; t
n/ D E

��
u.xi ; t

n/ � EŒu�.xi ; t
n/
�2� D E

�
u2.xi ; t

n/
� � �EŒu�.xi ; tn/�2;

(7.18)

and can be approximated as

VhŒu
xy
h �

n
i D Eh

�
.uxy

h /
2
�n
i
� �EhŒu

xy
h �

n
i

�2 D E
�
.uxy

h /
2
�n
i
� �EŒuxy

h �
n
i

�2 D VŒuxy
h �

n
i :

(7.19)

Then

��VŒu� � VŒuxy
h �
��
L1.D/

D ��E�u2� � �EŒu��2 � E
�
.uxy

h /
2
�C �

EŒuxy
h �
�2��

L1.D/
�

� ��E�u2� � E
�
.uxy

h /
2
���

L1.D/
C ���EŒu��2 � �EŒuxy

h �
�2��

L1.D/
: (7.20)

The following estimate holds for the first integral in (7.20):

��E�u2� � E
�
.uxy

h /
2
���

L1.D/
D
Z

D

ˇ̌
E
�
u2
� � E

�
.uxy

h /
2
�ˇ̌

dx D

D
Z

D

ˇ̌
ˇ̌ Z

Y

�
u2 � .uxy

h /
2
�
�.y/ dy

ˇ̌
ˇ̌ dx �

Z

D

Z

Y

ˇ̌
u2 � .uxy

h /
2
ˇ̌
�.y/ dydx D

D
Z

D

Z

Y

ˇ̌
u � uxy

h

ˇ̌ˇ̌
u C uxy

h

ˇ̌
�.y/ dydx � C

Z

D

Z

Y

ˇ̌
u � uxy

h

ˇ̌
dydx D

D Cku � uxy
h kL1.D�Y / � C�xp C C7�yr : (7.21)
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For the second integral in (7.20) we get

���EŒu��2 � �EŒuxy
h �
�2��

L1.D/
D
Z

D

ˇ̌�
EŒu�

�2 � �EŒuxy
h �
�2 ˇ̌

dx D

D
Z

D

ˇ̌
EŒu� � EŒuxy

h �
ˇ̌ˇ̌
EŒu�C EŒuxy

h �
ˇ̌
dx �

� C
��EŒu� � EŒuxy

h �
��
L1.D/

� C1�xp C C2�yr : (7.22)

Finally, from (7.21) to (7.22) we get

��VŒu� � VŒuxy
h �
��
L1.D/

� C1�xp C C2�yr : (7.23)

Similar estimates are also valid for higher moments of u.

7.4.2 Efficiency Estimates

In the previous section it has been shown that the error of the expectation
approximation is given by

E D ��EŒu� � EŒuxy
h �
��
L1.D/

� C1�xp C C2�yr ; (7.24)

where p and r are the convergence rates of the SFVM solver in physical and
stochastic variables, respectively. Based on this result, we derive the error vs. work
estimates for SFVM.

Let x 2 R
n, y 2 R

m. Assume that the CFL condition is satisfied, such that
�t D O.ıx/. The total work W (or total time) required to compute the solution
of the stochastic scalar conservation law using SFVM is proportional to the total
numbers of grid points in x, y and t axes, denoted respectively by Nx , Ny and
Nt , i.e.

W D CNxNyNt D C
1

�xn

1

�ym

1

�t
D C

�xnC1�ym
D C�x�.nC1/�y�m:

(7.25)

Further derivation of the estimate depends on the choice of the mesh sizes
equilibration, that is, on the relation between �x and �y.

1. Assume that the mesh sizes are equilibrated according to the expected orders
of convergence p and r : �y D �xp=r . Then E D C�xp and �x D CE1=p .
Substituting these relations into the Eq. (7.25) we get
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W D C�x�.nC1/�x�pm=r D C�x�.nC1Cpm=r/ D CE
� nC1Cpm=r

p (7.26)

and hence

E D CW
� p

nC1Cpm=r ; (7.27)

which is the desired error vs. work estimated.
2. Assume now that the mesh size �y is obtained by the following scaling: �y D

��x, where � is the constant scaling factor, meaning that the stochastic mesh
is isotropic (same �y for all random variables). Define q D min.p; r/. Then
E D C�xq and �x D CE1=q , and the total work is defined as

