
Chapter 10
An Entropy-Based Proof for the Moore
Bound for Irregular Graphs

S. Ajesh Babu and Jaikumar Radhakrishnan

Abstract We provide proofs of the following theorems by considering the entropy
of random walks.

Theorem 1 (Alon, Hoory and Linial) Let G be an undirected simple graph with n
vertices, girth g, minimum degree at least 2 and average degree d̄.

Odd girth If g = 2r + 1, then n ≥ 1 + d̄
r−1∑

i=0

(d̄ − 1)i.

Even girth If g = 2r, then n ≥ 2
r−1∑

i=0

(d̄ − 1)i.

Theorem 2 (Hoory) Let G = (VL,VR,E) be a bipartite graph of girth g = 2r, with
nL = |VL| and nR = |VR|, minimum degree at least 2 and the left and right average
degrees dL and dR. Then,

nL ≥
r−1∑

i=0

(dR − 1)�
i
2 �(dL − 1)�

i
2 �,

nR ≥
r−1∑

i=0

(dL − 1)�
i
2 �(dR − 1)�

i
2 �.
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10.1 Introduction

The Moore bound (see Theorem 3.1) gives a lower bound on the order of any simple
undirected graph, based on its minimum degree and girth. Alon et al. [AHL02]
showed that the same bound holds with the minimum degree replaced by the average
degree. Later, Hoory [Hoo02] obtained a better bound for simple bipartite graphs.
We reprove the results of Alon et al. [AHL02] and Hoory [Hoo02] using information
theoretic arguments based on nonreturning random walks on the graph.

The chapter has three sections: In Sect. 10.2we introduce the relevant notation and
terminology. In Sect. 10.3, we present the information theoretic proof of the result of
Alon et al. [AHL02]; in Sect. 10.4, we present a similar proof of the result of Hoory
[Hoo02] for bipartite graphs.

10.2 Preliminaries

For an undirected simple graph G = (V ,E), let �G = (V , �E), be the directed version
of G, where for each undirected edge of the form {v, v} in E, we place two directed
edges in �E, one of the form (v, v) and another of the form (v, v). Similarly, for an
undirected bipartite graph G = (VL,VR,E), let �G = (VL,VR, �ELR ∪ �ERL) be the
directed version of G, where for each undirected edge of the form {v, v} in E, with
v ∈ VL and v ∈ VR, we place one directed edge of the form (v, v) in �ELR, and another
of the form (v, v) in �ERL .

We will consider nonreturning walks on �G, that is, walks where the edges corre-
sponding to the same undirected edge of G do not appear in succession. For a vertex
v, let ni(v) denote the number of nonreturning walks in �G starting at v and consisting
of i edges. For an edge �e, let ni(�e) denote the number of nonreturning walks in �G
starting with �e and consisting of exactly i + 1 edges (including �e).

Our proofs will make use of information theoretic ideas. Similar ideas have
been employed in various combinatorial proofs to succinctly present arguments that
involve averaging and convexity. More examples can be found in the references
[CT91, Kah02, LL13, Rad99, Rad01].

Let X be a random variable taking values in a finite set. Let support(X) be the set
of values that X takes with positive probability. The entropy of X is

H[X] = −
∑

x∈support(X)
Pr[X = x] log2 Pr[X = x].
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For random variables X and Y , taking values in finite sets according to some joint
distribution, and y ∈ support(Y), let Xy be the random variable taking values in
support(X) such that Pr[Xy = x] = Pr[X = x | Y = y]. Then, the conditional
entropy of X given Y is

H[X | Y ] =
∑

y∈support(Y)
Pr[Y = y]H[Xy].

We will use of the following standard facts about entropy [CT91].

H[X] ≤ log2 |support(X)|;

H[X1X2 . . .Xk | Y ] =
k∑

i=1

H[Xi | X1X2 . . .Xi−1Y ].

