
Chapter 3
Space Complexity of the Directed Reachability
Problem over Surface-Embedded Graphs

N. Variyam Vinodchandran

Abstract The graph reachability problem, the computational task of deciding
whether there is a path between two given nodes in a graph, is the canonical problem
for studying space-bounded computations. Three central open questions regarding
the space complexity of the reachability problemover directed graphs are: (1) improv-
ing Savitch’s O(log2 n) space bound, (2) designing a polynomial-time algorithm
with O(n1−ε) space bound, and (3) designing an unambiguous non-deterministic
log-space (UL) algorithm. These are well-known open questions in complexity the-
ory, and solving any one of them will be a major breakthrough. We discuss some
of the recent progress reported on these questions for certain subclasses of surface-
embedded directed graphs.
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3.1 Introduction

The graph reachability problem, the problem of deciding whether there is a path
from a given vertex s to a vertex t in a given graph, is central to space-bounded
computations. Various versions of this problem characterize several important space
complexity classes. Over directed graphs, it is the canonical complete problem for
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non-deterministic log-space (NL). The breakthrough result of Reingold implies that
the undirected reachability problem characterizes the complexity of deterministic
log-space (L) [Rei08]. It is also known that a certain restricted promise version of
the reachability problem over directed graphs characterizes randomized log-space
computations (RL) [RTV06]. Clearly, progress in space complexity studies is directly
related to progress in understanding graph reachability problems.We refer the readers
to an excellent (albeit two decades old) survey by Avi Wigderson [Wig92] to further
understand the significance of reachability problems in complexity theory.

This article is far from an exhaustive survey on the space complexity of the graph
reachability problem. In particular, some of the major progress (such as Reingold’s
algorithm for undirected graph reachability and Saks and Zhou’s deterministic simu-
lation of randomized log-space) are not discussed here. Instead, we limit our discus-
sion to some recent progress that the author and his collaborators reported on these
questions for certain subclasses of surface-embedded directed graphs. It is mostly an
elaboration of the talk that the author gave on Prof. Somenath Biswas’s 60th birthday
celebrations at IIT Kanpur in August of 2012.

3.1.1 Three Central Questions

We first discuss three central questions concerning the space complexity of the
directed graph reachability problem. These are well-known and difficult open ques-
tions in the area, and progress on any of these is a step towards the much bigger
NL versus L question (the first two problems are discussed in Wigderson’s 1992
survey [Wig92]). However, the author feels that the known barriers for attacking
these problems are much less severe than those known for many difficult open prob-
lems in time-bounded complexity classes and circuit lower bounds, and believes that
breakthrough progress on these problems can be made in the near future.

Problem 1: Improving Savitch’s bound. About four decades ago Savitch proved
that the reachability problem over directed graphs with n vertices can be solved
in space O(log2 n) deterministically [Sav70]. This implies that problems that can
be solved nondeterministically in space s(n) have deterministic algorithms with
O(s2(n)) space bound. Thus, for polynomial space bounds, nondeterminism does
not add any additional power to determinism. For the important case when the space
bound is O(log n), Savitch’s theorem implies that all problems in NL can be solved
deterministically in O(log2 n) space. Is this quadratic blow-up necessary? This is
one of the most important open problems in this topic.

Problem 2: Improving the BBRS bound. The time complexity of Savitch’s algorithm
is�(nlog n)—a super-polynomial bound. The standard breadth first search algorithm
(BFS) is another fundamental algorithm for solving graph reachability. BFS can be
implemented in linear time but requires linear space.BFS is efficient in time but not in
space, and Savitch’s algorithm is efficient in space but takes super-polynomial time.
Hence a natural and significant question that researchers have considered is whether
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we can design an algorithm for the directed graph reachability problem that is efficient
in both time and space. In particular, can we design a polynomial-time algorithm
for the directed graph reachability problem that uses only O(n1−ε) space for some
constant ε? The best known result in this direction is the two decades old bound due
to Barnes et al. [BBRS98] (which we call the BBRS bound). By cleverly combining
BFS and Savitch’s algorithm, Barnes et al. designed a polynomial-time algorithm for
reachability that uses space O(n/2

√
log n)—a slightly sub-linear function. Improving

the BBRS bound remains another significant open question regarding the space
complexity of the directed reachability problem.

