
Chapter 4
Algebraic Complexity Classes

Meena Mahajan

Abstract This survey describes, at an introductory level, the algebraic complexity
framework originally proposed by Leslie Valiant in 1979, and some of the insights
that have been obtained more recently.

Keywords Algebraic complexity · Circuits · Formulas · Branching programs ·
Determinant · Permanent

Mathematics Subject Classification (2010) Primary 68Q15 · Secondary 68Q05

4.1 Introduction

In this survey, I am going to try and describe the algebraic complexity framework
originally proposed by Leslie and Valiant [Val79, Val82], and the insights that have
been obtained more recently. This entire article has an “as it appeals to me” flavour,
but I hope this flavour will also be interesting to many readers. The article is not
particularly in-depth, but it is an invitation to read [BCS97, Bür00a] and many recent
papers on the topic, and to start attacking the open problems in the area.

Valiant started outwith themissionof understanding the core essenceof reductions
and completeness, as witnessed in both recursive function theory and in computa-
tional complexity theory. He provided an algebraic framework in which to interpret
the clustering of natural problems into completeness classes, even for problems of
an algebraic rather than combinatorial nature. He had a remarkable hypothesis:

The idea for writing this survey came while the author was working on the Indo-French
CEFIPRA-supported project 4702-1.

M. Mahajan (B)

The Institute of Mathematical Sciences, CIT Campus, Chennai 600113, India
e-mail: meena@imsc.res.in

M. Agrawal and V. Arvind (eds.), Perspectives in Computational Complexity, 51
Progress in Computer Science and Applied Logic 26, DOI: 10.1007/978-3-319-05446-9_4,
© Springer International Publishing Switzerland 2014

52 M. Mahajan

Linear algebra offers essentially the only fast technique for computing multivariate polyno-
mials of moderate degree.

Clearly, then, we are going to talk about polynomials, not languages or functions.

4.2 Valiant’s Original Framework

Let F be any field, and let F[x1, . . . , xn] be the ring of polynomials over indeter-
minates x1, . . . , xn with coefficients from F. Consider a family (f) of polynomials
(fn)n≥1, where each fn is in F[x1, . . . , xs(n)] for some function s : N −→ N. When
should we say that (f) is tractable? Clearly, if there are too many variables to keep
track of, there cannot be tractability. So we will henceforth demand that s is a poly-
nomially bounded function (∃c,∀n, s(n) ≤ c + nc); then the nth polynomial fn has
O(nc) variables. But that is of course not enough.

There are many ways in which we can set the bar for tractability. Here’s a first
attempt. Can (f) be computed by a formula of reasonable size? To elaborate further,
a formula is an expression defined recursively:

1. for each c ∈ F, “c” is a formula of size 0 computing the polynomial c,
2. for each indeterminate xi , “xi” is a formula of size 0 computing the polynomial

xi , and
3. if F1, F2 are formulas computing polynomials f1 and f2, then “(F1 + F2)” and

“(F1 × F2)” are formulas of size size(F1) + size(F2) + 1 each, computing the
polynomials f1 + f2 and f1 × f2, respectively.

Notice that size(F) is just the number of ring/field operations used to construct F .
Instead of such a recursive definition, we could have a more intuitive picture: a

formula is a rooted binary tree where internal nodes are labelled + or × and leaf
nodes are labelled from the set F∪ X , where X is the set of indeterminates. The size
is just the number of non-leaf nodes.

Now, for tractability, we could require that there is a polynomially bounded func-
tion t : N −→ N and a family of formulas (Fn)n≥1 such that each Fn computes fn

and has size at most t (n). Let us use the notation VF to denote families of polyno-
mials tractable in this sense. (VF: Valiant’s Formulas—of course, Valiant didn’t use
this name! This class is also referred to as VPe: Valiant’s Polynomial-sized Expres-
sions. Personally, I prefer VF. Also note, in formal logic, the formulas/expressions
referred to above are called terms, hence VFmeans families with polynomial “termic
complexity”.)

Here’s a second attempt: Can (f) be computed by a straight-line program of
reasonable size? As before, we will declare polynomial size to be reasonable.
Straight-line programs are programs where instructions involve adding or multi-
plying previously computed polynomials, no divisions and no conditionals (no if-
then-else). In the more intuitive picture, they correspond to directed acyclic graphs
where each node is a source node (indegree 0) labelled from the set F ∪ X , or has

4 Algebraic Complexity Classes 53

indegree 2 and is labelled+ or×. A designated sink node (outdegree 0) is the output
node. Each node computes a polynomial in the obvious way, and the graph computes
the polynomial at the output node. (The acyclicity constraint ensures that there is a
linear ordering of the nodes such that each node, or instruction, only uses previously
computed polynomials. This gives the straight-line program.) The size is the number
of non-source nodes; again, this corresponds to the number of ring/field operations
required. Such graphs are in fact exactly algebraic circuits, and we now look for
polynomial size circuit families.

Clearly, this model generalises formulas. The catch is that it generalises it too
much! To see why, consider the following circuit family: Cn has n + 1 nodes
v0, v1, . . . , vn , and the labeling is v0 = x1, vi+1 = vi × vi for i ∈ [n]. The family
of polynomials (fn) computed by (Cn) is fn = x2

n

1 . Even for small integer values
of x1, writing down the value of fn(x1) is going to require exponentially many bits.
How can we say that such a family (fn) is tractable?

So we need to impose some additional restrictions. The obvious parameter to
restrict is the degree of the polynomial. Say that the family (fn)hasmoderate degree if
for somepolynomially bounded functiond : N −→ N, the degree of eachpolynomial
fn is at most d(n). If degree(fn) = D is polynomially bounded, then on integer
argumentswith b-bit representations, the value of fn requires nomore than poly(n, b)

bits. (In general, it needs no more than poly(n, D, b) bits.) Henceforth, to qualify for
the label tractable, a family (fn) must have polynomially bounded degree.

(Why didn’t we face this problem when considering VF? Simply because a for-
mula of size t cannot compute a polynomial of degree more than t + 1. Don’t just
believe me; check this by induction on formula size.)

Now we have our second possible definition of tractability: (fn) is tractable if the
sequence degree(fn) is polynomially bounded, and there is a polynomially bounded
function t : N −→ N and a family of straight-line programs, or algebraic cir-
cuits, (Cn)n≥1, such that each Cn computes fn and has size at most t (n). Let us
use the notation VP to denote families of polynomials tractable in this sense. (VP:
Valiant’s analogue of the Boolean complexity class P. Valiant called these families
p-computable [Val82]).

The well-studied polynomial family from linear algebra, the determinant of a
matrix of indeterminates, is known to be tractable in this second sense. (To define
the family (Detn), imagine an n × n matrix An with a new indeterminate xi j at each
position (i, j), and let Detn be the polynomial that represents the determinant of An .
Thus Det1 = x11, Det2 = x11x22 − x12x21, and so on. Clearly, this family satisfies
the mandatory conditions: Detn has n2 variables and is of degree n.) This is not
surprising; we know that the determinant can be computed efficiently (in polynomial
time) over instantiated matrices using, say, Gaussian elimination. But to compute the
symbolic determinant via a straight-line program, Gaussian elimination is apparently
not directly of use because we can’t search for nonzero pivots and eliminate them
(remember, no divisions and no conditionals). However, Strassen [Str73] gave a
generic method of converting any straight-line program with divisions to a division-
free straight-line program; the resulting program’s size is polynomially bounded in
the original size, the number of variables and the degree. Thus, we can conclude

54 M. Mahajan

that there are polynomial-sized straight-line programs for the symbolic determinant.
There are more direct algorithms as well; Samuelson, Berkowitz, Csanky, See
[MV97] for an explicit description of circuits of size O(n4) (my favourite one—no
surprise!).

Whether the determinant can be computed efficiently by formulas (is Detn in
VF?) is still famously open. We know that it needs formula size at least �(n3), see
[Kal85]. But we do know that it can be computed by formulas of subexponential
size 2O(log2 n). This can be shown in many different ways, one of which we will look
at a bit later, but the earliest demonstration of this follows from Csanky’s algorithm
[Csa76], which uses binary arithmetic operations and O(log2 n) parallel time. Thus,
if we use quasi-polynomial (2log

c n for some constant c) formula-size as the defining
property for tractability (giving a class that we can call VQF), then again the family
(Detn) has long been known to be tractable. We could also use quasi-polynomial
circuit size as the defining property for tractability, giving a class that we can call
VQP. But VQP obviously contains VP and VQF, so (Detn) is in VQP; nothing new
there. (Note: in defining VQF and VQP, the quasi-polynomial limit on formula or
circuit size is over and above the requirement that the degree and number of variables
are polynomially bounded.)

Does VP include essentially all interesting and natural polynomial families? We
do not know. In fact, there is a large list of such polynomial families not known to
be in VP. The most natural one is the permanent family (Permn) where Permn is the
polynomial representing the permanent of an n × n matrix An of indeterminates. It
is tantalisingly similar to the determinant; just the sign term is missing.

Detn =
∑

σ∈Sn

sign(σ)

n∏

i=1

xiσ(i) Permn =
∑

σ∈Sn

n∏

i=1

xiσ(i)

Yet, it does not seem to be tractable. How “intractable” is it?
Mirroring the definitions of the Boolean complexity classes P andNP,Valiant pro-

posed a notion of p-definability in [Val79]. A polynomial family (fn) is p-definable
if it can be written as an exponential sum, over partial Boolean instantiations, of
another tractable family. Formally, a family (fn) over s(n) variables and of degree
d(n) is p-definable if s(n) and d(n) are polynomially bounded, as always, and further,
there exist a polynomially bounded function m, and a family of polynomials (gn) in
VF, such that gn has s(n) + m(n) variables denoted {x1, . . . , xs(n), y1, . . . , ym(n)},
and

fn(x̃) =
1∑

y1=0

1∑

y2=0

· · ·
1∑

ym(n)=0

gn(x̃, ỹ).