10.3 Moore Bound for Irregular Graphs

In Sect. 10.3.1, we recall the proof of theMoore bound; in Sect. 10.3.2, we review and
reprove the theorem of Alon et al. [AHL02] assuming Lemma 3.4. In Sect. 10.3.3,
we prove this lemma using an entropy- based argument.

10.3.1 Proof of the Moore Bound

The Moore bound provides a lower bound for the order of a graph in terms of its
minimum degree and girth.

Theorem 3.1 (The Moore bound [Big93, p. 180]) Let G be a simple undirected
graph with n vertices, minimum degree δ and girth g.

Odd girth If g = 2r + 1, then n ≥ 1 + δ

r−1∑

i=0

(δ − 1)i.

Even girth If g = 2r, then n ≥ 2
r−1∑

i=0

(δ − 1)i.

The key observation in the proof of the Moore bound is the following. If the girth
is 2r +1, then two distinct nonreturning walks of length at most r starting at a vertex
v lead to distinct vertices. Similarly, if the girth is 2r, then nonreturning walks of
length at most r starting with (some directed version of) an edge e lead to distinct
vertices. We will need this observation again later, so we record it formally.

Observation 3.2 Let G be an undirected simple graph with n vertices and girth g.
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Odd girth Let g = 2r + 1. Then, for all vertices v,

n ≥ n0(v) + n1(v) + · · · + nr(v).

Even girth Let g = 2r. Let e be an edge of G and suppose �e1 and �e2 are its directed
versions in �G. Then,

n ≥
r−1∑

i=0

[ni(�e1) + ni(�e2)].

Proof of Theorem 3.1 The claim follows immediately from Observation 3.2 by not-
ing that for such a graph G, for all vertices v ∈ V and edges �e ∈ �E,

ni(v) ≥ δ(δ − 1)i−1 (for i ≥ 1), n0(v) = 1; (10.1)

ni(�e) ≥ (δ − 1)i (for i ≥ 0). (10.2)

��

10.3.2 The Alon–Hoory–Linial Bound

Alon, Hoory, and Linial showed that the bound in Theorem 3.1 holds for any undi-
rected graph even when the minimum degree δ is replaced by the average degree d̄.

Theorem 3.3 (Alon et al. [AHL02]) Let G be an undirected simple graph with n
vertices, girth g, minimum degree at least 2 and average degree d̄.

Odd girth If g = 2r + 1, then n ≥ 1 + d̄
r−1∑

i=0

(d̄ − 1)i.

Even girth If g = 2r, then n ≥ 2
r−1∑

i=0

(d̄ − 1)i.

Wewill first prove this theorem assuming the following lemma, which is the main
technical part of Alon et al. [AHL02]. This lemma shows that the bounds (10.1) and
(10.2) holds with δ replaced by d̄. In Sect. 10.3.3, we will present an information
theoretic proof of this lemma.

Lemma 3.4 Let G be an undirected simple graph with n vertices, girth g, minimum
degree at least two and average degree d̄.

(a) If v ∈ V(G) is chosen with distribution π, where π(v) = dv/(2|E(G)|) =
dv/(d̄n), then E[ni(v)] ≥ d̄(d̄ − 1)i−1 (i ≥ 1).

(b) If �e is a uniformly chosen random edge in �E, then E[ni(�e)] ≥ (d̄ − 1)i (i ≥ 0).
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Proof of Theorem 3.3 First, consider graphs with odd girth. From Observation 3.2,
Lemma 3.4 (a) and linearity of expectation we obtain

n ≥ E[n0(v) + n1(v) + · · · + nr(v)] ≥ 1 + d̄
r−1∑

i=0

(d̄ − 1)i,

where v ∈ V(G) is chosen with distribution π (defined in Lemma 3.4 (a)).

