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7.1 Introduction

Algebraic complexity theory is the study of computation viaalgebraicmodels, hence,
algebraic techniques. In this article weworkwith only onemodel—arithmetic circuit
(in short, circuit). A circuit C(x1, . . . , xn), over a ring R, computes a polynomial
f in R[x1, . . . , xn]. Its description is in the form of a rooted tree; with the leaves
having the variables or constants as input, the internal nodes computing addition or
multiplication, and the root having the f as output. The edges in C , called wires,
carry the intermediate polynomials and could also be used to multiply by a constant
(from R). By the size, respectively the depth, of C we mean the natural notions
(sometimes to avoid “trivialities” we might want to take into account the bit-size
needed to represent an element in R).
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A moment’s thought would suggest that a circuit is a rather compact way of
representing polynomials. Example a circuit of size s could produce a polynomial
of degree 2s (hint: repeated squaring). In fact, a single product gate could multi-
ply s linear polynomials and produce n�(s) many monomials. Thus, a circuit is an
‘exponentially’ compact representation of some polynomial families (as opposed to
simply writing it as a sum of monomials). Conversely, are there ‘explicit’ polynomial
families (say n-variate n-degree) that require exponential (i.e. 2�(n)) sized circuits?
We “expect” almost every polynomial to be this hard, but, the question of finding an
explicit family is open and is the main goal motivating the development of algebraic
complexity.

One can try to directly give a good lower bound against circuits by designing
an explicit polynomial family { fn} and prove that it requires a ‘large’-sized circuit
family {Cn}. The other, indirect, way is to design an efficient hitting-set H for the
circuit family, i.e. if Cn �= 0 then ∃a ∈ H, Cn(a) �= 0. This ‘flip’ from lower bounds
to algorithms was first remarked by [HS80] and now it has several improved versions
[KI04, Agr05, Agr06]. This is a remarkable phenomenon and is one of the primary
motivations to study the question of PIT: Given a circuit C test it for zeroness, in
time polynomial in size(C). The hitting-set version of PIT is also called blackbox
PIT (contrasted with whitebox PIT).

The last 10 years have seen a decent growth of algebraic tools and techniques
to understand the properties of polynomials that a circuit computes. The feeling is
that these polynomials are special, different from general polynomials, but a strong
enough algebraic ‘invariant’ or a combinatorial ‘concept’ is still lacking. There have
been several articles surveying the known techniques and the history of PIT [Sax09,
AS09, SY10, CKW11, Sap13]. In this survey we will attempt not to repeat what
those surveys have already covered. So, we will focus only on the new ideas and
assume that the reader has given at least a cursory glance at the older ones. We
directly move on to the Leitfaden.

7.1.1 Survey Overview

This article deals mainly with three broad topics—the ‘universality’ of depth-3
circuits, the design of hitting-sets via ‘faithful’ morphisms and that via rank
‘concentration’. A major emerging area that we skip in this article is that of PIT
vis à vis GCT (geometric complexity theory) program [Mul11, Mul12a, Mul12b];
the algebraic-geometry interpretations there are interesting though any concrete PIT
algorithm, or application, is yet to emerge.

Shallow circuits A depth-2 circuit (top + gate) of size s, over a field, essentially
computes a sum of s monomials. Such polynomials are called sparse polynomials;
blackbox PIT for them was solved few decades ago. So, our next stop is depth-3:
Polynomials of the form
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C =
k∑

i=1

d∏

j=1

Li, j ,

where Li, j are linear polynomials in F[x1, . . . , xn]. Significant research has been
done with this model, but both subexponential PIT and exponential lower bounds
are open here. Recently, a remarkable universality result was shown for depth-3
[GKKS13]: If an n-variate poly(n)-degree polynomial can be nontrivially computed
by a circuit, then it can be nontrivially computed in depth-3. This ‘squashing’ of
depth means that it suffices to focus on depth-3 for PIT purposes.

If we consider a depth-2 circuit (top × gate), over a ring R, then again we get
some remarkable connections. Fix R to be the 2 × 2 matrix algebra M2(F), and
consider the circuit

D =
d∏

i=1

Li ,

where Li are linear polynomials in R[x1, . . . , xn]. Traditionally, D is called a width-
2 algebraic branching program (ABP). It was shown by [SSS09] that depth-3 PIT
efficiently reduces to width-2 ABP PIT.