W D C�x�.nC1/�y�m D C�x�.nCmC1/ D CE� nCmC1
q ; (7.28)

which finally gives

E D CW� q
nCmC1 : (7.29)

Note that the estimate (7.29) is equivalent to the complexity result for the
deterministic finite-volume method in the .n C m/-dimensional space, which
sets strict limitations on the number of random variables that can be handled by
the SFVM if the scaling factor � is close to 1. However, computational practice
shows that it is sufficient to use only few computational cells to discretize the
equations in the stochastic space to obtain a good quality approximation of the
statistical quantities and therefore the SFVM is essentially much more efficient
as deterministic FVM. Another significant simplification of the approach is the
absence of the fluxes in the stochastic variables y, which also contributes to the
efficiency of the SFVM.

3. Assume that the stochastic mesh is anisotropic, that is the mesh sizes �yk are
different for k D 1; : : : ; m: �yk D �k�x. Applying the same technique as
above we obtain

E D C1�x C C2

mX
kD1

�yr
k D C1�x C C2�xr

mX
kD1

�rk � C�xq
�
1C

mX
kD1

�rk
�
;

(7.30)

where q D min.p; r/ as before. We have also assumed that �x << 1 such that
�xp < �xq and �xr < �xq . Then the mesh size �x can be represented as

�x D
 

E

1C
mP

kD1

�rk

!1=q

: (7.31)
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The total work is

W D C
	 mY

kD1

��1
k



�x�.nCmC1/ D C

	 mY
kD1

��1
k


 E

1C
mP

kD1

�rk

!�.nCmC1/=q

;

(7.32)
and the resulting error vs. work estimate is

E D C
�
1C

mX
kD1

�rk
�	 mY

kD1

�
� q

nCmC1

k



W � q

nCmC1 : (7.33)

Note that in the isotropic case, when all �k D � D const, formula (7.33)
results in

E D C.1Cm�r/ ��
qm

nCmC1 W � q
nCmC1 : (7.34)

Comparing (7.33) and (7.34) we notice that the proper choice of scaling
factors �k in the anisotropic stochastic mesh construction, while not affecting the
convergence rates, can reduce the convergence constant, which means increasing
computational efficiency. The choice of �k should be based on the sensitivity
analysis of the random entropy solution to each of the m random variables.

Let us demonstrate the efficiency provided by the anisotropic mesh adaptation.
We compare the convergence constants:

Ci D .1Cm�r/ ��
qm

nCmC1 (7.35)

for the isotropic mesh with equal mesh sizes in all stochastic coordinates, �yk D
��x, k D 1; : : : ; m, and

Ca D �
1C

mX
kD1

�rk
� mY
kD1

�
� q

nCmC1

k (7.36)

for the anisotropic stochastic mesh with mesh size scaling according to �yk D
�k�x, k D 1; : : : ; m. Assume further that �1 > �2 > : : : �m and �k > 1 for all
k, such that �yk > �x.

Our goal is to show that the convergence constants ratio ım D Ci

Ca

> 1

as m ! 1 if �1 < � and r > q, that is, the anisotropic stochastic mesh
increases the algorithm efficiency as the number of random variables grows if
the convergence rate r in the stochastic space is higher than q, the minimum of
the convergence rates in physical and stochastic coordinates.

We start by noting that under the assumption �1 < � the following inequality
is valid:
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Ca D �
1C

mX
kD1

�rk
� mY
kD1

�
� q

nCmC1

k < .1Cm�r1/�
� qm

nCmC1

1 D C1
a ; (7.37)

and therefore

ım D Ci

Ca

>
Ci

C 1
a

D .1Cm�r/ ��
qm

nCmC1

.1 Cm�r1/ �
� qm

nCmC1

1

D
�
1Cm�r

1Cm�r1

��
�

�1

�� qm
nCmC1

:

(7.38)

Hence, the limit of the constants ratio is

ı D lim
m!1 ım D

�
�

�1

�r�q

; (7.39)

and clearly ı > 1 if r > q.
Let’s analyse in more detail the possible values of ı in dependence on the

convergence rates p and r in x and y variables, respectively.

Smooth solution. If the solution is smooth in x and y, then the convergence rate
of the SFVM is the expected one, therefore by applying high-order finite-volume
approximations in both variables one can obtain the full convergence rates p and
r .

• If p < r , then q D min.p; r/ D p and r � q D r � p > 0, ı > 1 and hence
the SFVM will converge faster on anisotropic stochastic mesh.

