
Progress in Computer Science and Applied Logic
26

Perspectives
in Computational
Complexity

Manindra Agrawal
Vikraman Arvind
Editors

The Somenath Biswas
Anniversary Volume

Progress in Computer Science and Applied Logic

Volume 26

Editor-in-Chief

Erich Grädel, Aachen, Germany

Associate Editors

Eric Allender, Piscataway, NJ, USA
Mikołaj Bojańczyk, Warsaw, Poland
Sam Buss, San Diego, CA, USA
John C. Cherniavski, Washington, DC, USA
Javier Esparza, Munich, Germany
Phokion G. Kolaitis, Santa Cruz, CA, USA
Jouko Väänänen, Helsinki, Finland and Amsterdam, The Netherlands

For further volumes:
http://www.springer.com/series/4814

Manindra Agrawal • Vikraman Arvind
Editors

Perspectives in
Computational Complexity

The Somenath Biswas Anniversary Volume

Editors
Manindra Agrawal
Department of Computer Science

and Engineering
Indian Institute of Technology
Kanpur
India

Vikraman Arvind
CIT Campus
Institute of Mathematical Sciences
Chennai
India

ISBN 978-3-319-05445-2 ISBN 978-3-319-05446-9 (eBook)
DOI 10.1007/978-3-319-05446-9
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014942531

Mathematics Subject Classification (2010): 03-XX, 03D15, 68-XX, 68Q15

� Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.birkhauser-science.com)

Contributors

Eric Allender Department of Computer Science, Rutgers University, New
Brunswick, NJ, USA

Vikraman Arvind Institute of Mathematical Sciences, Chennai, India

S. Ajesh Babu Microsoft Research India, Bangalore, India

Markus Bläser Computer Science, Saarland University, Saarbrücken, Germany

Sumanta Ghosh Department of Computer Science and Engineering, Indian
Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India

Neeraj Kayal Microsoft Research, Bangalore, India

Piyush P. Kurur Department of Computer Science and Engineering, Indian
Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India

Meena Mahajan The Institute of Mathematical Sciences, Chennai, India

Bruno Poizat Institut Camille Jordan, Université Claude Bernard, Villeurbanne-
cedex, France

Jaikumar Radhakrishnan School of Technology and Computer Science, Tata
Institute of Fundamental Research, Mumbai, India

Ramprasad Saptharishi Microsoft Research, Bangalore, India

Nitin Saxena Department of CSE, IIT Kanpur, Kanpur, India

Jacobo Torán Department of Theoretical Computer Science, University of Ulm,
Ulm, Germany

N. Variyam Vinodchandran Department of Computer Science and Engineering,
University of Nebraska-Lincoln, Lincoln, NE, USA

v

Somenath Biswas 2013
With the permission of � Somenath Biswas

Preface

In the summer of 2012, we organized a three day ‘‘Computational Complexity’’
workshop at the Indian Institute of Technology, Kanpur, India, in honor of
Professor Somenath Biswas to celebrate his 60th birthday. It was a fitting event for
the occasion, well-attended by several well-known experts in the field from
different parts of the world.

Professor Biswas is one of the first complexity theorists from India. In his
teaching and research career spanning over 30 years, apart from doing quality
research, he has contributed immensely to the development of the field in India.
We felt that to bring out a festschrift volume of articles in complexity theory,
based partly on the talks at the workshop, would be a lasting tribute. We are deeply
grateful to the eminent researchers who enthusiastically agreed to contribute
articles for this project and also helped, in a cross-refereeing process, with
refereeing each other’s contributed articles. These articles span different aspects of
recent complexity theory research, including the isomorphism conjecture, arith-
metic circuit complexity, space-bounded complexity classes, proof complexity,
applications of entropy, and the complexity of graph isomorphism. As former
students of Somenath Biswas, we feel privileged to edit this volume. It is an
expression, as it were, of our affection and regard for him.

We are grateful to Eric Allender for his valuable advice and support from the
early stages of this book project, and for suggesting the ‘‘Progress in Computer
Science and Applied Logic’’ Springer-Birkhäuser series. We would also like to
thank Erich Grädel, the chief editor of the series for enthusiastically supporting the
project.

March 2014 Manindra Agrawal
Vikraman Arvind

vii

Contents

1 Complexity Theory Basics: NP and NL . 1
Vikraman Arvind

2 Investigations Concerning the Structure of Complete Sets 23
Eric Allender

3 Space Complexity of the Directed Reachability Problem
over Surface-Embedded Graphs . 37
N. Variyam Vinodchandran

4 Algebraic Complexity Classes . 51
Meena Mahajan

5 A Selection of Lower Bounds for Arithmetic Circuits 77
Neeraj Kayal and Ramprasad Saptharishi

6 Explicit Tensors . 117
Markus Bläser

7 Progress on Polynomial Identity Testing-II 131
Nitin Saxena

8 Malod and the Pascaline . 147
Bruno Poizat

9 A Tutorial on Time and Space Bounds
in Tree-Like Resolution . 159
Jacobo Torán

ix

10 An Entropy-Based Proof for the Moore Bound
for Irregular Graphs . 173
S. Ajesh Babu and Jaikumar Radhakrishnan

11 Permutation Groups and the Graph Isomorphism Problem 183
Sumanta Ghosh and Piyush P. Kurur

x Contents

Chapter 1
Complexity Theory Basics: NP and NL

Vikraman Arvind

Abstract We introduce basic concepts and results in computational complexity as
background for some of the articles in this volume. Our focus is on the complex-
ity classes nondeterministic polynomial time (NP) and nondeterministic logarithmic
space (NL). The presentation is aimed at computer science students at a senior under-
graduate level, and assumes some familiarity with algorithm design and theory of
computation. The material is covered at a fairly brisk pace. Several results and proof
details are incorporated in exercises which the reader is urged to solve or look up in
textbooks such as [BDG88, Pap94, AB09].

Keywords Nondeterministic polynomial time · NP-completeness · Nondetermin-
istic logarithmic space

Mathematics Subject Classification (2010) Primary 68Q15.

1.1 NP-completeness

The story of modern computational complexity begins with the advent of stored
program computers in the 1940s and the need for efficiently solving optimization
problems by programming the computer. It was soon discovered that a brute-force
enumerative search for the optimal solution yields only algorithms that take expo-
nential time, since the number of candidate solutions for optimization problems
is typically exponential in the input size. Such solutions were not practical even
for inputs of moderate size. Cobham [Cob64] and Edmonds [Edm65], around 1965,
independently suggested polynomial-time boundedness as an appropriate theoretical
criterion for efficient computation. This was an important conceptual contribution.

V. Arvind (B)

Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
e-mail: arvind@imsc.res.in

M. Agrawal and V. Arvind (eds.), Perspectives in Computational Complexity, 1
Progress in Computer Science and Applied Logic 26, DOI: 10.1007/978-3-319-05446-9_1,
© Springer International Publishing Switzerland 2014

2 V. Arvind

Although algorithms with linear or quadratic time bounds are desirable in practice,
polynomial time computation is theoretically satisfactory for several reasons. First,
it rules out exhaustive search solutions which are typically exponential time. Also,
since polynomials are closed under composition, it makes polynomial-time bounded
computation closed under procedure calls. Thus, a polynomial-time bounded pro-
gram making calls to a library of polynomial-time subroutines is still polynomial
time. Furthermore, as reasonable models of computation can simulate each other
with at most a polynomial-time slowdown,1 it makes the notion of polynomial-time
solvability independent of the computation model.

The next big step was the pioneering research of Cook [Coo71], Levin [Lev73],
and Karp [Kar72]. The class NP, consisting of decision problems that have non-
deterministic polynomial-time decision procedures, was identified as the class that
captures most natural optimization problems of interest. The notion of polynomial-
time reductionswas used to compare the relative difficulty of problems. Propositional
formula satisfiability was shown to be NP-complete under polynomial-time reduc-
tions [Coo71, Lev73]. Then several decision problems, arising from optimization
problems, were shown NP-complete [Kar72]. NP-complete problems are the hardest
problems in the class NP as opposed to decision problems that are polynomial-time
solvable.

Letχ denote a fixed finite alphabet |χ| ≥ 2. Input instances of decision problems
are encoded as finite strings over χ. Thus, χ∗ comprises of all input instances for a
decision problem and the “yes” instancesA ⊆ χ∗ form a language. Therefore,we can
identify decision problems with languages and we use the terms interchangeably. As
is customary in computation theory, we will use the standard Turing machine model
as the model of computation (see e.g. [HU79]).

Definition 1.1 Let A, B ⊆ χ∗ be languages.
1. Then A is said to be polynomial-time many-one reducible to B, denoted A ≤p

m B,
if there is a polynomial-time computable function f such that for all x ∈ χ∗

x ∈ A if and only if f (x) ∈ B.

2. More generally, A is said to be polynomial-time Turing reducible to B if there is
a polynomial-time bounded oracle Turing machine M such that MB accepts the
language A.

A language L ⊆ χ∗ is in the complexity class P if there is a polynomial-time
bounded deterministic Turing machine (equivalently, a polynomial-time algorithm)
for checking membership in L.

A language L ⊆ χ∗ is in the complexity class NP if there is a language A ∈ P
and a polynomial p such that for all x ∈ χ∗

x ∈ L if and only if ∃y ∈ χ≤p(|x|) : 〈x, y〉 ∈ A,

1 This is a polynomial-time version of the Church-Turing thesis known as the feasibility thesis
[vEB90].

1 Complexity Theory Basics: NP and NL 3

where χ≤p(|x|) denotes strings of length at most p(|x|) over χ. In other words, the
complexity class NP consists of languages L such x ∈ L has a polynomial-size
certificate y of membership in L, and the certificate is polynomial-time verifiable by
checking if 〈x, y〉 ∈ A.

Exercise Show that the following decision problems are in the class NP:

1. Given an undirected graph G and a number k as input, decide if G has a clique of
size at least k (known as the CLIQUE problem). The graph G is given by either
its adjacency list or adjacency matrix.

2. Given a positive integer m (encoded in binary) decide if it is composite.
3. Given a system of linear equations Ax = b over rationals, where the rational

entries of the matrix A and column vector b are encoded in binary, decide if it has
a solution.

We now formally define NP-completeness. A language L ⊆ χ∗ is said to be
NP-complete if L is in NP and each L′ ∈ NP is polynomial-time many-one reducible
to L.

Since polynomial-time reducibility between languages is a transitive relation,
once a language L′ is shown NP-complete, it suffices to show that L′ is polynomial-
time many-one reducible to L in order to prove that the language L in NP is also
NP-complete. A problem that can be directly shown NP-complete is the following:

K = {〈M, x, 1t〉 | M accepts x in at most t steps},

where M in the above definition denotes the Turing machine code (as a list of quin-
tuples) of a nondeterministic Turing machine.

Exercise Show that K is NP-complete. (Hint: In order to show K is in NP you will
need to use a suitable universal Turing machine).

But the first problem shown NP-complete by Cook and Levin was a natural prob-
lem, known as the satisfiability problem for propositional formulas, which opened
the floodgate to NP-complete problems and the subject of computational complexity.

Theorem 1.2 (Cook-Levin theorem) [Coo71, Lev73] The satisfiability problem for
propositional formulas is NP-complete.

A propositional formula F is in conjunctive normal form (CNF in short) if F =
C1∧C2∧· · ·∧Cm where each Ci is an OR of variables or their negations. The proof
of the Cook-Levin theorem actually shows the stronger result that the satisfiability
problem for propositional CNF formulas is NP-complete.

Clearly, NP-complete problems are the hardest problems in NP and all NP-
complete problems are polynomial-time equivalent. That is to say, if a polynomial-
time algorithm is discovered for any NP-complete problem then we have a
polynomial-time algorithm for any problem in NP. Whether P equals NP or not
is the central open problem in computational complexity.

4 V. Arvind

Exercise

1. Show that the CLIQUE problem (defined in Exercise 2) isNP-complete by giving
a reduction to it from propositional CNF formula satisfiability.

2. A vertex cover for an undirected graph G is a subset S of vertices such that for
each edge (u, v) of G we have {u, v} ∩ S = ∅. Given an undirected graph G
and a number k as input the VC problem is to decide if G has a vertex cover of
size at most k. Show that VC is NP-complete. The graph G is given by either its
adjacency list or adjacency matrix.

1.2 Inside NP

Thus, within the class NP we have polynomial-time solvable problems on the one
hand, which is the subclass P. At the other extreme, we have NP-complete problems,
of which there are abundantly many [GJ79], because most natural optimization prob-
lems that arise in practice andwewish to solve efficiently turn out to beNP-complete.
A natural question that arises is whether NP contains other problems. The answer to
this question is given by Ladner’s theorem which states that if P = NP then there are
problems in NP that are neither in P nor NP-complete. We discuss a proof attributed
to Russell Impagliazzo [DF03].

Theorem 2.1 (Ladner’s theorem)[Lad75] If P = NP there is a problem A ∈ NP that
is neither in P nor NP-complete.

Proof By assumption the NP-complete problem SAT is not in P. Following standard
notation [BDG88, Pap94], let DTIME[g(n)] denote the class of languages accepted
by deterministic Turing machines that halt in time bounded by g(n) on inputs of
length n. Now, if we knew that SAT ∈ DTIME[g(n)] for some fixed superpolynomial
function g(n), for example g(n) = nlog n, then we can easily find a language A ∈ NP
that is neither in P nor NP-complete. Indeed, let

A := {x01|x|log log |x| | x ∈ SAT}.

Clearly, A ∈ NP because given a string of the form x01k we can guess and verify a
satisfying assignment for the SAT instance x and check in polynomial time that the
pad 1k is of length |x|log log |x|. Suppose A is NP-complete. Then SAT ≤p

m A via some
polynomial-time computable reduction f . Notice that

x ∈ SAT ⇐⇒ f (x) = x′01|x′|log log |x
′| ∈ A ⇐⇒ x′ ∈ SAT.

Since f is polynomial-time computable, |f (x)| ≤ |x|c for some constant c and hence
|x′| < |x| for all but finitely many instances x ∈ SAT. Thus, it suffices to check if the
smaller instance x′ ∈ SAT. Repeatedly applying this argument gives a polynomial-
time procedure for SAT contradicting P = NP. Hence A cannot be NP-complete.

1 Complexity Theory Basics: NP and NL 5

On the other hand, we claim that A ∈ P. For, if A were in P that would give a
|x|O(log log |x|) time algorithm to decide if x ∈ SAT, contradicting the assumption that
SAT is not in DTIME[nlog n].

Unfortunately, we can only assume that SAT is not in P and cannot make the
stronger assumption that SAT is not in DTIME[nlog n]. So we need to define the
padded language A more carefully to make the above argument work. Let

A := {x01k | x ∈ SAT, k = f (|x|)},

where the padding function f (n)will be computable in time polynomial in n and con-
structed by diagonalization. Let {Mi}i>0 be a recursive enumeration of polynomial-
time clocked, deterministic Turing machines; more precisely, let Mi be clocked to
run for ni + i steps on length n inputs. The function f is defined as follows:

1. i := 1.
2. For n := 1 to∞ do
3. Let f (n) = ni.
4. If there is an input x of length at most log n such that Mi(x) accepts and x ∈ A or

Mi(x) rejects and x ∈ A then i := i + 1.
5. endfor

Notice that at the nth iteration of the for-loop, in which f (n) gets defined, the
function f (m) is already defined for m < n and hence checking x ∈ A for log n
length inputs is well defined. Moreover, checking membership of x ∈ A can be done
in polynomial in n time since |x| ≤ log n. Hence, f is defined by the above procedure
for all n and is computable in time polynomial in n. This defines the set A.

Suppose A ∈ P. Then A = L(Mi) for some machine Mi. By construction, there
are constants n0 and k > i such that f (n) = nk for all n > n0. That means, for
all but finitely many input lengths, SAT is polynomial-time reducible to A by the
map x ≈→ x01|x|k which contradicts the assumption P = NP. It follows that for each
constant i we have f (n) > ni for all but finitely many n.

Suppose A is NP-complete and g is a polynomial-time reduction from SAT to
A. We will give a polynomial-time algorithm for SAT contradicting the assumption.
Since g is polynomial-time computable, we have |g(x)| ≤ |x|c for some constant
c > 0 and all but finitely many inputs x. If g(x) is not of the form y01f (|y|) we can
reject x. Also, if g(SAT) is finite then SAT is trivially in P by table look-up. Suppose
g(SAT) is infinite. Then for all but finitely many x ∈ SAT we have g(x) = y01f (|y|)
where f (|y|) > |y|c. The finitely many exceptions we can keep in a table. Thus, given
a SAT instance x we first compute g(x) = y01f (|y|). If x is not in the look-up table,
since f (|y|) < |g(x)| ≤ |x|c , it follows that |y| < |x| and x ∈ SAT if and only if
y ∈ SAT.We can now recurse on the instance y. Overall this gives a polynomial-time
SAT algorithm contradicting the assumption. This concludes the proof. �

Exercise Suitably adapt the above proof to show for any language A ∈ P that there
is a language B ∈ P such that B ≤p

m A but A ≤p
m B.

6 V. Arvind

1.2.1 The Class NP ∩ coNP

The class coNP consists of languages L such that χ∗ \ L is in NP.
Indeed, for any class of languages C we can define coC:

coC = {L ⊆ χ∗ | χ∗ \ L ∈ C}.

Remark 2.2 The class coNP consists of all languages whose complements are in NP.
For example SAT is in coNP and, by virtue of SAT being NP-complete, SAT is coNP-
complete under polynomial-time many-one reductions. The set TAUT consisting of
all propositional tautologies is also coNP-complete (exercise: verify this). Whether
NP equals coNP is a major open problem.We can view the NP versus coNP question
from the logical perspective of propositional proof systems. For any language L ∈
NP, by definition for each x ∈ L there is a polynomial-length proof of membership
that can be checked in polynomial time. This can be thought of as a “sound and
complete proof system” for L. Thus, the question whether NP = coNP amounts to
asking if there is a proof system for propositional tautologies in which all tautologies
have polynomial length proofs. This leads to a study of propositional proof systems
of different strengths with the aim of proving lower bounds for proof lengths in the
proof systems. The article by Jacobo Torán in this volume presents aspects of this
fascinating topic with pointers to current research and open problems.

We will now discuss decision problems that are in NP ∩ coNP. For any L ∈
NP ∩ coNP there are languages A and B in P and a polynomial p such that for each
x ∈ χ∗

x ∈ L ↔ ∃y ∈ χp(|x|)〈x, y〉 ∈ A

↔ ∀z ∈ χp(|x|)〈x, y〉 ∈ B

These are the so-called well-characterized problems. They are well characterized
in the sense that membership of x in L can be characterized using an existentially
quantified predicate, and can also be characterized using a universally quantified
predicate. It is a remarkable phenomenon in complexity theory that the discovery of
such characterization often precedes (even anticipates) the discovery of a polynomial-
time algorithm for the problem. We discuss a few well-known examples.

The language PM = {G | G has a perfect matching} has a polynomial-time
algorithm as shown in the already mentioned famous paper of Edmonds [Edm65].
However, in the 1940s Tutte, in his well-known theorem stated below, had anticipated
this by “well-characterizing” the PM problem.

Theorem 2.3 (Tutte’s 1-factor theorem) [Tut47] An undirected graph G has a per-
fect matching if and only if for every subset S of the vertex set the number of odd-size
components in the graph G \ S is bounded by |S|.

1 Complexity Theory Basics: NP and NL 7

Similarly, Farkas’ lemma [Sch98, Sect. 7.3] stated below “well-characterizes”
linear programming which was shown to be in polynomial time many decades later
by Kachiyan [Sch98, Chap.13].

Theorem 2.4 (Farkas’ Lemma) The system of linear inequalities Ax ≤ b has a
solution if and only if for all yT ≥ 0 if yT A = 0 then yT b ≥ 0.

Exercise Use the characterizations in Theorems 2.3 and 2.4 to show that the perfect
matching problem and feasibility of linear inequalities problem are in NP ∩ coNP.

Exercise Show that NP = coNP if and only if some problem in NP ∩ coNP is
NP-complete.

The above discussion might lead one to believe that perhaps NP ∩ coNP equals P.
However, there are problems inNP∩ coNP that have defied all attempted polynomial-
time solutions. The decision version of the Integer factoring problem is a noteworthy
example. Each positive integer n can be uniquely factorized as n = pe1

1 pe2
2 , . . . , pek

k
where p1 < p2 < · · · < pk are distinct primes. Let enc(n) denote an encoding in
binary of this factorization. Consider the language

FACT = {〈n, i, b〉 | the ith bit of enc(n) is b}.

Exercise

1. Assuming primality testing is in P show that FACT is in NP ∩ coNP.
2. Show that the integer factoring problem can be solved in polynomial time with

calls to a decision procedure for FACT.

1.3 The Berman-Hartmanis Conjecture

Polynomial-time reductions define a natural order ≤p
m on NP languages that raises

some fundamental questions about the structure of NP languages.

Exercise Show that the order≤p
m onNP languages is a binary relation that is reflexive

and transitive but not symmetric.

In order to obtain a partial order from ≤p
m we define the equivalence relation

A ≡p
m B if and only if A ≤p

m B and B ≤p
m A.

Exercise

1. Show that ≡p
m is an equivalence relation on NP.

2. For A ∈ NP let [A] denote the equivalence class containing A for the equivalence
relation ≡p

m. Show that ≤p
m, suitably defined on the equivalences classes [A] for

A ∈ NP, yields a partial order.

8 V. Arvind

This partial order has its top element as [SAT], the equivalence class of all NP-
complete languages. Its bottom element is P. Notice that class P contains, among
all polynomial-time solvable decision problems, all finite languages. In contrast,
assuming P = NP, all sets in [SAT], being NP-complete, are infinite.

Definition 3.1 [BH77] Let A, B ⊆ χ∗. A polynomial-time many-one reduction f
from A to B is a polynomial-time isomorphism if f : χ∗ → χ∗ is a bijection and
f−1 is also polynomial-time computable.

Berman and Hartmanis [BH77], in 1977 conjectured that all NP-complete sets
are polynomial-time isomorphic to each other. Since they could show [BH77] many
natural NP-complete problems to be isomorphic, empirically this appears plausi-
ble. Although the conjecture is not currently believed to be true, it gave impetus
and direction to a lot of interesting complexity theory research. The article by Eric
Allender in this volume surveys the interesting complexity theory research related
to the Berman-Hartmanis conjecture over the last two decades. Our aim here is to
provide some useful background.

A polynomial-time computable function f : χ∗ → χ∗ is 1-invertible if f is
injective and f−1 is also polynomial-time computable. More precisely, there is a
polynomial-time algorithm that on input y ∈ χ∗ computes f−1(y) if y is in the range
of f and outputs ⊥ otherwise.

Now, suppose A and B are NP-complete languages such that A is reducible to B
via a 1-invertible function f and B is reducible to A via a 1-invertible function g, can
we then conclude that A and B are polynomial-time isomorphic. The motivation for
this approach is its analogy to the setting of the Schröder-Bernstein theorem in set
theory which we recall with a quick proof in order to generalize it to the isomorphism
setting.

Theorem 3.2 (Schröder-Bernstein theorem) Let A and B be sets and f : A → B and
g : B → A be injective functions. Then there is a bijection between A and B.

Proof Theproof idea involves examining the alternating preimage sequenceof points
x, g−1(x), f−(g−1(x)), . . . for each x ∈ A. Since both f and g are injective, notice
that for any x ∈ A and y ∈ B the preimages g−1(x) and f−1(y), if they exist, are
unique. We can partition A into three parts A1, A2, and A3. The part A1 consists of
x ∈ A such that the preimage sequence is finite and ends in A. The part A2 consists
of x ∈ A such that it has a finite preimage sequence ending in B, and A3 consist of
the elements x ∈ A whose preimage sequence is infinite. Likewise, B is partitioned
into three parts B1, B2, and B3 of elements y ∈ B whose pre-image sequence either
ends in A or in B or is infinite, respectively. Define a function h : A → B as follows:

∀ x ∈ A1 h(x) = f (x),

∀ x ∈ A2 h(x) = g−1(x),
∀ x ∈ A1 h(x) = f (x).

It is easy to see that h is a bijection. �

1 Complexity Theory Basics: NP and NL 9

Exercise Verify that h defined in the proof is indeed a bijection from A to B.

A function f : χ∗ → χ∗ is called length increasing if |f (x)| > |x| for all x ∈ χ∗.
In order to adapt the Schröder-Bernstein proof strategy for showing polynomial-
time isomorphisms between NP-complete sets, it turns out that length-increasing
1-invertible reductions is a suitable notion.

Theorem 3.3 [BH77] Let A, B ⊆ χ∗ be two languages such that there are length-
increasing 1-invertible reductions from A to B and from B to A. Then A and B are
polynomial-time isomorphic.

The proof of this theorem is in the following exercise.

Exercise

1. Suppose f and g are length-increasing 1-invertible reductions fromA toB and from
B to A respectively. Show that the partition corresponding to infinite preimage
sequences is empty for both f and g.

2. Verify that the bijection h : χ∗ → χ∗ defined in the proof of Theorem 3.2 is a
polynomial-time isomorphism between A and B.

The question is how do we get hold of length increasing 1-invertible reductions?
Berman and Hartmanis [BH77] discovered another natural property that several NP-
complete languages are endowed with. A language A ⊆ χ∗ is said to be paddable if
there is a 1-invertible reduction pad from A×χ∗ to A. It turns out that many natural
NP-complete problems are paddable.

Exercise Show that SAT, 3-SAT, CLIQUE, VC are all paddable languages.

Now, it turns out that paddableNP-complete languages are all isomorphic [BH77].
Since many NP-complete problems are paddable, it lead Berman and Hartmanis to
make their conjecture.

Exercise

1. If A ≤p
m B and B is paddable then show that A is polynomial-time reducible to B

via a 1-invertible length increasing function.
2. Conclude that if A and B are paddable NP-complete languages then they are

polynomial-time isomorphic.

1.4 Are There Sparse NP-Complete Sets?

Let A ⊆ χ∗ be any language. The density of A at length n is defined to be the number
|A=n| of length n strings in A. The language A is exponentially dense if |A=n| is at
least 2nσ

for some constant σ > 0. Natural NP-complete problems have exponential
density.

10 V. Arvind

Exercise Show that SAT, CLIQUE, VC have exponential density.

A consequence of the Berman-Hartmanis conjecture is that all NP-complete lan-
guages have exponential density. Can we show that languages with subexponential
density cannot be NP-hard?

A language A ⊆ χ∗ is said to be sparse if there is a polynomial p(n) such that
|A=n| ≤ p(n) for all n.

Theorem 4.1 (Mahaney) [Mah82] No sparse language is NP-hard unless P = NP.

Proof We present a more recent proof [Agr11]. Suppose SAT ≤p
m A for some arbi-

trary sparse language A via a polynomial-time reduction f . For some polynomial
p(n) we have |f (x)| ≤ p(|x|).

We give a polynomial-time algorithm for SAT. Given a formula F of size
s in boolean variables x1, x2, . . . , xn as input, the algorithm proceeds in stages
0 ≤ i ≤ n. At stage i, the algorithm maintains a list of formulas {Fa | a ∈ I}
such that each Fa, a ∈ I is obtained from F by the truth assignment a to the first i
variables x1, x2, . . . , xi with the property that

F ∈ SAT if and only if Fa ∈ SAT for some a ∈ I. (1.1)

If |I| > q(s) + 1, for a suitable polynomial q(s) which will be defined in the
course of the proof, then the algorithm applies a pruning operation to discard some
a from the list I such that Property (1.1) holds for I \ {a} as well. We now describe
the pruning operation:

Consider all pairs of disjunctions Fab = Fa ∨ Fb for a, b ∈ I . If s is the size
of formula F then clearly 2s bounds the size of Fab for all a, b ∈ I . Fix an a ∈ I
and consider f (Fab) for all b ∈ I \ {a}. If Fa ∈ SAT then clearly Fab ∈ SAT for all
b ∈ I \ {a}. Hence, Fa ∈ SAT implies f (Fab) ∈ A≤p(2s). Since A is sparse we know
that |A≤p(2s)| ≤ q(s) for some polynomial q. The algorithm computes f (Fab) for all
b ∈ I \ {a} and does the following:

1. If f (Fab) are all distinct for b ∈ A \ {a} then Fa cannot be in SAT and a can be
discarded from I .

2. Otherwise, for some b = c ∈ I \ {a} we have f (Fab) = f (Fac). The algorithm
can discard either b or c from I .

After pruning the list to get {Fa | a ∈ I} such that |I| ≤ q(s) + 1 the algorithm
proceeds to the next stage where it first doubles the list of formulas by setting xi+1
to 0 and 1 to get {Fb | b ∈ J} where J consists of all extensions of assignments in I
obtained by setting xi+1 to 0 and 1.

Continuing thus, at the nth stage the algorithm accepts SAT if the set I at that
stage includes a satisfying assignment. �

Let A ∈ NP. By definition there are a polynomial-time computable language
B ⊆ χ∗ ×χ∗ and a polynomial bound p(n) such that x ∈ A if and only if

∃y ∈ χp(|x|)〈x, y〉 ∈ B.

1 Complexity Theory Basics: NP and NL 11

Define the language pre(A) = {〈x, w〉 | ∃u ∈ χp(|x|)−|w| : 〈x, wu〉 ∈ B}.
Exercise Show that pre(A) is in NP and A ≤p

m pre(A).

A tally language is a subset of 0∗. The next exercise is about tally languages and
is analogous to Theorem 4.1.

Exercise For a language A ∈ NP if pre(A) is polynomial-time reducible to a tally
language then show that pre(A), and hence A, is in P.

1.4.1 Subexponentially Dense Languages

A subset S ⊆ χ∗ is of subexponential density if for every σ > 0 there is an
n0 ∈ N such that for all n > n0 we have |S=n| ≤ 2nσ

. A natural question is whether
Mahaney’s theorem can be generalized to sets of subexponential density.

The class of languages SUBEXP = ∩σ>0DTIME[2nσ] consists of languages that
have subexponential time decision procedures.

In the proof of Theorem 4.1 we gave a polynomial-time algorithm for SAT assum-
ing that it is reducible to some sparse language. Modify the proof to show the
following.

Exercise If SAT is polynomial-time many-one reducible to a language of subexpo-
nential density then show that NP ⊆ SUBEXP.

The inclusion NP ⊆ SUBEXP is believed unlikely. For instance, it would imply a
2o(n) time algorithm for the satisfiability of 3CNF formulas, where n is the number of
boolean variables in the input formula. This would, in turn, imply similar subexpo-
nential algorithms for certain otherNP-complete problems [IPZ01]. For a complexity
theory tailored to the problem of designing faster exponential-time algorithms for
NP-complete problems see [IPZ01] and related papers.

For the rest of this sectionwe briefly discuss another unlikely complexity-theoretic
consequence, assuming SAT is reducible to a set of subexponential density. In the
process we will introduce some more basic complexity theory.

We start with the definition of the polynomial-time hierarchy. A language L is in
the class χ

p
k if there are a polynomial p(n) and language A ∈ P such that

L = {x | ∃y1∀y2 · · · Qyk : |yi| ≤ p(|x|) for all i

and 〈x, y1, y2, . . . , yk〉 ∈ A},

where the quantifier “Q” is “∃” if k is odd and “∀” if k is even. The classβ
p
k consists of

all languages L such that χ∗ \L is in χ
p
k . The following observations are immediate

from the definition:

12 V. Arvind

χ
p
0 = β

p
0 = P,

χ
p
1 = NP, β

p
1 = coNP,

χ
p
k ⊆ β

p
k+1 and β

p
k ⊆ χ

p
k+1.

The entire polynomial-time hierarchy is defined as the union PH = ∪k≥0χp
k .

Exercise Show that χp
k = β

p
k implies PH = χ

p
k .

We now introduce the nonuniform analog of P and NP. A polynomially bounded
advice function is any function a : N → χ∗, mapping positive integers to strings,
such that |a(n)| ≤ p(n) for some polynomial p and all n ∈ N

Let C be any class of languages. A language L is in the class C/poly if there are
a polynomially bounded advice function a(n) and a language A ∈ C such that for all
n ∈ N and x ∈ χ∗:

x ∈ L if and only if 〈x, a(|x|)〉 ∈ A.

Notice that the function a(n) is arbitrary and could even be noncomputable. On
the other hand, the advice string a(|x|) is polynomially bounded and is the same for
all length n inputs.

The classes P/poly and NP/poly are the usual nonuniform analogues of P and
NP respectively. These complexity classes have alternative definitions in terms of
boolean circuits which we now introduce in a small digression.

An n-variate boolean function is a function f : {0, 1}n → {0, 1}. Boolean circuits
are a natural computational model for computing boolean functions. A boolean
circuit C is a directed acyclic graph whose vertices of indegree 0 are labeled either
by a boolean constant (either 0 or 1) or by one of the n input boolean variables
x1, x2, . . . , xn. Every other vertex of the graph has indegree either one or two. The
vertices of indegree one are labeled as NOT gates and each vertex of indegree two
is labeled either as an AND gate or an OR gate. A special vertex of the circuit is
designated as the output gate. The size of the circuitC, denoted size(C) is the number
of gates in C.

The circuit is evaluated in any topologically sorted order of the gates, following
the usual semantics of NOT, AND, and OR at each gate. Each gate computes a
boolean function and the n-variate boolean function computed at the output gate is
defined as the function computed by the circuit.

Let χ = {0, 1} and L ⊆ χ∗ be a language. Consider a family of circuits {Cn}n>0,
where Cn computes an n-variate boolean function for each n. We say that the circuit
family {Cn}n>0 computes the language L if for each n we have

L=n = {x ∈ χn | Cn(x) = 1}.

We call {Cn}n>0 a polynomial-size circuit family if size(Cn) ≤ p(n) for some
polynomial p(n) and all n.

1 Complexity Theory Basics: NP and NL 13

Exercise Show that a language L is in P/poly if and only if there is a polynomial-
size circuit family that computes L. Similarly, characterize NP/poly using circuit
families.

As there is no bound on the computational complexity of advice functions, the
class P/poly contains even noncomputable languages (exercise: prove this). Are
there NP-complete languages in P/poly? This could be useful for efficiently solving
NP-complete languages for fixed input lengths. The advice function, computed as a
preprocessing step, serves as a small table that can be looked up to efficiently solve
instances of that fixed length. However, this seems to be unlikely because it implies
that the polynomial hierarchy will collapse to the second level.

Theorem 4.2

1. If an NP-complete language is in P/poly then PH = χ
p
2 [KL80].

2. If there is a coNP-complete language in NP/poly then PH = χ
p
3 [Yap83].

Coming back to sets of subexponential density, it is shown in [BH08], using a nice
counting argument from [FS08], that if SAT is polynomial-time many-one reducible
to a set S of subexponential density then coNP ⊂ NP/poly which in turn would
imply PH = χ

p
3 by the above theorem.

1.5 Nondeterministic Logspace

We now turn to logarithmic space bounded complexity classes. A deterministic
logarithmic space-bounded Turing machine is a deterministic Turing machine that
has a read-only input tape and one or more worktapes, where n denotes the input
size and the workspace on each worktape is bounded by O(log n). By the tape-
compression theorem the constant factor in the space bound is not important. It
can be reduced by suitably increasing the tape alphabet size. Furthermore, multiple
worktapes can be replaced by a single worktape in space-bounded computation. We
denote by DSPACE[log n] the class of decision problems that can be solved in deter-
ministic logspace bounded Turing machines. Likewise, NSPACE[log n] denotes the
class of languages accepted by nondeterministic logspace bounded Turingmachines,
where acceptance is defined as usual: the machine accepts an input if there is some
accepting computation path for the machine on that input. The definitions and results
go back to the seminal work of Hartmanis and Stearns [HS65] and are well treated
in the classic textbook [HU79, Chaps. 12 and 13].

The class DSPACE[log n] is denoted as L. Likewise, the nondeterministic class
NSPACE[log n] is denoted as NL.

Proposition 5.1 L ⊆ NL ⊆ P.

Proof The first containment is obvious. Consider the nondeterministic computation
of an NL machine M on an input x of length n. Notice that the configurations of M

14 V. Arvind

have O(log n) size descriptions. More precisely, a configuration is described by the
current state, the head position on the input tape (which requires log n bits), the head
position on the work tape (which requires log log n bits), along with the contents of
the work tape which is O(log n) bits. Furthermore, given two configurations I and
I ′ we can easily check from the description of the machine M if M can go from
I to I ′ in one step. Thus, in polynomial in n time we can define a directed graph
whose nodes are the configurations and edges are (I, I ′) if M can move from I to I ′
in one step. Clearly, M accepts x if and only if there is a directed path from the initial
configuration to an accepting configuration. This can be solved in polynomial time
by a DFS-based algorithm. Thus, there is a polynomial time algorithm to determine
if M accepts x. �

It is an open problem whether L equals NL. The L versus NL problem makes an
interesting study in contrast with the P versus NP problem as the results explained
in this section will show.

In order to talk about NL-complete problems, we can define logspace many-
one reductions: f : χ∗ → χ∗ is logspace computable if there is a deterministic
logspace-bounded Turing machine that on input 〈x, i〉 computes the ith bit of f (x) (if
i > |f (x)| themachine indicates that the ith bit is undefined). It is easy to check that the
composition of logspace computable functions is logspace computable. A language
A ⊆ χ∗ is NL-complete if A ∈ NL and for every language B ∈ NL, B is logspace
many-one reducible to A.

Let REACH = {〈G, s, t〉 | G is a directed graph with a directed path from s to t}.
Exercise Show thatREACH is NL-complete (Hint: use the configuration graph from
the proof of Proposition 5.1 for the reduction).

Unlike NP and coNP which are believed to be different, the classes NL and
coNL are equal. This result was shown independently by Immerman and Szelepcenyi
[Imm88, Sze88] in 1987. The Immerman-Szelepcenyi theorem was an important
breakthrough in our understanding of nondeterministic complexity classes.

Theorem 5.2 (Immerman-Szelepcenyi) [Imm88, Sze88] For any space-construc-
tible function s(n) ≥ log n the classes NSPACE[s(n)] and coNSPACE[s(n)] are
equal. In particular, NL = coNL.

A formal detailed proof can be found in a textbook [Pap94, Theorem 7.6].
The following exercise outlines the proof with hints for the ambitious reader. Let
REACH = {〈G, s, t〉 | G is a digraph with nos-to-t directed path}.
Exercise

1. Show that in order to prove NL = coNL it suffices to give an NL algorithm for
the problem REACH.

2. Let (G, s, t) be an input instance of REACH. Suppose the number N of vertices
in G that are reachable from s is given to the algorithm as additional input. Then
design an NL algorithm that accepts (G, s, t) precisely when there is no directed
s-to-t path in G.

1 Complexity Theory Basics: NP and NL 15

3. Let (G, s, t) be an input instance of REACH.Given as additional input the number
Ni of vertices in G that are reachable from s by directed paths of length at most i.
Design an NL algorithm that on each accepting computation path halts with the
number Ni+1 as the contents of the worktape.

4. Put these parts together to obtain an NL algorithm for REACH.

In the 1970s Savitch’s theorem [Pap94, Theorem 7.5] had already shown that
nondeterministic space is quite different from nondeterministic time.

Theorem 5.3 (Savitch) For any space-constructible function s(n) ≥ log n we have
NSPACE[s(n)] ⊆ DSPACE[s2(n)].
Exercise Show that REACH is in DSPACE[log2 n] using the following divide and
conquer strategy: there is an s-to-t directed path in G of length k if and only if for
some vertex r of G there is a directed s-to-r path of length �k/2� and a directed r-to-t
path of length �k/2� in G.

The above results definitely encourage the optimist to believe that it is possible
to design a deterministic logspace algorithm for REACH and hence show NL = L.
Vinodchandran’s article surveys recent progress on space-bounded algorithms for
REACH. A big breakthrough was obtained by Reingold [Rei08] in 2004 by showing
that undirected graph reachability is in L. We discuss some aspects of Reingold’s
result in the Sect. 1.6.

1.6 Undirected Graph Reachability

In this section we develop the background and outline some of the ideas that are
involved in the proof of Reingold’s theorem [Rei08] which states that undirected
graph reachability is in L.

The corresponding language we denote as UREACH: UREACH = {〈G, s, t〉 | G
is an undirected graph containing a path from s to t}. Clearly, UREACH is a special
case of REACH and hence is in NL.

First, we note that without loss of generality we can assume the undirected graph
G is 3-regular. That is to say, every vertex in the graph G has degree exactly 3.
More precisely, given an instance 〈G, s, t〉 of UREACH, there is a determinis-
tic logspace computation that we can apply to transform it into another instance
〈G′, s′, t′〉 in which G′ is 3-regular such that 〈G′, s′, t′〉 ∈ UREACH if and only if
〈G, s, t〉 ∈ UREACH. The main idea involved in this transformation is that a vertex
v in G of degree d > 3 can be replaced by a cycle of length d consisting of vertices
v1, v2, . . . , vd , and the ith neighbor of v (say, in lexicographic order) made adjacent
to vi. This transformation can be carried out in logspace and in the transformed graph
there is a path between s and t if and only if there is one in G. Repeated application of
this step takes care of all vertices in G of degree more than 3. Vertices of degree 1 or
2 can be contracted (taking appropriate care if s or t is encountered in the contraction
process).

Exercise Verify the details of the logspace transformation sketched above.

16 V. Arvind

1.6.1 Reachability in Graphs of Logarithmic Diameter

LetG be a connected undirected graph. For every pair of vertices u, v ofG let dG(u, v)

denote the length of the shortest u to v path in G. The diameter of G is the maximum
distance maxu,v dG(u, v) between vertices in G. Suppose c, d > 0 are constants and
〈G, s, t〉 is an input instance of UREACH such that the maximum degree of G is d
and the diameter of G is bounded by c log n. There is a simple deterministic logspace
algorithm to check if there is an s to t path inG. Since each vertex u ofG has at most d
neighbors, its neighborhood N(u) can be indexed by {1, 2, . . . , d}, say in increasing
order of vertex names. Furthermore, we are looking for a path of length atmost c log n
from s to t. We can encode all paths of length c log n starting from s by sequences
d1, d2, . . . , dc log n, where 1 ≤ di ≤ d for each i. This sequence can be written
down on the worktape using at most O(c log d log n) space and the algorithm can
cycle through all such sequences one by one in lexicographic order. For a sequence
d1, d2, . . . , dc log n the path in G defined by it is s = u0, u1, . . . , uc log n, where ui is
the dith neighbor of ui−1 for each i. The algorithm can generate the vertices of this
path one by one. In order to generate ui it only needs to store i and ui−1 which is
O(log n) space. The algorithm accepts if ui = t for some i in some sequence.

The diameter of n-vertex graphs can be �(n) in general. However, it turns out, as
shown by Reingold [Rei08] that there is a deterministic logspace computation that
transforms an instance 〈G, s, t〉 of UREACH into an instance 〈G′, s′, t′〉 such that
(i) s′ and t′ are in the same connected component of G′ if and only if s and t are

connected in G.
(ii) G′ is a d-regular graph for some constant d and has diameter bounded by c log n

for some constant c.

Reingold’s construction of G′ [Rei08] is based on properties of expander graphs
and the explicit construction of expanders. We will not describe the details of his
algorithm. Instead, we will present a randomized logspace algorithm for UREACH
and in the process explain some basic properties of expander graphs.

1.6.2 A Randomized Logspace Algorithm for UREACH

A randomized logspace bounded Turing machine is a Turing machine M that has, in
addition to a read-only input tape and a logspace bounded worktape, one-way access
to a random tape on which is written the outcome of a sequence of unbiased and
independent random bits and in each time instant the random tape head moves one
step to the right reading the next random bit.

Definition 6.1 A language L ⊆ χ∗ is said to be in the class RL if there is a random-
ized logspace bounded Turing machine that runs in polynomial time such that

1 Complexity Theory Basics: NP and NL 17

x ∈ L −→ Prob[M(x) accepts] ≥ 1/2

x ∈ L −→ Prob[M(x) accepts] = 0

The class RL stands for randomized logspace with 1-sided error. We can analo-
gously define the more general class BPL which allows two-sided error.

Exercise L ⊆ RL ⊆ NL.

An interesting point in Definition 6.1 is that we need to insist on a polynomial
time bound for the randomized machine in order to get a subclass of NL. This
is in contrast to the definitions of L and NL where the polynomial time bounds is
enforced by detecting repetition of configuration. In the case of randomized logspace
computation, allowing long computation paths can influence acceptance probabilities
in nontrivial ways. The following exercise explains this aspect.

Exercise Show that randomized logspace machines with one-sided error (and error
probability bounded by 1/2 as in Definition 6.1) that are allowed to run for expo-
nential time accept precisely the class NL.

Our aim is to show that UREACH is in RL. As explained earlier it suffices to
consider undirected graphs that are d-regular for some constant d.

Let G = (V , E) be a d-regular graph on n vertices and let A denote its normalized
adjacency matrix: Aij = 1/d if ij ∈ E and Aij = 0 otherwise.

Since G is undirected, note that A is a real symmetric matrix. An eigenvalue of
A is a complex number λ such that Ax = λx for some nonzero vector x. Since A is
a symmetric matrix, by standard linear algebra [HK71] it follows that A has all real
eigenvalues. Let λ1 ≥ λ2 ≥ · · · ≥ λn denote its n eigenvalues. It is easy to see that
−1 ≤ λi ≤ 1 for all i.

The largest eigenvalue of A is 1 and an eigenvector corresponding to eigenvalue
1 is the all 1’s vector. We can also think of the uniform distribution (1/n, 1/n, . . . ,

1/n)T on the vertex set as the eigenvector corresponding to 1.

Exercise

1. Prove that G has k connected components if and only if 1 = λ1 = λ2 = · · · =
λk > λk+1 ≥ · · · ≥ λn, where λ1 ≥ λ2 ≥ · · · ≥ λn denote the n eigenvalues of
the normalized adjacency matrix A.

2. Prove that G is bipartite if and only if −1 is an eigenvalue of A.

As a consequence of the statements in the above exercise, if G is connected then
λ2 < 1 = λ1. Indeed, when G is connected it is possible to give a better upper bound
than 1 for λ2. We will explain this bound and also use it to design a randomized
logspace algorithm for UREACH.

Suppose λ and λ′ are distinct eigenvalues of A, and x and x′ be correspond-
ing eigenvectors. Then we claim x and x′ are mutually orthogonal. That is to say,
xT x′ = 0. The claim holds because xT Ax′ = λxT x′ as well as xT Ax′ = λ′xT x′ and
λ = λ′.

18 V. Arvind

By the Courant-Fisher-Weyl minmax theorem [CH53, Chap.1, Sect. 4], we can
write λ2 = maxx⊥1,||x||=1 xT Ax, where 1 stands for the all 1’s vector. The condition
x ⊥ 1 is equivalent to

∑
i xi = 0. Since x = 0 there are some negative and some

positive entries in x. Let xs < 0 be the smallest entry of x and xt > 0 be the largest.
Since G is connected, there is a path P of length at most n − 1 from s to t in G.
Simplifying λ2 = xT Ax we obtain

λ2 = 1

d

∑

ij∈E

2xixj

= 1− 1

d

∑

ij∈E

(xi − xj)
2

≤ 1− 1

d

∑

ij∈P

(xi − xj)
2.

Now, by the triangle inequality we have |xt − xs| ≤ ∑
ij∈P |xi − xj|, and by

the Cauchy-Schwartz inequality we have
∑

ij∈P |xi − xj| ≤ √n
√∑

ij∈P |xi − xj|2.
Squaring both sides, we obtain

∑
ij∈P |xi − xj|2 ≥ (xt − xs)

2/n, and combined with
the above inequality for λ2 this yields

λ2 ≤ 1− 1

dn
(xt − xs)

2.

Now, since
∑

i x2i = 1, it follows that xt − xs ≥ 2/
√

n. Putting it together we have
shown the following:

Lemma 6.2 For a connected graph G, λ2(G) ≤ 1− 4
dn2

.

We now turn to the randomized logspace algorithm for UREACH [AKL+79]. Let
〈G, s, t〉 be an instance of UREACH where G is a d-regular graph. The algorithm
does a simple random walk on G starting at the vertex s. At the ith step of the
random walk if the current vertex is u, then in the (i + 1)st step the walk picks one
of the d neighbors of u uniformly at random and moves to it. Because of the bound
on λ2(G), we can show that if t lies in the same connected component as s then
with high probability the random walk will visit t within polynomially many steps.
Furthermore, this algorithm can be implemented by a randomized logspace Turing
machine in the following manner. The current vertex u is stored in the worktape. The
next log d random bits that pick a neighbor of u are read from the random tape by
the tapehead moving right and reading a bit for log d steps.

Theorem 6.3 [AKL+79] UREACH is in RL.

Proof Let 〈G, s, t〉 be an instance of UREACH.We can assume that G is an n-vertex,
d-regular graph for some d ≥ 3. If there is no path from s to t then the random walk
starting at s will never visit t. When t is reachable from s, we need to analyze the
randomwalk and lower bound the probability of visiting t in a given number of steps.

1 Complexity Theory Basics: NP and NL 19

At the ith step of the random walk, the state can be described by a probability
distribution vector x = (x1, x2, . . . , xn)

T , where xk ≥ 0 for each k and
∑

k xk = 1.
Each xk in this vector denotes the probability of the random walk being at vertex k
at the ith step. We note that any probability vector x can be written as x = u + u⊥,
where u = (1/n, 1/n, . . . , 1/n)T is the uniform distribution and their difference
u⊥ = x − u is clearly orthogonal to u because the inner product (u, x − u) = 0.
The normalized adjacency matrix A is the stochastic matrix that governs this random
walk. If the probability distribution vector at the ith step is x then at the (i+ 1)st step
the distribution vector is Ax.

Now, the initial distribution vector is x = (e1, e2, . . . , en)
T , where es = 1 and

ej = 0 for all j = s. Thus, after i steps of the randomwalk the probability distribution
is Aix. Therefore, writing x = u+ u⊥ we get

Aix = u+ Aiu⊥.

Since λ2 = maxx⊥1,||x||=1 xT Ax, it follows that

||Aiu⊥||2 = |(u⊥)T A2iu⊥)| ≤ |λ2(G)|2i||u⊥||2.

We can bound ||u⊥||2 ≤ 2, since ||u⊥|| ≤ ||x||+||u||, ||x|| = 1 and ||u|| = 1/
√

n.
Letting i = 2dn3 in Lemma 6.2 gives the bound |λ2(G)|4dn3 ≤ e−n. It follows that

||Aix − u||2 = ||Aiu⊥)||2 ≤ e−n.

Since each entry of u is 1/n, the above bound implies that each entry of Aix is at
least 1/2n. We can conclude that if t reachable from s then with probability at least
1/2n the random walk starting at s visits t within i = 2dn3 steps. Consequently, the
probability that the randomwalkvisits t within 4dn4 steps is at least 1−(1−1/2n)2n >

1/2 for sufficiently large n. This bound on the success probability proves that the
random walk algorithm is indeed an RL algorithm. �

1.7 Logspace Counting Classes

We now briefly introduce logspace counting classes. These complexity classes
provide a tight classification of many natural computational problems. Formal defin-
itions of these classes and their basic properties can be found in [BDHM92, AO96].
The central complexity class here is denoted GapL and captures the complexity of
computing the integer determinant.

Definition 7.1 GapL is the class of functions f : χ∗ → Z, for which there is a
logspace bounded nondeterministic Turing machine M such that on input x ∈ χ∗,
we have f (x) = accM(x)− rejM(x), where accM(x) and rejM(x) denote the number

20 V. Arvind

of accepting paths of M and the number of rejecting paths of M, respectively, on
input x.

GapL is a function class andwehave an appropriate notion of logspace computable
reductions for this class. Given two functions f , g : χ∗ → Z we say that f is
logspacemany-one reducible to g (as usual, denoted f ≤L

m g) if there are two logspace
computable functions e and v such that for every x ∈ χ∗

f (x) = v(g(e(x))).

Notice that if g is computable in logspace then f is also logspace computable.
A function g ∈ GapL isGapL-completeunder logspace reductions if f ≤L

m g for every
f ∈ GapL. A fundamental result due Toda [Tod91] is that the integer determinant is
GapL-complete. The result has an elegant proof by Mahajan and Vinay [MV97]. A
problem analogous to REACH that is easily shown to be GapL-complete is in the
following exercise.

Exercise Given a directed acyclic graph G with a source vertex s and two sink
vertices t1 and t2, let g(G, s, t1, t2) denote the difference of the number of directed
paths from s to t1 from the number of directed paths from s to t2. Show that this
function is GapL-complete.

The class GapL is analogous to the complexity class #P [Val79] introduced by
Valiant to study the complexity of computing the integer permanent. A function
f : χ∗ → N is said to be in #P if there is an NPmachine M such that f (x) = accM(x)
for all x ∈ χ∗. A celebrated result due to Valiant [Val79] is the #P-completeness of
the integer permanent (for an appropriate notion of reductions). The reader can find
details of the proof in the textbook [AB09].

Remark 7.2 As an aside, comparing the computational complexity of the determi-
nant and the permanent is a fascinating topic that is central to the area of arithmetic
circuits. This book includes several chapters on the topic of arithmetic circuits.Meena
Mahajan’s article presents a detailed surveyonValiant’s algebraic complexity classes.

The complexity of computing the determinant of matrices over the field F2 is
captured by the language class ⊕L defined below.

Definition 7.3 A language L ⊆ χ∗ is in the complexity class ⊕L (called “parity-
L”) if there is a logspace bounded nondeterministic Turing machine M such that
x ∈ L ⇐⇒ accM(x) is odd.

Exercise Show that the following language is ⊕L complete under logspace many-
one reductions:

ODD−REACH = {〈G, s, t〉 | G is a DAG such that there is an odd number

of directed paths from s to t}.

1 Complexity Theory Basics: NP and NL 21

Exercise Assuming that the integer determinant is GapL-complete show that

NONSINGULAR = {M | M is a square integer matrix such that

det(M) ≡ 1(mod 2)}

is complete for ⊕L under logspace many-one reductions.

The last complexity class we will introduce in this chapter is unambiguous
logspace denoted UL. A logspace bounded nondeterministic Turing machine M
is said to be unambiguous if on every input x ∈ χ∗ the machine M has at most one
accepting path. A language L is in the complexity class UL if there is an unambiguous
logspace-bounded nondeterministic Turing machine M that accepts the language L.

A surprising inclusion of complexity classes shown in [RA00] is that NL ⊆
UL/poly.2 Whether NL equals UL or not is an intriguing open problem and is
discussed in Vinodchandran’s article in this volume.

Acknowledgments I am grateful to Somenath Biswas for his comments and suggestions.

References

[AB09] S. Arora, B. Barak, Computational Complexity, a Modern Approach (Cambridge
University Press, Cambridge, 2009)

[Agr11] M. Agrawal, The Isomorphism Conjecture for NP (World Scientific Press, Singapore,
2011)

[AKL+79] R. Aleliunas, R.M. Karp, R. J. Lipton, L. Lovász, C. Rackoff, Random walks, uni-
versal traversal sequences, and the complexity of maze problems, in FOCS (1979),
pp. 218–223. IEEE

[AO96] E. Allender, M. Ogihara, Relationships among PL, # and the determinant. RAIRO
Theor. Inf. Appl. 30(1), 1–21 (1996)

[BDG88] J.L. Balcázar, J. Diaz, J. Gabarro, Structural Complexity I and II (Springer, Heidelberg,
1988)

[BDHM92] G. Buntrock, C. Damm, U. Hertrampf, C. Meinel, Structure and importance of
logspace-MOD class. Theory Comput. Syst. 25(3), 223–237 (1992)

[BH77] L. Berman, J. Hartmanis, On isomorphisms and density of np and other complete sets.
SIAM J. Comput. 6(2), 305–322 (1977)

[BH08] H. Buhrman, J. Hitchcock, Np-hard sets are exponentially dense unless conp⊆p/poly,
in IEEE Conference on Computational Complexity (2008), pp. 1–7

[CH53] R. Courant, D. Hilbert, Methods in Mathematical Physics, vol. I (Interscience
Publishers, Hoboken, 1953)

[Cob64] A. Cobham, The intrinsic computational difficulty of functions, in International
Congress for Logic, Methodology and Philosophy of Science (ICLMPS) (1964)

[Coo71] S.A. Cook, The complexity of theorem proving procedures, in stoc71 (1971),
pp. 151–158

[DF03] R.G. Downey, L. Fortnow, Uniformly hard languages. Theor. Comput. Sci. 2(298),
303–315 (2003)

2 This inclusion is surprising because the definition of UL/poly is quite stringent: the nondetermin-
istic logspace machine is required to be unambiguous for every advice string.

22 V. Arvind

[Edm65] J. Edmonds, Paths, trees, and flowers. Canad. J. Math 17, 449–467 (1965)
[FS08] L. Fortnow, R. Santhanam, Infeasibility of instance compression and succinct PCP’s

forNP, inProceedings 40th Annual Symposium on Theory of Computing (ACM, 2008),
pp. 133–142

[GJ79] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness (W.H. Freeman, New York, 1979)

[HK71] K. Hoffman, R. Kunze, Linear Algebra, 2nd edn. (Prentice Hall, Upper Saddle River,
1971)

[HS65] J. Hartmanis, R.E. Stearns, On the computational complexity of algorithms. Trans.
Am. Math. Soc. 117, 285–306 (1965)

[HU79] J. Hopcroft, J. Ullman. Introduction to Automata Theory, Anguages, and Computation
(Addison Wesley, Boston, 1979)

[Imm88] N. Immerman, Nondeterministic space is closed under complementation. SIAM J.
Comput. 17, 935–939 (1988)

[IPZ01] R. Impagliazzo, R. Paturi, F. Zane, Which problems have strongly exponential com-
plexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

[Kar72] R.M. Karp, Reducibility among combinatorial problems, in Complexity of Computer
Computations (1972), pp. 85–103

[KL80] R. Karp, R.J. Lipton, Some connections between nonuniform and uniform complexity
classes, in Proceedings 12th Annual Symposium on Theory of Computing (ACM,
1980), pp. 302–309

[Lad75] R.E. Ladner, On the structure of polynomial time reducibility. J. ACM 22(1), 155–171
(1975)

[Lev73] L.A. Levin, Universal sorting problems. Probl. Peredachi Informatsii 9(3), 265–266
(1973). in Russian

[Mah82] S.R. Mahaney, Sparse complete sets of NP: Solution of a conjecture of berman and
hartmanis. J. Comput. Syst. Sci. 25(2), 130–143 (1982)

[MV97] M. Mahajan, V. Vinay, Determinant: Combinatorics, algorithms, and complexity.
Chicago J. Theor. Comput. Sci. 5 (1997)

[Pap94] C.H. Papadimitriou, Computational Complexity (Addison-Wesley, Boston, 1994)
[RA00] K. Reinhardt, E. Allender, Making nondeterminism ambiguous. SIAM J. Comput.

29(4), 1118–1131 (2000)
[Rei08] O. Reingold, Undirected connectivity in log-space. J. ACM 55(4), 1–24 (2008)
[Sch98] A. Schrijver, Theory of integer and linear programming (John Wiley and Sons, Inc.

New York, 1998)
[Sze88] R. Szelepcsényi, The method of forced enumeration for nondeterministic automata.

Acta Informatica 26, 279–284 (1988)
[Tod91] S. Toda, Counting problems computationally equivalent to the determinant. Tech-

nical Report CSIM 91-07, Dept of Computer Sc. and Inf. Math., Univ. of Electro-
Communication, Tokyo, Japan (1991)

[Tut47] W.T. Tutte, The factorization of linear graphs. The J. Lond. Mathe. Soc. 22, 107–111
(1947)

[Val79] L.G. Valiant, The complexity of computing the permanent. Theor. Comput. Sci. 8,
189–201 (1979)

[vEB90] P. van Emde Boas, Machine models and simulation, in Handbook of Theoretical Com-
puter Science, Volume A: Algorithms and Complexity (Elsevier, Amsterdam, 1990),
pp. 1–66

[Yap83] C.K. Yap, Some consequences of nonuniform conditions on uniform classes. Theor.
Comput. Sci. 26(3), 287–300 (1983)

Chapter 2
Investigations Concerning the Structure
of Complete Sets

Eric Allender

Abstract This chapter will discuss developments bearing on three related research
directions where Somenath Biswas has made pioneering contributions:

• Isomorphism of Complete Sets
• Creative Sets
• Universal Relations

Some open questions in each of these directions will be highlighted.

Keywords Berman-Hartmanis conjecture · Isomorphism · NP-completeness ·
Creativity · Universality
Mathematics Subject Classification (2010) Primary 68Q15

2.1 Introduction

How many NP-complete sets are there?
Although there is a trivial and uninteresting answer to this question (namely: there

is a countably infinite number of NP-complete sets), there is a large body of work
investigating the proposition that in actuality there is precisely one NP-complete set
(modulo minor encoding details).

Let us clarify what is meant by “minor encoding details”: When we consider the
set SAT of satisfiable Boolean formulae, it is irrelevant if we encode formulae using
round parentheses () or square ones [], or if we write variables in italic font or in
bold face. Any of these choices would lead to a reasonable encoding of SAT; they
all yield encodings of SAT that are equivalent in some sense.

E. Allender (B)

Department of Computer Science, Rutgers University, New Brunswick, NJ 08855, USA
e-mail: allender@cs.rutgers.edu

M. Agrawal and V. Arvind (eds.), Perspectives in Computational Complexity, 23
Progress in Computer Science and Applied Logic 26, DOI: 10.1007/978-3-319-05446-9_2,
© Springer International Publishing Switzerland 2014

24 E. Allender

One way to attempt to formalize this notion of “equivalence” is to say that two
sets A and B, A, B ≥ {0, 1}∗, are p-isomorphic if there is a bijection f defined on
{0, 1}∗ computable and invertible in polynomial time, such that f (A) = B. This
approach leads to the famous Berman-Hartmanis conjecture [BH77], which asserts
that all of the sets that are NP-complete under ⊆p

m reductions are p-isomorphic.
The isomorphism conjecture(s) will be discussed in more detail in Sect. 2.2. How-

ever, a bit of background about isomorphism of complete sets is necessary here, in
order to provide a coherent overview of the current paper. The Berman-Hartmanis
conjecture arose, at least in part, because of a cultural inheritance from the study of
computability theory. If we accept the rough idea that NP is analogous to the class
of computably-enumerable sets, and polynomial time is analogous to the class of
computable functions, then the Berman-Hartmanis conjecture is analogous to the
Myhill Isomorphism Theorem in computability theory, which states: All of the sets
that are complete for the class of computably-enumerable sets under ⊆m-reductions
are computably-isomorphic to the Halting Problem. (For expositions of this work,
see [Rog67] or [Soa87].)

Central to the proof of theMyhill IsomorphismTheorem is the notion of a creative
set. We postpone until Sect. 2.3 the precise definition of “creativity,” but this is an
appropriate time to mention that the name was coined by Emil Post [Pos44], who
was profoundly influenced by certain consequences of Gödel’s incompleteness the-
orems. Post believed that there was a link between the notion of “mathematical
creativity” and the fact that there is a computable function that, given a set of consis-
tent axioms for arithmetic, will produce a true statement that cannot be proved from
those axioms. Post’s definition of creativity abstracts out this property of the set of
theorems provable from a list of axioms.

In the setting of recursion theory, the creative sets turn out to exactly coincide
with the sets that are complete for the class of computably enumerable sets under
⊆m-reducibility, and this is useful in proving Myhill’s Isomorphism Theorem. Thus
it was natural for researchers to try to define a resource-bounded analog of creativity.
But it is not entirely clear what is the best way to define such an analog. Different
definitions were presented by various authors [JY85, Wan91], but the definition of
NP-creative sets by Agrawal and Biswas [AB96] provides several advantages over
other definitions. (For instance, all NP-creative sets are NP-complete; this is not
known for some other notions.) Just as all of the NP-complete sets in Garey and
Johnson [GJ79] are p-isomorphic to SAT, so also are they all NP-creative. Although
Agrawal and Biswas refrain from conjecturing that all NP-complete sets are NP-
creative, we may as well consider a “creativity” version of the Berman-Hartmanis
conjecture:

TheCreativity Hypothesis: The class of NP-creative sets coincides with the class
of sets that are NP-complete under ⊆p

m reductions.
One might at first guess that, since SAT is NP-creative, then everything that is

p-isomorphic to SAT would also be NP-creative—but Agrawal and Biswas showed
that, if this is true, then the Creativity Hypothesis is true (and hence P ≤= NP).