Problem 3: NL versus UL Problem. UL denotes an unambiguous subclass of NL.
A decision problem L is in UL if and only if there exists a nondeterministic log-
space machine M deciding L such that, for every instance x , M has at most one
accepting computation on input x [BJLR91, ÀJ93]. Thus UL is a complexity class
that is sandwiched between NL and L. Is NL = UL? While typically such collapse
results are unlikely in complexity theory (and even if they are likely, they are nearly
impossible to prove), there is an increasing body of evidence that in this specific
case the answer is yes, and the author believes that we might be able to prove this
equality using known techniques. Reinhardt and Allender showed using the isolation
lemma that in the nonuniform setting NL coincides with UL; that is NL/poly =
UL/poly [RA00]. Further, in a subsequent paper, Allender, Reinhardt, and Zhou
showed that, under a certain hardness assumption the construction given in [RA00]
can be derandomized to show that NL = UL [ARZ99]. Thus it is very likely (at
least to the author) that NL = UL, though we do not yet have a proof. Can we show
NL = UL unconditionally?

3.1.2 Outline

In the next two sections we discuss some progress that we have made towards these
three open questions—Sect. 3.2 on Problems 1 and 2, and Sect. 3.3 on the NL versus
UL problem.All the results discussed in these sections are for directed graphs embed-
ded on topological surfaces. As an aside, in Sect. 3.4 we reproduce the proof of the
BBRS bound from [BBRS98], partly to bring more attention to this nice algorithm.

3.2 Space Efficient Reachability Algorithms for Graphs
with Topological Structure

An important sub-case of Problem 1 (and Problem 2) is to design reachability algo-
rithms that beat Savitch’s bound (respectively, the BBRS bound) for directed graphs
with some topological structure (graphs that are embedded on topological surfaces).
We discuss some recent progress reported along this direction. The main results are
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(1) algorithms that beat both Savitch’s bound and the BBRS bound for a subclass
of directed acyclic graphs parameterized by the number of sources and the genus of
the embedding [SBV10, SV12] (2) an algorithm for directed planar reachability that
improves on the BBRS bound [INP+13]. The main approach in both these results is
that of space-efficient “kernelization.”

Kernelization is a known preprocessing technique in designing algorithms (for
example in the area of fixed parameter tractability). Kernelization algorithms are
reductions from a problem to itself so that the easy part of the instance is abstracted
out and the core part is retained in the reduced instance. The hope is that the core part
will be of smaller size and hence known algorithms can be applied to this compressed
instance yielding algorithmswith better complexity.We first illustrate this in a simple
scenario.

Consider a reachability instance 〈G, s, t〉 where G = (V, E) is a n-vertex graph
with the guarantee that it has at most k directed edges (the remaining edges are
undirected). Let Gun be the undirected graph we get by removing all the directed
edges from G. For a directed edge e = (u, v) let tail(e) = u and head(e) = v. We
show a simple log-space reduction that takes 〈G, s, t〉 and produces a reachability
instance 〈G ′, s′, t ′〉 where G ′ is a directed graph with O(k) vertices.

In the reduced graph G ′ = (V ′, E ′), V ′ = {s′, t ′} ∪ {ve | e is a directed edge
in G}. The pair (ve1 , ve2) ∈ E ′ if tail(e2) is in the same connected component as
head(e1) in Gun . For a ve ∈ V ′, (s′, ve) ∈ E ′ if tail(e) is in the same connected
component of s in Gun and (ve, t ′) if head(e) is in the same connected component
of t in Gun . Notice that this reduction is log-space since for checking whether two
vertices u, v are in the same connected component of Gun , we can use Reingold’s
log-space algorithm for undirected reachability. It is clear that there is a s-t path in G
if and only if there is a s′-t ′ path in G ′. Using this reduction together with Savitch’s
algorithm we get that reachability in graphs with no(1) directed edges can be solved
in o(log2 n). Also, by applying BFS to the reduced graph, we get that for any ε > 0,
reachability in graphs with O(n1−ε) directed edges can be solved in polynomial time
and O(n1−ε) space.