This looks like an algebraic analogue
∑ ·VF of the boolean class ∃·F , where F is the

class of languages decided by polynomial-size formulas. But it is well-known that
∃ · F = NP, so this should be algebraic NP. Later, Valiant redefined p-definability
(no, that is not a circular definition!) as exponential sums of families in VP, rather

4 Algebraic Complexity Classes 55

than VF; that is, VNP = ∑ ·VP. For clarity, let us agree to temporarily refer to
these two definitions as VNF (or VNPe) and VNP. However, Valiant [Val82] showed
that these two classes are in fact the same, so just VNP will do. The proof involves
showing that VP is contained in

∑ ·VF. And it is of course easier to show upper
bounds with the definition of VNP rather than VNF.

Now Valiant observed that not only (Detn), even (Permn) is p-definable. This
should be similar to showing that the 0–1 permanent is in #P, right? Almost. We
are dealing with symbolic polynomials, so we do not have the liberty of looking at
an input value and deciding what to do next. Still, the basic idea is the same. For
a statement S, let [S] denote the 0–1 valued Boolean predicate that takes value 1
exactly when S is true. Then

Permn =
∑

σ∈Sn

n∏

i=1

xiσ(i) =
∑

Y∈{0,1}n×n

⎡

⎣
Y is a 0 − 1
permutation
matrix

⎤

⎦ ·
n∏

i=1

⎛

⎝
n∑

j=1

Yi j xi j

⎞

⎠

⎡

⎣
Y is a 0 − 1
permutation
matrix

⎤

⎦ = [Y has at least one 1 in each row]

× [Y has at most one 1 in each line

(line = row or column)]

=
⎛

⎝
n∏

i=1

n∑

j=1

Yi j

⎞

⎠

⎛

⎜⎜⎜⎜⎜⎝

∏

(i, j) 	=(k.m);
i=k or j=m

(1 − Yi j Ykm)

⎞

⎟⎟⎟⎟⎟⎠

Clearly, the polynomial family

gn =
⎛

⎝
n∏

i=1

n∑

j=1

Yi j

⎞

⎠

⎛

⎜⎜⎜⎜⎜⎝

∏

(i, j) 	=(k.m);
i=k or j=m

(1 − Yi j Ykm)

⎞

⎟⎟⎟⎟⎟⎠

n∏

i=1

⎛

⎝
n∑

j=1

Yi j xi j

⎞

⎠

has formulas of size O(n3), and Permn(x̃) = ∑
Y∈{0,1}n×n gn(x̃, Y), so (Permn) is in

VNP.
So we have some families in VP (even VF), and some in VNP but maybe not in

VP. How do we compare families? For comparing languages, we have many-one
reductions and Turing reductions—what is the algebraic analogue? Valiant proposed
projections, a most restrictive kind of reduction when dealing with Boolean classes,
but completely natural in the algebraic context. We say that g ∈ F[y1, . . . , ym] is
a projection of f ∈ F[x1, . . . , xn] if g can be obtained from f by substituting a

56 M. Mahajan

value in F ∪ Y for each variable in X . (For instance, if f = x1x2 + x3x4, then the
following are all projections of f : y1 + y2, y1y2 + 5, y1y2 + y2y3, 2y2. But y21 y2,
y1 + y2 + y3 are not, because a projection cannot increase the degree or number of
monomials.) Further, we say that a family (gn) is a p-projection of a family (fn) if
each gn is a projection of some fm for an m not too far from n. That is, there is a
polynomially bounded function t , and each gn is a projection of ft (n). If we allow t
to be quasi-polynomially bounded, we obtain qp-projections.

Using these notions of reductions, we have the usual notions of hardness and
completeness for algebraic classes. Here’s what Valiant showed:

1. (Detn) is hard for VF under p-projections (and is known to be in VP).
2. (Detn) is complete for the class of quasi-polynomial size formulas VQF under

qp-projections.
3. Over fields with characteristic other than 2, (Permn) is complete for VNP under

p-projections. Over fields of characteristic 2, Permn equals Detn and hence is in
VP and VQF.

4. Polynomial families associated with a number of NP-complete languages are
complete for VNP under p-projections.

The first two follow from a proof that a polynomial computed by a size s formula
is a projection of Dets+2. (It uses the combinatorial definition of determinant. as the
signedweighted sumof cycle covers in an associated graph.) The hardness of (Permn)

for VNP mirrors the hardness of the Boolean permanent for the counting class #P .
As in the case of the upper bound, additional care is needed to take into account non-
access to an input instance and fully symbolic computations; in particular, the proof
requires a multiplicative inverse of two and hence fails over fields of characteristic
2. See [Val79, BCS97, Bür00a] for various versions of these proofs. See [Blä13] for
a simplified gadget construction.

4.3 The Current Status

We now know much more about the classes VF, VP, VQP, VNP defined above, and
about other similarly defined classes. Let’s review these results one by one.

Say that a family of polynomials (fn) is a p-family if the number of variables in
fn and the degree of F are polynomially bounded functions of n. We only consider
p-families.

Recall that VP consists of p-families with polynomial-sized circuits. Also note
that algorithmically, circuit size roughly corresponds to number of processors needed
in a parallel algorithm (associate one processor per gate), while circuit depth—the
length of a longest path from the output node to an input node—corresponds to
parallel time.

A clever construction due to Hyafil [Hya79] shows that any polynomial of degree
D in M variables, computable by a circuit of size t , can be computed in parallel time
O(log D × log(D2t + M)). This is a depth-reduction of the circuit, and generalises

4 Algebraic Complexity Classes 57

Csanky’s result which was specifically tailored for the determinant. Further, this
algorithm has parallel multiplicative depth only O(log D); that is, any root-to-leaf
path goes through at most O(log D)multiplication nodes. This is worth noting since
multiplication seems a more costly operation than addition or subtraction. Unfortu-
nately, the resulting circuit, while shallow and depth-reduced, is rather large, roughly
t log D . Applying this constructionwould take us frompolynomial size circuits to shal-
low quasi-polynomial size circuits. Soon after this, an improved construction was
presented by Valiant et al. [VSBR83]; they achieved the same depth-reduction (and
also O(log D)multiplicative depth) with size polynomial in t D. In particular, apply-
ing this construction to a circuit family (Cn) witnessing that a polynomial family
(fn) is in VP, we see that (fn) is in VSAC1 ⊆ VNC2.

Wait, what exactly are these new classes? Again, we can think of them as ana-
logues of Boolean classes. The Boolean circuit class NCi has circuits of polynomial
size and O(logi n) depth. The class SACi is similarly defined, polynomial size,
O(logi n) ∧-depth, and negations only at inputs. That is, if ∨ nodes are allowed
to have unbounded in-degree, but ∧ nodes must have in-degree 2, then these cir-
cuits have depth O(logi n). (Hence the name SAC, for semi-unbounded alternation.)
Clearly, NCi ⊆ SACi ⊆ NCi+1. Now define the classes VNCi and VSACi as alge-
braic analogues of these, with × and + playing the roles of ∧ and ∨, respectively.
In the Boolean world, we know that NC1 ⊆ SAC1 ⊆ NC2 ⊆ · · · ⊆ NC ⊆ P. In the
algebraic world, however, VNC1 ⊆ VSAC1 = VNC2 = · · · = VNC = VP.

An important consequence of the depth reduction result of [VSBR83] is that the
(Detn) ∈ VQF result generalises to all of VP; VP ⊆ VQF. Another important
consequence is that at quasi-polynomial size, formulas are as powerful as circuits;
VQF equals VQP. Such an equivalence is not known for p-families at polynomial
size. (It holds at exponential size, because polynomials in any p-family have only
exponentially many monomials. An explicit sum-of-monomials expression gives an
exponential-sized formula.)

Even before the results of [Hya79, VSBR83], Brent [Bre74] had shown that depth-
reduction is possible for VF. Any formula F can be rebalanced by identifying in it a
suitably chosen node N and rewriting F as a linear form in N , say AN + B. If N is
properly chosen, then the polynomials A and B are computed by small subformulas
(size at most half of F) of F , and can be recursively rebalanced. The appropriate N
is identified by using the tree separator lemma. This process yields a O(log size(F))

depth formula. Thus, we conclude VF = VNC1.
The depth reduction for VP from [VSBR83] proceeds similarly, but works on

“proof-trees” or parse trees. Unfolding a circuit into a formula by systematically
duplicating reused nodes may yield an exponential-sized formula (recall the example
X2n

.) Let us nonetheless do so. Now, a minimal subformula that includes the output
node, both children of an included × node, and exactly one child of an included
+ node, computes a potential monomial whose degree is the number of leaf nodes
in the subformula. Call such a subformula a proof tree. For a circuit computing a
p-family of polynomials, we can ignore proof trees of super-polynomial size. For
each polynomial-sized proof tree, the balancing technique described above should
work. The catch is, there can be too many proof trees (there can be exponentially

58 M. Mahajan

many monomials), and each proof tree could require cutting at a different node. The
clever twist is the following: in the formula depth-reduction, A can be computed
recursively because it is the partial derivative of F with respect to N . If F is now
a circuit rather than a formula, then F may not be linear in N , so computing the
partial derivative will not help. But if N is chosen to have degree more than half the
degree of F , then this is indeed the case. So, the algorithm of [VSBR83] computes,
for each pair of nodes N , N ′, a new polynomial F(N , N ′); these polynomial are
recursively constructed, and whenever 2degree(N) > degree(N ′), F(N , N ′) equals
the partial derivative of N ′ with respect to N . Putting this together carefully gives
the depth-required circuit. For details, see [VSBR83] itself. Also see [AJMV98a,
Vol99] for uniform versions, where the task of describing the depth-reduced circuit
given the original circuit is achieved using limited computational resources.