Faithful morphisms Itwas observed in the last fewyears that in all the knownhitting-
sets, the key idea in the proof is to work with a homomorphism ϕ and an algebraic
property that the image of ϕ should preserve. [SS12] used a (Vandermonde-based)
map ϕ : F[x1, . . . , xn] → F[y1, . . . , yk] that preserves the ‘linear’ rank of any k
linear polynomials. This gave the first blackbox PIT for bounded top fanin depth-3,
over any field.

Beecken et al. [BMS13] and Agrawal et al. [ASSS12] used a (Vandermonde and
Kronecker-based) map ϕ : F[x1, . . . ,
xn] → F[y1, . . . , yk] that preserves the ‘algebraic’ rank (formally, transcendence
degree) of certain k polynomials. This gave the first blackbox PIT (and lower bounds)
for several well-studied classes of constant-depth circuits. One drawback of the tech-
nique is that it requires zero/large characteristic fields.

Rank concentration Inspired from the tensors, a restricted circuit model called
multilinear read-once ABP (ROABP) has been intensively studied. Let R be the
w × w matrix algebra Mw(F) and let {Si } be a partition of [n]. Consider the circuit
D = ∏d

i=1 Li , where Li are linear polynomials in R[xSi ] (i.e. the linear factors
have disjoint variables). For D [FSS13] gave a hitting-set in time poly(wn)logw·log n ,
i.e. quasi-poly-time. The proof is based on the idea, following [ASS13], that after
applying a small (Kronecker-based) ‘shift’, D gets the following property: The rank
of its coefficients (viewed as F-vectors) is concentrated in the ‘low’ support mono-
mials. Thus, checking the zeroness of these low monomials is enough!

We conjecture that rank concentration, after a ‘small’ shift, should be attainable
in any ABP D. But currently the proof techniques are not that strong. Recently,
[AGKS13] have achieved rank concentration in multilinear depth-3 circuits where
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the partitions (corresponding to each product gate) are ‘close’ to each other in the
sense of ‘refinement’.

7.2 Shallow Circuits, Deep Interconnections

In this section,we exhibit the key ideas behind the universality of two shallowcircuits.

7.2.1 The Depth-3 Chasm

In the study of circuits one feels that low-depth should already hold the key. This
feeling was confirmed in a series of work [VSBR83, AV08, Koi12, Tav13]: Any
poly(n)-degree n-variate polynomial computed by a poly(n)-sized circuit C can also
be computed by a nO(

√
n)-sized depth-4 circuit!

The idea for this is, in retrospect, simple—since the degree is only poly(n), first,
squash the depth of C to O(log n) by only a polynomial blowup in the size. This is
done in a way so as to make the product gates quite balanced, i.e. their two inputs
are roughly of the same degree. Next, identify a subcircuit C2 by picking those gates
whose output polynomial has degree at least

√
n, and call the remaining subcircuit

C1. We view C2 as our circuit of interest that takes gates of C1 as input. It can be
shown that C2 computes a polynomial of degree ≈√

n of its input variables (which
are poly(n)many). Obviously, each gate ofC1 also computes a polynomial of degree
≈√

n of its input variables (which are x1, . . . , xn). Thus, C2 finally computes a sum

of ≈(poly(n)+√
n√

n

)
products, each product has

√
n factors, and each factor is itself a

sum of ≈(n+√
n√

n

)
degree-

√
n monomials. To put it simply (and ignoring the constant

factors), C can be expressed as a
∑∏√

n ∑∏√
n circuit of size nO(

√
n). The details

of this proof can be seen in [Tav13].
The strength of depth-4 is surprising. Recently, an even more surprising reduction

has been shown [GKKS13]—that to depth-3 (again, nO(
√

n) sized). We will now
sketch the proof. It ties together the known results in an unexpected way.