We now describe the main kernelization result of [SBV10, SV12] and its appli-
cation. Let G(m, g) denote the class of DAGs with at most m = m(n) source vertices
embedded on a surface (orientable or non-orientable) of genus at most g = g(n),
where n is the number of vertices. Building on [SBV10], in [SV12] we show the
following reduction for graphs in G(m, g).

Theorem 1 [SV12] There is a log-space reduction that, given an instance 〈G, s, t〉
(presented as a combinatorial embedding) where G ∈ G(m, g) and s, t are vertices
of G, outputs an instance 〈G ′, s′, t ′〉 where G ′ is a directed graph and s′, t ′ vertices
of G ′, so that (a) there is a directed path from s to t in G if and only if there is a
directed path from s′ to t ′ in G ′, (b) G ′ has O(m + g) vertices.

By combining the above reduction with Savitch’s theorem (with m = g =
2O(

√
log n)) we get that reachability over graphs with 2O(

√
log n) sources embed-

ded on a surface of genus 2O(
√
log n) can be decided in deterministic log-space. For

m = g = no(1) we get o(log2 n) space algorithm for reachability that beats Savitch’s
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bound. For m = g = O(n1−ε), we get O(n1−ε) space algorithm with polynomial
running time for reachability, for any small constant ε, improving the BBRS bound.

One of the motivations for investigating the reachability problem for this class
of surface-embedded graphs comes from earlier work due to Allender, Barring-
ton, Chakraborthy, Datta, and Roy [ABC+09]. In [ABC+09], the authors considered
reachability in planar DAGs with a single source vertex. They called this class of
graphs Single source Multiple sink Planar Dags (SMPD). SMPD generalizes Single
source Single sink Planar Dags (SSPD). SSPDs are interesting since they generalize
series parallel graphs which is a well-studied restriction of directed acyclic graphs.
Allender et al. presented a log-space algorithm for reachability in SMPDand left open
whether reachability can be solved using logarithmic space over planar DAGs with
multiple source nodes. In [SBV10], building on the SMPD algorithm, we present
a log-space algorithm for planar dags with logarithmic number of sources. In the
subsequent paper [SV12], via a careful use of techniques developed in [SBV10],
we proved the log-space kernelization theorem that in particular implied a log-space
algorithm for reachability in graphs with 2O(

√
log n) sources, embedded on a sur-

face of genus 2O(
√
log n). The proof of this theorem is technically involved and we

do not discuss it here. It remains a significant open question whether reachability
for planar Dags (without any restriction on the number of sources) can be solved
deterministically in o(log2 n) space.

While improving Savitch’s bound even for planar graphs remains open, the ques-
tion of improving the BBRS bound for planar graphs was settled recently. Using a
kernelization approach, in [INP+13], we show that the directed planar reachability
problem can be solved in polynomial time using roughly O(n1/2) space. This result
extends a similar bound for the reachability problem over grid graphs due to Asano
and Doerr [AD11].

Theorem 2 [INP+13] For any constant 0 < ε < 1/2, there is an algorithm that,
given a directed planar graph G and two vertices s and t, decides whether there is
a path from s to t. This algorithm runs in time nO(1/ε) and uses O(n1/2+ε) space,
where n is the number of vertices of G.

For showing this result, we first design a polynomial-time and Õ(
√

n)-space
algorithm for computing a “separator” of O(

√
n) size for an undirected planar graph.

(For any undirected graph G and for any constant ρ, 0 < ρ < 1, a ρ-separator of G
is a a subset of vertices S whose removal disconnects G into two subgraphs A and B,
such that |A| and |B| is at most ρn). This algorithm is based on a parallel algorithm
for constructing a planar separator due to Gazit and Miller [GM87].