Thus, NP-creativity and p-isomorphism yield two possibly different subclasses
of the NP-complete sets, each of which captures a notion of “naturalness” (in the

2 Investigations Concerning the Structure of Complete Sets 25

sense that all of the currently-known “natural” examples of NP-complete sets are
both creative and p-isomorphic to SAT). Neither the Creativity Hypothesis nor the
Berman-Hartmanis Conjecture is known to imply the other. Section2.3 discusses
creativity in more detail.

The final section of this chapter highlights one additional direction in which
Somenath Biswas has pushed, in order to give additional insight into the struc-
ture underlying completeness. Although the Berman-Hartmanis conjecture focuses
on the NP-complete sets, let us not forget that much of the practical interest in
NP-completeness derives from the desire to find witnesses for membership in an NP-
complete set. That is, at a fundamental level, it is not a set, such as HAMILTONIAN-
CIRCUIT, that is of primary interest, but rather the corresponding relation consisting
of pairs (G, C) such that C is a Hamiltonian cycle in the graph G.

Is it possible that the (string, witness) relations for every NP-complete set are all
“the same” in some sense? Note that it is not at all obvious how to formulate this
sense of “sameness.” For instance, if there is a polynomial-time relation W (x, y)

consisting of witnesses y for string x , then there is a relation W ∈(x, z) such that
W ∈(x, z) is true if and only if W (x, y) holds, where y is the string that results by
deleting every second symbol of z. These two relations both serve aswitness relations
for the same set in NP, but they do give different numbers of witnesses for the same
string, and thus they fail to be “the same” on a fairly basic level. And yet, they do
contain exactly the same information, in some intuitive sense. Agrawal and Biswas
succeeded [AB92] in giving a useful definition of “universal relations”, in order to
capture the sense inwhich the defining relations for all knownNP-complete sets seem
to be “the same.” More recently, Chaudhary, Sinha, and Biswas have adapted this
notion for nondeterministic logspace [CSB07]. This topic is explored in Sect. 2.4.

2.2 The Isomorphism Conjecture(s)

An outstanding survey of recent developments related to isomorphisms of complete
sets is now available [Agr11], and the reader is urged to consult that source for amore
complete introduction to the topic and an in-depth discussion of the current state of
the field. The discussion here will focus on describing aspects of the topic that are
(1) related to the work of Somenath Biswas, or (2) related to some open questions
or developments that are not mentioned in [Agr11].

The winds of public opinion have blown back and forth, regarding the Berman-
HartmanisConjecture. It appears to have initially been viewed as fairly plausible.One
of thefirst published accounts questioningwhether the isomorphismconjecture is true
appears in thework of Joseph andYoung [JY85]. They defined a class ofNP-complete
sets they named the k-creative sets (which will also be discussed in Sect. 2.3), and
they explicitly conjectured that some k-creative sets are not p-isomorphic to SAT. In
particular, for any one-one length-increasing function f computable in polynomial
time, they defined a set K f , and they pointed out that, if f is suitably hard to invert,
then it is hard to see how K f can be p-isomorphic to SAT. Kurtz,Mahaney, and Royer

26 E. Allender

subsequently elaborated on this intuition, and formulated theEncrypted Complete Set
Conjecture, which states that there is a one-one, length-increasing, one-way function
f such that SAT and f (SAT) are not p-isomorphic.
Several papers were then written, all of which tended to buttress support for

the Encrypted Complete Set Conjecture (all of which are discussed in the survey
[Agr11]). But then attention shifted to some interesting classes of restricted ⊆p

m-
reductions; we will discuss some of these developments in more detail below—but
the general trend of these investigations has been to weaken our confidence in the
Encrypted Complete Set Conjecture. More recently, there has been a productive
series of investigations of more powerful classes of reductions, notably including
m-reductions computed in P/poly [AW09, Agr02] and in NP ∃ coNP [HHP07] (this
latter class of reductions is known as SNP-reductions). As a consequence, we now
know that some fairly plausible hypotheses imply that all sets complete for NP under
P/poly-reductions and SNP-reductions are P/poly-isomorphic and SNP-isomorphic,
respectively. Combined with the results about restricted ⊆p

m reductions that will be
discussed below, the picture that emerges is that NP-complete sets are either provably
isomorphic or at least are reasonably likely to be isomorphic, bothwhen one considers
reductions strictly less powerful and more powerful than ⊆p

m reductions. It remains
to be seen whether any of these lessons ultimately shed much light on the case of
⊆p

m reductions themselves.

2.2.1 Restricted Reductions

It is debatable whether ⊆p
m reductions really constitute the most important class

of reductions. There is a rich structure of complexity classes within P, and ⊆p
m-

reducibility is essentially useless in elucidating this structure. Thiswas themotivation
for Jones et al. to introduce log-space reductions [Jon75]—but even in that pioneering
work, it was realized that a higher precision tool was necessary, in order to investigate
the structure of logspace, which is why Jones introduced what he called log-bounded
rudimentary reductions [Jon75]. This was several years before the modern study
of circuit complexity got under way, and it took a while before it was noticed that
log-bounded rudimentary reductions actually correspond to many-one reductions
computed by uniform AC0 circuits (that is, constant-depth polynomial-size families
of circuits of ANDandORgates) [AG91]. Ultimately, AC0 reductions have proved to
be the most useful notion of reducibility for investigating subclasses of P, surpassing
both NC1 reducibility [CM87] and 1-L reducibility (discussed below). However,
AC0 reducibility posed greater challenges initially, and thus progress was made first
with 1-L reducibility.

2 Investigations Concerning the Structure of Complete Sets 27

2.2.2 1-L Reductions

1-L reductions are functions computed by logspace-bounded Turing machines that
make a single pass over their input tape (from left to right). They were introduced
by Hartmanis, Immerman, and Mahaney [HIM78, HM81] for many of the same
reasons that had led Jones to introduce log-bounded rudimentary reductions. 1-L
reductions offered the advantages of being significantlymore convenient and intuitive
(since the original formulation of log-bounded rudimentary reductions lacked the
intuitive appeal of the AC0 formulation). In this brief overview, we avoid giving
more detailed definitions of 1-L reductions, but it is appropriate to note that there are
some differences in the formulations as presented in [HIM78] and [HM81], and that
some of these formulations result in a class of reductions that is not closed under
composition (see [All88]).

1-L reductions are easy to invert, and this fact, combined with some diagonaliza-
tion techniques, enabled a proof that all sets complete for PSPACE under 1-L reduc-
tions are p-isomorphic [All88]. They are not isomorphic under 1-L isomorphisms
[BH92], but they are complete under isomorphisms computable in nondeterministic
logspace [HH93].

Agrawal and Biswas [AB96] succeeded in showing that, even for classes as small
as deterministic logspace (and indeed, for any class that is closed under logspace
reductions that produceoutput atmost linearly longer than the input) the sets complete
under 1-L reductions are complete under one-one, length-increasing, polynomial-
time invertible reductions. (Thus by [BH77] all such sets are p-isomorphic.) Finally,
Agrawal proved that all such sets are isomorphic via reductions computed by one-
way nondeterministic logspace (1-NL)machines [Agr96] (and the same paper proves
an analog of the Berman-Hartmanis conjecture for 1-NL reductions).

At this point, study of the structure of sets complete under 1-L reductions effec-
tively stopped.1 The major open questions had been solved. But this was merely
a prelude to a much more exciting and significant development in the history of
work on the isomorphism problem, focusing on reductions that are computable by
constant-depth circuits. Indeed, although there are problems (such as the PARITY
problem) that are computable by 1-L machines but are not computed by AC0 circuits
[FSS84], Agrawal had shown that, for essentially all complexity classes of interest,
all sets complete under 1-L reductions are complete under reductions computable in
AC0 [Agr96]. And whereas all functions computable by 1-L machines are easy to
invert, this is not the case for AC0. Thus, by considering AC0 reductions, the research
community was moving on to a richer class of complete sets, and was confronting
some of the essential issues raised by the Encrypted Complete Set Conjecture.

1 This is not to suggest that work on 1-L computation stopped. Indeed, much of the very large body
of work on streaming algorithms consists of the study of 1-L computation.

28 E. Allender

2.2.3 Constant-Depth Circuits

Attention was first focused on AC0 isomorphisms by considering a very restricted
class of AC0 reductions: projections (which are reductions computed by circuits with
no gates, other than negation gates). Sets complete for NP (and other classes) under
uniform projections are isomorphic under uniform AC0 isomorphisms [ABI97].

The logical next step was to work on extending this result from projections to
NC0 functions (that is, functions computed by constant-depth circuits with fan-in
O(1), so that each output bit depends on only O(1) input bits—as contrasted with
projections, where each output bit depends on either zero or one input bit). As part
of this investigation, it was also discovered that, at least for the class NC1, the sets
complete under AC0 reductions are also complete under NC0 reductions, thereby
obtaining the first theorem showing that the sets complete under AC0 reductions
are all AC0 isomorphic [AA96]. Subsequently, the authors were joined by Rudich,
in showing that this holds not only for NC1, but also for NP and for most other
complexity classes of interest [AAR98].

These initial AC0 isomorphism theorems were proved only in the nonuniform
setting. After a series of intermediate steps improving the uniformity condition
[AAIPR01, Agr01], Agrawal succeeded in overcoming some daunting technical
difficulties, in presenting a Dlogtime-Uniform version of the isomorphism theorem
[Agr11], which stands as one of the crowning achievements of the study of the struc-
ture of complete sets. This work not only shows that a natural re-phrasing of the
Berman-Hartmanis Conjecture (in terms of AC0 reductions and isomorphisms) is
true, but also gives a convincing setting where the Encrypted Complete Set Conjec-
ture fails (since even when f is an AC0 function that provably cannot be inverted in
AC0, f (SAT) is still AC0-isomorphic to SAT).

2.2.4 Open Questions

Again, please refer to [Agr11] for several interesting open questions. Here are a few
additional questions relating to isomorphisms, that are not discussed there.

Two important problems that are not believed to be NP-complete are Factoring
and the Minimum Circuit Size Problem:

FACT = {(x, i, b) : the i th bit of the prime factorization of x is b}.
MCSP = {(χ f , s) : χ f denotes a string of length 2m (for some m) that is the

truth-table of a Boolean function f on m variables and s denotes an integer such
that f can be computed by a Boolean circuit of size at most s.}

(In the definition of FACT, the prime factorization is presented as pe1
1 , . . . , pek

k ,
where each exponent ei > 0, and pi < pi+1, so that each number has a unique
prime factorization.)

2 Investigations Concerning the Structure of Complete Sets 29

I suspect that FACT is probably not complete for any reasonable complexity class
under AC0 reductions. In an earlier survey [All01] I outlined a possible approach
toward proving that this is the case. Namely, I noted that it would suffice to show that
there is no one-one length-increasing NC0 reduction from FACT×{0, 1}∗ to FACT
(or no isomorphism between these sets, computable and invertible in depth-three
AC0). All of my attempts to construct such a reduction have involved multiplication
in some form, and this is not computable in AC0. Perhaps, I suggested, one could
show that multiplication is inherent, in computing such a reduction. Now, however,
after some illuminating discussions withMichal Koucký, I no longer think that this is
a promising approach. One way to build a padding function would be to map the pair
((x, i, b), y) to the triple (z, i, b), where z = xy∈, where y∈ has binary representation
10βy10βy20β . . . yn−10βyn0βz∈ where β is suitably large, and where z∈ has logO(1) n
bits. If y∈ is prime, then it will be the largest prime factor of z, and thus the initial
part of the prime factorizations of x and of z will be the same. The product xy∈ can
be computed in AC0, because of the padding by 0β and because z∈ is small. It is
reasonably likely that a value of z∈ exists so that y∈ will be prime, although number
theorists have not yet established that this holds. It would be very hard to show that
no such z∈ can be found in uniform AC0. Thus it is reasonably likely that a padding
function for (a suitable encoding of) FACTdoes exist inAC0. This does not guarantee
that such a padding function can be found in NC0, but it does illustrate some of the
difficulties of pursuing this approach.

Kabanets and Cai have presented some arguments, suggesting that MCSP is not
complete for NP under ⊆p

m reductions [KC00]. Can one obtain even stronger evi-
dence, suggesting that MCSP is not p-isomorphic to SAT? It is certainly not clear
that MCSP should have a padding function (i.e., a polynomial-time computable and
invertible function f mapping MCSP×{0, 1}∗ onto MCSP). It is even harder to see
how to construct a padding function if one fixes the circuit size s to be something
exponentially large, but still much smaller than 2m , such as this set:

MCSP2= {χ f : χ f denotes a string of length 2m that is the truth-table of a Boolean
function f on m variables such that f can be computed by a Boolean circuit of size

at most 2m/2.}

As Kabanets and Cai observe [KC00], if MCSP2 has a padding function computed in
polynomial time, then BPP = P. The connection between the paddability of MCSP2
and the BPP versus P problem arises through the easy observation that any set C
isomorphic to SAT has a P-printable sets contained both in C and in C , combined
with the following equivalence (where the first condition listed is the well-studied
Impagliazzo-Wigderson derandomization hypothesis [IW97]):

• There is a set A ∈ E that requires circuits of size greater than 2n/2 for all large n
iff

• There is a P-printable set B contained in the complement of MCSP2 of the form
B = {χ f : χ f denotes a string of length 2m that is the truth-table of A=m}.

30 E. Allender

The observations above do not provide much evidence against MCSP2 being
isomorphic to SAT; rather, they merely indicate that it will not be easy to prove that
it is isomorphic to SAT. What unlikely consequences would follow if MCSP2 (or
MCSP) turned out to be isomorphic to SAT?

2.3 Creative Sets

A set is defined to be creative if its complement is productive (and this holds for all
of the variants of “creativity” and “productivity” that have been considered). Thus,
in order to discuss creative sets, we must first define productive sets.

A set A is productive over a class of languages C if there is a function (a so-called
“productive function”) witnessing that A ≤∈ C, in some sense. In order to make this
definition precise, we must be explicit what notion of Turing machine indices I we
are using to represent elements of C, and what class of functions F we will allow
as productive functions. Thus we can say that A is (F, I)-productive if there is a
function f ∈ F such that, for every i ∈ I , f (i) ∈ A if and only if f (i) is not in
the language accepted by machine i . That is, given i , f finds an input on which A
differs from the i-th element of C.

Agrawal and Biswas define a set A to be NP-creative if its complement is
(polynomial-time,I)-productive, where I is an indexing of nondeterministic polyno-
mial-time Turing machines, where machine Mi has the property that, on all inputs,
it runs in time |i | [AB96]. It is far from obvious that this is an appropriate definition,
since these machines all run in O(1) time! Thus, in particular, {L(Mi) : i ∈ I } is
not equal to NP, and does not even contain all of the sets in, say, AC0! Nevertheless,
Agrawal andBiswas are able to demonstrate that this definition yields at least asmany
sets as an earlier notion of creativity (the “k-creative” sets of [JY85], which were
re-dubbed “k-completely-creative” sets by Wang [Wan91] to distinguish them from
another creativity notion he introduced), and they also show that all NP-creative sets
are NP-complete (in contrast to the situation for the “k-creative” sets of [Wan91],
which are neither known to include sets such as SAT, nor to be contained in the
class of NP-complete sets). Figure2.1 indicates the inclusion relations among these
various classes of “creative” sets for NP.

However, when these creativeness definitions are adapted to larger complexity
classes (such as EXP), they all coincide exactly with the class of sets complete under
⊆p

m reductions. (The issue boils down to a question of whether the complexity class
C can diagonalize over the class F of productive functions. This is true when C =
EXP, but is not known to be true for C = NP.)

Even though the definition of NP-creative sets is less intuitive than the defini-
tion of the class of sets that are p-isomorphic to SAT, Agrawal and Biswas make a
convincing argument that all “natural” NP-complete sets (including all of the NP-
complete sets listed in [GJ79]) areNP-creative. Thus there is somemerit in investigat-
ing the “Creativity Hypothesis” mentioned in the introduction—the hypothesis that
all NP-complete sets are NP-creative—as an alternative to the Berman-Hartmanis

2 Investigations Concerning the Structure of Complete Sets 31

Fig. 2.1 Diagram, showing (likely) inclusions among classes of “creative” sets for NP. The region
labeled “[GJ]” indicates the list of “natural” NP-complete problems catalogued in [GJ79]. It is not
known to contain any of the k-creative sets defined by Joseph and Young [JY85], indicated by the
region labeled [JY]. This same class was called “k-completely-creative” by Wang [Wan91], who
also introduced another class of k-creative sets, indicated by the region labeled [Wang]; it is not
knownwhether all of those sets are NP-complete. The region labeled [AB] indicates the NP-creative
sets of Agrawal and Biswas [AB96]

conjecture. Proving that either of these conditions hold would entail proving P ≤=
NP. (In the case of the Creativity Hypothesis, Agrawal and Biswas show that any
NP-creative set is complete for NP under reductions that are “exponentially honest,”
in the sense that, for some constant c, 2c| f (x)| > |x | for all x [AB96]. Thus, in par-
ticular, no finite set can be NP-creative.) It is particularly interesting that Agrawal
and Biswas show that, if all of the sets that are p-isomorphic to SAT are NP-creative,
then the Creativity Hypothesis holds.

The Creativity Hypothesis has not received much attention. Here are some ques-
tions that might yield some interesting insights:

• Are all of the sets that are complete for NP under AC0 reductions NP-creative?
How about the sets that are complete under first-order projections? Or the sets that
are complete for NP under 1-L reductions?

• If one assumes that FACT or MCSP are NP-creative, can one derive stronger
conclusions than if one merely assumes that these sets are NP-complete?

• Agrawal and Biswas have shown that the complement of any NP-creative set con-
tains an infinite subset in NP. Consider a set such as {x : the time-n2-bounded
Kolmogorov complexity of x is greater than |x |/2}. Would we expect this set to
have an infinite NP-subset? (Actually, the answer is probably Yes! It is observed
in Sect. 2.2.4 that, under the Impagliazzo-Wigderson derandomization hypothesis,
this set even has a P-printable subset.) Can one derive strong and unlikely conclu-
sions from the assumption that this set is the complement of an NP-creative set?

32 E. Allender

2.4 Universal Relations

All of the NP-complete sets that are p-isomorphic to SAT have a padding function,
and even the NP-complete sets that are not known to be p-isomorphic to SAT (such
as certain k-creative sets, and sets of the form f (SAT) where f is one-way) have
“padding” functions if we drop the requirement of invertibility (i.e., a reduction from
A×�∗ to A that is one–one and length-increasing, but is not necessarily invertible).
Similarly, all known NP-complete sets are disjunctive-self-reducible. (A set A is
called “disjunctive-self-reducible” if there is a polynomial-time-computable function
that takes a string x as input, and produces a list y1, . . . , y|x |O(1) as output, such that
x ∈ A iff ∃i yi ∈ A.)

Agrawal and Biswas defined two operators on relations (which they name the join
and equivalence operators) that are related to paddability (without invertibility) and
disjunctive-self-reducibility, respectively (in the sense that if the witness relation for
a set A has the given operator computable in polynomial time, then A is paddable
or disjunctive-self-reducible, respectively). Remarkably, they were able to show that
the relations with these two operators are precisely the relations from which any
other NP-witness relation can be “recovered” in a fairly natural sense. (The details
of these definitions will not be repeated here; see [AB92]).

One thing that I particularly like about [AB92] is their presentation of a new class
of NP-complete sets. Let f be any one–one and size-increasing polynomial function.
They define a relation R f as follows: (z, w) ∈ R f if |w| = 4|z|3 and one of the
following three conditions hold:

1. |z| = 1 and w ∈ {0100, 0101, 0110, 0111, 1001, 1010, 1011}.
2. For some r > 0, w = #r x1#w1##x2#w2## . . . ##xn#wn , where

f (1#x1#x2# . . . #xn) = z and for all i ⊆ n, (xi , wi) ∈ R f .
3. For some r > 0, w = #r x#i1#i2# . . . #in# j1# . . . # jn##w∈, where

f (1#x#i1# . . . #in# j1# . . . # jn) = z and for each k ⊆ n, bits number ik and jk of
w∈ are the same.

Agrawal and Biswas show that {x : ∃y(x, y) ∈ R f } is NP-complete. I know of no
direct way to see that this set is NP-complete; the proof of completeness presented
by Agrawal and Biswas follows because the relation R f is universal (because it has
the required join and equivalence operators). It would be interesting to know if there
is any example of a natural NP-complete problem, for which it is easier to prove
NP-completeness by presenting the join and equivalence operators, than to present
a traditional ⊆p

m reduction.
The theory of Probabilistically-Checkable Proofs tells us that problems inNPhave

witness relationswith very special encoding structure. It would be interesting to know
if this body of knowledge can be merged with the theory of universal relations, to
obtain any new insights.

Figures 2.2, 2.3 and 2.4 shows inclusion relations among the different notions
considered in this survey, all of which present ways to give a mathematically precise
definition that can serve as a proxy for the vague concept of what it means to be a
“natural” NP-complete set:

2 Investigations Concerning the Structure of Complete Sets 33

Fig. 2.2 Diagram, showing
inclusions among notions of
“natural” NP-complete sets
discussed in this survey

Fig. 2.3 Diagram, showing
inclusions among notions of
“natural” NP-complete sets,
if p-isomorphism preserves
NP-Creativity

Fig. 2.4 Diagram, showing
inclusions among notions of
“natural” NP-complete sets,
if all NP-Creative sets are
p-isomorphic

• being p-isomorphic to SAT.
• being NP-creative.
• having a universal relation.

Do all NP-creative sets have universal relations? (Note in this regard that Agrawal
and Biswas show that sets with universal relations are all complete for NP under
polynomially honest reductions (i.e., reductions f where there is a polynomial p
such that p(| f (x)|) ≥ |x | for all x [AB92]), whereas the NP-creative sets are only
known to be complete under exponentially honest reductions [AB96]. Thus it might
be better to askfirstwhether allNP-creative sets that are complete under polynomially
honest reductions have universal relations.)

Are the standard witness relations for MCSP and FACT universal? (Possibly this
question is easy to answer …) Note in this regard that Agrawal and Biswas show
that the standard witness relation for Graph Isomorphism is not universal—as well

34 E. Allender

as a (somewhat nonstandard) witness relation for Simple Max Cut. They introduce
a more general notion of universal relations, which they call “generalized univer-
sal relations,” and show that the Simple Max Cut witness relation is generalized
universal. If one is able to show that the standard witness relations for MCSP and
FACT are not universal, then perhaps one can show that they are also not generalized
universal. This would provide some additional evidence that these problems are not
NP-complete.

Are there any additional implications that one can prove, regarding the Berman-
Hartmanis conjecture, the Creativity Hypothesis, and the question of whether all
NP-complete sets have universal witness relations?

(There has been some additional work by other authors, regarding universal rela-
tions. The reader is referred to [CSB07] for a discussion of this work.)

2.5 Conclusions

The notions of p-isomorphism, NP-creativity, and universality provide three ways to
identify properties that are shared by all of the “natural” NP-complete sets. Although
the work of Somenath Biswas and others has given us a body of interesting results
regarding these notions, a number of intriguing open questions remain.

Acknowledgments Supported in part by NSF Grants CCF-0832787 and CCF-1064785.

References

[Agr96] M. Agrawal, On the isomorphism conjecture for weak reducibilities. J. Comput. Syst.
Sci. 53(2), 267–282 (1996)

[Agr01] M. Agrawal, Towards uniform AC0–isomorphisms. in Proceedings IEEE Conference
on Computational Complexity (2001). pp. 13–20

[Agr02] M. Agrawal, Pseudo-random generators and structure of complete degrees. in IEEE
Conference on Computational Complexity (2002). pp. 139–147

[Agr11] M. Agrawal, The isomorphism conjecture for constant depth reductions. J. Comput.
Syst. Sci. 77(1), 3–13 (2011)

[Agr11] M. Agrawal, in The Isomorphism Conjecture for NP, ed. by S.B. Cooper, A. Sorbi.
Computability in Context: Computation and Logic in the RealWorld (World Scientific
Press, 2011), pp. 19–48

[AA96] M. Agrawal, E. Allender, An isomorphism theorem for circuit complexity. in Proceed-
ings IEEE Conference on Computational Complexity (1996), pp. 2–11.

[AAIPR01] M. Agrawal, E. Allender, R. Impagliazzo, T. Pitassi, S. Rudich, Reducing the com-
plexity of reductions. Comput. Complex. 10(2), 117–138 (2001)

[AAR98] M.Agrawal, E. Allender, S. Rudich, Reductions in circuit complexity: an isomorphism
theorem and a gap theorem. J. Comput. Syst. Sci. 57(2), 127–143 (1998)

[AB92] M.Agrawal, S. Biswas,Universal relations. inProceedings IEEE Conference on Struc-
ture in Complexity Theory (1992), pp. 207–220.

[AB96] M. Agrawal, S. Biswas, NP-creative sets: a new class of creative sets in NP. Math.
Syst. Theor. 29(5), 487–505 (1996)

2 Investigations Concerning the Structure of Complete Sets 35

[AB96] M. Agrawal, S. Biswas, Polynomial-time isomorphism of 1-L-complete sets. J. Com-
put. Syst. Sci. 53(2), 155–160 (1996)

[AW09] M. Agrawal, O. Watanabe. One-way functions and the Berman-Hartmanis conjecture.
in Proceedings IEEE Conference on Computational Complexity (2009). pp. 194–202

[All88] E. Allender, Isomorphisms and 1-L reductions. J. Comput. Syst. Sci. 36(3), 336–350
(1988)

[All01] E. Allender, in Some Pointed Questions Concerning Asymptotic Lower Bounds, and
News From the Isomorphism Front, ed. byG. Paun,G. Rozenberg, A. Salomaa. Current
Trends in Theoretical Computer Science: Entering the 21st Century (World Scientific
Press, 2001), pp. 25–41

[ABI97] E. Allender, J.L. Balcázar, N. Immerman, A first-order isomorphism theorem. SIAM
J. Comput. 26(2), 557–567 (1997)

[AG91] E.Allender,V.Gore, Rudimentary reductions revisited. Inf. Process. Lett. 40(2), 89–95
(1991)

[BH77] L. Berman, J. Hartmanis, On isomorphism and density of NP and other complete sets.
SIAM J. Comput. 6, 305–322 (1977)

[BH92] H.-J. Burtschick, A. Hoene, in The Degree Structure of 1-L Reductions, ed. by I.M.
Havel, V. Koubek. MFCS, Lecture Notes in Computer Science vol. 629 (Springer,
1992), pp. 153–161

[CSB07] V. Choudhary, A.K. Sinha, S. Biswas. Universality for nondeterministic logspace. in
Proceedings 1st International Conference on Language and Automata Theory and
Applications (LATA) (2007), pp. 103–114

[CM87] S.A. Cook, P. McKenzie, Problems complete for deterministic logarithmic space. J.
Algorithms 8(3), 385–394 (1987)

[FSS84] M.L. Furst, J.B. Saxe, M. Sipser, Parity, circuits, and the polynomial-time hierarchy.
Math. Syst. Theor. 17(1), 13–27 (1984)

[GJ79] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the theory of
NP-completeness (W.H. Freeman and Company, New York, 1979)

[HHP07] R.C. Harkins, J.M. Hitchcock, A. Pavan, Strong reductions and isomorphism of com-
plete sets. in Proceedings Conference on Foundations of Software Technology and
Theoretical Computer Science (FST&TCS). Lecture Notes in Computer Science vol.
4855 (Springer, 2007), pp. 168–178

[HIM78] J. Hartmanis, N. Immerman, S.R. Mahaney, One-way log-tape reductions. in Pro-
ceedings IEEE Symposium on Foundation of Computer Science (FOCS) (1978). pp.
65–72

[HM81] J. Hartmanis, S.R. Mahaney, Languages simultaneously complete for one-way and
two-way log-tape automata. SIAM J. Comput. 10(2), 383–390 (1981)

[HH93] L.A. Hemachandra, A. Hoene, Collapsing degrees via strong computation. J. Comput.
Syst. Sci. 46(3), 363–380 (1993)

[IW97] R. Impagliazzo, A. Wigderson, P = BPP if E requires exponential circuits: deran-
domizing the XOR lemma. in Proceedings ACM Symposium on Theory of Computing
(STOC) (1997), pp. 220–229

[Jon75] N.D. Jones, Space-bounded reducibility among combinatorial problems. J. Comput.
Syst. Sci. 11(1), 68–85 (1975)

[JY85] D. Joseph, P. Young, Some remarks on witness functions for nonpolynomial and non-
complete sets in NP. Theor. Comput. Sci. 39, 225–237 (1985)

[KC00] V.Kabanets, J.-Y. Cai, Circuitminimization problem. inProceedings ACM Symposium
on Theory of Computing 456 (STOC) (2000), pp. 73–79

[Pos44] E.L. Post, Recursively enumerable sets of positive integers and their decision problems.
Bull. Am. Math. Soc. 50, 284–316 (1944)

[Rog67] H.Rogers,Theory of Recursive Functions and Effective Computability. (McGraw-Hill,
New York, 1967)

[Soa87] R.I. Soare, Recursively-Enumerable Sets and Degrees (Springer, Berlin, 1987)
[Wan91] J. Wang, On p-creative sets and p-completely creative sets. Theor. Comput. Sci. 85(1),

1–31 (1991)

Chapter 3
Space Complexity of the Directed Reachability
Problem over Surface-Embedded Graphs

N. Variyam Vinodchandran

Abstract The graph reachability problem, the computational task of deciding
whether there is a path between two given nodes in a graph, is the canonical problem
for studying space-bounded computations. Three central open questions regarding
the space complexity of the reachability problemover directed graphs are: (1) improv-
ing Savitch’s O(log2 n) space bound, (2) designing a polynomial-time algorithm
with O(n1−σ) space bound, and (3) designing an unambiguous non-deterministic
log-space (UL) algorithm. These are well-known open questions in complexity the-
ory, and solving any one of them will be a major breakthrough. We discuss some
of the recent progress reported on these questions for certain subclasses of surface-
embedded directed graphs.

Keywords Graph reachability · Space-bounded computation · Computational
complexity

Mathematics Subject Classification (2010) Primary 68Q15

3.1 Introduction

The graph reachability problem, the problem of deciding whether there is a path
from a given vertex s to a vertex t in a given graph, is central to space-bounded
computations. Various versions of this problem characterize several important space
complexity classes. Over directed graphs, it is the canonical complete problem for

Supported in part by the NSF grant CCF-0916525.

N. V. Vinodchandran (B)

Department of Computer Science and Engineering, University of Nebraska-Lincoln,
Lincoln, NE, USA
e-mail: vinod@cse.unl.edu

M. Agrawal and V. Arvind (eds.), Perspectives in Computational Complexity, 37
Progress in Computer Science and Applied Logic 26, DOI: 10.1007/978-3-319-05446-9_3,
© Springer International Publishing Switzerland 2014

38 N. V. Vinodchandran

non-deterministic log-space (NL). The breakthrough result of Reingold implies that
the undirected reachability problem characterizes the complexity of deterministic
log-space (L) [Rei08]. It is also known that a certain restricted promise version of
the reachability problem over directed graphs characterizes randomized log-space
computations (RL) [RTV06]. Clearly, progress in space complexity studies is directly
related to progress in understanding graph reachability problems.We refer the readers
to an excellent (albeit two decades old) survey by Avi Wigderson [Wig92] to further
understand the significance of reachability problems in complexity theory.

This article is far from an exhaustive survey on the space complexity of the graph
reachability problem. In particular, some of the major progress (such as Reingold’s
algorithm for undirected graph reachability and Saks and Zhou’s deterministic simu-
lation of randomized log-space) are not discussed here. Instead, we limit our discus-
sion to some recent progress that the author and his collaborators reported on these
questions for certain subclasses of surface-embedded directed graphs. It is mostly an
elaboration of the talk that the author gave on Prof. Somenath Biswas’s 60th birthday
celebrations at IIT Kanpur in August of 2012.

3.1.1 Three Central Questions

We first discuss three central questions concerning the space complexity of the
directed graph reachability problem. These are well-known and difficult open ques-
tions in the area, and progress on any of these is a step towards the much bigger
NL versus L question (the first two problems are discussed in Wigderson’s 1992
survey [Wig92]). However, the author feels that the known barriers for attacking
these problems are much less severe than those known for many difficult open prob-
lems in time-bounded complexity classes and circuit lower bounds, and believes that
breakthrough progress on these problems can be made in the near future.

Problem 1: Improving Savitch’s bound. About four decades ago Savitch proved
that the reachability problem over directed graphs with n vertices can be solved
in space O(log2 n) deterministically [Sav70]. This implies that problems that can
be solved nondeterministically in space s(n) have deterministic algorithms with
O(s2(n)) space bound. Thus, for polynomial space bounds, nondeterminism does
not add any additional power to determinism. For the important case when the space
bound is O(log n), Savitch’s theorem implies that all problems in NL can be solved
deterministically in O(log2 n) space. Is this quadratic blow-up necessary? This is
one of the most important open problems in this topic.

Problem 2: Improving the BBRS bound. The time complexity of Savitch’s algorithm
isχ(nlog n)—a super-polynomial bound. The standard breadth first search algorithm
(BFS) is another fundamental algorithm for solving graph reachability. BFS can be
implemented in linear time but requires linear space.BFS is efficient in time but not in
space, and Savitch’s algorithm is efficient in space but takes super-polynomial time.
Hence a natural and significant question that researchers have considered is whether

3 Space Complexity of the Directed Reachability Problem 39

we can design an algorithm for the directed graph reachability problem that is efficient
in both time and space. In particular, can we design a polynomial-time algorithm
for the directed graph reachability problem that uses only O(n1−σ) space for some
constant σ? The best known result in this direction is the two decades old bound due
to Barnes et al. [BBRS98] (which we call the BBRS bound). By cleverly combining
BFS and Savitch’s algorithm, Barnes et al. designed a polynomial-time algorithm for
reachability that uses space O(n/2

≥
log n)—a slightly sub-linear function. Improving

the BBRS bound remains another significant open question regarding the space
complexity of the directed reachability problem.

Problem 3: NL versus UL Problem. UL denotes an unambiguous subclass of NL.
A decision problem L is in UL if and only if there exists a nondeterministic log-
space machine M deciding L such that, for every instance x , M has at most one
accepting computation on input x [BJLR91, ÀJ93]. Thus UL is a complexity class
that is sandwiched between NL and L. Is NL = UL? While typically such collapse
results are unlikely in complexity theory (and even if they are likely, they are nearly
impossible to prove), there is an increasing body of evidence that in this specific
case the answer is yes, and the author believes that we might be able to prove this
equality using known techniques. Reinhardt and Allender showed using the isolation
lemma that in the nonuniform setting NL coincides with UL; that is NL/poly =
UL/poly [RA00]. Further, in a subsequent paper, Allender, Reinhardt, and Zhou
showed that, under a certain hardness assumption the construction given in [RA00]
can be derandomized to show that NL = UL [ARZ99]. Thus it is very likely (at
least to the author) that NL = UL, though we do not yet have a proof. Can we show
NL = UL unconditionally?

3.1.2 Outline

In the next two sections we discuss some progress that we have made towards these
three open questions—Sect. 3.2 on Problems 1 and 2, and Sect. 3.3 on the NL versus
UL problem.All the results discussed in these sections are for directed graphs embed-
ded on topological surfaces. As an aside, in Sect. 3.4 we reproduce the proof of the
BBRS bound from [BBRS98], partly to bring more attention to this nice algorithm.

3.2 Space Efficient Reachability Algorithms for Graphs
with Topological Structure

An important sub-case of Problem 1 (and Problem 2) is to design reachability algo-
rithms that beat Savitch’s bound (respectively, the BBRS bound) for directed graphs
with some topological structure (graphs that are embedded on topological surfaces).
We discuss some recent progress reported along this direction. The main results are

40 N. V. Vinodchandran

(1) algorithms that beat both Savitch’s bound and the BBRS bound for a subclass
of directed acyclic graphs parameterized by the number of sources and the genus of
the embedding [SBV10, SV12] (2) an algorithm for directed planar reachability that
improves on the BBRS bound [INP+13]. The main approach in both these results is
that of space-efficient “kernelization.”

Kernelization is a known preprocessing technique in designing algorithms (for
example in the area of fixed parameter tractability). Kernelization algorithms are
reductions from a problem to itself so that the easy part of the instance is abstracted
out and the core part is retained in the reduced instance. The hope is that the core part
will be of smaller size and hence known algorithms can be applied to this compressed
instance yielding algorithmswith better complexity.We first illustrate this in a simple
scenario.

Consider a reachability instance ∗G, s, t⊆ where G = (V, E) is a n-vertex graph
with the guarantee that it has at most k directed edges (the remaining edges are
undirected). Let Gun be the undirected graph we get by removing all the directed
edges from G. For a directed edge e = (u, v) let tail(e) = u and head(e) = v. We
show a simple log-space reduction that takes ∗G, s, t⊆ and produces a reachability
instance ∗G ≤, s≤, t ≤⊆ where G ≤ is a directed graph with O(k) vertices.

In the reduced graph G ≤ = (V ≤, E ≤), V ≤ = {s≤, t ≤} ∈ {ve | e is a directed edge
in G}. The pair (ve1 , ve2) ∃ E ≤ if tail(e2) is in the same connected component as
head(e1) in Gun . For a ve ∃ V ≤, (s≤, ve) ∃ E ≤ if tail(e) is in the same connected
component of s in Gun and (ve, t ≤) if head(e) is in the same connected component
of t in Gun . Notice that this reduction is log-space since for checking whether two
vertices u, v are in the same connected component of Gun , we can use Reingold’s
log-space algorithm for undirected reachability. It is clear that there is a s-t path in G
if and only if there is a s≤-t ≤ path in G ≤. Using this reduction together with Savitch’s
algorithm we get that reachability in graphs with no(1) directed edges can be solved
in o(log2 n). Also, by applying BFS to the reduced graph, we get that for any σ > 0,
reachability in graphs with O(n1−σ) directed edges can be solved in polynomial time
and O(n1−σ) space.

We now describe the main kernelization result of [SBV10, SV12] and its appli-
cation. Let G(m, g) denote the class of DAGs with at most m = m(n) source vertices
embedded on a surface (orientable or non-orientable) of genus at most g = g(n),
where n is the number of vertices. Building on [SBV10], in [SV12] we show the
following reduction for graphs in G(m, g).

Theorem 1 [SV12] There is a log-space reduction that, given an instance ∗G, s, t⊆
(presented as a combinatorial embedding) where G ∃ G(m, g) and s, t are vertices
of G, outputs an instance ∗G ≤, s≤, t ≤⊆ where G ≤ is a directed graph and s≤, t ≤ vertices
of G ≤, so that (a) there is a directed path from s to t in G if and only if there is a
directed path from s≤ to t ≤ in G ≤, (b) G ≤ has O(m + g) vertices.

By combining the above reduction with Savitch’s theorem (with m = g =
2O(

≥
log n)) we get that reachability over graphs with 2O(

≥
log n) sources embed-

ded on a surface of genus 2O(
≥
log n) can be decided in deterministic log-space. For

m = g = no(1) we get o(log2 n) space algorithm for reachability that beats Savitch’s

3 Space Complexity of the Directed Reachability Problem 41

bound. For m = g = O(n1−σ), we get O(n1−σ) space algorithm with polynomial
running time for reachability, for any small constant σ, improving the BBRS bound.

One of the motivations for investigating the reachability problem for this class
of surface-embedded graphs comes from earlier work due to Allender, Barring-
ton, Chakraborthy, Datta, and Roy [ABC+09]. In [ABC+09], the authors considered
reachability in planar DAGs with a single source vertex. They called this class of
graphs Single source Multiple sink Planar Dags (SMPD). SMPD generalizes Single
source Single sink Planar Dags (SSPD). SSPDs are interesting since they generalize
series parallel graphs which is a well-studied restriction of directed acyclic graphs.
Allender et al. presented a log-space algorithm for reachability in SMPDand left open
whether reachability can be solved using logarithmic space over planar DAGs with
multiple source nodes. In [SBV10], building on the SMPD algorithm, we present
a log-space algorithm for planar dags with logarithmic number of sources. In the
subsequent paper [SV12], via a careful use of techniques developed in [SBV10],
we proved the log-space kernelization theorem that in particular implied a log-space
algorithm for reachability in graphs with 2O(

≥
log n) sources, embedded on a sur-

face of genus 2O(
≥
log n). The proof of this theorem is technically involved and we

do not discuss it here. It remains a significant open question whether reachability
for planar Dags (without any restriction on the number of sources) can be solved
deterministically in o(log2 n) space.

While improving Savitch’s bound even for planar graphs remains open, the ques-
tion of improving the BBRS bound for planar graphs was settled recently. Using a
kernelization approach, in [INP+13], we show that the directed planar reachability
problem can be solved in polynomial time using roughly O(n1/2) space. This result
extends a similar bound for the reachability problem over grid graphs due to Asano
and Doerr [AD11].

Theorem 2 [INP+13] For any constant 0 < σ < 1/2, there is an algorithm that,
given a directed planar graph G and two vertices s and t, decides whether there is
a path from s to t. This algorithm runs in time nO(1/σ) and uses O(n1/2+σ) space,
where n is the number of vertices of G.

For showing this result, we first design a polynomial-time and √O(
≥

n)-space
algorithm for computing a “separator” of O(

≥
n) size for an undirected planar graph.

(For any undirected graph G and for any constant λ, 0 < λ < 1, a λ-separator of G
is a a subset of vertices S whose removal disconnects G into two subgraphs A and B,
such that |A| and |B| is at most λn). This algorithm is based on a parallel algorithm
for constructing a planar separator due to Gazit and Miller [GM87].

Theorem 3 [INP+13] There is an algorithm that takes an undirected planar graph
G with n vertices as input and outputs a (8/9)-separator of G of size O(

≥
n). This

algorithm runs in polynomial time and uses √O(
≥

n) space. (Here √O(s(n)) denotes
O(s(n)(log n)O(1))).

Proof Sketch While for obtaining the O(n1/2+σ) space bound we need a recur-
sive approach, it is easy to illustrate the idea for the case when the space bound

42 N. V. Vinodchandran

is O(n2/3). Let G = (V, E) be the input directed planar graph. Let Gu be the
underlying undirected graph. The first step is to apply the planar separator algorithm
repeatedly k times on the connected components of Gu that are bigger than n2/3

to further partition the graph until every component is of size ≤ n2/3. It is easy to
see that after k = 	 23 × log n

log(9/8)
 applications we get a collection S of separators

with total size O(n2/3) so that removing S partitions the graph into disconnected
components where each component is of size≤ n2/3. (This is a standard trick used in
many separator-based algorithms). Let C1, C2, . . . , Cl be the set of vertices in these
components.

Now consider the kernel graph G = (V, E) where V = S ∈ {s, t}. For any two
nodes x and y inV , (x, y) is a directed edge if and only if there is a directed path from
x to y in the subgraph ofG that is induced byV∈Ci (call thisGi), for some connected
component Ci in the partition. Clearly, the number of nodes in G is O(n2/3). Now
consider the algorithm that decides whether there is a directed path from s to t in
G by performing a BFS on G starting at s. Whenever BFS queries (x, y) ∃ E?, the
algorithm performs BFSs for each of the graphs Gi starting at x looking for a path
from x to y, and returns YES if for some Gi this inner BFS returns true. Notice that
since |V ∈Ci | is at most O(n2/3), each of this BFSs can be implemented in O(n2/3)

space and polynomial time. Hence, overall the algorithm takes O(n2/3) space and
polynomial time.

For extending this proof to the O(n1/2+σ) space bound, we need |S| = O(n1/2+σ).
But thatwill result in large components and a simple applicationof the innerBFSswill
not give the required space bound. Instead, we can apply the algorithm recursively.
By limiting the number of recursive applications to a constant, we can make sure
that the running time remains polynomial. We omit the details. �

Before we move on to the next section we mention that there is a certain computa-
tional model known as NNJAG model in which it is possible to prove lower bounds
those match both Savitch’s bound and the BBRS bound [Poo93, CR80, EPA99].
The NNJAG model is a branching program model tailored towards the reachability
problem with restricted access to the input graph. While all the known algorithms
for general reachability (such as BFS, DFS, Savitch’s algorithm, BBRS algorithm)
can be implemented in the NNJAGwithout substantial increase in time and space (in
comparison to implementations on a random access machine), it is not clear to the
author how a general approach such as kernelization can be handled in these models.
It is conceivable that algorithms based on kernelization can overcome NNJAG lower
bounds and help solve these open problems.

3.3 NL Versus UL Problem

The main progress on this problem has also been on graphs with some topological
structure. We first discuss a technique developed by Reinhardt and Allender [RA00]
since all the known proofs on this problem use their technique.

3 Space Complexity of the Directed Reachability Problem 43

A positively and polynomiallyweighted graph is said to bemin-unique if, between
any two nodes the minimum weight path (if it exists) is unique. Here the weight of a
path is the sum of the weights of its edges. Reinhardt and Allender [RA00] showed,
using an adaptation of the inductive counting technique of Immerman [Imm88]
and Szelepcsényi [Sze88], that the reachability question in min-unique graphs can
be decided in UL. They combine this construction with an observation due to
Wigderson [Wig94] that the isolation lemma of Mulmuley et al. [MVV87] can be
used to nonuniformly assign weights to make a given graph min-unique. These two
steps imply the collapse result that NL is in nonuniform UL.

Thus a space-efficient derandomization of the isolation lemma will show that
NL = UL. However, derandomizing isolation lemma in its generality will have
much deeper consequences and is a well-known and difficult open problem [AM08].
Instead, a viable and concrete approach for showing NL = UL is to first consider a
class of graphs over which the reachability problem is NL-complete, and prescribe a
deterministic log-space computable weight function which will make graphs in this
class min-unique.

In [ABC+09], the authors solve this min-unique weight assignment problem for
the class of layered grid graphs. Layered grid graphs are graphs with vertices on a
n × n grid and the edges that go west-to-east and south-to-north. Subsequently in
[BTV09], we showhow to extend thisweight function to general grid graphs (without
restriction on the direction of edges). This implied that directed planar reachability
is in UL since the directed planar reachability problem is known to be reducible
to the grid graph reachability problem [ADR05]. In fact this even implied that the
reachability problem for graphs embedded on constant genus surfaces and graphs
that are K3,3-free and K5-free are in UL since the reachability problem for these
classes of graphs reduces to the directed planar reachability problem [KV10, TW09]
in log-space.

While, in [BTV09]we showed that directed planar reachability is inUL, it was not
clear then how to solve themin-uniqueweight assignment problem for planar graphs.
In a subsequent chapter, we solve this problem using Green’s Theorem, a celebrated
result from multivariate calculus [TV12]. Since it is a slightly nonstandard approach
to use an analytical result to solve discrete problems, we believe this approach has
the potential to solve the general NL versus UL problem. We next present the proof
of the min-unique weight assignment problem for directed planar graphs based on
Green’s theorem.

Green’s theorem, stated below, relates a certain curve integral over a closed curve
on the plane to a related double integral over the region enclosed by this curve.

Theorem 4 Green’s Theorem Let C be a closed, piecewise smooth, simple curve
on the plane which is oriented counterclockwise. Let RC be the region bounded by
C. Let P and Q be functions of (x, y) defined on a region containing RC that have
continuous partial derivatives in the region. Then

∮

C
(P dx + Q dy) =

∫∫

RC

(
∂Q

∂x
− ∂P

∂y

)

d A

44 N. V. Vinodchandran

We use the following corollary that we get if we substitute Q(x, y) = x and
P(x, y) = 0 in Green’s theorem.

Corollary 5 (Area by line integrals) Let C be a closed, piecewise smooth, simple
curve on the plane that is oriented counterclockwise. Let RC be the region bounded
by C. Then,

Area(RC) =
∮

C
x dy.

Theorem 6 [TV12] There is a log-space algorithm that, given any planar graph G,
assigns weights to the edges so that the resulting weighted graph is min-unique.

Let us assume that the planar graph G = (V, E) is presented as a straight-line
drawing. That is, each vertex v is represented as a point (xv, yv) in the plane so that
an edge (u, v) is a line between points (xu, yu) and (xv, yv). In addition, no such
lines intersect other than at the vertices. Moreover, we assume that the coordinates
are integer points with values bounded by poly(n) (n is the number of vertices).
Typically, planar graphs are presented as a combinatorial embedding and it is not
clear how such line drawings can be computed in log-space from a combinatorial
embedding. However, this is not critical and in [TV12] we show how to handle this
presentation issue.

Let e = (u, v) be a directed edge directed from u to v where u is identified with
the point (xu, yu) and v is identified with (xv, yv). For such a directed edge, define
a weight function w as follows:

wgt (e) = 2×
∮

e
x dy = (yv − yu)(xv + xu)

The required isolation property of the weight function is proved using the following
crucial lemma.

Lemma 7 Let G be a directed planar graph and let C be any directed simple cycle
in G. Let RC be the region enclosed by C. Then the weight of the cycle C, |wgt (C)| =
2× Area(Rc). In particular, wgt (C) is nonzero.

Proof Let C = (e1, e2, . . . , el) be a directed cycle-oriented counterclockwise. Then
we have

wgt (C) =
∑

i

wgt (ei) = 2×
∑

i

∮

ei

x dy = 2×
∮

C
x dy = 2× Area(RC)

The third equality follows from the linearity of integrals and the last equality follows
fromCorollary 7. IfC is oriented clockwise, we get thatwgt (C) = −2 × Area(RC).
Hence the lemma. �

3 Space Complexity of the Directed Reachability Problem 45

The following lemma establishes Theorem 6.

Lemma 8 Let G be a directed planar graph. Then with respect to the weight function
wgt , for every pair of nodes u and v, if there is a directed path from u to v, then there
is a unique path from u to v of minimum weight.

Proof Suppose there are u, v so that there are two u to v paths P1 and P2 of minimum
weight. We assume that the paths do not intersect on vertices other than the end
points (otherwise we can find two vertices u≤ and v≤ along these paths that satisfies
this property using a standard cut-and-paste argument and use these vertices instead).
Wehavewgt (P1) = wgt (P2). Nowconsider the graphG ≤ that is same asG except that
the path P2 is reversed so that the set of edges (P1,−P2) becomes a simple cycle
in G ≤ (−P2 denotes the reversed path). Let C denote this cycle. Then wgt (C) =
wgt (P1) + wgt (−P2) = wgt (P1) − wgt (P2) = 0. The second equality because of
the skew-symmetry of the weight function. This contradicts Lemma 7. �

It is clear that we can use Green’s Theorem to design a class of min-unique weight

functions. In fact any “nice” solution to the differential equation
(

∂Q
∂x − ∂P

∂y

)
= 1will

yield such a weight function. For example, setting P(x, y) = −y
2 and Q(x, y) = x

2
to the left-hand side of Green’s theorem yields the weight function w(e) = (xu yv −
xv yu) which is also min-unique.

Can we use such geometric techniques to design min-unique weight functions
for larger classes of graphs? In [BTV09] it is observed that reachability in layered
grid graphs over three dimensions is complete for NL. It might be possible to use
generalizations of Green’s theorem (such as Stokes’ theorem) to design amin-unique
weight function for three-dimensional layered grid graphs.

3.4 The BBRS Bound

We present the algorithm due to Barnes, Buss, Ruzzo, and Schieber [BBRS98] that
solves the directed graph reachability problem in sub-linear space and polynomial
time.

Theorem 9 [BBRS98] For any k, there is a polynomial-time algorithm that given
a directed graph G and two nodes s and t, decides whether there is a path from s to
t in space O(n

2k
≥
log n), where n is the number of vertices of G.

Proof The algorithm uses a combination of BFS and Savitch’s algorithm. For a
parameter β (this will be set to 2k

≥
log n to get the desired bound), it constructs the

levels of BFS tree that are at β distance apart. Divide the vertex set into levels
according to distance from s. That is, the level i vertex set is defined as:

Vi = {v | d(s, v) = i},where d is the distance function.

46 N. V. Vinodchandran

Partition the set of vertices into β equivalence classes C0, C1, . . . , Cβ−1 where
C j = ⋃∧n/β∩

i=0 Vj+iβ. Since the Ci s partition the vertex set, we have the following
fact.

Fact 10 ∃ j∅ so that |C j∅ | ≤ 	 n
β

The Partial-BFS algorithm (described below) constructs C j∅ level by level.
Since we do not explicitly know which C j has ≤ n

β nodes, the algorithm will keep
a counter to count the number of vertices and try from j = 0. At any point of
the construction, if |C j | > n

β , it will abandon that j and try the next value for j .
The algorithm will succeed for the first such j . This will only increase the space
by an additive O(log n) factor and the time by a multiplicative factor of β. Hence
we assume that the algorithm knows j∅. Following is the description of the Partial-
BFS algorithm.

Partial-BFS(G, s) /* Outputs C j∅*/
V0 = {s}
Vj∅ = Construct(G, V0, j∅)
For i = 1 to ∧ n

β∩
Viβ+ j∅ = Construct(G, V(i−1)β+ j∅ ,β)

Add Viβ+ j∅ to C j∅
End-For
Output C j∅

In general, the procedureConstruct takesG and a set of nodes S and a parameter
β and returns the set of nodes that are at distance β from some node in S.Construct
will use the bounded version of the reachability problem (Barnes et al. calls it short
path problem) as subroutine.

SPATH(u, v,β) = true⇐ there is a path of length ≤ β from u to v in G.

We can use an algorithm for SPATH as subroutine to solveConstruct as follows.
Given (G, S,β), to check whether v ∃ V is at distance β from some vertex in S,
first check whether SPATH(u, v,β) is true for some u ∃ S and check for all u ∃ S,
SPATH(u, v,β− 1) is false.

For a given algorithm for SPATH, let T (n,β) be its time complexity and S(n,β)

be its space complexity. Then the time complexity of Construct is O(n3)T (n,β)

and its space complexity is O(n
β) + S(n,β). Moreover, once C j∅ is constructed,

reachability can be solved by making 	 n
β
 calls to SPATH(u, t,β) (for all u ∃ C j∅).

Thus the total running time for the reachability algorithm will be O(n4)T (n,β) and
the space bound will be O(n

β)+ S(n,β).
We will now focus on SPATH. We will use a divide and conquer approach as in

Savitch’s algorithm to design an algorithm for SPATH. The problem with a direct
application of Savitch’s algorithm is its running time: at each level of recursion
it cycles through all n nodes as a candidate for the middle node. This results in
O(nlog n) time. Since we are interested in keeping the time polynomial, we can

3 Space Complexity of the Directed Reachability Problem 47

not afford to cycle through all n nodes. Instead, we will divide the set of nodes into
μ equivalence classes and use a Savitch-like divide and conquer on these equivalence
classes (instead of the vertices). For μ = 2O(

≥
log n) the depth of recursion will be

O(
≥
log n) and this approach will result in polynomial time.

For a parameter μ, partition the vertex set into μ equivalence classes [1],
[2], . . . [μ] where vertex x ∃ [a] ⇐ x ⇒ a (mod μ). Each equivalence class has
	 n

μ
 elements (except for the last one whose cardinality may be smaller). We will
use [a], [b], [c] etc to denote these equivalence classes of vertices. Although this is
not a very standard notation, the i th vertex of the equivalence class [a] (according to
some fixed ordering) will be denoted by [a](i).

Consider the procedure Modified-Savitch(G, [a], [b], X, l) where [a] and [b]
are equivalence classes of vertices, X is an 	 n

μ
 binary array, and l is a length para-
meter. This procedure returns a binary vector Y of size 	 n

μ
, where

Y [j] = 1⇐ ∃i so that X [i] = 1and there is a path

of length ≤ 2l from[a](i) to [b](j)

SPATH(u, v,β) can be solved by one call toModified-Savitch with parameter
([a], [b], Xu, 	log2 β
) where [a] = the equivalence class containing u, [b] = the
equivalence class containing v, and Xu is the vector with 1 in the index corresponding
to u and 0 otherwise. There is a path from u to v if and only if there is a 1 in the
index corresponding to v in the output vector Y . Below is a recursive version of the
algorithm Modified-Savitch.

Modified-Savitch(G, [a], [b], X, l)
If l = 0 then
If [a] = [b] then Y ∞ X
Else Y [j] = 1 iff ∃i such that there is an edge from [a](i) to [b](j)

Else
Y ∞−≈

0
For c = 1 to μ

Z ∞ Modified-Savitch(G, [a], [c], X, l − 1)
Yc ∞ Modified-Savitch(G, [c], [b], Z , l − 1)
Y ∞ Y → Yc

Return Y

Correctness of Modified-Savitch is easy to prove. Its time and space bounds
can be estimated using the following recurrences:

S(l) = O(
n

μ
)+ S(l − 1)

= O(
n

μ
)× l

T (l) = μ× 2× T (l − 1)+ O(n)

= (2μ)l+1 × O(n)

48 N. V. Vinodchandran

Setting μ = 2(k+1)≥log n and l = 	log2 β
, we get an algorithm for SPATH with
time complexity T (n,β) = O(2logβ×2(k+1)≥log n(logβ+1)×n) and space complexity
S(n,β) = O(n

2(k+1)≥log n × logβ).

For β = 2k
≥
log n , this results in polynomial time and space O(n

2k
≥
log n) giving an

algorithm for the reachability problem with polynomial running time and O(n
2k
≥
log n)

space bound. �

Acknowledgments I would like to thank Pavan Aduri for extended collaboration and discussions
on the reachability problem, and for his valuable comments on an earlier draft of this article.
I would like to thank the organizers, V. Arvind andManindra Agrawal, of the Complexity and Logic
Workshop at IIT Kanpur (in celebration of the 60th birthday of Somenath Biswas) for inviting me
to give a talk at the workshop.

References

[ABC+09] E. Allender, D.A. Barrington, T. Chakraborty, S. Datta, S. Roy, Planar and grid graph
reachability problems. Theor. Comput. Syst. 45(4), 675–723 (2009)

[AD11] T. Asano, B. Doerr, in Memory-constrained algorithms for shortest path problem.
(CCCG, 2011), pp. 135–138

[ADR05] E. Allender, S. Datta, S. Roy, in The Directed Planar Reachability Problem (FSTTCS,
2005), pp. 238–249

[ÀJ93] C. Àlvarez, B. Jenner, A very hard log-space counting class. Theor. Comput. Sci. 107,
3–30 (1993)

[AM08] V. Arvind, P. Mukhopadhyay. Derandomizing the isolation lemma and lower bounds
for circuit size. In APPROX-RANDOM (2008), pp. 276–289

[ARZ99] E. Allender, K. Reinhardt, S. Zhou, Isolation, matching, and counting uniform and
nonuniform upper bounds. J. Comput. Syst. Sci. 59(2), 164–181 (1999)

[BBRS98] G. Barnes, J.F. Buss, W.L. Ruzzo, B. Schieber, A sublinear space, polynomial time
algorithm for directed s- t connectivity. SIAM J. Comput. 27(5), 1273–1282 (1998)

[BJLR91] G. Buntrock, B. Jenner, K. Lange, P. Rossmanith, Unambiguity and fewness for loga-
rithmic space, in8th International Symposium on Fundamentals of Computation Theory
(1991), pp. 168–179

[BTV09] C. Bourke, R. Tewari, N.V. Vinodchandran, Directed planar reachability is in unam-
biguous logarithmic space. ACM Trans. Comput. Theor. 1(1), 1–17 (2009)

[CR80] S.A. Cook, C. Rackoff, Space lower bounds for maze threadability on restricted
machines. SIAM J. Comput. 9(3), 636–652 (1980)

[EPA99] J. Edmonds, C.K. Poon, D. Achlioptas, Tight lower bounds for st-connectivity on the
NNJAG model. SIAM J. Comput. 28(6), 2257–2284 (1999)

[GM87] H. Gazit, G.L. Miller, A parallel algorithm for finding a separator in planar graphs
(FOCS, 1987), pp. 238–248

[Imm88] N. Immerman, Nondeterministic space is closed under complementation. SIAM J.
Comput. 17(5), 935–938 (1988)

[INP+13] T. Imai, K Nakagawa, A. Pavan, N. V. Vinodchandran, O. Watanabe, A n1/2+σ-space
and polynomial-time algorithm for directed planar reachability, in Conference on Com-
putational Complexity (2013), pp. 277–286

[KV10] J. Kynčl, T. Vyskočil, Logspace reduction of directed reachability for bounded genus
graphs to the planar case. ACM Trans. Comput. Theor. 1(3), 1–11 (2010)

[MVV87] K. Mulmuley, U. Vazirani, V. Vazirani, Matching is as easy as matrix inversion.
Cominatorica 7(1), 105–113 (1987)

3 Space Complexity of the Directed Reachability Problem 49

[Poo93] C.K. Poon, in Space Bounds for Graph Connectivity Problems on Node-Named Jags
and Node-Ordered Jags (FOCS, 1993), pp. 218–227

[RA00] K. Reinhardt, E. Allender, Making nondeterminism unambiguous. SIAM J. Comput.
29(4), 1118–1131 (2000)

[Rei08] O. Reingold, Undirected connectivity in log-space. J. ACM, 55(4), 1–24 (2008)
[RTV06] O. Reingold, L. Trevisan, S. Vadhan, Pseudorandom walks on regular digraphs and

the RL versus L problem, in STOC ’06: Proceedings of the thirty-eighth annual ACM
Symposium on Theory of Computing, (ACM, NewYork, NY, USA, 2006), pp. 457–466

[Sav70] W.J. Savitch, Relationships between nondeterministic and deterministic tape complex-
ities. J. Comput. Syst. Sci. 4(2), 177–192 (1970)

[SBV10] D. Stolee, C. Bourke, N.V. Vinodchandran, A log-space algorithm for reachability in
planar dags with few sources, in Proceedings of 25th IEEE Conference on Computa-
tional Complexity (2010), pp. 131–138

[SV12] D. Stolee, N.V. Vinodchandran. Space-efficient algorithms for reachabilityin surface-
embedded graphs, in IEEE Conference on Computational Complexity (2012), pp. 326–
333

[Sze88] R. Szelepcsényi, The method of forced enumeration for nondeterministic automata.
Acta Informatica 26, 279–284 (1988)

[TV12] R. Tewari, N.V. Vinodchandran, Green’s theorem and isolation in planar graphs. Inf.
Comput. 215, 1–7 (2012)

[TW09] T. Thierauf, F. Wagner, in Reachability in K3,3-free graphs and K5-free graphs is in
unambiguous log-space (FCT, 2009), pp. 323–334

[Wig92] A.Wigderson, The complexity of graph connectivity. Math. Found. Comput. Sci. 1992,
112–132 (1992)

[Wig94] A.Wigderson. NL/poly↔ ∀L/poly. In Proceedings of the 9th Structures in Complexity
conference, pages 59–62, 1994

Chapter 4
Algebraic Complexity Classes

Meena Mahajan

Abstract This survey describes, at an introductory level, the algebraic complexity
framework originally proposed by Leslie Valiant in 1979, and some of the insights
that have been obtained more recently.

Keywords Algebraic complexity · Circuits · Formulas · Branching programs ·
Determinant · Permanent

Mathematics Subject Classification (2010) Primary 68Q15 · Secondary 68Q05

4.1 Introduction

In this survey, I am going to try and describe the algebraic complexity framework
originally proposed by Leslie and Valiant [Val79, Val82], and the insights that have
been obtained more recently. This entire article has an “as it appeals to me” flavour,
but I hope this flavour will also be interesting to many readers. The article is not
particularly in-depth, but it is an invitation to read [BCS97, Bür00a] and many recent
papers on the topic, and to start attacking the open problems in the area.