• If p > r , then q D min.p; r/ D p and r � q D r � p < 0, ı < 1, therefore
the anisotropic mesh doesn’t improve the convergence.

Shock solution. Recall that if the shock wave appears in the physical space,
then it also propagates into the stochastic space, so that the solution becomes
discontinuous in both x and y. In this case the 1st order FV scheme one
typically gives p D 1=2 according to and r D 1 as shown in [18], therefore

q D min.p; r/ D 1=2 and ı D
q

�

�1
> 1. This means that the SFVM on

anisotropic mesh in the stochastic space is more efficient than SFVM on the
uniform mesh even if the solution has a shock.

7.4.3 Numerical Convergence Analysis

We perform the convergence analysis of the SFVM for a simple linear advection
equation with uncertain phase initial condition
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Fig. 7.1 Mean: dependence of the error on the mesh resolution and computational time

ut C aux D 0; x 2 .0; 1/;

u.x; 0/ D sin
�
2�
�
x C 0:1Y.!/

��
:

The random variable y D Y.!/ is assumed to be distributed uniformly on Œ0; 1�.
In Figs. 7.1–7.2, we plot the L1.0; 1/ error for the expectation and the variance

of u with respect to the mesh size and the computational time. We investigate the
influence of different reconstruction orders in spacial and stochastic variables on the
convergence rates and therefore present the convergence plots for the SFVM based
on different combinations of ENO/WENO reconstruction in x and y. We compare
the SFVM with 1st, 2nd and 3rd order of accuracy in physical space combined with
3rd and 5th order reconstruction in stochastic variable. The type of reconstruction is
indicated in Figs. 7.1–7.2 as follows: for example, the line “SFV-x2y5” corresponds
to the 2nd order piecewise-linear ENO reconstruction in x and 5th order piecewise-
quadratic WENO reconstruction in y, the line “SFV-x3y5” stands for 3rd order
piecewise-linear WENO reconstruction in x with 5th order WENO reconstruction
in y, etc. The numerical flux used in all the numerical experiments of this paper is
the Rusanov flux. The results show that, while the convergence rate is dominated by
the order of accuracy in x, the algorithms with higher order reconstruction in y are
more efficient computationally since the same error can be reached with less overall
computational time as compared to the lower order reconstruction in y.

7.4.4 Numerical Results

7.4.4.1 Stochastic Sod’s Shock Tube Problem

Consider the Riemann problem for the one-dimensional Euler equations with
randomness in both flux and initial data
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@U
@t

C @F.U; !/

@x
D 0; x 2 .0; 2/; (7.40)

U.x; 0; !/ D U0

�
x; Y1.!/; Y2.!/

� D
(

UL

�
Y2.!/

�
; x < Y1.!/I

UR; x > Y1.!/;
(7.41)

with yj D Yj .!/; j D 1; 2; 3; ! 2 ˝ and

U D Œ�; �u; E�T ; F D Œ�u; �u2 C p; �u.E C p/�T ;

p D .� � 1/
	
E � 1

2
�u2



:

We also assume the randomness in the adiabatic constant, � D �
�
Y3.!/

�
, and

therefore

F.U; !/ D F
�
U; Y3.!/

�
:

The initial data is set in primitive variables as

W0.x; !/ D Œ�0; u0; p0�
T D

(
Œ1:0; 0:0; 1:0� if x < Y1.!/;

Œ0:125C 0:5 Y2; 0:0; 0:1� if x > Y1.!/:

We apply the SFVM to solve the system (7.40)–(7.41) with Y1.!/ �
U Œ0:95; 1:05�, Y2.!/ � U Œ�0:1; 0:1�, Y3.!/ � U Œ1:2; 1:6� using the 3rd order
WENO reconstruction in both physical and stochastic variables. The results are
presented in Figs. 7.3–7.4, in which the solution mean (solid line) as well as mean
plus/minus standard deviation (dashed lines) are plotted.
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Fig. 7.3 Sod’s shock tube problem with random flux and initial data: density (left) and velocity
(right)
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Fig. 7.4 Sod’s shock tube problem with random flux and initial data: pressure

The convergence results (dependence of the error on the number of mesh points)
for the solution mean are presented in Fig. 7.5. Due to the shock formation in the
path-wise solution the maximum order of convergence for the mean is limited to
1st.