A couple of things slipped by almost unnoticed. We know what is meant by
the degree of a polynomial, but what do we mean by degree(N)? This should be
the degree of the polynomial computed at the node N , and indeed [VSBR83] use
degree in this sense. But the uniform versions cannot do so, because computing the
degree of a specified node in a given circuit is a completely non-trivial task! See the
discussion about DegreeSLP in [ABKPM09, Kay10]. Fortunately, we can equally
easily work with an upper bound on the degree of each node. And an upper bound
u(N) on the degree at each node N is easy to obtain: u(N) = 1 if N is a leaf,
u(N1 + N2) = max{u(N1), u(N2)}, u(N1 × N2) = u(N1) + u(N2). This upper
bound is referred to as the complete formal degree of the circuit (as opposed to the
degree of the polynomial it computes). However, just because the output node of C
computes a polynomial of degree d, this does not imply that each node computes a
polynomial of degree at most d. Higher degree monomials may get computed along
the way, and get cancelled finally. Is it necessary, in terms of efficiency, to compute
them? No! If C is of size s and computes a polynomial f of degree d, then we can
construct a circuit C ′ of size O(sd2) computing the same polynomial and with each
node computing a polynomial of degree at most d: just compute the homogeneous
parts of f separately in the obvious way. Now C ′ will have complete formal degree
O(d3s). (See [MP08] for details.) Thus,we could have defined VP in terms of circuits
of polynomial size and polynomially bounded complete formal degree as well.

There is a much simpler proof of the fact that VP is contained in VNC. This proof
yields a weaker upper bound of VSAC2 rather than VSAC1, but is still beautiful, and
is still enough to conclude that VP ⊆ VQF. I first saw this proof in a survey talk by
Koiran at Dagstuhl [Koi10], and I wish I had come up with it myself! Let (fn) be
in VP, as witnessed by a circuit family (Cn) with complete formal degree bounded
by (dn). To depth-reduce Cn , partition the nodes into 1 + �log dn� parts; part k has
nodes with formal degree in [2k−1, 2k). Treating the polynomials from parts i < k
as variables, the nodes in part k form a skew circuit, where each × node has at most
one child that is not an input node. (Multiplying two nodes both in part k would
create high degree, giving rise to a node in part k + 1.) Now, skew circuits can be
depth-reduced to VSAC1 rather easily, using a divide-and-conquer argument dating
back to Savitch [Sav70]. Doing this separately for each part gives a VSAC2 circuit.

4 Algebraic Complexity Classes 59

We just introduced a new kind of circuit there: skew circuits. Are they as powerful
as general circuits? We do not know! Let’s define VPskew; p-families of polynomials
computed by polynomial-sized skew circuits. It turns out this is a great class to
study, because it exactly characterises the complexity of the determinant. Recall
what we have already seen; (Detn) is hard for VF = VNC1 and is in VP. The
upper bound proof from [MV97] actually gives a skew circuit of size O(n4), but
skew circuit constructions were knownmuch earlier: in [Ven92], Venkateswaran first
defined Boolean skew circuits to capture nondeterministic circuits, and subsequently
many authors independently extended that study to arithmetic rings, [Dam91, Tod92,
Vin91, Val92]. And the lower bound proof from [Val79] shows that polynomials
computed by skew circuits are p-projections of the determinant, though it is not
stated this way. Valiant showed that a formula can be converted to a certain kind of
graph that we nowadays call an algebraic branching program or ABP (more about
this below), and that polynomials computed by ABPs are p-projections of (Detn).
And we now know that ABPs are essentially skew circuits.

Time to define ABPs. These are directed acyclic graphs, with a designated source
node s and a designated target sink node t (sometimes there may be multiple target
nodes), and with edges labelled from F∪ X (similar to input nodes in a circuit). For
any directed path ρ, the weight of ρ is the product of the labels of the edges on ρ.
The polynomial pv computed at a node v is the sum of the weights of all directed
sv paths. The polynomial computed by the ABP is just pt . Families computed by
polynomial-size ABPs form the class VBP. (In some parts of the literature, edge
labels are allowed to be linear forms in X . This does not significantly change the
properties of ABPs as we discuss here. We’ll stick to the convention that labels are
in F ∪ X .)

So why are ABPs and skew circuits essentially the same? ABPs to skew circuits:
clearly, ps = 1, and for any other source node (in-degree 0) s′, ps′ = 0. Look at
an edge u → v of the ABP with label �. Then pv has a contribution from pu × �.
Summing this over all incoming edges at v gives a small circuit computing pv from
previously computed values, and this circuit is skew. For the reverse simulation,
reverse this construction: (1) introduce a source node s, (2) for each input node u
labelled �, add an edge s → u labelled �, (3) for each node v = u + u′, create edges
u → v and u → v labelled 1, and (4) for each node v = u ×�, create an edge u → v

labelled �.
So now we can add to the list of results at the end of Sect. 4.2: (Detn) is complete

for VBP = VPskew under p-projections.
In fact, we can add more. What makes the simulation from skew circuits to ABPs

possible is the fact that at each × gate, one argument is easy. Toda [Tod92] took
this argument further—it is enough if one argument is independent of the rest of
the circuit. That is, for each × node α = β × γ, the entire sub-circuit rooted at
either β or γ has no connection to the rest of the circuit except via this edge to α.
(Equivalently, one of the edges into α is a bridge in the circuit.) Call such circuits
weakly skew circuits. Toda showed that weakly skew circuits can be converted to
skew circuits with linear size blow-up. See also [MP08], where Malod and Portier

60 M. Mahajan

made the size bounds in the conversions even more precise. So now we can say
VBP = VPskew = VPws , where the subscript ws stands for weakly skew.

(Note: Neither [Tod92] not [MP08, Mal03] actually claimed linear size blow-up.
However, their constructions from weakly skew circuits to ABPs, with the standard
conversion from ABPs to skew circuits, does give linear blow-up. As far as I can see,
linear blow-up for weakly skew to skew circuits was explicitly observed in [KK08,
Jan08, Gre12a].)

Taking this idea further, Malod and Portier provide a brilliant characterization
of the class VP. Say that a circuit is disjoint if at every node α = β ◦ γ, where
◦ could be + or ×, the sub-circuits rooted at β and γ are disjoint. This is just a
fancy (convoluted?) way of saying that the circuit is a formula. But now relax this
constraint a bit. Say that a circuit is multiplicatively disjoint orMD if at every× node
α = β × γ, the sub-circuits rooted at β and γ are disjoint. No restrictions apply to +
nodes. Like formulas, MD circuits of size s have complete formal degree bounded
by s. But the MD restriction seems to allow more computation than formulas; for
instance, weakly skew circuits are MD, and so MD circuits can compute (Detn) in
polynomial size. Malod and Portier showed that in fact polynomial size MD circuits
can compute everything in VP, but nothing more. That is, VP = VPMD. While this
fact can also be deduced once we have depth reduction to VSAC1, Malod and Portier
give a completely self-contained combinatorial proof which is very neat. Basically,
imagine that each node in the VP circuit is labelled with its formal degree. Now
make multiple copies of each node, inversely proportional to the formal degree. By
carefully deciding which copies of its children to use to construct a copy of a node,
multiplicative disjointness can be achieved with only polynomial blow-up in size.

A nice consequence of this characterisation of VP is a simpler proof of the fact that
VP is contained in

∑ ·VF.The key observation used is that a circuit ismultiplicatively
disjoint exactly when every proof tree is already a subgraph of the circuit (even
without any unfolding into a formula). See [MP08] for details.

Beforewemove on,we note another surprising relation betweenABPs and formu-
las: VF equals the class of p-families computed by polynomial-sizeABPs of constant
width. What is this resource “width”? Recall that an ABP is a DAGwith edges going
“in the direction from s to t”. Suppose we impose a layering constraint. The nodes of
the DAG must be laid out at the vertices of a rectangular w × � grid, the node s must
be at position (S, 1) for some S ∈ [w], the node t must be at position (T, �) for some
T ∈ [w], and edges can only go across one layer, from (i, k) to (j, k + 1) for some
i, j ∈ [w], k ∈ [�−1]. Of course, any ABP can be converted to one of this form: just
sub-divide edges when necessary and label the sub-division path so that its weight
is the original edge’s label (use lots of 1s). Now we say that w is the width of the
layered ABP and � is the length. A bounded-width branching program family (Bn)

is one where for some absolute constant c, each Bn has width at most c. Seems quite
a squeeze – if we view moving from s towards t as an incremental computation, then
at each stage we can carry forward just c intermediate polynomials. We shouldn’t
be able to do much this way, right? Wrong! Ben-Or and Cleve [BOC92] showed, in
a proof cleverly extending Barrington’s famous characterisation [Bar89] of NC1 by
Boolean bounded-with branching programs, that every formula of depth D has an

4 Algebraic Complexity Classes 61

equivalent bounded-width branching program (that’s quite a mouthful; let’s agree to
call it BWBP) of length 4D and width just 3! Since we already know that formulas
can be depth-reduced and VF equals VNC1, we see that VF is contained in a class
that we can name VBWBP: polynomial-sized constant-width ABPs. The converse
inclusion is easily seen to hold, again using a Savitch-style divide-and-conquer. Thus,
we have another characterisation of VF.

As a matter of curiosity, one may want to know: is the width-3 upper bound
tight? Allender and Wang [AW11] recently settled this question affirmatively: they
show that a very simple polynomial cannot be computed by any width-2 ABP, no
matter what the length. On the other hand, width-3 ABPs are universal, since every
polynomial family has some formula family computing it. The question is one of
efficiency: which families have polynomial-size width 3 ABPs?

OK, so we’ve had a plethora of class definitions, but just a handful of distinct
classes: VF = VPe = VNC1 = VBWBP, VBP = VPskew = VPws, VP = VPMD,
VQF = VQP, VNF = VNP.