Valiant started outwith themissionof understanding the core essenceof reductions
and completeness, as witnessed in both recursive function theory and in computa-
tional complexity theory. He provided an algebraic framework in which to interpret
the clustering of natural problems into completeness classes, even for problems of
an algebraic rather than combinatorial nature. He had a remarkable hypothesis:

The idea for writing this survey came while the author was working on the Indo-French
CEFIPRA-supported project 4702-1.

M. Mahajan (B)

The Institute of Mathematical Sciences, CIT Campus, Chennai 600113, India
e-mail: meena@imsc.res.in

M. Agrawal and V. Arvind (eds.), Perspectives in Computational Complexity, 51
Progress in Computer Science and Applied Logic 26, DOI: 10.1007/978-3-319-05446-9_4,
© Springer International Publishing Switzerland 2014

52 M. Mahajan

Linear algebra offers essentially the only fast technique for computing multivariate polyno-
mials of moderate degree.

Clearly, then, we are going to talk about polynomials, not languages or functions.

4.2 Valiant’s Original Framework

Let F be any field, and let F[x1, . . . , xn] be the ring of polynomials over indeter-
minates x1, . . . , xn with coefficients from F. Consider a family (f) of polynomials
(fn)n≥1, where each fn is in F[x1, . . . , xs(n)] for some function s : N −∗ N. When
should we say that (f) is tractable? Clearly, if there are too many variables to keep
track of, there cannot be tractability. So we will henceforth demand that s is a poly-
nomially bounded function (⊆c,≤n, s(n) ∈ c+ nc); then the nth polynomial fn has
O(nc) variables. But that is of course not enough.

There are many ways in which we can set the bar for tractability. Here’s a first
attempt. Can (f) be computed by a formula of reasonable size? To elaborate further,
a formula is an expression defined recursively:

1. for each c ∃ F, “c” is a formula of size 0 computing the polynomial c,
2. for each indeterminate xi , “xi” is a formula of size 0 computing the polynomial

xi , and
3. if F1, F2 are formulas computing polynomials f1 and f2, then “(F1 + F2)” and

“(F1 × F2)” are formulas of size size(F1) + size(F2) + 1 each, computing the
polynomials f1 + f2 and f1 × f2, respectively.

Notice that size(F) is just the number of ring/field operations used to construct F .
Instead of such a recursive definition, we could have a more intuitive picture: a

formula is a rooted binary tree where internal nodes are labelled + or × and leaf
nodes are labelled from the set F∪ X , where X is the set of indeterminates. The size
is just the number of non-leaf nodes.

Now, for tractability, we could require that there is a polynomially bounded func-
tion t : N −∗ N and a family of formulas (Fn)n≥1 such that each Fn computes fn

and has size at most t (n). Let us use the notation VF to denote families of polyno-
mials tractable in this sense. (VF: Valiant’s Formulas—of course, Valiant didn’t use
this name! This class is also referred to as VPe: Valiant’s Polynomial-sized Expres-
sions. Personally, I prefer VF. Also note, in formal logic, the formulas/expressions
referred to above are called terms, hence VFmeans families with polynomial “termic
complexity”.)

Here’s a second attempt: Can (f) be computed by a straight-line program of
reasonable size? As before, we will declare polynomial size to be reasonable.
Straight-line programs are programs where instructions involve adding or multi-
plying previously computed polynomials, no divisions and no conditionals (no if-
then-else). In the more intuitive picture, they correspond to directed acyclic graphs
where each node is a source node (indegree 0) labelled from the set F ∪ X , or has

4 Algebraic Complexity Classes 53

indegree 2 and is labelled+ or×. A designated sink node (outdegree 0) is the output
node. Each node computes a polynomial in the obvious way, and the graph computes
the polynomial at the output node. (The acyclicity constraint ensures that there is a
linear ordering of the nodes such that each node, or instruction, only uses previously
computed polynomials. This gives the straight-line program.) The size is the number
of non-source nodes; again, this corresponds to the number of ring/field operations
required. Such graphs are in fact exactly algebraic circuits, and we now look for
polynomial size circuit families.

Clearly, this model generalises formulas. The catch is that it generalises it too
much! To see why, consider the following circuit family: Cn has n + 1 nodes
v0, v1, . . . , vn , and the labeling is v0 = x1, vi+1 = vi × vi for i ∃ [n]. The family
of polynomials (fn) computed by (Cn) is fn = x2

n

1 . Even for small integer values
of x1, writing down the value of fn(x1) is going to require exponentially many bits.
How can we say that such a family (fn) is tractable?

So we need to impose some additional restrictions. The obvious parameter to
restrict is the degree of the polynomial. Say that the family (fn)hasmoderate degree if
for somepolynomially bounded functiond : N −∗ N, the degree of eachpolynomial
fn is at most d(n). If degree(fn) = D is polynomially bounded, then on integer
argumentswith b-bit representations, the value of fn requires nomore than poly(n, b)

bits. (In general, it needs no more than poly(n, D, b) bits.) Henceforth, to qualify for
the label tractable, a family (fn) must have polynomially bounded degree.

(Why didn’t we face this problem when considering VF? Simply because a for-
mula of size t cannot compute a polynomial of degree more than t + 1. Don’t just
believe me; check this by induction on formula size.)

Now we have our second possible definition of tractability: (fn) is tractable if the
sequence degree(fn) is polynomially bounded, and there is a polynomially bounded
function t : N −∗ N and a family of straight-line programs, or algebraic cir-
cuits, (Cn)n≥1, such that each Cn computes fn and has size at most t (n). Let us
use the notation VP to denote families of polynomials tractable in this sense. (VP:
Valiant’s analogue of the Boolean complexity class P. Valiant called these families
p-computable [Val82]).

The well-studied polynomial family from linear algebra, the determinant of a
matrix of indeterminates, is known to be tractable in this second sense. (To define
the family (Detn), imagine an n× n matrix An with a new indeterminate xi j at each
position (i, j), and let Detn be the polynomial that represents the determinant of An .
Thus Det1 = x11, Det2 = x11x22 − x12x21, and so on. Clearly, this family satisfies
the mandatory conditions: Detn has n2 variables and is of degree n.) This is not
surprising; we know that the determinant can be computed efficiently (in polynomial
time) over instantiated matrices using, say, Gaussian elimination. But to compute the
symbolic determinant via a straight-line program, Gaussian elimination is apparently
not directly of use because we can’t search for nonzero pivots and eliminate them
(remember, no divisions and no conditionals). However, Strassen [Str73] gave a
generic method of converting any straight-line program with divisions to a division-
free straight-line program; the resulting program’s size is polynomially bounded in
the original size, the number of variables and the degree. Thus, we can conclude

54 M. Mahajan

that there are polynomial-sized straight-line programs for the symbolic determinant.
There are more direct algorithms as well; Samuelson, Berkowitz, Csanky, See
[MV97] for an explicit description of circuits of size O(n4) (my favourite one—no
surprise!).

Whether the determinant can be computed efficiently by formulas (is Detn in
VF?) is still famously open. We know that it needs formula size at least χ(n3), see
[Kal85]. But we do know that it can be computed by formulas of subexponential
size 2O(log2 n). This can be shown in many different ways, one of which we will look
at a bit later, but the earliest demonstration of this follows from Csanky’s algorithm
[Csa76], which uses binary arithmetic operations and O(log2 n) parallel time. Thus,
if we use quasi-polynomial (2log

c n for some constant c) formula-size as the defining
property for tractability (giving a class that we can call VQF), then again the family
(Detn) has long been known to be tractable. We could also use quasi-polynomial
circuit size as the defining property for tractability, giving a class that we can call
VQP. But VQP obviously contains VP and VQF, so (Detn) is in VQP; nothing new
there. (Note: in defining VQF and VQP, the quasi-polynomial limit on formula or
circuit size is over and above the requirement that the degree and number of variables
are polynomially bounded.)

Does VP include essentially all interesting and natural polynomial families? We
do not know. In fact, there is a large list of such polynomial families not known to
be in VP. The most natural one is the permanent family (Permn) where Permn is the
polynomial representing the permanent of an n × n matrix An of indeterminates. It
is tantalisingly similar to the determinant; just the sign term is missing.

Detn =
∑

σ∃Sn

sign(σ)

n∏

i=1
xiσ(i) Permn =

∑

σ∃Sn

n∏

i=1
xiσ(i)

Yet, it does not seem to be tractable. How “intractable” is it?
Mirroring the definitions of the Boolean complexity classes P andNP,Valiant pro-

posed a notion of p-definability in [Val79]. A polynomial family (fn) is p-definable
if it can be written as an exponential sum, over partial Boolean instantiations, of
another tractable family. Formally, a family (fn) over s(n) variables and of degree
d(n) is p-definable if s(n) and d(n) are polynomially bounded, as always, and further,
there exist a polynomially bounded function m, and a family of polynomials (gn) in
VF, such that gn has s(n) + m(n) variables denoted {x1, . . . , xs(n), y1, . . . , ym(n)},
and

fn(√x) =
1∑

y1=0

1∑

y2=0
· · ·

1∑

ym(n)=0
gn(√x, √y).

This looks like an algebraic analogue
∑ ·VF of the boolean class ⊆·F , where F is the

class of languages decided by polynomial-size formulas. But it is well-known that
⊆ · F = NP, so this should be algebraic NP. Later, Valiant redefined p-definability
(no, that is not a circular definition!) as exponential sums of families in VP, rather

4 Algebraic Complexity Classes 55

than VF; that is, VNP = ∑ ·VP. For clarity, let us agree to temporarily refer to
these two definitions as VNF (or VNPe) and VNP. However, Valiant [Val82] showed
that these two classes are in fact the same, so just VNP will do. The proof involves
showing that VP is contained in

∑ ·VF. And it is of course easier to show upper
bounds with the definition of VNP rather than VNF.

Now Valiant observed that not only (Detn), even (Permn) is p-definable. This
should be similar to showing that the 0–1 permanent is in #P, right? Almost. We
are dealing with symbolic polynomials, so we do not have the liberty of looking at
an input value and deciding what to do next. Still, the basic idea is the same. For
a statement S, let [S] denote the 0–1 valued Boolean predicate that takes value 1
exactly when S is true. Then

Permn =
∑

σ∃Sn

n∏

i=1
xiσ(i) =

∑

Y∃{0,1}n×n

⎡

⎣
Y is a 0− 1
permutation
matrix

⎤

⎦ ·
n∏

i=1

⎛

⎝
n∑

j=1
Yi j xi j

⎞

⎠

⎡

⎣
Y is a 0− 1
permutation
matrix

⎤

⎦ = [Y has at least one 1 in each row]

× [Y has at most one 1 in each line

(line = row or column)]

=
⎛

⎝
n∏

i=1

n∑

j=1
Yi j

⎞

⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∏

(i, j) 	=(k.m);
i=k or j=m

(1− Yi j Ykm)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Clearly, the polynomial family

gn =
⎛

⎝
n∏

i=1

n∑

j=1
Yi j

⎞

⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∏

(i, j) 	=(k.m);
i=k or j=m

(1− Yi j Ykm)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

n∏

i=1

⎛

⎝
n∑

j=1
Yi j xi j

⎞

⎠

has formulas of size O(n3), and Permn(√x) =∑
Y∃{0,1}n×n gn(√x, Y), so (Permn) is in

VNP.
So we have some families in VP (even VF), and some in VNP but maybe not in

VP. How do we compare families? For comparing languages, we have many-one
reductions and Turing reductions—what is the algebraic analogue? Valiant proposed
projections, a most restrictive kind of reduction when dealing with Boolean classes,
but completely natural in the algebraic context. We say that g ∃ F[y1, . . . , ym] is
a projection of f ∃ F[x1, . . . , xn] if g can be obtained from f by substituting a

56 M. Mahajan

value in F ∪ Y for each variable in X . (For instance, if f = x1x2 + x3x4, then the
following are all projections of f : y1 + y2, y1y2 + 5, y1y2 + y2y3, 2y2. But y21 y2,
y1 + y2 + y3 are not, because a projection cannot increase the degree or number of
monomials.) Further, we say that a family (gn) is a p-projection of a family (fn) if
each gn is a projection of some fm for an m not too far from n. That is, there is a
polynomially bounded function t , and each gn is a projection of ft (n). If we allow t
to be quasi-polynomially bounded, we obtain qp-projections.

Using these notions of reductions, we have the usual notions of hardness and
completeness for algebraic classes. Here’s what Valiant showed:

1. (Detn) is hard for VF under p-projections (and is known to be in VP).
2. (Detn) is complete for the class of quasi-polynomial size formulas VQF under

qp-projections.
3. Over fields with characteristic other than 2, (Permn) is complete for VNP under

p-projections. Over fields of characteristic 2, Permn equals Detn and hence is in
VP and VQF.

4. Polynomial families associated with a number of NP-complete languages are
complete for VNP under p-projections.

The first two follow from a proof that a polynomial computed by a size s formula
is a projection of Dets+2. (It uses the combinatorial definition of determinant. as the
signedweighted sumof cycle covers in an associated graph.) The hardness of (Permn)

for VNP mirrors the hardness of the Boolean permanent for the counting class #P .
As in the case of the upper bound, additional care is needed to take into account non-
access to an input instance and fully symbolic computations; in particular, the proof
requires a multiplicative inverse of two and hence fails over fields of characteristic
2. See [Val79, BCS97, Bür00a] for various versions of these proofs. See [Blä13] for
a simplified gadget construction.

4.3 The Current Status

We now know much more about the classes VF, VP, VQP, VNP defined above, and
about other similarly defined classes. Let’s review these results one by one.

Say that a family of polynomials (fn) is a p-family if the number of variables in
fn and the degree of F are polynomially bounded functions of n. We only consider
p-families.

Recall that VP consists of p-families with polynomial-sized circuits. Also note
that algorithmically, circuit size roughly corresponds to number of processors needed
in a parallel algorithm (associate one processor per gate), while circuit depth—the
length of a longest path from the output node to an input node—corresponds to
parallel time.

A clever construction due to Hyafil [Hya79] shows that any polynomial of degree
D in M variables, computable by a circuit of size t , can be computed in parallel time
O(log D × log(D2t + M)). This is a depth-reduction of the circuit, and generalises

4 Algebraic Complexity Classes 57

Csanky’s result which was specifically tailored for the determinant. Further, this
algorithm has parallel multiplicative depth only O(log D); that is, any root-to-leaf
path goes through at most O(log D)multiplication nodes. This is worth noting since
multiplication seems a more costly operation than addition or subtraction. Unfortu-
nately, the resulting circuit, while shallow and depth-reduced, is rather large, roughly
t log D . Applying this constructionwould take us frompolynomial size circuits to shal-
low quasi-polynomial size circuits. Soon after this, an improved construction was
presented by Valiant et al. [VSBR83]; they achieved the same depth-reduction (and
also O(log D)multiplicative depth) with size polynomial in t D. In particular, apply-
ing this construction to a circuit family (Cn) witnessing that a polynomial family
(fn) is in VP, we see that (fn) is in VSAC1 ⊆ VNC2.

Wait, what exactly are these new classes? Again, we can think of them as ana-
logues of Boolean classes. The Boolean circuit class NCi has circuits of polynomial
size and O(logi n) depth. The class SACi is similarly defined, polynomial size,
O(logi n) ∧-depth, and negations only at inputs. That is, if ∩ nodes are allowed
to have unbounded in-degree, but ∧ nodes must have in-degree 2, then these cir-
cuits have depth O(logi n). (Hence the name SAC, for semi-unbounded alternation.)
Clearly, NCi ⊆ SACi ⊆ NCi+1. Now define the classes VNCi and VSACi as alge-
braic analogues of these, with × and + playing the roles of ∧ and ∩, respectively.
In the Boolean world, we know that NC1 ⊆ SAC1 ⊆ NC2 ⊆ · · · ⊆ NC ⊆ P. In the
algebraic world, however, VNC1 ⊆ VSAC1 = VNC2 = · · · = VNC = VP.

An important consequence of the depth reduction result of [VSBR83] is that the
(Detn) ∃ VQF result generalises to all of VP; VP ⊆ VQF. Another important
consequence is that at quasi-polynomial size, formulas are as powerful as circuits;
VQF equals VQP. Such an equivalence is not known for p-families at polynomial
size. (It holds at exponential size, because polynomials in any p-family have only
exponentially many monomials. An explicit sum-of-monomials expression gives an
exponential-sized formula.)

Even before the results of [Hya79, VSBR83], Brent [Bre74] had shown that depth-
reduction is possible for VF. Any formula F can be rebalanced by identifying in it a
suitably chosen node N and rewriting F as a linear form in N , say AN + B. If N is
properly chosen, then the polynomials A and B are computed by small subformulas
(size at most half of F) of F , and can be recursively rebalanced. The appropriate N
is identified by using the tree separator lemma. This process yields a O(log size(F))

depth formula. Thus, we conclude VF = VNC1.
The depth reduction for VP from [VSBR83] proceeds similarly, but works on

“proof-trees” or parse trees. Unfolding a circuit into a formula by systematically
duplicating reused nodes may yield an exponential-sized formula (recall the example
X2n

.) Let us nonetheless do so. Now, a minimal subformula that includes the output
node, both children of an included × node, and exactly one child of an included
+ node, computes a potential monomial whose degree is the number of leaf nodes
in the subformula. Call such a subformula a proof tree. For a circuit computing a
p-family of polynomials, we can ignore proof trees of super-polynomial size. For
each polynomial-sized proof tree, the balancing technique described above should
work. The catch is, there can be too many proof trees (there can be exponentially

58 M. Mahajan

many monomials), and each proof tree could require cutting at a different node. The
clever twist is the following: in the formula depth-reduction, A can be computed
recursively because it is the partial derivative of F with respect to N . If F is now
a circuit rather than a formula, then F may not be linear in N , so computing the
partial derivative will not help. But if N is chosen to have degree more than half the
degree of F , then this is indeed the case. So, the algorithm of [VSBR83] computes,
for each pair of nodes N , N ′, a new polynomial F(N , N ′); these polynomial are
recursively constructed, and whenever 2degree(N) > degree(N ′), F(N , N ′) equals
the partial derivative of N ′ with respect to N . Putting this together carefully gives
the depth-required circuit. For details, see [VSBR83] itself. Also see [AJMV98a,
Vol99] for uniform versions, where the task of describing the depth-reduced circuit
given the original circuit is achieved using limited computational resources.

A couple of things slipped by almost unnoticed. We know what is meant by
the degree of a polynomial, but what do we mean by degree(N)? This should be
the degree of the polynomial computed at the node N , and indeed [VSBR83] use
degree in this sense. But the uniform versions cannot do so, because computing the
degree of a specified node in a given circuit is a completely non-trivial task! See the
discussion about DegreeSLP in [ABKPM09, Kay10]. Fortunately, we can equally
easily work with an upper bound on the degree of each node. And an upper bound
u(N) on the degree at each node N is easy to obtain: u(N) = 1 if N is a leaf,
u(N1 + N2) = max{u(N1), u(N2)}, u(N1 × N2) = u(N1) + u(N2). This upper
bound is referred to as the complete formal degree of the circuit (as opposed to the
degree of the polynomial it computes). However, just because the output node of C
computes a polynomial of degree d, this does not imply that each node computes a
polynomial of degree at most d. Higher degree monomials may get computed along
the way, and get cancelled finally. Is it necessary, in terms of efficiency, to compute
them? No! If C is of size s and computes a polynomial f of degree d, then we can
construct a circuit C ′ of size O(sd2) computing the same polynomial and with each
node computing a polynomial of degree at most d: just compute the homogeneous
parts of f separately in the obvious way. Now C ′ will have complete formal degree
O(d3s). (See [MP08] for details.) Thus,we could have defined VP in terms of circuits
of polynomial size and polynomially bounded complete formal degree as well.

There is a much simpler proof of the fact that VP is contained in VNC. This proof
yields a weaker upper bound of VSAC2 rather than VSAC1, but is still beautiful, and
is still enough to conclude that VP ⊆ VQF. I first saw this proof in a survey talk by
Koiran at Dagstuhl [Koi10], and I wish I had come up with it myself! Let (fn) be
in VP, as witnessed by a circuit family (Cn) with complete formal degree bounded
by (dn). To depth-reduce Cn , partition the nodes into 1 + ∅log dn⇐ parts; part k has
nodes with formal degree in [2k−1, 2k). Treating the polynomials from parts i < k
as variables, the nodes in part k form a skew circuit, where each × node has at most
one child that is not an input node. (Multiplying two nodes both in part k would
create high degree, giving rise to a node in part k + 1.) Now, skew circuits can be
depth-reduced to VSAC1 rather easily, using a divide-and-conquer argument dating
back to Savitch [Sav70]. Doing this separately for each part gives a VSAC2 circuit.

4 Algebraic Complexity Classes 59

We just introduced a new kind of circuit there: skew circuits. Are they as powerful
as general circuits? We do not know! Let’s define VPskew; p-families of polynomials
computed by polynomial-sized skew circuits. It turns out this is a great class to
study, because it exactly characterises the complexity of the determinant. Recall
what we have already seen; (Detn) is hard for VF = VNC1 and is in VP. The
upper bound proof from [MV97] actually gives a skew circuit of size O(n4), but
skew circuit constructions were knownmuch earlier: in [Ven92], Venkateswaran first
defined Boolean skew circuits to capture nondeterministic circuits, and subsequently
many authors independently extended that study to arithmetic rings, [Dam91, Tod92,
Vin91, Val92]. And the lower bound proof from [Val79] shows that polynomials
computed by skew circuits are p-projections of the determinant, though it is not
stated this way. Valiant showed that a formula can be converted to a certain kind of
graph that we nowadays call an algebraic branching program or ABP (more about
this below), and that polynomials computed by ABPs are p-projections of (Detn).
And we now know that ABPs are essentially skew circuits.

Time to define ABPs. These are directed acyclic graphs, with a designated source
node s and a designated target sink node t (sometimes there may be multiple target
nodes), and with edges labelled from F∪ X (similar to input nodes in a circuit). For
any directed path λ, the weight of λ is the product of the labels of the edges on λ.
The polynomial pv computed at a node v is the sum of the weights of all directed
sv paths. The polynomial computed by the ABP is just pt . Families computed by
polynomial-size ABPs form the class VBP. (In some parts of the literature, edge
labels are allowed to be linear forms in X . This does not significantly change the
properties of ABPs as we discuss here. We’ll stick to the convention that labels are
in F ∪ X .)

So why are ABPs and skew circuits essentially the same? ABPs to skew circuits:
clearly, ps = 1, and for any other source node (in-degree 0) s′, ps′ = 0. Look at
an edge u ∗ v of the ABP with label β. Then pv has a contribution from pu × β.
Summing this over all incoming edges at v gives a small circuit computing pv from
previously computed values, and this circuit is skew. For the reverse simulation,
reverse this construction: (1) introduce a source node s, (2) for each input node u
labelled β, add an edge s ∗ u labelled β, (3) for each node v = u+ u′, create edges
u ∗ v and u ∗ v labelled 1, and (4) for each node v = u×β, create an edge u ∗ v

labelled β.
So now we can add to the list of results at the end of Sect. 4.2: (Detn) is complete

for VBP = VPskew under p-projections.
In fact, we can add more. What makes the simulation from skew circuits to ABPs

possible is the fact that at each × gate, one argument is easy. Toda [Tod92] took
this argument further—it is enough if one argument is independent of the rest of
the circuit. That is, for each × node ∂ = β × γ, the entire sub-circuit rooted at
either β or γ has no connection to the rest of the circuit except via this edge to ∂.
(Equivalently, one of the edges into ∂ is a bridge in the circuit.) Call such circuits
weakly skew circuits. Toda showed that weakly skew circuits can be converted to
skew circuits with linear size blow-up. See also [MP08], where Malod and Portier

60 M. Mahajan

made the size bounds in the conversions even more precise. So now we can say
VBP = VPskew = VPws , where the subscript ws stands for weakly skew.

(Note: Neither [Tod92] not [MP08, Mal03] actually claimed linear size blow-up.
However, their constructions from weakly skew circuits to ABPs, with the standard
conversion from ABPs to skew circuits, does give linear blow-up. As far as I can see,
linear blow-up for weakly skew to skew circuits was explicitly observed in [KK08,
Jan08, Gre12a].)

Taking this idea further, Malod and Portier provide a brilliant characterization
of the class VP. Say that a circuit is disjoint if at every node ∂ = β ⇒ γ, where
⇒ could be + or ×, the sub-circuits rooted at β and γ are disjoint. This is just a
fancy (convoluted?) way of saying that the circuit is a formula. But now relax this
constraint a bit. Say that a circuit is multiplicatively disjoint orMD if at every× node
∂ = β× γ, the sub-circuits rooted at β and γ are disjoint. No restrictions apply to+
nodes. Like formulas, MD circuits of size s have complete formal degree bounded
by s. But the MD restriction seems to allow more computation than formulas; for
instance, weakly skew circuits are MD, and so MD circuits can compute (Detn) in
polynomial size. Malod and Portier showed that in fact polynomial size MD circuits
can compute everything in VP, but nothing more. That is, VP = VPMD. While this
fact can also be deduced once we have depth reduction to VSAC1, Malod and Portier
give a completely self-contained combinatorial proof which is very neat. Basically,
imagine that each node in the VP circuit is labelled with its formal degree. Now
make multiple copies of each node, inversely proportional to the formal degree. By
carefully deciding which copies of its children to use to construct a copy of a node,
multiplicative disjointness can be achieved with only polynomial blow-up in size.

A nice consequence of this characterisation of VP is a simpler proof of the fact that
VP is contained in

∑ ·VF.The key observation used is that a circuit ismultiplicatively
disjoint exactly when every proof tree is already a subgraph of the circuit (even
without any unfolding into a formula). See [MP08] for details.

Beforewemove on,we note another surprising relation betweenABPs and formu-
las: VF equals the class of p-families computed by polynomial-sizeABPs of constant
width. What is this resource “width”? Recall that an ABP is a DAGwith edges going
“in the direction from s to t”. Suppose we impose a layering constraint. The nodes of
the DAG must be laid out at the vertices of a rectangular w× β grid, the node s must
be at position (S, 1) for some S ∃ [w], the node t must be at position (T, β) for some
T ∃ [w], and edges can only go across one layer, from (i, k) to (j, k + 1) for some
i, j ∃ [w], k ∃ [β−1]. Of course, any ABP can be converted to one of this form: just
sub-divide edges when necessary and label the sub-division path so that its weight
is the original edge’s label (use lots of 1s). Now we say that w is the width of the
layered ABP and β is the length. A bounded-width branching program family (Bn)

is one where for some absolute constant c, each Bn has width at most c. Seems quite
a squeeze – if we view moving from s towards t as an incremental computation, then
at each stage we can carry forward just c intermediate polynomials. We shouldn’t
be able to do much this way, right? Wrong! Ben-Or and Cleve [BOC92] showed, in
a proof cleverly extending Barrington’s famous characterisation [Bar89] of NC1 by
Boolean bounded-with branching programs, that every formula of depth D has an

4 Algebraic Complexity Classes 61

equivalent bounded-width branching program (that’s quite a mouthful; let’s agree to
call it BWBP) of length 4D and width just 3! Since we already know that formulas
can be depth-reduced and VF equals VNC1, we see that VF is contained in a class
that we can name VBWBP: polynomial-sized constant-width ABPs. The converse
inclusion is easily seen to hold, again using a Savitch-style divide-and-conquer. Thus,
we have another characterisation of VF.

As a matter of curiosity, one may want to know: is the width-3 upper bound
tight? Allender and Wang [AW11] recently settled this question affirmatively: they
show that a very simple polynomial cannot be computed by any width-2 ABP, no
matter what the length. On the other hand, width-3 ABPs are universal, since every
polynomial family has some formula family computing it. The question is one of
efficiency: which families have polynomial-size width 3 ABPs?

OK, so we’ve had a plethora of class definitions, but just a handful of distinct
classes: VF = VPe = VNC1 = VBWBP, VBP = VPskew = VPws, VP = VPMD,
VQF = VQP, VNF = VNP.

As stated in [Bür00a], Valiant’s hypothesis says that VNP 	⊆ VP, and Valiant’s
extended hypothesis says that VNP 	⊆ VQP. Over fields of characteristic not equal to
2, these imply: Permn is not a p-projection of Detn , and Permn is not a qp-projection
of Detn , respectively.

Some miscellaneous results, in no specific order:

1. Let SymDetn be the polynomial that represents the determinant of a symmetric
n × n matrix of indeterminates Bn . (For instance, SymDet2 = x11x22 − x212.)
Clearly, (SymDetn) is a p-projection of (Detn). The converse is also almost
true. As shown by Grenet et al. in [GKKP11], over any field of characteristic
other than 2, Detn is a projection of SymDetn3 . Characteristic 2 is a problem:
symmetric matrices correspond to undirected graphs, so each undirected cycle
gives rise to two directed cycles, and so to get a projection we need division by
2. In characteristic 2, Detn itself is provably not a projection of SymDetm for any
m; see [GMT13]. The best that we can currently say in characteristic 2 is that the
squared determinant (Detn)2 is a projection of SymDet2n3+2; this is also shown
in [GKKP11].

2. VQP is also characterized by quasi-polynomial-size weakly skew circuits of poly-
nomial degree. (From [VSBR83] it follows that VQP = VQF; hence the above
characterization. A direct proof is presented in [MP08].) Several natural poly-
nomials are complete for this class under qp-reductions: the (Detn) family, of
course, but also, the trace of iterated matrix product and the trace of a matrix
power. These families are all complete for VBP under p-reductions.

3. While we do not know the exact relationship betweenVQP and VNP, (they both
contain VP), we do know that VQP does not equal either VP or VNP. Bürgisser
([Bür00a], Sect. 8.2) has shown that there is an explicit family of polynomials
(fn) in VQP that is provably not in VNP, let alone in VP. This family is defined
as follows: Consider numbers in base n. Let μ range over all such numbers with
m(n) = ∅log n⇐ digits. More precisely, let μ range over length-m(n) sequences
over the alphabet {0, 1, . . . , n−1}, and let kn(μ) denote the value of this sequence,

http://dx.doi.org/10.1007/978-3-319-05446-9_8

62 M. Mahajan

kn(μ) =∑m(n)
j=1 μ j n j−1. Define fn as:

fn(x1, . . . , xm(n)) =
∑

μ∃{0,...,n−1}m(n)

22
kn (μ)

m(n)∏

j=1
x

μ j
j

Exploiting the fact that the distinct double exponentials appear as coefficients in
fn , Bürgisser shows that fn cannot be in VNP.
Furthermore, using m(n) = ∅logi n⇐ gives a family of polynomials f i in VQP

with size O(nlogi n) but provably not in size O(nlogi−1 n), so within VQP there is
a strict hierarchy.

4. From theqp-completeness of (Detn) forVQP, and the p-completeness of (Permn)

for VNP, it follows that VNP ⊆ VQP if and only if (Permn) is a qp-projection
of (Detn). This is a very long-standing open question. Originally, the question of
whether (Detn) and (Permn) are p-equivalent was posed by Pólya [Pól13], who
also showed that there is no way of expressing the permanent as the determinant
by only changing the signs of selected entries (except for n = 2; flip the sign of
a12 to get matrix B withDet(B) = Perm(A)). (I haven’t myself seen Pólya’s note,
but have seen it referred to in various places.) Marcus and Minc [MM61] showed
that there is no size-preserving transformation (Permn to Detn), even if we relax
the notion of projections to allow linear form substitions for each variable. For
many years, a linear lower bound was the best known (χ(

∞
2n) due to [vzG87,

Cai90, Mes89]), until Mignon and Ressayre [MR04] showed that over the fields
of characteristic 0 (eg real or complex numbers), even if linear form substitutions
are allowed in projections, to express Permn as a projection of Detm , we need
m ≥ n2/2. The same lower bound was obtained for fields of characteristic other
than 2 by Cai et al. [CCL10]. From Ryser’s work [Rys63] it follows that Permn is
a projection of Detm for somem < n22n . More recently, Grenet showed [Gre12b]
via a very simple and neat construction that Permn is a projection of Detm for
m = 2n − 1. This is the best known so far. Thus there is a huge gap between the
lower and upper bounds on what is called the determinantal complexity of the
permanent.

5. It is natural to believe that the complexity of a p-family (fn) in this framework
is closely related to the computational complexity of evaluating fn for a given
instantiation of its variables. In [Bür00b], Bürgisser gave this belief a firm footing.
Consider a p-family (fn)where fn depends on n variables.Define its Boolean part
BoolPart(f) as a string function mapping x ∃ {0, 1}n to the binary encoding of
fn(x).Note thatwehave considered onlyBooleanvalues. Even so, evaluationmay
seem difficult, because the circuits for (fn) can involve arbitrary constants from
the field. Bürgisser showed that assuming the generalised Reimann hypothesis
GRH, over fields of characteristic zero, BoolPart(VP) has non-uniform multi-
output NC3 circuits. Furthermore, assuming GRH, if Valiant’s hypothesis is false
over such a field, then the entire polynomial hierarchy has (non-uniform) NC
circuits.

4 Algebraic Complexity Classes 63

6. An extreme depth reduction result is given by the highly influential paper of
Agrawal and Vinay [AV08]. To first see the context, note that any polynomial
in n variables with degree d has an unbounded fan-in depth-2 circuit of size
2O(d+d log n

d). (If d ∃ χ(n), then 2O(d) suffices, otherwise the second term in the
exponentmakes up.) This is becausewe can just explicitly compute allmonomials
of degree at most d, and add up the required ones with suitable weights. Now, can
we find circuits substantially better than this, say even 2o(d+d log n

d), if we allow
depth to be increased a bit?Agrawal andVinay showed that indeed this is possible,
even with depth 4, provided there is some circuit (not necessarily depth-reduced)
of that size to beginwith. The idea is extremely simple. Peform the depth reduction
from [VSBR83] or [AJMV98b], and ensure with some additional care that degree
provably drops at × gates. (The price for this is small: a × gate may have fanin
upto 6, instead of 2.) Now, choose a horizontal cut in the depth-reduced circuit so
that for the sub-circuit above it, and for the sub-circuits below it rooted at gates
on the cut, the “brute-force” construction described above is small. Obviously
there is a trade-off: if the cut is too high up, the lower sub-circuits can have large
explicit forms, but if it is too low down, the upper sub-circuit can have large
explicit forms. Cut in the right place, and everything works out!

Subsequently the extreme depth-reductions have been pushed further; see
[Koi12, Tav13, GKKS13b]. The lower bound results of [GKKS13a, FLMS13]
show that the depth reduction upper bound from [Tav13] is tight and cannot be
pushed any further.

This has significant implications for the quest for derandomizing algorithms
for the well-studied problemACIT (arithmetic circuit identity testing)—checking
if a given circuit computes the identically zero polynomial. But that is not directly
connected with this survey. One question it raises here is: what kind of extreme
depth reduction can we achieve for VQP? Can we stay within quasi-polynomial
size?

4.4 The Syntactic Multilinear World

Muchof the study concerningVP andVNP involves the families (Detn) amd (Permn).
The polynomials in both families are multilinear. In principle, to compute a multilin-
ear polynomial via a circuit, we need never compute intermediate polynomials that
are not multilinear. Let us call such circuits, where the polynomial computed at each
node is multilinear, multilinear circuits. However, often it is the case that allowing
non-multilinear terms at intermediate stages, and eventually cancelling them out,
allows more efficient computation (smaller circuits). This leads to the following
quest: what kind of multilinear p-families have efficient multilinear formulas, or
even multilinear circuits, where each intermediate polynomial is required to be mul-
tilinear? Even for the (Detn) family, which we know is multilinear and in VP, we do
not know of polynomial size multilinear circuits. That being the case, can we prove
lower bounds?

64 M. Mahajan

This question is trickier than it seems at first glance, because given a circuit,
even checking whether it is multilinear is non-trivial. Fournier, Malod and Mengel
[FMM12] recently observed that checking multilinearity of a given circuit is com-
putationally equivalent to the well-studied problem arithmetic circuit identity testing
(ACIT)—checking if a given circuit computes the identically zero polynomial.

So we may want a notion of certifiably multilinear circuits. One such notion is
that of syntactic multilinearity, SM. A circuit is said to be syntactically multilinear
if at every × node ∂ = β × γ, the sub-circuits rooted at nodes β and γ operate on
disjoint sets of variables. Note that this is much more restrictive than multiplicative
disjointness. But it certifies multilinearity, since no variable can ever get multiplied
by itself. And syntactic multilinearity is easy to check computationally: it is violated
if there is some node ∂ = β × γ, some variable x , two input nodes I, I ′ labelled x ,
and paths from I to β and I ′ to γ.

If a family has efficient (polynomial-sized) SM circuits, then it has efficient mul-
tilinear circuits. The converse may not be true. But it is true if we look at formulas.
Given a multilinear formula, identify an SM violation ∂,β, γ, x as above. Then we
know by multilinearity of the polynomial p(∂) that x does not appear in either p(β)

or p(γ). In the appropriate subformula, set all instances of x to 0; the polynomials
computed at and above ∂ remain unchanged. Doing this systematically gives an SM
formula of size no more than the original multilinear formula.

In the first major breakthrough, Raz [Raz09] showed that for computation by SM
formulas, and hence by multilinear formulas, both (Detn) and (Permn) need size
nχ(log n). Clearly, this also means that they are not in SM-VNC1.

Since (Detn) is in VP and even in VBP, SM-VF is strictly weaker than VBP. But
this is hardly a fair comparison: we have restricted VF to be SM, but not VBP and
VP. Can we say that SM-VF is strictly weaker than SM-VBP or SM-VP? We do not
know whether (Detn) is in multilinear VP, let alone SM-VP, so a different family
is needed as a separating example. Such an example was provided soon thereafter,
again by Raz [Raz06]. He constructed an explicit polynomial family that is in SM-
VP and even in SM-VSAC1, and showed that it needs SM-formula size nχ(log n) and
hence is not in SM-VNC1. Improved lower bounds for constant-depth circuits and
subclasses of formulas were subsequently obtained by Raz, Shpilka and Yehudayoff
(see for instance [RY09, RSY08]).

Let’s step back a bit.Whydidwe say “inSM-VP, and even inSM-VSAC1”?Aren’t
VP and VSAC1 the same?Well, we know that VP and VF can be depth-reduced. But
canwe assume that these depth reduction tehniques preserve syntacticmultilinearity?
Fortunately, they do; Raz and Yehudayoff [RY08] showed that the depth reduction
of [VSBR83] preserves SM, so indeed SM-VP= SM-VSAC1. Similarly, in [JMR12]
it is observed that the formula depth reduction of [Bre74] also does preserves SM,
so SM-VF= SM-VNC1.

What about other relationhips between the algebraic classes? We had considered
ABPs—what certifies multilinearity there? It is easy to see that a read-once restric-
tion, where on each path in the ABP each variable appears as a label at most once,
does so. Let us therefore use read-once as the definition of syntactic multilinearity
in ABPs. Then, as observed in [JMR12], the Savitch-style divide-and conquer argu-

4 Algebraic Complexity Classes 65

ment preserves SM. So does the conversion from formulas to ABPs, [Val79]. But the
conversion from formulas to width-3 ABPs, [BOC92], does not. In fact, Rao [Rao10]
showed that even a significant generalisation of Ben-Or and Cleve’s technique, using
polynomially many registers instead of just 3, cannot preserve syntactic multilinear-
ity. Of course, there may be other ways of going from SM-VF to SM-VBWBP, but
it could equally well be that the classes are distinct.

To get back perspective, in the SM world what we have seen so far is:

SM-VBWBP ⊆ SM-VF ⊆ SM-VBP ⊆ SM-VP

Asmentioned earlier, Raz [Raz06] showed that the inclusion from SM-VF to SM-VP
is proper. Very recently, this was improved by Dvir et al. [DMPY12]. They showed
that in fact the inclusion SM-VF ⊆ SM-VBP is strict. Whether the first and the last
inclusion are strict is still open.

The proof of [DMPY12] is a clever adaptation of the original technique from
[Raz06]. Let us briefly examine this.

The central ingredient in Raz’s proof is randomly partitioning the variables and
analysing the rank of the resulting partial derivatives matrix. Consider a polynomial
f on 2n variables X = {x1, . . . , x2n}, and consider a partition of X into equi-sized
sets Y , Z . Consider a 2n × 2n matrix MY,Z

f where rows and columns are indexed by
subsets of Y and Z (equivalently, multilinear monomials over Y and Z , respectively).
The entry (my, mz) is the coefficient of the monomial my · mz in f . Intuitively, if
MY,Z

f has high rank, then f should be hard. But high rank with respect to what
partition? Raz showed that if multilinear f has small SM-formula size, then for
at least one partition (Y, Z) of X , MY,Z

f will have low rank. (The existence of the
partition witnessing low rank is proved using the probabilistic method; choose a
partition at random, and analyse the probability that the resulting matrix has rank
exceeding some threshold.) He also constructed an explicit family g in SM-VSAC1

and showed that for every partition (Y, Z) of X , MY,Z
g has high rank; hence g is not

in SM-VF.
The non-trivial adaptation done in [DMPY12] is to consider not all partitions,

but a fairly small set of what they call arc-partitions. They showed that if f is in
SM-VF, then for at least one arc-partition (Y, Z) of X , MY,Z

f will have low rank.
They consider an explicit family g in SM-VBP and show that for every arc-partition
(Y, Z) of X , MY,Z

g has high rank. Hence g is not in SM-VF. The low-rank proof is
again probabilistic, but it has a very appealing combinatorial flavour. So does the
very definition of an arc-partition.

4.5 More on Completeness

Assume that completeness is defined with respect to p-projections. If a family (fn)

is complete for a class, then understanding (fn) better allows us to understand the

66 M. Mahajan

class better. If a natural family is complete for a class, then this is evidence that the
class itself is natural.

Valiant started off with a proof that Perm is VNP-complete. He also showed
that polynomial families associated with a number of NP-complete languages are
complete for VNP under p-projections. So let us agree that VNP is a natural class.

What about VP? The family that naturally contrasts with Perm is Det, but Det is
not yet known to be complete for VP (unless we allow qp-projections; that is not
quite satisfactory). If this turns out to be the case, it will solve a major open problem,
showing that polynomial-degree polynomial size circuits are no more powerful than
polynomial-size branching programs VBP. VBP seems a natural enough class, and
Det and many other families are complete for it.

So what problems are complete for VP? One can construct a canonical family
complete for VP. By canonical, I mean something similar to saying that

{≈M, x, 1t → | M is an NDTM that accepts x in t or fewer steps}

is NP-complete. Undoubtedly true, but it doesn’t give any new intution about what
NP is about. In the case of VP, the canonical family is not so trivial to construct (but
not very difficult either).

The first description, with a very general completenes result, appears in [Bür00a]
(see Sect. 5.6, Cor 5.32(b)). Bürgisser shows that for every p-family h, the relativized
classes VPh and VNPh have complete families with respect to p-projections. Since
VPh = VP and VNPh = VNP whenever h itself is in VP, this gives families
complete for VP and VNP as well. (In fact, it shows the existence of VNP-complete
families, independent of Valiant’s original proof.) These complete families compute
homogeneous components separately, to keep the degree small, and then add up the
required parts. They are constructed by first defining generic polynomials, and then
defining the appropriate projection/substitution. The generic polynomials capture the
canonical notion referred to above.

Later, a more direct construction tailored for VP (as opposed to VPh and VNPh

for all h) was described by Raz [Raz10], and also appears in [SY10]. Here, the proof
of hardness exploits the fact that we can perform depth reduction on VP circuits.
(This was not needed in Bürgisser’s proof.) Roughly, here’s how it goes: For each
natural number N , consider a circuit CN with nodes arranged in 2 log N + 1 layers
numberd 0, 1, . . . , 2 log N . All even layers have exactly N nodes, and compute poly-
nomials gi, j where i is the layer number, j ∃ [N]. Odd layers are used to build these
polynomials. At layer 0, the polynomials are just distinct variables, g0. j = x j . At
higher layers, we have an inductive definition: gi+1, j =∑

k,β∃[N] gi,k · gi,β · yi, j,k,β,
where the yi, j,k,β are new variables. Thus the nodes at the odd layers are the fanin-
3 × nodes, and nodes at even layers (other than the 0 layer) are + nodes with
large fanin. (We can reduce the fanins to 2 later; it won’t change the polynomial
computed.) The polynomial computed by this circuit at g2 log N ,1 is pN . The total
number of variables is O(N 3 log N), and the circuit is also of size O(N 3 log N).
The degree of pN is 2N − 1. So (pN) is in VP. Why is it VP-hard? Take any family
(fn) in VP. By the depth reduction of [VSBR83], it can be computed in VSAC1. The

http://dx.doi.org/10.1007/978-3-319-05446-9_5

4 Algebraic Complexity Classes 67

VSAC1 circuit Dn can be normalised to have alternating + and × nodes, with all ×
nodes having fanin 2, and all leaves at the same depth. Choose N at least as large
as min{size(Dn), 2depth(Dn)}, and also at least as large as the number of variables
in Cn . Now, the computation of Dn can be embedded into CN : Choose the right
number of+ nodes at each even layer, and by carefully assigning 0,1 values to the y
variables, ensure that they compute the required combinations of polynomials from
the previous even layer.

The circuits described above are called universal circuits in [SY10], because every
circuit is a projection of the universal circuit of appropriate size. And if we start with
VP circuits, the projections are p-projections.

So now we know that VP has complete families under p-projections as well. But
generic polynomials, universal circuits, and the polynomials they compute, are rather
artifical. Are there other families that are defined independent of circuits and are VP-
complete? Actually, we know very few. Recently, Stefan Mengel [Men11] made
further progress here, considering polynomial families associated with constraint
satisfaction problems CSPs. (This builds on earlier work by Briquel, Koiran, Meer
[BK09, BKM11], though they did not explicitly look for VP-completeness.) Let’s
first review what CSPs are. Think of them as generalising CNF–SAT. In CNF–SAT,
each clause forbids one assignment to the variables in it. (e.g the clause x1 ∩ x3
forbids x1 = 0, x3 = 1.) In a CSP, variables can take values from a larger domain,
not necessarily 0,1. Each constraint is like a clause; it has a set of variables, and
it forbids certain combinations of assignments to these variables. (e.g on domain
{a, b, c} a constraint on x1, x2 could say that x1 	= x2. That is, assignments aa, bb, cc
are forbidden, the other 6 assignments satisfy this constraint.) As in SAT, we look for
assignments satisfying all constraints. If the domain has size 2, the CSP is Boolean.
If each constraint involves 2 (or less) variables, the CSP is binary. As usual, consider
not just a CSP but a family of CSPs (�n), where �n has domain Dn . For tractability,
we will require that the CSP is p-bounded; that is, the CSP has bounded arity (for
some fixed constant c, each constraint in every�n looks at no more than c variables),
and it has polynomial-sized domains (in �n , the variables take values from a set Dn ,
where the size of Dn is p-bounded). Now associate with each such CSP (�n) a
polynomial family (Qn = Q(�n)), where Qn is on the variable set {Xd | d ∃ Dn}
and is defined as follows:

Q(�n) =
∑

a:var(�n)∗Dn

[a satisfies�n]
∏

x∃var(�n)

Xa(x)

=
∑

a:var(�n)∗Dn

[a satisfies�n]
∏

d∃Dn

X |a
−1(d)|

d

(Recall, [S] is Boolean, 1 if and only if statement S is true.)Mengel has thiswonderful
characterisation of the complexity of the family (Qn). The characterisation involves
associating with the CSP a graph G; this graph has a vertex for each variable and an
edge between two variables if they occur simultaneously in some constraint. Now
the treewidth and pathwidth of the graph (these parameters describe roughly how

68 M. Mahajan

tree-like or path-like the graph is, if we can consider blobs of vertices. The smaller the
blobs, the better the similarity. See [Bod98] for definitions and an overview.) relate
to the complexity. It also involves an assignment bound: a CSP is c-assignment-
bounded if for each constraint ϕ and each variable x in the constraint, the number
of distinct values possible for x in assignments satisfying ϕ is bounded by c, even
though the domain may be much larger. This seems like a strong condition, but recall
that Boolean CSPs are by definition 2-assignment-bounded.

Enough of definitions! Here’s what Mengel shows:

1. For each p-bounded CSP (�n), (Q(�n)) is in VNP. Every family (fn) in VNP
is a p-projection of (Q(�n)) for some p-bounded (�n).

2. For each p-bounded CSP (�n) where Gn has bounded treewidth, (Q(�n)) is in
VP. Every family (fn) in VP is a p-projection of (Q(�n)) for some p-bounded
binary (�n) where G is a tree (treewidth 1).

3. For each p-bounded CSP (�n) where Gn has bounded pathwidth, (Q(�n)) is in
VBP. Every family (fn) inVBP is a p-projection of (Q(�n)) for some p-bounded
binary (�n) where G is a path (pathwidth 1).

4. For each p-bounded c-assignment-bounded CSP (�n) where Gn has bounded
treewidth, (Q(�n)) is inVF.Every family (fn) inVF is a p-projection of (Q(�n))

for some p-bounded 2-assignment-bounded binary (�n) where G has pathwidth
at most 26.

The hardness proofs involve looking at the structure of parse trees for VP, witnessing
paths for VBP.

Note that as stated, this falls slightly short of providing a single complete family
for VP. However, applying the hardness reduction from universal circuits will yield
a single CSP family that is VP-complete. To the best of my knowledge, this is the
first instance of a VP-hardness result for a family defined (almost) independent of
circuits.

All the above results require that the CSP has bounded arity. Unbounded arity
seems to immediately give rise to intractability. If arity is unconstrained, can other
types of restrictions still result in families inVP?For further progress in this direction,
see [DM11, CDM13].

4.6 Computing Integers

The questions concerning algebraic complexity classes are closely connected to
another very intriguing question. Let N > 1 be any natural number. Suppose we
want to build up N from 1, using only +, − and ×. The most naive way of doing
this would be N = 1 + 1 + · · · + 1. But depending on N there can be many other
ways. Which is the most efficient way? That is, which way uses the least number of
+ or× operations? To do anything non-trivial, we must use+ at least once, and the
first time we use it we will generate 2. So let us not even count this mandatory +.
How many more operations are needed?

4 Algebraic Complexity Classes 69

We can state this as a question about circuits. Each way of building up N is an
arithmetic circuit, or a straight-line program (SLP), that uses no constants other than
1 and 2. Let us denote by τ (N) the size of the smallest such circuit computing N .
(This is the τ complexity of N). By definition, τ (1) = τ (2) = 0, and for all N > 2,
τ (N) > 0. Algorithms for computing N give upper bounds on τ (N). For instance,
to compute N = 2k , here’s an SLP: g0 = 2, gi+1 = 2×gi for 0 ∈ i ∈ k−2. Clearly,
gi computes 2i+1, so τ (2k) ∈ k− 1. But I’m sure you can already see better ways of
doing this. From the circuit viewpoint, an explanation of why this is not the best is
that the circuit corresponding to this SLP is skew. Surely, we should be able to use
non-skew gates and compute large numbers faster. Here’s another SLP that computes
big numbers fast: f0 = 2, fi+1 = fi × fi for 0 ∈ i ∈ β − 1. Clearly, fi computes
22

i
, so τ (22

β
) ∈ β, a much better bound than the earlier 2β − 1 at least for numbers

of this form. Note that the way we used non-skewness, we produced a circuit with
exponential formal degree (the degree at fi is 2i), but we’re not worried about that for
now. Now, using these compact circuits for 22

β
, we can build a better circuit for 2k by

just using the binary expansion of k: k =∑t
i=0 bi2i , where t = ↔log k∀ and bt = 1.

So 2k = 2
∑t

i=0 bi2i = ⎨t
i=0 2bi×2i = ⎨

i :bi=1 2
2i
. Compute all the double powers

using t operations, and then multiply the required ones using at most t operations.
Overall, τ (2k) ∈ 2t = 2↔log k∀.

We can use the same binary expansion idea to compute any N , not just a power of
2. Compute all powers of 2 upto log N , and add the required ones. This shows that
for all N , τ (N) ∈ 2↔log N∀ − 1.

So far we have not used any subtractions. But they can be very useful too. For
instance, τ (22

β − 1) ∈ β+ 1; compute 22
β
and subtract 1.

What about a lower bound? We can actually formalise the intuition that the expo-
nential degree circuits we saw above for 22

β
produce the largest possible number in

that size. Hence, for any N , τ (N) ≥ log log N .
In particular, τ (22

β
) = β. That sounds impressive – we know the exact value of

τ for 22
β
. But essentially just for that; for all other numbers, we still seem to have a

pretty large gap. If N = 2k , then log log N ∈ τ (N) ∈ 2↔log k∀ = 2↔log log N∀, so
we know τ (N) within a factor of 2. But for general N , all we know is log log N ∈
τ (N) ∈ 2↔log N∀−1.Howcanwe reduce this gap?Anobvious search for an efficient
waywhere the last operation is+ or− is to express N as M±k, compute M , compute
k = ±(N − M), and combine, and to choose M that minimizes τ (M) + τ (k) + 1.
(A similar approach can be used for factors of N and a × as the last operation.)
But in computing M and ±(N − M) (or N/M), the complexity may be subadditive
since we can reuse intermediate numbers from the program for M while computing
±(N −M) or N/M . (We are looking for circuits, not formulas.) It is identifying the
extent of this reuse that is a challenge.

Similar to Shannon’s bound for functions and circuits (most functions require
exponential-sized circuits), deMelo and Svaiter [dMS96] showed that most numbers
N have τ (N) closer to the upper bound. They showed that for every χ > 0, most N

70 M. Mahajan

satisfy τ (N) ≥ log N
(log log N)1+χ . Moreira [Mor97] improved this by showing that this

holds even for χ = 0. (He also showed that for all χ > 0, there is an Nχ such that for

all N ≥ Nχ, τ (N) ∈ (1+χ) log N
(log log N)

). And yet, showing such lower bounds for specific

numbers seems quite hard – the classic “searching for hay in a haystack” paradox.
Let’s move over from individual numbers to sequences of numbers. Let (an)n≥1

be some sequence of natural numbers. When can we say that the sequence is easy
to compute? Each number in the sequence should be “easy” relative to its position
in the sequence. That is, the sequence (bn), where bn = τ (an), should not grow
very fast. One possible definition is that bn should be polynomially bounded in n.
For instance, for an = 22

n
, we know that bn = n. Is that not moderate growth? Not

really. Consider a function that maps a position n to not just the number τ (an) = bn

but to an SLP of size bn computing an . For the sequence (22
n
), this function takes an

input n represented in�(log n) bits, and outputs a circuit of size n, that is, exponential
in the size of the input. That’s not moderate growth!

OK, so let’s say that a sequence (an) is easy to compute if for some polynomial
p(.), for each n, τ (an) ∈ p(log n), and otherwise it is hard to compute. We’ve set
up this definition so that (22

n
) is hard to compute, while the sequences (n), (2n) are

easy to compute. Makes sense? Now let’s ask, what other sequences are easy? And
what sequences are hard?

A sequence with famously open status is (n!). The completely naive SLP that
constructs the first n numbers with n−2 increments and then multiplies them shows
that τ (n!) ∈ 2n−4. But can this be improved significantly? Or is this sequence hard?
The best we know is that τ (n!) ∃ O(

∞
n log2 n); see [BCS97]. Here is the interesting

connection to algebraic circuit complexity. Building on a sequence of constructions
by Cheng [Che04] and Koiran [Koi05], Bürgisser [Bür09] showed that if (n!) is
hard to compute, then any algebraic circuit for the (Permn) family that uses only
the constants −1, 0, 1 must be of superpolynomial size. If we can’t even compute
the numbers n! easily, then we cannot compute the polynomials Permn efficiently,
unless we allow the use of constants that cannot themselves built up efficiently.

Analogous to the τ complexity of natural numbers, we can define the τ complexity
of polynomial families. Let τ (f) denote the size of the smallest algebraic circuit
using only the constants−1, 0, 1—call such a circuit constant-free—and computing
f . We say that the family (fn) has polynomially bounded τ complexity if for some
polynomial p(n), and for each n, τ (fn) ∈ p(n). Bürgisser’s result can now be stated
as: if τ (Permn) is polynomially bounded, then (n!) is easy to compute.

Let’s examine this a bit closely. Why do we state the hypothesis as “τ (Permn) is
polynomial”? Is this not equivalent to saying (Permn) is in VP, and hence VNP =
VP? Actually, it may not be equivalent. It is possible that (Permn) has polynomial-
sized circuits but nopolynomial-sized constant-free circuits.Conceivably, usingother
constants in intermediate computation and then cancelling them out could help.
Recall that the proof of VNP-hardness of (Permn) uses constants other than−1, 0, 1;
1/2 is needed. (As another example, recall how in showing that Detn is a projection
of SymDetn , we needed the constant 1/2, even though all coefficients in Detn are

4 Algebraic Complexity Classes 71

−1, 0, 1.) So we can define a subclass of VP: families with constant-free circuits of
polynomial size.

What can we say about such a subclass? As described above, Bürgisser has shown
that if this subclass contains (Permn), then (n!) is easy to compute. Under the same
hypothesis, he also shows that the sequences ↔2ne∀, ↔(3/2)n∀ and ↔2n

∞
2∀ are easy

to compute.
Malod [Mal03] observed that unlike in the case of VP, for constant-free circuits

we may not be able to bound complete formal degree. For VP, if the polynomial
computed by a circuit of size s had degree d, we could find an equivalent circuit
with formal degree d, and another with complete formal degree O(d3s), with only
polynomial blow-up in size. Not so if constants aren’t freely available! Consider the
polynomial family fn = 22

n
(x1 + · · · + xn). With arbitrary constants, we have a

circuit of size n.With only−1, 0, 1,we have a circuit of size 2n+1: build 2, build 22
n
,

build the linear form, multiply. But this circuit has exponential formal degree, and
in fact, using only the constants −1, 0, 1, any circuit must have exponential formal
degree to build up 22

n
. So this polynomial is in VP, it has constant-free circuits

of polynomial size, but it does not have constant-free polynomial size circuits with
polynomially bounded complete formal degree.

This leads to a definition of a further subclass VP0, first defined in [Mal03]:
polynomial families computed by constant-free circuits with polynomially bounded
complete formal degree. Define VNP0 analogous to VNP as

∑ ·VP0. Check back;
our proof that (Permn) is in VNP also shows that (Permn) is in VNP0.

The hypothesis (Permn) ∃ VP0 is stronger than saying that τ (Permn) is polyno-
mially bounded. What does it imply? Can it lead to more sequences being easier to
compute? First, note that (Permn) ∃ VP0 does not immediately imply VP0 = VNP0.
All we can say is the following, shown by Koiran [Koi05]: If (Permn) is in VP0, then
for every family (fn) ∃ VNP0, there is some polynomially bounded function p(n)

such that the family (2p(n) fn) is in VP0. That is, a “shifted” version of fn is in VP0.
The precise shift can be described as follows—we know that fn is a projection of
Permq(n) for some polynomially bounded q(n), we assumed that Permq(n) can be
computed by a circuit Cn of size and formal degree bounded by a polynomial func-
tion of n, we take p(n) to be the formal degree of Cn . Now Cn can be massaged to
compute 2p(n) fn instead of Permq(n).

This motivates another variant of easy-to-compute. Let’s say that a sequence (an)

of natural numbers is ultimately easy to compute if at least some shifted version of
it is easy to compute. That is, there is some other integer sequence An such that the
sequence an An is easy to compute. Note that if (an) is not ultimately easy, then for
infinitely many n, all nonzero multiples of an have large τ complexity. Using this
property, under the hypothesis that n! is not even ultimately easy to compute, we
can obtain a non-trivial derandomization of the Arithmetic-Circuit-Identity-Testing
problem; see the last section of [ABKPM09]. Earlier,Koiran showed in [Koi05] that if
n! is not evenultimately easy to compute, thenwehave some separation: eitherVP0 	=
VNP0, or P 	= PSPACE. This is curious: we have a consequence involving Boolean
classes as well. But it should not be so surprising. VP0 and VNP0 are computed
by (sums of) constant-free poly-formal-degree algebraic circuits, and these are the

72 M. Mahajan

arithmetic circuits that arise when we consider counting classes like #P that count
accepting paths of Turingmachines. This does not mean that VNP0 = #P; the former
is a collection of polynomial families whereas the latter is a collection of functions
from strings to whole numbers. But the complexity of evaluating polynomial families
in the former collection, at Boolean arguments, is closely related to what the latter
collection refers to. Koiran’s proof actually shows the contrapositive: he first shows
that if VP0 = VNP0 and P = PSPACE, then the sequence τ ((2β)!) is polynomially
bounded in β. So consider instead of each n! the possibly larger factorial (2β(n))!,
where 2β(n)−1 < n ∈ 2β(n). Then the sequence (bn) = ((2β(n))!) is easy to compute,
and each bn is a multiple of n!, so (n!) is ultimately easy to compute.

Since Permn is not known to be complete for VNP0, what is? It turns out that
for several other VNP-complete families, the hardness proofs use no constants other
than−1, 0, 1 and themembership proofs use circuits with small formal degree; hence
these families are complete for VNP0 as well. As a concrete example, consider the
Hamilton cycle polynomial family HCn defined as follows: Let distinct variables
xi, j label the edges of the complete directed graph Dn . Let Cn denote the set of
all directed Hamiltonian cycles in Dn ; elements of Cn can be described by cyclic
permutations σ ∃ Sn . Then

HCn(x11, . . . , xnn) =
∑

σ∃Cn

∏
xi,σ(i)

This family is complete for VNP0; [Mal03].
Returning to the question “What does (Permn) ∃ VP0 imply?”; Koiran [Koi05]

showed that it implies the sequence ↔2n ln 2∀ is easy to compute.He also improved the
earlier-mentioned result in two ways, from “[(VP0 = VNP0) ∧ (P = PSPACE)] ≡
(n!) is ultimately easy to compute” to “[(Permn ∃ VP0) ∧ (P = PSPACE)] ≡ (n!)
is easy to compute”.

Under the stronger hypothesis that VP0 = VNP0, we can showmore (again due to
[Koi05]). If VP0 = VNP0, then the sequences (

∑2n

i=1 2i2−1), ↔22n
ln 2∀, ↔22n

ln 3∀,
↔22n

π∀, all have polynomially bounded complexity, something that is not yet known
unconditionally.

Acknowledgments I thank Arvind and Manindra for inviting me to contribute to this volume in
honour of Somenath Biswas, a wonderful professional colleague and friend. I thank CEFIPRA for
supporting an Indo-French collaboration (project 4702-1); many of my ideas for how to present
this survey were crystallised during my visit to University of Paris-Diderot during May–June 2012.
I have picked material I found interesting, and have not really attempted an exhaustive coverage.
I apologise in advance to thosewhose favourite results I have omitted. I gratefully acknowledgemany
insightful discussions with Eric Allender, V. Arvind, Hervé Fournier, Bruno Grenet, Nutan Limaye,
Guillaume Malod, Stefan Mengel, Sylvain Perifel, B. V. Raghavendra Rao, Nitin Saurabh, Karteek
Sreenivasaiah, Srikanth Srinivasan, V. Vinay. I thank the organisers of the Dagstuhl Seminars on
Circuits, Logic and Games (Feb 2010) and Computational Counting (Dec 2010) for inviting me
and giving me the opportunity to discuss these topics. The survey by Pascal Koiran at the Dagstuhl
seminar on Computational Counting in Dec 2010 was particularly helpful.