Essentially, the idea is to modify a
∑∏a ∑∏a circuit C of size s := na (where

a := √
n) by using two polynomial identities that are in a way “inverse” to each

other, and are to do with powers-of-linear-forms. First, replace the product gates
using Fischer’s identity:

Lemma 2.1 [Fis94] Any degree a monomial can be expressed as a linear combina-
tion of 2a−1 ath powers of linear polynomials, as:

y1 · · · ya = (2a−1 · a!)−1 ·
∑

r2,...,ra∈{±1}

(
y1 +

a∑

i=2

ri yi

)a

· (−1)#{i |ri =−1}.
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We denote this type of a circuit by the notation
∑∧a ∑

, where the wedge
signifies the powering by a. The above identity transforms the

∑∏a ∑∏a circuit
C to a

∑∧a ∑∧a ∑
circuit, of size poly(s). We reuse s for this size estimate.

Next, the two power gates are ‘opened’ up using an identity introduced by the
author:

Lemma 2.2 [Sax08] For any a, m, there exist degree-a univariate polynomials fi, j

such that

(y1 + · · · + ym)a =
ma+1∑

i=1

m∏

j=1

fi, j (y j ).

Let us carefully see the jugglery on C . The
∑ ∧a ∑ ∧a ∑

circuit C has the
expression C = ∑

i Ti , where each Ti has the form (
∑s

j=1 �
ei, j
i, j )a with linear �i, j ’s.

We want to open up the top power gate of C . By Lemma 2.2 we get

Ti =
sa+1∑

u=1

s∏

j=1

fu, j (�
ei, j
i, j ).

Since fu, j is a univariate, it splits into linear polynomials when the base field F is
algebraically closed. As �i, j is already a linear polynomial, we deduce that Ti , and
hence C , is a

∑∏∑
circuit of size poly(s).

Finally, note that for the above arguments towork, we requireF to be algebraically
closed and char(F) > a. Lemma 2.2 has been generalized to all characteristics by
[FS13b], so it is likely that this depth-3 reduction can be extended to all algebraically
closed fields.

The optimality of n
√

n-size, in this reduction, is open. However, [KSS13] showed
that any decent reduction in this size bound would imply VNP �= VP.

7.2.2 The Width-2 Chasm

Here we look at
∏ ∑

circuits over a matrix algebra. Though the model D = ∏
i Li ,

with linear Li ∈ R[x1, . . . , xn], seems innocuous at first sight, a closer look proves
the opposite! It can be shown fairly easily that a polynomial computed by a constant-
depth circuit (over a field) can as well be computed by a D over a 3 × 3 matrix
algebra [BC88]. On the other extreme, by taking R = Mn(F) we can compute the
determinant of a matrix in F

n×n [MV97], hence, arithmetic formulas (not general
circuits!) can be simulated in this model [Val79].

Perhaps surprisingly, [SSS09] showed that: A polynomialC computed by a depth-
3 circuit (over a field) can be “almost”1 computed by a D over a 2×2 matrix algebra.

1 We are able to compute only a multiple of C . However, the extra factor is simply a product of
poly-many linear polynomials. So, it suffices for PIT purposes.
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This, togetherwith the previous subsection,makes the
∏ ∑

circuits over M2(F) quite
strong.

Say, wewant to express the depth-3 circuitC = ∑k
i=1 Ti in a 2×2matrix product.

First, we express a product Ti = ∏d
j=1 �i, j as:

[
�i,1 0
0 1

]
· · ·

[
�i,d−1 0
0 1

]
·
[
1 �i,d

0 1

]
=

[
T ′

i Ti

0 1

]
, where T ′

i := Ti/�i,d .

Once we have such k 2× 2 matrices, each containing Ti in the (1, 2)th place, we
would like to sum the Ti ’s in a ‘doubling’ fashion (instead of one-by-one).

We describe one step of the iteration. Let

[
L1 L2 f
0 L3

]
and

[
M1 M2g
0 M3

]
be

encapsulating two intermediate summands f and g. With the goal of getting (a
multiple of) f + g we consider the following, carefully designed, product:

[
L1 L2 f
0 L3

]
·
[

L2M3 0
0 L1M2

]
·
[

M1 M2g
0 M3

]

=
[

L1M1L2M3 L2M3L1M2( f + g)

0 L3M3L1M2

]

After log k such iterations, we get a multiple of C in the (1, 2)-th entry of the final
2 × 2 matrix product. Note that the middle matrix, introduced in the LHS above,
potentially doubles (in the degree of the entry polynomials) in each iteration. Thus,
finally, D is a product of poly(d2log k) linear polynomials over M2(F). Thus, the size
blowup is only polynomial in going from depth-3 to width-2.