As stated in [Bür00a], Valiant’s hypothesis says that VNP 	⊆ VP, and Valiant’s
extended hypothesis says that VNP 	⊆ VQP. Over fields of characteristic not equal to
2, these imply: Permn is not a p-projection of Detn , and Permn is not a qp-projection
of Detn , respectively.

Some miscellaneous results, in no specific order:

1. Let SymDetn be the polynomial that represents the determinant of a symmetric
n × n matrix of indeterminates Bn . (For instance, SymDet2 = x11x22 − x212.)
Clearly, (SymDetn) is a p-projection of (Detn). The converse is also almost
true. As shown by Grenet et al. in [GKKP11], over any field of characteristic
other than 2, Detn is a projection of SymDetn3 . Characteristic 2 is a problem:
symmetric matrices correspond to undirected graphs, so each undirected cycle
gives rise to two directed cycles, and so to get a projection we need division by
2. In characteristic 2, Detn itself is provably not a projection of SymDetm for any
m; see [GMT13]. The best that we can currently say in characteristic 2 is that the
squared determinant (Detn)2 is a projection of SymDet2n3+2; this is also shown
in [GKKP11].

2. VQP is also characterized by quasi-polynomial-size weakly skew circuits of poly-
nomial degree. (From [VSBR83] it follows that VQP = VQF; hence the above
characterization. A direct proof is presented in [MP08].) Several natural poly-
nomials are complete for this class under qp-reductions: the (Detn) family, of
course, but also, the trace of iterated matrix product and the trace of a matrix
power. These families are all complete for VBP under p-reductions.

3. While we do not know the exact relationship betweenVQP and VNP, (they both
contain VP), we do know that VQP does not equal either VP or VNP. Bürgisser
([Bür00a], Sect. 8.2) has shown that there is an explicit family of polynomials
(fn) in VQP that is provably not in VNP, let alone in VP. This family is defined
as follows: Consider numbers in base n. Let μ range over all such numbers with
m(n) = �log n� digits. More precisely, let μ range over length-m(n) sequences
over the alphabet {0, 1, . . . , n−1}, and let kn(μ) denote the value of this sequence,

http://dx.doi.org/10.1007/978-3-319-05446-9_8

62 M. Mahajan

kn(μ) = ∑m(n)
j=1 μ j n j−1. Define fn as:

fn(x1, . . . , xm(n)) =
∑

μ∈{0,...,n−1}m(n)

22
kn (μ)

m(n)∏

j=1

x
μ j
j

Exploiting the fact that the distinct double exponentials appear as coefficients in
fn , Bürgisser shows that fn cannot be in VNP.
Furthermore, using m(n) = �logi n� gives a family of polynomials f i in VQP

with size O(nlogi n) but provably not in size O(nlogi−1 n), so within VQP there is
a strict hierarchy.

4. From theqp-completeness of (Detn) forVQP, and the p-completeness of (Permn)

for VNP, it follows that VNP ⊆ VQP if and only if (Permn) is a qp-projection
of (Detn). This is a very long-standing open question. Originally, the question of
whether (Detn) and (Permn) are p-equivalent was posed by Pólya [Pól13], who
also showed that there is no way of expressing the permanent as the determinant
by only changing the signs of selected entries (except for n = 2; flip the sign of
a12 to get matrix B withDet(B) = Perm(A)). (I haven’t myself seen Pólya’s note,
but have seen it referred to in various places.) Marcus and Minc [MM61] showed
that there is no size-preserving transformation (Permn to Detn), even if we relax
the notion of projections to allow linear form substitions for each variable. For
many years, a linear lower bound was the best known (�(

√
2n) due to [vzG87,

Cai90, Mes89]), until Mignon and Ressayre [MR04] showed that over the fields
of characteristic 0 (eg real or complex numbers), even if linear form substitutions
are allowed in projections, to express Permn as a projection of Detm , we need
m ≥ n2/2. The same lower bound was obtained for fields of characteristic other
than 2 by Cai et al. [CCL10]. From Ryser’s work [Rys63] it follows that Permn is
a projection of Detm for somem < n22n . More recently, Grenet showed [Gre12b]
via a very simple and neat construction that Permn is a projection of Detm for
m = 2n − 1. This is the best known so far. Thus there is a huge gap between the
lower and upper bounds on what is called the determinantal complexity of the
permanent.

5. It is natural to believe that the complexity of a p-family (fn) in this framework
is closely related to the computational complexity of evaluating fn for a given
instantiation of its variables. In [Bür00b], Bürgisser gave this belief a firm footing.
Consider a p-family (fn)where fn depends on n variables.Define its Boolean part
BoolPart(f) as a string function mapping x ∈ {0, 1}n to the binary encoding of
fn(x).Note thatwehave considered onlyBooleanvalues. Even so, evaluationmay
seem difficult, because the circuits for (fn) can involve arbitrary constants from
the field. Bürgisser showed that assuming the generalised Reimann hypothesis
GRH, over fields of characteristic zero, BoolPart(VP) has non-uniform multi-
output NC3 circuits. Furthermore, assuming GRH, if Valiant’s hypothesis is false
over such a field, then the entire polynomial hierarchy has (non-uniform) NC
circuits.

4 Algebraic Complexity Classes 63

6. An extreme depth reduction result is given by the highly influential paper of
Agrawal and Vinay [AV08]. To first see the context, note that any polynomial
in n variables with degree d has an unbounded fan-in depth-2 circuit of size
2O(d+d log n

d). (If d ∈ �(n), then 2O(d) suffices, otherwise the second term in the
exponentmakes up.) This is becausewe can just explicitly compute allmonomials
of degree at most d, and add up the required ones with suitable weights. Now, can
we find circuits substantially better than this, say even 2o(d+d log n

d), if we allow
depth to be increased a bit?Agrawal andVinay showed that indeed this is possible,
even with depth 4, provided there is some circuit (not necessarily depth-reduced)
of that size to beginwith. The idea is extremely simple. Peform the depth reduction
from [VSBR83] or [AJMV98b], and ensure with some additional care that degree
provably drops at × gates. (The price for this is small: a × gate may have fanin
upto 6, instead of 2.) Now, choose a horizontal cut in the depth-reduced circuit so
that for the sub-circuit above it, and for the sub-circuits below it rooted at gates
on the cut, the “brute-force” construction described above is small. Obviously
there is a trade-off: if the cut is too high up, the lower sub-circuits can have large
explicit forms, but if it is too low down, the upper sub-circuit can have large
explicit forms. Cut in the right place, and everything works out!

Subsequently the extreme depth-reductions have been pushed further; see
[Koi12, Tav13, GKKS13b]. The lower bound results of [GKKS13a, FLMS13]
show that the depth reduction upper bound from [Tav13] is tight and cannot be
pushed any further.

This has significant implications for the quest for derandomizing algorithms
for the well-studied problemACIT (arithmetic circuit identity testing)—checking
if a given circuit computes the identically zero polynomial. But that is not directly
connected with this survey. One question it raises here is: what kind of extreme
depth reduction can we achieve for VQP? Can we stay within quasi-polynomial
size?

4.4 The Syntactic Multilinear World

Muchof the study concerningVP andVNP involves the families (Detn) amd (Permn).
The polynomials in both families are multilinear. In principle, to compute a multilin-
ear polynomial via a circuit, we need never compute intermediate polynomials that
are not multilinear. Let us call such circuits, where the polynomial computed at each
node is multilinear, multilinear circuits. However, often it is the case that allowing
non-multilinear terms at intermediate stages, and eventually cancelling them out,
allows more efficient computation (smaller circuits). This leads to the following
quest: what kind of multilinear p-families have efficient multilinear formulas, or
even multilinear circuits, where each intermediate polynomial is required to be mul-
tilinear? Even for the (Detn) family, which we know is multilinear and in VP, we do
not know of polynomial size multilinear circuits. That being the case, can we prove
lower bounds?

64 M. Mahajan

This question is trickier than it seems at first glance, because given a circuit,
even checking whether it is multilinear is non-trivial. Fournier, Malod and Mengel
[FMM12] recently observed that checking multilinearity of a given circuit is com-
putationally equivalent to the well-studied problem arithmetic circuit identity testing
(ACIT)—checking if a given circuit computes the identically zero polynomial.

So we may want a notion of certifiably multilinear circuits. One such notion is
that of syntactic multilinearity, SM. A circuit is said to be syntactically multilinear
if at every × node α = β × γ, the sub-circuits rooted at nodes β and γ operate on
disjoint sets of variables. Note that this is much more restrictive than multiplicative
disjointness. But it certifies multilinearity, since no variable can ever get multiplied
by itself. And syntactic multilinearity is easy to check computationally: it is violated
if there is some node α = β × γ, some variable x , two input nodes I, I ′ labelled x ,
and paths from I to β and I ′ to γ.

If a family has efficient (polynomial-sized) SM circuits, then it has efficient mul-
tilinear circuits. The converse may not be true. But it is true if we look at formulas.
Given a multilinear formula, identify an SM violation α,β, γ, x as above. Then we
know by multilinearity of the polynomial p(α) that x does not appear in either p(β)

or p(γ). In the appropriate subformula, set all instances of x to 0; the polynomials
computed at and above α remain unchanged. Doing this systematically gives an SM
formula of size no more than the original multilinear formula.

In the first major breakthrough, Raz [Raz09] showed that for computation by SM
formulas, and hence by multilinear formulas, both (Detn) and (Permn) need size
n�(log n). Clearly, this also means that they are not in SM-VNC1.

Since (Detn) is in VP and even in VBP, SM-VF is strictly weaker than VBP. But
this is hardly a fair comparison: we have restricted VF to be SM, but not VBP and
VP. Can we say that SM-VF is strictly weaker than SM-VBP or SM-VP? We do not
know whether (Detn) is in multilinear VP, let alone SM-VP, so a different family
is needed as a separating example. Such an example was provided soon thereafter,
again by Raz [Raz06]. He constructed an explicit polynomial family that is in SM-
VP and even in SM-VSAC1, and showed that it needs SM-formula size n�(log n) and
hence is not in SM-VNC1. Improved lower bounds for constant-depth circuits and
subclasses of formulas were subsequently obtained by Raz, Shpilka and Yehudayoff
(see for instance [RY09, RSY08]).