4 Algebraic Complexity Classes 73

References

[ABKPM09] E. Allender, P. Bürgisser, J. Kjeldgaard-Pedersen, P.B. Miltersen, On the complexity
of numerical analysis. SIAM J. Comput. 38(5) 1987–2006 (2009)

[AJMV98a] E. Allender, J. Jiao, M. Mahajan, V. Vinay, Non-commutative arithmetic circuits:
depth reduction and size lower bounds. Theoret. Comput. Sci. 209, 47–86 (1998)

[AJMV98b] E. Allender, J. Jiao, M. Mahajan, V. Vinay, Non-commutative arithmetic circuits:
Depth reduction and size lower bounds. Theor. Comput. Sci. 209(1–2) 47–86 (1998)

[AV08] M. Agrawal, V. Vinay, Arithmetic circuits: a chasm at depth four, inFOCS, pp. 67–75
(2008). See also ECCC TR15-062, 2008

[AW11] E. Allender, F. Wang, On the power of algebraic branching programs of width two.
ICALP 1, 736–747 (2011)

[Bar89] D.A. Barrington, Bounded-width polynomial size branching programs recognize
exactly those languages in NC1. J. Comput. Syst. Sci. 38, 150–164 (1989)

[BCS97] P. Bürgisser, M. Clausen, M.A. Shokrollahi, Algebraic Complexity Theory (Springer,
Berlin, 1997)

[BK09] I. Briquel, P. Koiran, A dichotomy theorem for polynomial evaluation, in MFCS, pp.
187–198 (2009)

[BKM11] I. Briquel, P. Koiran, K. Meer, On the expressive power of cnf formulas of bounded
tree- and clique-width. Discrete Appl. Math. 159(1), 1–14 (2011)

[Blä13] M. Bläser. Noncommutativity makes determinants hard, in Proceedings of ICALP,
vol. 7965 of Lecture Notes in Computer Science, pp. 172–183, Springer, ECCC TR
2012–142 (2013)

[BOC92] M. Ben-Or, R. Cleve, Computing algebraic formulas using a constant number of
registers. SIAM J. Comput. 21, 54–58 (1992)

[Bod98] H.L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth. Theor.
Comput. Sci. 209(12) 1–45 (1998)

[Bre74] R.P. Brent, The parallel evaluation of general arithmetic expressions. J. ACM 21,
201–206 (1974)

[Bür00a] P. Bürgisser, Completeness and Reduction in Algebraic Complexity Theory, vol. 7 of
Algorithms and Computation in Mathematics (Springer, Berlin, 2000)

[Bür00b] P. Bürgisser, Cook’s versus Valiant’s hypothesis. Theor. Comput. Sci. 235(1), 71–88
(2000)

[Bür09] P. Bürgisser, On defining integers and proving arithmetic circuit lower bounds. Com-
put. Complex. 18(1), 81–103 (2009)

[Cai90] J.-Y. Cai, A note on the determinant and permanent problem. Inf. Comput. 84(1),
119–127 (1990)

[CCL10] J.-Y. Cai, X. Chen, D. Li, Quadratic lower bound for permanent versus determinant
in any characteristic. Comput. Complex. 19(1), 37–56 (2010)

[CDM13] F. Capelli, A. Durand, S. Mengel, The arithmetic complexity of tensor contractions,
in STACS, vol. 20 of LIPIcs, pp. 365–376 (2013)

[Che04] Q. Cheng, On the ultimate complexity of factorials. Theor. Comput. Sci. 326(1–3),
419–429 (2004)

[Csa76] L. Csanky, Fast parallel inversion algorithm. SIAM J. Comput. 5, 818–823 (1976)
[Dam91] C. Damm, DET= L #L. Technical Report Informatik-Preprint 8, Fachbereich Infor-

matik der Humboldt-Universität zu Berlin (1991)
[DM11] A. Durand, S. Mengel, On polynomials defined by acyclic conjunctive queries and

weighted counting problems. CoRR abs/1110.4201 (2011)
[DMPY12] Z. Dvir, G. Malod, S. Perifel, A. Yehudayoff, Separating multilinear branching pro-

grams and formulas, in STOC, pp. 615–624 (2012)
[dMS96] W. de Melo, B.F. Svaiter, The cost of computing integers. Proc. Am. Math. Soc.

124(5), 1377–1378 (1996)

74 M. Mahajan

[FLMS13] H. Fournier, N. Limaye, G.Malod, S. Srinivasan, Lower bounds for depth 4 formulas
computing iterated matrix multiplication. Electron. Colloquium Comput. Complex.
(ECCC) 20 100 (2013) to appear in STOC 2014

[FMM12] H. Fournier, G. Malod, S. Mengel, Monomials in arithmetic circuits: complete prob-
lems in the counting hierarchy, in STACS, pp. 362–373 (2012)

[GKKP11] B. Grenet, E. Kaltofen, P. Koiran, N. Portier, Symmetric determinantal representation
of weakly-skew circuits, in STACS, pp. 543–554 (2011)

[GKKS13a] A. Gupta, P. Kamath, N. Kayal, R. Saptharishi, Approaching the chasm at depth four,
in IEEE Conference on Computational Complexity, (2013)

[GKKS13b] A. Gupta, P. Kamath, N. Kayal, R. Saptharishi, Arithmetic circuits: a chasm at depth
three, in IEEE Foundations of Computer Science (FOCS), ECCC 2013–026 (2013)

[GMT13] B. Grenet, T. Monteil, S. Thomassé, Symmetric determinantal representations in
characteristic 2. Linear Alg. Appl. 439(5), 1364–1381 (2013)

[Gre12a] B. Grenet, Représentation des polynômes, algorithmes et bornes infÃrieures. Ph.D.
thesis, École Normale SupÃrieure de Lyon, (2012)

[Gre12b] B. Grenet, An Upper Bound for the Permanent Versus Determinant Problem manu-
script, (2012)

[Hya79] L. Hyafil, On the parallel evaluation of multivariate polynomials. SIAM J. Comput.
8(2), 120–123 (1979)

[Jan08] M.J. Jansen, Lower bounds for syntactically multilinear algebraic branching pro-
grams, in MFCS, vol. 5162 of Lecture Notes in Computer Science, pp. 407–418
(Springer, Berlin, 2008)

[JMR12] M. Jansen, M. Mahajan, B.V. Raghavendra Rao, Resource trade-offs in syntactic
multilinear arithmetic circuits. Computational Complexity 22(3), 517–564 (2013)

[Kal85] K. Kalorkoti, A lower bound for the formula size of rational functions. SIAM J.
Comput. 14(3), 678–687 (1985)

[Kay10] N. Kayal, Algorithms for arithmetic circuits. Electron. Colloquium Comput. Com-
plex. (ECCC) 17 73 (2010)

[KK08] E. Kaltofen, P.Koiran, Expressing a fraction of two determinants as a determinant,
in ISSAC, pp. 141–146, ACM (2008)

[Koi05] P. Koiran, Valiant’s model and the cost of computing integers. Comput. Complex.
13(3–4), 131–146 (2005)

[Koi10] P. Koiran, Complexity of arithmetic circuits (a skewed perspective), in Slides from
Dagstuhl seminar 10481.DROPS, 2010. http://www.dagstuhl.de/Materials/Files/10/
10481/10481.KoiranPascal.Slides.pdf

[Koi12] P. Koiran, Arithmetic circuits: the chasm at depth four gets wider. Theor. Comput.
Sci. 448, 56–65 (2012)

[Mal03] G. Malod, PolynoĹmes et coefficients, Ph.D. thesis, University Claude Bernard Ü
Lyon 1, (2003)

[Men11] S. Mengel, Characterizing arithmetic circuit classes by constraint satisfaction
problems—(extended abstract). ICALP 1, 700–711 (2011)

[Mes89] R. Meshulam, On two extremal matrix problems. Linear Algebra Appl. 114(115),
261–271 (1989). Special Issue Dedicated to A.J. Hoffman

[MM61] M. Marcus, H. Minc, On the relation between the determinant and the permanent.
Ill. J. Math. 5, 376–381 (1961)

[Mor97] C.G.T. de A. Moreira, On asymptotic estimates for arithmetic cost functions. Proc.
Am. Math. Soc. 125(2) 347–353 (1997)

[MP08] G. Malod, N. Portier, Characterizing valiant’s algebraic complexity classes. J. Com-
plex. 24(1), 16–38 (2008)

[MR04] T. Mignon, N. Ressayre, A quadratic bound for the determinant and permanent prob-
lem, in International Mathematics Research Notices, pp. 2004–4241, (2004)

[MV97] M.Mahajan, V.Vinay, Determinant: combinatorics, algorithms, complexity. Chicago
J. Theor. Comput. Sci. http://www.cs.uchicago.edu/publications/cjtcs, 1997:5, Dec
1997. Preliminary version in Proceedings of the Eighth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms SODA, pp. 730–738 (1997)

http://www.dagstuhl.de/Materials/Files/10/10481/10481.KoiranPascal.Slides.pdf
http://www.dagstuhl.de/Materials/Files/10/10481/10481.KoiranPascal.Slides.pdf
http://www.cs.uchicago.edu/publications/cjtcs

4 Algebraic Complexity Classes 75

[Pól13] G. Pólya. Aufgabe 424. Archiv der Mathematik und Physik 3(20) 271 (1913)
[Rao10] B.V. Raghavendra Rao, A Study of Width Bounded Arithmetic Circuits

and the Complexity of Matroid Isomorphism, Ph.D. thesis. The Institute of
Mathematical Sciences, Chennai, India., 2010. http://www.imsc.res.in/xmlui/
handle/123456789/177

[Raz06] R. Raz, Separation of multilinear circuit and formula size. Theory Comput. 2(1)
121–135 (2006). preliminary version in FOCS 2004

[Raz09] R.Raz.Multi-linear formulas for permanent and determinant are of super-polynomial
size. J. ACM, 56(2), (2009). preliminary version in STOC 2004

[Raz10] R. Raz, Elusive functions and lower bounds for arithmetic circuits. Theory Comput.
6(1), 135–177 (2010)

[RSY08] R. Raz, A. Shpilka, A. Yehudayoff, A lower bound for the size of syntactically
multilinear arithmetic circuits. SIAM J. Comput. 38(4), 1624–1647 (2008)

[RY08] R. Raz, A. Yehudayoff, Balancing syntactically multilinear arithmetic circuits. Com-
put. Complex. 17(4), 515–535 (2008)

[RY09] R. Raz, A. Yehudayoff, Lower bounds and separations for constant depth multilinear
circuits. Comput. Complex. 18(2), 171–207 (2009)

[Rys63] H.J. Ryser, Combinatorial Mathematics (Carus mathematical monographs, Mathe-
matical Association of America, 1963)

[Sav70] J. Walter, Savitch, relationships between nondeterministic and deterministic tape
complexities. J. Comput. Syst. Sci. 4(2), 177–192 (1970)

[Str73] V. Strassen, Vermeidung von divisionen. J. Reine U. Angew Math 264, 182–202
(1973)

[SY10] A. Shpilka, A. Yehudayoff, Arithmetic circuits: a survey of recent results and open
questions. Found. Trends Theor. Comput. Sci. 5(3–4), 207–388 (2010)

[Tav13] S. Tavenas, Improved bounds for reduction to depth 4 and depth 3, in MFCS, vol.
8087 of Lecture Notes in Computer Science, pp. 813–824 (Springer, Berlin, 2013)

[Tod92] S. Toda, Classes of arithmetic circuits capturing the complexity of computing the
determinant. IEICE Trans. Inf. Syst. E75-D, 116–124 (1992)

[Val79] L.G. Valiant, Completeness classes in algebra, in STOC, pp. 249–261 (1979)
[Val82] L.G. Valiant, Reducibility by algebraic projections, in Logic and Algorithmic: Inter-

national Symposium in honour of Ernst Specker, vol. 30, pp. 365–380. Monograph.
de l’Enseign. Math. (1982)

[Val92] L.G. Valiant, Why is boolean complexity theory difficult? in Boolean Function Com-
plexity, ed. by M.S. Paterson (Cambridge University Press, London Mathematical
Society Lecture Notes Series 169, 1992)

[Ven92] H. Venkateswaran, Circuit definitions of nondeterministic complexity classes. SIAM
J. Comput. 21, 655–670 (1992)

[Vin91] V. Vinay, Counting auxiliary pushdown automata and semi-unbounded arithmetic
circuits, in Proceedings of 6th Structure in Complexity Theory Conference, pp. 270–
284 (1991)

[Vol99] H. Vollmer, Introduction to Circuit Complexity: A Uniform Approach (Springer, New
York, 1999)

[VSBR83] L.G. Valiant, S. Skyum, S. Berkowitz, C. Rackoff, Fast parallel computation of poly-
nomials using few processors. SIAM J. Comput. 12(4), 641–644 (1983)

[vzG87] J. von zur Gathen, Permanent and determinant. Linear Algebra Appl. 96, 87–100
(1987)

http://www.imsc.res.in/xmlui/handle/123456789/177
http://www.imsc.res.in/xmlui/handle/123456789/177

Chapter 5
A Selection of Lower Bounds
for Arithmetic Circuits

Neeraj Kayal and Ramprasad Saptharishi

It is convenient to have a measure of the amount of work
involved in a computing process, even though it may be a very
crude one …We might, for instance, count the number of
additions, subtractions, multiplications, divisions, recordings of
numbers,…

from Rounding-off errors in matrix processes,
Alan M. Turing, 1948

Abstract This article is a survey of techniques used in arithmetic circuit lower
bounds.

Keywords Arithmetic circuits · Lower bounds · Determinant · Permanent

Mathematics Subject Classification (2010) Primary 68Q25, 68W30, Secondary
12E05

5.1 Introduction

Polynomials originated in classical mathematical studies concerning geometry and
solutions to systems of equations. They feature in many classical results in algebra,
number theory, and geometry—e.g. in Galois and Abel’s resolution of the solvability

To Somenath Biswas, on his 60th Birthday.

N. Kayal (B) · R. Saptharishi
Microsoft Research, Bangalore 560001, India
e-mail: neeraka@microsoft.com

R. Saptharishi
e-mail: ramprasad@cmi.ac.in

M. Agrawal and V. Arvind (eds.), Perspectives in Computational Complexity, 77
Progress in Computer Science and Applied Logic 26, DOI: 10.1007/978-3-319-05446-9_5,
© Springer International Publishing Switzerland 2014

78 N. Kayal and R. Saptharishi

via radicals of a quintic, Lagrange’s theorem on expressing every natural number
as a sum of four squares and the impossibility of trisecting an angle (using ruler
and compass). In modern times, computer scientists have begun to investigate as to
what functions can be (efficiently) computed. Polynomials being a natural class of
functions, one is naturally led to the following question:

What is the optimum way to compute a given (family of) polynomial(s)?

Now the most natural way to compute a polynomial f (x1, x2, . . . , xn) over a field
F is to start with the input variables x1, x2, . . . , xn and then apply a sequence of basic
operations such as additions, subtractions, and multiplications1 in order to obtain the
desired polynomial f . Such a computation is called a straight-line program. We
often represent such a straight-line program graphically as an arithmetic circuit—
wherein the overall computation corresponds to a directed acylic graph whose source
nodes are labelled with the input variables {x1, x2, . . . , xn} and the internal nodes
are labelled with either+or × (each internal node corresponds to one computational
step in the straight-line program). We typically allow arbitrary constants from the
underlying field on the incoming edges of a+gate so that a+gate can in fact compute
an arbitrary F-linear combination of its inputs. The complexity of the computation
corresponds to the number of operations, also called the size of the corresponding
arithmetic circuit. With arithmetic circuits being the relevant model, the informal
question posed above can be formalized by defining the optimal way to compute a
given polynomial as the smallest arithmetic circuit in terms of the size that computes
it. While different aspects of polynomials have been studied extensively in various
areas of mathematics, what is unique to computer science is the endeavor to prove
upper and lower bounds on the size of arithmetic circuits computing a given (family
of) polynomials. Here we give a biased survey of this area, focusing mostly on
lower bounds. Note that there are already two excellent surveys of this area—one
by Avi Wigderson [Wig02] and the other by Amir Shpilka and Amir Yehudayoff
[SY10].2 Our intention inwriting the survey is the underlying hope that revisiting and
assimilating the known results pertaining to circuit lower bounds will in turn help us
make progress on this beautiful problem. Consequently, wemostly present here those
resultswhichwe for some reason feltwedid not understand comprehensively enough.
We conclude with some recent lower bound results for homogeneous bounded depth
formulas. Some notable lower bound results that we are unable to present here due
to space and time constraints are as follows. A quadratic lower bound for depth
three circuits by Shpilka and Wigderson [SW01], for bounded occur bounded depth
formulas by Agrawal, Saha, Saptharishi, and Saxena [ASSS12] and the n1+χ(1/r)

lower bound for circuits of depth r by Raz [Raz10].

1 One can also allow more arithmetic operations such as division and square roots. It turns out,
however, that one can efficiently simulate any circuit with divisions and square roots by another
circuit without these operations while incurring only a polynomial factor increase in size.
2 A more specialized survey by Chen, Kayal, andWigderson [CKW11] focuses on the applications
of partial derivatives in understanding the structure and complexity of polynomials.

5 A Selection of Lower Bounds 79

Overview. The state of affairs in arithmetic complexity is such that despite a lot of
attention we still have only modest lower bounds for general circuits and formulas.
In order to make progress, recent work has focused on restricted subclasses. We first
present the best-known lower bound for general circuits due to Baur and Strassen
[BS83], and a lower bound for formulas due to Kalorkoti [Kal85]. The subsequent
lower bounds that we present follow a common roadmap and we articulate this in
Sect. 5.4, and present some simple lower bounds to help the reader gain familiarity.
We then present (a slight generalization of) an exponential lower bound formonotone
circuits due to Jerrum and Snir [JS82]. Moving on to some other restricted (but still
nontrivial and interesting) models, we first present an exponential lower bound for
depth three circuits over finite fields due to Grigoriev and Karpinski [GK98] and
multilinear formulas. We conclude with some recent progress on lower bounds for
homogeneous depth four circuits.

Remark Throughout the article, we shall use Detn and Permn to refer to the deter-
minant and permanent, respectively, of a symbolic n × n matrix

((
xi j

))
1≥i, j≥n .

5.2 Existential Lower Bounds

Before we embark on our quest to prove lower bounds for interesting families of
polynomials, it is natural to ask as to what bounds one can hope to achieve. For
a multivariate polynomial f (x) ∗ F[x], denote by S(f) the size of the smallest
arithmetic circuit computing f .

Theorem 1 (Folklore) For “most” polynomials f (x) ∗ F[x] of degree d on n vari-
ables we have

S(f)⊆χ

(⎡⎣
n + d

d

⎤⎦

.

Sketch of Proof We prove this here only in the situation where the underlying field F
is a finite field and refer the reader to another survey ([CKW11], Chap. 4) for a proof
in the general case. So let F = Fq be a finite field. Any line of a straight-line program
computing f can be expressed as taking the product of two Fq -linear combinations
of previously computed values. Hence the total number of straight-line programs of

length s is at most q O(s2). On the other hand, there are q(n+d
d) polynomials of degree

d on n variables. Hence most n-variate polynomials of degree d require straight-
line programs of length at least (equivalently arithmetic circuits of size at least)

s = χ

⎣⎛(n+d
d

)
⎤

. ≤∈

Hrubes and Yehudayoff [HY11] showed that in fact most n-variate polynomials of

degree d with zero-one coefficients have complexity at least χ

⎣⎛(n+d
d

)
⎤

. Now it

turns out that this is in fact a lower bound on the number of multiplications in any

http://dx.doi.org/10.1007/978-3-319-05446-9_4

80 N. Kayal and R. Saptharishi

circuit computing a random polynomial. Lovett [Lov11] complements this nicely by
giving a matching upper bound. Specifically, it was shown in [Lov11] that for any
polynomial f of degree d on n variables there exists a circuit computing f having

at most

⎣⎛(n+d
d

)
⎤

· (nd)O(1) multiplications.

5.3 Weak Lower Bounds for General Circuits and Formulas

Despite several attempts by various researchers to prove lower bounds for arithmetic
circuits or formulas, we only have very mild lower bounds for general circuits or
formulas thus far. In this section, we shall look at the two modest lower bounds for
general circuits and formulas.

5.3.1 Lower Bounds for General Circuits

The only super-linear lower bound we currently know for general arithmetic circuits
is the following result of Baur and Strassen [BS83].

Theorem 2 [BS83]Any fan-in two circuit that computes the polynomial f = xd+1
1 +

· · · + xd+1
n has size χ(n log d).

5.3.1.1 An Exploitable Weakness

Eachgate of the circuitβ computes a local operationon the twochildren.To formalize
this, define a new variable yg for every gate g ∗ β. Further, for every gate g define
a quadratic equation Qg as

Qg =
⎝

yg − (yg1 + yg2) if g = g1 + g2

yg − (yg1 · yg2) if g = g1 · g2.

Further if yo corresponds to the output gate, then the system of equations

⎞
Qg = 0 : g ∗ β

⎠ ∃ {yo = 1}

completely characterize the computations of β that results in an output of 1.
The same can also be extended for multi-output circuits that compute several

polynomials simultaneously. In such cases, the set of equations

⎞
Qg = 0 : g ∗ β

⎠ ∃ ⎞
yoi = 1 : i = 1, . . . , n

⎠

5 A Selection of Lower Bounds 81

completely characterize computations that result in an output of all ones. The
following classical theorem allows us to bound the number of common roots to
a system of polynomial equations.

Theorem 3 (Bézout’s theorem) Let g1, . . . , gr ∗ F[X] such that deg(gi) = di such
that the number of common roots of g1 = · · · = gr = 0 is finite. Then, the number
of common roots (counted with multiplicities) is bounded by

⎜
di .

Thus in particular, if we have a circuit β of size s that simultaneously computes⎞
xd
1 , . . . , xd

n

⎠
, then we have dn inputs that evaluate to all ones (where each xi must

be a d-th root of unity). Hence, Bézout’s theorem implies that

2s ⊆ dn =⇒ s=χ(d log n).

Observe that
⎞

xd
1 , . . . , xd

n

⎠
are all first-order derivatives of f = xd+1

1 + · · · + xd+1
n

(with suitable scaling). A natural question here is the following—if f can be com-
puted an arithmetic circuit of size s, what is the size required to compute all first-order
partial derivatives of f simultaneously?The naïve approach of computing each deriv-
ative separately results in a circuit of size O(s · n). Baur and Strassen [BS83] show
that we can save a factor of n.

Lemma 4 [BS83] Let β be an arithmetic circuit of size s and fan-in 2 that computes
a polynomial f ∗ F[X]. Then, there is a multi-output circuit of size O(s) computing
all first-order derivatives of f .

Note that this immediately implies that any circuit computing f = xd+1
1 +· · ·+xd+1

n
requires size χ(d log n) as claimed by Theorem 2.

5.3.1.2 Computing All First-Order Derivatives Simultaneously

Since we are working with fan-in two circuits, the number of edges is at most twice
the size. Hence let s denote the number of edges in the circuit β, and we shall prove
by induction that all first-order derivatives of β can be computed by a circuit of size
at most 5s. Pick a non-leaf node v in the circuit β closest to the leaves with both its
children being variables, and say x1 and x2 are the variables feeding into v. In other
words, v = x1 	 x2 where 	 is either + or ×.

Let β′ be the circuit obtained by deleting the two edges feeding into v, and
replacing v by a new variable. Hence, β′ computes a polynomial f ′ ∗ F[X ∃ {v}]
and has at most (s − 1) edges. By induction on the size, we can assume that there is
a circuit D(β′) consisting of at most 5(s − 1) edges that computes all the first-order
derivatives of f ′.

Observe that since f ′ |(v=x1	x2)= f (x), we have that

σ f

σxi
=

⎣
σ f ′

σxi

⎤

v=x1	x2

+
⎣

σ f ′

σv

⎤

v=x1	x2

⎣
σ(x1 	 x2)

σxi

⎤

.

82 N. Kayal and R. Saptharishi

Hence, if v = x1 + x2 then

σ f

σx1
=

⎣
σ f ′

σx1

⎤

v=x1+x2

+
⎣

σ f ′

σv

⎤

v=x1+x2

σ f

σx2
=

⎣
σ f ′

σx2

⎤

v=x1+x2

+
⎣

σ f ′

σv

⎤

v=x1+x2

σ f

σxi
=

⎣
σ f ′

σxi

⎤

v=x1+x2

for i > 2.

If v = x1 · x2, then

σ f

σx1
=

⎣
σ f ′

σx1

⎤

v=x1·x2
+

⎣
σ f ′

σv

⎤

v=x1·x2
· x2

σ f

σx2
=

⎣
σ f ′

σx2

⎤

v=x1·x2
+

⎣
σ f ′

σv

⎤

v=x1·x2
· x1

σ f

σxi
=

⎣
σ f ′

σxi

⎤

v=x1·x2
for i > 2.

Hence, by adding at most 5 additional edges to D(β′), we can construct D(β)

and hence size of D(β) is at most 5s. � (Lemma 4)

5.3.2 Lower Bounds for Formulas

This section is devoted to the proof of Kalorkoti’s lower bound [Kal85] for formulas
computing Detn , Permn .

Theorem 5 [Kal85] Any arithmetic formula computing Permn (or Detn) requires
χ(n3) size.

The exploitableweakness in this setting is again to use the fact that the polynomials
computed at intermediate gates share many polynomial dependencies.

Definition 6 (Algebraic independence) A set of polynomials { f1, . . . , fm} is said
to be algebraically independent if there is no nontrivial polynomial H(z1, . . . , zm)

such that H(f1, . . . , fm) = 0.
The size of the largest algebraically independent subset of f = { f1, . . . , fm} is

called the transcendence degree (denoted by trdeg(f)).

The proof of Kalorkoti’s theorem proceeds by defining a complexity measure
using the above notion of algebraic independence.

The Measure: For any subset of variables Y ∧ X , we can write a polynomial
f ∗ F[X] of the form f = ⎟s

i=1 fi · mi where mi ’s are distinct monomials in the

5 A Selection of Lower Bounds 83

variables in Y , and fi ∗ F[X \ Y]. We shall denote by tdY (f) the transcendence
degree of { f1, . . . , fs}

Fix a partition of variables X = X1 ∈ · · · ∈ Xr . For any polynomial f ∗ F[X],
define the map �[Kal] : F[X] ∩ Z⊆0 as

�[Kal](f) =
r⎨

i=1
tdXi (f).

The lower bound proceeds in two natural steps:

1. Show that �[Kal](f) is small whenever f is computable by a small formula.
2. Show that �[Kal](Detn) is large.

5.3.2.1 Upper Bounding �[Kal] for a Formula

Lemma 7 Let f be computed by a fan-in two formula β of size s. Then for any
partition of variables X = X1 ∈ · · · ∈ Xr , we have �[Kal](f) = O(s).

Proof For any node v ∗ β, let Leaf(v) denote the leaves of the subtree rooted
at v and let LeafXi (v) denote the leaves of the subtree rooted at v that are in the
part Xi . Since the underlying graph of β is a tree, it follows that the size of β

is bounded by twice the number of leaves. For each part Xi , we shall show that
tdXi (f) = O(

⎩
⎩LeafXi (β)

⎩
⎩), which would prove the required bound.

Fix an arbitrary part Y = Xi . Define the following three sets of nodes:

V0 =
⎞
v ∗ β : ⎩

⎩LeafY (v)
⎩
⎩ = 0 and

⎩
⎩LeafY (Parent(v))

⎩
⎩ ⊆ 2

⎠

V1 =
⎞
v ∗ β : ⎩

⎩LeafY (v)
⎩
⎩ = 1 and

⎩
⎩LeafY (Parent(v))

⎩
⎩ ⊆ 2

⎠

V2 =
⎞
v ∗ β : ⎩

⎩LeafY (v)
⎩
⎩ ⊆ 2

⎠
.

Each node v ∗ V0 computes a polynomial in fv ∗ F[X \ Y], and we shall
replace the subtree at v by a node computing the polynomial fv . Similarly, any node
v ∗ V1 computes a polynomial of the form f (0)

v + f (1)
v yv for some yv ∗ Y and

f (0)
v , f (1)

v ∗ F[X \ Y]. We shall again replace the subtree rooted at v by a node
computing f (0)

v + f (1)
v yv .

Hence, the formula β now reduces to a smaller formula βY with leaves being
the nodes in V0 and V1 (and nodes in V2 are unaffected). We would like to show that
the size of the reduced formula, which is at most twice the number of its leaves, is
O(

⎩
⎩LeafY (β)

⎩
⎩).

Observation 8 |V1| ≥
⎩
⎩LeafY (β)

⎩
⎩.

Proof Each node in V1 has a distinct leaf labelled with a variable in Y . Hence, |V1|
is bounded by the number of leaves labelled with a variable in Y . ≤∈ (Obs)

84 N. Kayal and R. Saptharishi

This shows that the V1 leaves are not too many. Unfortunately, we cannot imme-
diately bound the number of V0 leaves, since we could have a long chain of V2 nodes
each with one sibling being a V0 leaf. The following observation would show how
we can eliminate such long chains.

Observation 9 Let u be an arbitrary node, and v be another node in the subtree
rooted at u with LeafY (u) = LeafY (v). Then the polynomial gu computed at u
and the polynomial gv computed at v are related as gu = f1gv + f2 for some
f1, f2 ∗ F[X \ Y].
Proof If LeafY (u) = LeafY (v), then every node on the path from u to v must have
a V0 leaf as the other child. The observation follows as all these nodes are + or ×
gates. ≤∈ (Obs)

Using the above observation, we shall remove the need for V0 nodes completely
by augmenting each node u (computing a polynomial gu) in βY with polynomials
f (0)
u , f (1)

u ∗ F[X \ Y] to enable them to compute f (1)
u gu + f (0)

u . Let this augmented
formula be called ⊂βY . Using Observation 9, we can now contract any two nodes u
and v with LeafY (u) = LeafY (v), and eliminate all V0 nodes completely. Since
all V2 nodes are internal nodes, the only leaves of the augmented formula ⊂βY are
in V1. Hence, the size of the augmented formula ⊂βY is bounded by 2 |V1|, which is
bounded by 2

⎩
⎩LeafY (β)

⎩
⎩ by Observation 8.

Suppose β computes a polynomial f , which can be written as f =⎟t
i=1 fi ·mi

with fi ∗ F[X \ Y] and mi ’s being distinct monomials in Y . Since ⊂βY also
computes f , each fi is a polynomial combination of the polynomials SY ={

f (0)
u , f (1)

u : u ∗ ⊂βY

}
. Since ⊂βY consists of at most 2

⎩
⎩LeafY (β)

⎩
⎩ augmented

nodes, we have that tdY (f) ≥ |SY | ≥ 4
⎩
⎩LeafY (β)

⎩
⎩. Therefore,

tdY (f) = trdeg { fi : i ∗ [t]} ≥ 4
⎩
⎩LeafY (β)

⎩
⎩

Hence,

�[Kal](β) =
r⎨

i=1
tdXi (fi) ≥ 4

(
r⎨

i=1

⎩
⎩LeafXi

⎩
⎩

⎦

= O(s).
�

5.3.2.2 Lower Bounding �[Kal](Detn)

Lemma 10 Let X = X1 ∈ · · · ∈ Xn be the partition as defined by Xt =⎞
xi j : i − j ≡ t mod n

⎠
. Then, �[Kal](Detn) = χ(n3).

Proof By symmetry, it is easy to see that tdXi (Detn) is the same for all i . Hence, it
suffices to show that tdY (Detn) = χ(n2) for Y = Xn = {x11, . . . , xnn}.

To see this, observe that the determinant consists of the monomials
(

x11...xnn
xii x j j

)
·

xi j x ji for every i ∅= j . Hence, tdY (Detn) ⊆ trdeg
⎞

xi j x ji : i ∅= j
⎠ = χ(n2).

Therefore, �[Kal](Detn) = χ(n3). �
The proof of Theorem 5 follows from Lemma 7 and Lemma 10.

5 A Selection of Lower Bounds 85

5.4 “Natural” Proof Strategies

The lower bounds presented in Sect. 5.3 proceeded by first identifying a weakness
of the model, and exploiting it in an explicit manner. More concretely, Sect. 5.3.2
presents a promising strategy that could be adopted to prove lower bounds for various
models of arithmetic circuits. The crux of the lower bound was the construction of a
good map � that assigned a number to every polynomial. The map �[Kal] was useful
to show a lower bound in the sense that any f computable by a small formula had
small �[Kal](f). In fact, all subsequent lower bounds in arithmetic circuit complexity
have more or less followed a similar template of a “natural proof”. More concretely,
all the subsequent lower bounds we shall see would essentially follow the outlined
plan.

Step 1 (normal forms) For every circuit in the circuit class C of interest, express the poly-
nomial computed as a small sum of simple building blocks.

For example, every ��� circuit is a small sum of products of linear polyno-
mials which are the building blocks here. In this case, the circuit model naturally
admits such a representation but we shall see other examples with very different
representations as sum of building blocks.

Step 2 (complexity measure)Construct amap� : F[x1, . . . , xn] ∩ Z⊆0 that is sub-additive
i.e., �(f1 + f2) ≥ �(f1)+ �(f2).

In most cases,�(f) is the rank of a large matrix whose entries are linear functions
in the coefficients of f . In such cases, we immediately get that � is sub-additive.

The strength of the choice of � is determined by the next step.

Step 3 (potential usefulness) Show that if B is a simple building block, then �(B) is small.
Further, check if �(f) for a random polynomial f is large (potentially).

This would suggest that if any f with large �(f) is to be written as a sum of
B1 + · · · + Bs , then sub-additivity and the fact that �(Bi) is small for each i and
�(f) is large immediately imply that s must be large. This implies that the complexity
measure � does indeed have a potential to prove a lower bound for the class. The
next step is just to replace the random polynomial by an explicit polynomial.

Step 4 (explicit lower bound) Find an explicit polynomial f for which �(f) is large.

These are usually the steps taken in almost all the known arithmetic circuit lower
bound proofs. The main ingenuity lies in constructing a useful complexity measure,
which is really to design � so that it is small on the building blocks.

Of course, there could potentially be lower bound proofs that do not follow the
roadmap outlined. For instance, it could be possible that � is not small for a random
polynomial, but specifically tailored in a way to make � large for the Permn . Or
perhaps � need not even be sub-additive and maybe there is a very different way
to argue that all polynomial in the circuit class have small �. However, this has
been the roadmap for almost all lower bounds so far (barring very few exceptions).

86 N. Kayal and R. Saptharishi

As a warmup, we first present some very simple applications of the above plan to
prove lower bounds for some very simple subclasses of arithmetic circuits in the
next section. We then move on to more sophisticated proofs of lower bounds for less
restricted subclasses of circuits.

5.5 Some Simple Lower Bounds

Let us start with the simplest complete3 class of arithmetic circuits—depth-2 circuits
or �� circuits.

5.5.1 Lower Bounds for �� circuits

Any �� circuit of size s computes a polynomial f = m1+· · ·+ms where each mi

is a monomial multiplied by a field constant. Therefore, any polynomial computed
by a small �� circuit must have a small number of monomials. Hence, it is obvious
that any polynomial that has many monomials requires large �� circuits.

This can be readily rephrased in the language of the outline described in the last
section by defining�(f) to simply be the number of monomials present in f . Hence,
�(f) ≥ s for any f computed by a�� circuit of size s. Of course, even a polynomial
like f = (x1 + x2 + · · · + xn)n has �(f) = nχ(n) giving the lower bound.

5.5.2 Lower Bounds for �∧� Circuits

A �⇐� circuit of size s computes a polynomial of the form f = �
d1
1 + · · · + �

ds
s

where each �i is a linear polynomial over the n variables.4

Clearly, as even a single �d could have exponentially many monomials, the �

defined above cannot work in this setting. Nevertheless, we shall try to design a
similar map to ensure that �(f) is small whenever f is computable by a small �⇐�

circuit.
In this setting, the building blocks are terms of the form �d . The goal would be

to construct a sub-additive measure � such that �(�d) is small. Here is the key
observation to guide us towards a good choice of �.

Observation 11 Any k-th order partial derivative of �d is a constant multiple of
�d−k .

3 in the sense that any polynomial can be computed in this model albeit of large size.
4 such circuits are also called diagonal depth-3 circuits in the literature.

5 A Selection of Lower Bounds 87

Hence, if σ=k(f) denotes the set of k-th order partial derivatives of f , then the
space spanned by σ=k(�d) has dimension 1. This naturally leads us to define �

exploiting this weakness.

�k(f)
def= dim

(
σ=k(f)

)

It is straightforward to check that �k is indeed sub-additive and hence �k(f) ≥ s
whenever f is computable by a �⇐� circuit of size s. For a random polynomial
f , we should be expecting �k(f) to be

(n+k
k

)
as there is unlikely to be any linear

dependencies among the partial derivatives. Hence, all that needs to be done is to
find an explicit polynomial with large �k .

If we considerDetn orPermn , then any partial derivative of order k is just an (n−
k)×(n−k)minor. Also, theseminors consist of disjoint sets ofmonomials and hence
are linearly independent. Hence, �k(Detn) = (n

k

)2. Choosing k = n/2, we immedi-
ately get that any �⇐� circuit computing Detn or Permn must be of size 2χ(n).

5.5.3 Low-Rank ���

A slight generalization of �⇐� circuits is a rank-r ��� circuit that computes a
polynomial of the form

f = T1 + · · · + Ts

where each Ti = �i1 . . . �id is a product of linear polynomials such that dim {�i1, . . . ,

�id} ≥ r .
Thus, �⇐� is a rank-1 ��� circuit, and a similar partial-derivative technique

for lower bounds works here as well.
In the setting where r is much smaller than the number of variables n, each Ti is

essentially an r -variate polynomial masquerading as an n-variate polynomial using
an affine transformation. In particular, the set of n first-order derivatives of T have
rank at most r . This yields the following observation.

Observation 12 Let T = �1 . . . �d with dim {�1, . . . , �d} ≥ r . Then for any k, we
have

�k(T)
def= dim

(
σ=k(T)

)
≥
⎣

r + k

k

⎤

.

Thus once again by sub-additivity, for any polynomial f computable by a rank-r
��� circuit of size s, we have �k(f) ≥ s · (r+k

r

)
. Note that a random polynomial

is expected to have �k(f) close to
(n+k

k

)
, which could be much larger for r ⇒ n.

We already saw that �k(Detn) = (n
k

)2. This immediately gives the following lower
bound, the proof of which we leave as an exercise to the interested reader.

Theorem 13 Let r ≥ n2−λ for some constant λ > 0. For k = ∂nλ , where ∂ > 0 is
sufficiently small, we have

88 N. Kayal and R. Saptharishi

(n
k

)2

(r+k
k

) = exp
(
χ(nλ)

)
.

Hence, any rank-r ��� circuit computing Detn or Permn must have size
exp

(
χ(nλ)

)
. �

This technique of using the rank of partial derivatives was introduced by Nisan
and Wigderson [NW97] to prove lower bounds for homogeneous depth-3 circuits
(which also follows as a corollary of Theorem 13). The survey of Chen, Kayal and
Wigderson [CKW11] give a comprehensive exposition of the power of the partial
derivative method.

With these simple examples, we can move on to other lower bounds for various
other more interesting models.

5.6 Lower Bounds for Monotone Circuits

This section presents a slight generalization of a lower bound by Jerrum and
Snir [JS82]. To motivate our presentation here, let us first assume that the underlying
field is R, the field of real numbers. A monotone circuit over R is a circuit having
+,× gates in which all the field constants are nonnegative real numbers. Such a cir-
cuit can compute any polynomial f overR all of whose coefficients are nonnegative
real numbers, such as for example the permanent. It is then natural to ask whether
there are small monotone circuits over R computing the permanent. Jerrum and Snir
[JS82] obtained an exponential lower bound on the size of monotone circuits over R
computing the permanent. Note that this definition of monotone circuits is valid only
overR (actually more generally over ordered fields but not over say finite fields) and
such circuits can only compute polynomials with nonnegative coefficients. Here we
will present Jerrum and Snir’s argument in a slightly more generalized form such that
the circuit model makes sense over any field F and is complete, i.e., can compute any
polynomial over F. Let us first explain the motivation behind the generalized circuit
model that we present here. Observe that in any monotone circuit over R, there is
no cancellation as there are no negative coefficients. Formally, for a node v in our
circuits let us denote by fv the polynomial computed at that node. For a polynomial
f let us denote by Mon(f) the set of monomials having a nonzero coefficient in the
polynomial f .

1. If w = u + v then
Mon(fw) = Mon(fu) ∃Mon(fv).

2. If w = u × v then

Mon(fw) = Mon(fu)·Mon(fv)
def= {m1 · m2 : m1 ∗ Mon(fu), m2 ∗ Mon(fv)} .

5 A Selection of Lower Bounds 89

Thismeans that for any node v in amonote circuit overR one can determineMon(fv)
in a very syntactic manner starting from the leaf nodes. Let us make precise this
syntactic computation that we have in mind.

Definition 14 (Formal Monomials) Letβbe an arithmetic circuit. The formal mono-
mials at any node v ∗ β, which shall be denoted by FM(v), shall be inductively
defined as follows:

If v is a leaf labelled by a variable xi , then FM(v) = {xi }. If it is labelled by a constant, then
FM(v) = {1}.

If v = v1 + v2, then FM(v) = FM(v1) ∃ FM(v2).

If v = v1 × v2, then

FM(v) = FM(v1) · FM(v2)

def= {m1 · m2 : m1 ∗ FM(v1), m2 ∗ FM(v2)} .

Note that for any node v in any circuit we haveMon(fv) ∧ FM(v) but in a monotone
circuit over R this containment is in fact an equality at every node. This motivates
our definition of a slightly more general notion of a monotone circuit as follows:

Definition 15 (Monotone circuits) A circuit C is said to be syntactically monotone
(simply monotone for short) if Mon(fv) = FM(v) for every node v in C .

The main theorem of this section is the following:

Theorem 16 [JS82] Over any field F, any syntactically monotone circuit C com-
puting Detn or Permn must have size at least 2χ(n).

The proof of this theorem is relatively short assuming the following structural
result (which is present in standard depth-reduction proofs [VSBR83, AJMV98]).

Lemma 17 Let f be a degree d polynomial computed by a monotone circuit of size
s. Then, f can be written of the form f =⎟s

i=1 fi ·gi where the fi ’s and gi ’s satisfy
the following properties:

1. For each i ∗ [s], we have d
3 < deg gi ≥ 2d

3 .
2. For each i , we have FM(fi) · FM(gi) ∧ FM(f).

We shall defer this lemma to the end of the section and first see how this would
imply Theorem 16. The complexity measure �(f) in this case is just the number of
monomials in f , but it is the above normal form that is crucial in the lower bound.

Proof of Theorem 16 Suppose β is a circuit of size s that computes Detn . Then by
Lemma 17,

Detn =
s⎨

i=1
fi · gi

90 N. Kayal and R. Saptharishi

with FM(fi) · FM(gi) ∧ FM(Detn). The building blocks are terms of the form
T = f · g, where FM(f) · FM(g) ∧ FM(Detn).

Since all the monomials in Detn are products of variables from distinct columns
and rows, the rows (and columns) containing the variables f depends on is disjoint
from the rows (and columns) containing variables that g depends on. Hence, there
exists sets of indices A, B ∧ [n] such that f depends only on

⎞
x jk : j ∗ A, k ∗ B

⎠

and g depends only on
⎞

x jk : j ∗ A, k ∗ B
⎠
.

Further, since Detn is a homogeneous polynomial of degree n, we also have that
both f and gmust be homogeneous as well. Also, as all monomials of g using distinct
row and column indices from A and B respectively, we see that deg g = |A| = |B|
and deg f = |A| = |B|. Using Lemma 17, let |A| = βn for some 1

3 ≥ β ≥ 2
3 . This

implies that �(f) ≥ (βn)!, and �(g) ≥ ((1− β)n)! and hence

�(f · g) ≥ (βn)!((1− β)n)! ≥ n!
(n

n/3

)

as 1
3 ≥ β ≥ 2

3 . Also, � is clearly sub-additive and we have

�(f1g1 + · · · + fsgs)≥ s · n!
(n

n/3

) .

Since �(Detn) = n!, this forces s ⊆ (n
n/3

) = 2χ(n). �

We only need to prove Lemma 17 now.

5.6.1 Proof of Lemma 17

Without loss of generality, assume that the circuit β is homogeneous,5 and consists
of alternating layers of+ and× gates. Also, assume that all× gates have fan-in two,
and orient the two children such that the formal degree of the left child is at least as
large as the formal degree of the right child. Such circuits are also called left-heavy
circuits.

Definition 18 (Proof tree) A proof tree of an arithmetic circuit β is a sub-circuit β′
such that

• The root of β is in β′
• If a multiplication gate with v = v1 × v2 ∗ β′, then v1 and v2 are in β′ as well.
• If an addition gate v = v1 + · · · + vs ∗ β′, then exactly one vi is in β′.

5 It is a forklore result that any circuit can be homogenized with just a polynomial blowup in size.
Further, this process also preserves monotonicity of the circuit. A proof of this may be seen in
[SY10].

5 A Selection of Lower Bounds 91

Such a sub-circuit β′, represented as a tree (duplicating nodes if required), shall be
called a proof tree of β.

Let ProofTrees(β) denote the set of all proof trees of β. It is easy to see that
any proof tree of β computes a monomial over the variables. Further, if β was
a monotone circuit computing a polynomial f , then every proof tree computes a
monomial in f . Therefore,

f =
⎨

β′∗ProofTrees(β)

[β′]

where [β′] denotes the monomial computed by β′. Of course, the number of proof
trees is exponential and the above expression is huge. However, we could use a
divide-and-conquer approach to the above equation using the following lemma.

Lemma 19 Let β′ be a left-heavy formula of formal degree d. Then there is a node
v on the left-most path of β′ such that d

3 ≥ deg(v) < 2d
3 .

Proof Pick the lowest node on the leftmost path that has degree at least 2d
3 . Then,

its left child must be a node of degree less than 2d
3 , and also at least d

3 (because the
formula is left-heavy). �

For any proof tree β′ and a node v on its leftmost path, define [β′ : v] to be the
output polynomial of the proof tree obtained by replacing the node v on the leftmost
path by 1. If v does not occur on the leftmost path of β′, define [β′ : v] to be 0. We
will denote the polynomial computed at a node v by fv . Then, the above equation
can now be rewritten as:

f =
⎨

β′∗ProofTrees(β)

[β′]

=
⎨

v∗β
d
3≥deg v< 2d

3

fv ·

⎨

β′∗ProofTrees(β)

[β′ : v]

=
⎨

v∗β
d
3≥deg v< 2d

3

fv · gv where gv =
⎨

β′∗ProofTrees(β)

[β′ : v].

Since d
3 ≥ deg v < 2d

3 , we also have that d
3 < deg gv ≥ 2d

3 and the last equation is
what was required by Lemma 17. �

92 N. Kayal and R. Saptharishi

5.7 Lower Bounds for Depth-3 Circuits over Finite Fields

This section presents the lower bound ofGrigoriev andKarpinski [GK98] forDetn . A
follow-up paper of Grigoriev and Razborov [GR00] extended the result over function
fields, also including a weaker lower bound for the permanent, but we shall present
a slightly different proof that works for the permanent as well.

Theorem 20 [GK98] Any depth-3 circuit computing Detn (or Permn) over a finite
field Fq (q ∅= 2) requires size 2χ(n).

Main idea: Let q = |F|. Suppose C = T1 + · · · + Ts , where each Ti is a product of
linear polynomials. Define rank(Ti) as in Sect. 5.5.3 to be the dimension of the set
of linear polynomials that Ti is a product of.

In Sect. 5.5.3, we saw that the dimension of partial derivatives would handle low
rank Ti ’s. As for the high rank Ti ’s, since Ti is a product of at least r linearly inde-
pendent linear polynomials, a random evaluation keeps Ti nonzero with probability

at most
(
1− 1

q

)r
. Since q is a constant, we have that a random evaluation of a high

rank Ti is almost always zero. Hence, in a sense, C can be “approximated” by just
the low-rank components.

Grigoriev and Karpinski [GK98] formalize the above idea as a measure by com-
bining the partial derivative technique seen in Sect. 5.5.3 with evaluations to show
that Detn cannot be approximated by a low-rank ��� circuit.

5.7.1 The Complexity Measure

For any polynomial f ∗ F[x11, . . . , xnn], define the matrix Mk(f) as follows—the
columns of Mk(f) are indexed by k-th order partial derivatives of f , and rows by
elements of Fn2 , with the entry being the evaluation of the partial derivative (column
index) at the point (row index).

The rank of Mk(f) could be a possible choice of a complexity measure but
Grigoriev and Karpinski make a small modification to handle the high rank Ti s.
Instead, they look at the matrix Mk(f) and remove a few erroneous evaluation points
and use the rank of the resulting matrix. For any A ∧ F

n2 , let us define Mk(f ;A)

to be the matrix obtained from Mk(f) by only taking the rows whose indices are in
A. Also, let �[GK]k,A (f) denote rank(Mk(f ;A)).

5.7.2 Upper Bounding �
[GK]
k,A for a Depth-3 Circuit

Our task here is to give an upper bound on the complexitymeasure for a���-circuit
of size s. We first see that the task reduces to upper bounding the measure for a single
term via subadditivity. It follows from the linearity of the entries of the matrix.

5 A Selection of Lower Bounds 93

Observation 21 (Sub-additivity) �
[GK]
k,A (f + g) ≥ �

[GK]
k,A (f)+ �

[GK]
k,A (g).

Now fix a threshold r0 = γn for some constant γ > 0 (to be chosen shortly), and
let k = ϕn for some ϕ > 0 (to be chosen shortly).We shall call a term T = �1 . . . �d to
be of low rank if rank(T) ≥ r0, and large rank otherwise. By the above observation,
we need to upper bound themeasure�

[GK]
k,A for each term T , for a suitable choice ofA.

Low rank terms (rank(T) ≥ r0)
Suppose T = �1 . . . �d with {�1, . . . , �r } being a maximal independent set of linear
polynomials (with r ≥ r0). Then, T can be expressed as a linear combination of terms
from the set

⎞
�

e1
1 . . . �

er
r : ei ≥ d ∞i ∗ [r]⎠. And since the matrix Mk(f) depends

only on evaluations in F
n2 , we can use the relation that xq = x in F to express the

function T : Fn2 ∩ F as a linear combination of
⎞
�

e1
1 . . . �

er
r : ei < q ∞i ∗ [r]⎠.

Therefore, for any set A ∧ F
n2 , we have that

�
[GK]
k;A (T) ≥ rank(Mk(f)) ≥ qr ≥ qγn .

High rank terms (rank(T) > r0)
Suppose T = �1 . . . �d whose rank is greater than r0 = γn, and let {�1, . . . , �r } be
a maximal independent set. We want to use the fact that since T is a product of at
least r independent linear polynomials, most evaluations would be zero. We shall be
choosing ourA to be the set where all k-th order partial derivatives evaluate to zero.

On applying the product rule of differentiation, any k-th order derivative of T can
be written as a sum of terms each of which is a product of at least r − k independent
linear polynomials. Let us count the erroneous points ET ∧ F

n2 that keep at least
r−k of {�1, . . . , �r } nonzero, or in other words makes at most k of {�1, . . . , �r } zero.

Pr
a∗Fn2

[at most k of �1, . . . , �r evaluate to zero] ≥
k⎨

i=0

⎣
r

i

⎤⎣
1

q

⎤i ⎣

1− 1

q

⎤r−i

Hence, we can upper bound |ET | as

|ET | ≥
k⎨

i=0

⎣
r

i

⎤

(q − 1)r−i qn2−r

= O

(

k ·
⎣

r

k

⎤⎣

1− 1

q

⎤r−k

qn2
⎦

if r > qk

= qn2 · βn for some 0 < β < 1.

By choosing A = F
n2 \ E where E =⋃

T of large rank ET , we have that Mk(T ;A)

is just the zero matrix and hence �
[GK]
k,A (T) = 0.

Putting it together, if C = T1 + · · · + Ts , then

94 N. Kayal and R. Saptharishi

�
[GK]
k,A (C) ≥ s · qγn . (5.1)

where A = F
n2 \ E for some set E of size at most s · βn · qn2 for some 0 < β < 1.

5.7.3 Lower Bounding �
[GK]
k,A for Detn and Permn

We now wish to show that Mk(Detn;A) has large rank. The original proof of
Grigoriev and Karpinski is tailored specifically for the determinant, and does not
extend directly to the permanent. The following argument is a proof communicated
by Srikanth Srinivasan [Sri13] that involves an elegant trick that he attributes to
[Kou08]. The following proof is presented for the determinant, but immediately
extends to the permanent as well.

Note that if we were to just consider Mk(Detn), it would have been easy to show
that the rank is full by looking at just those evaluation points that keep exactly one
(n − k) × (n − k) minor nonzero (set the main diagonal of the minor to ones, and
every other entry to zero). Hence, Mk(Detn) has the identity matrix embedded inside
and hence must be full rank. However, we are missing a few of the evaluations (since
a small set E of evaluations is removed) and we would still like to show that the
matrix continues to have full column-rank.

Lemma 22 Let p(X) be a nonzero linear combination of r × r minors of the matrix
X = ((xi j)). Then,

Pr
A∗Fn2

q

[p(A) ∅= 0] ⊆ χ(1).

This immediately implies that for every linear combinations of the columns of
Mk(Detn), a constant fraction of the coordinates have nonzero values. Since we are
removingmerely a setE of size (1−o(1))qn2 , theremust continue to exist coordinates
that are nonzero. In other words, no linear combination of columns of Mk(Detn;A)

results in the zero vector.
The proof of the above lemma would be an induction on the number of minors

contributing to the linear combination. As a base case, we shall use a well-known
fact about Detn and Permn of random matrices.

Proposition 23 If A is a random n × n matrix with entries from a fixed finite field
Fq , then for q ∅= 2 we have

Pr[det(A) ∅= 0] ⊆ q − 2

q − 1
= χ(1).

We shall defer the proof of this proposition for later, and proceed with the proof
of Lemma 22.

5 A Selection of Lower Bounds 95

Proof of Lemma 22 If p(X) is a scalar multiple of a single nonzero minor, then we
already have the lemma from Proposition 23. Hence, let us assume that there are at
least two distinct minors participating in the linear combination p(X). Without loss
of generality, assume that the first row occurs in some of the minors, and does not in
others. That is,

p(X) =

⎨

i :Row1∗Mi

ci Mi

 +

⎨

j :Row1 /∗M j

c j M j

= (
x11M ′

1 + · · · + x1n M ′
n

) + M ′′ (expanding along the first row).

To understand a random evaluation of p(X), let us first set rows 2, . . . , n to random
values, and then setting row 1 to random values.

Pr
A
[p(A) ∅= 0] ⊆ Pr[x11M ′

1 + · · · + x1n M ′
n + M ′′ ∅= 0 | some M ′

i ∅= 0]
×Pr[some M ′

i ∅= 0]

Note that once we have set rows 2, . . . , n to random values, p(X) reduces to a linear
polynomial in {x11, . . . , x1n}. Further, a random evaluation of any nonconstant linear

polynomial is zero with probability exactly
(
1− 1

q

)
. Hence,

Pr
A
[p(A) ∅= 0] ⊆ Pr[x11M ′

1 + · · · + x1n M ′
n + M ′′ ∅= 0 | some M ′

i ∅= 0]
×Pr[some M ′

i ∅= 0]
=

⎣

1− 1

q

⎤

· Pr[some M ′
i ∅= 0].

Now comes Koutis’ Trick: the term
(
1− 1

q

)
· Pr[some M ′

i ∅= 0] is exactly the

probability that x11M ′
1 + · · · + x1n M ′

n is nonzero! Hence,

Pr
A
[p(A) ∅= 0] = Pr[x11M ′

1 + · · · + x1n M ′
n + M ′′ ∅= 0]

⊆ Pr[x11M ′
1 + · · · + x1n M ′

n ∅= 0]

= Pr

⎨

i :Row1∗Mi

ci Mi

 ∅= 0

 .

which is just the linear combination obtained by only considering those minors that
contain the first row. Repeating this process for other rows/columns until only one
minor remains, we have

Pr
A
[p(A) ∅= 0] ⊆ Pr

A
[det(A) ∅= 0] = q − 2

q − 1
(by Proposition 23). ≤∈

96 N. Kayal and R. Saptharishi

We now give a proof of Proposition 23.

Proof of Proposition 23 We shall fix random values to the first row of A. Then,

Pr
A
[Detn(A) = 0] ≥ Pr[a11M1 + · · · + a1n Mn = 0 | some a1i nonzero]

+ Pr[a11 = · · · = a1n = 0]
= Pr[a11M1 + · · · + a1n Mn = 0 | some a1i nonzero]
+ 1

qn
.

Whenever there is some a1i that is nonzero, then a11M1+ · · · + a1n Mn is a nonzero
linear combination of minors. By a similar argument as in the proof of Lemma 22,
we have that

Pr[a11M1 + · · · + a1n Mn = 0 | not all a1i are zero] ≥ Pr[Detn−1(A) = 0].

Unfolding this recursion, we have

Pr[Detn(A) = 0] ≥ 1

q
+ 1

q2 + · · · +
1

qn
= 1

q − 1

=⇒ Pr[Detn(A) ∅= 0] ⊆
⎣

1− 1

q − 1

⎤

= q − 2

q − 1
. ≤∈

5.7.4 Putting It All Together

Hence, if Detn is computed by a depth-3 circuit of top fan-in s over F, then

s · qγn = χ

(⎣
n

k

⎤2
⎦

= χ
(
22H(ϕ)·n)

=⇒ log s = χ((2H(ϕ)− γ log q)n)

where H(ϕ) is the binary entropy function.6 By choosing ϕ < q−q/2, we can find
a γ such that qϕ < γ (which was required in Sect. 5.7.2) and 2H(ϕ) > γ log q,
yielding the lower bound

6 The binary entropy function is defined as H(ϕ)
def= −ϕ log2(ϕ)− (1− ϕ) log2(1− ϕ). It is well

known that
(n

k

) ≈ 2nH(k/n).

5 A Selection of Lower Bounds 97

s = exp
(
χ(q−q/2 · q log q · n)

)

= 2χ(n). � (Theorem 20)

5.8 Lower Bounds for Multilinear Models

Raz [Raz09] showed that multilinear formulas computing the Detn or Permn must
be of size nχ(log n). The complexity measure used by Raz also led to exponential
lower bounds for constant depth multilinear circuits [RY09] and superlinear lower
bounds for syntactic multilinear circuits [RSY08]. We shall first give some intuition
behind the complexity measure before actually seeing the lower bounds.

5.8.1 The Partial Derivative Matrix

Intuition A natural first step is to try the simpler task of proving lower bounds for
depth-3 multilinear circuits.

f = �11 . . . �1d + · · · + �s1 . . . �sd

The task is now to construct ameasure� such that�(�1 . . . �d) is smallwhenever each
�i is a linear polynomial and different �i ’s are over disjoint sets of variables. Consider
the simplest case of f = (a1+ b1x)(a2+ b2y).Anobservation is that the coefficients

of f are given by the 2× 2 matrix obtained as [a1 b1]T [a2 b2] =
[

a1a2 a1b2
a2b1 b1b2

]

. In

other words, a polynomial f = a0 + a1x + a2y + a3xy factorizes into two variable

disjoint factors if and only if the matrix

[
a0 a1
a2 a3

]

has rank 1. A straightforward

generalization of this tomultiple variables yields the partial derivative matrix (which
was first introduced by Nisan [Nis91] in the context of non-commutative ABPs)

Definition 24 For any given partition of variables X = Y ∈ Z , define the par-
tial derivative matrix MY,Z (f) to be the matrix described as follows—the rows are
indexed by monomials in Y , columns indexed by monomials in Z , and the (i, j)-th
entry of the matrix is the coefficient of the monomial mi (Y) ·m j (Z) in f . We shall

use �
[Raz]
Y,Z (f) to denote rank(MY,Z (f)). Further, we shall call a polynomial f to be

full-rank if MY,Z (f) is full-rank.

Here are some basic properties of the partial derivative matrix which would be
extremely useful in later calculations.

98 N. Kayal and R. Saptharishi

Observation 25 (Sub-additivity) For any partition X = Y ∈ Z and any pair of

multilinear polynomials f and g in F[X]we have �
[Raz]
Y,Z (f +g) ≥ �

[Raz]
Y,Z (f) +

�
[Raz]
Y,Z (g).

Proof Follows from the linearity of the matrix. �

Observation 26 (Multiplicativity) If f1 ∗ F[Y1, Z1] and f2 ∗ F[Y2, Z2] with
Y = Y1 ∈ Y2 and Z = Z1 ∈ Z2, then

�
[Raz]
Y,Z (f1 · f2)=�

[Raz]
Y1,Z1

(f1) ·�[Raz]Y2,Z2
(f2).

Proof It is not hard to see that MY,Z (f1 · f2) is the tensor product MY1,Z1(f1) →
MY2,Z2(f2), and the rank of a tensor product of two matrices is the product of the
ranks. �

Observation 27 �
[Raz]
Y,Z (f)≥ 2min(|Y |,|Z |).

Proof The number of rows is 2|Y | and number of columns is 2|Z |, and hence the rank
is upper bounded by the minimum. �

Let us get back to lower bounds for multilinear models, and attempt to use
�
[Raz]
Y,Z (f) defined above. Unfortunately, there are examples of simple polynomi-

als like f = (y1+ z1) . . . (yn+ zn)with �
[Raz]
Y,Z (f) = 2n . Raz’s idea here was to look

at �[Raz]Y,Z (f) for a random partition, and show that with high probability the rank of
the partial derivative matrix is far from full. As a toy example, we shall see why this
has the potential to give lower bounds for depth-3 multilinear circuits.

Lemma 28 Let f (X) = �1 . . . �d be an n-variate multilinear polynomial. If X =
Y ∈ Z is a random partition with |Y | = |Z | = |X |/2, then with high probability we
have

�
[Raz]
Y,Z (f) ≥ 2|X |/2 · 2−|X |/16.

It is to be noted that we should expect a random polynomial to be full-rank with
respect to any partition, so the measure �

[Raz]
Y,Z (f) is expected to be 2|X |/2 which

should yield a lower bound of 2χ(|X |).

Sketch of Proof Without loss of generality we can assume that each �i depends on
at least two variables as removing the �i ’s that depend on just one variable does not
alter �

[Raz]
Y,Z (f) with respect to any partition. Let |X | = n.

Using Observation 26, �[Raz]Y,Z (f) ≥ 2d and hence if d < n/3 then we are done.
Hence assume that d ⊆ n/3. By a simple averaging argument, there must hence be
at least d/4 of the �i ’s that depend on at most 3 variables; we shall refer to these as
the small �i ’s.

Since the partition is chosen at random, on expectation a quarter of the small
�i ’s would have all its variables mapped to either Y or Z , hence not contributing to
�
[Raz]
Y,Z (f). Therefore, with high probability,

5 A Selection of Lower Bounds 99

�
[Raz]
Y,Z (f) ≥ 2d · 2−d/16≥ 2n/2 · 2−n/16. �

More generally, if f = g1(X1) . . . gt (Xt) where the Xi ’s are mutually disjoint,
then a random partition is very unlikely to partition all the Xi ’s into almost equal
parts. This is formalized in the next section to prove the lower bound for multilinear
formulas.

5.8.2 Lower Bound for Multilinear Formulas

We now present the lower bound for multilinear formulas due to [Raz09]. The first
step of our roadmap is to find a suitable normal form for multilinear formulas. The
normal form that we use is from the survey by Shpilka and Yehudayoff [SY10].

5.8.2.1 Formulas to Log-Product Sums

The following structural lemma shows that any multilinear formula can be converted
in to a small sum of log-product polynomials. The techniques of the following lemma
can also be used in other settings with minor modifications, and we encounter a
different version of this lemma later as well.

Definition 29 Amultilinear polynomial f ∗ F[X] is called amultilinear log-product
polynomial if f = g1 . . . gt and there exists a partition of variables X = X1∈· · ·∈Xt

such that

• gi ∗ F[Xi] for all i ∗ [t].

• |X |
3i ≥ |Xi | ≥ 2|X |

3i for all i , and |Xt | = 1.

Lemma 30 Let β be a multilinear formula of size s computing a polynomial p.
Then f can be written as a sum of (s + 1) log-product multivariate polynomials.

Proof Similar to Lemma 19, let v be a node in β such that set of variables Xv that
it depends on satisfies |X |3 ≥ |Xv| ≥ 2|X |

3 . If βv is the polynomial computed at this
node, then f can be written as

f =βv · g1 +βv=0 for some g1 ∗ F[X \ Xv].

where βv=0 is the formula obtained by replacing the node v by zero. Note that the
subtree at the node v is completely disjoint from βv=0. Hence the sum of the sizes
of βv and βv=0 is at most s. Hence, g1 ∗ F[X \ Xv] and |X |

3 ≥ |X \ Xv| ≥ 2|X |
3 .