7.3 Faithful Morphisms, Hitting-Sets

In algebraic complexity the studyof certainmaps has been fruitful—homomorphisms
ϕ : R := F[x1, . . . , xn] → F[y1, . . . , yk] =: R′ such that the algebraic ‘relation-
ship’ of certain polynomials { f1, . . . , fk} does not change in the image of ϕ. When
fi ’s are linear this boils down to a linear algebra question and we can easily design ϕ
in time poly(n) (hint: employ Vandermonde matrix). This business becomes compli-
cated when fi ’s are nonlinear. Then we have to ask how are fi ’s represented. If they
are given via monomials then we invoke the Jacobian criterion to design ϕ, but the
time complexity becomes exponential in k. Several variants of such faithful maps are
discussed in the Ph.D thesis [Mit13].We sketch the ideas behind two basicmaps here.
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7.3.1 Bounded Fanin Depth-3 Blackbox PIT

Let C = ∑
i∈[k] Ti be a depth-3 circuit. When k is constant, C is naturally called

bounded fanin depth-3. This case of PIT has, by now, a rich history [DS07, KS07,
KS11, SS11, KS09, SS13, SS12]. Several new techniques have sprung up from this
model— a locally decodable code structure, a rank-preserving map via extractors,
Sylvester-Gallai configurations (higher dimensions and all fields) and rank bounds.
We will sketch here the main idea behind the poly-time blackbox PIT of bounded
fanin depth-3. The details are quite technical and could be seen in [SS13, SS12].

Vandermonde map We define a homomorphism �β , for a β ∈ F, as:

∀i ∈ [n], �β : xi 
→
k∑

j=1

βi j y j ,

and �β(α) = α for all α ∈ F. This (naturally) defines the action of �β , on all
the elements of R, that preserves the ring operations. We have the following nice
property, as a consequence of [GR08, Lemma 6.1]:

Lemma 3.1 [�β preserves k-rank] Let S be a subset of linear forms in R with
rk(S) ≤ k, and |F| > nk2. Then ∃β ∈ F, rk(ψβ(S)) = rk(S).

Intuitively,�β is faithful to any algebraic object involving the elements in span(S).
The proof of this lemma is by studying the coefficient-matrix of the linear polynomi-
als in S, and its change under�β . Thismap has a role to play in bounded fanin depth-3
owing to a certain structural theorem from [SS13]—certificate for a non-identity.

To discuss this certificate we need a definition, that of ‘paths’ of ‘nodes’ in C
(assumed to be nonzero). A path p with respect to an ideal I is a sequence of
terms {p1, p2, . . . , pb} (these are products of linear forms) with the following prop-
erty. Each pi divides Ti , and each pi is a ‘node’ of Ti with respect to the ideal
〈I, p1, p2, . . . , pi−1〉.2 So p1 is a node of T1 wrt I , p2 is a node of T2 wrt 〈I, p1〉,
etc.

Let us see an example of a path (〈0〉, p1, p2, p3) in Fig. 7.1. The oval bubbles
represent the list of forms in a product gate, and the rectangles enclose forms in a
node. The arrows show a path. Starting with the zero ideal, nodes p1 := x21 , p2 :=
x2(x2 + 2x1), and p3 := (x4 + x2)(x4 + 4x2 − x1)(x4 + x2 + x1)(x4 + x2 −2x1)
form a path. Initially, the path is just the zero ideal, so x21 is a node. Note how p2 is
a power of x2 modulo radsp〈p1〉, and p3 is a power of x4 modulo radsp〈p1, p2〉.

The non-identity certificate theorem [SS13, Theorem 25] states that for any non-
identity C , there exists a path p such that modulo 〈p〉, C reduces to a single nonzero
multiplication term.