Let’s step back a bit.Whydidwe say “inSM-VP, and even inSM-VSAC1”?Aren’t
VP and VSAC1 the same?Well, we know that VP and VF can be depth-reduced. But
canwe assume that these depth reduction tehniques preserve syntacticmultilinearity?
Fortunately, they do; Raz and Yehudayoff [RY08] showed that the depth reduction
of [VSBR83] preserves SM, so indeed SM-VP= SM-VSAC1. Similarly, in [JMR12]
it is observed that the formula depth reduction of [Bre74] also does preserves SM,
so SM-VF= SM-VNC1.

What about other relationhips between the algebraic classes? We had considered
ABPs—what certifies multilinearity there? It is easy to see that a read-once restric-
tion, where on each path in the ABP each variable appears as a label at most once,
does so. Let us therefore use read-once as the definition of syntactic multilinearity
in ABPs. Then, as observed in [JMR12], the Savitch-style divide-and conquer argu-

4 Algebraic Complexity Classes 65

ment preserves SM. So does the conversion from formulas to ABPs, [Val79]. But the
conversion from formulas to width-3 ABPs, [BOC92], does not. In fact, Rao [Rao10]
showed that even a significant generalisation of Ben-Or and Cleve’s technique, using
polynomially many registers instead of just 3, cannot preserve syntactic multilinear-
ity. Of course, there may be other ways of going from SM-VF to SM-VBWBP, but
it could equally well be that the classes are distinct.

To get back perspective, in the SM world what we have seen so far is:

SM-VBWBP ⊆ SM-VF ⊆ SM-VBP ⊆ SM-VP

Asmentioned earlier, Raz [Raz06] showed that the inclusion from SM-VF to SM-VP
is proper. Very recently, this was improved by Dvir et al. [DMPY12]. They showed
that in fact the inclusion SM-VF ⊆ SM-VBP is strict. Whether the first and the last
inclusion are strict is still open.

The proof of [DMPY12] is a clever adaptation of the original technique from
[Raz06]. Let us briefly examine this.

The central ingredient in Raz’s proof is randomly partitioning the variables and
analysing the rank of the resulting partial derivatives matrix. Consider a polynomial
f on 2n variables X = {x1, . . . , x2n}, and consider a partition of X into equi-sized
sets Y , Z . Consider a 2n × 2n matrix MY,Z

f where rows and columns are indexed by
subsets of Y and Z (equivalently, multilinear monomials over Y and Z , respectively).
The entry (my, mz) is the coefficient of the monomial my · mz in f . Intuitively, if
MY,Z

f has high rank, then f should be hard. But high rank with respect to what
partition? Raz showed that if multilinear f has small SM-formula size, then for
at least one partition (Y, Z) of X , MY,Z

f will have low rank. (The existence of the
partition witnessing low rank is proved using the probabilistic method; choose a
partition at random, and analyse the probability that the resulting matrix has rank
exceeding some threshold.) He also constructed an explicit family g in SM-VSAC1

and showed that for every partition (Y, Z) of X , MY,Z
g has high rank; hence g is not

in SM-VF.
The non-trivial adaptation done in [DMPY12] is to consider not all partitions,

but a fairly small set of what they call arc-partitions. They showed that if f is in
SM-VF, then for at least one arc-partition (Y, Z) of X , MY,Z

f will have low rank.
They consider an explicit family g in SM-VBP and show that for every arc-partition
(Y, Z) of X , MY,Z

g has high rank. Hence g is not in SM-VF. The low-rank proof is
again probabilistic, but it has a very appealing combinatorial flavour. So does the
very definition of an arc-partition.

4.5 More on Completeness

Assume that completeness is defined with respect to p-projections. If a family (fn)

is complete for a class, then understanding (fn) better allows us to understand the

66 M. Mahajan

class better. If a natural family is complete for a class, then this is evidence that the
class itself is natural.

Valiant started off with a proof that Perm is VNP-complete. He also showed
that polynomial families associated with a number of NP-complete languages are
complete for VNP under p-projections. So let us agree that VNP is a natural class.

What about VP? The family that naturally contrasts with Perm is Det, but Det is
not yet known to be complete for VP (unless we allow qp-projections; that is not
quite satisfactory). If this turns out to be the case, it will solve a major open problem,
showing that polynomial-degree polynomial size circuits are no more powerful than
polynomial-size branching programs VBP. VBP seems a natural enough class, and
Det and many other families are complete for it.

So what problems are complete for VP? One can construct a canonical family
complete for VP. By canonical, I mean something similar to saying that

{〈M, x, 1t 〉 | M is an NDTM that accepts x in t or fewer steps}

is NP-complete. Undoubtedly true, but it doesn’t give any new intution about what
NP is about. In the case of VP, the canonical family is not so trivial to construct (but
not very difficult either).

The first description, with a very general completenes result, appears in [Bür00a]
(see Sect. 5.6, Cor 5.32(b)). Bürgisser shows that for every p-family h, the relativized
classes VPh and VNPh have complete families with respect to p-projections. Since
VPh = VP and VNPh = VNP whenever h itself is in VP, this gives families
complete for VP and VNP as well. (In fact, it shows the existence of VNP-complete
families, independent of Valiant’s original proof.) These complete families compute
homogeneous components separately, to keep the degree small, and then add up the
required parts. They are constructed by first defining generic polynomials, and then
defining the appropriate projection/substitution. The generic polynomials capture the
canonical notion referred to above.

Later, a more direct construction tailored for VP (as opposed to VPh and VNPh

for all h) was described by Raz [Raz10], and also appears in [SY10]. Here, the proof
of hardness exploits the fact that we can perform depth reduction on VP circuits.
(This was not needed in Bürgisser’s proof.) Roughly, here’s how it goes: For each
natural number N , consider a circuit CN with nodes arranged in 2 log N + 1 layers
numberd 0, 1, . . . , 2 log N . All even layers have exactly N nodes, and compute poly-
nomials gi, j where i is the layer number, j ∈ [N]. Odd layers are used to build these
polynomials. At layer 0, the polynomials are just distinct variables, g0. j = x j . At
higher layers, we have an inductive definition: gi+1, j = ∑

k,�∈[N] gi,k · gi,� · yi, j,k,�,
where the yi, j,k,� are new variables. Thus the nodes at the odd layers are the fanin-
3 × nodes, and nodes at even layers (other than the 0 layer) are + nodes with
large fanin. (We can reduce the fanins to 2 later; it won’t change the polynomial
computed.) The polynomial computed by this circuit at g2 log N ,1 is pN . The total
number of variables is O(N 3 log N), and the circuit is also of size O(N 3 log N).
The degree of pN is 2N − 1. So (pN) is in VP. Why is it VP-hard? Take any family
(fn) in VP. By the depth reduction of [VSBR83], it can be computed in VSAC1. The

http://dx.doi.org/10.1007/978-3-319-05446-9_5

4 Algebraic Complexity Classes 67

VSAC1 circuit Dn can be normalised to have alternating + and × nodes, with all ×
nodes having fanin 2, and all leaves at the same depth. Choose N at least as large
as min{size(Dn), 2depth(Dn)}, and also at least as large as the number of variables
in Cn . Now, the computation of Dn can be embedded into CN : Choose the right
number of + nodes at each even layer, and by carefully assigning 0,1 values to the y
variables, ensure that they compute the required combinations of polynomials from
the previous even layer.

The circuits described above are called universal circuits in [SY10], because every
circuit is a projection of the universal circuit of appropriate size. And if we start with
VP circuits, the projections are p-projections.

So now we know that VP has complete families under p-projections as well. But
generic polynomials, universal circuits, and the polynomials they compute, are rather
artifical. Are there other families that are defined independent of circuits and are VP-
complete? Actually, we know very few. Recently, Stefan Mengel [Men11] made
further progress here, considering polynomial families associated with constraint
satisfaction problems CSPs. (This builds on earlier work by Briquel, Koiran, Meer
[BK09, BKM11], though they did not explicitly look for VP-completeness.) Let’s
first review what CSPs are. Think of them as generalising CNF–SAT. In CNF–SAT,
each clause forbids one assignment to the variables in it. (e.g the clause x1 ∨ x3
forbids x1 = 0, x3 = 1.) In a CSP, variables can take values from a larger domain,
not necessarily 0,1. Each constraint is like a clause; it has a set of variables, and
it forbids certain combinations of assignments to these variables. (e.g on domain
{a, b, c} a constraint on x1, x2 could say that x1 	= x2. That is, assignments aa, bb, cc
are forbidden, the other 6 assignments satisfy this constraint.) As in SAT, we look for
assignments satisfying all constraints. If the domain has size 2, the CSP is Boolean.
If each constraint involves 2 (or less) variables, the CSP is binary. As usual, consider
not just a CSP but a family of CSPs (�n), where �n has domain Dn . For tractability,
we will require that the CSP is p-bounded; that is, the CSP has bounded arity (for
some fixed constant c, each constraint in every�n looks at no more than c variables),
and it has polynomial-sized domains (in �n , the variables take values from a set Dn ,
where the size of Dn is p-bounded). Now associate with each such CSP (�n) a
polynomial family (Qn = Q(�n)), where Qn is on the variable set {Xd | d ∈ Dn}
and is defined as follows:

Q(�n) =
∑

a:var(�n)→Dn

[a satisfies�n]
∏

x∈var(�n)

Xa(x)

=
∑

a:var(�n)→Dn

[a satisfies�n]
∏

d∈Dn

X |a−1(d)|
d

(Recall, [S] is Boolean, 1 if and only if statement S is true.)Mengel has thiswonderful
characterisation of the complexity of the family (Qn). The characterisation involves
associating with the CSP a graph G; this graph has a vertex for each variable and an
edge between two variables if they occur simultaneously in some constraint. Now
the treewidth and pathwidth of the graph (these parameters describe roughly how

68 M. Mahajan

tree-like or path-like the graph is, if we can consider blobs of vertices. The smaller the
blobs, the better the similarity. See [Bod98] for definitions and an overview.) relate
to the complexity. It also involves an assignment bound: a CSP is c-assignment-
bounded if for each constraint ϕ and each variable x in the constraint, the number
of distinct values possible for x in assignments satisfying ϕ is bounded by c, even
though the domain may be much larger. This seems like a strong condition, but recall
that Boolean CSPs are by definition 2-assignment-bounded.