Inducting on the formulas βv and βv=0 gives the lemma. �

100 N. Kayal and R. Saptharishi

5.8.2.2 Log-Products Are Far from Full-Rank on a Random Partition

The main technical part of the proof is to show that log-product multivariate polyno-
mials are far from full-rank under a random partition of variables. This would let us
show that a sum of log-product multivariate polynomials cannot be full rank unless
it is a very large sum.

{Main idea Suppose f = g1 . . . gt where each gi ∗ F[Xi]. Let X = Y ∈ Z be a
random partition with |Y | = |Z | = |X |/2, and Yi = Y ↔ Xi and Zi = Z ↔ Xi . Let

di =
⎩
⎩
⎩
|Yi |−|Zi |

2

⎩
⎩
⎩ measure the imbalance between the sizes of Yi and Zi , and we shall

say Xi is k-imbalanced if di ⊆ k. Let bi = |Yi |+|Zi |
2 = |Xi |

2 .
By Observation 26, we know that

�
[Raz]
Y,Z (f) = �

[Raz]
Yi ,Zi

(g1) . . . �
[Raz]
Yi ,Zi

(gt)

≥ 2min(|Y1|,|Z1|) · · · · 2min(|Yt |,|Zt |)

= 2b1−d1 · · · 2bt−dt = 2|X |/2

2d1+···+dt
.

Hence, even if one of the Xi ’s is a little imbalanced, the product is far from
full-rank.

Lemma 30 shows that the size of Xi decreases slowly with i , and it is not hard to

show that |Xi | ⊆ ∀|X | for i ≥ t ′ def= log |X |
100 . We wish to show that the probability

that none of gi (for i ≥ t ′) is k-unbalanced for k = |X |1/20 is very small. Let Ei be
the event that Xi is not k-unbalanced. The goal is to upper bound the probability that
all the events Ei hold. These probability calculations would follow from this lemma
about the hypergeometric distribution.

Hypergeometric Distribution Fix parameters n, g, r ⊆ 0, and let G ∧ [n] with
|G| = g. Informally, the hypergeometric distribution is the distribution obtained on
the intersection sizes of a random set of size r with a fixed set of size g from a
universe of size n. Formally, the random variable H(n, g, r) is defined as:

Pr [H(n, g, r) = k] = Pr
R∧[n],|R|=r

[|R ↔ G| = k] =
(g

k

)(n−g
r−k

)

(n
r

) .

The following lemma shows that for a fairly large range of parameters, the hyperge-
ometric distribution does not put too much mass on any value.

Lemma 31 Let n, g, r be parameters such that n
4 ≥ r ≥ 3n

4 and 0 ≥ g ≥ 2n
3 . Then

for any t ≥ g,

Pr [H(n, g, r) = t] ≥ O

⎣
1∀
g

⎤

.

The proof of this lemma follows from standard binomial coefficient estimates on the
probability.

5 A Selection of Lower Bounds 101

Let us go back to estimating the probability that all the events Ei hold.

Pr [E1 ⇐ · · · ⇐ Et ′] = Pr[E1] · Pr[E2 | E1] · · · Pr[Et ′ | E1 ⇐ · · · ⇐ Et ′−1].

The event E1 is just the probability that a random set Y of size |X |/2 intersects X1

in t places where t ∗
[|Xi |

2 − k,
|Xi |
2 − k

]
. This is just a particular setting of the

hypergeometric distribution and Lemma 31 asserts that

Pr[E1] ≥ O

⎣
2k∀|X |

⎤

.

To apply a similar bound for the other terms, consider the event Ei given that
E1, . . . , Ei−1 hold. Let X ′ = X \ (X1 ∃ . . . ∃ Xi−1) and Y ′ = Y ↔ X ′. The fact
that E1, . . . , Ei−1 hold means that the partition has been fairly balanced in the first
(i − 1) parts and hence |Y ′| ≥ |X ′| + ik. Hence, we would still be in the range of
parameters in Lemma 31 to also get that

∞i ≥ t ′ Pr[Ei | E1 ⇐ · · · ⇐ Ei−1] ≥ O

⎣
2k∀|X |

⎤

=⇒ Pr [E1 ⇐ · · · ⇐ Et ′] ≥ |X |−∂ log|X | for some ∂ > 0

=⇒ Pr
[
�
[Raz]
Y,Z (g1 . . . gt) ≥ 2(|X |/2)−|X |1/20] ≥ |X |−∂ log|X | .

Hence, if g1 . . . gt is a log-product multilinear polynomial, then with probability
at least

(
1− |X |−∂ log |X |) we have that �

[Raz]
Y,Z (g1 . . . gt) ≥ 2(|X |/2)−|X |1/20 . Further,

if f is computable by a multilinear formula of size s then, by Lemma 30, f can
be written as a sum of (s + 1) log-product multilinear polynomials. Hence, with
probability at least

(
1− (s + 1)|X |−∂ log |X |) we have that

�
[Raz]
Y,Z (f)≥ (s + 1) · 2(|X |/2)−|X |1/20 .

Hence, if (s + 1) < |X |(∂/2) log |X |, then with high probability a random partition
would ensure �

[Raz]
Y,Z (f)⇒ 2|X |/2. Let us record this as a lemma.

Lemma 32 Let f ∗ F[X] be computed by a multilinear formula of size s <

|X |(∂/2) log |X | for a small enough constant ∂ > 0. Then with probability at least
(1− |X |−(∂/2) log |X |) we have

�
[Raz]
Y,Z (f)≥ (s + 1) · 2|X |/2 · 2−|X |1/20

for a random partition X = Y ∈ Z with |Y | = |Z | = |X |/2.

102 N. Kayal and R. Saptharishi

5.8.2.3 Detn and Permn have Large Rank

The last step of the proof would be to find an explicit polynomial whose partial
derivative matrix under a random partition has large rank. As earlier, our candidate
polynomial would be Detn or Permn . Unfortunately, both these polynomials are
over n2 variables and degree n. It is not hard to verify that the rank of the partial
derivative matrix of Detn or Permn can never be greater than 22n . Hence directly
using Lemma 32, we would have 2O(n) competing with 2n2/2−nO(1)

which is simply
futile. A simple fix is to first randomly restrict ourselves to fewer variables and then
apply Lemma 32.

Let m = n1/3. Let τ be a random restriction that assigns random values to all
but 2m randomly chosen variables. We shall call this set of 2m variables as X , and
randomly partition this into two sets Y and Z of sizem each. Hence, τ(Detn) reduces
to amultilinear polynomial over 2m variables. It is alsoworth noting that amultilinear
formula remains a multilinear formula under this restriction. The following claim is
easy to verify.

Claim 33 With probability at least 1/2, the variables in X belong to distinct rows
and columns.

We shall restrict ourselves to only these random restrictions, and without loss of
generality let the sets beY = ⎞

x1,1, x3,3, . . . , x2m−1,2m−1
⎠
and Z = ⎞

x2,2, x4,4, . . . ,
x2m,2m

⎠
. For ease of notation, we shall refer to x2i−1,2i−1 as yi and x2i,2i as zi for

i = 1, . . . , m.
Consider the following restriction:

f = Det

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

y1 1
1 z1

. . .

ym 1
1 zm

1
. . .

1

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

= (y1z1 − 1) . . . (ym zm − 1).

It is easy to check that�[Raz]Y,Z (f) = 2m . Although this is a single restriction with large
rank, the Schwartz-Zippel-DeMillo-Lipton lemma immediately gives that random
restriction would also have rank 2m with high probability.7 We shall record this as a
lemma.

7 provided the underlying field is large, but this isn’t really a concern as we can work with a large
enough extension if necessary.

5 A Selection of Lower Bounds 103

Lemma 34 With probability at least 1/100, we have that �
[Raz]
Y,Z (τ(Detn)) = 2m

where τ is a random restriction to 2m variables for m = n1/3.

Combining Lemma 34 with Lemma 32, we have the following theorem.

Theorem 35 [Raz09] Any multilinear formula computing Detn or Permn must be
of size nχ(log n). �

5.8.3 Stronger Lower Bounds for Constant Depth Multilinear
Formulas

Looking back at Lemma 32, we see that whenever f (X) is computable by a size
s multilinear formula �

[Raz]
Y,Z (f) is exponentially smaller than 2|X |/2 with probabil-

ity
(
1− s · |X |−∂ log |X |). Hence we had to settle for a nχ(log n) lower bound not

because of the rank deficit but rather because of the bounds in the probability esti-
mate. Unfortunately, this lower bound technique cannot yield a better lower bound
for multilinear formulas as there are explicit examples of polynomials computable
by poly-sized multilinear circuits with �

[Raz]
Y,Z (f) = 2|X |/2 under every partition

[Raz06]. However, the probability bound can be improved in the case of constant
depth multilinear circuits to give stronger lower bounds.

Note that Lemma 32 was proved by considering multilinear log-products (Defin-
ition 29) as the building blocks. To show that a multilinear log product g1(X1) . . . g�

(X�) has small rank under a random partition, we argued that the probability that
all the Xi ’s are partitioned in a roughly balanced fashion is quite small. This was
essentially done by thinking of this as � = O(log n) close-to-independent events,
each with probability 1/poly(n).

If �was much larger than log n (with other parameters being roughly the same), it
should be intuitively natural to expect a much lower probability of all the Xi ’s being
partitioned in a roughly balanced manner. This indeed is the case for constant depth
multilinear circuits, and we briefly sketch the key points where they differ from the
earlier proof. The first is an analog of Definition 29 in this setting.

Definition 36 A multilinear polynomial f is said to be a multilinear t-product if f
can be written as f = g1 . . . gt with the following properties:

• The variable sets of the gi are mutually disjoint
• Each gi non-trivially depends on at least t variables

Lemma 37 Let f be a multilinear polynomial of degree d over n variables that is
computed by a depth-� multilinear formula β of size s. Then, f can be written as
a sum of at most s multilinear t-products for t = (n/100)1/2�, and a multilinear
polynomial of degree at most n/100.

104 N. Kayal and R. Saptharishi

Proof If d < n/100, then the lemma is vacuously true. Since β is a formula of
depth � and computes a polynomial of degree d > n/100, there must be at least one
product gate v of fan-in at least

(n
100

)1/� = t2. Then similar to Lemma 30,

f = βv · f ′ +βv=0

As βv is a product of t2 polynomials, by grouping the factors together we have that
βv · f ′ is a multilinear t-product. Further, βv=0 is a multilinear polynomial that is
computable by a depth-� formula of smaller size and we can induct on βv=0. �

Lemma 38 Let f (X) be an n-variate polynomial computed by a depth-� mul-
tilinear formula of size s. If X = Y ∈ Z is a randomly chosen partition with
|Y | = |Z | = n/2, then with probability at least (1− s · exp(−nχ(1/�))) we have

�
[Raz]
Y,Z (f) ≥ (s + 1) · 2n/2 · exp(−nχ(1/�)).

Sketch of Proof By Lemma 37, we have that f can be written as g0 + g1 + · · · + gs

where deg(g0) ≥ n/100 and g1, . . . , gs are multilinear t-products. Note that since
g0 is a multilinear polynomial of degree at most (n/100), the number of monomials
in g0 is at most

(n
n/100

) ≥ 2n/10. Hence, �[Raz]Y,Z (g0) ≥ 2n/10.

For the other gi ’s, we can bound the probability that �
[Raz]
Y,Z (gi) is large in a very

similar fashion as in Lemma 32, as the probability that all the factors of gi are
partitioned in a balanced manner is roughly the intersection of t independent events.
By very similar estimates, this probability can be bounded by (1/poly(n))t . Hence,
with high probability

�
[Raz]
Y,Z (f)≥�

[Raz]
Y,Z (g0)+ · · · + �

[Raz]
Y,Z (gs)≥ (s + 1) · 2n/2 · exp(−nχ(1/�)).

�

Combining Lemma 38 with Lemma 34, we have the following theorem of Raz
and Yehudayoff.

Theorem 39 [RY09]Any multilinear formula of depth � computing Detn or Permn

must be of size exp(nχ(1/�)). �

5.9 Lower Bounds for Depth-4 Circuits

This section addresses a recent technique for proving lower bounds for some depth-4
circuits.

Definition 40 A depth-4 circuit, also referred to as a ���� circuit, computes a
polynomial of the form

f = Q11 . . . Q1d + · · · + Qs1 . . . Qsd .

5 A Selection of Lower Bounds 105

The number of summands s is called the top fan-in of the circuit.
Further, a ��[a]��[b] circuit is a depth-4 circuit computing a polynomial of the

form

f = Q11 . . . Q1a + · · · + Qs1 . . . Qsa where deg Qi j ≥ b for all i, j.

5.9.1 Significance of the Model

In a surprising series of results on depth reduction, Agrawal and Vinay [AV08]
and subsequent strengthenings of Koiran [Koi12] and Tavenas [Tav13] showed that
depth-4 circuits more or less capture the complexity of general circuits.

Theorem 41 [AV08, Koi12, Tav13] If f is an n variate degree-d polynomial
computed by a size s arithmetic circuit, then f can also be computed by a

��[O(
∀

d)]��[
∀

d] circuit of size exp
(

O(
∀

d log s)
)

.

Conversely, if an n-variate degree-d polynomial requires ��[O(
∀

d)]��[
∀

d] cir-

cuits of size exp
(
χ(
∀

d log s)
)

, then it requires arbitrary depth arithmetic circuits

of size nχ(log s/ log n) to compute it.

Thus proving strong enough lower bounds for this special case of depth-4 circuits
imply lower bounds for general circuits. Themain results of the section is some recent
lower bound [GKKS13, KSS13, FLMS13] that comes very close to the required
threshold.

5.9.2 Building the Complexity Measure

As a simpler task, let us first attempt to prove lower bounds for expressions of the
form

f = Qd
1 + · · · + Qd

s

where each of the Qi ’s are quadratics. This is exactly the problem studied by
Kayal [Kay12], which led to the complexity measure for proving depth-4 lower
bounds.

The goal is to construct a measure � such that �(f) is small whenever f is a
power of a quadratic. As a first attempt, let us look at the space of k-th order partial
derivatives of Qd (for a suitable choice of k). Unlike the case of�⇐�-circuits where
the space of k-th order partial derivatives of �d had dimension 1, the space of partial
derivatives of Qd could be as large as it can be expected. Nevertheless, the following
simple observation would provide the key intuition.

106 N. Kayal and R. Saptharishi

Observation 42 Any k-th order partial derivative of Qd is of the form Qd−k p where
p is a polynomial of degree at most k. Hence, if k ⇒ d, then all k-th order partial
derivatives of Qd share large common factors.

This suggests that instead of looking at linear combinations of the partial deriv-
atives of Qd , we should instead be analyzing low-degree polynomial combinations
of them.

Definition 43 Let σ=k(f) refer to the set of all k-th order partial derivatives of f ,
and x≥� refer to the set of all monomials of degree at most �. The shifted partials
of f , denoted by

〈
σ=k (f)

〉
≥�
, is the vector space spanned by

⎞
x≥� · σ=k(f)

⎠
. The

dimension of this space shall be denoted by �
[Kay]
k,� (f).

The above observation shows that any element of
〈
σ=k

(
Qd

)〉
≥�

is divisible by

Qd−k and we thereby have the following lemma.

Lemma 44 If f = Qd where Q is a quadratic, then �
[Kay]
k,� (f) ≥ (n+k+�

n

)
, the

number of monomials of degree (k + �).

Note that if f was instead a random polynomial, we would expect the measure

dim
(〈

σ=k (f)
〉
≥�

)
to be about

(n+k
n

) · (n+�
n

)
, which is much larger than

(n+k+�
n

)
for

suitable choice of k, �. Hence this measure �
[Kay]
k,� is certainly potentially useful for

this model. Very similar to the above lemma, one can also show the following upper
bound for the building blocks of ��[a]��[b] circuits.

Lemma 45 Let f = Q1 . . . Qa with deg Qi ≥ b for all i . Then,

�
[Kay]
k,� (f)= dim

⎣〈
σ=k (f)

〉

≥�

⎤

≥
⎣

a

k

⎤⎣
n + (b − 1)k + �

n

⎤

.

It is easy to check that �[Kay]k,� is a sub-additive measure, and we immediately have
this corollary.

Corollary 46 Let f be an n-variate polynomial computed by a ��[a]��[b] circuit
of top fan-in s. Then,

�
[Kay]
k,� (f)≥ s ·

⎣
a

k

⎤⎣
n + (b − 1)k + �

n

⎤

.

Or in other words for any choice of k, �, we have that any ��[a]��[b] circuit
computing a polynomial f must have top fan-in s at least

�
[Kay]
k,� (f)

(a
k

)(n+(b−1)k+�
n

) .

5 A Selection of Lower Bounds 107

Intuition from Algebraic Geometry Another perspective for the shifted partial
derivatives comes from algebraic geometry. Any zero a ∗ F

n of Q is a zero of
multiplicity d of Qd . This implies that the set of common zeroes of all k-th order
partial derivatives of Qd (for k ≈ ∀d) is large. On the other hand if f is a random
polynomial, then with high probability there are no roots of large multiplicity.

In algebraic geometry terminology, the common zeroes of a set of polynomials is
called the variety of the ideal generated by them. Further, there is also a well-defined
notion of a dimension of a variety which measures how large a variety is. Let F[x]≥r

refer to the set of polynomials of degree at most r , and let ϕI (r) = dim
(
I ↔ F[x]≥r

)
.

Intuitively, if ϕI (r) is large, then there are many constraints and hence the variety
is small. In other words the growth of ϕI (r) is inversely related to the dimension of
the variety of I , and this is precisely captured by what is known as the Affine Hilbert
function of I . More about the precise definitions of the Affine Hilbert function, etc.,
can be found in any standard text in algebraic geometry such as [CLO07].

In our setting, the ideal we are interested in is I = 〈
σ=k f

〉
. If f is a homogeneous

polynomial, then I ↔ F[x]≥r =
〈
σ=k (f)

〉
≥�

where � = r − (deg(f) − k). Hence
studying the dimension of shifted partial derivatives is exactly studying ϕI (r) which
holds all information about the dimension of the variety.

5.9.3 Lower Bounding Shifted Partials of Explicit Polynomials

For a random polynomial R(x), we would expect that

�
[Kay]
k,� (R)≈ min

{⎣
n + �+ d − k

n

⎤

,

⎣
n + k

n

⎤⎣
n + �

n

⎤}

.

The terms on the RHS correspond to trivial upper bounds, where the first term is the
total number of monomials of degree (� + d − k) and the second term is the total
number shifted partials.

Claim 47 For k = ∂
∀

d for a small enough ∂ > 0, and � = cn
∀

d
log n for a large enough

constant c, we have

min
{(n+�+d−k

n

)
,
(n+k

n

)(n+�
n

)}

(O(
∀

d)
k

)(n+(
∀

d−1)k+�
n

) = 2χ(
∀

d log n).

The proof of this claim is easily obtained by using standard asymptotic estimates
of binomial coefficients. Note that using Corollary 46, the above claim shows that if
we can find an explicit polynomial whose dimension of shifted partials are as large
as above, then we would have an exp(χ(

∀
d log n)) lower bound for the top fan-in

of ��[
∀

d]��[
∀

d] circuits computing this polynomial.

108 N. Kayal and R. Saptharishi

If we have a set of polynomials with distinct leading monomials, then they are
clearly linearly independent. Hence, one way of lower bounding the dimension of
a space of polynomials is to find a sufficiently large set of polynomials with dis-
tinct monomials in the space. The vector space of polynomials we are interested is〈
σ=k (f)

〉
≥�
, and if we choose a structured polynomial f we can hope to be able to

estimate the number of distinct leading monomials in this vector space.

5.9.3.1 Shifted Partials of the Determinant and Permanent

The first lower bound for ��[
∀

d]��[
∀

d] circuits was by Gupta, Kamath, Kayal,
and Saptharishi [GKKS13] for the determinant and the permanent polynomials. We
shall describe the lower bound for Detn , although it would carry over immediately
to Permn as well. As mentioned earlier, we wish to estimate the number of distinct
leading monomials in

〈
σ=k (Detn)

〉
≥�
= span

⎞
x≥�σ=kDetn

⎠
. [GKKS13] made a

relaxation to merely count the number of distinct leading monomials among the
generators

⎞
x≥�σ=kDetn

⎠
instead of their span.

The first observation is that any k-th order partial derivative of Detn is just an
(n−k)×(n−k)minor. Let us fix a monomial ordering induced by the lexicographic
ordering on the variables:

x11 ≡ x12 · · · ≡ x1n ≡ x21 ≡ · · · ≡ xnn .

Under this ordering, the leading monomial of any minor is just the product of vari-
ables on the main diagonal of the submatrix corresponding to the minor, and hence is
a term of the form xi1 j1 . . . xi(n−k), j(n−k)

where i1 < · · · < in−k and j1 < · · · < jn−k ;
let us call such a sequence of indices as an (n− k)-increasing sequence in [n] × [n].
Further, for any (n − k)-increasing sequence, there is a unique minor M whose
leading monomial is precisely the product of the variables indexed by the increas-
ing sequence. Therefore, the task of lower bounding distinct leading monomials in⎞
x≥�σ=kDetn

⎠
reduces to the following combinatorial problem:

Claim 48 For any k, � > 0, we have

�
[Kay]
k,� (Detn)⊆ #

{
monomials of degree (�+ n − k) that

contain an (n − k)-increasing sequence

}

.

We could start with an (n− k)-increasing sequence, and multiply by a monomial
of degree � to obtain a monomial containing an increasing sequence. Of course, the
issue is that this process is not invertible and hence we might overcount. To fix this
issue, [GKKS13] assign a canonical increasing sequence to every monomial that
contains an increasing sequence and multiply by monomials of degree � that do not
change the canonical increasing sequence.

Definition 49 Let D2 =
⎞

x1,1, . . . , xn,n, x1,2, x2,3, . . . , xn−1,n
⎠
, the main diagonal

and the diagonal just above it. For any monomial m define the canonical increasing

5 A Selection of Lower Bounds 109

sequence of m, denoted by χ(m), as (n−k)-increasing sequence of m that is entirely
contained in D2 and is ordered highest according to the ordering ‘≡’. Ifm contains no
(n−k)-increasing sequence entirely in D2, thenwe shall say the canonical increasing
sequence is empty.

The reason we restrict ourselves to D2 is because it is easier to understand which
monomials change the canonical increasing sequence and which monomials do not.

Lemma 50 Let S be an (n − k)-increasing sequence completely contained in D2,
and let mS be the monomial obtained by multiplying the variables indexed by S.
There are at least (2(n − k) − 1) variables in D2 such that if m is any monomial
over these variables, then χ(mS) = χ(m · mS).

Proof Note that for any xi, j ∗ D2 other than xn,n , exactly one of xi+1, j or xi, j+1
is in D2 as well; let us refer to this element in D2 as the companion of xi, j . It is
straightforward to check that for any (n− k)-increasing sequence S, the elements of
S and their companions do not alter the canonical increasing sequence. �

It is a simple exercise to check that the number of (n − k)-increasing sequences
contained in D2 is

(n+k
2k

)
. Further, as we are free to use the n2 − 2n + 1 variables

outside D2, and the 2(n − k)− 1 variables that don’t alter the canonical increasing
sequence, we have the following lemma.

Lemma 51 For any k, � ⊆ 0,

dim

⎣〈
σ=k (Detn)

〉

≥�

⎤

⊆
⎣

n + k

2k

⎤⎣
(n2 − 2n + 1)+ 2(n − k)− 1+ �

�

⎤

.

Although this lower bound is not as large as expected for a random polynomial,
this is still sufficient to give strong lower bounds for depth-4 circuits. By choosing
k = ∂

∀
n for a small enough ∂ > 0, and � = n2∀n, Lemma 51 with Corollary 46

yields the lower bound of Gupta, Kamath, Kayal and Saptharishi [GKKS13]

Theorem 52 Any ��[O(
∀

n)]��[
∀

n] circuit computing Detn or Permn has top
fanin 2χ(

∀
n). �

It is worth noting that although Claim 47 suggests that we should be able to obtain
a lower bound of exp(χ(

∀
n log n)) for Detn , [GKKS13] also showed that the above

estimate for the dimension of shifted partial derivatives for the determinant is fairly
tight. Hence the dimension of shifted partials cannot give a stronger lower bound
for the determinant polynomial. However, it is possible that the estimate is not tight
for the permanent and the dimension of shifted partial derivatives of the permanent
is provably strictly larger than that of the determinant! It is conceivable that one
should be able to prove an exp(χ(

∀
n log n)) lower bound for the permanent using

this measure.
Indeed, subsequently an exp(χ(

∀
d log n)) was proved [KSS13, FLMS13] for

other explicit polynomials which we now outline.

110 N. Kayal and R. Saptharishi

5.9.3.2 Shifted Partials of the Nisan-Wigderson Polynomial

Very shortly after [GKKS13]’s 2χ(
∀

n) lower bound, Kayal, Saha, and Saptharishi
[KSS13] gave a stronger lower bound for a different polynomial. Their approach
was to engineer an explicit polynomial F for which the dimension of shifted partial
derivatives is easier to estimate. The main idea was that, if any k-th order partial
derivative of the engineered polynomial is a monomial, then once again estimating

dim
(〈

σ=k (F)
〉
≥�

)
reduces to a monomial counting problem. If we could ensure

that no two monomials of F have a gcd of degree k or more, then we would imme-
diately get that all k-th order partial derivatives of F are just monomials (albeit
possibly zero). If we were to interpret the set of nonzero monomials of F as just
subsets over the variables, then the above constraint can be rephrased as a set system
with small pairwise intersection. Such systems are well studied and are known as
Nisan-Wigderson designs [NW94].With this inmind, [KSS13] studied the following
polynomial family inspired by an explicit construction of a Nisan-Wigderson design.

Definition 53 (Nisan-Wigderson Polynomial). Let n be a power of 2 and let Fn be
the finite field with n elements that are identified with the set {1, . . . , n}. For any
0 ≥ k ≥ n, the polynomial NWk is a n2-variate polynomial of degree n defined as
follows:

NWk(x1,1, . . . , xn,n)=
⎨

p(t) ∗ Fn [t]
deg(p) < k

x1,p(1) . . . xn,p(n).

It is easy to show that the above family of polynomials is in VNP. Further, since
any two distinct univariate polynomials of degree less than k intersects in less than
k places, we have the following observation.

Observation 54 Any two monomials of NWk intersect in less than k variables.
Hence, any k-th order partial derivative of NWk(x) is a monomial (which could
possibly be zero). �

Hence, the problem of lower bounding the shifted partials of NWk reduces to the
problem of counting distinct monomials of degree � + d − k that are divisible by
one of these k-th order derivatives. [KSS13] additionally used the observation that
two random k-th order partial derivatives of NWk are monomials that are far from
each other. Using this, they estimate the number of distinct shifts of these monomials
and showed that the dimension of shifted partial derivatives of NWk is very close
to the trivial upper bound as in Claim 47. We sketch the argument by Chillara and
Mukhopadhyay [CM14]. Formally, for any twomultilinearmonomialsm1 andm2, let
the �(m1, m2) denote min {|m1| − |m1 ↔ m2|, m2 − |m1 ↔ m2|} (abusing notation
by identifying the multilinear monomials with the set of variables that divide it).

Lemma 55 [CM14] Let m1, . . . , ms be monomials over N variables such that
�(mi , m j) ⊆ d for all i ∅= j . Then the number of distinct monomials that may

5 A Selection of Lower Bounds 111

be obtained by multiplying some mi by arbitrary monomials of degree � is at least
s
(N+�

N

)− (s
2

)(N+�−d
N

)
.

Proof For i = 1, . . . , s, let Ai be the set of monomials that can be obtained by
multiplying mi with a degree � monomial. By inclusion-exclusion,

⎩
⎩
⎩
⎩
⎩

s⋃

i=1
Ai

⎩
⎩
⎩
⎩
⎩
⊆

s⎨

i=1
|Ai | −

⎨

i< j

⎩
⎩Ai ↔ A j

⎩
⎩ .

Note that each Ai is of size exactly
(N+�

N

)
. Further, since �(mi , m j) ⊆ d, any

monomial that is divisible by mi and m j must necessarily be divisible by mi and
the variables in m j not in mi . Hence,

⎩
⎩Ai ↔ A j

⎩
⎩ ≥ (N+�−d

N

)
. The lemma follows by

substituting these above. �

Note that any two distinct monomials of NWk intersect in at most k places. For
each monomial mi of NWk , let m′i be any nonzero k-th order partial derivative of mi .
Therefore, �(m′i , m′j) ⊆ n − 2k ⊆ n

2 for k = ∂
∀

n. Since we have nk monomials of
pairwise distance at least n/2, the above lemma immediately yields a lower bound
for the shifted partials of NWk .

Theorem 56 [KSS13] Let k = ∂
∀

d for some constant ∂ > 0. Then for any � =
	

(
n2
∀

n
log n

)
,

dim

⎣〈
σ=k (NWk)

〉

≥�

⎤

⊆ nk

2
·
⎣

n2 + �

n2

⎤

Sketch of Proof As mentioned earlier, we have nk monomials
⎞
m′i

⎠
with pairwise

distance at least n
2 . Using Lemma 55, it suffices to show that

nk ·
⎣

n2 + �

n2

⎤

⊆ 2 ·
⎣

nk

2

⎤

·
⎣

n2 + �− n
2

n2

⎤

and this follows easily from standard binomial coefficient estimates. �

CombiningwithCorollary 46,we have the lower bound of [KSS13] using standard
estimates.

Theorem 57 [KSS13] Any ��[O(
∀

n)]��[
∀

n] computing the NWk polynomial,
where k = ∂

∀
n for a sufficiently small ∂ > 0, must have top fan-in exp(χ

(
∀

n log n)). �

[KSS13] used the above lower bound to give annχ(log n) lower bound for a subclass
of formulas called regular formulas. The interested reader can refer to [KSS13] for
more details.

112 N. Kayal and R. Saptharishi

5.9.3.3 Shifted Partials of the Iterated-Matrix-Multiplication Polynomial

Fourier, Limaye, Malod and Srinivasan [FLMS13] showed the same lower bound
as [KSS13] but for the iterated matrix multiplication polynomial which is known to
have polynomial sized circuits computing it.

Definition 58 (Iterated matrix multiplication polynomial) Let M1, . . . , Md be n×n

matrices with distinct variables as entries, i.e., Mk =
((

x (k)
i j

))

i, j≥n
for k = 1, . . . , d.

The polynomial IMMn,d is a (n2d)-variate degree-d polynomial defined as the
(1, 1)-th entry of the matrix product M1 . . . Md:

IMMn,d(x)= (M1 . . . Md)1,1 .

A more useful perspective is to interpret this as a canonical algebraic branching
program.

Definition 59 (Algebraic branching program) An algebraic branching program
(ABP) comprises a layered directed graph G with (d+1) layers of vertices, where the
first and last layer consists of a single node (called source and sink respectively), all
other layers consist of n vertices, and edges are only between successive layers and
have linear polynomials as edge-weights. The ABP is set to compute the polynomial
f defined as

f (x) =
⎨

source-sink path π

weight(π)

where the weight of any path is just the product of the edge weights on the path.

The canonical ABP comprises a graph where the i-th vertex of layer (� − 1) is
connected to the j-th vertex of layer � with edge-weight x (�)

i j for every choice of i, j
and �. It is easy to see that the polynomial computed by the canonical ABP is in fact
IMMn,d .

To lower bound the dimension of shifted partial derivatives of IMMn,d , first note
that a derivative with respect to any variable (or edge) simply results in the sum of all
source-sink paths that pass through this edge. [FLMS13] uses the following simple
but crucial observation to assist in bounding the dimension of shifted partials.

Observation 60 Assume that d is even. Let e1, e3, . . . , ed−1 be an arbitrary set of
edges such that ei is between layer i and i + 1. Then, there is a unique path from
source to sink that passes through all these edges.

Proof Since these are edges in alternate layers, their starting and ending points
uniquely determine the edges that are picked up from the even-numbered layers to
complete the source-sink path. �

Since we are interested in k-th order derivatives for k ≈ ∂
∀

d, [FLMS13] consider
the following restriction by removing some edges from the underlying graph:

5 A Selection of Lower Bounds 113

• Select (2k − 1) layers �1, . . . , �2k−1 that are roughly equally spaced between the
first and the last layer. These layers, and the first and the last layers, shall be
untouched and shall be called pristine layers.

• In all the other layers, retain only those edges connecting vertex i of this layer to
vertex i of the next.

This restriction effectively makes the graph similar to an ABPwith 2k+1 layers. Let
the polynomial computed by the restricted ABP be IMM′

n,d(x). Since IMM′
n,d was

obtained by just setting some variables of IMMn,d to zero, the dimension of shifted
partial derivatives of IMM′

n,d can only be smaller than that of IMMn,d . Similar to
Observation 60, we have the following observation.

Observation 61 For every choice of k edges from odd-numbered pristine layers,
there is a unique source-sink path that passes through them.

In other words, for any choice of k variables chosen by picking one from each
odd-numbered pristine layer, then the k-th order partial derivative of IMM′

n,d with
respect to these k variables is a nonzero monomial.

Once again, we can lower bound the dimension of shifted partial derivatives of
IMM′

n,d by a monomial counting problem. Similar to the earlier case, [FLMS13]
show that the monomials thus obtained are far from one another. We state their main
lemma below without proof.

Lemma 62 [FLMS13] There are at least nk/2 monomials of IMM′
n,d of pairwise

distance at least n
4 .

Again, using Lemma 55 and standard binomial coefficient estimates, this implies
that the shifted partial derivatives of IMM′

n,d is almost as large as the trivial upper
bound.

Theorem 63 [FLMS13] Let k = ∂
∀

d for a sufficiently small ∂ > 0 and � be an
integer such that n1/16 ≥ N+�

�
≥ n1/4 where N is the number of variables IMM′

n,d
depends on. Then,

dim

⎣〈
σ=k (IMMn,d

)〉

≥�

⎤

⊆ dim

⎣〈
σ=k (IMM′

n,d

)〉

≥�

⎤

= χ

⎣

nk/2 ·
⎣

N + �

�

⎤⎤

.

�
Combining with Corollary 46, we get the lower bound of [FLMS13].

Theorem 64 [FLMS13] Any ��[O(
∀

d)]��[
∀

d] circuit computing IMMn,d , with
d ≥ nλ for a sufficiently small λ > 0, has top fan-in exp(χ(

∀
d log n)). �

Similar to [KSS13], the above result also implies nχ(log n) lower bounds for regular
formulas computing IMMn,d .

114 N. Kayal and R. Saptharishi

5.10 Conclusion

The field of arithmetic complexity, like Boolean complexity, abounds with open
problems and proving lower bounds for almost any natural subclass of arithmetic
circuits is interesting especially if the currently known techniques/ complexity mea-
sures do not apply to that subclass.8 The surveys [Wig02, SY10, CKW11] mark out
the frontiers of this area in the form of many open problems and we invite the reader
to try some of them.

References

[AJMV98] E. Allender, J. Jiao, M.Mahajan, V. Vinay, Non-commutative arithmetic circuits: depth
reduction and size lower bounds. Theor. Comput. Sci. 209(1–2), 47–86 (1998)

[ASSS12] M. Agrawal, C. Saha, R. Saptharishi, N. Saxena, Jacobian hits circuits: hitting-sets,
lower bounds for depth-d occur-k formulas and depth-3 transcendence degree-k cir-
cuits. in Symposium on Theory of Computing (STOC) (2012), pp. 599–614

[AV08] M. Agrawal, V. Vinay, Arithmetic circuits: a chasm at depth four. in Foundations of
Computer Science (FOCS) (2008), pp. 67–75

[BS83] W. Baur, V. Strassen, The complexity of partial derivatives. Theor. Comput. Sci. 22,
317–330 (1983)

[CKW11] X. Chen, N. Kayal, A. Wigderson, Partial derivatives in arithmetic complexity (and
beyond). Found. Trends Theor. Comput. Sci. 6, 1–138 (2011)

[CLO07] D.A. Cox, J.B. Little, D. O’Shea, Ideals (Springer, Varieties and Algorithms. Under-
graduate texts in mathematics, 2007)

[CM14] S. Chillara, P. Mukhopadhyay, Depth-4 lower bounds, determinantal complexity: a
unified approach. in Symposium on Theoretical Aspects of Computing (STACS) (2014)

[FLMS13] H. Fournier, N. Limaye, G. Malod, S. Srinivasan, Lower bounds for depth 4 formulas
computing iteratedmatrixmultiplication. Electron. ColloquiumComput. Complex. 20,
100 (2013)

[GK98] D. Grigoriev,M. Karpinski, An exponential lower bound for depth 3 arithmetic circuits.
in Symposium on Theory of Computing (STOC) (1998), pp. 577–582

[GKKS13] A. Gupta, P. Kamath, N. Kayal, R. Saptharishi, Approaching the chasm at depth four.
in Conference on Computational Complexity (CCC) (2013)

[GR00] D. Grigoriev, A.A. Razborov, Exponential lower bounds for depth 3 arithmetic circuits
in algebras of functions over finite fields. Appl. Algebra Eng. Commun. Comput. 10(6),
465–487 (2000)

[HY11] P. Hrubeš, A. Yehudayoff, Arithmetic complexity in ring extensions. Theor. Comput.
7(8), 119–129 (2011)

[JS82] M. Jerrum, M. Snir, Some exact complexity results for straight-line computations over
semirings. J. ACM 29(3), 874–897 (1982)

[Kal85] K.Kalorkoti,A lower bound for the formula size of rational functions. SIAMJ.Comput.
14(3), 678–687 (1985)

[Kay12] N. Kayal, An exponential lower bound for the sum of powers of bounded degree
polynomials. Technical report, Electronic Colloquium on Computational Complexity
(ECCC) (2012)

8 Some of the complexity measures that we describe here yield lower bounds for slightly more
general subclasses of circuits.

5 A Selection of Lower Bounds 115

[Koi12] P. Koiran, Arithmetic circuits: the chasm at depth four gets wider. Theor. Comput. Sci.
448, 56–65 (2012)

[Kou08] I. Koutis, Faster algebraic algorithms for path and packing problems. in ICALP (2008),
pp. 575–586

[KSS13] N. Kayal, C. Saha, R. Saptharishi, A super-polynomial lower bound for regular arith-
metic formulas. Electron. Colloquium Comput. Complex. 20, 91 (2013)

[Lov11] S. Lovett, Computing polynomials with few multiplications. Theor. Comput. 7(13),
185–188 (2011)

[Nis91] N. Nisan, Lower bounds for non-commutative computation. in Symposium on Theory
of Computing (STOC) (1991), pp. 410–418

[NW94] N. Nisan, A. Wigderson, Hardness versus randomness. J. Comput. Syst. Sci. 49(2),
149–167 (1994)

[NW97] N. Nisan, A. Wigderson, Lower bounds on arithmetic circuits via partial derivatives.
Comput. Complex. 6(3), 217–234 (1997)

[Raz06] R. Raz, Separation of multilinear circuit and formula size. Theor. Comput. 2(1), 121–
135 (2006)

[Raz09] R. Raz, Multi-linear formulas for permanent and determinant are of super-polynomial
size. J. ACM 56(2), 1–17 (2009)

[Raz10] R.Raz, Tensor-rank and lower bounds for arithmetic formulas. in Symposium on Theory
of Computing (STOC) (2010), pp. 659–666

[RSY08] R. Raz, A. Shpilka, A. Yehudayoff, A lower bound for the size of syntactically multi-
linear arithmetic circuits. SIAM J. Comput. 38(4), 1624–1647 (2008)

[RY09] R. Raz, A. Yehudayoff, Lower bounds and separations for constant depth multilinear
circuits. Comput. Complex. 18(2), 171–207 (2009)

[Sri13] S. Srinivasan, personal communication (2013)
[SW01] A. Shpilka, A.Wigderson, Depth-3 arithmetic circuits over fields of characteristic zero.

Comput. Complex. 10(1), 1–27 (2001)
[SY10] A. Shpilka, A. Yehudayoff, Arithmetic circuits: a survey of recent results and open

questions. Found. Trends Theor. Comput. Sci. 5, 207–388 (2010)
[Tav13] S. Tavenas, Improved bounds for reduction to depth 4 and depth 3. in Mathematical

Foundations of Computer Science (MFCS) (2013)
[VSBR83] L.G. Valiant, S. Skyum, S. Berkowitz, C. Rackoff, Fast parallel computation of poly-

nomials using few processors. SIAM J. Comput. 12(4), 641–644 (1983)
[Wig02] A. Wigderson, Arithmetic complexity—a survey. Lecture Notes (2002)

Chapter 6
Explicit Tensors

Markus Bläser

Abstract This is an expository article the aim of which is to introduce interested
students and researchers to the topic of tensor rank, in particular to the construction of
explicit tensors of high rank. We try to keep the mathematical concepts and language
used as simple as possible to address a broad audience. This article is thought to be
an appetizer and does not provide by any means a complete coverage of this topic.

Keywords Algebraic complexity theory · Tensor rank · Lower bounds
Mathematics Subject Classification (2010) 68Q17 · 15A69

6.1 Tensors and Rank

Let U and V be vector spaces over some field k. It is a well-known fact that every
linear map σ : U ≥ V is represented by a matrix A = (ai, j) ∗ kχ×m , where
χ = dimU and m = dim V . The rank of the matrix A is the maximum number of
rows that are linearly independent. There are a lot of equivalent definitions of the
rank of a matrix, for instance,

• the maximum number of columns that are linearly independent,
• χ− dim ker σ,
• dim im σ,

This work was supported through funds provided by the Deutsche Forschungsgemeinschaft
(BL 511/10-1) and by the Indo-German Max-Planck Center for Computer Science (IMPECS).

M. Bläser (B)

Computer Science, Saarland University, Saarbrücken, Germany
e-mail: mblaeser@cs.uni-saarland.de

M. Agrawal and V. Arvind (eds.), Perspectives in Computational Complexity, 117
Progress in Computer Science and Applied Logic 26, DOI: 10.1007/978-3-319-05446-9_6,
© Springer International Publishing Switzerland 2014

118 M. Bläser

• the minimum number of matrices of the form xT · y with x ∗ kχ and y ∗ km ,
so-called rank-one-matrices, such that A can be written as the sum of these
matrices,

just to mention a few. The rank of linear maps and matrices is well understood. There
are efficient algorithms to compute the rank, the most famous method is Gaussian
elimination.

Let W be another vector space over k, dim W = n. Let λ : U × V ≥ W be a
bilinear map. By choosing bases u1, . . . , uχ of U , v1, . . . , vm of V and w1, . . . , wn

of W , we can associate structural constants bh,i, j with λ:

λ(uh, vi) =
n∑

j=1
bh,i, jw j , 1 ⊆ h ⊆ χ, 1 ⊆ i ⊆ m. (6.1)

We can view B = (bh,i, j) ∗ kχ×m×n as a three-dimensional matrix, a so-called
tensor. As we have seen, there are many ways to define the rank of a matrix, which
is nothing but a tensor in kχ×m×1. From the many equivalent definitions of rank
of a matrix given above, it turns out that the appropriate one for tensors is the last
one. We call a tensor S = (sh,i, j) a rank-one tensor or triad, if there are vectors
a = (a1, . . . , aχ)

T ∗ kχ, b = (b1, . . . , bm)T ∗ km , and c = (c1, . . . , cn)T ∗ kn

such that

sh,i, j = ahbi c j , 1 ⊆ h ⊆ χ, 1 ⊆ i ⊆ m, 1 ⊆ j ⊆ n.

We will write S = a ≤ b ≤ c. Then the rank of a tensor T is the minimum number
r such that there are rank-one tensors S1, . . . , Sr with

T = S1 + · · · + Sr .

We denote the rank of T by R(T). The question of the rank of tensors of order
three or equivalently, of the rank of the corresponding bilinear mapping is a central
question in algebraic complexity theory. The flagship problem is of course matrix
multiplication, which is a bilinear mapping kn×n × kn×n ≥ kn×n . The current best
upper bounds are bounds are O(n2.38), see [CW90, Sto10, Wil12], whereas the best
lower bound is the recent 3n2 − o(n2) by Landsberg [Lan12].

6.1.1 What is So Special About Matrices?

The rank of a matrix is a well-understood quantity. The maximum rank of a matrix
in kχ×m is min{χ, m} and it is easy to come up with a matrix that achieves this
maximum. For instance, the identity matrix padded with rows or columns of zeroes
does the job. Or Vandermonde matrices. The fact that we have a lot of equivalent
characterizations of the rank of the matrix seems to be crucial for the fact that it is

6 Explicit Tensors 119

so easy to come up with explicit matrices of high rank. We can compute the rank of
a matrix in polynomial time.

For tensors the situation is more complicated. Per se, it is even not clear what
the maximum rank of tensors in kχ×m×n is.1 We will discuss this briefly in the next
section. How to construct explicit tensors of high rank is a widely open problem.
And finally, computing the rank of a tensor is an NP-hard problem.

Theorem 1 (Håstad [Hås90]) Let k be a field that can be represented over {0, 1}∈.
Let Tensor-Rank (over k) be the following problem: Given a tensor T ∗ kχ×m×n

and a bound b, decide whether R(T) ⊆ b.

1. Over finite fields, Tensor-Rank is NP-complete.
2. Over Q, Tensor-Rank is NP-hard.

What does it mean that “a field can be represented over {0, 1}∈”? Traditional com-
plexity classes likePorNP are definedover somefixed alphabet, soweneed tobe able
to encode the field elements by {0, 1}-strings. For instance, elements fromfinite fields
can be represented in binary and rational numbers by tuples of integers represented in
binary. The actual encoding does not matter as long as it is “reasonably nice”, that is,
all operations like addition,multiplication, etc., can be performed in polynomial time.

The hardness proof is the same over finite fields and over Q. Over finite fields,
the problems is also NP-easy; we just have to guess b rank-one tensors and check
whether their sum is T . OverQ, it is not clear whether this is possible, sincewe do not
know an upper bound on the number of bits of the representation of the entries of the
rank-one tensors. It could be the case that the rank of T is b, but all sums of b rank-
one tensors involve rational numbers with a huge number of bits. (“Huge” means
superpolynomial in the size of the representation of the input tensor.) To the best of
my knowledge, it is even not known whether Tensor-Rank over Q is decidable.

Over R, the situation is somewhat better: R itself is not representable over {0, 1},
but since Q ∃ R, we can look at tensors T over Q and ask what is the minimum
number of rank-one tensor with entries from R such that T is the sum of these rank-
one tensors. This problem is decidable and even in PSPACE, since it can be reduced
to the existential theory over the reals [Can88, Ren92].

Open Problem 1 What can you say about the approximability of Tensor-Rank?
Is there a constant factor approximation algorithm? A PTAS? As far as I know,
nothing in this direction is known.

Open Problem 2 What is the complexity of Tensor-Rank over Q?

Another important property of matrix rank is that it is semicontinuous. If (Mi) ∗
kn×n is a sequence of matrices that converges to amatrix M (componentwisely), then

R(Mi) ⊆ r for all i ⇒ R(M) ⊆ r.

1 Of course, χmn is an upper bound. However, it is not clear—and not true—that this is necessary.

120 M. Bläser

Why does this hold? The fact that the rank of R(Mi) ⊆ r is equivalent to the fact
that all (r + 1) × (r + 1) minors vanish. These minors are polynomials and hence
continuous functions. Therefore all (r + 1)× (r + 1) minors of M vanish, too.

For tensors, this is not the necessarily true. Consider the following tensor t given
by the following two slices:

(t1,i, j) =
(
1 0
0 0

)

and (t2,i, j) =
(
0 1
1 0

)

(6.2)

Define

t∂ = 1

∂
· (∂, 1)≤ (1, ∂)≤ (1, ∂)− 1

∂
· (0, 1)≤ (1, 0)≤ (1, 0)

The two slices of t∂ are
(
1 ∂
∂ ∂2

)

and

(
0 1
1 ∂

)

.

So t∂ ≥ t when ∂ ≥ 0. And R(t∂) ⊆ 2 for all ∂ > 0. On the other hand, R(t) = 3.
We can prove this using the so-called substitution method. This method was first
introducedbyPan [Pan66] to prove the optimality of theHorner scheme. See [BCS97]
for more applications of this method and more references.

Let

t =
r∑

i=1
ui ≤ vi ≤ wi (6.3)

with

ui = (ui,1, ui,2), vi = (vi,1, vi,2), wi = (wi,1, wi,2), 1 ⊆ i ⊆ r,

be an optimal decomposition of t into rank-one tensors. Since t1,1,1 = 1, there is
an i0 such that ui0,1 	= 0, w.l.o.g. i0 = r . Think of t as consisting of two slices as
in (6.2). From the decomposition (6.3), we will construct a new tensor in k1×2×2,
which is a linear combination of the two slices, in such a way that the rank drops by
one. Specifically,

r∑

i=1
(σui,1 + ui,2)≤ vi ≤ wi =

(
σ 1
1 0

)

:= t ′.

If we set σ = −ur,2/ur,1, this kills the r th rank-one tensor. Therefore,

R(t) ∧ R(t ′)+ 1.

But t ′ is a matrix whose rank is obviously two. Therefore, R(t) ∧ 3. Since t has only
three entries that are nonzero, there is a trivial decomposition of t of length 3.

6 Explicit Tensors 121

6.2 Explicit Tensors of High Rank Imply Circuit Lower Bounds

6.2.1 Higher Order Tensors

We can generalize the concept of tensors of order three to higher orders. Let
V1, . . . , Vn be vector spaces, dim Vi = di , 1 ⊆ i ⊆ n. The tensor product
V1 ≤ · · · ≤ Vn can be built as follows: Choose bases vi, j , 1 ⊆ j ⊆ di , for each
Vi . Then we formally built the elements v1, j1 ≤ · · · ≤ vn, jn , 1 ⊆ j1 ⊆ d1, …,
1 ⊆ jn ⊆ dn . They form a basis of the vector space V1 ≤ · · · ≤ Vn . If we have
arbitrary vectors xi = σi,1vi,1 + · · ·σi,di vi,di ∗ Vi , 1 ⊆ i ⊆ di , then

x1 ≤ · · · ≤ xn =
d1∑

j1=1
· · ·

dn∑

jn=1
σ1, j1 · · ·σn, jn v1, j1 ≤ · · · ≤ vn, jn .

An element v1≤· · ·≤vn with vi ∗ Vi is a rank-one tensor. As before, the rank of a
tensor t ∗ V1≤· · ·≤Vn is minimum number of rank-one tensors s1, . . . , sr such that

t = s1 + · · · + sr .

The definition above is a coordinate-free definition of tensor rank. You can also
think in coordinates, if you prefer that: Vi is isomorphic to kdi , simply choose bases.
These isomorphims naturally extend to an isomorphism between V1 ≤ · · · ≤ Vn and
kd1 ≤ · · · ≤ kdn . There is also a way of defining tensor products without choosing
bases at all by the universal property of turningmultilinearmappings into linear ones.

6.2.2 Basic Properties

Let β ∗ Sn be a permutation of {1, . . . , n}. If vi ∗ Vi , then vβ(1) ≤ · · · ≤ vβ(n) ∗
Vβ(1) ≤ · · · ≤ Vβ(n). So β identifies the rank-one tensors of V1 ≤ · · · ≤ Vn with the
rank-one tensors of Vβ(1) ≤ · · · ≤ Vβ(n). We can extend this mapping to a linear
mapping V1 ≤ · · · ≤ Vn ≥ Vβ(1) ≤ · · · ≤ Vβ(n). This mapping clearly is surjective
and by comparing dimensions, we see that is is in fact an isomorphism. The image
of any tensor t under this mapping is denoted by tβ .

If you think in coordinates, then the entries t ′i1,...,in
of tβ are defined by t ′i1,...,in

=
tiβ−1(1),...,iβ−1(n)

, where t = (t j1,..., jn).

Fact 1 R(t) = R(tβ).

Let U1, . . . , Un be vector spaces. Let hi : Vi ≥ Ui be homomorphism of vector
spaces, 1 ⊆ i ⊆ n. We get a mapping that maps the rank-one tensors of V1≤· · ·≤Vn

to the rank-one tensors of U1 ≤ · · · ≤Un by

v1 ≤ · · · ≤ vn ∩≥ h1(v1)≤ · · · ≤ hn(vn).

122 M. Bläser

Again, we can extend this to a linear mapping V1≤ · · · ≤ Vn ≥ U1≤ · · · ≤Un . We
denote this mapping by h1 ≤ · · · ≤ hn .

Fact 2 R(t) ∧ R(h1 ≤ · · · ≤ hn(t)) for any tensor t . If all hi are isomorphisms,
then equality holds.

Let t ∗ V1 ≤ · · · ≤ Vn and s ∗ U1 ≤ · · · ≤ Un . We can embed both tensors
into the larger space (V1 ⊕ U1) ≤ · · · ≤ (Vn ⊕ Un) as follows: Since each Vi is
a subspace of Vi ⊕ Ui , each rank-one tensor of V1 ≤ · · · ≤ Vn is also a rank-one
tensor of (V1 ⊕ U1) ≤ · · · ≤ (Vn ⊕ Un). Every tensor t in V1 ≤ · · · ≤ Vn is a sum
of rank-one tensors, so t embeds into (V1 ⊕ U1) ≤ · · · ≤ (Vn ⊕ Un) as well. The
same works for s. t ⊕ s denotes the tensor that we get by viewing t and s as tensors
in (V1 ⊕U1)≤ · · · ≤ (Vn ⊕Un) and forming their sum. The following fact follows
immediately.

Fact 3 R(t ⊕ s) ⊆ R(t)+ R(s).

Open Problem 3 Does R(t ⊕ s) = R(t)+ R(s) hold for all tensors t and s? This
is known as Strassen’s additivity conjecture.

Finally, we define the tensor product of t and s, which is an element of (V1≤U1)≤
· · ·≤ (Vn≤Un). For two rank-one tensors x = v1≤· · ·≤vn and y = u1≤· · ·≤un ,
their tensor product is defined as

x ≤ y = (v1 ≤ u1)≤ · · · ≤ (vn ≤ un).

If we write t = x1 + · · · + xr as a sum of rank-one tensors and s = y1 + · · · + yp,
then we define their tensor product as

t ≤ s =
r∑

i=1

p∑

j=1
xi ≤ y j . (6.4)

It is easy to verify that this is well defined.
If you think in coordinates, then the tensor product of t = (ti1,...,in) ∗ kd1×···×dn

and s = (s j1,..., jn) ∗ ke1×···×en is given by

t ≤ s = (ti1,...,in s j1,..., jn) ∗ kd1e1×···×dnen .

The pair (i1, j1) is interpreted as a number from {1, . . . , d1e1} and is used to index
the first coordinate, (i2, j2) for the second, and so on.

From (6.4), the next fact follows easily.

Fact 4 R(t ≤ s) ⊆ R(t)R(s).

Note that in this case, the inequality may be strict. For instance, the rank of 2×2-
matrix multiplication is 7, however, the rank of 2m×2m-matrix matrix multiplication
is strictly less than 7m for large enough m, since there are algorithms for matrix
multiplication that are asymptotically faster than Strassen’s algorithm.

6 Explicit Tensors 123

6.2.3 From Tensor Rank Bounds to Formula Size Bounds

With a tensor t = (ti1,...,id) ∗ kn ≤ · · · ≤ kn , we associate the following polynomial
in the nd variables Xi, j , 1 ⊆ i ⊆ d, 1 ⊆ j ⊆ n:

ft =
n∑

i1=1
· · ·

n∑

id=1
ti1,...,id X1,i1 · · · Xn,in .

Raz [Raz10] proved the following result:

Theorem 2 For any family of tensors tn of order d(n) such that γ(1) ⊆ d(n) ⊆
o(log n/ log log n) and R(tn) ∧ n(1−o(1))d(n), the polynomials ftn have superpoly-
nomial formula size.

Note that R(tn) ⊆ nd(n) by the trivial decomposition. Therefore, the family tn
has “almost” highest rank possible. It is a major open problem to find a family of
polynomials with superpolynomial formula size. So finding high rank tensors might
be a way of doing so. The best lower bounds we have are due to Kalorkoti [Kal85]
and are quadratic.

Several decades earlier, Strassen [St73] proved the following result.

Theorem 3 For any family of tensors tn of order 3, the circuit complexity of the
trilinear forms ftn are bounded by β(R(tn)).

This means that a family of tensors of superlinear rank yields a family of poly-
nomials with superlinear circuit complexity, something which we do not know for
general circuit models.

But there is a catch, as we will see in the next section. Finding some family
of tensors/polynomials with the desired properties is easy, a random choice does
the job. So what we really want is an explicit tensor. We call a family of tensors
tn = (tn;i1,...,id) explicit if the mapping (n; i1, . . . , id) ∩≥ tn;i1,...,id can be computed
by an arithmetic circuit of size polynomial in d and log n. One can think also of other
notion of explicitness. For the purpose of this appetizer, any notion that prevents
random tensors is fine. If the entries of the tensors are rational, we could also require
that the mapping is computable in P/poly. Then, by using Valiant’s criterion, we can
use high rank tensors to separate classes in Valiants model, in particular, we could
show that the permanent does not have polynomial size formulas, see [Bür00].

6.2.4 Random Tensors

LetV be a vector space of dimension n. A generic rank-one tensor inV≤d is described
by dn variables,

(x1,1, . . . , xn,1)≤ · · · ≤ (x1,d , . . . , xn,d).

124 M. Bläser

The sum of r generic rank-one tensors is described by rdn varibles. Its entries are
multilinear polynomials in these variables. A generic tensor in V≤d is described by
nd variables, all of them begin algebraically independent. Therefore, rnd ∧ nd is
required to write every tensor as a sum of r rank-one tensor, that is,

r ∧ nd−1

d
.

This is a very simple argument, but sufficient for our needs and almost optimal. With
more sophisticated ones, we can get tighter bounds, see the work of Lickteig and
Strassen for three-dimensional tensors [Lic85, Str83], see Landsberg’s book for the
general case [Lan11].

From the argument above, it follows that there is a tensor with rank at least
nd−1/d. But even random tensors have at least this rank with high probability. The
entries of tensors that can be written as the sum of fewer rank-one tensors are alge-
braically dependent, since they can we written as polynomials in less than nd vari-
ables. Therefore, these entries fulfill some polynomial relation. It is well known that
random points do not fufill polynomial relations with high probability. In theoretical
computer science, this fact is known as the Schwartz-Zippel lemma.2

Lemma 1 (Schwartz–Zippel) Let F be a field. Let p be a nonzero polynomial in
F[X1, . . . , Xn] of total degree d. Let S ∃ F. Then

Pr
r1,...,rn∗S

[p(r1, . . . , rn) = 0] ⊆ |S|/d.

Even if we do not know a bound on the polynomial describing the algebraic
dependence, if the underlying field is large enough or even infinite, a random tensor
will have rank ∧ nd−1/d with high probability.

Although it sounds very simple, it is a major open problem to find a tensor of
high rank that is explicit, i.e., whose entries can be constructed by a deterministic
polynomial time algorithm.

6.3 Explicit Tensors from Bilinear Mappings

This section shows the present (poor) knowledge of how to construct explicit tensors
of high rank.

6.3.1 The Rank of Bilinear Mappings and Algebras

Let ϕ : U × V ≥ W be a bilinear mapping. Every bilinear map corresponds in a
unique way to a tensor tϕ in U∈ ≤ V ∈ ≤ W , see (6.1). Since a vector space and its

2 The name of the lemma is justified because Schwartz and independently Zippel were the last to
prove this lemma.

6 Explicit Tensors 125

dual are isomorphic, we can also think if tϕ living in U ≤V ≤W . We define the rank
of a bilinear map ϕ to be the rank of the corresponding tensor tϕ. If A is an finite
dimensional associative algebra with unity, that is, A is a ring which is also a finite
dimensional vector space over somefield k, then themultiplicationmap in A is a bilin-
ear mapping A× A ≥ A. The rank R(A) of A is the rank of its multiplication map.

If we think in coordinates, we get the tensor that corresponds to A as follows.
Choose a basis x1, . . . , xn of A. The product of any two elements of A is again an
element of A and can be written as a linear combination of x1, . . . , xn . In particular

xi · x j =
n∑

k=1
σi, j,k xk .

The so-called structural constants σi, j,k are the entries of the tensor (with respect to
the chosen basis). Since a change of basis is an isomorphim of vector spaces, we get
that the rank of this tensor is independent of the chosen basis.

The best lower bounds for the rank of an algebra and for any other tensor of order
three are of the form 3 dim A−o(dim A). Very recently, Landsberg proved this for the
algebra kn×n of n×n-matrices. An earlier example with an easier proof is the algebra
k[X1, . . . , Xn]/Id where Id is the ideal generated by all monomials of degree d, see
[Blä01]. Because the families of algebras have a “regular” structure, it is clear that the
corresponding tensors are explicit. We just have to compute the structural constants.
For instance, in the case of the algebra kn×n with the standard basis, we have

ei,i ′e j, j ′ =
⎡

ei, j ′ if i ′ = j ,

0 otherwise.

(Note that we use double indices since dim kn×n = n2.) In the second case, if we
take all monomials of degree < d as a basis, we get a similar expression.

It is a major open problem to find explicit tensors or explicit families of algebras
with a larger rank.

Open Problem 4 1. Is there an explicit family of tensors tn ∗ kn ≤ kn ≤ kn with
R(tn) ∧ (3+ ∂)n for some ∂ > 0.

2. Can we even achieve this for tensors corresponding to the multiplication in an
algebra, i.e., is there an explicit family of algebras An with R(An) ∧ (3 + ∂)
dim An for some ∂ > 0. Of course, dim An should go to infinity.

6.3.2 From Tensors of Order Three to Higher Order Tensors

We can use the lower bounds of the rank of tensors of order three to obtains bounds
for the rank of higher order tensors. Up to lower order terms, they match the current
best lower bounds (see the next section).

126 M. Bläser

Let t ∗ V1≤· · ·≤Vn . Let I1, . . . , Im be a partition of {1, . . . , n}, that is, the I j are
pairwise disjoint and their union is {1, . . . , n}. Let U j =⎣

i∗I j
Vi for 1 ⊆ j ⊆ m.

We can view t as an element of U1≤ · · ·≤Um . Note that the rank of t as an element
of U1 ≤ · · · ≤Um is a lower bound for the rank of t as an element of V1 ≤ · · · ≤ Vn .
Why? Any rank-one tensor v1≤· · ·≤ vn ∗ V1≤· · ·≤ Vn induces a rank-one tensor
u1≤· · ·≤um ∗ U1≤· · ·≤Um by setting u j =⎣

k∗I j
vk . When it is not clear from

context, whether we think of t being a tensor in U1 ≤ · · · ≤ Um or V1 ≤ · · · ≤ Vn ,
we add it as a subscript.

Lemma 2 RU1≤···≤Um (t) ⊆ RV1≤···≤Vn (t). �
The rank can indeed become smaller. Consider ∅n, n, n⇐ ∗ kn×n ≤ kn×n ≤ kn×n ,

the tensor of matrix multiplication. If we consider it as a tensor in (kn×n ≤ kn×n)≤
kn×n , then it is a matrix of size n4 × n2. Its rank is at most n2. However, we know a
lower bound of 3n2−o(n2) for the rank of ∅n, n, n⇐ as a tensor in kn×n ≤ kn×n ≤ kn×n

[Lan12]. In fact, it is an old open problem, whether the so-called exponent of matrix
multiplication is two.

6.3.3 Explicit Tensors of Higher Order

Let d be even and let N = nd/2 Take any full rank matrix M ∗ k N×N , for instance
the identity matrix. It has rank nd/2. By Lemma 6.2,

R⎣d
i=1 kn (M) ∧ nd/2. (6.5)

The tensor M is obviously explicit, an entry mi1,...,id = 1 if (i1, . . . , id/2) =
(id/2+1, . . . , id) and 0 otherwise. Note that if we could achieve n(1−o(1))d , then this
will lead to formula lower bounds.

It is a sad state of affairs that (6.5) is the asymptotically best lower bound for
an explicit tensor that we currently know; further improvements just concern the
constant factor.