2 By a node pi we mean that some nonzero constant multiple of pi is identical to a power-of-a-
linear-form modulo radsp〈I, p1, p2, . . . , pi−1〉, where radsp is the ideal generated by the set of all
the linear polynomials that divide p j , j ∈ [i − 1] and the generators of I .
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T1 T2 T3

x 1

x 1

x 2

x 2 + 2x 1

x 3 + 10 x 1

x 3 − x 1

x 3 + 3 x 1

x 4 + x 2

x 4 + 4 x 2 − x 1

x 4 + x 2 + x 1

x 4 + x 2 − 2x 1

Fig. 7.1 Nodes and paths in C = T1 + T2 + T3 + · · ·

Theorem 3.2 (Certificate for a non-identity) Let I be an ideal generated by some
multiplication terms. Let C = ∑

i∈[k] Ti be a depth-3 circuit that is nonzero modulo
I . Then ∃i ∈ {0, . . . , k − 1} such that C[i]3 mod I has a path p satisfying: C ≡
α · Ti+1 �≡ 0 ( mod I + 〈p〉) for some α ∈ F

∗.

The proof of this theorem involves an extension of Chinese remaindering to ideals
that are generated by multiplication terms. Once we have this structural result about
depth-3, observe that we would be done if we could somehow ensure Ti+1 /∈ 〈p〉 (in
our application I is zero). How do we preserve this ideal non-membership under a
cheap map?

Notice that the rank of the set S0 of linear polynomials that divide the nodes in
the path p is <k (since path length is below k). Moreover, Ti+1 factors into at most d
linear polynomials, denote the set by S1. So if we apply a map that preserves the rank
of each of the d sets S0 ∪ {�}, � ∈ S1, then, intuitively, the ideal non-membership
should be preserved. As rk(S0 ∪ {�}) ≤ k we can employ the previously discussed
map �β (over a field satisfying |F| > dnk2). This idea could be easily turned into a
proof; details are in [SS12].

Finally, whatwe have achieved is the construction of amap�β , in time poly(dnk),
that reduces the variables of C from n to k and preserves nonzeroness. Once this is
done, the poly(ndk) blackbox PIT follows from the brute-force hitting-set.

7.3.2 Depth ≥ 3 Results

Looking at the success of bounded fanin depth-3 one wonders about the analogous
depth-4 model:

C =
∑

i∈[k]

∏

j∈[d]
fi, j , where fi, j are sparse polynomials. (7.1)

3 We mean C[i] := ∑
j∈[i] Tj .
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Here we are thinking of a bounded k. But now even k = 2 seems non-trivial! In fact,
a simpler PIT case than this is an old open question in a related area [vzG83].

This bounded top fanin depth-4 PIT is an important open question currently.
What is doable are other restricted models of depth-4. Inspired from the last sub-
section we ask: Is there a notion of ‘rank’ for general polynomials, are there easy
‘faithful’ maps, and finally is all this useful in PIT?

There are several notions of rank in commutative algebra. The one we [BMS13]
found useful is—transcendence degree (trdeg). We say that a set S of polynomials
{ f1, . . . , fm} ⊂ F[x1, . . . , xn] is algebraically dependent if there exists a nonzero
annihilating polynomial A(y1, . . . , ym), over F, such that A( f1, . . . , fm) = 0. The
largest number of algebraically independent polynomials in S is called trdeg(S).
With this notion we call a homomorphism ϕ faithful if trdeg(S) = trdeg(ϕ(S)). The
usefulness of ϕ (assuming that one can come up with it efficiently) was first proved
in [BMS13]:

Lemma 3.3 (Faithful is useful) Let ϕ be a homomorphism faithful to f =
{ f1, . . . , fm} ⊂ F[x]. Then for any C ∈ F[y], C(f) = 0 ⇔ C(ϕ(f)) = 0.

This implies that we can use a faithful map to ‘reduce’ the number of variables n
without changing the nonzeroness of C . The strategy can be used in cases where
trdeg(f) is small, say, smaller than a constant r .

The only missing piece is the efficiency of ϕ.4 To do this we need three funda-
mental ingredients—an efficient criterion for algebraic independence (Jacobian), its
behaviour under ϕ (chain rule), and standard maps (Vandermonde and Kronecker-
based).

Lemma 3.4 (Jacobian criterion) Let f ⊂ F[x] be a finite set of polynomials of
degree at most d, and trdeg(f) ≤ r . If char(F) = 0 or char(F) > dr , then trdeg(f) =
rkF(x) Jx(f), where Jx(f) := (

∂ fi/∂x j
)

m×n is the Jacobian matrix.

There are several proofs of this, see [Jac41, For91, BMS13, MSS12]. This gives
us an efficient way to capture trdeg, when the characteristic is zero/large. Let us now
see how the Jacobian matrix changes under ϕ.