Theorem 3 [INP+13] There is an algorithm that takes an undirected planar graph
G with n vertices as input and outputs a (8/9)-separator of G of size O(

√
n). This

algorithm runs in polynomial time and uses Õ(
√

n) space. (Here Õ(s(n)) denotes
O(s(n)(log n)O(1))).

Proof Sketch While for obtaining the O(n1/2+ε) space bound we need a recur-
sive approach, it is easy to illustrate the idea for the case when the space bound
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is O(n2/3). Let G = (V, E) be the input directed planar graph. Let Gu be the
underlying undirected graph. The first step is to apply the planar separator algorithm
repeatedly k times on the connected components of Gu that are bigger than n2/3

to further partition the graph until every component is of size ≤ n2/3. It is easy to
see that after k = 	 2

3 × log n
log(9/8)
 applications we get a collection S of separators

with total size O(n2/3) so that removing S partitions the graph into disconnected
components where each component is of size≤ n2/3. (This is a standard trick used in
many separator-based algorithms). Let C1, C2, . . . , Cl be the set of vertices in these
components.

Now consider the kernel graph G = (V, E) where V = S ∪ {s, t}. For any two
nodes x and y inV , (x, y) is a directed edge if and only if there is a directed path from
x to y in the subgraph ofG that is induced byV∪Ci (call thisGi ), for some connected
component Ci in the partition. Clearly, the number of nodes in G is O(n2/3). Now
consider the algorithm that decides whether there is a directed path from s to t in
G by performing a BFS on G starting at s. Whenever BFS queries (x, y) ∈ E?, the
algorithm performs BFSs for each of the graphs Gi starting at x looking for a path
from x to y, and returns YES if for some Gi this inner BFS returns true. Notice that
since |V ∪ Ci | is at most O(n2/3), each of this BFSs can be implemented in O(n2/3)

space and polynomial time. Hence, overall the algorithm takes O(n2/3) space and
polynomial time.

For extending this proof to the O(n1/2+ε) space bound, we need |S| = O(n1/2+ε).
But thatwill result in large components and a simple applicationof the innerBFSswill
not give the required space bound. Instead, we can apply the algorithm recursively.
By limiting the number of recursive applications to a constant, we can make sure
that the running time remains polynomial. We omit the details. �

Before we move on to the next section we mention that there is a certain computa-
tional model known as NNJAG model in which it is possible to prove lower bounds
those match both Savitch’s bound and the BBRS bound [Poo93, CR80, EPA99].
The NNJAG model is a branching program model tailored towards the reachability
problem with restricted access to the input graph. While all the known algorithms
for general reachability (such as BFS, DFS, Savitch’s algorithm, BBRS algorithm)
can be implemented in the NNJAGwithout substantial increase in time and space (in
comparison to implementations on a random access machine), it is not clear to the
author how a general approach such as kernelization can be handled in these models.
It is conceivable that algorithms based on kernelization can overcome NNJAG lower
bounds and help solve these open problems.

3.3 NL Versus UL Problem

The main progress on this problem has also been on graphs with some topological
structure. We first discuss a technique developed by Reinhardt and Allender [RA00]
since all the known proofs on this problem use their technique.
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A positively and polynomiallyweighted graph is said to bemin-unique if, between
any two nodes the minimum weight path (if it exists) is unique. Here the weight of a
path is the sum of the weights of its edges. Reinhardt and Allender [RA00] showed,
using an adaptation of the inductive counting technique of Immerman [Imm88]
and Szelepcsényi [Sze88], that the reachability question in min-unique graphs can
be decided in UL. They combine this construction with an observation due to
Wigderson [Wig94] that the isolation lemma of Mulmuley et al. [MVV87] can be
used to nonuniformly assign weights to make a given graph min-unique. These two
steps imply the collapse result that NL is in nonuniform UL.

Thus a space-efficient derandomization of the isolation lemma will show that
NL = UL. However, derandomizing isolation lemma in its generality will have
much deeper consequences and is a well-known and difficult open problem [AM08].
Instead, a viable and concrete approach for showing NL = UL is to first consider a
class of graphs over which the reachability problem is NL-complete, and prescribe a
deterministic log-space computable weight function which will make graphs in this
class min-unique.