Here is one such improvement which uses a lower bound by Hartmann [Har85]:
Let k be a field and K be an extension field of dimension n. Consider the multipli-
cation of the K -left module K 1×m as a bilinear map over k. (We take x ∗ K and
(y1, . . . , ym) ∗ K 1×m and map them to (xy1, . . . , xym) ∗ K 1×m). However, we
view this as a k-bilinear map and not as a K -bilinear map. Let ⊂s be the corresponding
tensor. Hartmann showed that

R(K 1×m) ∧ (2n − 1)m = 2nm − m. (6.6)

If we now setm = ne−1 and let s ∗ K≤(2e+1) be the tensor corresponding to ⊂s, we get

R(s) ∧ 2ne − ne−1

6 Explicit Tensors 127

for a tensor of order d = 2e+1. Note that if d is odd, then the approach above using
an invertible matrix only gives the lower bound ne.

If we take K = k[X]/(Xn) instead of an extension field, then we can show the
same bound as (6.6) and get another example of an explicit tensor. As a basis of K ,
we choose the basis 1, X, . . . , Xn−1. This induces a basis of K 1,m in the natural way.
How does the tensor of the multiplication of K 1×m look like? First consider the case
m = 1. The tensor looks like

⎤

⎦
⎦
⎦
⎦
⎦
⎦
⎦
⎛

1 2 3 . . . n

2 3
. . . 0

3
. . . 0 0

...
. . .

. . .
...

...

n 0 . . . 0 0

⎝

⎞
⎞
⎞
⎞
⎞
⎞
⎞
⎠

(6.7)

How to interpret this? It is a {0, 1}-valued tensor of size n × n × n. An entry k > 0
in position (i, j) means that the entry in position (i, j, k) is 1. All other entries
are 0 whether it is explicitly indicated or not. The tensor for arbitrary m looks like
follows:

T =

⎤

⎦
⎦
⎦
⎛

T1
T2
...

Tm

⎝

⎞
⎞
⎞
⎠

.

Each Tj is a copy of the tensor in (6.7). However, these tensors Tj live in different
slices. T is a tensor in kn×nm×nm , each Tj lives in the slices (j − 1)n+ 1, . . . , jn in
the third component. Now, as in the beginning, wewant to apply substitutionmethod.
We will only work with the copy T1, kill 2n − 1 products, and then we can simply
apply induction. In an optimal decomposition of T into rank-one tensors

T =
r∑

i=1
ui ≤ vi ≤ wi ,

we can assume thatw1, . . . , wn−1 restricted to the first n−1 coordinates, are linearly
independent. Let h be the projection along the linear span of w1, . . . , wn−1 onto
∅en, en+1, . . . , emn⇐. Here, ei ∗ kmn is the i th unit vector and ∅. . . ⇐ the linear span.
Applying h, we kill n − 1 products in the decomposition of T . What happens to T
under this homomorphism? Note that only the first n rows of T are affected, which
just contain the copy T1. In (6.7), h maps multiples of the slices 1, . . . , n−1 onto the
nth one. The result is a lower triangular matrix with all 1s on the diagonal. Therefore,
the matrix has full rank. Like before, we can now kill another n products and the
tensor that is still computed is

128 M. Bläser

T ′ =

⎤

⎦
⎦
⎦
⎛

T2
T3
...

Tm

⎝

⎞
⎞
⎞
⎠

.

Therefore, we can proceed by induction and get a lower bound of (2n − 1)m.

6.4 Explicit Tensors by Combinatorial Constructions

The currently best lower bound for an explicit tensor is due to [AF11]. It improves
on the lower order term of the construction in the last section.

Let χ = ⇒log2 n∞. For i ∗ {0, . . . , χ}, we recursively define the followingmatrices:

1. S1,0 = (1).
2. For even n = 2m > 1,

Sn,i =

⎜
⎟⎟⎟⎟⎨

⎟⎟⎟⎟⎩

(
0 0

Sm,i 0

)

if i < χ

(
Im 0

0 Im

)

otherwise

.

3. For odd n = 2m + 1 > 1,

Sn,i =

⎜
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎨

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎩

⎤

⎦
⎛

0 0 0

0 0 0

Sm,i 0 0

⎝

⎞
⎠ ifi < χ

⎤

⎦
⎛

0 0 0

Im 0 0

0 Im 0

⎝

⎞
⎠ otherwise

.

Finally, let Tn be the tensor consisting of slices Sn,0, . . . , Sn,χ. The format of Tn is
n × n × (χ+ 1). Tn is certainly explicit, we can determine the entries by following
the recursive structure.

Theorem 4 R(Tn) ∧ 2n − 2h(n)+ 1 where h(n) is the number of 1s in the binary
expansion of n.

Note that h(n) ⊆ log n. We can use the substitution method to prove the theorem.
Certainly R(T1) = 1 holds. If n = 2m is even, then we can “substitute away” the
two identity matrices, killing n products. The remaining tensor is Tn/2. Therefore,
we get the recurrence

R(T2m) ∧ R(Tm)+ 2m.

6 Explicit Tensors 129

In the same way, we get

R(T2m+1) ∧ R(Tm)+ 2m.

It is easy to verify that the bound stated in the theorem is the solutionof this recurrence.
We can now extend this to a tensor of size n × (n + 1)× n by extending the slices
above by one column and then add n−(χ+1) linearly independent slices, which just
have a one in the extra column. These slices can be substituted away and we get a
tensor of size n× (n+1)×n with rank bounded by 3n−�(log n). If we set n = me

and add just m extra slices, we get a tensor of size me × (me + 1)× me the rank of
which can be lower bounded by 2n + m −�(log n) = 2me + m −�(d logm). As
before, we can interpret this tensor as a tensor of order 2e + 1. (The +1 in me + 1
the second component disturbs this construction a little bit, to remedy this, we can
start with a tensor of size (n− 1)× (n− 1)× (n− 1) and then extend this to a tensor
of size n × n × n by adding zeros.)

If you look at the construction closely, we can view this again as a tensor related
to an algebra, as pointed by Landsberg [Lan13]. For simplicity, assume that n is a
power of 2. Otherwise, the tensor will just have some additional zeros. It is quite easy
to see, that up to permutations, the tensor Tn are just the slices 1, 2, . . . , 2i , . . . , 2χ

of the tensor of the algebra k[X]/(Xn). For instance, T8 has the form

T8 =

⎤

⎦
⎦
⎦
⎦
⎦
⎦
⎦
⎦
⎦
⎦
⎛

1 2 3 4
2 3 4

3 4
3 4

4
4

4
4

⎝

⎞
⎞
⎞
⎞
⎞
⎞
⎞
⎞
⎞
⎞
⎠

Looking at this, it is easy to see that we can project away the lower four rows and
four columns to the righthand side. This reduces the rank by 8 (in general by n) and
affects only the fourth slice. We can remove this slice and get T4. Using induction,
we get a lower bound of 1 + 2 + 4 + 8 = 15 (in general 2n − 1, note that n is a
power of 2).

6.5 Conclusions

In the examples we have seen, the bounds on the rank are proven via the substitution
method. The bounds that are achievable with this method are usually limited by the
sum of the dimension of the vector spaces. Up to lower order terms, our constructions
reach this limit. To get better bounds, new lower bound techniques are needed. One
promising approach for this is the geometric complexity approach by Bürgisser and
Ikenmeyer [BI11, BI12].

130 M. Bläser

References

[AF11] B. Alexeev, M.A. Forbes, J. Tsimerman, Tensor rank: some lower and upper bounds, in
IEEE Conference on Computational Complexity (2011), pp. 283–291

[Blä01] M. Bläser, Improvements of the Alder-Strassen Bound: Algebras with Nonzero Radical
(ICALP, 2001), pp. 79–91

[BCS97] P. Bürgisser, M. Clausen, M.A. Shokrollahi, Algebraic Complexity Theory (Springer,
Berlin, 1997)

[Bür00] P. Bürgisser, Completeness and Reduction in Algebraic Complexity Theory (Springer,
Berlin, 2000)

[BI11] P.Bürgisser,C. Ikenmeyer,Geometric Complexity Theory and Tensor Rank (STOC2011),
pp. 509–518

[BI12] P. Brgisser, C. Ikenmeyer, Explicit lower bounds via geometric complexity theory. CoRR
abs/1210.8368 (2012)

[Can88] J.F. Canny, in Some Algebraic and Geometric Computations in PSPACE (STOC, 1988),
pp. 460–467

[CW90] D.Coppersmith, S.Winograd,Matrixmultiplication via arithmetic progressions. J. Symb.
Comput. 9(3), 251–280 (1990)

[Har85] W. Hartmann, On the multiplicative complexity of modules over associative algebras.
SIAM J. Comput. 14(2), 383–395 (1985)

[Hås90] J. Håstad, Tensor rank is NP-complete. J. Algorithms 11(4), 644–654 (1990)
[Lan12] J.M. Landsberg, New lower bounds for the rank of matrix multiplication (2012),

arXiv:1206.1530v1 [cs.CC]
[Lan11] J.M. Landsberg, Tensors: geometry and applications. Graduate Studies in Mathematics,

vol.128 (American Mathematical Society, Providence, 2012)
[Lan13] J.M. Landsberg, Nontriviality of equations and eplicit tensors inCm≤C

m≤C
m of border

rank at least 2m − 1 (2013), arXiv:1209.1664v2
[Lic85] T. Lickteig, Typical tensor rank. Lin. Alg. Appl. 69, 95–120 (1985)
[Kal85] K. Kalorkoti, A lower bound for the formula size of rational functions. SIAM J. Comput.

14(3), 678–687 (1985)
[Pan66] V.Y. Pan, Methods for computing values of polynomials. Russ. Math. Surv. 21, 105–136

(1966)
[Raz10] R. Raz, in Tensor-Rank and Lower Bounds for Arithmetic Formulas (STOC 2010),

pp. 659–666
[Ren92] J. Renegar, On the computational complexity and geometry of the first-order theory of

the reals, part i: introduction. Preliminaries. the geometry of semi-algebraic sets. The
decision problem for the existential theory of the reals. J. Symb. Comput. 13(3), 255–300
(1992)

[Sto10] A. Stothers, On the Complexity of Matrix Multiplication, Ph.D. thesis, University of
Edinburgh, 2010

[St73] V. Strassen, V. von Divisionen, Crelle’s. J. Reine Angew. Math. 264, 184–202 (1973)
[Str83] V. Strassen, Rank and optimal computation of generic tensors. Lin. Alg. Appl. 52, 645–

685 (1983)
[Wil12] V.V.Williams, inMultiplying matrices faster than Coppersmith-Winograd (STOC, 2012),

pp. 887–898

http://arxiv.org/abs/1206.1530v1
http://arxiv.org/abs/1209.1664v2

Chapter 7
Progress on Polynomial Identity Testing-II

Nitin Saxena

To my grand-advisor Professor Somenath Biswas

Abstract We survey the area of algebraic complexity theory; with the focus being
on the problem of polynomial identity testing (PIT). We discuss the key ideas that
have gone into the results of the last few years.

Keywords Arithmetic circuit · Identity testing ·Hitting-set ·Rank · Lower bound ·
Jacobian · Concentration · Shift ·Morphism

Mathematics Subject Classification (2010) Primary 68Q25, 68W30, Secondary
12Y05, 13P25

7.1 Introduction

Algebraic complexity theory is the study of computation viaalgebraicmodels, hence,
algebraic techniques. In this article weworkwith only onemodel—arithmetic circuit
(in short, circuit). A circuit C(x1, . . . , xn), over a ring R, computes a polynomial
f in R[x1, . . . , xn]. Its description is in the form of a rooted tree; with the leaves
having the variables or constants as input, the internal nodes computing addition or
multiplication, and the root having the f as output. The edges in C , called wires,
carry the intermediate polynomials and could also be used to multiply by a constant
(from R). By the size, respectively the depth, of C we mean the natural notions
(sometimes to avoid “trivialities” we might want to take into account the bit-size
needed to represent an element in R).

N. Saxena (B)

Department of CSE, IIT Kanpur, Kanpur 208016, India
e-mail: nitin@cse.iitk.ac.in

M. Agrawal and V. Arvind (eds.), Perspectives in Computational Complexity, 131
Progress in Computer Science and Applied Logic 26, DOI: 10.1007/978-3-319-05446-9_7,
© Springer International Publishing Switzerland 2014

132 N. Saxena

A moment’s thought would suggest that a circuit is a rather compact way of
representing polynomials. Example a circuit of size s could produce a polynomial
of degree 2s (hint: repeated squaring). In fact, a single product gate could multi-
ply s linear polynomials and produce nχ(s) many monomials. Thus, a circuit is an
‘exponentially’ compact representation of some polynomial families (as opposed to
simply writing it as a sum of monomials). Conversely, are there ‘explicit’ polynomial
families (say n-variate n-degree) that require exponential (i.e. 2χ(n)) sized circuits?
We “expect” almost every polynomial to be this hard, but, the question of finding an
explicit family is open and is the main goal motivating the development of algebraic
complexity.

One can try to directly give a good lower bound against circuits by designing
an explicit polynomial family { fn} and prove that it requires a ‘large’-sized circuit
family {Cn}. The other, indirect, way is to design an efficient hitting-set H for the
circuit family, i.e. if Cn ≥= 0 then ∗a ⊆ H, Cn(a) ≥= 0. This ‘flip’ from lower bounds
to algorithms was first remarked by [HS80] and now it has several improved versions
[KI04, Agr05, Agr06]. This is a remarkable phenomenon and is one of the primary
motivations to study the question of PIT: Given a circuit C test it for zeroness, in
time polynomial in size(C). The hitting-set version of PIT is also called blackbox
PIT (contrasted with whitebox PIT).

The last 10 years have seen a decent growth of algebraic tools and techniques
to understand the properties of polynomials that a circuit computes. The feeling is
that these polynomials are special, different from general polynomials, but a strong
enough algebraic ‘invariant’ or a combinatorial ‘concept’ is still lacking. There have
been several articles surveying the known techniques and the history of PIT [Sax09,
AS09, SY10, CKW11, Sap13]. In this survey we will attempt not to repeat what
those surveys have already covered. So, we will focus only on the new ideas and
assume that the reader has given at least a cursory glance at the older ones. We
directly move on to the Leitfaden.

7.1.1 Survey Overview

This article deals mainly with three broad topics—the ‘universality’ of depth-3
circuits, the design of hitting-sets via ‘faithful’ morphisms and that via rank
‘concentration’. A major emerging area that we skip in this article is that of PIT
vis à vis GCT (geometric complexity theory) program [Mul11, Mul12a, Mul12b];
the algebraic-geometry interpretations there are interesting though any concrete PIT
algorithm, or application, is yet to emerge.

Shallow circuits A depth-2 circuit (top + gate) of size s, over a field, essentially
computes a sum of s monomials. Such polynomials are called sparse polynomials;
blackbox PIT for them was solved few decades ago. So, our next stop is depth-3:
Polynomials of the form

7 Progress on Polynomial Identity Testing-II 133

C =
k∑

i=1

d∏

j=1
Li, j ,

where Li, j are linear polynomials in F[x1, . . . , xn]. Significant research has been
done with this model, but both subexponential PIT and exponential lower bounds
are open here. Recently, a remarkable universality result was shown for depth-3
[GKKS13]: If an n-variate poly(n)-degree polynomial can be nontrivially computed
by a circuit, then it can be nontrivially computed in depth-3. This ‘squashing’ of
depth means that it suffices to focus on depth-3 for PIT purposes.

If we consider a depth-2 circuit (top × gate), over a ring R, then again we get
some remarkable connections. Fix R to be the 2 × 2 matrix algebra M2(F), and
consider the circuit

D =
d∏

i=1
Li ,

where Li are linear polynomials in R[x1, . . . , xn]. Traditionally, D is called a width-
2 algebraic branching program (ABP). It was shown by [SSS09] that depth-3 PIT
efficiently reduces to width-2 ABP PIT.

Faithful morphisms Itwas observed in the last fewyears that in all the knownhitting-
sets, the key idea in the proof is to work with a homomorphism ϕ and an algebraic
property that the image of ϕ should preserve. [SS12] used a (Vandermonde-based)
map ϕ : F[x1, . . . , xn] ≤ F[y1, . . . , yk] that preserves the ‘linear’ rank of any k
linear polynomials. This gave the first blackbox PIT for bounded top fanin depth-3,
over any field.

Beecken et al. [BMS13] and Agrawal et al. [ASSS12] used a (Vandermonde and
Kronecker-based) map ϕ : F[x1, . . . ,
xn] ≤ F[y1, . . . , yk] that preserves the ‘algebraic’ rank (formally, transcendence
degree) of certain k polynomials. This gave the first blackbox PIT (and lower bounds)
for several well-studied classes of constant-depth circuits. One drawback of the tech-
nique is that it requires zero/large characteristic fields.

Rank concentration Inspired from the tensors, a restricted circuit model called
multilinear read-once ABP (ROABP) has been intensively studied. Let R be the
w × w matrix algebra Mw(F) and let {Si } be a partition of [n]. Consider the circuit
D = ∏d

i=1 Li , where Li are linear polynomials in R[xSi] (i.e. the linear factors
have disjoint variables). For D [FSS13] gave a hitting-set in time poly(wn)logw·log n ,
i.e. quasi-poly-time. The proof is based on the idea, following [ASS13], that after
applying a small (Kronecker-based) ‘shift’, D gets the following property: The rank
of its coefficients (viewed as F-vectors) is concentrated in the ‘low’ support mono-
mials. Thus, checking the zeroness of these low monomials is enough!

We conjecture that rank concentration, after a ‘small’ shift, should be attainable
in any ABP D. But currently the proof techniques are not that strong. Recently,
[AGKS13] have achieved rank concentration in multilinear depth-3 circuits where

134 N. Saxena

the partitions (corresponding to each product gate) are ‘close’ to each other in the
sense of ‘refinement’.

7.2 Shallow Circuits, Deep Interconnections

In this section,we exhibit the key ideas behind the universality of two shallowcircuits.

7.2.1 The Depth-3 Chasm

In the study of circuits one feels that low-depth should already hold the key. This
feeling was confirmed in a series of work [VSBR83, AV08, Koi12, Tav13]: Any
poly(n)-degree n-variate polynomial computed by a poly(n)-sized circuit C can also
be computed by a nO(

∈
n)-sized depth-4 circuit!

The idea for this is, in retrospect, simple—since the degree is only poly(n), first,
squash the depth of C to O(log n) by only a polynomial blowup in the size. This is
done in a way so as to make the product gates quite balanced, i.e. their two inputs
are roughly of the same degree. Next, identify a subcircuit C2 by picking those gates
whose output polynomial has degree at least

∈
n, and call the remaining subcircuit

C1. We view C2 as our circuit of interest that takes gates of C1 as input. It can be
shown that C2 computes a polynomial of degree ∃∈n of its input variables (which
are poly(n)many). Obviously, each gate ofC1 also computes a polynomial of degree
∃∈n of its input variables (which are x1, . . . , xn). Thus, C2 finally computes a sum

of ∃⎡poly(n)+∈n∈
n

⎣
products, each product has

∈
n factors, and each factor is itself a

sum of∃⎡n+∈n∈
n

⎣
degree-

∈
n monomials. To put it simply (and ignoring the constant

factors), C can be expressed as a
⎤∏∈

n ⎤∏∈
n circuit of size nO(

∈
n). The details

of this proof can be seen in [Tav13].
The strength of depth-4 is surprising. Recently, an even more surprising reduction

has been shown [GKKS13]—that to depth-3 (again, nO(
∈

n) sized). We will now
sketch the proof. It ties together the known results in an unexpected way.

Essentially, the idea is to modify a
⎤∏a ⎤∏a circuit C of size s := na (where

a := ∈
n) by using two polynomial identities that are in a way “inverse” to each

other, and are to do with powers-of-linear-forms. First, replace the product gates
using Fischer’s identity:

Lemma 2.1 [Fis94] Any degree a monomial can be expressed as a linear combina-
tion of 2a−1 ath powers of linear polynomials, as:

y1 · · · ya = (2a−1 · a!)−1 ·
∑

r2,...,ra⊆{±1}

⎦

y1 +
a∑

i=2
ri yi

⎛a

· (−1)#{i |ri=−1}.

7 Progress on Polynomial Identity Testing-II 135

We denote this type of a circuit by the notation
⎤⎝a ⎤

, where the wedge
signifies the powering by a. The above identity transforms the

⎤∏a ⎤∏a circuit
C to a

⎤⎝a ⎤⎝a ⎤ circuit, of size poly(s). We reuse s for this size estimate.
Next, the two power gates are ‘opened’ up using an identity introduced by the

author:

Lemma 2.2 [Sax08] For any a, m, there exist degree-a univariate polynomials fi, j

such that

(y1 + · · · + ym)a =
ma+1∑

i=1

m∏

j=1
fi, j (y j).

Let us carefully see the jugglery on C . The
⎤⎝a ⎤⎝a ⎤

circuit C has the
expression C =⎤

i Ti , where each Ti has the form (
⎤s

j=1 β
ei, j
i, j)a with linear βi, j ’s.

We want to open up the top power gate of C . By Lemma 2.2 we get

Ti =
sa+1∑

u=1

s∏

j=1
fu, j (β

ei, j
i, j).

Since fu, j is a univariate, it splits into linear polynomials when the base field F is
algebraically closed. As βi, j is already a linear polynomial, we deduce that Ti , and
hence C , is a

⎤∏⎤
circuit of size poly(s).

Finally, note that for the above arguments towork, we requireF to be algebraically
closed and char(F) > a. Lemma 2.2 has been generalized to all characteristics by
[FS13b], so it is likely that this depth-3 reduction can be extended to all algebraically
closed fields.

The optimality of n
∈

n-size, in this reduction, is open. However, [KSS13] showed
that any decent reduction in this size bound would imply VNP ≥= VP.

7.2.2 The Width-2 Chasm

Here we look at
∏⎤

circuits over a matrix algebra. Though the model D =∏
i Li ,

with linear Li ⊆ R[x1, . . . , xn], seems innocuous at first sight, a closer look proves
the opposite! It can be shown fairly easily that a polynomial computed by a constant-
depth circuit (over a field) can as well be computed by a D over a 3 × 3 matrix
algebra [BC88]. On the other extreme, by taking R = Mn(F) we can compute the
determinant of a matrix in F

n×n [MV97], hence, arithmetic formulas (not general
circuits!) can be simulated in this model [Val79].

Perhaps surprisingly, [SSS09] showed that: A polynomialC computed by a depth-
3 circuit (over a field) can be “almost”1 computed by a D over a 2×2 matrix algebra.

1 We are able to compute only a multiple of C . However, the extra factor is simply a product of
poly-many linear polynomials. So, it suffices for PIT purposes.

136 N. Saxena

This, togetherwith the previous subsection,makes the
∏⎤

circuits over M2(F) quite
strong.

Say, wewant to express the depth-3 circuitC =⎤k
i=1 Ti in a 2×2matrix product.

First, we express a product Ti =∏d
j=1 βi, j as:

⎞
βi,1 0
0 1

⎠

· · ·
⎞

βi,d−1 0
0 1

⎠

·
⎞
1 βi,d

0 1

⎠

=
⎞

T ′i Ti

0 1

⎠

, where T ′i := Ti/βi,d .

Once we have such k 2× 2 matrices, each containing Ti in the (1, 2)th place, we
would like to sum the Ti ’s in a ‘doubling’ fashion (instead of one-by-one).

We describe one step of the iteration. Let

⎞
L1 L2 f
0 L3

⎠

and

⎞
M1 M2g
0 M3

⎠

be

encapsulating two intermediate summands f and g. With the goal of getting (a
multiple of) f + g we consider the following, carefully designed, product:

⎞
L1 L2 f
0 L3

⎠

·
⎞

L2M3 0
0 L1M2

⎠

·
⎞

M1 M2g
0 M3

⎠

=
⎞

L1M1L2M3 L2M3L1M2(f + g)

0 L3M3L1M2

⎠

After log k such iterations, we get a multiple of C in the (1, 2)-th entry of the final
2 × 2 matrix product. Note that the middle matrix, introduced in the LHS above,
potentially doubles (in the degree of the entry polynomials) in each iteration. Thus,
finally, D is a product of poly(d2log k) linear polynomials over M2(F). Thus, the size
blowup is only polynomial in going from depth-3 to width-2.

7.3 Faithful Morphisms, Hitting-Sets

In algebraic complexity the studyof certainmaps has been fruitful—homomorphisms
ϕ : R := F[x1, . . . , xn] ≤ F[y1, . . . , yk] =: R′ such that the algebraic ‘relation-
ship’ of certain polynomials { f1, . . . , fk} does not change in the image of ϕ. When
fi ’s are linear this boils down to a linear algebra question and we can easily design ϕ
in time poly(n) (hint: employ Vandermonde matrix). This business becomes compli-
cated when fi ’s are nonlinear. Then we have to ask how are fi ’s represented. If they
are given via monomials then we invoke the Jacobian criterion to design ϕ, but the
time complexity becomes exponential in k. Several variants of such faithful maps are
discussed in the Ph.D thesis [Mit13].We sketch the ideas behind two basicmaps here.

7 Progress on Polynomial Identity Testing-II 137

7.3.1 Bounded Fanin Depth-3 Blackbox PIT

Let C = ⎤
i⊆[k] Ti be a depth-3 circuit. When k is constant, C is naturally called

bounded fanin depth-3. This case of PIT has, by now, a rich history [DS07, KS07,
KS11, SS11, KS09, SS13, SS12]. Several new techniques have sprung up from this
model— a locally decodable code structure, a rank-preserving map via extractors,
Sylvester-Gallai configurations (higher dimensions and all fields) and rank bounds.
We will sketch here the main idea behind the poly-time blackbox PIT of bounded
fanin depth-3. The details are quite technical and could be seen in [SS13, SS12].

Vandermonde map We define a homomorphism �β , for a β ⊆ F, as:

∀i ⊆ [n], �β : xi
≤
k∑

j=1
βi j y j ,

and �β(α) = α for all α ⊆ F. This (naturally) defines the action of �β , on all
the elements of R, that preserves the ring operations. We have the following nice
property, as a consequence of [GR08, Lemma 6.1]:

Lemma 3.1 [�β preserves k-rank] Let S be a subset of linear forms in R with
rk(S) ∧ k, and |F| > nk2. Then ∗β ⊆ F, rk(ψβ(S)) = rk(S).

Intuitively,�β is faithful to any algebraic object involving the elements in span(S).
The proof of this lemma is by studying the coefficient-matrix of the linear polynomi-
als in S, and its change under�β . Thismap has a role to play in bounded fanin depth-3
owing to a certain structural theorem from [SS13]—certificate for a non-identity.

To discuss this certificate we need a definition, that of ‘paths’ of ‘nodes’ in C
(assumed to be nonzero). A path p with respect to an ideal I is a sequence of
terms {p1, p2, . . . , pb} (these are products of linear forms) with the following prop-
erty. Each pi divides Ti , and each pi is a ‘node’ of Ti with respect to the ideal
∩I, p1, p2, . . . , pi−1〉.2 So p1 is a node of T1 wrt I , p2 is a node of T2 wrt ∩I, p1〉,
etc.

Let us see an example of a path (∩0〉, p1, p2, p3) in Fig. 7.1. The oval bubbles
represent the list of forms in a product gate, and the rectangles enclose forms in a
node. The arrows show a path. Starting with the zero ideal, nodes p1 := x21 , p2 :=
x2(x2 + 2x1), and p3 := (x4 + x2)(x4 + 4x2− x1)(x4 + x2 + x1)(x4 + x2−2x1)
form a path. Initially, the path is just the zero ideal, so x21 is a node. Note how p2 is
a power of x2 modulo radsp∩p1〉, and p3 is a power of x4 modulo radsp∩p1, p2〉.

The non-identity certificate theorem [SS13, Theorem 25] states that for any non-
identity C , there exists a path p such that modulo ∩p〉, C reduces to a single nonzero
multiplication term.

2 By a node pi we mean that some nonzero constant multiple of pi is identical to a power-of-a-
linear-form modulo radsp∩I, p1, p2, . . . , pi−1〉, where radsp is the ideal generated by the set of all
the linear polynomials that divide p j , j ⊆ [i − 1] and the generators of I .

138 N. Saxena

T1 T2 T3

x 1

x 1

x 2

x 2 + 2x 1

x 3 + 10 x 1

x 3 − x 1

x 3 + 3 x 1

x 4 + x 2

x 4 + 4 x 2 − x 1

x 4 + x 2 + x 1

x 4 + x 2 − 2x 1

Fig. 7.1 Nodes and paths in C = T1 + T2 + T3 + · · ·

Theorem 3.2 (Certificate for a non-identity) Let I be an ideal generated by some
multiplication terms. Let C =⎤

i⊆[k] Ti be a depth-3 circuit that is nonzero modulo
I . Then ∗i ⊆ {0, . . . , k − 1} such that C[i]3 mod I has a path p satisfying: C ∅
α · Ti+1 ≥∅ 0 (mod I + ∩p〉) for some α ⊆ F

⇐.

The proof of this theorem involves an extension of Chinese remaindering to ideals
that are generated by multiplication terms. Once we have this structural result about
depth-3, observe that we would be done if we could somehow ensure Ti+1 /⊆ ∩p〉 (in
our application I is zero). How do we preserve this ideal non-membership under a
cheap map?

Notice that the rank of the set S0 of linear polynomials that divide the nodes in
the path p is <k (since path length is below k). Moreover, Ti+1 factors into at most d
linear polynomials, denote the set by S1. So if we apply a map that preserves the rank
of each of the d sets S0 ⇒ {β}, β ⊆ S1, then, intuitively, the ideal non-membership
should be preserved. As rk(S0 ⇒ {β}) ∧ k we can employ the previously discussed
map �β (over a field satisfying |F| > dnk2). This idea could be easily turned into a
proof; details are in [SS12].

Finally, whatwe have achieved is the construction of amap�β , in time poly(dnk),
that reduces the variables of C from n to k and preserves nonzeroness. Once this is
done, the poly(ndk) blackbox PIT follows from the brute-force hitting-set.

7.3.2 Depth ≥ 3 Results

Looking at the success of bounded fanin depth-3 one wonders about the analogous
depth-4 model:

C =
∑

i⊆[k]

∏

j⊆[d]
fi, j , where fi, j are sparse polynomials. (7.1)

3 We mean C[i] :=⎤
j⊆[i] Tj .

7 Progress on Polynomial Identity Testing-II 139

Here we are thinking of a bounded k. But now even k = 2 seems non-trivial! In fact,
a simpler PIT case than this is an old open question in a related area [vzG83].

This bounded top fanin depth-4 PIT is an important open question currently.
What is doable are other restricted models of depth-4. Inspired from the last sub-
section we ask: Is there a notion of ‘rank’ for general polynomials, are there easy
‘faithful’ maps, and finally is all this useful in PIT?

There are several notions of rank in commutative algebra. The one we [BMS13]
found useful is—transcendence degree (trdeg). We say that a set S of polynomials
{ f1, . . . , fm} ∞ F[x1, . . . , xn] is algebraically dependent if there exists a nonzero
annihilating polynomial A(y1, . . . , ym), over F, such that A(f1, . . . , fm) = 0. The
largest number of algebraically independent polynomials in S is called trdeg(S).
With this notion we call a homomorphism ϕ faithful if trdeg(S) = trdeg(ϕ(S)). The
usefulness of ϕ (assuming that one can come up with it efficiently) was first proved
in [BMS13]:

Lemma 3.3 (Faithful is useful) Let ϕ be a homomorphism faithful to f =
{ f1, . . . , fm} ∞ F[x]. Then for any C ⊆ F[y], C(f) = 0≈ C(ϕ(f)) = 0.

This implies that we can use a faithful map to ‘reduce’ the number of variables n
without changing the nonzeroness of C . The strategy can be used in cases where
trdeg(f) is small, say, smaller than a constant r .

The only missing piece is the efficiency of ϕ.4 To do this we need three funda-
mental ingredients—an efficient criterion for algebraic independence (Jacobian), its
behaviour under ϕ (chain rule), and standard maps (Vandermonde and Kronecker-
based).

Lemma 3.4 (Jacobian criterion) Let f ∞ F[x] be a finite set of polynomials of
degree at most d, and trdeg(f) ∧ r . If char(F) = 0 or char(F) > dr , then trdeg(f) =
rkF(x) Jx(f), where Jx(f) :=

⎡
∂ fi/∂x j

⎣
m×n is the Jacobian matrix.

There are several proofs of this, see [Jac41, For91, BMS13, MSS12]. This gives
us an efficient way to capture trdeg, when the characteristic is zero/large. Let us now
see how the Jacobian matrix changes under ϕ.

Lemma 3.5 (Chain rule) Jy(ϕ(f)) = ϕ (Jx(f)) · Jy(ϕ(x)), where ϕ applied to a
matrix/set refers to the matrix/set obtained by applying ϕ to every entry.

This is a simple consequence of the chain rule of ‘derivatives’. It suggests that
for ϕ to preserve the trdeg of the polynomials, we need to control—(1) the image
of the original Jacobian under ϕ, and (2) the Jacobian of the image of x. In our
applications, the former is achieved by a Kronecker-based map (i.e. sparse PIT
tricks, e.g. [BHLV09]) and the latter by Vandermonde map (as seen in the previous
subsection).

This general ‘recipe’ has been successfully implemented to various circuitmodels.
The case of the circuit C ′(x) := C(f), where trdeg(f) ∧ r and fi ’s are polynomials

4 It can be shown, from first principles, that a faithful r -variate map always exists [BMS13].

140 N. Saxena

of sparsity at most s, was worked out in [BMS13]. The proof follows exactly the
above strategy. The time complexity is polynomial in size(C ′) and (s · deg(C ′))r ,
where the exponential dependence comes from the sparsity estimate of Jx(f) (and
of course the final brute-force hitting-set for the r -variate ϕ(C ′)).

Agrawal et al. [ASSS12] extended the recipe to depth-4 circuits (7.1) where the
number of fi, j ’s where any variable appears is bounded by r.5 This model is called
occur-r depth-4; it generalizes the well-studied multilinear read-r depth-4. Interest-
ingly, slightly modified techniques also provided exponential lower bounds against
these special models. This required proving some combinatorial properties of the
derivatives of immanant (e.g. permanent, determinant).

The faithful maps recipe has been able to unify all the assorted poly-time hitting-
sets known. However, one drawback is that it needs the characteristic to be zero/large.
Baby steps in resolving that issue have been taken by [MSS12].

7.4 Rank Concentration, Shift, Hitting-Sets

The hitting-sets that we saw till nowwere for models where some parameter was kept
bounded. But we could also study models with a ‘structural’ restriction, e.g. mul-
tilinearity. This route has also been successful and enlightening. We call a depth-3
circuit C = ⎤

i Ti multilinear if the linear factors in Ti involve disjoint variables.
Hence, each product gate Ti induces a partition Pi on the variables (or indices) [n].
Moreover, we call C set-multilinear if these partitions are the same across all Ti ’s.

There is a large body of work on the set-multilinear model [RS05, AMS10, FS12,
FS13b, ASS13, FS13a, FSS13, AGKS13]. The motivation for this model is, on the
one hand, the algebraic concept of tensors, and, on the other hand, the interest in read-
once boolean branching programs [Nis92, IMZ12, Vad12]. Interestingly, [FSS13]
has shown (extending the ideas of [ASS13]) that the current situation in the arithmetic
world is exponentially better than that in the boolean one!

Here we will exhibit the key ideas of [ASS13] and [AGKS13] on two toy cases
that are already quite instructive; this saves us from the gory technical machinery
that drives the more general cases.

7.4.1 Multilinear ROABP

Agrawal et al. [ASS13] gave the first quasi-poly-time hitting-set for set-multilinear
depth-3 (and extensions to constant-depth, non-multilinear versions). This was gen-
eralized by [FSS13] to any depth; in fact, they dealt directly with the multilinear
ROABP D = ∏

i Li over Mw(F), where Li ’s are linear polynomials in disjoint
variables. Both the papers proved ‘low-support rank concentration’ in their models.

5 Note that this does not mean that trdeg(fi, j |i, j) is bounded.

7 Progress on Polynomial Identity Testing-II 141

For the following discussionwefix a base commutative ring R = Hw(F) called the
Hadamard algebra (instead of thew×wmatrix algebra). This is basically (Fk,+, �),
where + is the vector addition and � is the coordinate-wise vector product (called
the Hadamard product).
β-concentration. We say that a polynomial f ⊆ R[x1, . . . , xn] is β-concentrated if

rkF{coef f (xS) | S → [n], |S| < β} = rkF{coef f (xS) | S → [n]},

where coef f extracts a coefficient in f .
I.e. the coefficient-vectors of ‘lower’ monomials already span every possible

coefficient-vector in f . We are interested in studying whether circuits compute
an β-concentrated polynomial for small β (say, log n instead of n). By itself this
is not true, e.g. the trivial circuit D = x1 · · · xn is not even n-concentrated. But,
maybe we can transform f a bit and then attain (log n)-concentration? In this case,
D′ := D(x1 + 1, . . . , xn + 1) is suddenly 1-concentrated!

It was shown by [ASS13] that any D, above R, becomes (log k)-concentrated after
applying a ‘small’ shift; the price of which is nlog k time. Once we have this it directly
applies to the set-multilinear depth-3 model. Since, a depth-3 C =⎤

i⊆[k] Ti can be

rewritten as C = [1, . . . , 1] · D, where D =
⎜

⎟
⎨

T1
...

Tk

⎩

 is of the promised sort over

R = Hk(F) (since D completely factorizes into disjoint-variate linear polynomials).
So, β-concentration in D implies an easy way to check C for zeroness—test the
coefficients of the monomials below β-support in C .

Glimpse of a proof We now show how to achieve β-concentration, β = O(log k), in
the following toy model:

D =
∏

i⊆[n]
(1+ zi xi), where zi ⊆ Hk(F). (7.2)

Because of the disjointness of the factors it can be seen, as a simple exercise, that:
D is β-concentrated iff DS := ∏

i⊆S(1 + zi xi) is β-concentrated, for all S ⊆ ⎡[n]
β

⎣
.

Thus, from now on we assume, wlog, n = β.
Shift D by formal variables t, and normalize, to get a new circuit:

D′ =
∏

i⊆[β]
(1+ z′i xi), where z′i ⊆ Hk(F(t)).

We can express the new coefficients as:

z′i = zi/(1+ zi ti), ∀i ⊆ [β].

Conversely, we write:
zi = z′i/(1− z′i ti), ∀i ⊆ [β]. (7.3)

142 N. Saxena

We write zS for
∏

i⊆S zi . Now the goal is to ‘lift’ an F-dependence of zS’s to the
z′S ; which ultimately shows the condition on the shift that shall yield concentration.

Consider the 2β vectors {zS | S → [β]}. If β > log k then there is a nontrivial
linear dependence amongst these vectors, say,

∑

S→[β]
αSzS = 0, where αS ⊆ F.

Rewriting this in terms of z′S we get:

∑

S→[β]
αS ·

∏

i⊆S

z′i/(1− z′i ti) = 0.

Or,
∑

S→[β]
αS · z′S ·

∏

i⊆[β]\S

(1− z′i ti) = 0. (7.4)

Let us collect the ‘coefficient’ of z′[β] in the above expression. It comes out to,

∑

S→[β]
αS · (−1)|[β]\S| · t[β]\S . (7.5)

If we can ensure this expression to be nonzero then Eq. (7.4) tells us that z′[β]
is in the F(t)-span of the ‘lower’ z′S . But, ensuring the nonzeroness of Eq. (7.5) is
easy—use ti ’s such that all the (∧β)-support monomials tS are distinct. We can use
standard sparse PIT tricks [BHLV09] for this, in time poly(nβ).

What we have shown is that, after applying a Kronecker-based shift, the circuit
D becomes β-concentrated; all this in time nO(log k). This ‘recipe’ of studying the
generic shift, via some combinatorial properties of the ‘transfer’ equations (7.3), is
generalized in [ASS13] to other D; and further improved in [FSS13] to multilinear
ROABP. The latter use a ‘primal’ interpretation of the ‘transfer’ matrix and show
that the linear transformation– corresponding to a Kronecker shift together-with the
truncation of the high-support monomials –behaves like a rank-extractor.

It is not known how to design such hitting-sets, even for the toy case, in poly-time.

7.4.2 Towards Multilinear Depth-3

It is tantalizing to achieve β-concentration in multilinear depth-3 (before embarking
on the general depth-3!). A partial result in that direction was obtained in [AGKS13].
We will sketch their ideas in a toy model.

Consider a multilinear depth-3 circuit C with only two partitions being induced
by the product gates—P1 = {{1}, · · · , {n}} and an arbitrary partition P2. Say, the
number of the corresponding product gates is k1 respectively k2 (summing to k).

7 Progress on Polynomial Identity Testing-II 143

We can say, naturally, that P1 is a refinement of P2 (denoted P1 ∧ P2) because:
For every color (or part) S ⊆ P2 there exist colors in P1 whose union is exactly S.
In this refinement situation [AGKS13] showed that, again, a suitable shift in the

∏⎤

circuit D (corresponding to C) achieves β-concentration in time poly(nlog k).

Glimpse of a proof We can assume P2 different from P1, otherwise this case is
no different from the last subsection. We assume that the first k1 product gates in
C = ⎤

i⊆[k] Ti respect P1 and the rest k2 respect P2. The corresponding circuit

D where we desire to achieve concentration is D =
⎜

⎟
⎨

T1
...

Tk

⎩

 over R = Hk(F).

But now the linear factors of D are not necessarily in disjoint variables. Example⎞
x1x2

x1 + x2

⎠

=
(

x1 +
⎞
0
1

⎠

· x2

)

·
(⎞

0
1

⎠

+
⎞
1
0

⎠

· x2

)

over H2(F).

To get some kind of a reduction to the set-multilinear case, we prove rank
concentration in parts. First, we consider those monomials (called P1-type) that
could only be produced by the ‘upper’ part of D (i.e. the first k1 product gates
of C). Such a monomial, say indexed by S → [n], is characterized by the presence
of i, j ⊆ S that are in the same color of P2. For a fixed such i, j we can “access”
all such monomials by the derivative ∂2D/∂xi∂x j =: ∂i, j D. Notice that this dif-
ferentiation kills the ‘lower’ part of D and only the P1-part remains. So, we can
prove (2+ log k1)-concentration in the monomials containing i, j as in Sect. 7.4.1.
This proves O(log k1)-concentration in the monomials of P1-type.

Next, we want to understand the remaining monomials (called P2-type); those
that could be produced by the ‘lower’ part of D (i.e. the last k2 product gates of C).
These, obviously, could also be produced by the upper part of D. Let us fix such a
monomial, say x1 · · · xβ. Assume that S1, . . . , Sβ ⊆ P2 are the colors that contain
one of the indices 1, . . . , β. Consider the subcircuit Dβ that in its i-th coordinate,
∀i ⊆ [k], simply drops those factors of Ti that are free of the variables S1 ⇒ · · · ⇒ Sβ.
The problem here is that Dβ may be a ‘high’ degree circuit (∃ n instead of β) and so
we cannot use a proof like in Sect. 7.4.1.

But, notice that all the degree-(↔ β) monomials in Dβ are P1-type; where we
know how to achieve β-concentration. So, we only have to care about degree-(∧β)
P2-type monomials in Dβ. There, again, (log k)-concentration can be shown using
Sect. 7.4.1 and the well-behaved transfer equations.

This sketch, handling two refined partitions, can be made to work for significantly
generalized models [AGKS13]. But, multilinear depth-3 PIT is still open (nothing
better than exponential time known).

Remark 4.1 Using a different technique [AGKS13] also proves constant-
concentration, hence designs poly-time hitting-sets, for certain constant-width
ROABP.Thesemodels are arithmetic analogs of thebooleanones—width-2 read-once
branching programs [AGHP92, NN93] and constant-width read-once permutation
branching programs [KNP11].

144 N. Saxena

7.5 Open Ends

The search for a strong enough technique to study arithmetic circuits continues.
We collect here some easy-to-state questions that interest us.
Top fanin-2 depth-4 Find a faithful mapϕ that preserves the algebraic independence
of two products-of-sparse polynomials

∏
i fi and

∏
j g j . If we look at the relevant

2× 2 Jacobian determinant, say wrt variables X := {x1, x2}, then the question boils
down to finding a hitting-set for the special rational function

⎤
i, j

detJX (fi ,g j)

fi g j
. Can

this version of rational sparse PIT be done in subexponential time?
Independence overFp Currently, there is no subexponential timealgorithm/heuristic
known to test two given circuits for algebraic independence over a ‘small’ finite field
Fp. The reason is that something as efficient as the Jacobian criterion is not readily
available, see [MSS12].
Model in Eqn (7.2) Find a poly-time hitting-set for this simple model. Note that a
poly-time whitebox PIT is already known [RS05].
Multilinear depth-3 Achieve o(n)-concentration in multilinear depth-3 circuits, in
no(n) time. Here, the presence of an exponential lower bound against the model
[RY09] is quite encouraging.

References

[AGHP92] N. Alon, O. Goldreich, J. Håstad, R. Peralta, Simple construction of almost k-wise
independent random variables. Random Struct. Algorithms 3(3), 289–304 (1992).
(Conference version in FOCS 1990)

[AGKS13] M. Agrawal, R. Gurjar, A. Korwar, N. Saxena, Hitting-sets for low-distance multilinear
depth-3. Electron. Colloquium Comput. Complex. 20, 174 (2013)

[Agr05] M. Agrawal, in Proving lower bounds via pseudo-random generators, Proceedings
of the 25th Annual Foundations of Software Technology and Theoretical Computer
Science (FSTTCS, 2005), pp. 92–105

[Agr06] M. Agrawal, Determinant versus permanent, Proceedings of the 25th International
Congress of Mathematicians (ICM), vol. 3 (2006), pp. 985–997

[AMS10] V. Arvind, P. Mukhopadhyay, S. Srinivasan, New results on noncommutative and com-
mutative polynomial identity testing. Comput. Complex. 19(4), 521–558 (2010). (Con-
ference version in, CCC 2008)

[AS09] M. Agrawal, R. Saptharishi, Classifying polynomials and identity testing. Indian Acad.
Sci. P1, 1–14 (2009). Platinum Jubilee

[ASS13] M. Agrawal, C. Saha, N. Saxena, in Quasi-polynomial hitting-set for set-depth-� for-
mulas (STOC, 2013), pp. 321–330

[ASSS12] M. Agrawal, C. Saha, R. Saptharishi, N. Saxena, in Jacobian hits circuits: hitting-sets,
lower bounds for depth-D occur-k formulas & depth-3 transcendence degree-k circuits
(STOC, 2012), pp. 599–614

[AV08] M. Agrawal, V. Vinay, in Arithmetic circuits: a chasm at depth four. (FOCS, 2008),
pp. 67–75

[BC88] M. Ben-Or, R. Cleve, in Computing Algebraic Formulas Using a Constant Number of
Registers (STOC, 1988), pp. 254–257

[BHLV09] M. Bläser, M. Hardt, R.J. Lipton, N.K. Vishnoi, Deterministically testing sparse poly-
nomial identities of unbounded degree. Inf. Process. Lett. 109(3), 187–192 (2009)

7 Progress on Polynomial Identity Testing-II 145

[BMS13] M. Beecken, J. Mittmann, N. Saxena, Algebraic independence and blackbox identity
testing. Inf. Comput. 222, 2–19, (2013). (Conference version in ICALP 2011)

[CKW11] X. Chen, N. Kayal, A. Wigderson, Partial Derivatives in Arithmetic Complexity (and
beyond). Found. Trends Theor. Comput. Sci. 6(1–2), 1–138 (2011)

[DS07] Z. Dvir, A. Shpilka, Locally decodable codes with two queries and polynomial identity
testing for depth 3 circuits. SIAM J. Comput. 36(5), 1404–1434 (2007). (Conference
version in STOC 2005)

[Fis94] I. Fischer, Sums of like powers of multivariate linear forms. Math. Mag. 67(1), 59–61
(1994)

[For91] K. Forsman, Constructive commutative algebra in nonlinear control theory, Ph.D. the-
sis, Dept. of Electrical Engg., Linköping University, Sweden, 1991

[FS12] M.A. Forbes, A. Shpilka, in On identity testing of tensors, low-rank recovery and
compressed sensing (STOC, 2012), pp. 163–172

[FS13a] M.A. Forbes, A. Shpilka, Explicit Noether Normalization for Simultaneous Conjuga-
tion via Polynomial Identity Testing, APPROX-RANDOM, 2013, pp. 527–542

[FS13b] M.A. Forbes,AShpilka, inQuasipolynomial-time Identity Testing of Non-Commutative
and Read-Once Oblivious Algebraic Branching Programs (FOCS, 2013)

[FSS13] M.A. Forbes, R. Saptharishi, A. Shpilka, Pseudorandomness for multilinear read-once
algebraic branching programs, in any order. Electron. Colloquium Comput. Complex.
20, 132 (2013)

[GKKS13] A. Gupta, P. Kamath, N. Kayal, R. Saptharishi, in Arithmetic circuits: a chasm at depth
three (FOCS, 2013)

[GR08] A. Gabizon, R. Raz, Deterministic extractors for affine sources over large fields. Com-
binatorica 28(4), 415–440 (2008). (Conference version in FOCS 2005)

[HS80] J. Heintz, C.-P. Schnorr, in Testing Polynomials which Are Easy to Compute (Extended
Abstract) (STOC, 1980), pp. 262–272

[IMZ12] R. Impagliazzo,R.Meka,D. Zuckerman, inPseudorandomness from shrinkage (FOCS,
2012), pp. 111–119

[Jac41] C.G.J. Jacobi, De determinantibus functionalibus. J. Reine Angew. Math. 22(4), 319–
359 (1841)

[KI04] V. Kabanets, R. Impagliazzo, Derandomizing polynomial identity tests means proving
circuit lower bounds. Comput. Complex. 13(1–2), 1–46 (2004). (Conference version
in STOC 2003)

[KNP11] V. Kabanets, R. Impagliazzo, Derandomizing polynomial identity tests means proving
circuit lower bounds. Comput. Complex. 13(1–2), 1–46 (2004). (Conference version
in STOC 2003)

[Koi12] P. Koiran, Arithmetic circuits: The chasm at depth four gets wider. Theor. Comput. Sci.
448, 56–65 (2012)

[KS07] N.Kayal,N. Saxena, Polynomial identity testing for depth 3 circuits.Comput.Complex.
16(2), 115–138 (2007). (Conference version in, CCC 2006)

[KS09] N. Kayal, S. Saraf, in Blackbox polynomial identity testing for depth-3 circuits (FOCS,
2009), pp. 198–207

[KS11] Z.S. Karnin, A. Shpilka, Black box polynomial identity testing of generalized depth-3
arithmetic circuits with bounded top fan-in. Combinatorica 31(3), 333–364 (2011).
(Conference version in, CCC 2008)

[KSS13] N. Kayal, C. Saha, R. Saptharishi, A super-polynomial lower bound for regular arith-
metic formulas. Electron. Colloquium Comput. Complex. 20, 91 (2013)

[Mit13] J. Mittmann, Independence in Algebraic Complexity Theory, Ph.D. thesis,
Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-
Universität Bonn, Germany, Dec 2013

[MSS12] J. Mittmann, N. Saxena, P. Scheiblechner, Algebraic independence in positive
characteristic—A p-adic calculus. Electron. Colloquium Comput. Complex. TR12-
014 (2012). (accepted in Trans. Amer. Math. Soc. 2013)

146 N. Saxena

[Mul11] K. Mulmuley, On P versus NP and geometric complexity theory: dedicated to Sri
Ramakrishna. J. ACM 58(2), 5 (2011)

[Mul12a] K.Mulmuley,Geometric Complexity Theory V: Equivalence between Blackbox Deran-
domization of Polynomial Identity Testing and Derandomization of Noether’s Normal-
ization Lemma (FOCS, 2012), pp. 629–638

[Mul12b] K. Mulmuley, The GCT program toward the P versus NP problem. Commun. ACM
55(6), 98–107 (2012)

[MV97] M. Mahajan, V. Vinay, Determinant: combinatorics, algorithms, and complexity.
Chicago J. Theor. Comput. Sci. 5, 730–738 (1997). (Conference version in SODA
1997)

[Nis92] N. Nisan, Pseudorandom generators for space-bounded computation. Combinatorica
12(4), 449–461 (1992). (Conference version in STOC 1990)

[NN93] J. Naor, M, Naor, Small-bias probability spaces: efficient constructions and applica-
tions. SIAM J. Comput. 22(4), 838–856 (1993). (Conference version in STOC 1990)

[RS05] R. Raz, A Shpilka, Deterministic polynomial identity testing in non-commutative mod-
els. Comput. Complex. 14(1), 1–19 (2005). (Conference version in, CCC 2004)

[RY09] R. Raz, A. Yehudayoff, Lower bounds and separations for constant depth multilinear
circuits. Comput. Complex. 18(2), 171–207 (2009). (Conference version in, CCC2008)

[Sap13] R. Saptharishi, Unified Approaches to Polynomial Identity Testing and Lower Bounds,
Ph.D. thesis, Department of CSE, IIT Kanpur, India, Apr 2013

[Sax08] N. Saxena, Diagonal circuit identity testing, lower bound. ICALP 1, 60–71 (2008)
[Sax09] N. Saxena, Progress on polynomial identity testing. Bull. EATCS 90, 49–79 (2009)
[SS11] N. Saxena, C. Seshadhri, An almost optimal rank bound for depth-3 Identities. SIAM

J. Comput. 40(1), 200–224 (2011). (Conference version in, CCC 2009)
[SS12] N. Saxena, C. Seshadhri, Blackbox identity testing for bounded top-fanin depth-3 cir-

cuits: the field doesn’t matter. SIAM J. Comput. 41(5), 1285–1298 (2012). (Conference
version in STOC 2011)

[SS13] N. Saxena, C. Seshadhri, From Sylvester-Gallai configurations to rank bounds:
Improved blackbox identity test for depth-3 circuits. J. ACM 60(5), 33 (2013). (Con-
ference version in STOC 2010)

[SSS09] C. Saha, R. Saptharishi, N. Saxena, in The Power of Depth 2 Circuits over Algebras
(FSTTCS, 2009), pp. 371–382

[SY10] A. Shpilka, A. Yehudayoff, Arithmetic Circuits, A survey of recent results and open
questions. Found. Trends Theor. Comput. Sci. 5(3–4), 207–388 (2010)

[Tav13] S. Tavenas, in Improved Bounds for Reduction to Depth 4 and Depth 3 (MFCS, 2013),
pp. 813–824

[Vad12] S.P. Vadhan, Pseudorandomness. Found. Trends Theor. Comput. Sci. 7(1–3), 1–336
(2012)

[Val79] L.G. Valiant, in Completeness classes in algebra (STOC, 1979), pp. 249–261
[VSBR83] L.G. Valiant, S. Skyum, S.J. Berkowitz, C. Rackoff, Fast parallel computation of poly-

nomials using few processors. SIAM J. Comput. 12(4), 641–644 (1983)
[vzG83] J. von zur Gathen, Factoring Sparse Multivariate Polynomials (FOCS, 1983),

pp. 172–179

Chapter 8
Malod and the Pascaline

Bruno Poizat

Presented to Somenath Biswas on
the occasion of his 60th birthday

Abstract Wemake explicit the central role played by the binomial coefficients in the
description of the coefficient-function of a polynomial computed in polynomial time
(no bound on the degree), following the works of Guillaume Malod. Our results are
obtained with the help of a universal polynomial which is simpler than the one used
by Malod. As a corollary, with the help of a result of Peter Bürgisser, we establish
in characteristic zero a connection between Leslie Valiant’s question VNP = ?VP
(bounded degree) and its unbounded degree version, generalizing what Malod had
previously done in finite characteristic.

Keywords Complexity · Polynomials · Summations

8.1 Polynomials, Functions and Arithmetic Circuits

We compute polynomials, in several variables, with integer coefficients. For that, we
consider arithmetic circuits, with input gates labeled either by a variable or by the
constant−1; the other gates are binary (they receive two arrows) and perform either

GuillaumeMalod defended his doctorate in 2003 in Lyon; he visited Kanpur as a participant to a
cooperation program between IITK andClaude BernardUniversity. Blaise Pascal (1623–1662),
philosopher, mathematician and physicist; he discovered the recurrence relation between the
binomial coefficients (“Triangle de Pascal”), and invented the Pascaline, a mechanical device
performing arithmetic operations.

B. Poizat (B)

Institut Camille Jordan, Université Claude Bernard,
43, boulevard du 11 novembre 1918, 69622 Villeurbanne-cedex, France
e-mail: poizat@math.univ-lyon1.fr

M. Agrawal and V. Arvind (eds.), Perspectives in Computational Complexity, 147
Progress in Computer Science and Applied Logic 26, DOI: 10.1007/978-3-319-05446-9_8,
© Springer International Publishing Switzerland 2014

148 B. Poizat

an addition or a multiplication; there is only one output gate, where is obtained the
polynomial computed by the circuit.

The size of the circuit is the number of its operation gates, and the complexity of
a polynomial is the minimal size of a circuit computing it. We note that, contrarily
to a widely admitted convention in Valiant’s style calculus, we do not consider that
the constants are given for free: under our convention, if a big integer N is needed
for the computation of a polynomial f , the number of steps necessary to obtain N
starting from the constant −1 should be included in the complexity of f .

A polynomial of complexity c has at most c + 1 variables; its degree is bounded
by 2c; it is the sum of less than 2c(c+1) monomials, whose coefficients are integers
with absolute value bounded by 22

c
. For more details on circuits you may consult

[Poi95] or [Bür00], and the survey chapter of Meena Mahajan in this volume.
A special kind of circuits are the terms (some say formulae), of an arborescent

nature, in which each gate is allowed to throw only one arrow. The degree of a
polynomial computed by a term of size c is bounded by c + 1, and its coefficients
are bounded by 2c. The termic complexity of a polynomial is the minimal size of a
term which computes it.

Thank to the parallelization lemma of [MP76], terms correspond to computations
in logarithmic depth: an (arithmetic) term of size c can be replaced by an equivalent
circuit (or term!) of depth O(log c), computing the same polynomial.

We also consider functions, which by definition are applications from {0, 1}n into
Z; a function is boolean if it takes its values in {0, 1}. It is easily seen that any function
is the restriction to {0, 1}n of somepolynomialwith integer coefficients, andwedefine
the complexity of the function as the minimal complexity of such a polynomial, that
is, as theminimal size of an arithmetic circuit computing the functionwhenwe restrict
its entry variables to the≥ boolean∗ values 0 and 1. This gives a fair evaluation of
the usual complexity of a boolean function since, on one hand, one can consider the
arithmetic circuit modulo 2, and on the other addition and multiplication modulo 2
can be simulated in characteristic zero by x + y − 2 · x · y and x · y, respectively.
This is also the case for termic complexity, thanks to parallelization.

We use letters like x, y, z, . . . to denote the variables in our polynomials; letters
like u, v, w, . . . are used for boolean variables, that is, variables that are assumed
to take only the values 0 and 1.

8.2 Two Functions, Pascaline and Factorial

To avoid a conflict between french and english notations, we denote by C(m, n)

the number of subsets with n elements of a set with m elements. The n’th instance
of the Pascaline is the following function, depending of 2n + 2 boolean variables:
Pascn(u0, . . . , un; v0, . . . , vn) = C(U, V), where U and V are the two numbers
whose developments in binary figures are respectively u and v; in other words,
U = u0 + 2 · u1 + · · · + 2n · un and V = v0 + 2 · v1 + · · · + 2n · vn .

We consider also the Factorial, which is defined by: Factn(u0, . . . , un) = U !.

8 Malod and the Pascaline 149

These numbers are admittedly big, but their size (they are twice exponential) is not
in itself an obstacle to a polynomial complexity. Nevertheless, it seems very unlikely,
or at least highly unwishable, that they be computable in a polynomial number of
steps, since this would provoke a cryptographic tsunami.

Let us first observe that, if the Pascaline has a polynomial complexity, the same
is true of the Factorial. Indeed, from the identity (2 · U)! = C(2 · U, U) · (U !)2
we deduce the following induction formula: Factn(u0, u1, . . . , un) = (1 + u0(u1 ·
2+ · · · + un · 2n)) · Cn(0, u1, . . . , un; u1, . . . , un, 0) · (Factn−1(u1, . . . , un)2).

In the other direction, it is not clear that a fast computation for the Factorial would
provide the same for the Pascaline, in the absence of division.

If the Factorial were easy to compute, then factorization would be possible using
the following well-known algorithm: consider two positive integersU < V , given in
figures; compute U ! modulo V , and gcd(U !, V): this decides whether or not V has
a factor smaller than U ; in a small number of steps we localize the smallest factor of
V , and finally discompose it.

We also consider two boolean functions, depending on some more boolean vari-
ables, which are the Pascaline and the Factorial in figures, defined by:

Pascfign(u0, . . . , un; v0, . . . , vn;w0, . . . , wn) = the W ⊆ digit of the representa-
tion of Pascn(u0, . . . , un; v0, . . . , vn) in base 2, where W = w0 + 2 · w1 + · · · +
2n · wn

Factfign(u0, . . . , un;w0, . . . , wn+log(n)) = the W ⊆ digit of Factn(u0, . . . , un)

These two (sequences of) functions belong to PSPACE. The best argument for
that is that every sequence of boolean functions appearing in an algorithmic con-
text belongs to PSPACE, unless it is manufactured to be a counter-example; for
something more formal, you may consult this time [Poi08] or [Bür09].

8.3 Polynomials as Sums of Monomials

A Valiant summation is an expression of the form:

f (x1, . . . , xn) =
∑

u boolean

ϕ(u0, . . . , um; x1, . . . , xn)

where ϕ is a polynomial in which we have separated the variables into two blocks.
This summation of exponentially many terms should have an explosive effect on the
complexity of polynomials, but this is an open question, We define theχ-complexity
of f as the minimal complexity of ϕ. It seems unlikely that the Pascaline be of
polynomial χ-complexity, but this fact, if false, should be hard to refute since it is
implied by P=PSPACE (the Pascaline is obtained from the Pascaline in figures by
a summation; see below the details on the exponential polynomial).

If it were true, it is not clear that it would imply a low χ-complexity for
the Factorial, because the induction formula contains a square; the Fubini for-

mula
(∑

u ϕ(u)
)
·
(∑

v ψ(v)
)
= ∑

u,v ϕ(u) · ψ(v) is valid only if the tuples of

150 B. Poizat

variables u and v are disjoint; in case of a squaring,
(∑

u ϕ(u)
)2 =∑

u,v ϕ(u)·ϕ(v),

so that the computation ofϕmust be done twice: whenwe repeat n times, we explode.
Similarly, we can define the β-complexity, replacing summations by productions; it
is equally unclear if the Pascaline, as the Factorial, has a polynomial β-complexity.

A polynomial is the sumof itsmonomials. This basic truth explains the importance
of summations. Let us first define exponential as the following polynomial, where
y = (y0, . . . , ym):

x y = (y0 · x+1− y0) · (y1 · x2+1− y1) · · · (yi · x2i +1− yi) · · · (ym · x2m +1− ym)

Observe that if we give boolean values to y, then xu = xU , where U is the integer
U = u0 + 2 · u1 + · · · + 2n · un . In these conditions, a polynomial f (x) depending
of n variables of degree at most 2m can be written as:

f (x) =
∑

u

Cf(u1; . . . ; un) · x
u1
1 . . . x

un
n

where Cf(u) is a function depending of m · n boolean variables, that we call the
coefficient-function of f (x).

Since polynomials correspond bijectively to their coefficient-functions, it is tempt-
ing to establish a correlation between the complexities of these two kinds of objects.
It is easy to bound the complexity of x y by 6m, so that a polynomial χ-complexity
for the coefficient-function implies a polynomial χ-complexity for the polynomial.
What about the other direction? We shall see that the Pascaline plays a crucial role
in this question.