Now, consider graphs with even girth. Let �e1 be chosen uniformly at random from
�E and let �e2 be its companion edge (going in the opposite direction). Note that �e2
is also uniformly distributed in �E. Then, from Observation 3.2, Lemma 3.4 (b) and
linearity of expectation we obtain

n ≥ E

[
r∑

i=0

[ni(�e1) + ni(�e2)]
]

≥ 2
r−1∑

i=0

(d̄ − 1)i.

10.3.3 The Entropy-Based Proof of Lemma 3.4

The proof of Lemma 3.4 below is essentially the same as the one originally proposed
byAlon, Hoory, and Linial but is statedmore naturally using the language of entropy.

Proof of Lemma 3.4 (a) Consider the Markov process v, �e1, �e2, …, �ei, where v is
a random vertex of G chosen with distribution π, �e1 is a random edge of �G
leaving v (chosen uniformly from the dv choices), and for 1 ≤ j < i, �ej+1 is a
random successor edge for �ej chosen uniformly from among the nonreturning
possibilities. (If �ej has the form (x, y), then there are dy −1 possibilities for �ej+1).
Let v0 = v, v1, v2, . . . , vi be the vertices visited by this non-returning walk. We
observe that each �ej is distributed uniformly in the set E( �G) and each vj has
distribution π. Then,

log2 E[ni(v)] ≥ E[log2 ni(v)]
≥ H[�e1�e2 . . . �ei | v]

= H[�e1|v] +
i−1∑

j=1

H[�ej+1 | �e1�e2 . . . �ejv]

= E[log2 dv] +
i−1∑

j=1

E[log2(dvj − 1)]

= E[log2 dv(dv − 1)i−1]

= 1

d̄n

∑

v

dv log2 dv(dv − 1)i−1

≥ log2 d̄(d̄ − 1)i−1,
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where to justify the first inequality we use Jensen’s inequality for the concave
function log, to justify the second we use the fact that the entropy of a random
variable is at most the log of the size of its support, and to justify the last we
use Jensen’s inequality for the convex function x log2 x(x − 1)i−1 (x ≥ 2). The
claim follows by exponentiating both sides.

(b) This time we consider the Markov process �e0 = �e, �e1, …, �ei, where �e is chosen
uniformly at random from �E, and for 0 ≤ j < i, �ej+1 is a random successor
edge for �ej chosen uniformly from among the nonreturning possibilities. Let
v0, v1, v2, . . . , vi+1 be the vertices visited by this nonreturning walk. As before
observe that each vj has distribution π. Then,

log2 E[ni(e)] ≥ E[log2 ni(e)]
≥ H[�e1�e2 . . . �ei | �e0]

=
i∑

j=1

E[log2(dvj − 1)]

= E[log2(dv0 − 1)i]

= 1

d̄n

∑

v

dv log2(dv − 1)i

≥ log2(d̄ − 1)i,

where we justify the first two inequalities as before, and the last using Jensen’s
inequality applied to the convex function x log2(x − 1)i (x ≥ 2). The claim
follows by exponentiating both sides. ��

Remark 3.5 We assumed above that the minimum degree is at least 2. It is possible
to eliminate vertices of small degree and show that Theorem 3.3 holds for any graph
with average degree at least 2. For details, see the proof of Theorem 1 in [AHL02].

10.4 Moore Bound for Bipartite Graphs

Following the proof technique of [AHL02], Hoory [Hoo02] obtained an improved
Moore bound for bipartite graphs. In this section, we provide an information theoretic
proof of Hoory’s result.
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10.4.1 The Hoory Bound

Theorem 4.1 (Hoory [Hoo02]) Let G = (VL,VR,E) be a bipartite graph of girth
g = 2r, with nL = |VL| and nR = |VR|, minimum degree at least 2 and the left and
right average degrees dL and dR. Then,

nL ≥
r−1∑

i=0

(dR − 1)�
i
2 �(dL − 1)�

i
2 �,

nR ≥
r−1∑

i=0

(dL − 1)�
i
2 �(dR − 1)�

i
2 �.