Lemma 3.5 (Chain rule) Jy(ϕ(f)) = ϕ (Jx(f)) · Jy(ϕ(x)), where ϕ applied to a
matrix/set refers to the matrix/set obtained by applying ϕ to every entry.

This is a simple consequence of the chain rule of ‘derivatives’. It suggests that
for ϕ to preserve the trdeg of the polynomials, we need to control—(1) the image
of the original Jacobian under ϕ, and (2) the Jacobian of the image of x. In our
applications, the former is achieved by a Kronecker-based map (i.e. sparse PIT
tricks, e.g. [BHLV09]) and the latter by Vandermonde map (as seen in the previous
subsection).

This general ‘recipe’ has been successfully implemented to various circuitmodels.
The case of the circuit C ′(x) := C(f), where trdeg(f) ≤ r and fi ’s are polynomials

4 It can be shown, from first principles, that a faithful r -variate map always exists [BMS13].
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of sparsity at most s, was worked out in [BMS13]. The proof follows exactly the
above strategy. The time complexity is polynomial in size(C ′) and (s · deg(C ′))r ,
where the exponential dependence comes from the sparsity estimate of Jx(f) (and
of course the final brute-force hitting-set for the r -variate ϕ(C ′)).

Agrawal et al. [ASSS12] extended the recipe to depth-4 circuits (7.1) where the
number of fi, j ’s where any variable appears is bounded by r.5 This model is called
occur-r depth-4; it generalizes the well-studied multilinear read-r depth-4. Interest-
ingly, slightly modified techniques also provided exponential lower bounds against
these special models. This required proving some combinatorial properties of the
derivatives of immanant (e.g. permanent, determinant).

The faithful maps recipe has been able to unify all the assorted poly-time hitting-
sets known. However, one drawback is that it needs the characteristic to be zero/large.
Baby steps in resolving that issue have been taken by [MSS12].

7.4 Rank Concentration, Shift, Hitting-Sets

The hitting-sets that we saw till nowwere for models where some parameter was kept
bounded. But we could also study models with a ‘structural’ restriction, e.g. mul-
tilinearity. This route has also been successful and enlightening. We call a depth-3
circuit C = ∑

i Ti multilinear if the linear factors in Ti involve disjoint variables.
Hence, each product gate Ti induces a partition Pi on the variables (or indices) [n].
Moreover, we call C set-multilinear if these partitions are the same across all Ti ’s.

There is a large body of work on the set-multilinear model [RS05, AMS10, FS12,
FS13b, ASS13, FS13a, FSS13, AGKS13]. The motivation for this model is, on the
one hand, the algebraic concept of tensors, and, on the other hand, the interest in read-
once boolean branching programs [Nis92, IMZ12, Vad12]. Interestingly, [FSS13]
has shown (extending the ideas of [ASS13]) that the current situation in the arithmetic
world is exponentially better than that in the boolean one!

Here we will exhibit the key ideas of [ASS13] and [AGKS13] on two toy cases
that are already quite instructive; this saves us from the gory technical machinery
that drives the more general cases.

7.4.1 Multilinear ROABP

Agrawal et al. [ASS13] gave the first quasi-poly-time hitting-set for set-multilinear
depth-3 (and extensions to constant-depth, non-multilinear versions). This was gen-
eralized by [FSS13] to any depth; in fact, they dealt directly with the multilinear
ROABP D = ∏

i Li over Mw(F), where Li ’s are linear polynomials in disjoint
variables. Both the papers proved ‘low-support rank concentration’ in their models.

5 Note that this does not mean that trdeg( fi, j |i, j) is bounded.
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For the following discussionwefix a base commutative ring R = Hw(F) called the
Hadamard algebra (instead of thew×wmatrix algebra). This is basically (Fk,+, �),
where + is the vector addition and � is the coordinate-wise vector product (called
the Hadamard product).
�-concentration. We say that a polynomial f ∈ R[x1, . . . , xn] is �-concentrated if

rkF{coef f (xS) | S ⊆ [n], |S| < �} = rkF{coef f (xS) | S ⊆ [n]},

where coef f extracts a coefficient in f .
I.e. the coefficient-vectors of ‘lower’ monomials already span every possible

coefficient-vector in f . We are interested in studying whether circuits compute
an �-concentrated polynomial for small � (say, log n instead of n). By itself this
is not true, e.g. the trivial circuit D = x1 · · · xn is not even n-concentrated. But,
maybe we can transform f a bit and then attain (log n)-concentration? In this case,
D′ := D(x1 + 1, . . . , xn + 1) is suddenly 1-concentrated!