In [ABC+09], the authors solve this min-unique weight assignment problem for
the class of layered grid graphs. Layered grid graphs are graphs with vertices on a
n × n grid and the edges that go west-to-east and south-to-north. Subsequently in
[BTV09], we showhow to extend thisweight function to general grid graphs (without
restriction on the direction of edges). This implied that directed planar reachability
is in UL since the directed planar reachability problem is known to be reducible
to the grid graph reachability problem [ADR05]. In fact this even implied that the
reachability problem for graphs embedded on constant genus surfaces and graphs
that are K3,3-free and K5-free are in UL since the reachability problem for these
classes of graphs reduces to the directed planar reachability problem [KV10, TW09]
in log-space.

While, in [BTV09]we showed that directed planar reachability is inUL, it was not
clear then how to solve themin-uniqueweight assignment problem for planar graphs.
In a subsequent chapter, we solve this problem using Green’s Theorem, a celebrated
result from multivariate calculus [TV12]. Since it is a slightly nonstandard approach
to use an analytical result to solve discrete problems, we believe this approach has
the potential to solve the general NL versus UL problem. We next present the proof
of the min-unique weight assignment problem for directed planar graphs based on
Green’s theorem.

Green’s theorem, stated below, relates a certain curve integral over a closed curve
on the plane to a related double integral over the region enclosed by this curve.

Theorem 4 Green’s Theorem Let C be a closed, piecewise smooth, simple curve
on the plane which is oriented counterclockwise. Let RC be the region bounded by
C. Let P and Q be functions of (x, y) defined on a region containing RC that have
continuous partial derivatives in the region. Then

∮
C
(P dx + Q dy) =

∫∫
RC

(
∂Q

∂x
− ∂P

∂y

)
d A
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We use the following corollary that we get if we substitute Q(x, y) = x and
P(x, y) = 0 in Green’s theorem.

Corollary 5 (Area by line integrals) Let C be a closed, piecewise smooth, simple
curve on the plane that is oriented counterclockwise. Let RC be the region bounded
by C. Then,

Area(RC ) =
∮

C
x dy.

Theorem 6 [TV12] There is a log-space algorithm that, given any planar graph G,
assigns weights to the edges so that the resulting weighted graph is min-unique.

Let us assume that the planar graph G = (V, E) is presented as a straight-line
drawing. That is, each vertex v is represented as a point (xv, yv) in the plane so that
an edge (u, v) is a line between points (xu, yu) and (xv, yv). In addition, no such
lines intersect other than at the vertices. Moreover, we assume that the coordinates
are integer points with values bounded by poly(n) (n is the number of vertices).
Typically, planar graphs are presented as a combinatorial embedding and it is not
clear how such line drawings can be computed in log-space from a combinatorial
embedding. However, this is not critical and in [TV12] we show how to handle this
presentation issue.

Let e = (u, v) be a directed edge directed from u to v where u is identified with
the point (xu, yu) and v is identified with (xv, yv). For such a directed edge, define
a weight function w as follows:

wgt (e) = 2 ×
∮

e
x dy = (yv − yu)(xv + xu)

The required isolation property of the weight function is proved using the following
crucial lemma.

Lemma 7 Let G be a directed planar graph and let C be any directed simple cycle
in G. Let RC be the region enclosed by C. Then the weight of the cycle C, |wgt (C)| =
2 × Area(Rc). In particular, wgt (C) is nonzero.

Proof Let C = (e1, e2, . . . , el) be a directed cycle-oriented counterclockwise. Then
we have

wgt (C) =
∑

i

wgt (ei ) = 2 ×
∑

i

∮
ei

x dy = 2 ×
∮

C
x dy = 2 × Area(RC )

The third equality follows from the linearity of integrals and the last equality follows
fromCorollary 7. IfC is oriented clockwise, we get thatwgt (C) = −2 × Area(RC ).
Hence the lemma. �
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The following lemma establishes Theorem 6.