For bipartite graphs the girth is always even. We then have the following variant
of Observation 3.2.

Observation 4.2 Let G = (VL,VR,E) be an undirected bipartite graph with |VL| =
nL and |VR| = nR and girth g = 2r. Let e be an edge of G and suppose �e1 and �e2 be
its directed versions in �G, such that �e1 ∈ �ELR and �e2 ∈ �ERL. Then,

nL ≥
� r
2 �−1∑

i=0

n2i+1(�e1) +
� r
2 �−1∑

i=0

n2i(�e2).

Wewill prove the Theorem 4.1, assuming the following lemma, which is the main
technical part of Hoory [Hoo02]. In Sect. 10.4.2, we will present the proof of this
lemma using the language of entropy.

Lemma 4.3 Let G = (VL,VR,E) be an undirected simple bipartite graph with nL

vertices on the left and nR vertices on the right, girth g, minimum degree at least two
and average left and right degrees, respectively dL and dR.

(a) If �e is a uniformly chosen random edge in �ELR, then E[n2i+1(�e)] ≥
(dR − 1)i+1(dL − 1)i (i ≥ 1).

(b) If �e is a uniformly chosen random edge in �ERL, then E[n2i(�e)] ≥
(dR − 1)i(dL − 1)i (i ≥ 1).

Proof of Theorem 4.1 We will prove the bound for nL . The proof for nR case is
similar. Let �e1 be chosen uniformly at random from �ELR and let �e2 be its companion
edge (going in the opposite direction). Note that �e2 is also uniformly distributed in
�ERL . Then, from Observation 4.3, Lemma 4.3 and linearity of expectation we obtain

nL ≥ E

⎡

⎣
� r
2 �−1∑

i=0

n2i+1(�e1) +
� r
2 �−1∑

i=0

n2i(�e2)
⎤

⎦ ≥
r−1∑

i=0

(dR − 1)�
i
2 �(dL − 1)�

i
2 �. ��
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10.4.2 The Entropy-Based Proof of Lemma 4.3

The proof of Lemma 4.3 below is essentially the same as the one originally proposed
by Hoory, but is stated in the language of entropy.

Proof of Lemma 4.3 (a) Consider a Markov process �e0, �e1, �e2, . . . , �e2i+1, where �e0
is a uniformly chosen random edge from �ELR, and for 0 ≤ j < 2i + 1, �ej+1 is
a random successor edge for �ej chosen uniformly from among the nonreturn-
ing possibilities. Let v0, v1, v2, . . . , v2i+2 be the vertices visited by this non-
returning walk. We observe that for 0 ≤ j ≤ i each �e2j and �e2j+1 is respec-
tively distributed uniformly in the set �ELR and �ERL . Furthermore, for j even,
Pr[vj = v] = dv/|E(G)| for all v ∈ VL , and for j odd, Pr[vj = v] = dv/|E(G)|
for all v ∈ VR. Then,

log2 E[n2i+1(e)] ≥ E[log2 n2i+1(e)]
≥ H[�e0�e1 . . . �e2i+1 | �e0]

=
i∑

j=0

H[�e2j+1|�e2j] +
i∑

j=1

H[�e2j|�e2j−1]

=
i∑

j=0

E[log2(dv2j+1 − 1)] +
i∑

j=1

E[log2(dv2j − 1)]

≥ (i + 1) log2(dR − 1) + i log2(dL − 1)

= log2(dR − 1)i+1(dL − 1)i.

where to justify the first inequality we use Jensen’s inequality for the concave
function log, to justify the second we use the fact that the entropy of a random
variable is at most the log of the size of its support, and to justify the last we
use Jensen’s inequality for the convex function x log2(x − 1) (x ≥ 2). The claim
follows by exponentiating both sides.

(b) Similarly,

log2 E[n2i(e)] ≥ log2(dL − 1)i(dR − 1)i. ��
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