It was shown by [ASS13] that any D, above R, becomes (log k)-concentrated after
applying a ‘small’ shift; the price of which is nlog k time. Once we have this it directly
applies to the set-multilinear depth-3 model. Since, a depth-3 C = ∑

i∈[k] Ti can be

rewritten as C = [1, . . . , 1] · D, where D =
⎡

⎢⎣
T1
...

Tk

⎤

⎥⎦ is of the promised sort over

R = Hk(F) (since D completely factorizes into disjoint-variate linear polynomials).
So, �-concentration in D implies an easy way to check C for zeroness—test the
coefficients of the monomials below �-support in C .

Glimpse of a proof We now show how to achieve �-concentration, � = O(log k), in
the following toy model:

D =
∏

i∈[n]
(1 + zi xi ), where zi ∈ Hk(F). (7.2)

Because of the disjointness of the factors it can be seen, as a simple exercise, that:
D is �-concentrated iff DS := ∏

i∈S(1 + zi xi ) is �-concentrated, for all S ∈ ([n]
�

)
.

Thus, from now on we assume, wlog, n = �.
Shift D by formal variables t, and normalize, to get a new circuit:

D′ =
∏

i∈[�]
(1 + z′

i xi ), where z′
i ∈ Hk(F(t)).

We can express the new coefficients as:

z′
i = zi/(1 + zi ti ), ∀i ∈ [�].

Conversely, we write:
zi = z′

i/(1 − z′
i ti ), ∀i ∈ [�]. (7.3)
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We write zS for
∏

i∈S zi . Now the goal is to ‘lift’ an F-dependence of zS’s to the
z′

S ; which ultimately shows the condition on the shift that shall yield concentration.
Consider the 2� vectors {zS | S ⊆ [�]}. If � > log k then there is a nontrivial

linear dependence amongst these vectors, say,

∑

S⊆[�]
αSzS = 0, where αS ∈ F.

Rewriting this in terms of z′
S we get:

∑

S⊆[�]
αS ·

∏

i∈S

z′
i/(1 − z′

i ti ) = 0.

Or,
∑

S⊆[�]
αS · z′

S ·
∏

i∈[�]\S

(1 − z′
i ti ) = 0. (7.4)

Let us collect the ‘coefficient’ of z′[�] in the above expression. It comes out to,

∑

S⊆[�]
αS · (−1)|[�]\S| · t[�]\S . (7.5)

If we can ensure this expression to be nonzero then Eq. (7.4) tells us that z′[�]
is in the F(t)-span of the ‘lower’ z′

S . But, ensuring the nonzeroness of Eq. (7.5) is
easy—use ti ’s such that all the (≤�)-support monomials tS are distinct. We can use
standard sparse PIT tricks [BHLV09] for this, in time poly(n�).

What we have shown is that, after applying a Kronecker-based shift, the circuit
D becomes �-concentrated; all this in time nO(log k). This ‘recipe’ of studying the
generic shift, via some combinatorial properties of the ‘transfer’ equations (7.3), is
generalized in [ASS13] to other D; and further improved in [FSS13] to multilinear
ROABP. The latter use a ‘primal’ interpretation of the ‘transfer’ matrix and show
that the linear transformation– corresponding to a Kronecker shift together-with the
truncation of the high-support monomials –behaves like a rank-extractor.

It is not known how to design such hitting-sets, even for the toy case, in poly-time.

7.4.2 Towards Multilinear Depth-3

It is tantalizing to achieve �-concentration in multilinear depth-3 (before embarking
on the general depth-3!). A partial result in that direction was obtained in [AGKS13].
We will sketch their ideas in a toy model.