Enough of definitions! Here’s what Mengel shows:

1. For each p-bounded CSP (�n), (Q(�n)) is in VNP. Every family (fn) in VNP
is a p-projection of (Q(�n)) for some p-bounded (�n).

2. For each p-bounded CSP (�n) where Gn has bounded treewidth, (Q(�n)) is in
VP. Every family (fn) in VP is a p-projection of (Q(�n)) for some p-bounded
binary (�n) where G is a tree (treewidth 1).

3. For each p-bounded CSP (�n) where Gn has bounded pathwidth, (Q(�n)) is in
VBP. Every family (fn) inVBP is a p-projection of (Q(�n)) for some p-bounded
binary (�n) where G is a path (pathwidth 1).

4. For each p-bounded c-assignment-bounded CSP (�n) where Gn has bounded
treewidth, (Q(�n)) is inVF.Every family (fn) inVF is a p-projection of (Q(�n))

for some p-bounded 2-assignment-bounded binary (�n) where G has pathwidth
at most 26.

The hardness proofs involve looking at the structure of parse trees for VP, witnessing
paths for VBP.

Note that as stated, this falls slightly short of providing a single complete family
for VP. However, applying the hardness reduction from universal circuits will yield
a single CSP family that is VP-complete. To the best of my knowledge, this is the
first instance of a VP-hardness result for a family defined (almost) independent of
circuits.

All the above results require that the CSP has bounded arity. Unbounded arity
seems to immediately give rise to intractability. If arity is unconstrained, can other
types of restrictions still result in families inVP?For further progress in this direction,
see [DM11, CDM13].

4.6 Computing Integers

The questions concerning algebraic complexity classes are closely connected to
another very intriguing question. Let N > 1 be any natural number. Suppose we
want to build up N from 1, using only +, − and ×. The most naive way of doing
this would be N = 1 + 1 + · · · + 1. But depending on N there can be many other
ways. Which is the most efficient way? That is, which way uses the least number of
+ or × operations? To do anything non-trivial, we must use + at least once, and the
first time we use it we will generate 2. So let us not even count this mandatory +.
How many more operations are needed?

4 Algebraic Complexity Classes 69

We can state this as a question about circuits. Each way of building up N is an
arithmetic circuit, or a straight-line program (SLP), that uses no constants other than
1 and 2. Let us denote by τ (N) the size of the smallest such circuit computing N .
(This is the τ complexity of N). By definition, τ (1) = τ (2) = 0, and for all N > 2,
τ (N) > 0. Algorithms for computing N give upper bounds on τ (N). For instance,
to compute N = 2k , here’s an SLP: g0 = 2, gi+1 = 2×gi for 0 ≤ i ≤ k −2. Clearly,
gi computes 2i+1, so τ (2k) ≤ k − 1. But I’m sure you can already see better ways of
doing this. From the circuit viewpoint, an explanation of why this is not the best is
that the circuit corresponding to this SLP is skew. Surely, we should be able to use
non-skew gates and compute large numbers faster. Here’s another SLP that computes
big numbers fast: f0 = 2, fi+1 = fi × fi for 0 ≤ i ≤ � − 1. Clearly, fi computes
22

i
, so τ (22

�
) ≤ �, a much better bound than the earlier 2� − 1 at least for numbers

of this form. Note that the way we used non-skewness, we produced a circuit with
exponential formal degree (the degree at fi is 2i), but we’re not worried about that for
now. Now, using these compact circuits for 22

�
, we can build a better circuit for 2k by

just using the binary expansion of k: k = ∑t
i=0 bi2i , where t = �log k� and bt = 1.

So 2k = 2
∑t

i=0 bi2i = ∏t
i=0 2

bi ×2i = ∏
i :bi =1 2

2i
. Compute all the double powers

using t operations, and then multiply the required ones using at most t operations.
Overall, τ (2k) ≤ 2t = 2�log k�.

We can use the same binary expansion idea to compute any N , not just a power of
2. Compute all powers of 2 upto log N , and add the required ones. This shows that
for all N , τ (N) ≤ 2�log N� − 1.

So far we have not used any subtractions. But they can be very useful too. For
instance, τ (22

� − 1) ≤ � + 1; compute 22
�
and subtract 1.

What about a lower bound? We can actually formalise the intuition that the expo-
nential degree circuits we saw above for 22

�
produce the largest possible number in

that size. Hence, for any N , τ (N) ≥ log log N .
In particular, τ (22

�
) = �. That sounds impressive – we know the exact value of

τ for 22
�
. But essentially just for that; for all other numbers, we still seem to have a

pretty large gap. If N = 2k , then log log N ≤ τ (N) ≤ 2�log k� = 2�log log N�, so
we know τ (N) within a factor of 2. But for general N , all we know is log log N ≤
τ (N) ≤ 2�log N�−1.Howcanwe reduce this gap?Anobvious search for an efficient
waywhere the last operation is+ or− is to express N as M±k, compute M , compute
k = ±(N − M), and combine, and to choose M that minimizes τ (M) + τ (k) + 1.
(A similar approach can be used for factors of N and a × as the last operation.)
But in computing M and ±(N − M) (or N/M), the complexity may be subadditive
since we can reuse intermediate numbers from the program for M while computing
±(N − M) or N/M . (We are looking for circuits, not formulas.) It is identifying the
extent of this reuse that is a challenge.

Similar to Shannon’s bound for functions and circuits (most functions require
exponential-sized circuits), deMelo and Svaiter [dMS96] showed that most numbers
N have τ (N) closer to the upper bound. They showed that for every ε > 0, most N

70 M. Mahajan

satisfy τ (N) ≥ log N
(log log N)1+ε . Moreira [Mor97] improved this by showing that this

holds even for ε = 0. (He also showed that for all ε > 0, there is an Nε such that for

all N ≥ Nε, τ (N) ≤ (1+ε) log N
(log log N)

). And yet, showing such lower bounds for specific

numbers seems quite hard – the classic “searching for hay in a haystack” paradox.
Let’s move over from individual numbers to sequences of numbers. Let (an)n≥1

be some sequence of natural numbers. When can we say that the sequence is easy
to compute? Each number in the sequence should be “easy” relative to its position
in the sequence. That is, the sequence (bn), where bn = τ (an), should not grow
very fast. One possible definition is that bn should be polynomially bounded in n.
For instance, for an = 22

n
, we know that bn = n. Is that not moderate growth? Not

really. Consider a function that maps a position n to not just the number τ (an) = bn

but to an SLP of size bn computing an . For the sequence (22
n
), this function takes an

input n represented in�(log n) bits, and outputs a circuit of size n, that is, exponential
in the size of the input. That’s not moderate growth!

OK, so let’s say that a sequence (an) is easy to compute if for some polynomial
p(.), for each n, τ (an) ≤ p(log n), and otherwise it is hard to compute. We’ve set
up this definition so that (22

n
) is hard to compute, while the sequences (n), (2n) are

easy to compute. Makes sense? Now let’s ask, what other sequences are easy? And
what sequences are hard?

A sequence with famously open status is (n!). The completely naive SLP that
constructs the first n numbers with n −2 increments and then multiplies them shows
that τ (n!) ≤ 2n−4. But can this be improved significantly? Or is this sequence hard?
The best we know is that τ (n!) ∈ O(

√
n log2 n); see [BCS97]. Here is the interesting

connection to algebraic circuit complexity. Building on a sequence of constructions
by Cheng [Che04] and Koiran [Koi05], Bürgisser [Bür09] showed that if (n!) is
hard to compute, then any algebraic circuit for the (Permn) family that uses only
the constants −1, 0, 1 must be of superpolynomial size. If we can’t even compute
the numbers n! easily, then we cannot compute the polynomials Permn efficiently,
unless we allow the use of constants that cannot themselves built up efficiently.

Analogous to the τ complexity of natural numbers, we can define the τ complexity
of polynomial families. Let τ (f) denote the size of the smallest algebraic circuit
using only the constants −1, 0, 1—call such a circuit constant-free—and computing
f . We say that the family (fn) has polynomially bounded τ complexity if for some
polynomial p(n), and for each n, τ (fn) ≤ p(n). Bürgisser’s result can now be stated
as: if τ (Permn) is polynomially bounded, then (n!) is easy to compute.

Let’s examine this a bit closely. Why do we state the hypothesis as “τ (Permn) is
polynomial”? Is this not equivalent to saying (Permn) is in VP, and hence VNP =
VP? Actually, it may not be equivalent. It is possible that (Permn) has polynomial-
sized circuits but nopolynomial-sized constant-free circuits.Conceivably, usingother
constants in intermediate computation and then cancelling them out could help.
Recall that the proof of VNP-hardness of (Permn) uses constants other than−1, 0, 1;
1/2 is needed. (As another example, recall how in showing that Detn is a projection
of SymDetn , we needed the constant 1/2, even though all coefficients in Detn are

4 Algebraic Complexity Classes 71

−1, 0, 1.) So we can define a subclass of VP: families with constant-free circuits of
polynomial size.