Lemma 8 Let G be a directed planar graph. Then with respect to the weight function
wgt , for every pair of nodes u and v, if there is a directed path from u to v, then there
is a unique path from u to v of minimum weight.

Proof Suppose there are u, v so that there are two u to v paths P1 and P2 of minimum
weight. We assume that the paths do not intersect on vertices other than the end
points (otherwise we can find two vertices u′ and v′ along these paths that satisfies
this property using a standard cut-and-paste argument and use these vertices instead).
Wehavewgt (P1) = wgt (P2). Nowconsider the graphG ′ that is same asG except that
the path P2 is reversed so that the set of edges (P1,−P2) becomes a simple cycle
in G ′ (−P2 denotes the reversed path). Let C denote this cycle. Then wgt (C) =
wgt (P1) + wgt (−P2) = wgt (P1) − wgt (P2) = 0. The second equality because of
the skew-symmetry of the weight function. This contradicts Lemma 7. �

It is clear that we can use Green’s Theorem to design a class of min-unique weight

functions. In fact any “nice” solution to the differential equation
(

∂Q
∂x − ∂P

∂y

)
= 1will

yield such a weight function. For example, setting P(x, y) = −y
2 and Q(x, y) = x

2
to the left-hand side of Green’s theorem yields the weight function w(e) = (xu yv −
xv yu) which is also min-unique.

Can we use such geometric techniques to design min-unique weight functions
for larger classes of graphs? In [BTV09] it is observed that reachability in layered
grid graphs over three dimensions is complete for NL. It might be possible to use
generalizations of Green’s theorem (such as Stokes’ theorem) to design amin-unique
weight function for three-dimensional layered grid graphs.

3.4 The BBRS Bound

We present the algorithm due to Barnes, Buss, Ruzzo, and Schieber [BBRS98] that
solves the directed graph reachability problem in sub-linear space and polynomial
time.

Theorem 9 [BBRS98] For any k, there is a polynomial-time algorithm that given
a directed graph G and two nodes s and t, decides whether there is a path from s to
t in space O( n

2k
√
log n ), where n is the number of vertices of G.

Proof The algorithm uses a combination of BFS and Savitch’s algorithm. For a
parameter λ (this will be set to 2k

√
log n to get the desired bound), it constructs the

levels of BFS tree that are at λ distance apart. Divide the vertex set into levels
according to distance from s. That is, the level i vertex set is defined as:

Vi = {v | d(s, v) = i},where d is the distance function.
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Partition the set of vertices into λ equivalence classes C0, C1, . . . , Cλ−1 where
C j = ⋃�n/λ�

i=0 Vj+iλ. Since the Ci s partition the vertex set, we have the following
fact.

Fact 10 ∃ j∗ so that |C j∗ | ≤ 	 n
λ


The Partial-BFS algorithm (described below) constructs C j∗ level by level.
Since we do not explicitly know which C j has ≤ n

λ nodes, the algorithm will keep
a counter to count the number of vertices and try from j = 0. At any point of
the construction, if |C j | > n

λ , it will abandon that j and try the next value for j .
The algorithm will succeed for the first such j . This will only increase the space
by an additive O(log n) factor and the time by a multiplicative factor of λ. Hence
we assume that the algorithm knows j∗. Following is the description of the Partial-
BFS algorithm.

Partial-BFS(G, s) /* Outputs C j∗*/
V0 = {s}
Vj∗ = Construct(G, V0, j∗)
For i = 1 to � n

λ�
Viλ+ j∗ = Construct(G, V(i−1)λ+ j∗ ,λ)

Add Viλ+ j∗ to C j∗
End-For
Output C j∗

In general, the procedureConstruct takesG and a set of nodes S and a parameter
λ and returns the set of nodes that are at distance λ from some node in S.Construct
will use the bounded version of the reachability problem (Barnes et al. calls it short
path problem) as subroutine.

SPATH(u, v,λ) = true ⇔ there is a path of length ≤ λ from u to v in G.