We compare the efficiencies of the SFV and MLMC methods [16, 17] for the
solution of the one-dimensional stochastic Sod’s problem for the Euler equations.
Figure 7.6 illustrates the convergence of SFVM and MLMC based on 1st and 2nd
order FV ENO/WENO solvers.

Figure 7.6 demonstrates that both approaches lead to the same orders of
convergence in space while SFVM with properly chosen reconstruction orders
appears to be more efficient in terms of error-to-work estimates.
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Fig. 7.6 Convergence of the SFVM and MLMC

7.4.4.2 Stochastic Cloud-Shock Interation (Random IC)

Consider the two-dimensional Euler equations with random initial data:

@U
@t

C @F.U/

@x1
C @G.U/

@x2
D 0; .x1; x2/ 2 Œ0; 1� � Œ0; 1�; (7.42)

U.x; 0; !/ D U0

�
x; Y.!/

�
; (7.43)

where

U D Œ�; �u; �v;E�T ;

F D Œ�u; �u2 C p; �uv; �u.E C p/�T ;
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G D Œ�u; �uv; �v2 C p; �v.E C p/�T ;

p D .� � 1/
	
E � 1

2
�.u2 C v2/



:

We apply the SFV method to solve the stochastic shock-vortex interaction
problem for the Euler equations (see [21] for the deterministic version of the
problem). The initial Mach 1:1 shock wave is normal to the x1-axis and has
uncertain location at x1 D 0:5 C 0:1Y.!/ with Y.!/ � U Œ0; 1�. The states in
front and behind the shock wave are:

Œ�0; u0; v0; p0� D
(
Œ1;

p
�; 0; 1�; if x1 < Y.!/;

Œ 1
1:1

; 1:1
p
�; 0; 1 � �

10
�; if x1 > Y.!/:

A small vortex centered at .xc
1 ; x

c
2/ D .0:25; 0:5/ is superposed to the flow left to

she shock and is described as a perturbation to the velocity .u; v/ and pressure p:

Qu0 D 	
e˛.1�
2/ sin �;

Qv0 D �	
e˛.1�
2/ cos �;

Qp0 D �.� � 1/
	2e2˛.1�
2/

4˛�
�0;

where

r D
q
.x1 � xc

1/
2 C .x2 � xc

2/
2; 
 D r

rc
; sin � D x2 � xc

2

r
; cos � D x1 � xc

1

r
:

Here 	 indicates the vortex strength, ˛ controls the decay rate of the vortex and rc
is the critical radius for which the vortex has the maximum strength. In our test we
choose 	 D 0:3, rc D 0:05 and ˛ D 0:204.

For this computation, we have used the SFV method based on 5th order WENO
solver in the physical space and 2nd order ENO solver in the stochastic space on the
uniform 128� 128 cells Cartesian grid in the physical space and 32 cells grid in the
stochastic coordinate. The computational results for the flow mean and variance at
t D 0:35 are presented in Figs. 7.7–7.10.

7.5 Stochastic DG/FVM

7.5.1 Stochastic DG/FV Method

In this section we generalize the approach to uncertainty quantification described
previously in order to efficiently apply high-order approximation techniques on
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Fig. 7.7 Density: mean (left) and variance (right) at t D 0:35

Fig. 7.8 x1-velocity: mean (left) and variance (right) at t D 0:35

Fig. 7.9 x2-velocity: mean (left) and variance (right) at t D 0:35
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Fig. 7.10 Pressure: mean (left) and variance (right) at t D 0:35

unstructured grid in physical domains with complicated geometry. To this end, we
use the Discontinuous Galerkin (DG) method [4] to discretize the equations in the
physical space and combine it with the finite-volume discretization in the stochastic
variables as described in Sect. 7.3. Note that we can still use Cartesian grids in the
stochastic space since the computational domain in this space is a q-dimensional
rectangle.