What can we say about such a subclass? As described above, Bürgisser has shown
that if this subclass contains (Permn), then (n!) is easy to compute. Under the same
hypothesis, he also shows that the sequences �2ne�, �(3/2)n� and �2n

√
2� are easy

to compute.
Malod [Mal03] observed that unlike in the case of VP, for constant-free circuits

we may not be able to bound complete formal degree. For VP, if the polynomial
computed by a circuit of size s had degree d, we could find an equivalent circuit
with formal degree d, and another with complete formal degree O(d3s), with only
polynomial blow-up in size. Not so if constants aren’t freely available! Consider the
polynomial family fn = 22

n
(x1 + · · · + xn). With arbitrary constants, we have a

circuit of size n.With only−1, 0, 1,we have a circuit of size 2n+1: build 2, build 22
n
,

build the linear form, multiply. But this circuit has exponential formal degree, and
in fact, using only the constants −1, 0, 1, any circuit must have exponential formal
degree to build up 22

n
. So this polynomial is in VP, it has constant-free circuits

of polynomial size, but it does not have constant-free polynomial size circuits with
polynomially bounded complete formal degree.

This leads to a definition of a further subclass VP0, first defined in [Mal03]:
polynomial families computed by constant-free circuits with polynomially bounded
complete formal degree. Define VNP0 analogous to VNP as

∑ ·VP0. Check back;
our proof that (Permn) is in VNP also shows that (Permn) is in VNP0.

The hypothesis (Permn) ∈ VP0 is stronger than saying that τ (Permn) is polyno-
mially bounded. What does it imply? Can it lead to more sequences being easier to
compute? First, note that (Permn) ∈ VP0 does not immediately imply VP0 = VNP0.
All we can say is the following, shown by Koiran [Koi05]: If (Permn) is in VP0, then
for every family (fn) ∈ VNP0, there is some polynomially bounded function p(n)

such that the family (2p(n) fn) is in VP0. That is, a “shifted” version of fn is in VP0.
The precise shift can be described as follows—we know that fn is a projection of
Permq(n) for some polynomially bounded q(n), we assumed that Permq(n) can be
computed by a circuit Cn of size and formal degree bounded by a polynomial func-
tion of n, we take p(n) to be the formal degree of Cn . Now Cn can be massaged to
compute 2p(n) fn instead of Permq(n).

This motivates another variant of easy-to-compute. Let’s say that a sequence (an)

of natural numbers is ultimately easy to compute if at least some shifted version of
it is easy to compute. That is, there is some other integer sequence An such that the
sequence an An is easy to compute. Note that if (an) is not ultimately easy, then for
infinitely many n, all nonzero multiples of an have large τ complexity. Using this
property, under the hypothesis that n! is not even ultimately easy to compute, we
can obtain a non-trivial derandomization of the Arithmetic-Circuit-Identity-Testing
problem; see the last section of [ABKPM09]. Earlier,Koiran showed in [Koi05] that if
n! is not evenultimately easy to compute, thenwehave some separation: eitherVP0 	=
VNP0, or P 	= PSPACE. This is curious: we have a consequence involving Boolean
classes as well. But it should not be so surprising. VP0 and VNP0 are computed
by (sums of) constant-free poly-formal-degree algebraic circuits, and these are the

72 M. Mahajan

arithmetic circuits that arise when we consider counting classes like #P that count
accepting paths of Turingmachines. This does not mean that VNP0 = #P; the former
is a collection of polynomial families whereas the latter is a collection of functions
from strings to whole numbers. But the complexity of evaluating polynomial families
in the former collection, at Boolean arguments, is closely related to what the latter
collection refers to. Koiran’s proof actually shows the contrapositive: he first shows
that if VP0 = VNP0 and P = PSPACE, then the sequence τ ((2�)!) is polynomially
bounded in �. So consider instead of each n! the possibly larger factorial (2�(n))!,
where 2�(n)−1 < n ≤ 2�(n). Then the sequence (bn) = ((2�(n))!) is easy to compute,
and each bn is a multiple of n!, so (n!) is ultimately easy to compute.

Since Permn is not known to be complete for VNP0, what is? It turns out that
for several other VNP-complete families, the hardness proofs use no constants other
than−1, 0, 1 and themembership proofs use circuits with small formal degree; hence
these families are complete for VNP0 as well. As a concrete example, consider the
Hamilton cycle polynomial family HCn defined as follows: Let distinct variables
xi, j label the edges of the complete directed graph Dn . Let Cn denote the set of
all directed Hamiltonian cycles in Dn ; elements of Cn can be described by cyclic
permutations σ ∈ Sn . Then

HCn(x11, . . . , xnn) =
∑

σ∈Cn

∏
xi,σ(i)

This family is complete for VNP0; [Mal03].
Returning to the question “What does (Permn) ∈ VP0 imply?”; Koiran [Koi05]

showed that it implies the sequence �2n ln 2� is easy to compute.He also improved the
earlier-mentioned result in two ways, from “[(VP0 = VNP0) ∧ (P = PSPACE)] ⇒
(n!) is ultimately easy to compute” to “[(Permn ∈ VP0) ∧ (P = PSPACE)] ⇒ (n!)
is easy to compute”.

Under the stronger hypothesis that VP0 = VNP0, we can showmore (again due to
[Koi05]). If VP0 = VNP0, then the sequences (

∑2n

i=1 2
i2−1), �22n

ln 2�, �22n
ln 3�,

�22n
π�, all have polynomially bounded complexity, something that is not yet known

unconditionally.

Acknowledgments I thank Arvind and Manindra for inviting me to contribute to this volume in
honour of Somenath Biswas, a wonderful professional colleague and friend. I thank CEFIPRA for
supporting an Indo-French collaboration (project 4702-1); many of my ideas for how to present
this survey were crystallised during my visit to University of Paris-Diderot during May–June 2012.
I have picked material I found interesting, and have not really attempted an exhaustive coverage.
I apologise in advance to thosewhose favourite results I have omitted. I gratefully acknowledgemany
insightful discussions with Eric Allender, V. Arvind, Hervé Fournier, Bruno Grenet, Nutan Limaye,
Guillaume Malod, Stefan Mengel, Sylvain Perifel, B. V. Raghavendra Rao, Nitin Saurabh, Karteek
Sreenivasaiah, Srikanth Srinivasan, V. Vinay. I thank the organisers of the Dagstuhl Seminars on
Circuits, Logic and Games (Feb 2010) and Computational Counting (Dec 2010) for inviting me
and giving me the opportunity to discuss these topics. The survey by Pascal Koiran at the Dagstuhl
seminar on Computational Counting in Dec 2010 was particularly helpful.

4 Algebraic Complexity Classes 73

References

[ABKPM09] E. Allender, P. Bürgisser, J. Kjeldgaard-Pedersen, P.B. Miltersen, On the complexity
of numerical analysis. SIAM J. Comput. 38(5) 1987–2006 (2009)

[AJMV98a] E. Allender, J. Jiao, M. Mahajan, V. Vinay, Non-commutative arithmetic circuits:
depth reduction and size lower bounds. Theoret. Comput. Sci. 209, 47–86 (1998)

[AJMV98b] E. Allender, J. Jiao, M. Mahajan, V. Vinay, Non-commutative arithmetic circuits:
Depth reduction and size lower bounds. Theor. Comput. Sci. 209(1–2) 47–86 (1998)

[AV08] M. Agrawal, V. Vinay, Arithmetic circuits: a chasm at depth four, inFOCS, pp. 67–75
(2008). See also ECCC TR15-062, 2008

[AW11] E. Allender, F. Wang, On the power of algebraic branching programs of width two.
ICALP 1, 736–747 (2011)

[Bar89] D.A. Barrington, Bounded-width polynomial size branching programs recognize
exactly those languages in NC1. J. Comput. Syst. Sci. 38, 150–164 (1989)

[BCS97] P. Bürgisser, M. Clausen, M.A. Shokrollahi, Algebraic Complexity Theory (Springer,
Berlin, 1997)

[BK09] I. Briquel, P. Koiran, A dichotomy theorem for polynomial evaluation, in MFCS, pp.
187–198 (2009)

[BKM11] I. Briquel, P. Koiran, K. Meer, On the expressive power of cnf formulas of bounded
tree- and clique-width. Discrete Appl. Math. 159(1), 1–14 (2011)

[Blä13] M. Bläser. Noncommutativity makes determinants hard, in Proceedings of ICALP,
vol. 7965 of Lecture Notes in Computer Science, pp. 172–183, Springer, ECCC TR
2012–142 (2013)

[BOC92] M. Ben-Or, R. Cleve, Computing algebraic formulas using a constant number of
registers. SIAM J. Comput. 21, 54–58 (1992)

[Bod98] H.L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth. Theor.
Comput. Sci. 209(12) 1–45 (1998)

[Bre74] R.P. Brent, The parallel evaluation of general arithmetic expressions. J. ACM 21,
201–206 (1974)

[Bür00a] P. Bürgisser, Completeness and Reduction in Algebraic Complexity Theory, vol. 7 of
Algorithms and Computation in Mathematics (Springer, Berlin, 2000)

[Bür00b] P. Bürgisser, Cook’s versus Valiant’s hypothesis. Theor. Comput. Sci. 235(1), 71–88
(2000)

[Bür09] P. Bürgisser, On defining integers and proving arithmetic circuit lower bounds. Com-
put. Complex. 18(1), 81–103 (2009)

[Cai90] J.-Y. Cai, A note on the determinant and permanent problem. Inf. Comput. 84(1),
119–127 (1990)

[CCL10] J.-Y. Cai, X. Chen, D. Li, Quadratic lower bound for permanent versus determinant
in any characteristic. Comput. Complex. 19(1), 37–56 (2010)

[CDM13] F. Capelli, A. Durand, S. Mengel, The arithmetic complexity of tensor contractions,
in STACS, vol. 20 of LIPIcs, pp. 365–376 (2013)

[Che04] Q. Cheng, On the ultimate complexity of factorials. Theor. Comput. Sci. 326(1–3),
419–429 (2004)

[Csa76] L. Csanky, Fast parallel inversion algorithm. SIAM J. Comput. 5, 818–823 (1976)
[Dam91] C. Damm, DET= L #L. Technical Report Informatik-Preprint 8, Fachbereich Infor-

matik der Humboldt-Universität zu Berlin (1991)
[DM11] A. Durand, S. Mengel, On polynomials defined by acyclic conjunctive queries and

weighted counting problems. CoRR abs/1110.4201 (2011)
[DMPY12] Z. Dvir, G. Malod, S. Perifel, A. Yehudayoff, Separating multilinear branching pro-

grams and formulas, in STOC, pp. 615–624 (2012)
[dMS96] W. de Melo, B.F. Svaiter, The cost of computing integers. Proc. Am. Math. Soc.