We can use an algorithm for SPATH as subroutine to solveConstruct as follows.
Given (G, S,λ), to check whether v ∈ V is at distance λ from some vertex in S,
first check whether SPATH(u, v,λ) is true for some u ∈ S and check for all u ∈ S,
SPATH(u, v,λ − 1) is false.

For a given algorithm for SPATH, let T (n,λ) be its time complexity and S(n,λ)

be its space complexity. Then the time complexity of Construct is O(n3)T (n,λ)

and its space complexity is O( n
λ ) + S(n,λ). Moreover, once C j∗ is constructed,

reachability can be solved by making 	 n
λ
 calls to SPATH(u, t,λ) (for all u ∈ C j∗).

Thus the total running time for the reachability algorithm will be O(n4)T (n,λ) and
the space bound will be O( n

λ ) + S(n,λ).
We will now focus on SPATH. We will use a divide and conquer approach as in

Savitch’s algorithm to design an algorithm for SPATH. The problem with a direct
application of Savitch’s algorithm is its running time: at each level of recursion
it cycles through all n nodes as a candidate for the middle node. This results in
O(nlog n) time. Since we are interested in keeping the time polynomial, we can
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not afford to cycle through all n nodes. Instead, we will divide the set of nodes into
μ equivalence classes and use a Savitch-like divide and conquer on these equivalence
classes (instead of the vertices). For μ = 2O(

√
log n) the depth of recursion will be

O(
√
log n) and this approach will result in polynomial time.

For a parameter μ, partition the vertex set into μ equivalence classes [1],
[2], . . . [μ] where vertex x ∈ [a] ⇔ x ≡ a (mod μ). Each equivalence class has
	 n

μ
 elements (except for the last one whose cardinality may be smaller). We will
use [a], [b], [c] etc to denote these equivalence classes of vertices. Although this is
not a very standard notation, the i th vertex of the equivalence class [a] (according to
some fixed ordering) will be denoted by [a](i).

Consider the procedure Modified-Savitch(G, [a], [b], X, l) where [a] and [b]
are equivalence classes of vertices, X is an 	 n

μ
 binary array, and l is a length para-
meter. This procedure returns a binary vector Y of size 	 n

μ
, where

Y [ j] = 1 ⇔ ∃i so that X [i] = 1and there is a path

of length ≤ 2l from[a](i) to [b]( j)

SPATH(u, v,λ) can be solved by one call toModified-Savitch with parameter
([a], [b], Xu, 	log2 λ
) where [a] = the equivalence class containing u, [b] = the
equivalence class containing v, and Xu is the vector with 1 in the index corresponding
to u and 0 otherwise. There is a path from u to v if and only if there is a 1 in the
index corresponding to v in the output vector Y . Below is a recursive version of the
algorithm Modified-Savitch.

Modified-Savitch(G, [a], [b], X, l)
If l = 0 then
If [a] = [b] then Y ← X
Else Y [ j] = 1 iff ∃i such that there is an edge from [a](i) to [b]( j)

Else
Y ← −→

0
For c = 1 to μ

Z ← Modified-Savitch(G, [a], [c], X, l − 1)
Yc ← Modified-Savitch(G, [c], [b], Z , l − 1)
Y ← Y ∨ Yc

Return Y

Correctness of Modified-Savitch is easy to prove. Its time and space bounds
can be estimated using the following recurrences:

S(l) = O(
n

μ
) + S(l − 1)

= O(
n

μ
) × l

T (l) = μ × 2 × T (l − 1) + O(n)

= (2μ)l+1 × O(n)
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Setting μ = 2(k+1)
√
log n and l = 	log2 λ
, we get an algorithm for SPATH with

time complexity T (n,λ) = O(2logλ×2(k+1)
√
log n(logλ+1)×n) and space complexity

S(n,λ) = O( n
2(k+1)

√
log n × logλ).

For λ = 2k
√
log n , this results in polynomial time and space O( n

2k
√
log n ) giving an

algorithm for the reachability problem with polynomial running time and O( n
2k

√
log n )

space bound. �
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