As before, we start with the parametric form of the stochastic conservation law:

@tU Crx � F.U; y/ D 0; x 2 Dx � R
3; y 2 Dy � R

q; t > 0I (7.44)

U.x; 0; y/ D U0.x; y/; x 2 Dx � R
3; y 2 Dy � R

q: (7.45)

On each element Ki
x of the physical domain triangulation we apply the DG

solution discretization in the physical variable x:

Uh.x; t; y/ D
pX

lD1

Ul .t; y/'l .x/; x 2 Ki
x; (7.46)

which leads to the following semi-discrete DG formulation:

pX
lD1

@tUl .t; y/
Z

Ki
x

'l .x/'k.x/ dx C
Z

@Ki
x

F.Uh; y/ � n'k.x/ dx�

�
Z

Ki
x

F.Uh; y/r'k.x/ dx D 0: (7.47)
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Note that at this stage the DG coefficients are still functions of the random
variable y and time t and thus to get rid of this dependence we apply the finite-
volume discretization in the random variable, which leads to

pX
lD1

Z

K
j
y

�
@tUl .t; y/

Z

Ki
x

'l .x/'k.x/ dx
�
�.y/ dyC

C
Z

K
j
y

� Z

@Ki
x

F.Uh; y/ � n'k.x/ dx
�
�.y/ dy�

�
Z

K
j
y

� Z

Ki
x

F.Uh; y/r'k.x/ dx
�
�.y/ dyD 0: (7.48)

Finally, the resulting scheme becomes

pX
lD1

dUlk.t/

dt

Z

Ki
x

'l .x/'k.x/ dx C 1

jKj
y j

“

K
j
y @Ki

x

F.Uh; y/ � n'k.x/ �.y/dxdy�

� 1

jKj
y j
“

K
j
yKi

x

F.Uh; y/r'k.x/ �.y/dxdy D 0; (7.49)

which is an ODE system with respect to the DG coefficients averaged over an
element of the stochastic grid.

7.5.2 Numerical Results

7.5.2.1 Stochastic Cloud-Shock Interaction Problem (Random Flux)

Consider the two-dimensional Euler equations with deterministic initial data

Œ�0; u0; v0; p0� D
(
Œ3:86859; 11:2536; 0; 167:345�; if x1 < 0:05;

Œ1; 0; 0; 1�; if x1 > 0:05;
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Fig. 7.11 Stochastic cloud-shock interaction problem

and a high-density cloud lying to the right of the shock:

�0 D 10; if
p
.x1 � 0:25/2 C .x2 � 0:5/2 � 0:15:

Assume the random � D �.!/ in the equation of state (EOS)

p D .�.!/ � 1/
	
E � 1

2
�.u2 C v2/



;

�.!/ � U
�
5=3 � 	; 5=3C 	

�
; 	 D 0:1

The results of the simulation are presented in Fig. 7.11. In our computations we
have used the 2nd order DG method in x variable and 3rd order WENO method in y
variable, triangular mesh in x consisting of about 170;000 cells and Catresian mesh
in y consisting of 16 cells. The results are plotted at T D 0:06.

7.5.2.2 Forward-Facing Step Channel

Consider the stochastic flow in the channel with the forward facing step with random
Mach number of the inflowing gas: M � U .2:9; 3:1/. We have used the mesh of
about 13;000 triangular cells in the physical space and 15 equally-sized cells in
the stochastic space, the methods used are 2nd order DG and 3rd order WENO
in physical and random variables, respectively. The results of the simulation are
given in Fig. 7.12, indicating that the uncertainty in the Mach number influences the
position and intensity of shock in front of the step, while having little effect on the
shocks reflected from the channel walls.
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Fig. 7.12 Stochastic flow in a forward-facing step channel

7.6 Stochastic Mesh Adaptation

7.6.1 Stochastic Mesh Adaptation Based on Karhunen-Loève
Expansion

In this section we discuss one mesh adaptation technique which can be used to
reduce the computational cost of the SFV method. To this end, we consider the
following model problem:

@u

@t
C @f .u; !/

@x
D 0; x 2 D D Œ0; L� � R; t > 0I (7.50)

u.x; 0; !/ D u0.x; !/; x 2 D; ! 2 ˝: (7.51)

Assume the following Karhunen-Loève expansion of the flux:

f .uI!/ D Nf .u/C
X
j�1

Yj .!/

q
�j˚j .u/; (7.52)

where ˚j .u/ and �j are the eigenfunctions and eigenvalues of the integral operator
with covariance kernel:

Z

D

CY .u1; u2/˚.u1/ du1 D �˚.u2/:
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We can therefore choose the random variable to parametrize the stochastic
conservation law as y D .y1; y2; : : : / D Y.!/ D �

Y1.!/; Y2.!/; : : :
�
, then

f .uI!/ D f .uIy/
ˇ̌
ˇ
yDY.!/

D u2

2
C ı

	 qX
jD1

yj

q
�j˚j .u/



:

Let f .uI!/ be the Gaussian process with exponential covariance [6]

CY .u1; u2/ D 2
Y e

�ju1�u2j=�; then

�j D 2�2
Y

�2w2
j C 1

; ˚j .u/ D 1q
.�2w2

j C 1/L=2C �
Œ�wj cos.wj u/C sin.wj u/�;

where wj are the roots of

.�2w2 � 1/ sin.wL/ D 2�w cos.wL/

and

Yj � N .0; 1/; EŒYj Yk� D ıjk

Note that in this case the coefficients �j decay quickly in j (see Fig. 7.13).
Therefore the KL expansion can be truncated at moderate number of terms (q D

2; 3) without losing too much information about the stochastic process, namely

f .uIy/ D Nf .u/C
qX

jD1

yj

q
�j˚j .u/



130 S. Tokareva et al.

10
2

10
−3

10
−2

10
−1

10
0

 Error vs resolution for E[u], sx = 3, sy = 3

Nx

er
ro

r

SFV adapt
SFV noadapt
s=1
s=2
s=3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

 Error vs time for E[u], sx = 3, sy = 3

time

er
ro

r

SFV adapt
SFV noadapt
s=1/2
s=3/4

error vs resolution error vs time

Fig. 7.14 Convergence of the SFVM: adaptive (squares) va. non-adaptive (circles) mesh

Consider the stochastic SCL with random flux and deterministic initial data

ut C f .uI!/x D 0; x 2 .0; L/; t > 0; (7.53)

u.x; 0I!/ D u0.x/ D 1C sin.�x/: (7.54)

In this paper, in order to reduce the computational cost of the SFV method, we
propose the mesh adaptation in the stochastic space based on the choice of the
number of nodes in each of the stochastic coordinates according to

Nj
y D C Nx

q
�j : (7.55)

Figure 7.14 shows the convergence of the adaptive SFVM algorithm (“SFV
adapt”) and the SFVM without stochastic mesh adaptation (“SFV noadapt”). The
non-adaptive version of the SFVM simply uses equal number of cells in each
stochastic coordinate, while the adaptive version chooses the number of cells in each
yj according to (7.55). The computational time needed to perform both algorithms
is shown in Fig. 7.15. Clearly, the proposed adaptation of the algorithm improves
the convergence properties of the SFV method.

7.6.2 Numerical Results

7.6.2.1 Stochastic Cloud-Shock Interaction Problem (Random IC)

We use the mesh adaptation approach similar to the one described above to solve
the stochastic cloud-shock interaction problem with initial data depending on four
random variables. Note that the usage of non-adaptive algorithm for such simulation
would lead to excessive computational cost of SFVM.
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Fig. 7.16 Stochastic cloud-shock interaction problem

Consider the two-dimensional Euler equations with deterministic initial data

W0 D
(
Œ3:86859C 0:1Y2.!/; 11:2536; 0; 167:345�; if x1 < 0:04C 0:01Y1.!/;

Œ1; 0; 0; 1�; if x1 > 0:04C 0:01Y1.!/;

with a high-density cloud to the right of the shock:

�0 D 10C 0:5Y3.!/; if
p
.x1 � 0:25/2 C .x2 � 0:5/2 � 0:15C 0:02Y4.!/:

The equations are closed by the following deterministic EOS: p D .� � 1/
	
E �

1
2
�.u2 C v2/



, � D 5=3. The random variables in the initial condition are uniformly

distributed on Œ0; 1�: Yk � U Œ0; 1�; k D 1; : : : ; 4:

We use the 2nd order DG in x variable and 3rd order WENO in y variable,
triangular mesh in x (170;000 cells) and adaptive Cartesian mesh in y (3 �2 �7 �11 D
462 cells), the output time is T D 0:06. The results of this simulation are illustrated
in Fig. 7.16.
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7.7 Conclusions

The SFV and SDG/FV methods studied in this paper appear to be a flexible
and effective approach to the solution of stochastic conservation laws. We have
shown that the SFV method it is applicable for the uncertainty quantification in
a variety of complex problems including systems of conservation laws with random
flux coefficients and initial data with several sources of uncertainty. The proper
adaptation of the stochastic grid significantly reduces the computational cost of the
method and improves its convergence.
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