8.4 Operations on the Polynomials and their Effect
on the Coefficient-Functions

Given a polynomial f (y, x), what is the effect of a projection, i.e., of the substitution
of some of the variables by constants, on the coefficient-function? When we replace
the variable y by the constant a, how do we obtain the coefficient-function of g(x) =
f (a, x) from the coefficient-function of f (y, x)? We must reconstruct partially the
polynomial: if we note v the boolean variables describing the degree of the variable y,
and leave the others in the dark, Cg =∑

v Cf(v) · av . The substitution has therefore
only a polynomial effect on the χ-complexity of the coefficient-functions.

This is not the case of the termic χ-complexity, since the exponential involves
a2n

which is obtained by a succession of n squarings. Fortunately enough, there are
three integers whose powers remain at a reasonable distance:

• a = 0; Cg is the constant term, Cg = Cf(0)
• a = 1; all the powers are equal to 1, Cg =∑

v Cf(v)

• a = −1; we change the sign according to parity, Cg =∑
v(1− 2v0) · Cf(v)

8 Malod and the Pascaline 151

We have no increase of χ-complexity, even termic, in the first two cases, and a
minuscule one in the third. Similarly, whenwe reconstruct a polynomial with boolean
variables, satisfying un = u when n > 0, there is no need to rise them to powers,
so that a summation will have only a benign effect on the χ-complexity, and on the
termic χ-complexity, of the coefficient-functions.

We note in passing, although we shall not use this kind of operations, that replace-
ments of variables also have a mild effect: for instance, when we substitute z to x and
y in f (x, y), to obtain g(z) = f (z, z),Cg(w) = ∑

u,v S(u, v, w) · Cf(u, v), where
S is an easily computable boolean function taking the value 1 if W = U + V , and
0 if not.

There is a similar formula for the product of two polynomials, so that the
coefficient-function of a polynomial computed by a circuit of size c will be com-
puted by a circuit of comparable size with summation gates deeply buried in it; but in
general there is no known way to drag smoothly these summation gates at the output
of the circuit (this is possible when the circuit is multiplicatively disjoint; see the
definition in Sect. 8.6). Circuits with summation gates define VPSPACE, the analog
for polynomials of PSPACE for boolean functions: this is the only class above the
class VNPmd0 (that will be defined in Sect. 8.6) that we are certain to be closed
by taking coefficient-functions; for the details, see [Poi08]; see also [KP07] for an
approach of the class VPSPACE via coefficient-functions in figures.

Now the Pascaline again. Consider the polynomial b(x, y) = (1 + x)y = (y0 ·
(1+x)+1− y0)·· · ··(yn ·(1+x)2

n+1− yn), whose complexity is less than 6(n+1).
Giving to y a boolean value w, by identification in the binomial formula (1+ x)w =
∑

v≤w Pascn(w; u) · xu we obtain Pascn(w, u) =∑
v0,...,vn

Cb(u, v0, . . . , vn) ·wv0
0 ·

· · · · wvn
n , so that we have an easy polynomial bound of the χ-complexity of the

Pascaline in function of the χ-complexity of the coefficient-function of b(x, y).
Note in passing that such a simple operation as the substitution of x by 1 + x may
have a drastic effect on the complexity of the coefficient-function.

In conclusion, if theχ-complexity of the coefficient-function can be polynomially
bounded in function of theχ-complexity of the polynomial, then the Pascaline has a
polynomial χ-complexity; to establish the reciprocal, we shall construct in the next
section a universal polynomial whose coefficient-function has a simple expression
in function of the Pascaline.

Remark Since b(x, y) is a product, its coefficient-function can be expressed as a
summation from the coefficient-functions of the factors. This give an expression,
with a summation, of the Pascaline in function of �n(v) = C(2n, V): the Pascaline
has a polynomial χ-complexity iff this is true also for this function. There is no
mystery in this reduction: it is closely related to the formulaC(U1+ · · · + Uk, V) =∑

V1+ ···+Vk=V C(U1, V1)·· · ··C(Uk, Vk),whichgeneralizesPascal’sTriangle. There
is no apparent induction on V leading to a computation of the Pascaline with the help
of the constants C(2i , 2 j).

152 B. Poizat

8.5 A Universal Polynomial

We consider the polynomial Pn depending of n(n2 − 1)/6 variables xi jk , where
0 ≤ k < j < i ≤ n, which is defined by the following induction:

P0 = P1 = 1

Pn(. . . xi jk, . . .) =
∑

{(i, j)|0≤ j<i<n}
xni j · Pi · Pj

We say that n is the head of the variable xni j , and that i and j are its tails.
This polynomial, of complexity less than n3/2, is able to simulate any circuit of

size less than n/4 just by replacing some of its variables by 0, 1 or −1. To see that,
we consider circuits as straight line programs, that is, we order their gates in such a
way that each operation gate receive its two arrows from anterior gates. If we want
that Pi simulate an input gate labeled by the variable xi10, we equate all the other
variables of head i to 0. If we want to simulate the product of Pj and Pk , where
1 < k < j < i , we equate xi jk to 1 and the other variables of head i to 0. If we
want to simulate the addition of Pj and Pk , where 1 < j < i and 1 < k < i , we
equate xi j1 and xik0 to 1, and the other variables of head i to 0. The only constraint
in the simulation is that we cannot multiply directly a gate by itself: we must before
duplicate it by a neutral operation, such that a multiplication by 1, tripling (yes) the
size of the circuit; note that the entry gates count in the length of the straight line
program, but not in the size of the circuit: all this explains the bound n/4.

There is no need to make substitutions of variables, since we can assume that, in
a circuit, the variables are associated injectively to the input gates; but of course one
of the variable has to be replaced by −1.

Let us now evaluate the coefficient-function of Pn . When we develop brutally Pn ,
just by distributing the product on the sum, we express it has the sum of a twice
exponential family of products of variables that we call arborescent monomials; the
actual expression of Pn as a sum of monomials is obtained by grouping together
the arborescent monomials corresponding to a same monomial, those which have
the same degree in each of the variables.

The arborescent monomials are obtained as follows: we start from a variable xni j

whose head is n, then we multiply it by a variable of head i and a variable of head j
(if possible, that is if i > j ∈ 2), and repeat the process till we reach at the extremity
of every branch a terminal variable xk01; when the small tail is 0 or 1, but not the big
one, there is only one variable that follows.

In the following example, for n = 6, we do not write the x’s, but only their
indexes; the monomial associated to this arborescent monomial is:

654.540.(432)2.321.310.(210)3.

8 Malod and the Pascaline 153

The condition for a monomial, given by the expansion in figures of the degree of each
of the variables, to be associated to an arborescent monomial is easily determined:
the largest index n must appear only once, and in head position, and all the others
i , n > i ∈ 2, must appear as many times in head position than in tail position.
This condition can be expressed by a boolean function of the degrees of low termic
complexity, taking thevalue1when satisfied and0 if not; let us call it the compatibility
condition.

To check that this condition is sufficient, we observe that, before placing the
variables of head i , we can place the variables of head bigger than i ; this done,
we can add to the tree the variables of head i , since the number of tail position
corresponds, and then the variables of tail i − 1, etc.

For instance, in the example above there is only one second arborescent monomial
giving the same monomial (therefore the coefficent of this monomial is 2), the only
degree of freedom being the choice for the placement of the two variables with head
3. This second arborescent monomial is:

310
↗

540 → 432
↘

↗ 210

654
321 → 310

↘ ↗
432

↘
210

To compute the coefficient-function of Pn , we must count how many arborescent
monomials are produced by a given monomial. If we note Ci the number of ways to
place the variables of head i once the variables of bigger head are placed, number
that is independent of the anterior (and posterior) placements, then the coefficient of

154 B. Poizat

the monomial will be the product of the Ci : this is only a matter of matching heads
and tails.

To compute Ci , let us note k the number of occurencies of i as tail; k is less than
2n . The variables with head i are splitted in s sorts of respective degrees k1, . . . , ks ,
and k = k1 + · · · + ks ; s is smaller than i(i − 1)/2. We must choose the k1 i’s in
tail position that will be followed by a variable of the first kind, making C(k, k1)
choices; then we must affect the variables of the second sort, making C(k − k1, k2)
choices, and so on. Taking into account the fact that C(0, 0) = 1, which permits the
neutralization of certain binomials coefficients, we see that Ci is expressible as the
product of i(i − 1)/2 pascalines of size n, whose arguments are numbers in figures
easily computable from the degrees: they have a polynomial term complexity.

In short, the coefficient-function of Pn is expressible as the product of the com-
patibility condition and of less than n3/6 ∈∑

i(i − 1)/2 pascalines of size n.
Since the coefficient-function of a polynomial of complexity n is obtained by the

following operations from the coefficient-function of P4n : equating to 0 the vari-
ables representing the degrees of the variables that we replace by 0, summing over
the degrees of the variables that we replace by 1 or −1 (after a small multiplication
concerning the unique variable that we replace by −1), it is now clear that if the
Pascaline has a polynomial χ-complexity, then the χ-complexity of the coefficient-
function of an arbitrary polynomial is polynomially bounded in function of the
χ-complexity of the polynomial.

8.6 A Short Review of Malod’s Thesis

We shall further on follow a common (and vicious) tendency, to which we have
resisted till now, to express complexity hypothesises with the help of sequences of
polynomials, or functions, with asymptotic properties. We adopt the notations of
[Mal03, Mal07].1

VPnb0 denotes the class of sequences of polynomials whose complexity is poly-
nomially bounded; V is for Valiant, P for polynomial time, nb indicates that there is
no bound on the degree of the polynomials in the sequence, and 0 indicates that−1 is
the only constant that is used in the computations. Note that the class is nonuniform:
a sequence of boolean functions is in VPnb0 if and only if it is in P/poly.2

VNPnb0 is the class of sequences of polynomials which are obtained by a sum-
mation from a sequence in VPnb0; the letter N, which is not a fortunate choice, has
been introduced in this context by Valiant as an analogy with the class NP. We have
shown that VNPnb0 is closed by taking the coefficient-functions if and only if the
Pascaline belongs to it.

1 We have resisted to a crave for changing them!.
2 It is customary in Valiant’s calculus to use nonuniform classes, based on circuit size; were we
insist on uniformity for their Boolean counterparts, we could uniformise the Valiant’s classes as
well; but for what concerns us here, uniformity would play only a decorative role.

8 Malod and the Pascaline 155

The classes VP and VNP in general use by Valiant and his followers differs from
them by two aspects: on one hand, there is a polynomial bound on the degree of the
polynomials in the sequence; on the other, the entries of the circuits may be labeled
by arbitrary constants, living in an unprecised loka (integers are not always sufficient,
since the inversion of 2 is essential in the celebrated proof of the universality of the
Permanent).

Various devices have been invented preventing a circuit to produce a polynomial
of exponential degree, but the truly adequate one has been defined byMalod: a circuit
is multiplicatively disjoint if each of its multiplication gates receives its two arrows
from disjoint subcircuits (note that a term is both additively and multiplicatively
disjoint). Amultiplicatively disjoint circuit of size c produces a polynomial of degree
at most c, and in fact, when we allow arbitrary gratuitous constants, the class VP is
equal to the class VPmd of sequences of polynomials with a polynomially bounded
md-complexity (the first step of the reduction uses a computation by homogeneous
parts, renouncing to any control on the constants; see the details in [MP06, MP08]).

We shall use the classVPmd0 of sequences computed bymultiplicatively disjoint
circuits of polynomial size, using only the constant−1, and also its termic analogue
VPt0; it is not known if VPt0 is a proper subclass of VPmd0, but terms and md-
circuits are equivalent in the presence of summations; in other words VNPmd0 =
VNPt0; this last class is closed under taking coefficient-functions.

To study the unbounded case, Malod constructs a universal polynomial whose
coefficient-function is computable provided that the Pascaline is so. He then observes
that an old theorem of [Luc78] shows that the Pascaline is computable modulo
p,3 where p is a fixed prime number, to obtain the following results concerning
computations of polynomials with coefficients in Fp = Z/pZ:

(i) the class VNPnb0 (mod p) is closed for taking coefficient-functions
(ii) any sequence in VNPnb0 (mod p) is obtained from a sequence in VNPmd0

(mod p) by replacing variables by (simply exponential) powers of variables
(iii) VNPmd0 (mod p) = VPmd0 (mod p) ∃⇒ VNPnb0 (mod p) =

VPnb0 (mod p).

The right to left implication of (iii) rests on the fact that the only constants appear-
ing in a computation are the integers modulo p, which form a finite set.

With the help of our simpler universal polynomial, and a result of Peter Bürgisser,
we shall say more on what happens in characteristic zero.

8.7 Characteristic Zero

Bürgisser [Bür09] shows that the hypothesisVNPmd0 = VPmd0 collapses a certain
hierarchy within PSPACE/poly, to which belongs the Pascaline in figures; in short,
VNPmd0 = VPmd0 =⇒ Pascfig ∈ P/poly.

3 If we develop the integers m and n in base p , C(m, n) is equal modulo p to the product of the
binomial coefficients C(ui , vi) of their digits.

156 B. Poizat

Let us remind that, by the Parsimonious Reduction Lemma, to any boolean func-
tion f (u), computed by an arithmetic circuit modulo 2 of complexity c, is associated
a boolean function g(u, v), computed by an arithmetic termmodulo 2 of size 4c, such
that, if f (u) = 0, then g(u, v) = 0 for every v, and if f (u) = 1, then g(u, v) = 0
for every v, except for one for which it takes the value 1 (the length of v is equal to c,
and the exceptional v corresponds to the values that are computed at the gates of the
circuit). After parallelization, the computation of g can be simulated in characteristic
zero by a term of small complexity, and, because of the uniqueness of the exceptional
v, f (u) is obtained by a summation in front of this last term (we do not claim that
there is a way to simulate in characteristic zero summations in characteristic 2; see
[Poi]). As a consequence, any sequence of boolean functions which is in VPnb0,
i.e., in P/poly, is in VNPmd0.

Assume that VNPmd0 = VPmd0. If, in the expression of the Pascaline as a
summation from the Pascaline in figure we replace the numbers 22

i
by variables yi ,

we obtain therefore a (sequence of) multilinear polynomial(s) in VNPmd0; using
a second time our hypothesis, we see that this polynomial is in VPmd0, and, after
substitution of the yi by the adequate powers of 2, that the Pascaline is in VPnb0

(we remind that this implies an easy factorization). This is more than enough for
VNPnb0 to be closed for the coefficient-function.

Moreover, in the expression of a polynomial as the summation of its monomials,
we can also replace the power x2

j

i of a variable xi by a new variable xi j . From our
description of the coefficient-functions of the projections of the universal polynomial,
we conclude that any sequence of polynomials in VNPnb0 is obtained by plugging
in a sequence inVNPmd0 simply exponential powers of 2 and of variables.We reach
the same conclusion as Malod in characteristic p, this time not as a fact, but as a
consequence of an hazardous hypothesis.

The conclusion is that VNPmd0 = VPmd0 implies VNPnb0 = VPnb0.
The reciprocal is problematic: if VNPnb0 = VPnb0, VNPmd0 is included in

VPnb0; since a polynomial inVNPmd0 has a small degree, a computation by homo-
geneous parts truncates its VPnb-computation into a small multiplicatively disjoint
circuit, which unfortunately may use at its entry gates some twice exponential inte-
gers: we know no way to get rid of these big numbers.

Nevertheless we should keep in a corner of our mind that all these hypothesizes
are probably equivalent, and false!

References

[Bür00] P. Bürgisser, Completeness and Reduction in Algebraic Complexity Theory. Number 7 in
Algorithms and Computation in Mathematics. (Springer, Berlin, 2000)

[Bür09] P. Bürgisser, On defining integers and proving arithmetic circuit lower bounds. Comput.
Complex. 18(1), 81–103 (2009)

[KP07] P. Koiran, S. Perifel, VPSPACE and a transfer theorem over the complex field, Proc.
MFCS, LNCS 4708, 359–370 (2007)

8 Malod and the Pascaline 157

[Luc78] E. Lucas, Théorie des fonctions numériques simplement périodiques. Am. J. Math. 1(2),
184–196 (1878)

[Mal03] G. Malod, Polynômes et coefficients. Ph.D. thesis, Universitè Claude Bernard, 2003.
[Mal07] G. Malod, The complexity of polynomials and their coefficient functions, in Computa-

tional Complexity, 2007. CCC ’07. Twenty-Second Annual IEEE Conference pp. 193–204,
2007

[MP76] D.E.Muller, F.P. Preparata, Restructuring of arithmetic expressions for parallel evaluation.
J. Assoc. Comput. Mach. 23(3), 534–543 (1976)

[MP06] G. Malod, N. Portier, Characterizing valiant’s algebraic complexity classes. Lect. Notes
Comput. Sci. 4162, 267–279 (2006)

[MP08] G. Malod, N. Portier, Characterizing valiant’s algebraic complexity classes. J. Complex.
24(1), 16–38 (2008)

[Poi] B. Poizat. Changing the domain in numerical computations. Submitted
[Poi95] B. Poizat, Les petits cailloux, une introduction modèle-théorique à l’algorithmie. Nur

al-mantiq wal-Ma’rifah n⊆ 3, (1995)
[Poi08] B. Poizat, A la recherche de la définition de la complexité d’espace pour le calcul des

polynômes à la manière de valiant. 73, 1179–1201 (2008)

Chapter 9
A Tutorial on Time and Space Bounds
in Tree-Like Resolution

Jacobo Torán

Abstract Tree-like resolution is a well-known method for proving the
unsatisfiability of a given formula. Lower bounds for the size and space in tree-
like resolution imply lower bounds for many of the algorithms used in practice to
solve satisfiability problems. We review a combinatorial game that can be used to
prove lower and upper bounds for size and space in tree-like resolution and show
some of its applications.

Keywords Resolution · Combinatorial games

9.1 Introduction

Let us first introduce some notation needed to understand the tutorial. The Boolean
formulas considered here are in conjunctive normal form (CNF), that is, they are
a conjunction of clauses. A clause is a disjunction of literals (variables or negated
variables).Wewill also talk about a set of clauses to refer to a formula. An assignment
χ for a formula F is (partial) mapping from the set of variables in the formula to
{0, 1}. We denote by Fχ the result of substituting in F the variables assigned by χ

by the corresponding value and reducing the formula in the intuitive way. If Fχ is
1 then we say that χ is a satisfying assignment for F . If some satisfying assignment
for F exists, then we say that F is satisfiable, otherwise it is unsatisfiable.

Robinson introduced in [Rob65] the concept of resolution, a method for deciding
if a given formula in conjunctive normal form is unsatisfiable. Due to its simplicity
and to its importance in automatic theorem proving and logic programming systems,
resolution is one of the best studied refutation systems. The only inference rule in
this proof system is the resolution rule:

J. Torán (B)

Department of Theoretical Computer Science, University of Ulm, Ulm, Germany
e-mail: jacobo.toran@uni-ulm.de

M. Agrawal and V. Arvind (eds.), Perspectives in Computational Complexity, 159
Progress in Computer Science and Applied Logic 26, DOI: 10.1007/978-3-319-05446-9_9,
© Springer International Publishing Switzerland 2014

160 J. Torán

z

x

x , y x, y x, z x, z x , y x, y

x

z

z

x

x , y x, y x, zx, z

z

Fig. 9.1 A refutation and a tree-like refutation of the set of clauses {x ≥ y, x ≥ y, x ≥ z, x ≥ z}

C ≥ x D ≥ x̄

C ≥ D
.

Cutting variable x from clauses C ≥ x and D≥ x̄ we get the resolvent clause C ≥ D.
It is easy to see that if a set of clauses S is satisfiable and a clause C is the resolvent
of two clauses in S, then S ∗ C is also satisfiable. A resolution refutation of a CNF
formula F is a sequence of clauses C1, . . . , Cs where each Ci is either a clause
from F or is inferred from earlier clauses by the resolution rule, and Cs is the empty
clause (denoted by �). By the above observation, if � can be derived from a set S of
clauses by resolution, then S is unsatisfiable. In other words, the resolution system
is correct. We will soon observe that the system is also complete, that is, if a set of
clauses in unsatisfiable then there is always a way to derive the empty clause from it
by resolution.

A resolution refutation can be seen as a directed acyclic graph, a dag, in which
the clauses are the vertices, and if two clauses are resolved then there is a directed
edge going from each of the two clauses to the resolvent. If the underlying graph in a
refutation happens to be a tree, we call it a tree-like resolution. See Fig. 9.1. Tree-like
resolution is also a complete refutation system.

Theorem 1.1 Let F be a set of clauses. If F is unsatisfiable, then there is a tree-like
resolution refutation for it.

Proof We argue by induction on the number n of variables in F . If n = 1, then there
is only one variable x1 and since F is unsatisfiable it must contain the clauses x1

9 A Tutorial on Time and Space Bounds in Tree-Like Resolution 161

and x1. Resolving them we obtain �. For the induction step, by giving variable xn

the values 0 and 1 we obtain two new sets of clauses F{xn = 0} and F{xn = 1}
containing at most n − 1 variables. Since F is unsatisfiable, so are the new sets
of clauses and applying the induction hypothesis we know that there exist tree-like
resolution refutations R0 and R1 for F{xn = 0} and F{xn = 1}. The clauses of
F{xn = 0} are either clauses of F (not containing variable xn) or are clauses C for
which C ≥ xn is in F . By adding xn to the initial clauses of this type in R0 we either
get a tree-like derivation of xn from clauses in F (variable xn is never resolved) or a
derivation of � (in case none of the clauses in R0 contain variable xn). In the later
case we are done, otherwise we can do the same process on R1 obtaining either a
tree-like derivation of xn from F or a refutation of F . Again, in the second case we
are done, otherwise we put together the tree-like resolution derivations of xn and xn

and the resolvent of this two clauses to obtain a tree-like refutation of F . �

From the proof of the above Theorem it follows that the number of clauses needed
in a tree-like refutation of a formula F is at most exponential in the number of its
variables.

It is known that for certain formulas general resolution can produce shorter refuta-
tions than tree-like resolution [BEGJ02, BIW04]. The reason for this is that, contrary
to general resolution, in tree-like resolution if a clause is needed more than once it
must be re-derived from the initial clauses each time. Even if tree-like refutations can
be larger than in general resolution, the study of this proof system is well motivated
bymanymethods used in practice for testing satisfiability (SAT solvers). Thesemeth-
ods are in fact concrete implementations of tree-like resolution. Most SAT solvers
are based on the basic backtracking algorithm:

procBacktracking (F : set of clauses, χ : assignment) : bool
// outputs 1, if Fχ is satisfiable and 0 otherwise
if � ⊆ Fχ then return 0
if Fχ = ≤ then return 1
else (choose a variable x ⊆ Var(Fχ))

if Backtracking (F, χ{x = 0}) then return 1
else returnBacktracking (F, χ{x = 1})

In order to test if a formula is satisfiable, the algorithms starts with the empty
assignment. This backtracking algorithm is in principlemore efficient than a straight-
forward test of all possible total assignments for the variables because when for a
partial assignment χ, the algorithms obtains � ⊆ Fχ, then it follows Fβ = 0 for all
extensions β from χ. The Algorithm does not need to explore the sub-tree with the
possible extensions from χ and this decreases the search space.

In the algorithm we have not specified the way to choose the next variable to be
considered. There aremanyways to do this.Modern SAT solvers use refinedmethods
for choosing the next variable to be assigned as well as many other techniques for
efficiently pruning the search tree (see e.g., [ST13]).

162 J. Torán

Exercise 1.2 Show that in the backtracking algorithm there is a strategy for choosing
the next variable to be assigned so that on input a formula F in CNF with n variables
and at most k variables in each clause, the algorithm produces at most (2k − 1)n/k

recursive calls.

A proof of the unsatisfiability of a formula with the backtracking algorithm is
in fact a tree-like resolution refutation for the formula as can be seen in the next
well-known result:

Theorem 1.3 Let F be a nonsatisfiable formula in CNF and let r be the minimum
number of recursive calls made by the backtracking algorithm on input (F,≤) (by
any ordering of the variables). Then there is a tree-like resolution refutation of F of
size at most r .

Proof The backtracking algorithm running on the input (F,≤) defines a tree.
The nodes of the tree indicate what variable is being assigned. From an interior
node two edges come out, one for each of the two possible values (0 and 1) that the
variable can take. We can associate a resolution refutation with this tree. Every node
in the tree is reached from the root by a partial assignment and can be identified with
an initial clause falsified by this assignment in the following way: Every leaf in the
recursion tree is identified with a clause of F falsified by the assignment reaching the
leaf. Such a clause must exist because otherwise this particular assignment would
satisfy the formula. For an inner node corresponding to a variable x and whose chil-
dren are identified with clauses Ki and K j , we associate a clause K . If both clauses
Ki and K j contain variable x , then in one of the clauses the variable is positive and in
the other clause it is negated. We define then the clause K as the resolvent of Ki and
K j . Otherwise we associate with the node the clause not containing variable x from
one of its children. One can see that in both cases K is falsified by the assignment
that goes from the root of the tree to the node. Moreover, every clause in the tree
is either the resolvent of its children or one of the clauses from the children. The
root in the recursion tree is associated to the empty clause � since this is the only
clause falsified by the empty assignment. The tree with its associated clauses defines
a tree-resolution refutation for F with at most r clauses. �

In this result,wehave alreadyused the natural complexitymeasure of size. The size
of a refutation is the number of clauses it contains. It is known that certain families of
propositional formulas need (general) resolution refutationswith a number of clauses
that is exponential in the formula size [Hak85, Urq87, CS88, BP96].

Another natural complexity measure is the space. Intuitively, the resolution space
of a CNF formula is the minimal number of clauses that must be kept simultaneously
in order to refute a formula. The formal definition [ET01, ABRW02] is the following:

Definition 1.4 Let k ⊆ N, we say that an unsatisfiable CNF formula F has resolution
refutation bounded by space k if there is a series of CNF formulas F1, . . . , Fs , such
that F1 ∈ F , � ⊆ Fs , in any Fi there are at most k clauses, and for each i < s, Fi+1
is obtained from Fi by:

9 A Tutorial on Time and Space Bounds in Tree-Like Resolution 163

(1) Deleting a clause from Fi .
(2) Adding the resolvent of two clauses from Fi .
(3) Adding a clause from F (initial clause).

The space needed for the resolution refutation of an unsatisfiable formula is the
minimum k for which the formula has a refutation bounded by space k. Note that
initial clauses do not need much space because they can be added at any moment
and at most two of them are needed simultaneously. The only clauses that consume
space are the ones derived at intermediate stages. From the proof of Theorem 1.1, it
can be observed that the space needed in a refutation of a formula with n variables is
at most n+1. In [Tor99, ET01, ABRW02] it is shown that the refutations for certain
families of formulas need linear space in the number of variables. It was observed in
[ET01] that the space required for the refutation of a CNF formula F , corresponds to
the minimum number of pebbles needed in the following game played on the graph
of a refutation of F .

Definition 1.5 Given a connected directed acyclic graph G with one sink the aim
of the pebble game is to put a pebble on the sink of the graph, the only node with no
outgoing edges, following this set of rules:

(1) A pebble can be placed in any initial node, that is, a node with no predecessors.
(2) Any pebble can be removed from any node at any time.
(3) A node can be pebbled provided all its predecessors are pebbled.
(4) If all the predecessors of node are pebbled, instead of placing a new pebble on

it, one can shift a pebble from a predecessor.

We denote by Peb(G) the minimum number of pebbles needed in order to put a
pebble on the sink of G following the above rules.

Exercise 1.6 Show that for a complete binary tree of depth d, Td (with the directed
edges pointing to the root), Peb(Td) = d + 1. Show that this is also true for any tree
T with the property that d is the depth of the biggest complete binary tree embedded1

in T .

Lemma 1.7 [ET01] Let F be an unsatisfiable CNF formula. The space needed in
a resolution refutation of F coincides with the number of pebbles needed for the
pebble game played on the graph of a resolution refutation of F.

In this tutorial we will concentrate on tree-like refutations. The size of such a
refutation is the number of nodes in the resolution tree, and the space is the number
of pebbles needed to play the game in such a refutation tree. There is also a way to
define the space measure for tree-like resolution without using the pebbling game
[ET01].

There is a relation between the space and size in tree-like resolution. As the
following result shows, a lower bound on the tree-like space of a formula implies an
exponentially larger lower bound on the size of a tree-like resolution refutation.

1 We say that a graph G is embedded in another graph H if H can be obtained from G by adding
new vertices and edges and placing new vertices in the middle of an edge.

164 J. Torán

Theorem 1.8 Let F be an unsatisfiable CNF formula with a tree-like refutation of
size s, then F has a tree-like resolution refutation of space ∃log s� + 1.

Proof As mentioned in Exercise 1.6, the resolution tree in the refutation of F can
be pebbled with d + 1 pebbles, where d is the depth of the biggest complete binary
tree embedded in the refutation tree. As the biggest possible complete binary tree
embedded in a tree of size s has depth ∃log s�, the result follows. �

Exercise 1.9 Show that if in an unsatisfiable formula F all its clauses have at most
2 literals, then there is a tree-like resolution refutation for F with constant space and
polynomial size.

9.2 A Combinatorial Game for Proving Lower Bounds
in Tree-Like Resolution

Impagliazzo and Pudlák introduced in [PI00] a combinatorial game for proving lower
bounds on the size of tree-like refutations. This game was also used in [BIW04]. We
will show that this game exactly characterizes tree-like resolution space.

The Prover-Delayer game:
The game is played in rounds on an unsatisfiable set of clauses F by two players:
Prover and Delayer.2 Prover wants to falsify some initial clause and Delayer tries to
retard this as much as possible. In each round Prover chooses a variable in F and asks
Delayer for a value for this variable. Delayer can answer either 0,1 or ∗. In this last
case Prover can choose the truth value (0 or 1) for the variable and Delayer scores
one point. The variable is set to the selected value and the next round begins. The
game ends when a clause in F is falsified (all its literals are set to 0) by the partial
assignment constructed in this way. The goal of Delayer is to score as many points
as possible and Prover tries to prevent this. The outcome of the game is the number
of points scored by Delayer.

Definition 2.1 Let F be an unsatisfiable formula in CNF. We denote by g(F) the
maximum number of points that Delayer can score while playing the game on F
with an optimal strategy of Prover.

As an example we show how this game applies to the family of formulas for
the general Pigeonhole Principle PHPm

n . These formulas express the fact that it is
not possible to fit m pigeons in n pigeonholes (for m > n). For the case m =
n + 1, ¬PHPm

n was the first example of a family of formulas with an exponential
resolution size lower bound [Hak85]. The contradiction ¬PHPm

n can be written as
a CNF formula in the following way: The variables of the formula are xi, j , i ⊆
[m], j ⊆ [n]. xi, j has the intuitive meaning that pigeon i is mapped to hole j . There
are mn variables. The clauses of the formula are:

2 For clarity in the exposition Delayer is a female player.

9 A Tutorial on Time and Space Bounds in Tree-Like Resolution 165

(1) xi,1 ≥ xi,2 ≥ · · · ≥ xi,n for i ⊆ [m], and
(2) xi,k ≥ x j,k for i, j ⊆ [m], k ⊆ [n], i < j.

Clauses of type (1) express the fact that every pigeon is mapped to some hole, while
the clauses of type (2) indicate that at most one pigeon can be mapped to any hole.

The number of clauses in ¬PHPm
n is m + (m

2

)
n < m2n.

Lemma 2.2 g(¬PHPm
n) ≥ n

Proof We give a strategy for Delayer scoring at least n points. When asked for the
value of a variable xi, j Delayer answers 0 if for some i ∧ ∩= i, xi ∧, j has been assigned
value 1, otherwise she assigns value ∗ to xi, j . With this strategy the game can only
end when a clause of Type 1 has been falsified. Observe that since Delayer does not
assign any 1’s, for every 0 she assigns to a variable xi, j , she must have assigned
before a ∗ to another variable xi ∧, j that is set to 1 by Prover. When a clause

∨n
j=1 xi, j

is falsified because all its variables have value 0, Delayer has assigned a ∗ to at least
one variable xi ∧, j corresponding to position j for each position, and therefore she has
scored at least n points. �

Exercise 2.3 Show by designing a suitable strategy for Prover that it also holds
g(¬PHPm

n) ≤ n.

We show now that for an unsatisfiable CNF formula F , the space needed in a
tree-like resolution refutation of F is exactly g(F)+ 1. In our example this implies
that the tree-like resolution space for ¬PHPm

n is exactly n + 1 independently of m.
We show first that g(F)+ 1 is an upper bound for the tree-like resolution space.

Theorem 2.4 [ET03] If a CNF formula F requires tree-like resolution space s, then
Delayer has a strategy in which at least s − 1 points can be scored.

Proof Let s be the minimum space needed in any tree-like resolution refutation of F .
We give a strategy for Delayer for playing the combinatorial game on F that scores
at least s − 1 points with any strategy of Prover. We prove the result by induction on
n, the number of variables in F .

For the base case n = 1, F contains just one variable and therefore s ≤ 2. Delayer
just needs to answer ∗ to the only variable asked by Prover.

For n > 1, let x be the first variable asked by Prover and let F{x = 1} and
F{x = 0} the C N F formulas obtained after given value 1 and 0 respectively to
variable x in F . Any tree-like refutation of F requires s pebbles and therefore either

(i) the tree-like space for refuting each of F{x = 1} and F{x = 0} is at least s−1 or
(ii) for one of the formulas (say F{x = 1}) the tree-like resolution space is at least s.

Any other possibility would imply that F could be refuted in space less than s.
In the first case,Delayer can answer∗and she scores one point. By induction hypothe-
sisDelayer can score s−2more points playing the game in any of the formulas F{x =
1} or F{x = 0}. In the second case, Delayer answers the value leading to the formula
that requires tree-like resolution space s (x = 1 in this case) and the game is played on
F{x = 1} in the next round. �

166 J. Torán

On the other hand g(F) is also a lower bound for the tree-like resolution space.

Theorem 2.5 [ET03] The tree-like space needed for refuting a CNF F is at least
g(F)+ 1.

Proof Let s be the minimum space needed in a tree-like refutation of F . We describe
a Strategy for Prover in which the number p of points scored by Delayer is at most
s − 1. Let R be a tree-like resolution refutation for F with Peb(R) = s. Prover
chooses the variables in the order induced by the refutation in the following way:
He starts at the empty clause in R and in general at the end of a round moves to
a clause C that is falsified by the partial assignment constructed so far. In the next
round, Prover chooses the resolved variable x from the two parent clauses of C . Let
χi be the partial assignment constructed after i rounds of the game and Rχi be the
subtree of the refutation that has its root at the node reached from the root of R
by the path specified by χi and let pi be the number of points scored by Delayer
after round i . If Delayer assigns to x a value 0 or 1 (by setting the weights in the
way indicated above) then Prover moves to the parent clause that is falsified by
the constructed partial assignment and the new round starts. When Delayer assigns
value ∗ to a variable x at step i then Prover gives x value 0 if Peb(Rχi−1{x = 0}) ≤
Peb(Rχi−1{x = 1}) and assigns x value 1 otherwise. We show by induction on the
number i of rounds that with this strategy

pi ≤ s − Peb(Rχi).

The result follows from this fact because when the game has reached a contradiction
of an initial clause after constructing an assignment χ, then Peb(Rχ) = 1 and the
inequality shows p ≤ s − 1.

In the beginning of the game Rχ0 is the whole tree and Delayer has scored 0
points.

For the inductive step, if at round i + 1 Prover chooses variable x and Delayer
assigns values 0 or 1 to it then she does not score any points, and we get

pi+1 = pi ≤ s − Peb(Rχi) ≤ s − Peb(Rχi+1)

since Rχi+1 is a subtree of Rχi .
If Delayer assigns ∗ to x , since Prover select the value corresponding to the

subtree from Rχi with the smallest pebbling number and min{Peb(Rχi {x =
0}),Peb(Rχi {x = 1})} < Peb(Rχi) we get

pi+1 = pi + 1 ≤ s − Peb(Rχi)− 1 ≤ s − Peb(Rχi+1)

and the result follows. �
As mentioned before, the combinatorial game was defined in [PI00] as a tool

for proving lower bound for the size of tree-like resolution refutation. This applica-
tion can be seen considering the relationship between tree-like space and size from
Theorem 1.8:

9 A Tutorial on Time and Space Bounds in Tree-Like Resolution 167

Corollary 2.6 For any unsatisfiable CNF formula F, if Delayer has a strategy on
F which scores r points then any tree-like resolution refutation of F has size at least
2r+1 − 1.

Buss and Pitassi [BP97] showed that for for any m > n, ¬PHPm
n needs tree-like

resolution refutation of size at least 2n . The given estimation for the points obtained
by Delayer on the formula ¬PHPm

n with the space characterization and the above
corollary provide an alternative proof for this result. The bound has been improved
to 2�(n log n) in [IM99, DR01].

Computing the number of points that can be scored by Delayer on a formula is
in general not an easy task. Hertel and Urquhart [HU07] have shown that in fact this
problem is PSPACE complete. We finish this section with some exercises to compute
the points scored on certain formulas related to pebbling.

Exercise 2.7 Consider the following pebbling formulas defined by Ben-Sasson and
Wigderson in [BW01]. They express the principle that in a directed acyclic graph,
pebbling the source nodes and following the rule that if all the predecessors of a
node v contain a pebble then v also gets one, implies that a pebble will be placed on
the sink.

Let G = (V, E) be a directed acyclic graph in which every vertex has fan-in 2
or 0 with a unique sink s. We call a graph with these properties a circuit graph. We
associate 2 distinct Boolean variables v1, v2 with every vertex v ⊆ V . PebG, the
pebbling contradiction of G, is the conjunction of:

• Source axioms: v1 ≥ v2 for each source v.
• Pebbling axioms: ui ≥ v j ≥w1 ≥w2 for u and v the two predecessors of w and

i, j ⊆ {1, 2}.
• Sink axioms: si for the sink s and i ⊆ {1, 2}.

Show that for a constant c, if G is a tree then g(PebG) = Peb(G)+ c

Exercise 2.8 [Nor12] Consider now a variation of the pebbling formulas, defined
by Ben-Sasson and Nordström in [BN08] expressing the same principle but using the
parity function instead of disjunction. For simplicity we just define these formulas
for line graphs G = (V, E) with n vertices v1 . . . vn with unique source v1, unique
sink vn and with a directed edge (v1, vi+1) for 1 ≤ i ≤ n−1. We associate 2 distinct
Boolean variables v1i , v2i with every vertex vi ⊆ V . Peb∅G is the conjunction of (the
clauses expressing in conjunctive normal form the formulas):

• Source axioms: v11 ∅ v21 .
• Pebbling axioms: v1i ∅ v2i ⇐ v1i+1 ∅ v2i+1 for 1 ≤ i ≤ n − 1.
• Sink axioms: ¬(v1n ∅ v2n).

Show that for a line graph G with n vertices, g(Peb∅G) = �(log n).

168 J. Torán

9.3 The Asymmetric Prover-Delayer Game

We have seen in the previous section that the original Prover-Delayer game gives
an exact characterization of tree-like resolution space and provides a good tool for
proving size lower bounds in tree-like resolution size. However, this lower bound
might not be tight in case the refutation trees are not well balanced. Beyersdorff,
Galesi, and Lauria [BGL10, BGL11, BGL13] have developed a refinement of the
game that improves in some cases the size lower bounds obtained byusing the original
game.

The asymmetric game is defined exactly as the original one, only the way of
scoring points by Delayer is different. In each round, Prover selects an unassigned
variable x as before, and Delayer assigns two weights p0 and p1 to the two possible
variable values, satisfying:

p0 ≥ 0, p1 ≥ 0, and p0 + p1 = 1.

Prover selects one of the values in {0, 1} for x and the number of points that Delayer
gets is − log pb.

Definition 3.1 Let F be an unsatisfiable formula in CNF. We denote by G(F) the
maximum number of points that Delayer can score while playing the game on F
with an optimal strategy of Prover.

By setting the weights to either (0, 1) or (1, 0), Delayer forces Prover to choose
one of the two values, since by choosing the other one he would loose an infinite
amount of points. Also, by setting the weights to be (12 ,

1
2) Delayer scores one point

no matter what the choice of Prover is. These two cases show that this game is an
extension of the original one.

The new game can be used to obtain a characterization of tree-like resolution size.
The next theorem shows that the size of a resolution tree implies an upper bound on
the number of points scored by Delayer.

Theorem 3.2 [BGL11]Let F be an unsatisfiable formula in CNF. If F has a tree-like
refutation of size at most S then G(F) ≤ log∃ S

2 �.
Proof The proof is very similar to that of Theorem 2.5 but considering the new
scoring rules. Let R be a tree-like resolution refutation of size S for F and let L(R)

be the number of leaves in R. Observe that L(R) = ∃ S
2 �. We describe a Strategy for

Prover in which the number p of points scored by Delayer is at most log(L(R)).
Prover chooses the variables in the order induced by the refutation starting at the

empty clause in R and at the end of a round moves to the parent clause C that is
falsified by the partial assignment constructed so far. Let χi be the partial assignment
constructed after i rounds of the game and Rχi be the subtree of the refutation that
has its root at the node reached from the root of R by the path specified by χi and let

9 A Tutorial on Time and Space Bounds in Tree-Like Resolution 169

pi be the number of points scored by Delayer after round i . When Delayer assigns
values (p0, p1) to a variable x at step i then Prover gives x value 0 if L(Rχi−1{x =
0}) ≤ p0L(Rχi−1) and assigns x value 1 otherwise. By the property of the weights
p0 and p1 and by the fact that L(Rχi−1) = L(Rχi−1{x = 0})+ L(Rχi−1{x = 1})
it follows that in this last case L(Rχi−1{x = 1}) ≤ p1L(Rχi−1).

We show by induction on the number i of rounds that with this strategy

2pi ≤ L(R)

L(Rχi)
.

Again the result follows from this becausewhen the game has reached a contradiction
of an initial clause after constructing an assignment χ then L(Rχ) = 1 and the
inequality shows 2p ≤ L(R).

In the beginning of the game Rχ0 is the whole tree and Delayer has scored 0
points. For the inductive step, if at round i+1 Prover chooses variable x and Delayer
assigns weights p0, p1 to it, and Prover selects value b ⊆ {0, 1} for the variable,
we get

2pi+1 = 2pi−log pb = 2pi

pb
≤ L(R)

pb L(Rχi)
≤ L(R)

L(Rχi+1)

and the result follows. �

The extended game completely characterizes the size of a tree-like resolution
proof. This is a consequence of Theorem 3.2 and the converse result:

Theorem 3.3 [BGL13] Let F be an unsatisfiable formula in CNF. If the smallest
tree-like refutation for F has size S then G(F) ≥ log∃ S

2 �.
Proof Let L(F) be the number of leaves in the shortest tree-like refutation of F .
When a new variable x is selected by Prover and χ is the partial assignment computed
so far, Delayer assigns weights according to the following rules: for b ⊆ {0, 1},

pb = L(Fχ{x = b})
L(Fχ{x = 0})+ L(Fχ{x = 1}) .

We show by induction on n, the number of variables in F , that Delayer scores at
least log L(F) points. This implies the result, since a tree-like refutation of size S
has exactly

⌈ S
2

⌉
. leaves. The base case is trivial; if there is only one variable, the

resolution tree has two leaves, and Delayer can always score 1 point. For n > 1, let
x be the first variable chosen by Prover and let b ⊆ {0, 1} be the value assigned by
him to it. The score of the game is− log pb+ X where X is the score achieved in the
subsequent steps. By induction hypothesis we have X ≥ log L(F{x = b}). The total
score is then at least

170 J. Torán

G(F) ≥ − log pb + log L(F{x = b})
= log

(
L(Fχ{x = 0})+ L(Fχ{x = 1})

L(Fχ{x = b})
)

+ log L(F{x = b})
= log(L(Fχ{x = 0})+ L(Fχ{x = 1})) ≥ log L(F).

�
We can see that the asymmetric game can improve the size lower bounds for

tree-like resolution for the pigeon hole principle achieved by using the original game
[BGL10]. For this we analyze the asymmetric game on PHP formulas and then use
Theorem 3.2.

Theorem 3.4 For m > n, G(¬PHPm
n , c0, c1) = �(n log n)

Proof We give a simplified proof from [Bey11] describing a strategy for Delayer for
which the number of scored points is �(n log n).

For i ⊆ [m] we define the function hi that for a partial assignment χ

hi (χ) = |{k ⊆ [n] | χ(xi,k) = 0 and χ(x j,k) ∩= 1 for all j ⊆ [m]}|.

hi (χ) indicates the number of holes that are still free but are excluded for pigeon i
under χ.

The strategy of Delayer for the variable xi, j when the partial assignment con-
structed so far is χ, is the following:

If there is some other variable xi ∧, j assigned to 1 (hole j is already used) or there
is some xi, j ∧ assigned to 1 (pigeon i already has a hole) then set xi, j to 0 (by setting
the weights to (1, 0)). Otherwise if hi (χ) ≥ n

2 then set xi, j to 1. Otherwise set the
weights of xi, j to (p0, p1). The values of p0 and p1 are the same for all the variables
satisfying this property and will be specified later.

Intuitively, when the number of free holes excluded for pigeon i are at least n
2

then Delayer tries to put i in a free hole. As in Lemma 2.2 with this strategy only
a clause of type 1

∨n
j=1 xi, j can be falsified. We show that when this happens at

the end of the game, at least n
2 variables have been assigned to 1. Consider the last

round r after which hi (χr) < n
2 . If at the end of the game hi (χr) < n

2 , then there are
less than n

2 holes that are free for pigeon i and therefore more than n
2 are occupied.

The corresponding variables are set to 1. Otherwise let z be the number of variables
in

∨n
j=1 xi, j set to 0 after round r . There are exactly n

2 of them that correspond to
free holes excluded for pigeon i . For the other z− n

2 variables the corresponding hole
is already occupied, that is, there is a variable for each of these holes set to 1. After
round r every time one of the n − z remaining variables xi, j is set to 0 in

∨n
j=1 xi, j

this is done by Delayer and because there is some other variable xi ∧, j already set to
1. The number of 1’s at the end of the game is then at least z − n

2 + n − z = n
2 .

W.l.o.g. let us call the first n
2 variables that are set to 1 at the end of the game by

xi, ji , i ⊆ 1 . . . n
2 .We analyze now howmany points Delayer scores for each of them.

If variable xi, ji has been assigned by Prover, then Delayer scores − log(p1) points.
If it is Delayer the one who gave the variable value 1, then at that point there were at
least n

2 free holes that were excluded for pigeon i . All the 0’s indicating the exclusion,

9 A Tutorial on Time and Space Bounds in Tree-Like Resolution 171

had been set by Prover because Delayer only sets 0’s when a hole is not free or a
pigeon has already a hole. Therefore, Delayer scores at least − n

2 log(p0) points for
this. Observe that since Delayer does not allow a pigeon to be in more than one hole,
the 0’s set by Prover are different for every pigeon i . Summarizing, Delayer receives
either − log(p1) or − n

2 log(p0) points for each of the n
2 variables xi, ji set to 1.

Let us now define the values for p0 and p1. Intuitively Delayer has to score more
points when Prover sets a variable to 1 than we he sets it to 0 because the former
brings the game quicker to an unsatisfying assignment. We define:

p1 = log n

n
and p0 = 1− log n

n
= �

(
e−

log n
n

) = 2�
(− log n

n

)

The number of points scored for each of the n
2 variables is then either− log(p1) =

�(log n) or − n
2 log(p0) = �(log n), and the total number of points �(n log n). �

With more complicated arguments the authors of the original paper [BGL10]
provide a lower bound of n

2 log(
n
2 + 1) for G(¬PHPm

n). The best existing lower
bounds for the tree-like resolution size for PHP can be seen as consequences of this
result and Theorem 3.2:

Theorem 3.5 [IM99, DR01] For m > n the size of a tree-like resolution refutation
of ¬PHPm

n is at least 2
n
2 log(n

2+1).

9.4 Conclusions

We have shown in this tutorial that variations of a combinatorial game played on
formulas, characterize exactly the concepts of space and size in tree-like resolution.
It is interesting to observe that the outcome of these games depends only on the
structure of the input formulas. This means that the concepts of tree-like resolution
space and size are complexity measures intrinsic to the formulas and completely
independent of the notion of resolution. It is an important open question whether
such game characterizations also exist for the case of general resolution.

References

[ABRW02] M. Alekhnovich, E. Ben-Sasson, A.A. Razborov, A. Wigderson, Space complexity in
propositional calculus. SIAM J. Comput. 31(4), 1184–1211 (2002)

[BP96] P. Beame, T. Pitassi, Simplified and improved resolution lower bounds, in 37th Annual
IEEE Symposium on Foundations of Computer Science, pp. 274–282 (1996)

[BIW04] E. Ben-Sasson, R. Impagliazzo, A. Wigderson, Near-optimal separation of tree-like
and general resolution. Combinatorica 24(4), 585–603 (2004)

[BN08] E. Ben-Sasson, J. Nordström, Short proofs may be spacious: an optimal separation of
space and length in resolution, in Proceedings of 49th FOCS Conference, pp. 709–718
(2008)

172 J. Torán

[BW01] E. Ben-Sasson, A. Wigderson, Short proofs are narrow—resolution made simple.
J. ACM 48(2), 149–169 (2001)

[Bey11] O. Beyersdorff, in Proofs and Games. Lecture notes 2011, http://www.thi.uni-
hannover.de/fileadmin/mitarbeiter/beyersdorff/ESSLLI11-course-material.pdf

[BGL10] O. Beyersdorff, N. Galesi, M. Lauria, A lower bound for the pigeon hole principle
in tree-like resolution by asymmetric prover-delayer games. Inf. Process. Lett. 110,
1074–1077 (2010)

[BGL11] O. Beyersdorff, N. Galesi, M. Lauria, Parameterized complexity of DPLL search pro-
cedures, inProceedings of 14th Conference on Theory and Applications of Satisfiability
Testing, LNCS, vol. 6695, pp. 5–18, 110 (2011)

[BGL13] O. Beyersdorff, N. Galesi, M. Lauria, A characterization of tree-like resolution size.
Inf. Process. Lett. 113, 666–671 (2013)

[BEGJ02] M.L. Bonet, J.L. Esteban, N. Galesi, J. Johannsen, On the relative complexity of
resolution refinements and cutting planes proof systems. SIAM J. Comput. 30(5),
1462–1484 (2002)

[BP97] S. Buss, T. Pitassi, Resolution and the weak pigeonhole principle, in Proceedings of
Computer Science Logic 97, Springer Verlag. LNCS, vol. 1414, pp. 149–156 (1997)

[CS88] V. Chvátal, E. Szemerédi, Many hard examples for resolution. J. ACM 35, 759–768
(1988)

[DR01] S. Dantchev, S. Riis, Tree resolution proofs and the weak pigeon hole principle, in
Proceedings of 16th IEEE Conference on Computational Complexity, pp. 69–75 (2001)

[ET01] J.L. Esteban, J. Torán, Space bounds for resolution. Inf. Comput. 171(1), 84–97 (2001)
[ET03] J.L. Esteban, J. Torán, Combinatorial characterization of tree-like resolution space.

Inf. Process. Lett. 87(6), 295–300 (2003)
[Hak85] A. Haken, The intractability of resolution. Theoret. Comput. Sci. 39(2–3), 297–308

(1985)
[HU07] A. Hertel, A. Urquhart, Game characterizations and the PSPACE-completeness of tree

resolution space, in Proceedings of CSL 2007, pp. 527–541 (2007)
[IM99] K. Iwama, S.Miyazaki, Tree-like resolution is superpolynomially slower than dag-like

resolution, in Proceedings of 10th ISAAC, LNCS, vol. 1741, pp. 133–142 (1999)
[Nor12] J. Nordström, Personal communication (2012)
[PI00] P. Pudlák, R. Impagliazzo, A lower bound for DLL algorithms for k-SAT, in Pro-

ceedings of 11th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 128–136
(2000)

[Rob65] J.A. Robinson, A machine oriented logic based on the resolution principle. J. ACM
12(1), 23–41 (1965)

[ST13] U. Schöning, J. Torán, The Satisfiability Problem SAT, Algorithms and Analyses
(Lehmanns media, Berlin, 2013)

[Tor99] J. Torán, Lower bounds for the space used in resolution, in Proceedings of 13th Com-
puter Science Logic Conference, Springer. Lecture Notes in Computer Science, vol.
1683, pp. 362–373 (1999)

[Urq87] A. Urquhart, Hard examples for resolution. J. ACM 34, 209–219 (1987)

http://www.thi.uni-hannover.de/fileadmin/mitarbeiter/beyersdorff/ESSLLI11-course-material.pdf
http://www.thi.uni-hannover.de/fileadmin/mitarbeiter/beyersdorff/ESSLLI11-course-material.pdf

Chapter 10
An Entropy-Based Proof for the Moore
Bound for Irregular Graphs

S. Ajesh Babu and Jaikumar Radhakrishnan

Abstract We provide proofs of the following theorems by considering the entropy
of random walks.

Theorem 1 (Alon, Hoory and Linial) Let G be an undirected simple graph with n
vertices, girth g, minimum degree at least 2 and average degree d̄.

Odd girth If g = 2r + 1, then n ≥ 1+ d̄
r−1∑

i=0
(d̄ − 1)i.

Even girth If g = 2r, then n ≥ 2
r−1∑

i=0
(d̄ − 1)i.

Theorem 2 (Hoory) Let G = (VL,VR,E) be a bipartite graph of girth g = 2r, with
nL = |VL| and nR = |VR|, minimum degree at least 2 and the left and right average
degrees dL and dR. Then,

nL ≥
r−1∑

i=0
(dR − 1)∗

i
2 ⊆(dL − 1)≤

i
2 ∈,

nR ≥
r−1∑

i=0
(dL − 1)∗

i
2 ⊆(dR − 1)≤

i
2 ∈.

This work was done while S. Ajesh Babu was at School of Technology and Computer Science,
Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India.

J. Radhakrishnan (B)

School of Technology and Computer Science, Tata Institute of Fundamental Research,
Mumbai400005, India
e-mail: jaikumar@tifr.res.in

S. A. Babu
Microsoft Research India, Bangalore560001, India
e-mail: ajesh.babu@gmail.com

M. Agrawal and V. Arvind (eds.), Perspectives in Computational Complexity, 173
Progress in Computer Science and Applied Logic 26, DOI: 10.1007/978-3-319-05446-9_10,
© Springer International Publishing Switzerland 2014

174 S. A. Babu and J. Radhakrishnan

Keywords Girth ·Moore bound · Graphs
Mathematics Subject Classification (2010) Primary 05C35 · Secondary 05C81

10.1 Introduction

The Moore bound (see Theorem 3.1) gives a lower bound on the order of any simple
undirected graph, based on its minimum degree and girth. Alon et al. [AHL02]
showed that the same bound holds with the minimum degree replaced by the average
degree. Later, Hoory [Hoo02] obtained a better bound for simple bipartite graphs.
We reprove the results of Alon et al. [AHL02] and Hoory [Hoo02] using information
theoretic arguments based on nonreturning random walks on the graph.

The chapter has three sections: In Sect. 10.2we introduce the relevant notation and
terminology. In Sect. 10.3, we present the information theoretic proof of the result of
Alon et al. [AHL02]; in Sect. 10.4, we present a similar proof of the result of Hoory
[Hoo02] for bipartite graphs.

10.2 Preliminaries

For an undirected simple graph G = (V ,E), let ∃G = (V , ∃E), be the directed version
of G, where for each undirected edge of the form {v, v} in E, we place two directed
edges in ∃E, one of the form (v, v) and another of the form (v, v). Similarly, for an
undirected bipartite graph G = (VL,VR,E), let ∃G = (VL,VR, ∃ELR ∪ ∃ERL) be the
directed version of G, where for each undirected edge of the form {v, v} in E, with
v ∈ VL and v ∈ VR, we place one directed edge of the form (v, v) in ∃ELR, and another
of the form (v, v) in ∃ERL .

We will consider nonreturning walks on ∃G, that is, walks where the edges corre-
sponding to the same undirected edge of G do not appear in succession. For a vertex
v, let ni(v) denote the number of nonreturning walks in ∃G starting at v and consisting
of i edges. For an edge ∃e, let ni(∃e) denote the number of nonreturning walks in ∃G
starting with ∃e and consisting of exactly i + 1 edges (including ∃e).

Our proofs will make use of information theoretic ideas. Similar ideas have
been employed in various combinatorial proofs to succinctly present arguments that
involve averaging and convexity. More examples can be found in the references
[CT91, Kah02, LL13, Rad99, Rad01].

Let X be a random variable taking values in a finite set. Let support(X) be the set
of values that X takes with positive probability. The entropy of X is

H[X] = −
∑

x∈support(X)
Pr[X = x] log2 Pr[X = x].

10 An Entropy-Based Proof for the Moore Bound for Irregular Graphs 175

For random variables X and Y , taking values in finite sets according to some joint
distribution, and y ∈ support(Y), let Xy be the random variable taking values in
support(X) such that Pr[Xy = x] = Pr[X = x | Y = y]. Then, the conditional
entropy of X given Y is

H[X | Y] =
∑

y∈support(Y)
Pr[Y = y]H[Xy].

We will use of the following standard facts about entropy [CT91].

H[X] ≤ log2 |support(X)|;

H[X1X2 . . .Xk | Y] =
k∑

i=1
H[Xi | X1X2 . . .Xi−1Y].

10.3 Moore Bound for Irregular Graphs

In Sect. 10.3.1, we recall the proof of theMoore bound; in Sect. 10.3.2, we review and
reprove the theorem of Alon et al. [AHL02] assuming Lemma 3.4. In Sect. 10.3.3,
we prove this lemma using an entropy- based argument.

10.3.1 Proof of the Moore Bound

The Moore bound provides a lower bound for the order of a graph in terms of its
minimum degree and girth.

Theorem 3.1 (The Moore bound [Big93, p. 180]) Let G be a simple undirected
graph with n vertices, minimum degree δ and girth g.

Odd girth If g = 2r + 1, then n ≥ 1+ δ

r−1∑

i=0
(δ − 1)i.

Even girth If g = 2r, then n ≥ 2
r−1∑

i=0
(δ − 1)i.

The key observation in the proof of the Moore bound is the following. If the girth
is 2r+1, then two distinct nonreturning walks of length at most r starting at a vertex
v lead to distinct vertices. Similarly, if the girth is 2r, then nonreturning walks of
length at most r starting with (some directed version of) an edge e lead to distinct
vertices. We will need this observation again later, so we record it formally.

Observation 3.2 Let G be an undirected simple graph with n vertices and girth g.

176 S. A. Babu and J. Radhakrishnan

Odd girth Let g = 2r + 1. Then, for all vertices v,

n ≥ n0(v)+ n1(v)+ · · · + nr(v).

Even girth Let g = 2r. Let e be an edge of G and suppose ∃e1 and ∃e2 are its directed
versions in ∃G. Then,

n ≥
r−1∑

i=0
[ni(∃e1)+ ni(∃e2)].

Proof of Theorem 3.1 The claim follows immediately from Observation 3.2 by not-
ing that for such a graph G, for all vertices v ∈ V and edges ∃e ∈ ∃E,

ni(v) ≥ δ(δ − 1)i−1 (for i ≥ 1), n0(v) = 1; (10.1)

ni(∃e) ≥ (δ − 1)i (for i ≥ 0). (10.2)

∧∩

10.3.2 The Alon–Hoory–Linial Bound

Alon, Hoory, and Linial showed that the bound in Theorem 3.1 holds for any undi-
rected graph even when the minimum degree δ is replaced by the average degree d̄.

Theorem 3.3 (Alon et al. [AHL02]) Let G be an undirected simple graph with n
vertices, girth g, minimum degree at least 2 and average degree d̄.

Odd girth If g = 2r + 1, then n ≥ 1+ d̄
r−1∑

i=0
(d̄ − 1)i.

Even girth If g = 2r, then n ≥ 2
r−1∑

i=0
(d̄ − 1)i.

Wewill first prove this theorem assuming the following lemma, which is the main
technical part of Alon et al. [AHL02]. This lemma shows that the bounds (10.1) and
(10.2) holds with δ replaced by d̄. In Sect. 10.3.3, we will present an information
theoretic proof of this lemma.

Lemma 3.4 Let G be an undirected simple graph with n vertices, girth g, minimum
degree at least two and average degree d̄.

(a) If v ∈ V(G) is chosen with distribution π, where π(v) = dv/(2|E(G)|) =
dv/(d̄n), then E[ni(v)] ≥ d̄(d̄ − 1)i−1 (i ≥ 1).

(b) If ∃e is a uniformly chosen random edge in ∃E, then E[ni(∃e)] ≥ (d̄ − 1)i (i ≥ 0).

10 An Entropy-Based Proof for the Moore Bound for Irregular Graphs 177

Proof of Theorem 3.3 First, consider graphs with odd girth. From Observation 3.2,
Lemma 3.4 (a) and linearity of expectation we obtain

n ≥ E[n0(v)+ n1(v)+ · · · + nr(v)] ≥ 1+ d̄
r−1∑

i=0
(d̄ − 1)i,

where v ∈ V(G) is chosen with distribution π (defined in Lemma 3.4 (a)).

Now, consider graphs with even girth. Let ∃e1 be chosen uniformly at random from
∃E and let ∃e2 be its companion edge (going in the opposite direction). Note that ∃e2
is also uniformly distributed in ∃E. Then, from Observation 3.2, Lemma 3.4 (b) and
linearity of expectation we obtain

n ≥ E

[
r∑

i=0
[ni(∃e1)+ ni(∃e2)]

]

≥ 2
r−1∑

i=0
(d̄ − 1)i.

10.3.3 The Entropy-Based Proof of Lemma 3.4

The proof of Lemma 3.4 below is essentially the same as the one originally proposed
byAlon, Hoory, and Linial but is statedmore naturally using the language of entropy.

Proof of Lemma 3.4 (a) Consider the Markov process v, ∃e1, ∃e2, …, ∃ei, where v is
a random vertex of G chosen with distribution π, ∃e1 is a random edge of ∃G
leaving v (chosen uniformly from the dv choices), and for 1 ≤ j < i, ∃ej+1 is a
random successor edge for ∃ej chosen uniformly from among the nonreturning
possibilities. (If ∃ej has the form (x, y), then there are dy−1 possibilities for ∃ej+1).
Let v0 = v, v1, v2, . . . , vi be the vertices visited by this non-returning walk. We
observe that each ∃ej is distributed uniformly in the set E(∃G) and each vj has
distribution π. Then,

log2 E[ni(v)] ≥ E[log2 ni(v)]
≥ H[∃e1∃e2 . . . ∃ei | v]

= H[∃e1|v] +
i−1∑

j=1
H[∃ej+1 | ∃e1∃e2 . . . ∃ejv]

= E[log2 dv] +
i−1∑

j=1
E[log2(dvj − 1)]

= E[log2 dv(dv − 1)i−1]

= 1

d̄n

∑

v

dv log2 dv(dv − 1)i−1

≥ log2 d̄(d̄ − 1)i−1,

178 S. A. Babu and J. Radhakrishnan

where to justify the first inequality we use Jensen’s inequality for the concave
function log, to justify the second we use the fact that the entropy of a random
variable is at most the log of the size of its support, and to justify the last we
use Jensen’s inequality for the convex function x log2 x(x − 1)i−1 (x ≥ 2). The
claim follows by exponentiating both sides.

(b) This time we consider the Markov process ∃e0 = ∃e, ∃e1, …, ∃ei, where ∃e is chosen
uniformly at random from ∃E, and for 0 ≤ j < i, ∃ej+1 is a random successor
edge for ∃ej chosen uniformly from among the nonreturning possibilities. Let
v0, v1, v2, . . . , vi+1 be the vertices visited by this nonreturning walk. As before
observe that each vj has distribution π. Then,

log2 E[ni(e)] ≥ E[log2 ni(e)]
≥ H[∃e1∃e2 . . . ∃ei | ∃e0]

=
i∑

j=1
E[log2(dvj − 1)]

= E[log2(dv0 − 1)i]

= 1

d̄n

∑

v

dv log2(dv − 1)i

≥ log2(d̄ − 1)i,

where we justify the first two inequalities as before, and the last using Jensen’s
inequality applied to the convex function x log2(x − 1)i (x ≥ 2). The claim
follows by exponentiating both sides. ∧∩

Remark 3.5 We assumed above that the minimum degree is at least 2. It is possible
to eliminate vertices of small degree and show that Theorem 3.3 holds for any graph
with average degree at least 2. For details, see the proof of Theorem 1 in [AHL02].