Consider a multilinear depth-3 circuit C with only two partitions being induced
by the product gates—P1 = {{1}, · · · , {n}} and an arbitrary partition P2. Say, the
number of the corresponding product gates is k1 respectively k2 (summing to k).
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We can say, naturally, that P1 is a refinement of P2 (denoted P1 ≤ P2) because:
For every color (or part) S ∈ P2 there exist colors in P1 whose union is exactly S.
In this refinement situation [AGKS13] showed that, again, a suitable shift in the

∏ ∑

circuit D (corresponding to C) achieves �-concentration in time poly(nlog k).

Glimpse of a proof We can assume P2 different from P1, otherwise this case is
no different from the last subsection. We assume that the first k1 product gates in
C = ∑

i∈[k] Ti respect P1 and the rest k2 respect P2. The corresponding circuit

D where we desire to achieve concentration is D =
⎡

⎢⎣
T1
...

Tk

⎤

⎥⎦ over R = Hk(F).

But now the linear factors of D are not necessarily in disjoint variables. Example[
x1x2

x1 + x2

]
=

(
x1 +

[
0
1

]
· x2

)
·
([

0
1

]
+

[
1
0

]
· x2

)
over H2(F).

To get some kind of a reduction to the set-multilinear case, we prove rank
concentration in parts. First, we consider those monomials (called P1-type) that
could only be produced by the ‘upper’ part of D (i.e. the first k1 product gates
of C). Such a monomial, say indexed by S ⊆ [n], is characterized by the presence
of i, j ∈ S that are in the same color of P2. For a fixed such i, j we can “access”
all such monomials by the derivative ∂2D/∂xi∂x j =: ∂i, j D. Notice that this dif-
ferentiation kills the ‘lower’ part of D and only the P1-part remains. So, we can
prove (2 + log k1)-concentration in the monomials containing i, j as in Sect. 7.4.1.
This proves O(log k1)-concentration in the monomials of P1-type.

Next, we want to understand the remaining monomials (called P2-type); those
that could be produced by the ‘lower’ part of D (i.e. the last k2 product gates of C).
These, obviously, could also be produced by the upper part of D. Let us fix such a
monomial, say x1 · · · x�. Assume that S1, . . . , S� ∈ P2 are the colors that contain
one of the indices 1, . . . , �. Consider the subcircuit D� that in its i-th coordinate,
∀i ∈ [k], simply drops those factors of Ti that are free of the variables S1 ∪ · · · ∪ S�.
The problem here is that D� may be a ‘high’ degree circuit (≈ n instead of �) and so
we cannot use a proof like in Sect. 7.4.1.

But, notice that all the degree-(≥ �) monomials in D� are P1-type; where we
know how to achieve �-concentration. So, we only have to care about degree-(≤�)
P2-type monomials in D�. There, again, (log k)-concentration can be shown using
Sect. 7.4.1 and the well-behaved transfer equations.

This sketch, handling two refined partitions, can be made to work for significantly
generalized models [AGKS13]. But, multilinear depth-3 PIT is still open (nothing
better than exponential time known).

Remark 4.1 Using a different technique [AGKS13] also proves constant-
concentration, hence designs poly-time hitting-sets, for certain constant-width
ROABP.Thesemodels are arithmetic analogs of thebooleanones—width-2 read-once
branching programs [AGHP92, NN93] and constant-width read-once permutation
branching programs [KNP11].
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7.5 Open Ends

The search for a strong enough technique to study arithmetic circuits continues.
We collect here some easy-to-state questions that interest us.
Top fanin-2 depth-4 Find a faithful mapϕ that preserves the algebraic independence
of two products-of-sparse polynomials

∏
i fi and

∏
j g j . If we look at the relevant

2× 2 Jacobian determinant, say wrt variables X := {x1, x2}, then the question boils
down to finding a hitting-set for the special rational function

∑
i, j

detJX ( fi ,g j )

fi g j
. Can

this version of rational sparse PIT be done in subexponential time?
Independence overFp Currently, there is no subexponential timealgorithm/heuristic
known to test two given circuits for algebraic independence over a ‘small’ finite field
Fp. The reason is that something as efficient as the Jacobian criterion is not readily
available, see [MSS12].
Model in Eqn (7.2) Find a poly-time hitting-set for this simple model. Note that a
poly-time whitebox PIT is already known [RS05].
Multilinear depth-3 Achieve o(n)-concentration in multilinear depth-3 circuits, in
no(n) time. Here, the presence of an exponential lower bound against the model
[RY09] is quite encouraging.
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