124(5), 1377–1378 (1996)

74 M. Mahajan

[FLMS13] H. Fournier, N. Limaye, G.Malod, S. Srinivasan, Lower bounds for depth 4 formulas
computing iterated matrix multiplication. Electron. Colloquium Comput. Complex.
(ECCC) 20 100 (2013) to appear in STOC 2014

[FMM12] H. Fournier, G. Malod, S. Mengel, Monomials in arithmetic circuits: complete prob-
lems in the counting hierarchy, in STACS, pp. 362–373 (2012)

[GKKP11] B. Grenet, E. Kaltofen, P. Koiran, N. Portier, Symmetric determinantal representation
of weakly-skew circuits, in STACS, pp. 543–554 (2011)

[GKKS13a] A. Gupta, P. Kamath, N. Kayal, R. Saptharishi, Approaching the chasm at depth four,
in IEEE Conference on Computational Complexity, (2013)

[GKKS13b] A. Gupta, P. Kamath, N. Kayal, R. Saptharishi, Arithmetic circuits: a chasm at depth
three, in IEEE Foundations of Computer Science (FOCS), ECCC 2013–026 (2013)

[GMT13] B. Grenet, T. Monteil, S. Thomassé, Symmetric determinantal representations in
characteristic 2. Linear Alg. Appl. 439(5), 1364–1381 (2013)

[Gre12a] B. Grenet, Représentation des polynômes, algorithmes et bornes infÃrieures. Ph.D.
thesis, École Normale SupÃrieure de Lyon, (2012)

[Gre12b] B. Grenet, An Upper Bound for the Permanent Versus Determinant Problem manu-
script, (2012)

[Hya79] L. Hyafil, On the parallel evaluation of multivariate polynomials. SIAM J. Comput.
8(2), 120–123 (1979)

[Jan08] M.J. Jansen, Lower bounds for syntactically multilinear algebraic branching pro-
grams, in MFCS, vol. 5162 of Lecture Notes in Computer Science, pp. 407–418
(Springer, Berlin, 2008)

[JMR12] M. Jansen, M. Mahajan, B.V. Raghavendra Rao, Resource trade-offs in syntactic
multilinear arithmetic circuits. Computational Complexity 22(3), 517–564 (2013)

[Kal85] K. Kalorkoti, A lower bound for the formula size of rational functions. SIAM J.
Comput. 14(3), 678–687 (1985)

[Kay10] N. Kayal, Algorithms for arithmetic circuits. Electron. Colloquium Comput. Com-
plex. (ECCC) 17 73 (2010)

[KK08] E. Kaltofen, P.Koiran, Expressing a fraction of two determinants as a determinant,
in ISSAC, pp. 141–146, ACM (2008)

[Koi05] P. Koiran, Valiant’s model and the cost of computing integers. Comput. Complex.
13(3–4), 131–146 (2005)

[Koi10] P. Koiran, Complexity of arithmetic circuits (a skewed perspective), in Slides from
Dagstuhl seminar 10481.DROPS, 2010. http://www.dagstuhl.de/Materials/Files/10/
10481/10481.KoiranPascal.Slides.pdf

[Koi12] P. Koiran, Arithmetic circuits: the chasm at depth four gets wider. Theor. Comput.
Sci. 448, 56–65 (2012)

[Mal03] G. Malod, PolynoĹmes et coefficients, Ph.D. thesis, University Claude Bernard Ü
Lyon 1, (2003)

[Men11] S. Mengel, Characterizing arithmetic circuit classes by constraint satisfaction
problems—(extended abstract). ICALP 1, 700–711 (2011)

[Mes89] R. Meshulam, On two extremal matrix problems. Linear Algebra Appl. 114(115),
261–271 (1989). Special Issue Dedicated to A.J. Hoffman

[MM61] M. Marcus, H. Minc, On the relation between the determinant and the permanent.
Ill. J. Math. 5, 376–381 (1961)

[Mor97] C.G.T. de A. Moreira, On asymptotic estimates for arithmetic cost functions. Proc.
Am. Math. Soc. 125(2) 347–353 (1997)

[MP08] G. Malod, N. Portier, Characterizing valiant’s algebraic complexity classes. J. Com-
plex. 24(1), 16–38 (2008)

[MR04] T. Mignon, N. Ressayre, A quadratic bound for the determinant and permanent prob-
lem, in International Mathematics Research Notices, pp. 2004–4241, (2004)

[MV97] M.Mahajan, V.Vinay, Determinant: combinatorics, algorithms, complexity. Chicago
J. Theor. Comput. Sci. http://www.cs.uchicago.edu/publications/cjtcs, 1997:5, Dec
1997. Preliminary version in Proceedings of the Eighth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms SODA, pp. 730–738 (1997)

http://www.dagstuhl.de/Materials/Files/10/10481/10481.KoiranPascal.Slides.pdf
http://www.dagstuhl.de/Materials/Files/10/10481/10481.KoiranPascal.Slides.pdf
http://www.cs.uchicago.edu/publications/cjtcs

4 Algebraic Complexity Classes 75

[Pól13] G. Pólya. Aufgabe 424. Archiv der Mathematik und Physik 3(20) 271 (1913)
[Rao10] B.V. Raghavendra Rao, A Study of Width Bounded Arithmetic Circuits

and the Complexity of Matroid Isomorphism, Ph.D. thesis. The Institute of
Mathematical Sciences, Chennai, India., 2010. http://www.imsc.res.in/xmlui/
handle/123456789/177

[Raz06] R. Raz, Separation of multilinear circuit and formula size. Theory Comput. 2(1)
121–135 (2006). preliminary version in FOCS 2004

[Raz09] R.Raz.Multi-linear formulas for permanent and determinant are of super-polynomial
size. J. ACM, 56(2), (2009). preliminary version in STOC 2004

[Raz10] R. Raz, Elusive functions and lower bounds for arithmetic circuits. Theory Comput.
6(1), 135–177 (2010)

[RSY08] R. Raz, A. Shpilka, A. Yehudayoff, A lower bound for the size of syntactically
multilinear arithmetic circuits. SIAM J. Comput. 38(4), 1624–1647 (2008)

[RY08] R. Raz, A. Yehudayoff, Balancing syntactically multilinear arithmetic circuits. Com-
put. Complex. 17(4), 515–535 (2008)

[RY09] R. Raz, A. Yehudayoff, Lower bounds and separations for constant depth multilinear
circuits. Comput. Complex. 18(2), 171–207 (2009)

[Rys63] H.J. Ryser, Combinatorial Mathematics (Carus mathematical monographs, Mathe-
matical Association of America, 1963)

[Sav70] J. Walter, Savitch, relationships between nondeterministic and deterministic tape
complexities. J. Comput. Syst. Sci. 4(2), 177–192 (1970)

[Str73] V. Strassen, Vermeidung von divisionen. J. Reine U. Angew Math 264, 182–202
(1973)

[SY10] A. Shpilka, A. Yehudayoff, Arithmetic circuits: a survey of recent results and open
questions. Found. Trends Theor. Comput. Sci. 5(3–4), 207–388 (2010)

[Tav13] S. Tavenas, Improved bounds for reduction to depth 4 and depth 3, in MFCS, vol.
8087 of Lecture Notes in Computer Science, pp. 813–824 (Springer, Berlin, 2013)

[Tod92] S. Toda, Classes of arithmetic circuits capturing the complexity of computing the
determinant. IEICE Trans. Inf. Syst. E75-D, 116–124 (1992)

[Val79] L.G. Valiant, Completeness classes in algebra, in STOC, pp. 249–261 (1979)
[Val82] L.G. Valiant, Reducibility by algebraic projections, in Logic and Algorithmic: Inter-

national Symposium in honour of Ernst Specker, vol. 30, pp. 365–380. Monograph.
de l’Enseign. Math. (1982)

[Val92] L.G. Valiant, Why is boolean complexity theory difficult? in Boolean Function Com-
plexity, ed. by M.S. Paterson (Cambridge University Press, London Mathematical
Society Lecture Notes Series 169, 1992)

[Ven92] H. Venkateswaran, Circuit definitions of nondeterministic complexity classes. SIAM
J. Comput. 21, 655–670 (1992)

[Vin91] V. Vinay, Counting auxiliary pushdown automata and semi-unbounded arithmetic
circuits, in Proceedings of 6th Structure in Complexity Theory Conference, pp. 270–
284 (1991)

[Vol99] H. Vollmer, Introduction to Circuit Complexity: A Uniform Approach (Springer, New
York, 1999)

[VSBR83] L.G. Valiant, S. Skyum, S. Berkowitz, C. Rackoff, Fast parallel computation of poly-
nomials using few processors. SIAM J. Comput. 12(4), 641–644 (1983)

[vzG87] J. von zur Gathen, Permanent and determinant. Linear Algebra Appl. 96, 87–100
(1987)

http://www.imsc.res.in/xmlui/handle/123456789/177
http://www.imsc.res.in/xmlui/handle/123456789/177

	4 Algebraic Complexity Classes
	4.1 Introduction
	4.2 Valiant's Original Framework
	4.3 The Current Status
	4.4 The Syntactic Multilinear World
	4.5 More on Completeness
	4.6 Computing Integers
	References