10.4 Moore Bound for Bipartite Graphs

Following the proof technique of [AHL02], Hoory [Hoo02] obtained an improved
Moore bound for bipartite graphs. In this section, we provide an information theoretic
proof of Hoory’s result.

10 An Entropy-Based Proof for the Moore Bound for Irregular Graphs 179

10.4.1 The Hoory Bound

Theorem 4.1 (Hoory [Hoo02]) Let G = (VL,VR,E) be a bipartite graph of girth
g = 2r, with nL = |VL| and nR = |VR|, minimum degree at least 2 and the left and
right average degrees dL and dR. Then,

nL ≥
r−1∑

i=0
(dR − 1)∗

i
2 ⊆(dL − 1)≤

i
2 ∈,

nR ≥
r−1∑

i=0
(dL − 1)∗

i
2 ⊆(dR − 1)≤

i
2 ∈.

For bipartite graphs the girth is always even. We then have the following variant
of Observation 3.2.

Observation 4.2 Let G = (VL,VR,E) be an undirected bipartite graph with |VL| =
nL and |VR| = nR and girth g = 2r. Let e be an edge of G and suppose ∃e1 and ∃e2 be
its directed versions in ∃G, such that ∃e1 ∈ ∃ELR and ∃e2 ∈ ∃ERL. Then,

nL ≥
≤ r
2 ∈−1∑

i=0
n2i+1(∃e1)+

∗ r
2 ⊆−1∑

i=0
n2i(∃e2).

Wewill prove the Theorem 4.1, assuming the following lemma, which is the main
technical part of Hoory [Hoo02]. In Sect. 10.4.2, we will present the proof of this
lemma using the language of entropy.

Lemma 4.3 Let G = (VL,VR,E) be an undirected simple bipartite graph with nL

vertices on the left and nR vertices on the right, girth g, minimum degree at least two
and average left and right degrees, respectively dL and dR.

(a) If ∃e is a uniformly chosen random edge in ∃ELR, then E[n2i+1(∃e)] ≥
(dR − 1)i+1(dL − 1)i (i ≥ 1).

(b) If ∃e is a uniformly chosen random edge in ∃ERL, then E[n2i(∃e)] ≥
(dR − 1)i(dL − 1)i (i ≥ 1).

Proof of Theorem 4.1 We will prove the bound for nL . The proof for nR case is
similar. Let ∃e1 be chosen uniformly at random from ∃ELR and let ∃e2 be its companion
edge (going in the opposite direction). Note that ∃e2 is also uniformly distributed in
∃ERL . Then, from Observation 4.3, Lemma 4.3 and linearity of expectation we obtain

nL ≥ E

⎡

⎣
≤ r
2 ∈−1∑

i=0
n2i+1(∃e1)+

∗ r
2 ⊆−1∑

i=0
n2i(∃e2)

⎤

⎦ ≥
r−1∑

i=0
(dR − 1)∗

i
2 ⊆(dL − 1)≤

i
2 ∈. ∧∩

180 S. A. Babu and J. Radhakrishnan

10.4.2 The Entropy-Based Proof of Lemma 4.3

The proof of Lemma 4.3 below is essentially the same as the one originally proposed
by Hoory, but is stated in the language of entropy.

Proof of Lemma 4.3 (a) Consider a Markov process ∃e0, ∃e1, ∃e2, . . . , ∃e2i+1, where ∃e0
is a uniformly chosen random edge from ∃ELR, and for 0 ≤ j < 2i + 1, ∃ej+1 is
a random successor edge for ∃ej chosen uniformly from among the nonreturn-
ing possibilities. Let v0, v1, v2, . . . , v2i+2 be the vertices visited by this non-
returning walk. We observe that for 0 ≤ j ≤ i each ∃e2j and ∃e2j+1 is respec-
tively distributed uniformly in the set ∃ELR and ∃ERL . Furthermore, for j even,
Pr[vj = v] = dv/|E(G)| for all v ∈ VL , and for j odd, Pr[vj = v] = dv/|E(G)|
for all v ∈ VR. Then,

log2 E[n2i+1(e)] ≥ E[log2 n2i+1(e)]
≥ H[∃e0∃e1 . . . ∃e2i+1 | ∃e0]

=
i∑

j=0
H[∃e2j+1|∃e2j] +

i∑

j=1
H[∃e2j|∃e2j−1]

=
i∑

j=0
E[log2(dv2j+1 − 1)] +

i∑

j=1
E[log2(dv2j − 1)]

≥ (i + 1) log2(dR − 1)+ i log2(dL − 1)

= log2(dR − 1)i+1(dL − 1)i.

where to justify the first inequality we use Jensen’s inequality for the concave
function log, to justify the second we use the fact that the entropy of a random
variable is at most the log of the size of its support, and to justify the last we
use Jensen’s inequality for the convex function x log2(x− 1) (x ≥ 2). The claim
follows by exponentiating both sides.

(b) Similarly,

log2 E[n2i(e)] ≥ log2(dL − 1)i(dR − 1)i. ∧∩

References

[AHL02] N. Alon, S. Hoory, N. Linial, The Moore bound for irregular graphs. Graphs Comb.
18(1), 53–57 (2002)

[Big93] N. Biggs, Algebraic Graph Theory, 2nd edn. (Cambridge University Press, Cambridge,
1993)

[CT91] T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley-Interscience,
New York, 1991)

10 An Entropy-Based Proof for the Moore Bound for Irregular Graphs 181

[Hoo02] S. Hoory, The size of bipartite graphs with a given girth. J. Comb. Theory, Ser. B,
86(2):215–220 (2002)

[Kah02] J.Kahn,Entropy, independent sets and antichains: a newapproach toDedekind’s problem.
Proc. Amer. Math. Soc. 130, 371–378 (2002)

[LL13] N. Linial, Z. Luria, Upper bounds on the number of Steiner triple systems and
1-factorizations. Random Struct. Algorithms 43, 399–406 (2013)

[Rad99] J. Radhakrishnan, An entropy proof of Bregman’s theorem. J. Comb. Theor. A 77(1),
161–164 (1999)

[Rad01] J. Radhakrishnan, Entropy and counting, in IIT Kharagpur Golden Jubilee Volume on
Computational Mathematics, Modelling and Algorithms, ed. by J.C. Mishra (Narosa
Publishers, New Delhi, 2001)

Chapter 11
Permutation Groups and the Graph
Isomorphism Problem

Sumanta Ghosh and Piyush P Kurur

Abstract In this article we discuss various algorithms for permutation group-
theoretic problems and their connections to Graph Isomorphism. In the last part
we examine the group representability problem on graphs, its connection to Graph
Isomorphism, and discuss some open problems that arise in this context.

Keywords Graph isomorphism · Permutation groups

11.1 Introduction

One of the core ideas in mathematics is the notion of an isomorphism, i.e. structure
preserving bijections between mathematical objects like groups, rings and fields.
A natural computational question is to decide, given two such objects as input,
whether they are isomorphic or not. In the context of undirected finite graphs, this
problem is called the graph isomorphism problem and is the subject matter of this
article. Informally, we say that two graphs are isomorphic if they are the same up
to a renaming of their vertices, i.e. we have a bijection between the vertex sets that
preserve the adjacency relation of edges. Many other isomorphism problems for
explicitly presented finite mathematical structures like groups, for example, reduce
to the graph isomorphism problem. Also, many problems that arise in practice, like
studying the structure of chemical compounds, are essentially graph isomorphism in
disguise. Hence, understanding this problem computationally is important.

S. Ghosh (B) · P. P. Kurur
Department of Computer Science and Engineering, Indian Institute of Technology Kanpur,
Kanpur 208016, Uttar Pradesh, India
e-mail: smghosh@cse.iitk.ac.in

P. P. Kurur
e-mail: ppk@cse.iitk.ac.in

M. Agrawal and V. Arvind (eds.), Perspectives in Computational Complexity, 183
Progress in Computer Science and Applied Logic 26, DOI: 10.1007/978-3-319-05446-9_11,
© Springer International Publishing Switzerland 2014

184 S. Ghosh and P. P. Kurur

There are efficient programmes and libraries (see NAUTY for instance) that can
solve large instances of graph isomorphism that arise in practice. However, there
are no known polynomial-time algorithm for the general case. In complexity the-
ory, ever since the notion of NP-completeness has been formalised, the graph iso-
morphism problem has had an important status as it is believed to be a natural
example of a problem of intermediate complexity [GJ79, Chap.7], i.e. neither in
P nor NP-complete: It is known that the graph isomorphism problem is in the
complexity class co-AM [BHZ87], a randomised version of co-NP, and its NP
hardness will result in the collapse of the polynomial hierarchy [BHZ87, Sch87].
Furthermore, Köbler et al. [KST92] showed that graph isomorphism is low for the
counting class PP by showing its membership in LWPP. This was further improved
by Arvind and Kurur [AK02] to SPP. As a result graph isomorphism is in and
low for various counting complexity classes like classes like ≥P etc. Thus, under
reasonable complexity theoretic assumptions, graph isomorphism is not NP-hard.
Ladner [Lad75] proved the existence of an infinite hierarchy of problems of inter-
mediate complexity assuming that P is different from NP. The graph isomorphism
problem, for reasons stated above, is believed to be a natural example.

In this article, we study graph isomorphism and related problems. There is now
a vast literature on graph isomorphism and we really cannot do justice to the topic
in such a short article. For a detailed study of graph isomorphism, mainly from a
complexity theoretic view point, we refer the reader to the excellent book by Köbler
et al. [KST93]. This paper concentrates on one of the aspects of the graph isomor-
phism problem, namely its intimate connection to permutation group algorithms.
Permutation groups arise in the study of graph isomorphism problem because of its
close relation to the graph automorphismproblem. For a graph X , the automorphisms,
i.e. isomorphisms from X to itself, forms a group under function composition. We
can identify this group as a subgroup of the set of all permutations of the vertex set
V (X). Automorphisms, thus are symmetries of the graph. The computational prob-
lem of computing a generating set of the automorphism group is equivalent to the
graph isomorphism problem [Mat79]. Most algorithms for graph isomorphism that
make use of permutation group theory makes use of this connection. Understanding
the automorphism group of a graph is also in tune with what is now a guiding prin-
ciple in much of modern mathematics: understanding objects by understanding their
symmetries.

11.2 Preliminaries

We briefly review the group theory required for this article mainly to fix notation and
convention. For details please refer any standard book on group theory, for example,
Marshall Hall [Hal59]. The trivial group that contains only the identity is denoted
by 1. For a group G, we use the notation H � G (or G � H) to denote that H is a
subgroup of G. The right coset of the subgroup H of G associated with an element
g ∗ G is the set Hg = {hg|h ∗ H}. The set of all right cosets form a partition of G

11 Permutation Groups and the Graph Isomorphism Problem 185

and any subset T of G that has a unique coset representative from each right coset
is called a right transversal of H in G. Analogously, we define left cosets and left
transversals. In general, the right coset Hg and the left coset gH is different. We say
that H is a normal subgroup if gH = Hg. We use the notation H � G (or G � H)
to denote that H is a normal subgroup of G.

A simple group is a group that has no non-trivial normal subgroups. A composition
series of a group G is a tower of subgroups G = G0 � G1 � · · · � Gt = 1 such
that each of the factor groups Gi/Gi+1, called the composition factors, are simple.
The Jordan-Hölder theorem states that for any group G, its composition series is
essentially unique, i.e. any two composition series are of equal length and the list of
composition factors are equal up to a reordering. Solvable groups are those whose
composition factors are abelian.

The set of all permutation of n elements forms a group called the symmetric
group which we denote by Sn . In algorithmic settings, it is often useful to make the
domain of n elements explicit: For a finite set χ, the set Sym (χ) denote the group
of permutations on χ. By a permutation group on χ we mean a subgroup of the
symmetric group Sym (χ). As is customary, we use Wielandt’s notation [Wie64]:
Let α be any element of χ and let g be a permutation in Sym (χ), the image of α
under g is denoted by αg . The advantage of this notation is that it follows the familiar
laws of exponentiation: (αg)h = αgh . We can extend this notation to (i) subsets of
permutations: αA = {αg|g ∗ A}, or to (ii) subsets of χ: βg = {αg|α ∗ β}. In
particular, for a permutation group onχ, the set αG is called the G-orbit of α. Given
any two elements α and β of χ the G-orbits αG and βG are either disjoint or are the
same. Thus, orbits of G partition the underlying set χ. A subset β of G is said to be
G-stable if βg = β. Clearly any G-orbit is G-stable. In general, a G-stable set is a
union of G-orbits.

Let G be a permutation group acting on the set χ and let β be a subset of χ.
The point-wise stabiliser of β is the subgroup of all g in G that is trivial on β, i.e.
αg = α for all α in β. The setwise stabiliser is the subgroup that fixes the set β as
a whole, i.e it is the subgroup of all g in G such that βg = β.

A permutation group G is said to be transitive if the entire set χ is a single
orbit. Equivalently, G is transitive if for any two elements α and β in χ there is a
permutation g in G such that αg = β. For a transitive permutation G on χ, a subset
β is said to be a G-block if for any permutation g in G, the set βg is either identical
to or disjoint from the set β. Any singleton set is a block and so is the entire set χ.
These blocks are called the trivial blocks of G. For a transitive permutation group
G on χ and a permutation g in G, the set βg is a G-block whenever β itself is
one. Such a block βg is called a conjugate block of β. The family of conjugate
blocks {βg|g ∗ G} forms a partition of the set χ which is called the block system
associated with the block β. A permutation group that has no non-trivial block is
called a primitive permutation group. An example of a primitive group is the group
Sym (χ). We have the following lemma about block systems which is more or less
direct from the definition.

186 S. Ghosh and P. P. Kurur

Lemma 2.1 Let G be a transitive permutation group on χ and let β be a block. Let
N denote the subgroup of G that setwise stabilises all the elements in the β-block
system B(β) = {βg|g ∗ G}. Then N is a normal subgroup of G and G/N acts as a
permutation on β-block system B(β). In addition, if β is a maximal G-block then
this action of the group G/N is primitive.

In algorithms that deal with permutation groups, we need a succinct way to encode
them which we now describe. Any permutation of χ can be presented by an array of
#χ elements and hence can be encoded as a string of size O(n lg n). A permutation
group is presented via a list of permutations that generate the group. It is a well-
known fact that any group G has a generating set of size less than ⊆lg #G≤ and hence
this presentation of permutation group is reasonable. Thus, we assume that the input
size, for an algorithm that takes a generating set S of a permutation group G on χ,
is #S+ #χ. Similarly, an algorithm that is expected to produce a permutation group
as output, should output a generating set of size polynomial in #χ. For example, the
strong generating set that we describe in the next section, is of size at most #χ2.

By a graph, we mean an undirected graph, i.e. a finite set of vertices and an edge
set which is a subset of unordered pairs of vertices. We use V (X) and E(X) to
denote the set of vertices and the set of edges of a graph X , respectively. A bijection
f from V (X) to V (Y) is an isomorphism if for every two vertices u and v of X , the
unordered pair {u, v} is an edge of X if and only if { f (u), f (v)} is an edge of Y . An
automorphism of a graph X is an isomorphism from the graph to itself. The set of
automorphism of a graph X , denoted by Aut (X), form a group under composition.
In fact, Aut (X) is a permutation group on V (X).

In the article, we assume that a graph of n vertices is encoded as an n2-bit strings
that represent its n × n adjacency matrix. We now define the graph isomorphism
problem.

Problem 2.2 (Graph isomorphsim problem) The graph isomorphism problem (GI
for short) is defined as follows: Given two undirected graphs X and Y via their
adjacency matrix, decide whether they are isomorphic.

The counting version of the graph isomorphism problem, denoted by #GI, is the
problem of computing the number of isomorphism between the two input graphs
(0 when they are not isomorphic).

Graph isomorphism problem is closely related to the automorphism problem that
we define next.

Problem 2.3 (Automorphism problem) The automorphism problem (AUT for short)
is the problem of computing a strong generating set of the automorphism group
Aut (X) of an input graph X .

Mathon [Mat79] proved that the problems GI, #GI and AUT are all polynomial-
time Turing reducible to each other. Therefore, in the setting of permutation group
algorithms, it is often the automorphism problem that is attacked for solving graph
isomorphism.

A graph X is said to be rigid if it has no non-trivial automorphism, i.e. if Aut (X)

is the trivial group. We now define the graph rigidity problem.

11 Permutation Groups and the Graph Isomorphism Problem 187

Problem 2.4 (Graph rigidity problem) Given an input graph X via its adjacency
matrix, check whether the graph is rigid.

Clearly, an oracle for the automorphism problem, or by Mathon’s result [Mat79],
the graph isomorphism problem, is sufficient to decide the rigidity of a graph. How-
ever, the other direction is open.

Open problem 2.5 Is the graph rigidity problem polynomial-time equivalent to the
graph isomorphism problem.

An important variant of graph isomorphism is the isomorphism of coloured
graphs. For this article, a c-colouring of a graph X , where c a positive integer, is
a map from the vertex set V (X) to the set of integers 1, . . . , c. Given a c-colouring
ψ, the i th colour class is subsetψ−1(i) of V (X). A coloured graph is a tuple (X,ψ) of
a graph X and colouring ψ. We often suppress the colouring ψ when it is understood
from the context and just denote the coloured graph by X . Given two c-coloured
graphs (X,ψ) and (Y,ϕ), an isomorphism f between the underlying graphs X and
Y is a coloured graph isomorphism if it respects the vertex colours, i.e. for any ver-
tex v of X , ψ(v) = ϕ(f (v)). An automorphism of a coloured graph is analogously
defined. Clearly coloured graph isomorphism generalises graph isomorphism as we
can assume an ordinary graph as 1-coloured graph. In the other direction, coloured
graph isomorphism polynomial-time Turing reduces to the graph isomorphism
problem. The key idea is the following gadget construction. For a coloured graph X ,
we construct a new graph √X by first adding, for each colour class i , a long path Li

(say of length n+ i + 1). We then connect all the vertices of the colour class i to one
of the end points of Li . Given coloured graphs X and Y , any isomorphism between
the modified graphs √X and √Y forces the vertices in a given colour class of X to be
mapped to the vertices of the same colour class in Y due to the graph gadgets Li .
Therefore, the coloured graphs X and Y are isomorphic if and only if the modified
graphs √X and √Y are isomorphic. The rigidity problem and the automorphism problem
generalise naturally to coloured graphs as well.

The graph isomorphism problem and the automorphism problem can be defined
for directed graphs as well. It turns out that these variants are polynomial-time Tur-
ing reducible to the undirected case. Therefore, in this article, we mostly concentrate
on undirected graph isomorphism. Nonetheless, from the perspective of the isomor-
phism problem, there is an important subclass of directed graphs called tournaments
that we define below.

Definition 2.6 A directed graph X is a tournament if for every two distinct vertices
u and v, exactly one of the directed edge (u, v) or (v, u) exists in E(X).

The automorphism group of a tournament cannot have a 2-cycle (why?), and
hence has to be of odd order. This forces it to be solvable by Feit-Thompson
theorem [FT63]. This property has been exploited by Babai and Luks [BL83] to
give significantly efficient algorithms for tournament isomorphism.

188 S. Ghosh and P. P. Kurur

11.3 Basic Polynomial-Time Algorithms

In this section, we mention some well-known polynomial-time algorithms for per-
mutation group problems. The very first polynomial-time algorithm is the algo-
rithm to compute the orbits of a permutation group. Let S be a generating set of the
permutation group G then define a relation α∈S β if there exists a g in S such that
αg = β. It is easy to see that the symmetric, transitive closure of the relation∈s

gives us all the G-orbits. We can thus compute the orbits efficiently by computing
reachability.

Lemma 3.1 There is a polynomial-time algorithm, which given a generating set S
of a permutation group G on χ and an α ∗ χ, computes the orbit αG.

Many permutation group algorithms follows the general scheme of first reducing the
problem to the transitive case by finding all the orbits of the group using the above
lemma, and then restricting the group to the orbit. This is followed by a divide can
conquer that is done on the blocks of the transitive action of the group. Thus, finding
the blocks of a transitive permutation group is a crucial step in various algorithms.
Let G be a transitive permutation group over χ. Fix any two elements α and β in
χ and consider the graph Xα,β whose vertices are χ and edges are {α,β}G . Let β

be the smallest G-block containing both α and β then Sim’s observed [Sim67] that
vertices in any connected component C of the graph Xα,β is a G-block in the block
system {βg|g ∗ G} associated with β. By running this algorithm on all pairs one
can compute the set of minimal (as well as maximal) blocks of G-blocks.

Lemma 3.2 There is a polynomial-time algorithm that takes as input the generating
set of a transitive permutation group G on χ and decides whether G is primitive or
not. If the input group G is not primitive, then it computes a minimal (or maximal)
G-block system.

We already argued that a generating set of a group is a natural way to present a
permutationgroup.A strong generating set is a special generating set of a permutation
group thatmakesmany computational tasks easy. Consider a permutation groupG on
the setχ. Fix an ordering {α1, · · · ,αn} on the setχ and let G(i) denote the subgroup
of G that fixes the first i elements of χ, i.e. the subgroup of all elements g of G such
that αg

j = α j for all 1 ∃ j ∃ i . Consider the tower G = G(0) � · · · � G(n−1) = 1
of subgroups of G. Let Ci be any set of permutations that has exactly one element
from each right coset of G(i) in G(i−1), i.e. Ci is a right transversal of G(i) in G(i−1).
Given any permutation g in G, there is an unique element, say h1, in C1 which is
in the same right coset of G(1) as that of g. It is easy to see that g′ = gh−11 is in
G(1). Continuing this argument with g′ and the group G(1), it is easy to see that
any element g can be expressed as a product h1 . . . hn−1, hi ∗ Ci . In fact, if the
transversals Ci ’s are fixed, the above product representation is unique. Thus, ∪i Ci

forms a generating set of G which we call the strong generating set of G. Many
computational tasks become trivial once the strong generating set is calculated. For
example, the uniqueness of the product representation of g shows that the order of
the group #G is the product of the sizes

∏
i #Ci .

11 Permutation Groups and the Graph Isomorphism Problem 189

We now describe the algorithm to compute the strong generating set of a permu-
tation group that was given in its complete form by Furst et al. [FHL80] based on
ideas from Sims [Sim78]. It is based on the following lemma due to Schreier and
hence it (and similar algorithms) are some times called Schreier-Sims algorithm.

Lemma 3.3 (Schreier’s Lemma) Let G be a group and H be a subgroup of G. Let
T be any right transversal of H in G that contains 1 as a coset representative. For
each g in G, let g denote the unique coset representative of Hg in T . Let S be a
generating set for G then set

S′ = {ts(ts)−1|t, s ∗ S}

generates the group H.

Let S be the generating set of a permutation group G. The main idea of the
algorithm is that once we have a right transversal C1 of G(1) in G(0) = G, we
can use Schreier’s Lemma 11.3.3 to compute the Schreier generating set for G(1).
We then recursively compute the strong generating set for G(1). At each stage of
the algorithm, we compute the right transversal Ci+1 and recurse on the Schreier
generating set of G(i+1) obtained in that stage.

The right transversal C1 is computed by starting with the set T0 = 1 and induc-
tively compute Ti+1 as follows: Ti+1 is the union of Ti and a subset of Ti S such
that Ti+1 does not contain any redundant representative of same right coset of G(1),
i.e. Ti+1 does not contain two distinct elements g1 and g2 such that α

g1
1 = α

g2
1 .

If at some point Ti+1 = Ti , we stop the procedure. Since the set C1 can at most
have n elements this procedure has to terminate in polynomially many steps. The
actual algorithm [FHL80] can be significantly more efficient by computing all
the transversals Ci ’s simultaneously through a sifting procedure. We summarise
all the polynomial-time solvable tasks that uses the Schreier-Sims procedure in the
following lemma.

Lemma 3.4 (Furst, Hopegraft and Luks) There are polynomial-time algorithms for
the computational tasks:

1. computing a strong generating set,
2. computing the order of a permutation group,
3. checking the membership of a permutation g ∗ Sym(χ) in a given permutation

group G.

The Schreier-Sims algorithm can be generalised to find the generating set of a
subgroup H of a permutation group G, given indirectly by a membership oracle,
provided the index #G

#H is small. We state this in the next lemma.

Lemma 3.5 There is algorithm that takes as input a permutation group G on χ

via a generating set S and computes the generating set of a subgroup H of G given
via a membership oracle, i.e. a procedure to test whether a given element g of G is
actually an element of H. The algorithm takes time polynomial in #S, #χ and the
index #G

#H .

190 S. Ghosh and P. P. Kurur

Consider a permutation groupG onχ and let� be any subset ofχ. The point-wise
stabiliser of the set �, which we denote by G(�) is the subgroup of all elements of
G that fix every element of G, i.e. G(�) = {g|δg = δ, ∀δ ∗ �}. It is easy to see that
finding the point-wise stabiliser of any subset of χ can be done in polynomial-time
by adapting the Schreier-Sims algorithm.

11.4 Divide and Conquer Algorithms for Permutation Groups

We now illustrate a general technique that is used in many permutation group algo-
rithms by giving an algorithm to find the setwise stabiliser for special groups.
Although superficially similar to point-wise stabiliser, computing the setwise sta-
biliser is a different ball game. It is at least as hard as graph isomorphism: For a
graph X , consider the group G = Sym (V (X)) acting on the set χ = (V (X)

2

)
. The

automorphism group of the graph X is the set-wise stabiliser of the subset E(X) of
χ. The setwise stabiliser problem is a variant of a more general problem which we
define below.

Problem 4.1 (Colour preserving subgroup) Let G be a permutation group on
χ which is partitioned into k-colour classes C = {Ci }ki=1. Compute the sub-
group of G that stabilises each of the colour class Ci , i.e. compute the subgroup
{g ∗ G|Cg

i = Ci }.
The setwise stabiliser problem is the special case when the number of colours is

2. While we cannot expect a polynomial-time algorithm for this problem in general
without solving the graph isomorphism problem, for special groups, we can solve
the above in polynomial-time. For example, if we know that the input group G is
solvable then we have a polynomial-time algorithm. In fact, the polynomial-time
algorithm of Luks [Luk82] for trivalent graphs uses such a subroutine as the group
that occurs there is a 2-group and hence is solvable.

We now given a sketch of the algorithm, detail of which can be found in the paper
by Luks [Luk82]. To avoid notation clutter we fix an input group G and the colouring
C of χ. We say that a permutation g preserves colours of all elements in the subset
β if for all α ∗ β, α and αg are in the same colour class. Let H be a subgroup
of G and β an H -stable subset of χ. We denote CP (H, β) to be the subset of H
that preserves the colours of elements of β. Our task is to compute CP (G,χ). For
the divide and conquer algorithm to work, we need to generalise the problem to
cosets of permutation groups: We need to compute CP (Hg, β) for the coset Hg of
the subgroup H of G where the set β is H -stable. Note that β is not necessarily
stabilised by elements of Hg.

The set CP (Hg, β) has the following crucial properties which follows more or
less directly from the definitions.

Lemma 4.2 1. The set CP (H, β) is a subgroup of H.
2. The set CP (Hg, β) is either empty or is a coset of the group CP (H, β).

11 Permutation Groups and the Graph Isomorphism Problem 191

3. Suppose β is the disjoint union β1 ∧ β2 both of which are H-stable then
CP (Hg, β) = CP (CP (Hg, β1) ,β2).

It is crucial that CP (Hg, β) is a coset (item 2 in the above lemma) because we
can then succinctly represent the set by giving a generating set of CP (H, β) and the
coset representative.

We are now ready to give the outline of the divide and conquer algorithm for
computing CP (Hg, β).

Reduction to transitive case Let β′ ∩ β be any H -orbit. We first compute the
group CP

(
Hg, β′

)
which is the transitive case of the above problem. Let β =

β′ ∧β′′. We use the fact that CP (Hg, β) = CP
(
CP

(
Hg, β′

)
, β′′

)
.

Transitive caseFor this case H acts transitively onβ. Let� be amaximal H -block of
H and letB(�) = {�1, . . . ,�k} be the associated block system. Let N be the normal
subgroup of H that fixes all the blocks B(�) setwise. Then we have H = ∧x N x as
a disjoint union of cosets of N . We can then compute the set CP (Hg, β) by taking
the union of all the cosets CP (N xg, β) which are not empty.

If the number of cosets N x are polynomially bounded then we can compute a
generating set for N using Lemma 11.3.5. It then amounts to recursively computing
the polynomially many cosets CP (N xg, β) and combining the nonempty ones. The
number of cosets N x that is considered in the transitive case is the same as the order
of the quotient group H/N . Since the block � that we choose is the maximal block,
the quotient group H/N , as a permutation group on the setB(�), is a primitive group
(See Sect. 2.1). Thus, we need a bound on the size of a primitive permutation group.
While the order of a primitive permutation group on n elements can be exponential
in n, consider the case of the primitive group Sn for example, for solvable primitive
permutation groups, a result by Pálfy [Pál82, Theorem 1] gives us the polynomial
bound we are looking for.

Theorem 4.3 (pálfy) There are absolute constants C and c such that any solvable
primitive permutation group on χ is of size less than C · #χc.

The above bound has a generalisation to groupswith bounded non-abelian compo-
sition factors: Let �d denote the class of groups such that each composition factor is
either abelian or is isomorphic to a subgroup of Sd . Babai et al. [BCP82] generalised
the Pálfy’s bound to the class �d .

Theorem 4.4 (Babai, Cameron and pálfy) There are absolute constants C and c
such that for any positive integer d, any primitive permutation group on χ in the
class �d is of size less than C#χcd .

As a result, the colour preserving subgroup problem is solvable in polynomial-
time for groups that are in the class �d .

Lemma 4.5 Colour preserving subgroup problem is solvable in polynomial-time for
the class of solvable groups and the class of groups in the family �d for constant d.

http://dx.doi.org/10.1007/978-3-319-05446-9_2

192 S. Ghosh and P. P. Kurur

Fig. 11.1 Luks gadget for
bounded valence graphs

e1 e2
e

X1 X2

We now discuss a natural context where the colour stabiliser problem for groups
in the class �d occurs. Consider the graphs of valence d, i.e. all vertices are of degree
less than or equal to d. Luks [Luk82] gives a polynomial-time algorithm for this class
of graphs by reducing it to the colour preserving subgroup problem where the input
group G is in the class �d−1. We quickly give a sketch.

Fix the two input graphs X1 and X2. We assume that the graphs are connected,
otherwise we run the algorithm for each pair of connected components. Furthermore,
we restrict our attention to checking whether X1 and X2 are isomorphic via an
isomorphism that maps a particular edge e1 of X1 to an edge e2 of X2: We just need
to repeat the procedure for all such pairs of edges to know whether X1 and X2 are
isomorphic.

Consider the new graph which we denote by Z which is essentially the disjoint
union of the graph X1 and X2 with an additional edge e that connects the mid points
of e1 and e2 (see Fig. 11.1). If d > 2 is the maximum degree of any vertex in the input
graph then Z also has degree bounded by d. Luks algorithm for bounded valence
computes the group subgroup Aut (Z)e of Aut (Z) that maps the auxiliary edge e
to itself. It is clear that the input graphs X1 and X2 are isomorphic if and only if
there is at least one element in Aut (Z)e (and therefore in any generator set) that flips
the edge e. The algorithm then proceeds to compute the group Aut (Z)e. First the
graph Z is layered as follows: Let the i th layer of Z , denoted by Zi , be the subgraph
which contains all the edges (as well as the end points) at a distance i from the
auxiliary edge e. In particular, the graph Z0 consists of just the edge e and its end
points. All automorphisms of Z that stabilises the edge e has to preserve this layered
structure. The group Aut (Z)e is then computed by inductively computing the groups
Gi = Aut (Zi)e.

Inductively, Luks proves that Gi ’s are in the class �d−1 as follows: Let Hi+1
denote the subgroup of Gi that is obtained by restricting elements of Gi+1 on Zi

and let Ki+1 be the associated kernel, i.e. the subgroup of Gi+1 that is trivial when
restricted to Zi . For a fixed vertex u in layer i , i.e. in the graph Zi \Zi−1, is connected
to at most d − 1 vertices in the layer i + 1 and these vertices have to be mapped
within themselves by elements of Ki+1. Therefore, Ki+1 is a subgroup of a product

11 Permutation Groups and the Graph Isomorphism Problem 193

of m many copies of the symmetric groups Sd−1 for some positive integer m. The
quotient group Gi+1/Ki+1 is the group Hi+1, which itself is a subgroup Gi , a group
in the class �d−1. This is possible only if Gi+1 is in �d−1: Consider any composition
series of Gi+1 which passes through the normal subgroup Ki+1. The composition
factors are either composition factors of Hi or that Ki+1.

Having computed Gi the algorithm computes Gi+1 by computing (1) a generating
set for the kernel Ki+1 and (2) a set of elements of Gi+1 whose restriction to Gi

generates Hi . It is this inductive step that requires the solution of colour preserving
subgroup problem and luckily the input group (Gi in our case) turns out to be in the
class �d and hence solvable by the algorithm in Lemma 11.4.5. Thus, we have the
following theorem.

Theorem 4.6 (Luks) Consider the family Gd of graphs whose vertices are of degree
bounded by d. There is a nO(d) algorithm to decide isomorphism of graphs in Gd .

The current fastest algorithm for graph isomorphism [ZKT85] is based on a
valence reduction step together with the application of the above theorem of Luks
for bounded valence graphs. Therefore, any improvement on the bounded valence
case will improve the state of the art for the general graph isomorphism problem.

11.5 Lexicographically Least Permutations

We nowmention some results that make use of the ordering of permutations induced
by the ordering on the domain χ. First, note that a total ordering on the set χ gives
a total ordering on Sym (χ): for distinct permutations g and h, g < h if at the first
(in the ordering on χ) element α in χ where they differ, we have αg < αh . We call
this ordering the lexicographic ordering on the permutations. Under this ordering
the lexicographically least permutation is the identity permutation. The first problem
that we study is the problem of computing the lexicographically least element in a
coset.

Problem 5.1 (lexicographically least in a coset) Given a permutation group G on
χ as a set of generators and an arbitrary permutation x on χ, compute the lexico-
graphically least element in the coset Gx .

Clearly if x is in G then the coset is the group G itself and the lexicographically
least element of the coset is the identity element. We now sketch a polynomial-time
algorithm for this problem.

Let α be the least element of χ. The set of images of α under permutations in the
coset Gx is given by the set αGx = (αG)x which can be computed easily once the
orbit αG of α is computed. Clearly, the lexicographically least element of Gx should
mapα to the least elementβ ofαGx .We can also compute, using the transitive closure
algorithm for orbits, an element x1 in the coset Gx such that αx1 = β. Therefore,
the lexicographically least element of Gx is also the lexicographically least element

194 S. Ghosh and P. P. Kurur

in the coset Gαx1 as this coset is precisely the set of elements of Gx that maps α
to β. A similar algorithm can be given for left cosets xG as well. We thus have the
following lemma:

Lemma 5.2 Computing the lexicographically least element in a coset can be done
in polynomial-time.

The above lemma is a key step in proving that the graph isomorphism problem is
in the complexity class SPP.

Definition 5.3 (SPP) For a non-deterministic polynomial-time Turing machine let
gap(M, x) denote the difference in the number of accepting paths and rejecting paths
of M on the input x . A language L is in the complexity class SPP if there is a
polynomial time non-deterministic Turing machine M such that for all strings x in
the language L , the gap(M, x) is 1 and for all strings not in the language L , gap(M, x)

is 0.

Languages in SPP are believed to be of low complexity and are unlikely to be
NP-hard. In particular, any gap definable complexity [FFK91] class not only contain
SPP but also derive no extra computational power with a language in SPP as oracle,
i.e. SPP is low for all these complexity classes. Gap definable complexity classes
[FFK91] are counting classes defined using GapP functions, i.e. functions that are
differences of accepting and rejecting paths of an NP machine, and contain many
common counting complexity class like PP and ≥P, etc.

The main idea involved in the proof is to design a polynomial-time algorithm A
that makes queries to an NP language L with some restriction on the queries that
A makes to L . We design a non-deterministic polynomial-time machine M for L
such that for all queries the algorithm A makes, the machine M has at most one
accepting path. Such an oracle machine can be converted to an SPP algorithm, i.e. an
NP machine whose gap function is the characteristic function of GI, using standard
techniques [KST92].

The base algorithm A is an inductive algorithm that builds the strong generating
set of the automorphism group by computing the group Gi of all automorphisms that
fix the first i vertices of the graph. To compute Gi−1 from Gi , the algorithm has to
query the NP-language L which essentially checks, given a j > i , whether there is
an automorphism that maps i to j . The base polynomial-time machine can then find
one such by doing a prefix search. However, we need to design an NP machine M
for L such that for all queries asked by A, there is at most one accepting path. This
we achieve as follows: The algorithm A also provides to L the generator set of Gi ,
i.e. queries to L are (encoding of) pairs 〈S, j∅ where S is a generating set of Gi at
the i-th stage. We know that if there is an automorphism, say g in Gi−1, that maps
i to j then the set of all such automorphisms form the coset Gig. The machine M
essentially guess the automorphism g that maps i to j if it exists and accepts only
if g is the lexicographically least permutation in Gig. Since there is only one such
guess g, we know that for all queries that the algorithm A makes to L the machine
M has at most one accepting path. The SPP result then follows as mentioned above.

11 Permutation Groups and the Graph Isomorphism Problem 195

Theorem 5.4 (Arvind and Kurur) The graph isomorphism problem is in SPP.

While computing the lexicographically least element in a coset has an efficient
algorithm, consider the following generalisation to a double coset.

Problem 5.5 (Lex-least in a double coset) Given the generating sets of permutation
groups G and H on a totally ordered set χ and an arbitrary permutation x on χ,
compute the lexicographically least element in Gx H .

The problem of computing the lex-least element in a double coset is intimately
connected to the problem of graph canonisation which we define below.

Definition 5.6 (Canonical forms for graphs) Consider the class G(χ) of all graphs
on the vertex set χ. A function CF on G(χ) is a canonical form if it satisfies the
following properties:

1. For every graph X in G(χ), CF(X) is isomorphic to X .
2. If X and Y are two isomorphic graphs then CF(X) is the same as CF(Y).

In other words, a canonical form CF picks a unique representative from each
isomorphism class of graphs on χ. Clearly graph isomorphism is solvable given
a canonisation procedure. Therefore, one way of attacking the graph isomorphism
problem is to give fast canonisation procedure. For many classes of graphs, Babai
and Luks [BL83] gave an efficient canonisation procedure which is also currently the
best general purpose algorithms. In particular, they were able to give an O

(
nc log n

)

for tournaments. This canonisation procedure makes use of the fact that tournaments
have a solvable automorphism group. They also show how Luks’ polynomial-time
algorithm for bounded valance [Luk82] can be modified and extended to a canoni-
sation algorithm with essentially the same running time.

As opposed to computing the lexicographically least element in a coset, computing
it in a double coset is known to be NP-hard [Luk93, Theorem 5.1] even when one of
the group is solvable. However, in many contexts, particularly in relation with graph
isomorphism and canonisation, we have some freedom to choose the underlying
ordering of the set χ. Can we reorder the set χ so as to make it possible to apply
the divide and conquer technique similar to that of the colour preserving subgroup
problem that we saw in Sect. 11.4. Indeed this is the case provided the reordering is
“compatible” with the divide and conquer structure of the group G. First, we need to
generalise the lexicographically least element as follows: Consider an ordering< on
χ. Let�be aG-stable set.We consider the restriction of the order<on the set�. This
gives a partial order on elements of permutations, we say that g < h if for the least δ
in � on which g and h differ, we have δg < δh . Under this restricted ordering there
will be multiple lexicographically minimal elements. We now describe how to build
a new ordering ⇐ on χ under which it is feasible to compute the lexicographically
least element of the double coset Gx H .

Ordering the orbit Fix an ordering between the G-orbits by picking say the least
element in each of them. If χ1 and χ2 are two orbits such that χ1 < χ2 in the

196 S. Ghosh and P. P. Kurur

above chosen order, then we set every element of χ1 to be less than that of χ2
under the new ordering ⇐. The motivation of this reordering is the following: Let
χ = χ1 ∧ χ2 then computing the lexicographically least element with respect to
the new ordering ⇐ can be done by first computing the lexicographically minimal
elements with respect to the restriction of ⇐ on χ1 and then from them picking the
lexicographically least element with respect to the restriction of ⇐ on χ2.

Ordering within orbits When G is transitive, we do the reordering with respect to
the blocks. We pick a maximal G-block � in a canonical way. The � block system
partition the set χ so reorder it pretty much the same way as in the previous case
using the � block system instead. If N denotes the normal subgroup of G that fixes
all the blocks in the � block system, we can recursively find the lex-least elements
in double cosets Ngx H and find the minimal ones out of it. If G is in the class �d ,
the number of subproblems are polynomially bounded by Theorem 11.4.4.

The above reordering can be formalised in terms of the structure forest of the group
G. The structure forest is the collection of structure trees one for each G-orbit. For an
orbit β, the structure tree is a tree where the leaves are elements of β. Each internal
node v is associated with a G-block �v with the following properties.

1. For any child u of v, the G-block �u is a maximal block contained in �v .
2. If {u1, . . . , uk} are the set of children of v then the blocks�ui ’s are all conjugates

of each other and partition the parent block �v .

This structure forest captures the divide and conquer on G. The elements of χ

can be reordered once we compute the structure forest of G: The structure trees
are ordered in the order of the least element in them. For each internal node v and
children u1 and u2, u1 ⇐ u2 if the least element of the associated block in u1 is
smaller than that of u2 according to the original ordering <. This will finally give an
ordering⇐ on the entire set χ. Thus, we have the following theorem (See the survey
article by Luks [Luk93] for details).

Theorem 5.7 Given a totally ordered set χ, permutation groups G and H on χ

and a permutation x on χ. Suppose G is in the class �d then in time polynomial in
n we can compute a new ordering ∃G such that computing the lex-least element of
the double coset Gx H can be done in nO(d).

Notice that we do not have any restriction whatsoever on the group H .

11.6 Structure of Primitive Groups

In the last two sections, we saw how bounds on the order of primitive permutation
group can be crucial in the runtime analysis of various divide and conquer algo-
rithms for permutation groups. We now mention how knowing the actual structure
of primitive groups are computationally useful. This section is mainly motivated by
the study of bounded colour class graph isomorphism problem.

11 Permutation Groups and the Graph Isomorphism Problem 197

Problem 6.1 (Bounded colour class graph isomorphism) Fix a constant b. Given
two coloured graph X and Y such that the number of vertices in any given colour
class is bounded by b decide whether the graphs are isomorphic.

We abbreviate this problem asBCGIb. This restricted graph isomorphismproblem
does have polynomial-time algorithm but what about fast parallel algorithms? Luks
[Luk86] answered this question affirmatively by giving a reduction to a restricted
point-wise stabiliser problem and solving it inNC. Further careful analysis byArvind
et al. [AKV05] showed that the problem lies in the ModkL hierarchy. Together with
the hardness for this class [Tor04], we have a fairly tight classification of this variant
of graph isomorphism.

We now explain the overall structure of the algorithm for BCGIb. Both Luks
[Luk86] and Arvind et al. [AKV05] reduce the bounded colour graph isomorphism
problem to a restricted version of point-wise stabiliser problemwhichwe now define.

Problem 6.2 (bounded orbit point-wise stabiliser problem) Given as input a set χ,
a subset � of χ and a permutation group G on χ such that the G-orbits are all
of cardinality bounded by a constant c. Compute generating set of the point-wise
stabiliser subgroup G(�).

We abbreviate this problem as PWSc. As mentioned before, the above problem is
solvable in polynomial-time. However, in this context, we are interested in providing
a parallel algorithm. What needs to be exploited is that the G-orbits are bounded and
thus G is actually a subgroup of a product of small symmetric groups, the symmetric
groups on each of the G-orbits.

To see the connection of the PWSc and BCGIb isomorphism we consider the
equivalent automorphism problem which we denote by AUTb.

Lemma 6.3 (Luks) The AUTb problem logspace reduces to PWS2b2 problem.

Here is the sketchof this reduction.Let X be the colouredgraph and letC1, . . . , Cm

denote the colour classes into which the vertex set V (X) is partitioned. The automor-
phism group is a subgroup of the product group G = ∏

i Sym (Ci). We expressed
the automorphism group Aut (X) as a point-wise stabiliser of G on its action on
a different set χ that we construct as follows: Define the set Ci, j to be the set of
unordered pairs {u, v} where u ∗ Ci and v ∗ C j and let Ei, j be the subset of edges
of X between the colour classes Ci and C j . Define the set χi, j to be the power set
of Ci, j then the edge sets Ei, j are actually points or element of χi, j . Consider the
natural action of G on the union χ = ∪i, jχi, j and let � be the subset of all the
points Ei, j of χ. It is easy to see that the point-wise stabiliser of G with respect to
the subset � is actually the automorphism group Aut (X). Notice that each of the set

χi, j are G-stable and hence the orbits of G are at most of size 2(
b
2).

Both Luks [Luk86] and Arvind et al. [AKV05] then solve the PWSc problem.
While the actual algorithms of Luks [Luk86] and Arvind et al. [AKV05] are fairly
technical, we attempt to explain the essence of the algorithm and the permutation
group theory involved in those results.

198 S. Ghosh and P. P. Kurur

The group G in question can be seen as a product of groups G = ∏
i Gi where

Gi is the action of G on the i th orbit. For each of the groups Gi , compute a special
normal series Gi = Ni,0 � · · · � Ni,t and let Nk denote the produce

∏
i Ni,k . The

algorithm does a divide and conquer to compute Nk(�) going one level at a time.
The base case of this divide and conquer is when the group Ni,s hits a socle. The
socle of a group G is the group generated by the set of all minimal normal subgroups
of G. The main group theoretic result that is used is the O’Nan-Scott theorem (See
the book by Dixon and Mortimer [DM91] for a proof of this result) on the structure
of the socle of a primitive permutation group and its point-wise stabiliser.

For the details of the algorithm, we refer the reader to the conference paper of
Arvind et al. [AKV05]. A detailed version is available in the Ph.D thesis of Kurur
[Kur06, Chap.5]

11.7 Representation of Groups on Graphs

In this section, we look at the group representability problem. This problem was
defined and studied by Dutta and Kurur [DK09] to explore the connection between
graph isomorphismandpermutation group algorithms froma representation theoretic
point of view. Representation theory is the study of homomorphisms from a group
to the group GL(V), the automorphisms of a vector space V . In the context of graph
isomorphism, we would like to understand homomorphisms between groups and
automorphisms of graphs.

Definition 7.1 A representation of a group G on a graph X is a homomorphism
from the group G to the automorphism group Aut (X) of the graph X .

There is always a trivial representation that sends all the elements of the group
to the identity automorphism. What we are interested in is a non-trivial homomor-
phisms. The main problem of interest in this section is the following [DK09].

Problem 7.2 (Group representability problem) Given a group G and a graph X ,
decide whether G has a non-trivial representation on X .

The hardness of the problemdepends onhow the groupG is presented.Weassume,
unless otherwise mentioned, that G is provided to the algorithm via a multiplication
table. Therefore, one can assume that the input size is #G + #V (X). In studying
its connection to graph isomorphism, we can restrict the problem in two ways: (1)
restrict the groups to come from a natural class like, for example, solvable or abelian
or (2) restrict the class of graphs to say planar graphs or trees.

The very first result that we have in this context is the following [DK09].

Lemma 7.3 (Dutta and Kurur) The graph isomorphism problem is log-space many-
one reducible to the abelian group representability problem.

11 Permutation Groups and the Graph Isomorphism Problem 199

The main idea behind the proof is the following: Consider an instances of graph
isomorphism where we want to check whether the graphs X and Y are isomorphic.
We assume they are connected and have n vertices. For a prime p, consider the graph
Z which is the disjoint union of p − 1 copies of X and 1 copy of Y . Suppose that
the group Aut (Z) has a p-cycle say g. Consider any vertex u of Z such that ug ⇒= u.
It is easy to see that the orbit of u under the cyclic group generated by g has to
have p-elements. Furthermore, if any two of the elements in this orbit is in the same
connected component of Z then the entire orbit is. If the prime p is chosen to be
greater than n then such a p-cycle necessarily has to permutes the components as
each of the connected components of Z are of cardinality at most n < p. This is
only possible if some copy of X in Z is mapped to the copy of Y and hence X and Y
have to be isomorphic. Conversely, for any prime p, if X and Y are isomorphic, then
the group Aut (Z) has a p-cycle. Thus, to decide whether X and Y are isomorphic,
we need to check the group representability of the additive group of Z/pZ, on the
graph Z for some prime p greater than the number of vertices in X . By Bertrand’s
postulate (it is actually a theorem but the name seems to be stuck) there is always a
prime p between n and 2n which we chose for this purpose.

Notice that for the previous lemma, all we needed is to pick a prime p such that
Aut (X) does not have p-cycle. Recall that tournaments have odd order automor-
phism group and hence we have the following result.

Theorem 7.4 Tournament isomorphism is reducible to Z/2Z representability.

In this context, we have the following open problem.

Open problem 7.5 Is graph isomorphism reducible to Z/2Z-representability (or
for that matter any fixed group representability).

What about the other direction, i.e. reduction from representability to isomor-
phism? Dutta and Kurur [DK09] prove the following result for solvable group rep-
resentability.

Lemma 7.6 (Dutta and Kurur) The representability problem for solvable groups is
polynomial-time Turing reducible to graph isomorphism.

For a group G, let G ′ be the commutator subgroup. The main idea is the following
group theoretic fact.

Lemma 7.7 A solvable group G is representable on X if and only if there is a prime
p that divides both the orders G/G ′ and #Aut (X).

From the above lemma it follows that to check representability for solvable groups,
all we need is a way to compute the orders #G/G ′ and that of #Aut (X). Clearly
the former can be computed easily as the group is presented as a multiplication
table and the latter using an oracle to the automorphism problem (or equivalently the
graph isomorphism problem). We can even assume that the group is presented as a
permutation group because there are efficient algorithms to compute the commutator
subgroup of a permutation group [FHL80, Theorem 4].

200 S. Ghosh and P. P. Kurur

Thus as far as group representability is concerned, as long as we restrict the
problem to solvable groups, we are within the realm of graph isomorphism. However,
even for the simplest of the non-solvable case we do not have a satisfactory answer:

Open problem 7.8 (A5 representability problem) Given a graph X decide
whether there is a subgroup of Aut (X) which is isomorphic to the alternating group
of A5.

The importance of A5 here is that it is the smallest example of a non-solvable
group. Since A5 is a simple group, non-trivial homomorphisms from it to Aut (X)

can only be injections.
Torán [Tor04] showed that graph isomorphism is hard for a lot of parallel com-

plexity classes like ≥L etc. An important open problem in the context of graph
isomorphism is whether it is hard for the complexity class P (under suitable reduc-
tions). If this is the case, it would give evidence that it is unlikely to have efficient
parallel algorithms for graph isomorphism. We would like to pose the same question
for the group representability problem

Open problem 7.9 Is the group representability problem hard for the complexity
class P.

Are there reasons to believe that the group representability problem is harder
than graph isomorphism? We really do not know. However, for the restricted case
of representability on trees, we already have a difficulty. Graph isomorphism on
trees can be done in polynomial time. In fact, even for planar graphs isomorphism
testing can be done in linear time [HW74] or, if one is interested in the space-bounded
classes, in logarithmic space [DLNTW09]. In contrast, [DK09] proved the following
result for representability on trees.

Theorem 7.10 (Dutta and Kurur) The problem of group representability on trees is
Turing equivalent to the problem of testing, given an integer n in unary and group
G via multiplication table, whether there is a non-trivial homomorphism to the
symmetric group Sn or not.

We call the problem of checking whether a group G has a homomorphism to Sn

as permutation representability problem and is motivated by Cayley’s theorem that
states that every finite group is a subgroup of a symmetric group. However, finding
the smallest n for which G is a subgroup seems to be hard although we admit that
there are no known hardness result for the above problem.

11.8 Conclusion

In this article, we discussed the complexity of some permutation group algorithms
and its close connection to graph isomorphism. Most of these algorithms perform a
divide and conquer and it is here the structure of permutation groups plays a crucial
role. Of particular interest are permutation group theoretic structures like orbits and

11 Permutation Groups and the Graph Isomorphism Problem 201

blocks whose computation allows us to often reduce the general case to the primitive
case. Also in most of these cases the primitive case is solvable if the group is known
to be in some special class like solvable or �d . This makes use of bounds on the
sizes of primitive groups or, in some cases, their explicit structure. We also saw how
these classes naturally arose in study of restricted versions of graph isomorphism.We
therefore believe that a better understanding of permutation groups and is relation to
graph isomorphism is crucial in pinning down the computational complexity of this
elusive problem.

References

[AK02] V. Arvind, P.P. Kurur, Graph Isomorphism is in SPP in 43rd Annual IEEE Symposium
of Foundations of Computer Science, November 2002, pp. 743–750.

[AKV05] V. Arvind, P.P. Kurur, T.C. Vijayaraghavan, Bounded color multiplicity graph isomor-
phism is in the #L hierarchy in 20th IEEE Conference on Computational Complexity
(CCC 2005), June 2005, pp. 13–27.

[BL83] L. Babai, E.M. Luks, Canonical labeling of graphs. in Proceedings of the Fifteenth
Annual ACM Symposium on Theory of, Computing, 1983, pp. 171–183.

[BCP82] L. Babai, P.J. Cameron, P.P. Pálfy, On the order of primitive groups with restricted
nonabelian composition factors. J. Algebra. 79, 161–168 (1982)

[BHZ87] R. Boppana, J. Hastad, S. Zachos, Does co-NP have short interactive proofs. Inf.
Process. Lett. 25(2), 127–132 (1987)

[DM91] J.D. Dixon B. Mortimer, Permutation Groups. Graduate Texts in Mathematics,
vol 163, (Springer, New York, 1991).

[DK09] S. Dutta, P.P. Kurur, Representating groups on graphs. CoRR, abs/0904.3941 (2009).
[DLNTW09] S. Dutta, N. Limaye, P. Nimbhorkar, T. Thierauf, F. Wagner, Planar graph isomor-

phism is in logspace. in Proceedings of the IEEE Conference on Computational Com-
plexity, 2009, pp 124–203.

[FT63] W. Feit, J.G. Thompson, Solvability of groups of odd order. Pac. J. Math. 13(3), 775–
1027, (1963). URL http://projecteuclid.org/euclid.pjm/1103053943

[FFK91] S.A. Fenner, L. Fortnow, S.A. Kurtz, Gap-definable counting classes. in Structure
in Complexity Theory Conference, 1991, pp 30–42. URL http://citeseer.nj.nec.com/
fenner92gapdefinable.html

[FHL80] M.L. Furst, J.E. Hopcroft, E.M. Luks, Polynomial-time algorithms for permutation
groups. in IEEE Symposium on Foundations of Computer, Science, 1980, pp. 36–41.

[GJ79] M. Garey, D. Johnson, Computers and intractability: a guide to the theory of NP-
completeness (W. H. Freeman, New York, 1979)

[Hal59] M. Hall Jr., The Theory of Groups, 1st edn. (The Macmillan Company, New York,
1959)

[HW74] J.E. Hopcroft, J.K. Wong, Linear time algorithm for isomorphism of planar graphs
(preliminary report). in Proceedings of the Sixth Annual ACM Symposium on Theory
of Computing, STOC ’74 (ACM, New York, 1974), pp. 172–184.

[KST92] J. Köbler, U. Schöning, J. Torán, Graph isomorphism is low for pp. Comput. Complex.
2(4), 301–330 (1992) URL http://citeseer.nj.nec.com/obler92graph.html

[KST93] J. Köbler, U. Schöning, J. Torán, The Graph Isomorphism Problem: Its Structural
Complexity (Birkhauser, Switzerland, 1993)

[Kur06] P.P. Kurur, Complexity upper bounds using permutation group theory. PhD thesis,
Institute of Mathematical Sciences, Chennai, India, 2006.

[Lad75] R.E. Ladner, On the structure of polynomial time reducibility. J. ACM 22(1), 155–171
(1975)

http://projecteuclid.org/euclid.pjm/1103053943
http://citeseer.nj.nec.com/fenner92gapdefinable.html
http://citeseer.nj.nec.com/fenner92gapdefinable.html
http://citeseer.nj.nec.com/obler92graph.html

202 S. Ghosh and P. P. Kurur

[Luk82] E.M. Luks, Isomorphism of graphs of bounded valence can be tested in polynomial
time. J. Comput. Syst. Sci. 25(1), 42–65 (1982)

[Luk86] E.M. Luks, Parallel algorithms for permutation groups and graph isomorphism, in
Proceedings of the IEEE Foundations of Computer Science, IEEE Computer Society
(1986), pp. 292–302

[Luk93] E.M. Luks, Permutation groups and polynomial time computations. DIMACS Ser.
Discrete Math. Theoret. Comput. Sci. 11, 139–175 (1993)

[Mat79] R. Mathon, A note on graph isomorphism counting problem. Inf. Process. Lett. 8(3),
131–132 (1979)

[Pál82] P.P. Pálfy, A polynomial bound for the orders of primitive solvable groups. J. Algebra
77, 127–137 (1982)

[Sch87] U. Schöning, Graph isomorphism is in the low hierarchy. in SymposiumonTheoretical
Aspects of Computer, Science (1987), pp. 114–124

[Sim67] C.C. Sims,Graphs and finite permutation groups.MathematischeZeitschrift 95, 76–86
(1967)

[Sim78] C.C. Sims, Some group theoretic algorithms. Top. Algebra 697, 108–124 (1978)
[Tor04] J. Torán, On the hardness of graph isomorphism. SIAM J. Comput. 33(5),

1093–1108 (2004)
[Wie64] H. Wielandt, Finite Permutation Groups (Academic Press, New York, 1964)
[ZKT85] V.N. Zemlyachenko, N.M. Korneenko, R.I. Tyshkevich, Graph isomorphism problem.

J. Sov. Math. 29, 1426–1481 (1985)

	Contributors
	Preface
	Contents
	1 Complexity Theory Basics: NP and NL
	1.1 NP-completeness
	1.2 Inside NP
	1.2.1 The Class NP capcoNP

	1.3 The Berman-Hartmanis Conjecture
	1.4 Are There Sparse NP-Complete Sets?
	1.4.1 Subexponentially Dense Languages

	1.5 Nondeterministic Logspace
	1.6 Undirected Graph Reachability
	1.6.1 Reachability in Graphs of Logarithmic Diameter
	1.6.2 A Randomized Logspace Algorithm for UREACH

	1.7 Logspace Counting Classes
	References

	2 Investigations Concerning the Structure of Complete Sets
	2.1 Introduction
	2.2 The Isomorphism Conjecture(s)
	2.2.1 Restricted Reductions
	2.2.2 1-L Reductions
	2.2.3 Constant-Depth Circuits
	2.2.4 Open Questions

	2.3 Creative Sets
	2.4 Universal Relations
	2.5 Conclusions
	References

	3 Space Complexity of the Directed Reachability Problem over Surface-Embedded Graphs
	3.1 Introduction
	3.1.1 Three Central Questions
	3.1.2 Outline

	3.2 Space Efficient Reachability Algorithms for Graphs with Topological Structure
	3.3 NL Versus UL Problem
	3.4 The BBRS Bound
	References

	4 Algebraic Complexity Classes
	4.1 Introduction
	4.2 Valiant's Original Framework
	4.3 The Current Status
	4.4 The Syntactic Multilinear World
	4.5 More on Completeness
	4.6 Computing Integers
	References

	5 A Selection of Lower Bounds for Arithmetic Circuits
	5.1 Introduction
	5.2 Existential Lower Bounds
	5.3 Weak Lower Bounds for General Circuits and Formulas
	5.3.1 Lower Bounds for General Circuits
	5.3.2 Lower Bounds for Formulas

	5.4 ``Natural'' Proof Strategies
	5.5 Some Simple Lower Bounds
	5.5.1 Lower Bounds for ΣΠ circuits
	5.5.2 Lower Bounds for ΣwedgeΣ Circuits
	5.5.3 Low-Rank ΣΠΣ

	5.6 Lower Bounds for Monotone Circuits
	5.6.1 Proof of Lemma 17

	5.7 Lower Bounds for Depth-3 Circuits over Finite Fields
	5.7.1 The Complexity Measure
	5.7.2 Upper Bounding Γ[GK]k,mathcalA for a Depth-3 Circuit
	5.7.3 Lower Bounding Γ[GK]k,mathcalA for Detn and Permn
	5.7.4 Putting It All Together

	5.8 Lower Bounds for Multilinear Models
	5.8.1 The Partial Derivative Matrix
	5.8.2 Lower Bound for Multilinear Formulas
	5.8.3 Stronger Lower Bounds for Constant Depth Multilinear Formulas

	5.9 Lower Bounds for Depth-4 Circuits
	5.9.1 Significance of the Model
	5.9.2 Building the Complexity Measure
	5.9.3 Lower Bounding Shifted Partials of Explicit Polynomials

	5.10 Conclusion
	References

	6 Explicit Tensors
	6.1 Tensors and Rank
	6.1.1 What is So Special About Matrices?

	6.2 Explicit Tensors of High Rank Imply Circuit Lower Bounds
	6.2.1 Higher Order Tensors
	6.2.2 Basic Properties
	6.2.3 From Tensor Rank Bounds to Formula Size Bounds
	6.2.4 Random Tensors

	6.3 Explicit Tensors from Bilinear Mappings
	6.3.1 The Rank of Bilinear Mappings and Algebras
	6.3.2 From Tensors of Order Three to Higher Order Tensors
	6.3.3 Explicit Tensors of Higher Order

	6.4 Explicit Tensors by Combinatorial Constructions
	6.5 Conclusions
	References

	7 Progress on Polynomial Identity Testing-II
	7.1 Introduction
	7.1.1 Survey Overview

	7.2 Shallow Circuits, Deep Interconnections
	7.2.1 The Depth-3 Chasm
	7.2.2 The Width-2 Chasm

	7.3 Faithful Morphisms, Hitting-Sets
	7.3.1 Bounded Fanin Depth-3 Blackbox PIT
	7.3.2 Depth ge3 Results

	7.4 Rank Concentration, Shift, Hitting-Sets
	7.4.1 Multilinear ROABP
	7.4.2 Towards Multilinear Depth-3

	7.5 Open Ends
	References

	8 Malod and the Pascaline
	8.1 Polynomials, Functions and Arithmetic Circuits
	8.2 Two Functions, Pascaline and Factorial
	8.3 Polynomials as Sums of Monomials
	8.4 Operations on the Polynomials and their Effect on the Coefficient-Functions
	8.5 A Universal Polynomial
	8.6 A Short Review of Malod's Thesis
	8.7 Characteristic Zero
	References

	9 A Tutorial on Time and Space Bounds in Tree-Like Resolution
	9.1 Introduction
	9.2 A Combinatorial Game for Proving Lower Bounds in Tree-Like Resolution
	9.3 The Asymmetric Prover-Delayer Game
	9.4 Conclusions
	References

	10 An Entropy-Based Proof for the Moore Bound for Irregular Graphs
	10.1 Introduction
	10.2 Preliminaries
	10.3 Moore Bound for Irregular Graphs
	10.3.1 Proof of the Moore Bound
	10.3.2 The Alon--Hoory--Linial Bound
	10.3.3 The Entropy-Based Proof of Lemma 3.4

	10.4 Moore Bound for Bipartite Graphs
	10.4.1 The Hoory Bound
	10.4.2 The Entropy-Based Proof of Lemma 4.3

	References

	11 Permutation Groups and the Graph Isomorphism Problem
	11.1 Introduction
	11.2 Preliminaries
	11.3 Basic Polynomial-Time Algorithms
	11.4 Divide and Conquer Algorithms for Permutation Groups
	11.5 Lexicographically Least Permutations
	11.6 Structure of Primitive Groups
	11.7 Representation of Groups on Graphs
	11.8 Conclusion
	References

